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Abstract

A random vector X = (X1,X2, · · · ,Xn) with positive components has a Liouville

distribution with parameter θ = (θ1, θ2, · · · , θn) if its joint probability density function

is proportional to h(
∑n

i=1 xi)
∏n

i=1 xθi−1
i , θi > 0 (Gupta and Richards [9]). Examples

include correlated gamma variables, Dirichlet and inverted Dirichlet distributions. We

derive appropriate constraints which establish the maximum entropy characterization

of the Liouville distributions among all multivariate distributions. Matrix analogs

of the Liouville distributions are considered. Some interesting results related to I-

projection from a Liouville distribution are presented.

Key words and phrases: Dirichlet distribution, gamma variables, I-projections, In-

verted Dirichlet distribution, maximum entropy principle, Shannon entropy.
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1 Introduction

Let X = (X1,X2, · · · ,Xn) be a random vector with probability density function p(x).

The entropy (or Shannon entropy) of X which measures the uncertainty associated

with p(x) is

H(p) = −
∫

p(x) ln p(x)dx.

The role of entropy in statistical theory and information processing is well documented

by Karlin and Rinott [14], Kullback [16], Marshall and Olkin [17], Rao [21], Rényi [22].

For applications of entropy in other areas such as thermodynamic systems, ecological

structures, see Kapur [13] and Karlin and Rinott [15].

When selecting a model for a given situation it is often appropriate to express the

prior information in terms of constraints. However, one must be careful so that no

information other than these specified constraints is used in model selection. That is,

other than the constraints that we have, the uncertainty associated with the probabil-

ity distribution to be selected should be kept at its maximum. This is the ‘principle

of maximum entropy’ advocated by Jaynes [11], and later treated axiomatically by

Shore and Johnson [23].

Consider the set of constraints

C = {p(x) : Ep[Ti(X)] = ti, i = 0, · · · , n}

where Ti are integrable functions, ti are known constants and T0(x) = t0 = 1. The

maximum entropy principle finds the unknown probability density function p∗(x)

which maximizes the entropy subject to the constraints in C. This procedure has

been shown to characterize most well known univariate probability distributions, e.g.,

see Kagan et al. [12], Kapur [13], Guiasu [8], Preda [20], and the references therein.

Although, literature is significantly less for the multivariate distributions, Kapur [13]

considered several usual multivariate distributions, Zografos [25] considered the cases
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of Pearson’s type II and VII multivariate distributions and Aulogiaris and Zografos

[2] considered symmetric Kotz type and Burr multivariate distributions. Expressions

for entropies for several known and relatively unknown multivariate distributions can

be found in Zografos and Nadarajah [26], Ahmed and Gokhale [1] and Darbellay and

Vajda [5].

In this paper, we obtain the Liouville distributions by using the maximum en-

tropy principle. A comprehensive treatment of the Liouville distributions (including

many of its characterization properties) has appeared in Gupta and Richards [9].

These distributions are also treated briefly by Marshall and Olkin [17] and Sivazlian

[24]. Peddada and Richards [9] study the Schur-concavity and Schur-convexity of its

entropy functional.

In Section 2, we derive the appropriate constraints which characterize the Liouville

distributions among all multivariate distributions. Different Liouville distributions

are generated with different choices of the function h (see (2.1) below). Examples

are considered with special choices of the function h for well known cases and the

corresponding characterizations are derived. It has been shown (Bhattacharya and

Dykstra [3], among others) that the maximum entropy problem is essentially an

I-projection problem. In Section 3, we show that the I-projection of a Liouville

distribution onto a certain intersection of convex sets is a1so a Liouville distribution.

In addition, we show that the I-projection of a Liouville distribution of the first

kind onto the set of all probability measures (PM’s) with support on the simplex

Sn = {(x1, x2, · · · , xn), xi > 0, i = 1, · · · , n;
∑n

i=1 xi < 1} is a Liouville distribution of

the second kind.
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2 Characterization Results

A continuous random vector X = (X1,X2, · · · ,Xn) has a (multivariate) Liouville

distribution if its joint density function is given by

p(x;θ) = cn(θ)h

(
n∑

i=1

xi

)
n∏

i=1

xθi−1
i , (2.1)

where x = (x1, x2, · · · , xn), xi > 0, i = 1, · · · , n; h : R+ → R+ is continuous and the

parameter θ = (θ1, θ2, · · · , θn) ∈ Rn
+. The normalizing constant cn(θ) is given by

[cn(θ)]−1 =

∏n
i=1 Γ(θi)

Γ(
∑n

i=1 θi)

∫ ∞

0
t
∑n

i=1
θi−1h(t)dt, (2.2)

see Edwards [6], Marshall and Olkin [17], Karlin and Rinott [15].

The first step to establish the characterization is to find Ep [ln [h (
∑n

i=1 Xi))] and

Ep [ln Xi] for a given function h for the p(x;θ) in (2.1). These are presented in

Lemmas 2.1 and 2.2 below in a more general setting.

Lemma 2.1. For fixed α > 0 and βi > −1, ∀i,

∫ ∞

0
· · ·

∫ ∞

0

[
ln

(
h

(
n∑

i=1

xi

))]
hα

(
n∑

i=1

xi

)
n∏

i=1

xβi
i dx1 · · · dxn

=

∏n
i=1 Γ(βi + 1)

Γ(
∑n

i=1 βi + n)

∫ ∞

0
[lnh(t)]t

∑n

i=1
βi+n−1hα(t)dt. (2.3)

Proof. Defining I(β, g) =
∫∞
0 tβg(t)dt as in Peddada and Richards [19], we get

from (2.1) and (2.2) that

∫ ∞

0
· · ·
∫ ∞

0
h

(
n∑

i=1

xi

)
n∏

i=1

xθi−1
i dx1 · · · dxn =

∏n
i=1 Γ(θi)

Γ(
∑n

i=1 θi)
I

(
n∑

i=1

θi − 1, h

)
. (2.4)

Applying (2.4) to the function hα and using θi = βi + 1, we get

∫ ∞

0
· · ·
∫ ∞

0
hα

(
n∑

i=1

xi

)
n∏

i=1

xβi
i dx1 · · · dxn =

∏n
i=1 Γ(βi + 1)

Γ(
∑n

i=1 βi + n)
I

(
n∑

i=1

βi + n − 1, hα

)
.

(2.5)

Differentiating both sides of (2.5) with respect to α we get the result. 2
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The next lemma is used to find E[lnXj ], for any j = 1, . . . , n.

Lemma 2.2. For fixed α > 0 and βi > −1, ∀i,

∫ ∞

0
· · ·

∫ ∞

0
[ln(xj)]h

α

(
n∑

i=1

xi

)
n∏

i=1

xβi
i dx1 · · · dxn

= A−1


Ψ(βj + 1) − Ψ

(
n∑

i=1

βi + n

)
+

∫∞
0 [ln t]t

∑n

i=1
βi+n−1hα(t)dt

∫∞
0 t

∑n

i=1
βi+n−1hα(t)dt


 (2.6)

∀j, where A−1 is the right side of (2.5) and Ψ(t) = (d/dt) ln Γ(t) is the digamma

function.

Proof. Begin as in the proof of Lemma 2.1, and consider (2.5). Differentiating both

sides of (2.5) with respect to βj (for any j, 1 ≤ j ≤ n) we get

∫∞
0 · · ·

∫∞
0 [ln(xj)]h

α (
∑n

i=1 xi)
∏n

i=1 xβi
i dx1 · · · dxn

= ∂
∂βj

[A]−1

= − 1
A

∂
∂βj

(ln[A])

= − 1
A

∂
∂βj

[
ln
(

Γ(
∑n

i=1
βi+n)∏n

i=1
Γ(βi+1)

)
− ln I (

∑n
i=1 βi + n − 1, hα)

]

= − 1
A

[
∂

∂βj
[ln (Γ(

∑n
i=1 βi + n)] − ∂

∂βj

∑n
i=1 ln Γ(βi + 1)

− ∂
∂βj

ln [I (
∑n

i=1 βi + n − 1, hα)]
]

= − 1
A

[
Ψ(
∑n

i=1 βi + n) − Ψ(βj + 1) − I(
∑n

i=1
βi+n−1,h1)

I(
∑n

i=1
βi+n−1,hα)

]

where h1(t) = (ln t)hα(t), from which the desired result follows. 2

Of course, to apply these two lemmas for the density function in (2.1), we need

α = 1 and βi = θi − 1. Using these values to the right sides of (2.3) and (2.6),

we obtain after simplifications Ep [ln (h (
∑n

i=1 Xi))] = w(θ), Ep [ln Xi] = ui(θ), ∀i

where

w(θ) =
I(
∑n

i=1
θi−1,h2)

I(
∑n

i=1
θi−1,h)

,

ui(θ) = Ψ(θi) −Ψ(
∑n

i=1 θi) +
I(
∑n

i=1
θi−1,h3)

I(
∑n

i=1
θi−1,h)

,
(2.7)

∀i, where h2(t) = h(t) lnh(t), h3(t) = h(t) ln t.

5



The next theorem shows that the Liouville distribution has maximum entropy in

the class of all probability distributions specified by (2.8).

Theorem 2.3. The random vector X with a Liouville distribution with parameter θ

has the maximum entropy among all positive, absolutely continuous random vectors

Y = (Y1, . . . , Yn) with pdf p(y) subject to the restrictions

Ep [ln (h (
∑n

i=1 Yi))] = w(θ),

Ep [ln Yi] = ui(θ), ∀i
(2.8)

where w(θ), ui(θ) are defined in (2.7).

Proof. It is well known using Jensen’s inequality that for PM’s P,Q,R,

∫
dP

dR
ln

dP/dR

dQ/dR
dR ≥ 0.

Hence,
∫

dP

dR
ln

dP

dR
dR ≥

∫
dP

dR
ln

dQ

dR
dR.

Now consider a PM Q which satisfies the constraints (2.8) and has pdf of the form

dQ

dR
= exp

[
a0 + a1 lnh

(
n∑

i=1

Xi

)
+

n∑

i=1

bi ln Xi

]
(2.9)

(R is the Lebesgue measure on Rn) where a0, a1, bi are chosen so that Q is a PM.

Then we get

−
∫ dP

dR
ln dP

dR
dR ≤ −

∫ dP
dR

ln dQ
dR

dR

= −
∫ dP

dR
(a0 + a1 lnh (

∑n
i=1 Xi) +

∑n
i=1 bi ln Xi) dR

= − (a0 + a1w(θ) +
∑n

i=1 biui(θ)) .

(2.10)

The upper bound for entropy on the last line of (2.10) is achieved by the Liouville

distribution, and its p.d.f. is of the form (2.9). Thus the Liouville distribution has

the maximal entropy among all distributions satisfying the constraints (2.8). 2
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The last line of (2.10) also gives an expression for the entropy of the Liouville

distribution, which after simplification yields the following expression

n∑

i=1

ln Γ(θi) − ln

(
Γ

(
n∑

i=1

θi

))
+ ln

(
I

(
n∑

i=1

θi − 1, h

))

−I (
∑n

i=1 θi − 1, h2) + (
∑n

i=1 θi − n)I (
∑n

i=1 θi − 1, h3)

I (
∑n

i=1 θi − 1, h)

−
n∑

i=1

(θi − 1)Ψ(θi) +

(
n∑

i=1

θi − n

)
Ψ

(
n∑

i=1

θi

)
.

An expression for the same entropy appears in Zografos and Nadarajah [26], but there

appears to be some misprint present in their expression.

The density in (2.1) uses h(·) on a noncompact support, and is called the Liouville

distribution of the first kind (Gupta and Richards, [9]). The Liouville distribution

of the second kind arises when h(·) is supported on (0, 1) and the variables range

on the simplex Sn = {(x1, x2, · · · , xn), xi > 0, i = 1, · · · , n;
∑n

i=1 xi < 1}. The

expression in (2.2) and the results above can be duplicated in this case with the

range of integrations replaced by 0 to 1.

Now we consider the matrix analogs of the Liouville distributions. The positive

definite (symmetric) m × m matrices A1, . . . ,An are said to have a Liouville distri-

bution of the first kind if their (continuous) joint density function exists and is given

by

p(A;θ) = dn(θ)g

(
n∑

i=1

Ai

)
n∏

i=1

|Ai|θi−p, (2.11)

where |A| is the determinant of A, g : Rm×m
+ → R+ is continuous and satisfies

∫
Rm×m

+
|T |

∑
θi−pg(T )dT < ∞, p = (m + 1)/2, θi > p − 1, i = 1, · · · , n, and the

normalizing constant dn(θ) is given by

[dn(θ)]−1 =

∏n
i=1 Γm(θi)

Γm(
∑n

i=1 θi)

∫

Rm×m
+

|T |
∑

θi−pg(T )dT , (2.12)

where Γm(·) is the multidimensional gamma function (James, [10]).
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We extend the results derived above to the matrix analogs of the Liouville distri-

butions as follows. The proofs follow in a similar way, and hence they are omitted.

First the relation (2.5) generalizes to

∫

Rm×m
+

· · ·
∫

Rm×m
+

gα

(
n∑

i=1

Ai

)
n∏

i=1

|A|βi
i dA1 · · · dAn

=

∏n
i=1 Γm(βi + p)

Γ(
∑n

i=1 βi + np)

∫

Rm×m
+

|T |
∑n

i=1
βi+(n−1)pgα(T )dT . (2.13)

Next two lemmas generalize Lemma 2.1 and Lemma 2.2.

Lemma 2.4. For fixed α > 0 and βi > −1, ∀i,

∫

Rm×m
+

· · ·
∫

Rm×m
+

[
ln

(
g

(
n∑

i=1

Ai

))]
gα

(
n∑

i=1

Ai

)
n∏

i=1

|Ai|βidA1 · · · dAn (2.14)

=

∏n
i=1 Γm(βi + p)

Γm(
∑n

i=1 βi + np)

∫

Rm×m
+

[ln g(T )]|T |
∑n

i=1
βi+(n−1)pgα(T )dT .

Lemma 2.5. For fixed α > 0 and βi > −1, ∀i,

∫
Rm×m

+
· · ·
∫
Rm×m

+
[ln(|Aj|)]gα (

∑n
i=1 Ai)

∏n
i=1 |Ai|βidA1 · · · dAn

= B−1


Ψm(βj + p) − Ψm (

∑n
i=1 βi + np) +

∫
Rm×m

+
[ln(|T |)]|T |

∑n

i=1
βi+(n−1)p

gα(T )dT
∫
Rm×m

+
|T |

∑n

i=1
βi+(n−1)p

gα(T )dT




(2.15)

∀j, where B−1 is the right side of (2.13) and Ψm(t) = (d/dt) ln Γm(t).

Let Im(β, f) =
∫
Rm×m

+
|T |β f (T ) dT . Now apply Lemma 2.4 and Lemma 2.5 with

α = 1 and βi = θi−p for the density function in (2.11). Using these values to the right

sides of (2.14) and (2.15), we obtain Ep [ln (g (
∑n

i=1 Ai))] = wm(θ), Ep [ln Ai] =

um
i (θ), ∀i where

wm(θ) =
Im(
∑n

i=1
θi−p,g2)

Im(
∑n

i=1
θi−p,g)

,

um
i (θ) = Ψm(θi) − Ψm (

∑n
i=1 θi) +

Im(
∑n

i=1
θi−1,g3)

Im(
∑n

i=1
θi−1,g)

,
(2.16)

∀i, where g2(T ) = g(T ) ln g(T ), g3(T ) = g(T ) ln |T |.
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The next theorem generalizes the maximum entropy characterization for the Li-

ouville distribution.

Theorem 2.6. The random matrices A1, . . . ,An with a Liouville distribution with

parameter θ has the maximum entropy among all positive, absolutely continuous ran-

dom matrices Y = (Y 1, . . . ,Y n) with pdf p(y) subject to the restrictions

Ep [ln (g (
∑n

i=1 Y i))] = wm(θ),

EP [ln Y i] = um
i (θ), ∀i

(2.17)

where wm(θ), um
i (θ) are defined in (2.16).

An expression for the entropy for the matrix analog of the Liouville distribution

is obtained from Theorem 2.6, which after simplification yields

n∑

i=1

ln Γm(θi) − ln

(
Γm

(
n∑

i=1

θi

))
+ ln

(
Im

(
n∑

i=1

θi − p, g

))

−Im (
∑n

i=1 θi − p, g2) + (
∑n

i=1 θi − p)I (
∑n

i=1 θi − p, g3)

I (
∑n

i=1 θi − p, g)

−
n∑

i=1

(θi − p)

[
Ψm(θi) − Ψm

(
n∑

i=1

θi

)]
.

To the best of our knowledge, the above expression has not previously been derived

in the literature.

The matrix Liouville distribution of the second kind are those for which I−∑n
i=1 Ai

is also positive definite, where I is the m × m identity matrix. Similar results hold

for this case also.

Example 1. (Correlated gamma variables) Let (X1, . . . ,Xn) has a Liouville distribu-

tion of the first kind with h(t) = ta−1e−bt, t > 0, a > 0, b > 0. Then the joint density

function is proportional to

(
n∑

i=1

xi

)a−1 n∏

i=1

xa−1
i e−bxi.
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The constraints that characterize this distribution are obtained from (2.8). By setting

θi = a, ∀i and using the formula for the gamma integrals, the expressions in (2.7) are

simplified as follows

w(a, b) = (a − 1)Ψ(k) − (a− 1) ln b − k,

ui(a, b) = Ψ(a) −Ψ(na) + Ψ(k) − ln b,

i = 1, . . . , n, where k = na + a − 1.

Example 2. (Dirichlet distribution) Let (X1, . . . ,Xn) has a Liouville distribution of

the second kind with h(t) = (1 − t)an+1−1, 0 < t < 1, an+1 > 0. Here the joint density

function is proportional to
(
1 −

n∑

i=1

xi

)an+1−1 n∏

i=1

xai−1
i .

The constraints that characterize this distribution are in (2.8), where the expressions

for w(θ), ui(θ) can be simplified by setting θi = ai, i = 1, . . . , n and considering

derivatives of the beta integrals as follows

w(a1, . . . , an+1) = (an+1 − 1)[Ψ(an+1) − Ψ(
∑n+1

i=1 ai)],

ui(a1, . . . , an+1) = Ψ(ai) − Ψ(
∑n+1

i=1 ai),

i = 1, . . . , n.

Example 3. (Inverted Dirichlet distribution) Let (X1, . . . ,Xn) has a Liouville dis-

tribution of the first kind with h(t) = (1 + t)−
∑n+1

i=1
ai, t > 0, an+1 > 0. Here the joint

density function is proportional to
(

1 +
n∑

i=1

xi

)−
∑n+1

i=1
ai n∏

i=1

xai−1
i .

The constraints that characterize this distribution are in (2.8), where the expressions

for w(θ), ui(θ) can be simplified by setting θi = ai, i = 1, . . . , n, with change of

variables and techniques similar to Example 2. It follows that

w(a1, . . . , an+1) = (
∑n+1

i=1 ai)
[
Ψ(an+1) −Ψ(

∑n+1
i=1 ai)

]
,

ui(a1, . . . , an+1) = Ψ(ai) − Ψ(an+1),

i = 1, . . . , n.
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3 I-projections from Liouville distribution

It is well known that finding the distribution with maximum entropy is the same as

finding the I-projection of the Lebesgue measure onto the set of constraints of interest

(Bhattacharya and Dykstra [3], among others). In this section we show that the I-

projection of a Liouville distribution onto certain intersection of sets of PM’s is also a

Liouville distribution. We also show that many Liouville distributions of the second

kind can be expressed as an I-projection of corresponding Liouville distributions of

the first kind.

For two PM’s P and Q defined on an arbitrary measurable space (X ,B), the

I-divergence or the Kullback-Leibler distance between P and Q is defined as

I(P |Q) =





∫
ln (dP/dQ) dP, if P � Q,

+∞, elsewhere.

If R is any PM with P � R, Q � R, then I(P |Q) can equivalently be expressed as

I(P |Q) =
∫
(dP/dR) ln((dP/dR)/(dQ/dR)) dR. Here and in the sequel we observe

the conventions that ln 0 = −∞, ln(a/0) = +∞, 0 · (±∞) = 0.

Although I(P |Q) is not a metric, it is always nonnegative and equals 0 if and

only if P = Q (a.e.). Hence it is often interpreted as a measure of ‘divergence’ or

‘distance’ between P and Q. Other popular names of I(P |Q) are information for

discrimination, cross-entropy, information gain, etc. For a given Q and a specified set

of PM’s C, it is often of interest to find the R ∈ C which satisfies

I(R|Q) = inf
P∈C

∫
ln(dP/dQ) dP (< ∞). (3.1)

This R is called the I-projection of Q onto C. Csiszár (1975) has shown that R exists

uniquely if C is variation-closed and there exists P ∈ C such that I(P |Q) < ∞.

Let the underlying probability space be denoted by (Ω,F , Q) where Ω is the sample

space, F is the σ-field of subsets of Ω, and Q is a given PM defined on elements of F .
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If we define the convex function f on L1(Q) as f(x) =
∫

x lnx dQ if x ≥ 0,
∫

x dQ = 1,

and = +∞, otherwise, and C0 = {x ∈ L1(Q) : x = dP/dQ, for someP ∈ C}, then (3.1)

and

inf
x∈C0

f(x) (3.2)

are equivalent problems. A subset K of Ω is said to be a cone if x ∈ K ⇒ αx ∈

K, ∀α ≥ 0. For an arbitrary subset S of L1(Q), the dual cone of S is given by

S⊕ =
{
y ∈ M(Ω,F) :

∫
xy dQ ≥ 0, for all x ∈ S

}
where M(Ω,F) is the set of ex-

tended valued, F -measurable functions on Ω. We first state the following theorem

from Bhattacharya and Dykstra [3] which provides a way to find the solution to an

I-projection problem. In short, the theorem states that if we know the solution to

the dual problem infy∈C⊕
∫

ey dQ, say y0, then the solution to the I-projection prob-

lem (3.2) can be expressed in terms of y0. This theorem is useful when y0 is easy to

find.

Theorem 3.1 Assume L is a subset of L1(Q) and y0 is a solution to infy∈L⊕
∫

ey dQ

< ∞. Then a PM R solves (3.1) where dR/dQ = x0 = ey0/
∫

ey0 dQ (equivalently,

x0 solves (3.2)) if x0 ∈ L. If L is either (1) convex, variation-closed and contained

in dom(f) or (2) a variation-closed, convex cone, then x0 ∈ L, and hence x0 must

solve (3.2). 2

Let Q be the Liouville distribution with pdf given by (2.1). Let P be the class

of all PM’s P where (X1, . . . ,Xn) ∼ P with Xi > 0,∀i. One might want to approx-

imate Q subject to the constraints in S = C ∩ C1 ∩ . . . ∩ Cn where C = {P ∈ P :

EP [ln(h(
∑n

i=1 Xi))] = k}, Ci = {P ∈ P : EP [lnXi] = ki}, ∀i = 1, . . . , n, where k, ki

are given constants. To solve this problem we consider finding the I-projection of Q

onto S. The next result shows that this I-projection is also a Liouville distribution

but possibly with a different h function.

Proposition 3.2. The I-projection of a given Liouville distribution Q onto S is also
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a Liouville distribution.

Proof. Expressing C = {P :
∫
[ln(h(

∑n
i=1 Xi)) − k](dP/dQ)dQ = 0} and Ci = {P :

∫
[lnXi−ki](dP/dQ)dQ = 0}, ∀i = 1, . . . , n, it follows that the dual cone of S is given

by

S⊕ =

{
α

(
ln

(
h

(
n∑

i=1

Xi

))
− k

)
+

n∑

i=1

βi ((lnXi) − ki) : α ∈ R, βi ∈ R,∀i

}
.

The dual problem can be expressed as

min
α∈R,βi∈R,∀i

cn(θ)
∫ ∞

0
· · ·
∫ ∞

0
hα+1

(
n∑

i=1

xi

)
n∏

i=1

xβi+θi−1
i dx1 · · · dxn

= min
α∈R,βi∈R,∀i

cn(θ)

∏n
i=1 Γ(βi + θi)

Γ(
∑n

i=1 βi +
∑n

i=1 θi + n)

∫ ∞

0
t
∑n

i=1
βi+
∑n

i=1
θi+n−1hα+1(t)dt.

If (α∗, β∗
1, . . . , β

∗
n) solves the above dual problem, then the solution to the I-projection

problem by Theorem 3.1 is given by

p∗(x;θ) = c∗n(θ)hα∗+1

(
n∑

i=1

xi

)
n∏

i=1

x
θi+β∗

i −1
i

where c∗n(θ) is the appropriate normalizing constant. Since p∗(x;θ) is also a pdf of

the form (2.1), the result follows. 2

Next we show that there exists a Liouville distribution of the second kind which

may be expressed as an I-projection of a Liouville distribution of the first kind onto

the set of all PM’s with support on the simplex Sn.

Proposition 3.3. The I-projection of a Liouville distribution of the first kind onto

the set of all PM’s with support on Sn is a Liouville distribution of the second kind.

Proof. If we like to restrict Q, a Liouville distribution of the first kind with pdf

(2.1), to have support Sn, it would be natural to consider the conditional distribution

of Q restricted to the support Sn. To find this restricted distribution, we find the

I-projection of Q onto S = {P : P (Sn) = 1}. Since S = {P :
∫
(ISn − 1)dP = 0}

13



where ISn is the indicator function of Sn, the dual cone is S⊕ = {α(ISn −1) : α ∈ R}.

Thus the dual problem is

inf
α∈R

∫
eα(ISn−1)dQ = Q(Sn) + inf

α∈R

∫

Sc
n

e−αdQ,

which is attained at α = ∞. Using Theorem 3.1 above, it follows that the I-projection

of Q onto S is given by

dP ∗

dQ
=

ey0

∫
ey0 dQ

=
1

Q(Sn)
.

Thus dP ∗ = dQ/Q(Sn), or P ∗ is a Liouville distribution of the second kind. 2

Thus one may find the I-projections of the Liouville distributions of the first kind

in Examples 1 and 3 in Section 2 onto the set of all PM’s with support on Sn and

obtain the corresponding Liouville distributions of the second kind. These resulting I-

projections would have the same expressions as the Liouville distributions of the first

kind we start with but with a different normalizing constant and support restricted to

Sn. However not all Liouville distributions of the second kind may be expressed as an

I-projection of a Liouville distributions of the first kind in this way. For example, in

the distribution in Example 2 in Section 2, the function h would be undefined when

t > 1, an+1 < 1.

Characterizations of distributions are very useful in probability theory and statis-

tics, and play an important role, among others, for the construction of goodness-of-fit

tests, e.g. Vasicek [27], Gokhale [7], Mudholkar and Tian [18]. Applicability of char-

acterizations depends on the simplicity of the criteria used. In this context, the

constraints that characterize the multivariate distributions are inherently difficult to

handle both from a theoretical point of view and from a practical point of view.

For the Liouville distributions this will also depend on the nature of the function h.

Further research is needed to investigate how the characterizations developed in this

paper can be useful in practice.
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for multivariate distributions, Statist. & Probab. Lett. 71 (2005), 71-84.

[27] O. Vasicek, A test for normality based on sample entropy, J. Roy. Statist. Soc.

B 38 (1976), 54-59.

18


