11.
$$P(E \cup F) = P(E) + P(F) - P(E \cap F)$$

 $P(E \cap F) = P(E) + P(F) - P(E \cup F)$
 $= 0.7 + 0.5 - 0.8$
 $= 0.4$

14.
$$P(E) = P(E \cup F) + P(E \cap F) - P(F)$$

= 0.7 + 0.4 - 0.5
= 0.6

18.
$$P(A) = 0.7, P(B) = 0.4 \text{ and } P(A \cap B) = 0.2$$

(a)
$$P(A \text{ or } B) = P(A) + P(B) - P(A \cap B)$$

= 0.7 + 0.4 - 0.2
= 0.9

(b)
$$P(A \text{ but not } B) = P(A) - P(A \cap B)$$

= 0.7 - 0.2
= 0.5

(c)
$$P(B \text{ but not } A) = P(B) - P(A \cap B)$$

= 0.4 - 0.2
= 0.2

(d)
$$P(\text{neither } A \text{ nor } B) = P(\overline{A \cup B})$$

= $1 - P(A \cup B)$
= $1 - 0.9$
= 0.1

22.
$$P(E) = \frac{1}{1+4} = \frac{1}{5}$$

26.
$$P(E) = \frac{50}{50+1} = \frac{50}{51}$$

29.
$$P(F) = \frac{3}{4}$$
 $P(\overline{F}) = 1 - P(F) = \frac{1}{4}$

30.
$$P(G) = 0.1$$
 $P(\overline{G}) = 1 - P(G) = 0.9$

Odds for $F: \frac{P(F)}{P(\overline{F})} = \frac{\frac{3}{4}}{\frac{1}{4}} = \frac{3}{1} \text{ or } 3 \text{ to } 1$

Odds for G:
$$\frac{P(G)}{P(\overline{G})} = \frac{1}{9}$$
 or 1 to 9

Odds against F: $\frac{P(\overline{F})}{P(F)} = \frac{\frac{1}{4}}{\frac{3}{4}} = \frac{1}{3}$ or 1 to 3

Odds against G: $\frac{P(\overline{G})}{P(G)} = \frac{9}{1}$ or 9 to 1

33. Let M and E be the events Anne passes mathematics and Anne passes English respectively. We are given P(M) = 0.4; P(E) = 0.6, and $P(M \cup E) = 0.8$. The probability that Anne passes both courses is

$$P(M \cap E) = P(M) + P(E) - P(M \cup E)$$

= 0.4 + 0.6 - 0.8
= 0.2

34. Let *M* and *E* be the events Anne passes mathematics and Anne passes English respectively. When P(M) = 0.7; $P(M \cup E) = 0.8$; and $P(M \cap E) = 0.1$,

$$P(E) = P(M \cup E) - P(M) + P(M \cap E)$$

= 0.8 - 0.7 + 0.1
= 0.2

36.
$$P(E \cup F) = P(E) + P(F) - P(E \cap F)$$

= 0.06 + 0.04 - 0.02
= 0.08