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When historical data are available, incorporating them in an optimal way into the current data
analysis can improve the quality of statistical inference. In Bayesian analysis, one can achieve
this by using quality-adjusted priors of Zellner, or using power priors of Ibrahim and coauthors.
These rules are constructed by raising the prior and/or the sample likelihood to some exponent
values, which act as measures of compatibility of their quality or proximity of historical data
to current data. This paper presents a general, optimum procedure that unifies these rules
and is derived by minimizing a Kullback–Leibler divergence under a divergence constraint.
We show that the exponent values are directly related to the divergence constraint set by the
user and investigate the effect of this choice theoretically and also through sensitivity analysis.
We show that this approach yields `100% efficient' information processing rules in the sense
of Zellner. Monte Carlo experiments are conducted to investigate the effect of historical and
current sample sizes on the optimum rule. Finally, we illustrate these methods by applying
them on real data sets.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Incorporating useful information from past similar studies can enhance the quality of current data analysis. In many cancer
and AIDS clinical trials, current studies often use treatments that are very similar to or slight modifications of the treatments
used in previous studies. The number of students enrolled each year at a university changes for various reasons. When analyzing
the current enrollment data it would be useful to incorporate the information from previous years. We refer to data arising from
previous similar studies as historical data.

In Bayesian analysis one specifies priors to utilize the available information. For a given prior � and a sample likelihood �, the
posterior distribution using Bayes' theorem is given by f ∝ ��. Zellner (1997a,b, 2002) (see other references therein) recognized
that the quality of the inputs, the prior and the sample information, might vary. He suggested updating the information rule
(posterior distribution) f by f̃ ∝ q1(�)q2(�), where q1(�) is the `quality-adjusted' prior and q2(�) is the `quality-adjusted' likelihood
function. One choice is to use q1(�) ∝ �a, q2(�) ∝ �

b, 0� a, b�1. Thus, for example, when the prior (sample likelihood)
information is of very low quality, one can use a = 0 (b = 0), and then f̃ ∝ �

b (f̃ ∝ �a). Quality-adjusted posteriors are also
desirable when it is appropriate to weigh the prior and sample information differently (Zellner, 2002). Often raising the prior
and/or the likelihood to a fractional power corresponds to their higher dispersion. Thus quality-adjusted rules are useful when
one associates `low quality' with `higher dispersion' in contrast to the situation when the prior and/or the likelihood are of very
high quality (a = b = 1).
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Another way to incorporate available past information in current data analysis is to use an informative prior. One kind of
informative priors are power priors. Suppose we denote the historical data set by D0 and the likelihood of D0 by L(�,D0). Further,
let �0(�) be the (initial) prior distribution for � before D0 is observed. Then the power prior is given by (L(�,D0))

a0�0(�) where
0� a0 �1 is a scalar parameter that controls the influence of the historical data on the current data. Under the power prior, the
posterior distribution of � is given by

�(�|D,D0, a0) = L(�,D)(L(�,D0))
a0�0(�), (1.1)

where L(�,D) is the likelihood of the current data set D. Ibrahim et al. (2003) show that the power priors are optimal in the sense
that the distribution in (1.1) minimizes a convex sum of Kullback–Leibler divergence between two posterior densities: one based
on `pooled historical and current data' (a0 =1) and the other based on `not using the historical data at all' (a0 =0). It is also shown
that the power priors are 100% efficient according to the optimal information processing rules of Zellner (1988), thus, the ratio of
the output to input information is 1.

Ibrahim et al. (2003, eq. (29)) suggest an expression for a0 to be used as optimal when a single historical data set is available
and suggest more research is needed to find the suitable value of a0. In this paper, we show that a well-justified value of a0
can be obtained by considering constraints relating divergence from a specified distribution when a single historical data set is
available. This gives a clear interpretation of the exponent a0 of the power prior of Ibrahim et al. (2003) in terms of distances
from the current and historical data, see Remark 3. In particular, our approach is to minimize the Kullback–Leibler divergence
from the historical posterior to a class of distributions which are a given divergence away from the current posterior. It is up to
the user to decide how far from the current posterior he/she would like to be. If the value of this divergence is set at r, then the
value a0 depends on r. In Theorem 2, we demonstrate the effect of the choice r on the final solution. In Section 2.6, we discuss
the choice of r and conduct related sensitivity analyses. The methods developed in this article are applicable in Bayesian and
frequentist situations. To calibrate the divergence so that one can set r appropriately, one may consider the interesting scheme
from McCulloch (1989).

Power priors have been studied by several authors other than those mentioned earlier. Ibrahim and Chen (2000) studied
power priors in regression situation. Chen et al. (2000) showed power priors are proper for a wide range of models under some
general conditions. Ibrahim et al. (1998) showed how to use historical data for trend test in presence of covariates. Walker et al.
(2004) considered Bayesian models where the prior puts positive mass on all Kullback–Leibler neighborhoods of all densities.
These neighborhoods are similar to the constraint regions in Section 2; however, these authors consider the second argument of
the divergence as unknown whereas in this paper the first argument is considered unknown. Similar neighborhoods appear in
other Bayesian nonparametric literature (Wasserman, 1998; Ghosal et al., 1999; Barron et al., 1999).

In Section 2, we show in Remarks 1–3 that both quality-adjusted and power prior rules can be derived as special cases of our
procedure. In Section 3, we show that the optimal solutions derived in this paper are 100% efficient by modifying the definitions
of Zellner (1997a,b, 2002). In Section 4, we consider simulation studies, which investigate the effect of sample sizes on the
exponents of historical and current likelihoods. In Section 5, we apply the methods developed on two real data sets. We end with
final comments in Section 6.

2. Optimum solution

LetD be the set of all probability density functions (pdfs) onR. For pdfs f , g ∈ D, the Kullback–Leibler divergence, or simply,
divergence between f and g is defined as

I(f |g) =
∫

f (t) ln
f (t)
g(t)

dt.

It is well known that I(f |g)�0, and =0 if and only if f = g. Here and in the sequel we observe the conventions that ln 0 = −∞,
ln(a/0) = +∞, 0 · (±∞) = 0.

2.1. Main results

For given pdfs g,h, we consider the infinite dimensional optimization problem of finding the pdf fwhich solves

inf I(f |g) (2.1)

subject to

{f : I(f |h)� r}, (2.2)

where r is a given nonnegative constant. If r� r∗ = I(g|h), then the solution to (2.1) is g, and, if r = 0, then the solution to (2.1) is
h. Thus, in some sense, the solution, say f ∗, is `between' g and h, and at a divergence r (or less) from h.

If the value of (2.1) is denoted by I(r), the following Theorem states two important properties of I(r). The result and proof
of Theorem 1 are similar to Blahut (1974, Theorems 2, 3), who considered the discrete situation; however, our interest is in
continuous probability densities.
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Theorem 1. I(r) is nonincreasing and convex in r.

Proof. Let 0<r1 � r2. Then {f : I(f |h)� r1} ⊂ {f : I(f |h)� r2}. Then I(r1)� I(r2), and thus, I(r) is nonincreasing.
To show that I(r) is convex in r, let there exist f1, f2 such that I(f1|g)= I(r1), I(f2|g)= I(r2) and f� = �f1 + (1− �)f2 for 0���1.

Since I(·|h) is known to be convex in the first argument, I(f�|h)��I(f1|h) + (1 − �)I(f2|h)��r1 + (1 − �)r2. Thus f� ∈ {f :
I(f |h)��r1 + (1 − �)r2}. Also,

I(�r1 + (1 − �)r2)� I(f�|g)
� �I(f1|g) + (1 − �)I(f2|g)
= �I(r1) + (1 − �)I(r2).

This proves the result. �

The next result shows that the infinite dimensional problem of finding f in (2.1) can be solved by considering a dual problem,
which is a function of a scalar � ∈ R+, and the two solutions are also related.

Theorem 2. The solution to (2.1) is given by

f ∗(t) = (g(t))1/(1+�∗)(h(t))�
∗/(1+�∗)∫

(g(t))1/(1+�∗)(h(t))�
∗/(1+�∗) dt

, (2.3)

where �∗ solves

inf
�∈R+

{
�r + (1 + �) ln

∫
(g(t))1/(1+�)(h(t))�/(1+�) dt

}
. (2.4)

Proof. The Lagrangian for the problem in (2.1) is given by

L(f ,�) =
∫

f (t) ln
f (t)
g(t)

dt + �
(∫

f (t) ln
f (t)
h(t)

dt − r
)
, (2.5)

where � is the Lagrangian multiplier. The associated dual problem is given by

sup
�∈R+

inf
f∈D

L(f ,�). (2.6)

We can write

L(f ,�) =
∫

f (t) ln
f (t)
g(t)

dt + �
(∫

f (t) ln
f (t)
h(t)

dt − r
)

= −�r +
∫

f (t) ln
f (t)
g(t)

dt +
∫

f (t) ln
(
f (t)
h(t)

)�

dt

= − �r +
∫

f (t) ln

(
(f (t))1+�

(g(t)h(t)�)

)
dt = −�r + (1 + �)

∫
f (t) ln

(
f (t)

(g(t))1/(1+�)(h(t))�/(1+�)

)
dt,

where the second term involves a divergence which is minimum when

f (t) = (g(t))1/(1+�)(h(t))�/(1+�)∫
(g(t))1/(1+�)(h(t))�/(1+�) dt

.

Using this f in the infimum in (2.6), the dual problem can be expressed as

sup
�∈R+

{
−�r − (1 + �) ln

∫
(g(t))1/(1+�)(h(t))�/(1+�) dt

}
. (2.7)

The theorem follows (Rockafeller, 1976, 1974; Ben-Tal et al., 1988) by taking the minus sign out of the braces in (2.7). �

The value �∗, which solves (2.4), can be determined easily by numerical methods. The individual influences of the densities g,
h on the final solution f ∗ are controlled by r through �∗. The next result shows that the power of h in (2.3), i.e., �/(1 + �) = �, say,
is a nonincreasing function of r.

Theorem 3. Suppose there exists r0 such that there exists f0(t) = (g(t))1−�(h(t))�/c where c = ∫
(g(t))1−�(h(t))� dt, 0���1 and � is

chosen as a function of r0 so that f0(t) achieves equality in the constraints defined by (2.2). In addition, suppose there exists �0 such
that |r − r0|<�0 for any r. Then � is a nonincreasing function of r.
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Proof. Since c = ∫
g(t)1−�h(t)� dt = ∫

g(t)(h(t)/g(t))� dt, we get

I(f0|h) =
∫

g(t)1−�h(t)�

c
ln

(
g(t)1−�h(t)�/c

h(t)

)
dt = 1

c

∫
g(t)1−�h(t)�

(
ln

g(t)1−�h(t)�

h(t)
− ln c

)
dt

= 1
c

∫
g(t)1−�h(t)� ln

(
g(t)1−�h(t)�

h(t)

)
dt − ln c = 1

c

∫
g(t)

(
h(t)
g(t)

)�

ln
(
g(t)
h(t)

)1−�
dt − ln c

= 1 − �
c

∫
g(t)

(
h(t)
g(t)

)�

ln
(
g(t)
h(t)

)
dt − ln c.

Hence it follows that

�r
��

= �
��

I(f0|h)

= �
��

{
1 − �
c

∫
g(t)

(
h(t)
g(t)

)�

ln
(
g(t)
h(t)

)
dt − ln c

}

= 1
c2

[
c

(
−
∫

g(t)
(
h(t)
g(t)

)�

ln
(
g(t)
h(t)

)
dt − (1 − �)

∫
g(t)

(
h(t)
g(t)

)�(
ln

h(t)
g(t)

)2

dt

)

+ (1 − �)

(∫
g(t)

(
h(t)
g(t)

)�

ln
(
g(t)
h(t)

)
dt

)2

− c
∫

g(t)
(
h(t)
g(t)

)�

ln
(
h(t)
g(t)

)
dt

⎤
⎦

= 1
c2

⎡
⎣c
(

−(1 − �)
∫

g(t)
(
h(t)
g(t)

)�(
ln

g(t)
h(t)

)2

dt

)
+ (1 − �)

(∫
g(t)

(
h(t)
g(t)

)� (
ln

h(t)
g(t)

)
dt

)2
⎤
⎦

= − 1 − �
c2

⎡
⎣c
(∫

g(t)
(
h(t)
g(t)

)�(
ln

h(t)
g(t)

)2

dt

)
−
(∫

g(t)
(
h(t)
g(t)

)� (
ln

h(t)
g(t)

)
dt

)2
⎤
⎦

= − (1 − �)

⎡
⎣1
c

∫
g(t)

(
h(t)
g(t)

)�(
ln

h(t)
g(t)

)2

dt −
(
1
c

∫
g(t)

(
h(t)
g(t)

)� (
ln

h(t)
g(t)

)
dt

)2
⎤
⎦

= − (1 − �)

[∫ (
ln

h(t)
g(t)

)2

dP −
(∫

ln
h(t)
g(t)

dP
)2
]

= −(1 − �) varP
(
ln

h(t)
g(t)

)
�0

(where dP/dt = g(t)(h(t)/g(t))�/c). Since (��/�r) = (�r/��)−1, it follows that ��/�r�0. Also, from I(f0|h) = r, if we set r = 0 then
f0 = hwhich means � = 1; if we set r = I(g|h) (or larger), then f0 = g which means � = 0. Thus � ∈ [0, 1] is a nonincreasing function
of r. �

In the following remarks, we apply the previous results in a Bayesian context. When g, h are both posterior distributions as in
Remarks 1–3, we refer to the solution in (2.3) as a `power posterior'. Recall, the (initial) prior distribution is denoted by �0(�).

Remark 1 (Zellner's quality-adjusted information rule). If we set the historical posterior as g(�) ∝ L(�|D0)�0(�) and the current
posterior as h(�) ∝ L(�|D)�0(�), then the power posterior from (2.3) is

f ∗(�) ∝ [L(�|D0)]
1−�[L(�|D)]��0(�), (2.8)

where 0���1,� = �∗/(1 + �∗) where � (=�∗ ∈ R+) minimizes

�r + (1 + �) ln
∫ [

L(�|D0)�0(�)∫
L(�|D0)�0(�)d�

]1/(1+�)[ L(�|D)�0(�)∫
L(�|D)�0(�)d�

]�/(1+�)

d�

= �r + (1 + �)

[
ln
∫

L(�|D0)
1/(1+�)L(�|D)�/(1+�)�0(�)d�

− ln
(∫

L(�|D0)�0(�)d�
)1/(1+�)

− ln
(∫

L(�|D)�0(�)d�
)�/(1+�)

]

= �r + (1 + �) ln
∫

L(�|D0)
1/(1+�)L(�|D)�/(1+�)�0(�)d�

− ln
∫

L(�|D0)�0(�)d� − � ln
∫

L(�|D)�0(�)d�. (2.9)
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Leaving out the third term (which is free of �), � (=�∗ ∈ R+) minimizes

�(r − c) + (1 + �) ln
∫

L(�|D0)
1/(1+�)L(�|D)�/(1+�)�0(�)d�, (2.10)

where c= ln
∫
L(�|D)�0(�)d�. Setting �0(�)= 1, g=�, h= � in (2.8), yields the quality-adjusted information rule of Zellner when

a + b = 1. Thus Theorem 2 gives us an interpretation of a, b based on `distance' from the current/historical likelihood, that is,
the solution is at a distance of 100(r/r∗)% of r∗ = I(g|h) from h. From Theorem 2, the influence of the current and historical data
likelihoods on the final solution f ∗(�) can be controlled by changing r. In calculation, sometimes, it may be easier to use (2.9)
directly than (2.10). One would like to choose r a smaller value (than larger) so that more weight is put on current data.

Remark 2 (Zellner's rule continued). One can interchange the roles of g and h in Remark 1, which produces from (2.3) as

f ∗(�) ∝ [L(�|D)]1−�[L(�|D0)]
��0(�), (2.11)

where 0���1, � = �∗/(1 + �∗), �∗ solves (similar derivation as (2.10))

inf
�∈R+

{
�(r − d) + (1 + �) ln

∫
[L(�|D)]1/(1+�)[L(�|D0)]

�/(1+�)�0(�)d�
}
, (2.12)

where d = ln
∫
L(�|D0)�0(�)d�. Here, contrary to Remark 1, one would like to choose r closer to r∗ = I(g|h) than to 0 to put more

weight on current data. The difference between the posterior distributions in (2.8) and (2.11) is that the former gives more
importance on current likelihood whereas the latter puts more importance on the historical likelihood when ��0.5.

Remark 3 (Ibrahim and coauthors' power prior). Another important choice is to set g(�) ∝ L(�|D)�0(�), h(�) ∝ L(�|D)L(�|D0)�0(�),
which gives from (2.3) as

f ∗(�) ∝ [L(�|D)][L(�|D0)]
��0(�). (2.13)

This power posterior has the same appearance as that of Ibrahim et al. (2003, eq. (2)) with �=a0. If �=�∗ solves (similar derivation
as (2.10))

inf
�∈R+

{
�(r − e) + (1 + �) ln

∫
[L(�|D0)]

�/(1+�)[L(�|D)]�0(�)d�
}
, (2.14)

where e= ln
∫
L(�|D)L(�|D0)�0(�)d�, then the optimal value of � is �∗ = �∗/(1+ �∗) in (2.13). This �∗ is different from the optimal

`guide' value ag suggested by Ibrahim et al. (2003, eq. 29). The value of �∗ (or �∗) obtained from (2.14) depends on r which lets
the user control how close to the historical/current data one would like to be. Thus a0 in (1.1) can be interpreted as a value that
corresponds to the solution that is at a distance of 100(r/r∗)% of r∗ = I(g|h) from h.

Remarks 1–3 show that different types of power posterior distributions can be generated by choosing g,h differently in (2.1)
and (2.2). Belowwe consider several statisticalmodels, wherewe derive the form of the power posterior using (2.8) in the context
of Remark 1.

2.2. Normal model

Suppose iid normally distributed observations are available where the current data set is D = {(y1, . . . , yn) : yi ∼ N(�, 1)}
and the historical data set is D0 = {(y10, . . . , yn00) : yi0 ∼ N(�, 1)} (� ∈ R). Assuming �0(�) = 1, ∀�, we get after simplifications
L(�|D0)�0(�)/

∫
L(�|D0)�0(�)d� = N(y0, 1/n0). Similarly, L(�|D)�0(�)/

∫
L(�|D)�0(�)d� = N(y, 1/n). Using algebra it follows that

I
(
N
(
y0,

1
n0

) ∣∣∣∣N
(
y,

1
n

))
= 1

2

{
ln
(
n0
n

)
− 1 + n

n0
+ n(y − y0)

2
}

(=r∗, say) which is =n(y − y0)
2/2 if n = n0, and =0 if y = y0 as well (g = h). Here the power posterior in (2.8) turns out to be

c̃
(
N
(
y,

1
n

))�/(1+�)(
N
(
y0,

1
n0

))1/(1+�)
= N

(
n�y + n0y0
n� + n0

,
1 + �

n� + n0

)
, (2.15)

where c̃ is the normalizing constant and the right side is obtained after simplification.
Writing � = �/(1 + �), we can write the solution in (2.15) as

N
(

�ny + (1 − �)n0y0
�n + (1 − �)n0

,
1

�n + (1 − �)n0

)
. (2.16)

Mean and variance of the normal distribution in (2.16) can be written as wy + (1 − w)y0 and w(1/n) + (1 − w)(1/n0) (where
w = �n/(�n + (1 − �)n0)), respectively. Thus the mean in (2.16) is a weighted average of the means of current (� = 1 or r = 0) and
historical (� = 0 or r = r∗) data sets. Similarly for the variance. When n = n0, (2.16) reduces to N(�y + (1 − �)y0, 1/n).



Author's personal copy

4056 B. Bhattacharya / Journal of Statistical Planning and Inference 139 (2009) 4051 -- 4063

From (2.9), the optimal ��0 is the value �∗ that minimizes

�r + (1 + �)
2

[
(1 − �) ln(n0) + � ln(n) − ln(a + b) − ab(y − y0)

2

(a + b)

]
, (2.17)

where a = n0(1 − �), b = n�.
When n = n0, we have a + b = n. If we also set r = (n/(n + n0))r∗ = r∗/2, further simplification from (2.17) shows that the

optimum � must solve the equation (1 + �)2 = 2, which gives � = 0.4138 (or � = 0.2927), for any n = n0, y, y0. See Section 2.6 for
values of � for other possible choices of r and Section 5.1 for simulation to study the effect of n,n0 on the values of �.

2.3. Exponential model

Suppose the current data are iid exponentially distributed with mean 1/� and are denoted by D = {(y1, . . . , yn) : yi ∼
exponential (1/�)}. Similarly, the historical data are denoted by D0 = {(y10, . . . , yn00) : yi0 ∼ exponential (1/�)}. Assuming
�0(�) = 1/�, ∀�, we get the optimal power posterior in (2.8) is proportional to

(�n0e−�
∑

yi0 )1/(�+1)(�n1e−�
∑

yi1 )�/(�+1) 1
�

∝ ��n1+(1−�)n0−1 exp[−�(�n1y1 + (1 − �)n0y0)]

(where � = �/(1 + �)), which is a gamma distribution with shape parameter (�n1 + n0)/(1 + �) = �n1 + (1 − �)n0 and the scale
parameter (�n1y1 + n0y0)/(1 + �) = �n1y1 + (1 − �)n0y0, and using (2.10) � = �∗ solves

inf
��0

{
�
(
r − �(n1)

(n1y1)
n1

)
+ (� + 1) ln

(
�((�n1 + n0)/(1 + �))

[(�n1y1 + n0y0)/(1 + �)](�n1+n0)/(1+�)

)}

since c = ∫
�n1e−�

∑
yi (1/�)d� = �(n1)/(n1y1)

n1 .

2.4. Normal linear model

Consider the historical data as D0 : y0 =X0b+ �0 where �0 ∼ Nn0 (0,	
2
0I), X0 is n0 × p of rank p, and b is p× 1. We also assume

that 	2
0 is known, and �0(b)= 1. Similarly, suppose the current data are D : y1 =X1b+ �1 where �1 ∼ Nn(0,	2

1I) and 	2
1 is known.

Here

L(b|D0) = 1

(2�)n0/2	n0
0

exp

{
− 1
2	2

0

(y0 − X0b)
′(y0 − X0b)

}
,

L(b|D1) = 1

(2�)n1/2	n1
1

exp

{
− 1
2	2

1

(y1 − X1b)
′(y1 − X1b)

}
. (2.18)

After simplificationsone can find g=L(Xb|D0)�0(b)/
∫
L(b|D0)�0(b)db=Np(b̂0,	

2
0(X

′
0X0)

−1), and,h=L(b|D)�0(b)/
∫
L(b|D)�0(b)db=

Np(b̂1,	
2
1(X

′
1X1)

−1) where b̂0 = (X′
0X0)

−1X′
0y0 and b̂1 = (X′

1X1)
−1X′

1y1. Then it follows by algebra that r∗ = I(g|h), where (|A|=
determinant of matrixA, tr(A) = trace of matrix A)

r∗ = 1
2

(
tr

(
	2
0

	2
1

(X′
0X0)

−1(X′
1X1)

)
− log

∣∣∣∣∣	
2
0

	2
1

(X′
0X0)

−1(X′
1X1)

∣∣∣∣∣− p

)
+ 1

2	2
1

(b̂0 − b̂1)′(X′
1X1)(b̂0 − b̂1).

Using (2.18) in (2.8) and simplifying, the power posterior is given by a multivariate normal distribution Np(�,R) where

� =Cb̂0 + (I −C)b̂1, C= (a0X
′
0X0 + a1X

′
1X1)

−1a0(X
′
0X0), R= (a0X

′
0X0 + a1X

′
1X1)

−1,

where a0 = (1 − �)/	2
0, a1 = �/	2

1, �
∗ = �∗/(�∗ + 1). The mean � (covariance R) is a linear combination of the means (covariances)

of g and h. Using (2.18) and the form of Np(�,R) above, it follows from (2.10) that �∗ solves the dual problem

inf
��0

{
�(r + C) − � + 1

2
(D + E + F)

}
, (2.19)

where

C = 1
2	2

1

(y′
1y1 − y′

1X1(X
′
1X1)

−1X′
1y1) + 1

2
ln
∣∣X′

1X1
∣∣+ n1 − p

2
ln 2�	2

1,

D = n0(1 − �) ln	2
0 + n1� ln	2

1 + (n1� + n0(1 − �) − p) ln(2�),
E = (a0y′

0y0 + a1y′
1y1) + log

∣∣(a0X′
0X0 + a1X

′
1X1)

∣∣ ,
F = (a0X

′
0y0 + a1X

′
1y1)

′(a0X′
0X0 + a1X

′
1X1)

−1(a0X
′
0y0 + a1X

′
1y1),

where � = �/(� + 1). Note D, E, F depend on �.
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2.5. Logistic regression model

Consider a binary response variable Y and an explanatory variable X = (X1 = 1,X2, . . . ,Xp) which are related by the relation

P(Y = 1)/P(Y = 0) = e
∑p

i=1 
ixi , where b = (
1, . . . ,
p) are parameters. Assume �0(b) = 1. In this example we use superscripts

0:historical, and 1:current with y, X variables. The historical data are D0 = {y0,X0} where X0 is n0 × p, and y0 is n0 ×1. The current
data are D1 = {y1,X1} where X1 is n1 × p, and y1 is n1 × 1. The likelihoods are

L(b|D0) = e
∑n0

i=1

(∑p
j=1 
jx

0
ij

)
y0i∏n0

i=1 (1 + e
∑p

j=1 
jx
0
ij )
, L(b|D1) = e

∑n1
i=1 (

∑p
j=1 
jx

1
ij)y

1
i∏n1

i=1

(
1 + e

∑p
j=1 
jx

1
ij

) . (2.20)

Setting g = L(b|D0)/
∫
L(b|D0)db, and, h = L(b|D)/∫ L(b|D)db it follows by algebra that r∗ = I(g|h), where using (2.20),

r∗ = c1
c0

+ 1
c0

∫
e
∑n0

i=1 (
∑p

j=1 
jx
0
ij)y

0
i∏n0

i=1 (1 + e
∑p

j=1 
jx
0
ij )

⎡
⎣ p∑

j=1

⎛
⎝ n0∑

i=1

x0ijy
0
i −

n1∑
i=1

x1ijy
1
i

⎞
⎠
j +

n1∑
i=1

ln(1 + e
∑p

j=1 
jx
1
ij ) −

n0∑
i=1

ln(1 + e
∑p

j=1 
jx
0
ij )

⎤
⎦ db,

where c0 = ∫
L(b|D0)db, c1 = ∫

L(b|D1)db.
Using (2.10), the power posterior is obtained by selecting � = �∗ which minimizes

�(r − c1) + (1 + �) ln
∫

e
∑p

j=1 ((1/(1+�))
∑n0

i=1 x0ijy
0
i −(�/(1+�))

∑n1
i=1 x1ijy

1
i )
j(∏n0

i=1 (1 + e
∑p

j=1 
jx
0
ij )
)1/(1+�)(∏n1

i=1 (1 + e
∑p

j=1 
jx
1
ij )
)�/(1+�)

db. (2.21)

Using � = �/(1 + �), the power posterior is given by

W = c̃

⎛
⎝ e

∑n0
i=1 (

∑p
j=1 
jx

0
ij)y

0
i∏n0

i=1 (1 + e
∑p

j=1 
jx
0
ij )

⎞
⎠

1−�⎛
⎝ e

∑n1
i=1 (

∑p
j=1 
jx

1
ij)y

1
i∏n1

i=1 (1 + e
∑p

j=1 
jx
1
ij )

⎞
⎠

�

, (2.22)

where c̃ is a normalizing constant.
We will choose estimates of 
j's (b̂= (
̂1, . . . , 
̂k)) by maximizingW in (2.22). Considering lnW, and setting � lnW/�b= 0, we

get

(1 − �)
n0∑
i=1

x0ijy
0
i + �

n1∑
i=1

x1ijy
1
i − (1 − �)

n0∑
i=1

x0ij�̂
0
i − �

n1∑
i=1

x1ij�̂
1
i = 0, j = 1, . . . , p, (2.23)

where �̂j
i = exp(

∑p
k=1 
̂kx

j
ik)/[1 + exp(

∑p
k=1 
̂kx

j
ik)], j = 0, 1.

The estimators b̂ have large sample normal distributionwith estimated covariancematrix given by the negative of the inverse
of the second derivative matrix ofW. This is given by

H = {(1 − �)X′
0(Diag[�i0(1 − �i0)])X0 + �X′

1(Diag[�i1(1 − �i1)])X1}−1,

where Diag[�i0(1 − �i0)] denotes the n0 × n0 matrix with diagonal entries as �i0(1 − �i0); similarly, for Diag[�i1(1 − �i1)];
�i0 = exp(

∑p
j=1 
jx

0
ij)/(1 + exp(

∑p
j=1 
jx

0
ij)), �i1 = exp(

∑p
j=1 
jx

1
ij)/(1 + exp(

∑p
j=1 
jx

1
ij)).

The nonlinear equations in (2.23) can be solved by Newton–Raphson method. Starting with an initial value b(0), the iterates
are given by

b(t+1) = b(t) + {H(t)}−1q(t), t�0,

where

H(t) = (1 − �)X′
0(Diag[�

t
i0(1 − �t

i0)])X0 + �X′
1(Diag[�

t
i1(1 − �t

i1)])X1,

q(t) = (1 − �)X′
0(y

0 − pt0) + �X′
1(y

1 − pt1),

where pt0 = (�t
i0), �

t
i0 = exp(

∑p
j=1 
t

j x
0
ij)/(1 + exp(

∑p
j=1 
t

j x
0
ij)) and p

t
1 = (�t

i1), �
t
i1 = exp(

∑p
j=1 
t

j x
1
ij)/(1 + exp(

∑p
j=1 
t

j x
1
ij)). Using the

estimates of b and H from the iteration, one can construct confidence intervals for parameters 
i.

2.6. The choice of r

In the context of Remark 1, the choice of r, as in the assessment of quality-of-life in clinical trials (see, e.g., Cox et al., 1992; Zhao
and Tsiatis, 1999a,b; Korn, 1993; Chen and Sen, 2001), is often subjective and is based on the perception of the experimenter. In
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Table 1
Exponents (�) of current data likelihoods for different r (= distance between historical and current) in normal model with mean (�) and variance (	2) of the
solution.

r � � � 	2

0 ∞ 1.0 10.00 0.100
100 2.47 0.71 14.47 0.078
200 1.16 0.54 16.32 0.068
300 0.58 0.37 17.75 0.061
400 0.24 0.19 18.94 0.055
500 0.00 0.00 20.00 0.050
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Fig. 1. Graph of eta (exponent of current) versus r/r∗ (proportional distance between current and historical).

extreme cases when the historical data are not of very good quality, or could be inappropriate for some reason, one might put
more emphasis on current data, and use r = 0.01r∗ e.g., where r∗ = I(g|h). If the current data are not reliable for some reason,
then one might use r = 0.99r∗ e.g. (see also Zellner, 2002). Except these cases, the value of rwould be set somewhere in between
[0.01r∗, 0.99r∗] based on the quality (or appropriateness) of the historical data.

Typically, one would like to be much closer to the current data than to the historical. Some suggestions for choosing r are: (1)
r=[pn/(n+n0)]r∗,p ∈ [0.1, 1.0],where n0, n are the sample sizes of the historical (g) and current (h) data; (2) r=[ps20/(s

2
0+s2)]r∗,p ∈

[0.1, 1.0], where s20, s
2 are the sample variances of the historical and current data, respectively. If we follow (1) with n = n0 for

normal model of Section 2.2, we get r = pr∗/2, and simplification from (2.17) shows that the optimum � must solve the equation
p�2 + 2p� + p − 2 = 0, which gives � = �/(1 + �) = 1 −

√
p/2 after discarding the negative solution for �. Thus, for example, when

p = 0.5, 0.125, then � = 0.5, 0.75, respectively, for any n = n0, y, y0. A solution f ∗(t) ∝ [g(t)]
√

p/2[h(t)]1−
√

p/2 (see (2.3)) is within
100(p/2)% of r∗ from h.

In practice, several sensitivity analyses should be conducted using different values of r, some giving small and some giving
large weights to the historical data. The results should be interpreted based on all these analyses. The choice of r has to be
modified for Remark 2 or 3 where g, h are different from above. To illustrate the role of the choice of r in the form of the power
posterior, we consider sensitivity analyses in two models: (1) Normal model. In Section 2.1, for the normal model, we consider
two samples of sizes n0 = 20 and n= 10, each taken from normal distribution with mean � and variance 1. The sample means are
taken to be y0 = 20 and y= 10. Here r∗ = 500. For different choices of r in [0, 500], values of corresponding optimum � (and �) are
found.

Table 1 lists these values along with the mean and variance of the resulting power posterior. We see that as r increases �
decreases as expected from Theorem 3. (2) Logistic regression model. In Section 2.4, for the logistic regression model, consider
P(Y = 1)/P(Y = 0) = e

∑1
i=0 
ixi , where 
0 = 1,
1 = −1, with n0 = 20 and n = 10. For the historical data, let xi ∼ N(0, 0.52); for the

current data, let xi ∼ N(0, 1). Here r∗ = 6.21. For different choices of r in [0, 6.21], values of corresponding optimum � (and �) are
found.

Fig. 1 presents graphs of � versus r/r∗ for these two models. Both have an S-shaped pattern. For any r/r∗, logistic has higher
� values than normal throughout except when r ≈ r∗. For the normal model, � decreases more sharply than the logistic when
r/r∗ �0.5 (approximately), opposite happens when r/r∗ �0.5. From Fig. 1, a smaller value of r is desirable than larger ones to
keep more weight (larger �) on the current data.
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3. Efficient information processing

This section shows that the information rules derived in last two sections are 100% efficient, a term coined by Zellner (1988).
The optimal information processing rules, as discussed by Zellner (1988, 2002), Ibrahim et al. (2003), are special cases of these
rules. In addition, our approach allows inclusion of constraints, which was not considered earlier. Zellner defined the quantity
�[g(�)] for measuring basic information processing as follows in a Bayesian context

�[g(�)] = output information − input information

=
{∫

g(�) ln(g(�))d� +
∫

g(�) ln(m)d�
}

−
{∫

g(�) ln(�(�))d� −
∫

g(�) ln(L(�))d�
}

=
∫

g(�) ln
(

g(�)
L(�)�(�)/m

)
d�, (3.1)

where g(�) is the proper pdf, m = ∫
L(�)�(�)d� is the marginal density of the data, and �(�) is the prior distribution for �.

Zellner defined a rule g to be 100% efficient if g minimizes (3.1) and achieves �[g(�)] = 0, which yields `output information
= input information'. It is clear from (3.1), that the function that minimizes (3.1) is g∗(�)= L(�)�(�)/m. Thus g∗ is a 100% efficient
information processing rule.

To show that the solution given in Theorem 2 results in a 100% efficient information processing rule, we consider a
weighted version of (3.1). The criterion �(f ) we use below is motivated by Zellner (2002, eq. (5)), but is applicable in both
Bayesian and frequentist setup. The output information is Ef (ln f )=∫ f (t) ln(f (t))dt and

∫
f (t)[ln(m(g,h,w))]dt, wherem(g,h,w)=∫

[g(t)]w[h(t)]1−w dt. In our situation, the input information is given through the pdfs g and h as Ef (ln g) and Ef (lnh), respectively,
and we define the total input information as wEf (ln g) + (1 − w)Ef (lnh), where 0�w�1, w is a weight. Thus, we define the
criterion as

�(f ) =
{∫

f (t) ln(f (t))dt +
∫

f (t)[ln(m(g,h,w))]dt
}

−
{
w
∫

f (t) ln(g(t))dt + (1 − w)
∫

f (t) ln(h(t))dt
}
. (3.2)

A pdf fwhich satisfies �(f )= 0 is defined to be `100% efficient'. By changingw, one can control the effect of the input information.
Since the solution in (2.3) is obtained by minimizing the corresponding Lagrangian in (2.5), the next Theorem shows that the

Lagrangian (L(f ,�)) and �(f ) are related.

Theorem 4. If we choose w = 1/(1 + �) in (3.2), then

L(f ,�) = C1�(f ) + C2,

where C1,C2 are constants free of f , C1 = 1 + �>0, C2 = −�r − (1 + �) lnm.

Proof. Considering the Lagrangian in (2.5), we minimize

L(f ,�) =
∫

f (t) ln
f (t)
g(t)

dt + �
(∫

f (t) ln
f (t)
h(t)

dt − r
)

= (1 + �)
∫

f (t) ln(f (t))dt −
∫

f (t) ln(g(t))dt − �
∫

f (t) ln(h(t))dt − �r

= (1 + �)�(f ) − �r − (1 + �) lnm, (3.3)

wherem = m(g,h,w) defined in Section 3. This proves the result. �

The next remark applies the previous result in a Bayesian context.

Remark 4. To generalize Zellner's (2002, eq. (5)) criterion to our setting, we set g(�) = L(�|D0)�0(�)/
∫
L(�|D0)�0(�)d�,h(�) =

L(�|D)�0(�)/
∫
L(�|D)�0(�)d�, then using algebra the criterion �(f ) in (3.2) reduces to

�(f ) =
{∫

f (�) ln(f (�))d� + ln
[∫

(L(�|D0))
w(L(�|D))1−w�0(�)d�

]}

−
{
w
∫

f (�) ln(L(�|D0))d� + (1 − w)
∫

f (�) ln(L(�|D))d� +
∫

f (�) ln(�0(�))d�
}
.

To generalize Ibrahim et al.'s (2003, eq. (23)) criterion to our setting, we set g(�) = L(�|D)�0(�)/
∫
L(�|D0)�0(�)d�, h(�) =

L(�|D)L(�|D0)�0(�)/
∫
L(�|D)L(�|D0)�0(�)d�, then using algebra the criterion �(f ) in (3.2) reduces to

�(f ) =
{∫

f (�) ln(f (�))d� + ln
[∫

(L(�|D0))
1−w(L(�|D))�0(�)d�

]}

−
{
(1 − w)

∫
f (�) ln(L(�|D0))d� +

∫
f (�) ln(L(�|D))d� +

∫
f (�) ln(�0(�))d�

}
.

Other choices of g and hwould yield different criteria.
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Fig. 2. Effect of sample sizes on eta.

4. Effect of sample sizes on exponent

We conduct Monte Carlo experiments to investigate the effect of sample sizes on exponent values. In the context of Section
2.1, we investigate how the optimal value of � from (2.17) change for different choices of sample sizes of current and historical
data when r is kept at a fixed (proportional) distance between g (historical) and h (current). We set g = N(y0, 1/n0),h = N(y, 1/n)
and r = (n/(n + n0))r∗, where r∗ = I(g|h). We have used the values y = 10, y0 = 20.

The graphs in Fig. 2 indicate the behavior of � with change in one (or both) of the sample sizes (n: current, n0: historical).
When the sample sizes are equal, we get the curve marked `nh = nc', which is a horizontal line at � = 0.2927, as discussed in
Section 2.1. When current data have only n=10 observations (`nc=10') and the historical data size increases (up to 155), � starts
at 0.2927 and gets closer to 1 very fast, thus the power posterior shifts importance to the current data from the historical data as
n0 → ∞. However, when n = 100 (`nc = 100'), then � starts at 0.0052 (for n0 = 10) and increases up to 0.48 (for n0 = 155).

When the historical data size n0 is kept at a lower level (nh = 10), and the current data size n increases (up to 155), then �
decreases from 0.2927 to 0.0018. When the historical data size n0 is kept at n0 = 100 (`nh = 100'), and the current data size n
increases (up to 155), then � decreases from 0.9586 to 0.1542.

Thus the power posterior has the property of weighing the historical data higher when n0 is unchanged and n increases.
Historical data are heavily discounted when n0 is very large compared to n. This is pronounced more if we set r = p(n/(n +
n0))r∗, p<1. For the value of r chosen in this simulation, it turns out from further simulation (not reported here) that � does not
depend on y, y0 values when y� y0. However, for other values of r it does.

5. Examples

Example 1 (Information analysis of marketshare data). Company executives from a large packaged foods manufacturer wished to
determine which factors influence the market share of one of its products. Data (Kutner et al., 2005, p. 1350) were collected from
a national database (Nielson) for 36 consecutivemonths, September, 1999 to August, 2002. The variables are y=averagemonthly
market share for product (percent), X1 = average monthly price of product ($), X2 = presence or absence of discount price during
period: 1 if discount, 0 otherwise, and X3 = presence or absence of package promotion during period: 1 if promotion present, 0
otherwise. Businesses have increasingly used newer technology (e.g. more internet) to advertise their products. Thus we like to
analyze this data by considering those after year 2000 as `current' and those prior to 2000 as `historical' (see Table 2).

Using the historical data (nh = 16), we get ŷ = 3.53457 − 0.48847X1 + 0.34291X2 + 0.15583X3 and from the current data
(nc = 20) we get ŷ = 2.76845 − 0.20030X1 + 0.44951X2 + 0.10013X3. Assuming 	2

h = s2h = 0.03155,	2
c = s2c = 0.01645 as known,

from Section 2.4, r∗ = I(g|h) = 24.7592, where g, h are the historical and the current likelihoods, respectively. From Section 2.6,
with p=0.15 we have 0.15(20/36)r∗ =2.06, and with p=0.3 we have 0.3(20/36)r∗ =4.12. Considering r=2.0, 4.0, (2.19) is solved
by � = 0.477 (or, � = 0.323)and � = 0.202 (or, � = 0.168), respectively. The power posterior estimates, standard errors and 95%
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Table 2
Analysis of the market share data.

r Parameter Estimates s.e. 95% confidence interval

Historical 
0 3.53457 2.9345 (−2.8591, 9.9283)
(r� r∗) 
1 −0.48847 0.5730 (−1.7369, 0.7600)


2 0.34291 0.0123 (0.3162, 0.3696)

3 0.15583 0.0088 (0.1366, 0.1750)

Power posterior 
0 3.1981 0.2965 (2.5618, 3.8345)
(r = 2.0) 
1 −0.3573 0.0552 (−0.4759,−0.2388)


2 0.3970 0.0057 (0.3847, 0.4093)

3 0.1192 0.0058 (0.1068, 0.1316)

Power posterior 
0 3.3119 0.4519 (2.3365, 4.2872)
(r = 4.0) 
1 −0.3992 0.0858 (−0.5845,−0.2140)


2 0.3771 0.0068 (0.3624, 0.3918)

3 0.1316 0.0068 (0.1168, 0.1463)

Current 
0 2.76845 0.1583 (2.4329, 3.1040)
(r = 0) 
1 −0.20030 0.0279 (−0.2595,−0.1411)


2 0.44951 0.0036 (0.4418, 0.4572)

3 0.10013 0.0035 (0.0927, 0.1076)

Table 3
Analysis of British train accidents data.

r Parameter Estimates s.e. 95% confidence interval

Historical 
0 4.009 18.231 (−26.772, 54.155)
(r� r∗) 
1 −0.444 4.323 (−12.127, 7.024)

Power posterior 
0 13.145 8.768 (−4.041, 30.332)
(r = 0.3) 
1 −2.557 1.864 (−6.211, 1.097)

Power posterior 
0 12.380 8.523 (−4.324, 29.085)
(r = 0.5) 
1 −2.399 1.854 (−6.032, 1.234)

Current 
0 21.756 18.026 (−2.225, 82.142)
(r = 0) 
1 −4.269 3.602 (−16.1956, 0.635)

confidence intervals for the parameters are given in Table 3. Between these values p = 0.15 or r = 2 seems preferable, which
produces estimates closer to current data.

Using r/r∗ = 0.08, the derived value � = 0.323 produces power posterior estimates by appropriately downweighting the
historical data relative to the current data. The derived estimates are within 8% of the `distance' between the current and the
historical posterior estimates from the current posterior estimates.

Example 2 (Information analysis of British train accidents). Agresti (2007, p. 83) lists the number of accidents involving trains
alone (collisions, derailments and overruns) and the annual distance traveled inmillion kilometers in Great Britain between 1975
and 2003. We consider a binary response variable which represents none or at least one accident, and use a predictor variable
called `train-distances', which is distance traveled measured in 100 million kilometers. Train-distance is a measure of railway
activity. As stated by Agresti, during the past decade, rail travel has become increasingly privatized in the UK, and some people
have expressed fears that accidents have become more likely. Hence, we find it reasonable to analyze this data by considering
1994–2003 as the current data, and 1975–1993 as the historical data. When we consider the historical (0) or the current (1) data
separately, using logistic regression we get the estimated probability of an accident

�̂0(x) = exp(4.0087 − 0.444x)
1 + exp(4.0087 − 0.444x)

, �̂1(x) = exp(21.756 − 4.269x)
1 + exp(21.756 − 4.269x)

,

where xdenotes the train-distances.Here r∗=I(g|h)=2.2055,where g, h are thehistorical and the current likelihoods, respectively.
Using nh = 19,nc = 10 and p= 1/3, we have (1/3)(10/29)r∗ = 0.25, and with p= 2/3, we have (2/3)(10/29)r∗ = 0.5. In this example
we considered r=0.3, 0.5. Considering �0(�)=1, it turns out that �=1.5 (�=0.6) and �=0.85 (�=0.46), respectively, minimizes
(2.21). Here p = 1/3 or r = 0.3 seems preferable because of its proximity to the current data. The Newton–Raphson scheme
produces

�̂(x) = exp(13.145 − 2.557x)
1 + exp(13.145 − 2.557x)

.

Calculating e
̂1 in each case, we find, when the distance traveled is increased by another 100 million kilometers, the odds of at
least another accident is decreased by 64% for the historical data, 1% for the current data, and 8% for the power posterior. These
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Fig. 3. Logistic regression of British train data.

findings match with those of Agresti, and in addition, they bring out the difference between the current and historical data. The
standard errors and the confidence intervals of the estimates are listed in Table 3.

The graphs of estimated probability of accidents are presented in Fig. 3. They confirm that the accident rates have been
lower in recent years contrary to the belief. Using r/r∗ = 0.14, the derived value � = 0.6 produces power posterior estimates
which downweights the historical data substantially, and are within 14% of the `distance' between the current and the historical
posterior estimates from the current posterior estimates.

6. Discussion

The main difficulty in the power prior rule or the quality-adjusted rule is the choice of the exponent values to be used. The
notion of an explicit `distance' of the rule from the historical or current data sets is not directly available. In this paper, we show
that these exponent values are functions of r, which give a clear distance (divergence) between the rule and the current/historical
posterior. The optimality results of this paper presents a formal justification of these exponent values, and our general approach
shows that many other rules can be derived in this way.

To decide which r is the right choice, we performed sensitivity analysis which shows that there is no one `correct' choice that
fits all cases, and it depends on how the related distributions are set. Our procedure produces optimum rules which discounts
historical data when its size is much larger than that of the current data. This pattern of behavior is similar to that of the rules
generated by the procedure of Ibrahim et al. (2003), although their rules are based on a different optimizing criterion. The choice
of a more suitable r is a topic of further investigation of the author.
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