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Abstract

For exponentially distributed failure times under general progressive censoring

schemes, testing procedures for ordered failure rates are proposed using the likelihood

ratio principle. Constrained maximum likelihood estimators of the failure rates are

found. The asymptotic distributions of the test statistics are shown to be mixtures

of chi-square distributions. When testing the equality of the failure rates, a simu-

lation study shows that the proposed test with restricted alternative has improved

power over the usual chi-square statistic with an unrestricted alternative. The pro-

posed methods are illustrated using data of survival times of patients with squamous

carcinoma of the oropharynx.

Key words and phrases: Chi-bar square distribution, clinical trials, nondecreasing

order, two-parameter exponential distribution, life-testing.
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1 Introduction

Progressive censoring schemes are very useful in clinical trials and life-testing exper-

iments. For example, in a clinical trial study, suppose the survival times of patients

with squamous carcinoma of the oropharynx are being compared. The patients are

placed in different groups depending upon the degree of lymph node deterioration. It

is inherently plausible that the disease is further advanced in those patients with more

lymph node deterioration, and hence their survival times would generally be shorter.

Some unobserved failures might exist in any group before the study officially begins.

As the study progresses, with each failure some patients are possibly censored for

various reasons, e.g., patients may leave because they are doing well physically, move

out of the region for personal reasons, etc. Study would stop at any predetermined

time or when the experimenter believes that enough information has already been

collected, at which point all remaining patients are censored. Progressive censoring is

also useful in a life-testing experiment because the ability to remove live units from

the experiment saves time and money.

Sen (1985) describes the progressive censoring schemes in a time sequential view

and points out that statistical monitoring plays a major role in the termination of the

study. Chatterjee and Sen (1972) and Majumder and Sen (1978) suggest a general

class of nonparametric testing procedures under progressive censoring schemes. Sen

(1985) also addresses the nonparametric testing procedures against restricted alterna-

tives. Cohen and Whitten (1988) and Cohen (1991) have summarized the likelihood

inference under progressive censoring for a wide range of distributions. Mann (1971)

and Thomas and Wilson (1972) discuss the best linear invariant estimates. Bal-

akrishnan and Sandhu (1996) has derived the best linear unbiased and maximum

likelihood estimates (MLEs) under general progressive type II censored samples from

exponential distributions. Viveros and Balakrishnan (1994) has developed the exact

conditional inference based on progressive type II censored samples. For a general
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account under the progressive censoring scheme, see Sen (1981, Ch 11). The mono-

graph by Balakrishnan and Aggarwala (2000) provides a wealth of information on

inferences under progressive censoring sampling.

We consider a general (type-II) progressive censoring scheme as follows (we use a

life-testing format, but our description fits equally well in a clinical trial set-up): for

the ith population (1 ≤ i ≤ k), suppose Ni randomly selected units are placed on a

life-test; the failure times of the first ri units to fail are not observed; at the time of

the (ri + j)th failure, Ri,ri+j number of surviving units are withdrawn from the test

randomly, for j = 1, . . . ,mi − ri − 1; and finally at the mith failure, the remaining

Ri,mi units are withdrawn from the test where Ri,mi = Ni − mi − Ri,ri+1 − Ri,ri+2 −

. . .− Ri,mi−1, 1 ≤ i ≤ k. Note that

mi∑

j=ri+1

(1 + Ri,j) = Ni − ri, 1 ≤ i ≤ k. (1.1)

This identity will be used several times in the sequel.

Suppose the lifetimes of the completely observed units to fail from the ith popu-

lation are Xri+1,Ni ≤ Xri+2,Ni ≤ . . . ≤ Xmi,Ni, 1 ≤ i ≤ k. If the failure times from

the ith (continuous) population have a cumulative distribution function Fi(x) and

a probability density function fi(x), then the joint probability density function of

Xri+1,Ni,Xri+2,Ni, . . . ,Xmi,Ni, 1 ≤ i ≤ k is given by

c
k∏

i=1



[Fi(xri+1)]

ri

mi∏

j=ri+1

fi(xj) (1 − Fi(xj))
Ri,j



 (1.2)

where

c =
k∏

i=1




Ni

ri


 (Ni − ri)

mi∏

j=ri+2


Ni −

j−1∑

s=ri+1

Ri,s − j + 1


 (1.3)

Balakrishnan and Aggarwala (2000). In this paper, we assume the failure times follow

the two-parameter exponential distributions. These distributions are well-known to

be very useful when modeling survival, life-testing and/or reliability data.
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We consider k general progressively censored random samples from independent

two-parameter exponential distributions when the scale parameters (θi, 1 ≤ i ≤ k)

satisfy a nondecreasing restriction. Such a restriction amounts to a nonincreasing

nature of the failure rates (θ−1
i ) among the populations involved. In Section 2, we

consider the MLEs of all parameters under such restrictions. It is well-known that the

variance of the unrestricted MLEs does not depend on the censoring schemes (Balakr-

ishnan and Sandhu, 1996). However, in Lemma 2.1, we show, rather surprisingly, that

the estimates themselves are free of the censoring scheme. In Section 3, we consider

the likelihood ratio tests for testing homogeneity of the scale parameters against the

nondecreasing order. In Section 4, simulation studies are performed to show how the

restricted estimates depend on ri, which is the number of initially unobserved failed

units from the ith population and the sample size ni. It turns out that smaller values

of ri’s yield a more reliable inference than larger ones in both estimation and testing.

We also analyze a data set of survival times of patients with squamous carcinoma of

the oropharynx from three groups using the procedures developed in this paper.

2 Maximum Likelihood Estimation

We consider the two parameter exponential distribution with probability density func-

tion given by

f(x;µ, θ) =
1

θ
e−

x−µ
θ , x ≥ µ > 0, θ > 0. (2.1)

We assume that independent samples are available from k different exponential

distributions with location parameters µi and scale parameters θi, 1 ≤ i ≤ k. Let

µ = (µ1, . . . , µk), θ = (θ1, . . . , θk). The joint likelihood of the k samples from (1.2)

and (2.1) is given by

L(µ,θ) = c∗
k∏

i=1





[
1 − e

−
xri+1,Ni

−µi

θi

]ri mi∏

j=ri+1

(
1

θi
e
−

xj,Ni
−µi

θi

)(
e
−

xj,Ni
−µi

θi

)Ri,j


 (2.2)

where the constant c∗ may be calculated from (1.3) and (2.1).
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The unrestricted maximum likelihood estimates (Balakrishnan and Sandhu, 1996)

of the parameters µt, θt, 1 ≤ t ≤ k are given by

µ̂t = xrt+1,Nt + θ̂t ln
(
1 − rt

Nt

)
, 1 ≤ t ≤ k,

θ̂t =

∑mt
s=rt+2

(1+Rt,s)(xs,Nt
−xrt+1,Nt

)

mt−rt
, 1 ≤ t ≤ k.

(2.3)

Let µ̂ = (µ̂1, . . . , µ̂k) and θ̂ = (θ̂1, . . . , θ̂k). Balakrishnan and Sandhu (1996) has

shown that the variances of θ̂i’s do not depend on the censoring scheme. Here we

show that the estimates in (2.3) themselves do not depend on the censoring scheme.

To the best of our knowledge, this fact has not been explicitly derived in the literature

earlier.

Lemma 2.1. The unrestricted estimates µ̂t, θ̂t, 1 ≤ t ≤ k in (2.3) do not depend on

the censoring scheme {Rt,s, rt + 1 ≤ s ≤ mt, 1 ≤ t ≤ k}.

Proof. Using Theorem 3.4 of Balakrishnan and Aggarwala (2000), when N items are

put on test with r initial failures not observed, if Yr+1, . . . , Ym denote a general pro-

gressively censored sample from the exponential distribution with location parameter

µ and scale parameter θ with censoring scheme Rr+1, . . . , Rm, the generalized spacings

defined by

Zr+1 = (N − r)(Yr+1 − µ),

Zr+2 = (N − r − Rr+1 − 1)(Yr+2 − Yr+1),

Zr+3 = (N − r − Rr+1 − Rr+2 − 2)(Yr+3 − Yr+2),

· · · = · · ·

Zm = (N − r − Rr+1 − . . .− Rm−1 − m + r + 1)(Ym − Ym−1)

(2.4)

are independent random variables, with Zr+2, . . . , Zm being one-parameter exponen-

tial random variables with mean θ, and Zr+1/(N−r) being distributed as the (r+1)th

usual order statistic from a sample of size N from the same distribution. Since

∑m
j=r+1(1 + Rj) = N − r, it follows from (2.4) using algebra that

m∑

s=r+1

Zs =
m−r∑

j=1

(1 + Rr+j)Yr+j − (N − r)µ.
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Now, with Zt,s, Xrt+j,Nt playing the role of Zs, Yr+j (respectively) above and noting

that the numerator of θ̂t in (2.3) can be expressed as

mt∑

s=rt+1

(1 + Rt,s)Xs,Nt −



mt∑

s=rt+1

(1 + Rt,s)


Xrt+1,Nt

=
mt∑

s=rt+1

(1 + Rt,s)Xs,Nt − (Nt − rt)µt − [(Nt − rt)Xrt+1,Nt − (Nt − rt)µt]

=
mt∑

s=rt+1

Zt,s − Zt,rt+1

=
mt∑

s=rt+2

Zt,s

we can write

θ̂t =

∑mt
s=rt+2 Zt,s

mt − rt
, 1 ≤ t ≤ k.

Since Zt,s are random variables whose distributions are free of Rt,s, it follows that θ̂t

is free of Rt,s. Also from (2.3), it follows that µ̂t is free of Rt,s. 2

It follows from (2.3) and the proof of Lemma 2.1 that µ̂t and θ̂t are independent

when rt = 0. However, this is not the case when rt > 0. Also, when µt is known

and rt > 0, the maximum likelihood estimate of θt is obtained by solving an equation

numerically (Balakrishnan and Sandhu, 1996). In this latter case, the MLE of θt is

not free of the censoring scheme.

To find the MLEs of the parameters µi, θi, 1 ≤ i ≤ k subject to the constraints

H0 : θ1 = θ2 = . . . = θk (2.5)

the log-likelihood from (2.2) can be expressed as (except for the constant term)

lnL(µ, θ) =
k∑

i=1



ri ln

(
1 − e−

xri+1,Ni
−µi

θ

)
− (mi − ri) ln θ − 1

θ




mi∑

j=ri+1

(1 + Ri,j)(xj,Ni − µi)







where θ is the common value of the θi’s under H0.

Differentiating lnL(µ, θ) with respect to µi and θ, we obtain

∂ lnL

∂µi
= −ri

θ

e−
xri+1,Ni

−µi

θ

1 − e−
xri+1,Ni

−µi

θ

+
1

θ

mi∑

j=ri+1

(1 + Ri,j) (2.6)
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and

∂ lnL

∂θ
= −ri

θ

e
xri+1,Ni

−µi

θ

1 − e−
xri+1,Ni

−µi

θ

xri+1,Ni − µi

θ
− mi − ri

θ
+

1

θ2

mi∑

j=ri+1

(1 + Ri,j)(xj,Ni − µi).

(2.7)

Setting the derivatives (2.6) and (2.7) equal to zero and simplifying them using (1.1),

we get the MLEs under H0 as follows

µ0
t = xrt+1,Nt + θ0 ln

(
1 − rt

Nt

)
, 1 ≤ t ≤ k, (2.8)

θ0 =

∑k
i=1

∑mi
j=ri+2(1 + Ri,j)(xj,Ni − xri+1,Ni)∑k

i=1(mi − ri)
. (2.9)

Let µ0 = (µ0
1, . . . , µ

0
k) and θ0 = (θ0, . . . , θ0).

Next, we like to find the MLEs of the parameters µi, θi, 1 ≤ i ≤ k subject to the

constraints that

H1 : θ1 ≤ θ2 ≤ . . . ≤ θk. (2.10)

From (2.2), the log-likelihood can be simplified as (except for the constant term)

lnL(µ,θ) =
k∑

i=1



ri ln

(
1 − e

−
xri+1,Ni

−µi

θi

)
− (mi − ri) ln θi −

1

θi




mi∑

j=ri+1

(1 + Ri,j)(xj,Ni − µi)





 .

Differentiating lnL(µ,θ) with respect to µi and θi, we obtain

∂ lnL

∂µi
= −ri

θi

e
−

xri+1,Ni
−µi

θi

1 − e
−

xri+1,Ni
−µi

θi

+
1

θi

mi∑

j=ri+1

(1 + Ri,j) (2.11)

and

∂ lnL

∂θi
= −ri

θi

e
xri+1,Ni

−µi

θi

1 − e
−

xri+1,Ni
−µi

θi

xri+1,Ni − µi

θi
− mi − ri

θi
+

1

θ2
i

mi∑

j=ri+1

(1 + Ri,j)(xj,Ni − µi).

(2.12)

To maximize lnL under H1, we can equivalently minimize B(µ,θ) = − lnL(µ,θ)

subject to θi ≤ θi+1, 1 ≤ i ≤ k − 1. For solution of this optimization problem, we

appeal to the Kuhn-Tucker necessary conditions. Setting

ct(µt, θt) =
∂B(µ,θ)

∂µt

, dt(µt, θt) =
∂B(µ,θ)

∂θt

, 1 ≤ t ≤ k,
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with some algebra, the Kuhn-Tucker conditions for this minimization problem are

equivalent to

∑i
t=1 dt(µt, θt) + vi = 0, 1 ≤ i ≤ k − 1,

∑k
t=1 dt(µt, θt) = 0, (2.13)

ct(µt, θt) = 0, 1 ≤ t ≤ k, (2.14)

vi(θi − θi+1) = 0, vi ≥ 0, θi − θi+1 ≤ 0, 1 ≤ i ≤ k − 1, (2.15)

where vi are the Lagrange multipliers corresponding to the inequality constraints. Let

the solutions to (2.13 - 2.15) be denoted by µ∗ = (µ∗
1, · · · , µ∗

k), θ∗ = (θ∗1, · · · , θ∗k), v∗ =

(v∗
1, · · · , v∗

k), which are the desired estimates under H1.

Let Av(i, j), i ≤ j be the solution θ0 of the equations

ct(µt, θ0) = 0, t = i, . . . , j, (2.16)
j∑

t=i

dt(µt, θ0) = 0. (2.17)

Using the identity (1.1), it follows from (2.11) and (2.16) that

µt = xrt+1,Nt + θ0 ln
(
1 − rt

Nt

)
, 1 ≤ t ≤ k. (2.18)

Using this value of µt, it follows from (2.12) and (2.17) that

j∑

t=i




 1

θ0

mt∑

s=rt+1

(1 + Ri,s)


 xrt+1,Nt − µt

θ0
+

mt − rt

θ0
− 1

θ2
0

mt∑

s=rt+1

(1 + Rt,s)(xs,Nt − µt)


 = 0

which solving for θ0 (= Av(i, j)) yields

θ0 =

∑j
t=i

∑mt
s=rt+1(1 + Rt,s)(xs,Nt − xrt+1,Nt)∑j

t=i(mt − rt)
. (2.19)

The estimates under H1 are given by the following theorem.

Theorem 2.1. The constrained estimates of µt, θt under H1 are given by

µ∗
t = xrt+1,Nt + θ∗t ln

(
1 − rt

Nt

)
, t = 1, . . . , k, (2.20)

θ∗t = max
i≤t

min
j≥t

∑j
h=i

∑mh
s=rh+1(1 + Rh,s)(xs,Nh

− xrh+1,Nh
)

∑j
h=i(mh − rh)

, t = 1, . . . , k. (2.21)
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Proof. It is easy to verify that (2.20) satisfies (2.14). Let v∗
t = −∑t

a=1 da(µ
∗
a, θ

∗
a), 1 ≤

t ≤ k − 1. The first part of (2.13) is satisfied, and θ∗i are nondecreasing, so the last

part of (2.15) is satisfied.

For the level set {i, i + 1, . . . , j} so that θ∗i−1 < θ∗i = θ∗i+1 = . . . = θ∗j < θ∗j+1, we

have θ∗t = Av(i, j), t = i, i + 1, . . . , j, and from the definition of θ∗t (or Av(i, j)) and

(2.17), we have
i−1∑

t=1

dt(µ
∗
t , θ

∗
t ) = 0,

j∑

t=1

dt(µ
∗
t , θ

∗
t ) = 0, (2.22)

which implies that v∗
i−1 = v∗

j = 0. Thus v∗
i (θ

∗
i+1 − θ∗i ) = 0, 1 ≤ i ≤ k − 1. Also using

j = k, the second part of (2.13) holds.

It suffices to prove that v∗
t ≥ 0, t = i, . . . , j − 1. From (2.22) we have v∗

t =

−∑t
a=i da(µ

∗
a, θ

∗
a), t = i, i + 1, . . . , j − 1. Using (2.11), (2.12) and θ0 = Av(i, j) we

have

v∗
t = −

t∑

a=i




 1

θ2
0

ma∑

h=ra+1

(1 + Ra,h)


 (xra+1,Na − µ∗

a) −
ma − ra

θ0

+
1

θ2
0

ma∑

h=ra+1

(1 + Ra,h)(xh,Na − µ∗
a)




=
t∑

a=i

(
Na − ra

θ0

)
ln
(
1 − ra

Na

)
−

t∑

a=i

ma − ra

θ0

+
1

θ2
0

t∑

a=i

ma∑

h=ra+1

(1 + Ra,h)
(
xh,Na − xra+1,Na − θ0 ln

(
1 − ra

Na

))

=
t∑

a=i

ma − ra

θ0
− 1

θ2
0

t∑

a=i

ma∑

h=ra+1

(1 + Ra,h) (xh,Na − xra+1,Na)

=

t∑

a=i

(ma − ra)

θ2
0




t∑

a=i

ma∑

h=ra+1

(1 + Ra,h)(xh,Na − xra+1,Na)

t∑

a=i

(ma − ra)

− θ0




which is nonnegative because Av(i, t) ≥ Av(i, j), ∀t = i, . . . , j − 1. This completes

the proof of the theorem. 2
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The estimates in (2.21) can be obtained by isotonic regression of θ̂ onto the cone of

nondecreasing vectors with weights m = (m1, . . . ,mk). These estimates are computed

easily by using the pooled adjacent violators algorithm (Robertson, et. al., 1988). We

will use these constrained estimates in the next section to construct the test statistics.

3 Likelihood Ratio Tests

We assume ri > 0, ∀i. To test H0 versus H1 − H0, the likelihood ratio test statistic

may be expressed as

T01 = 2[lnL(µ∗,θ∗) − lnL(µ0,θ0)]. (3.1)

However, the exact distribution of T01 seems intractable; hence, we appeal to the

asymptotic theory. From Lemma C of Serfling (1980, page 154), we have

2[lnL(µ̂, θ̂) − lnL(µ,θ)] = Q(µ,θ) + op(1) (3.2)

where

Q(µ,θ) = (µ̂′ − µ′, θ̂
′
− θ′)I(µ,θ)(µ̂′ −µ′, θ̂

′
− θ′)′

where I(µ,θ) is the information matrix.

Since L(µ0,θ0) = supH0
L(µ,θ) and L(µ∗,θ∗) = supH1

L(µ,θ), we can write

infH0[lnL(µ̂, θ̂) − lnL(µ,θ)] = lnL(µ̂, θ̂) − supH0
lnL(µ,θ)

= lnL(µ̂, θ̂) − lnL(µ0,θ0)

and

infH1[lnL(µ̂, θ̂) − lnL(µ,θ)] = lnL(µ̂, θ̂) − supH1
lnL(µ,θ)

= lnL(µ̂, θ̂) − lnL(µ∗,θ∗).

Minimizing both sides of (3.2) under H0 and under H1, we get,

2[lnL(µ̂, θ̂) − lnL(µ0,θ0)] = infH0 Q(µ,θ) + op(1),

2[lnL(µ̂, θ̂) − lnL(µ∗,θ∗)] = infH1 Q(µ,θ) + op(1),
(3.3)
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respectively. Thus we can rewrite T01 as

T01 = 2[lnL(µ∗,θ∗) − lnL(µ0,θ0)]

= 2[lnL(µ̂, θ̂) − lnL(µ0,θ0)] − 2[lnL(µ̂, θ̂) − lnL(µ∗,θ∗)]

= infH0 Q(µ,θ) − infH1 Q(µ,θ) + op(1).

(3.4)

Now in the expression of Q(µ,θ), replacing I(µ,θ) by I(µ̂, θ̂) we define

Q∗(µ,θ) = (µ̂′ − µ′, θ̂
′ − θ′)I(µ̂, θ̂)(µ̂′ −µ′, θ̂

′ − θ′)′.

Since (µ̂′, θ̂
′
) → (µ′,θ′) a.s., so I(µ̂, θ̂) → I(µ,θ) a.s., and Q∗(µ,θ) − Q(µ,θ) → 0

a.s.

Let (µ0,θ0) and (µ1,θ1) denote the estimates of (µ,θ) obtained by minimizing

Q∗(µ,θ) under H0 and H1, respectively. Then from (3.4), we can say that

T01 − (Q∗(µ0,θ0) − Q∗(µ1,θ1)) → 0, a.s.

Thus the asymptotic distribution of T01 is same as that of Q∗(µ0,θ0) − Q∗(µ1,θ1).

If we express the constraints in (2.5) and (2.10) as H0 : C(µ′,θ′)′ = 0 and H1 :

C(µ′,θ′)′ ≥ 0 respectively, where the (k − 1 × 2k) matrix C is given by

C =




0 · · · 0 1 −1 0 0 · · · · · · 0

0 · · · 0 0 1 −1 0 0 · · · 0

...
...

...
...

...
...

... · · · ...
...

0 · · · 0 0 0 0 · · · 0 1 −1




and 0 is a column vector k−1 zeroes, then the asymptotic distribution of T01 is given

by Theorem 3.1 below.

When testing the order restrictions H1 as a null hypothesis against the alternative

H2 − H1 where H2 : no restriction among θi’s, using (3.3) the test statistic is given

by

T12 = 2[lnL(µ̂, θ̂) − lnL(µ∗,θ∗)]

= infH1 Q(µ,θ) + op(1).
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From earlier discussions, it follows that the asymptotic distribution of T12 is the same

as that of Q∗(µ1,θ1), whose least favorable distribution under H0 is given by Theorem

3.1 below.

For 1 ≤ i ≤ k−1, let P (i, k−1,CI−1C ′), the level probabilities, be the probability

that Cθ̂ has i distinct positive components under H0. The proof of Theorem 3.1

follows from the work of Shapiro (1985, 1988) and Kudô (1963).

Theorem 3.1. For a constant u1, the asymptotic distribution of T01 under H0 is

given by

lim
ni→∞,∀i

P (T01 ≥ u1) =
k−1∑

i=0

P (i, k − 1,CI−1C ′)P (χ2
i ≥ u1)

where χ2
i is a chi-square random variable with i degrees of freedom with χ2

0 ≡ 0.

For T12, H0 is least favorable within H1, and for a constant u2, its asymptotic

distribution under H0 is given by

lim
ni→∞,∀i

P (T12 ≥ u2) =
k−1∑

i=0

P (k − i, k − 1,CI−1C ′)P (χ2
i ≥ u2).

2

Now we consider approximations for the level probabilities. Partition

I =




I11 I12

I12 I22




where each I ij is a diagonal matrix and is given by

I11 = −
(

∂2 lnL
∂µ2

i

)
= Diag(a1, . . . , ak),

I22 = −
(

∂2 lnL
∂θ2

i

)
= Diag(b1, . . . , bk),

I12 = −
(

∂2 ln L
∂µi∂θi

)
= Diag(c1, . . . , ck),

where

ai = − ri

θ2
i
wi(1 + wi),

bi = 2ri

θ3
i
giwi − ri

θ4
i
g2

i wi(1 + wi) + mi−ri

θ2
i

− 2
θ3
i

∑mi
j=ri+1(1 + Ri,j)(xj,Ni − µi),

ci = ri

θ2
i
wi − ri

θ3
i
giwi(1 + wi) − 1

θ2
i

∑mi
j=ri+1(1 + Ri,j),
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where wi = e−(xri+1,Ni
−µi)/θi/(1− e−(xri+1,Ni

−µi)/θi), gi = xri+1,Ni −µi. To approximate

the level probabilities under H0, we replace µi, θi by µ0
i , θ0, respectively, in above

expressions.

Let W = CI−1C ′. When k = 2, we have P (0, 1,W ) = P (1, 1,W ) = .5. When

k = 3, we have P (0, 2,W ) = .5 − (cos−1ρ12)/2π, P (1, 2,W ) = .5, P (2, 2,W ) =

(cos−1ρ12)/2π, where ρ12 is the (1,2)th element of the matrix [diag(W )]−1/2[W ]

[diag(W )]−1/2, and can be expressed as ρ12 = −d2/
√

(d1 + d2)(d2 + d3) where di =

ai/(aibi − c2
i ).

For k = 4, we have

P (0, 3,W ) = 1
2
− (cos−1ρ12 + cos−1ρ13 + cos−1ρ23)/4π,

P (1, 3,W ) = 3
4
− (cos−1ρ12·3 + cos−1ρ13·2 + cos−1ρ23·1)/4π,

P (2, 3,W ) = 1
2
− P (0, 3,W ), and P (3, 3,W ) = 1

2
− P (1, 3,W )

where ρij·k = (ρij − ρikρjk)/
√

(1 − ρ2
ik)(1 − ρ2

jk) with

ρ12 = − d2√
(d1 + d2)(d2 + d3)

, ρ13 = 0, ρ23 = − d3√
(d2 + d3)(d3 + d4)

.

For k ≥ 5, expressions for the level probabilities are available in terms of orthant

probabilities for a multivariate normal distribution. However, numerical techniques

are needed to compute these arbitrary orthant probabilities. For this purpose, the

programs of Bohrer and Chow (1978) and Sun (1988) are useful.

Remark 3.1. The usual likelihood ratio test for H0 against unrestricted alternative

H2 − H0 is given by

T02 = 2[lnL(µ̂, θ̂) − lnL(µ0,θ0)]

which has an asymptotically chi-square distribution with k − 1 degrees of freedom.

We compare in Section 4 the performance of the two tests T01 and T02.

Remark 3.2. When ri = 0∀i (progressive type II right censoring), then the log-

likelihood reduces to (except for the constant term)

lnL(µ,θ) =
k∑

i=1



−mi ln θi −

1

θi




mi∑

j=1

(1 + Ri,j)(xj,Ni − µi)





 .
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The unrestricted MLEs are µ̂i = x1,Ni and θ̂i =
∑mi

j=2(Ri,j + 1)(xj,Ni − x1,Ni)/mi, 1 ≤

i ≤ k (Cohen, 1991). From the proof of Lemma 2.1 (with Zj,Ni playing the role of Zj in

(2.4)), it follows that µ̂i = Z1,Ni/Ni +µi, θ̂i =
∑mi

j=2 Zj,Ni/mi, 1 ≤ i ≤ k and miθ̂i has a

gamma distribution with shape parameter mi−1 and scale parameter θi, i = 1, . . . , k.

Since Zj,Ni ’s are independent, it follows that µ̂i and θ̂i are independent, and hence for

testing hypothesis concerning θi’s, it is enough to work with the distribution of θ̂i’s.

It is easily seen that under H0, the MLE of θi is θ̂0 =
∑k

i=1

∑mi
j=2(Ri,j + 1)(xj,Ni −

x1,Ni)/
∑k

i=1 mi. Under H1, the MLE of θ = (θ1, . . . , θk) is θ∗ = (θ∗1, . . . , θ
∗
k), which is

the isotonic regression of θ̂ = (θ̂1, . . . , θ̂k) onto the cone of nondecreasing vectors with

weights m = (m1,m2, . . . ,mk). It follows from Lemma 2.1 (with r = 0) that θ∗ is

free of the censoring scheme as well. The likelihood ratio tests of H0 versus H1 −H0

and H1 versus H2 − H1 reduce to those described in pages 174-175 of Robertson et

al. (1988). The related test statistics can be simplified to

T01 = 2
k∑

i=1

(mi − 1) ln

(
θ̂0

θ̂∗i

)
and T12 = 2

k∑

i=1

(mi − 1) ln

(
θ̂∗i

θ̂i

)
,

respectively. The next theorem gives the asymptotic distributions of these statistics

(from Theorem 4.1.1 of Robertson et al., 1988).

Theorem 3.2. For a constant u1, the asymptotic distribution of T01 under H0 is

given by

lim
M→∞

P (T01 ≥ u1) =
k∑

i=1

P (i, k,w)P (χ2
i−1 ≥ u1)

where M =
∑k

i=1 mi, w = (w1, . . . , wk) and wi = limmi→∞ mi/M .

For T12, H0 is least favorable within H1, and for a constant u2, its asymptotic

distribution under H0 is given by

lim
ni→∞,∀i

P (T12 ≥ u2) =
k∑

i=1

P (k − i, k,w)P (χ2
i−1 ≥ u2).

2

For k ≤ 4, the level probabilities P (i, k,w) can be found in Tables A1 - A3

of Robertson et. al. (1988). For k > 4, they can be simulated by estimating wi
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with mi/M . For the case of equal mi’s, better approximations to the asymptotic

distribution are available using the results of Bain and Engelhardt (1975). We direct

the reader to equations (4.1.19) and (4.1.20) of Robertson et. al. (1988) for those

results.

Remark 3.3. When ri = 0∀i and µi = 0∀i (or, equivalently, µi’s are known), (pro-

gressive type II right censoring with given guarantee periods), then the log-likelihood

reduces to (except for the constant term)

lnL(θ) =
k∑

i=1



−mi ln θi −

1

θi

mi∑

j=1

(1 + Ri,j)xj,Ni



 .

The unrestricted MLEs are θ̂i =
∑mi

j=1(Ri,j + 1)xj,Ni/mi, 1 ≤ i ≤ k (Cohen, 1991).

Here miθ̂i has a gamma distribution with shape parameter mi and scale parameter

θi, i = 1, . . . , k (this follows from the proof of Lemma 2.1 by setting r = 0).

Under H0, the MLE of θi is θ̂0 =
∑k

i=1

∑mi
j=1(Ri,j + 1)xj,Ni/

∑k
i=1 mi. Under

H1, the MLE of θ = (θ1, . . . , θk) is θ∗ = (θ∗1, . . . , θ
∗
k), which is the isotonic re-

gression of θ̂ = (θ̂1, . . . , θ̂k) onto the cone of nondecreasing vectors with weights

m = (m1,m2, . . . ,mk). It follows from Lemma 2.1 (with r = 0) that all these esti-

mates are free of the censoring scheme as well. The likelihood ratio tests and their

asymptotic distributions can be obtained as in Remark 3.2 by replacing mi − 1 with

mi.

4 Simulation and Example

Since the MLEs are only asymptotically efficient and our testing results are based

on the large sampling theory, it is necessary to observe the small sample behavior

of the estimates and the tests under the null and the alternative hypotheses. As

shown earlier, the MLEs for the parameters of the general progressively censored

(with ri > 0) exponential distributions are free of the censoring schemes; hence, for

the purpose of the simulation, we have set Rt,s = 0, ∀t, s. To study the dependence
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of MLEs on ri, we consider four exponential populations and take random samples

according to the simulation scheme given on page 37 of Balakrishnan and Aggarwala

(2000) with 10,000 replications. Since we are interested in the scale parameters θi’s

only, the location (nuisance) parameters are kept fixed at µi = 1.0, ∀i (considered

unknown). For simplicity, we have used equal sample sizes (ni) and equal numbers of

initially unobserved failures (ri) for each group. Table 1 shows the estimated average

bias and mean square errors for the restricted estimators θ̂i’s for different values of

θ’s and different sample sizes.

The restricted MLEs are known to be biased (Robertson, et. al., 1988, p42). In

light of this, two important discoveries are made in examining Table 1. As ri gets

larger for a given ni, the biases and the MSEs get much larger. For smaller ri’s, both

bias and MSE get smaller when sample size increases, but for larger ri’s bias and

MSE are almost unaffected by the sample sizes (ni = 10, 20, 30). Both biases and

MSEs get larger when θi’s are further apart. Other combinations of sample sizes and

ri values revealed the same information as reported above.

The results of Table 1 suggest that a progressive censoring study with a smaller

proportion of initial unobserved failures is more reliable than one with a very large

proportion. It is known in group-testing literature that the cost of obtaining individ-

uals is small compared to the cost of testing (Tebbs and Swallow, 2003). We expect

a similar situation with progressive censoring as well, and recommend that the study

begin early enough so that ri values are still relatively smaller compared to ni values

as permitted by the study.

In Table 2 the simulated sizes and powers of the restricted and unrestricted test

statistics (T01 and T02) with 10,000 replications are listed using α = .05. We observe

that the simulated sizes are quite close to the nominal size of α = .05 when ri’s are

relatively smaller within any of the ni’s. But as ri gets larger within any ni, we

observe larger empirical sizes. These deviations are almost unaffected by the sample
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sizes (except when sample sizes are very small, e.g. 10). The situation improves for

larger sample sizes. The simulated sizes of the T02 test are found to be further away

from .05 than those of T01 test.

Also in Table 2, one observes under H1, as ri gets larger relative to ni, the power

gets smaller. However, the actual value of the power depends on the configuration of

the actual value of θ. We observe higher powers as the number of inequality signs

among θi’s increase as well as when the θi’s are further apart. Also, higher power is

obtained for larger sample sizes. The powers of the T01 test are higher than those of

the T02 test, except when ri’s are very large. However, these latter values are clearly

not very reliable as demonstrated by the size calculations in the previous paragraph.

But for an alternative θ value such as (2, 4, 6, 8) with ni = 50, ∀i, we found the

T01 test to perform uniformly better than the T02 test (not reported in Table 2 for

brevity).

Now we apply our procedure on a data set of survival times (some censored) of

patients with squamous carcinoma of the oropharynx (Kalbfleisch and Prentice, 1980).

The patients were placed in three groups depending upon the degree of lymph node

deterioration (or N -stage tumor classification). If the three populations correspond

to the three lymph node categories, then the survival rates (1/θi) are nonincreasing

if and only if the θi’s are nondecreasing.

We assume that the samples are from exponential populations. To apply our

methods on progressive censoring on this data, we have assumed that if an item is

censored, then that censoring has taken place at the previous failure time. Although

all the initial failures are observed (i.e. ri = 0) in this data, to illustrate the general

applicability of our procedure we assume that r1 = r2 = r3 = 3. We note that

different outcomes would arise if different values of ri’s are chosen. For this data

we have n1 = 29, n2 = n3 = 11, m1 = 25, m2 = m3 = 8, and, the progressive

censoring scheme is given by R1,14 = 1, R1,22 = 3, R2,5 = 3, R3,4 = 1, R3,5 = 2, all
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other Ri,j = 0.

The unrestricted estimates are θ̂1 = 391.91, θ̂2 = 566.60, θ̂3 = 813.40, µ̂1 =

84.20, µ̂2 = 214.56, µ̂3 = 87.97. Since the θ̂i’s satisfy the constraints in H1, they are

also the restricted estimates under H1. The estimates under H0 are θ0 = 485.06, µ0
1 =

74.03, µ0
2 = 240.53, µ0

3 = 192.53. Using these values we find T02 = 2.66. Since 2.66 is

smaller than 4.61, which is the critical value from a chi-square distribution with 2 d.f.

with α = .1, we cannot reject H0 against the unrestricted alternative H2−H0 at 10%

significance level. However, when testing H0 against H1 − H0, we find T01 = 2.66,

which is larger than 2.43 (where ρ12 = .6536, see discussion of level probabilities prior

to Remark 3.1), the critical value at α = .1 and hence we reject H0 in this case at

the same level. Also, when testing H1 against H2 − H1, we get T12 = 0. Thus data

support the fact that the survival rates are nonincreasing.
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Table 1: The bias and MSE’s of the restricted estimates
Bias MSE

ni ri θ̂1 θ̂2 θ̂3 θ̂4 θ̂1 θ̂2 θ̂3 θ̂4

θ = (2, 2, 2, 2)

10 1 0.5316 0.3897 0.3380 0.3723 0.3931 0.2191 0.1709 0.2421

10 5 0.7627 0.5769 0.4879 0.4980 0.7514 0.4538 0.3411 0.4167

10 8 1.3812 1.1631 1.0066 0.9163 2.1199 1.5714 1.2390 1.1695

30 1 0.2631 0.1903 0.1735 0.2130 0.1061 0.0560 0.0477 0.0806

30 15 0.3919 0.2843 0.2509 0.2919 0.2247 0.1211 0.0980 0.1519

30 28 1.3897 1.1635 1.0052 0.9046 2.1344 1.5699 1.2337 1.1370

50 1 0.1982 0.1433 0.1315 0.1656 0.0618 0.0320 0.0274 0.0488

50 25 0.2880 0.2114 0.1910 0.2293 0.1264 0.0684 0.0570 0.0921

50 48 1.3846 1.1576 1.0115 0.9177 2.1248 1.5557 1.2426 1.1606

θ = (2, 2, 2, 4)

10 1 0.5242 0.3860 0.3783 1.0674 0.3880 0.2194 0.2312 1.6652

10 5 0.7504 0.5626 0.5021 1.3980 0.7387 0.4422 0.3844 2.7370

10 8 1.3693 1.1410 0.9766 2.2759 2.0978 1.5323 1.1985 6.4773

θ = (2, 3, 4, 5)

10 1 0.5128 0.6946 0.9013 1.1766 0.3857 0.6951 1.1598 2.1101

10 5 0.7055 0.9579 1.2285 1.5510 0.6895 1.2536 2.0588 3.5524

10 8 1.3101 1.8062 2.2471 2.6511 1.9818 3.7704 5.9700 9.1107

30 1 0.2876 0.4101 0.5249 0.6912 0.1275 0.2563 0.4165 0.7338

30 15 0.3976 0.5533 0.7024 0.9301 0.2381 0.4528 0.7394 1.3274

30 28 1.3168 1.8022 2.2457 2.6193 1.9973 3.7611 5.9541 8.9131

θ = (2, 4, 6, 8)

10 1 0.5306 0.9955 1.4242 1.9500 0.4139 1.4375 2.8976 5.7316

10 5 0.7177 1.3564 1.9361 2.5768 0.7167 2.5105 5.1082 9.6735

10 8 1.2865 2.4673 3.4785 4.3684 1.9409 7.0184 14.2376 24.5079
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Table 2: The size and power of the restricted (T01) and unrestricted (T02) likelihood

ratio test statistics
Sizes of the T01 and T02 tests

θ = (2, 2, 2, 2)

ni = 10 ni = 20 ni = 30 ni = 50

ri T01 T02 ri T01 T02 ri T01 T02 ri T01 T02

1 .0708 .0795 1 .0591 .0643 1 .0508 .0583 1 .0501 .0562

4 .0753 .0972 6 .0611 .0683 8 .0565 .0605 20 .0561 .0597

7 .1214 .1892 15 .0889 .1142 25 .0817 .1152 46 .0974 .1373

8 .1979 .3577 18 .1981 .3443 28 .1972 .3549 48 .1950 .3509

Powers of the T01 and T02 tests

θ = (2, 2, 2, 3) θ = (2, 3, 3, 4)

ni = 10 ni = 20 ni = 10 ni = 20

ri T01 T02 ri T01 T02 ri T01 T02 ri T01 T02

1 .2468 .1653 1 .3712 .2462 1 .3967 .2403 1 .6256 .4059

4 .2062 .1544 6 .3125 .2022 4 .3154 .1977 6 .5166 .3199

7 .2026 .2164 15 .2008 .1608 7 .2742 .2387 15 .2961 .1983

8 .2612 .3714 16 .2042 .1798 8 .3165 .3854 17 .2810 .2433

θ = (2, 3, 4, 5)

ni = 10 ni = 20 ni = 30 ni = 50

ri T01 T02 ri T01 T02 ri T01 T02 ri T01 T02

1 .5994 .3898 1 .8668 .6926 1 .9640 .8774 1 .9980 .9884

4 .4806 .2972 6 .7630 .5467 8 .9121 .7637 20 .9720 .8946

7 .3663 .2839 15 .4395 .2791 25 .4365 .2808 46 .4048 .2723

8 .3763 .4100 17 .3668 .2863 27 .3637 .2839 47 .3707 .2975
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