
ON A DIOPHANTINE EQUATION THAT GENERATES ALL
APOLLONIAN GASKETS

JERZY KOCIK

Abstract. A remarkably simple Diophantine quadratic equation is known to
generate all Apollonian integral gaskets (disk packings). A new derivation of
this formula is presented here based on inversive geometry. Also occurrences of
Pythagorean triples in such gaskets is discussed.

1. Introduction

Apollonian disk packing (or Apollonian gasket) is a pattern obtained by starting
with three mutually tangent circles of which one contains the other two, then recur-
sively inscribing new circles (disks) in the curvilinear triangular regions (called “ideal
triangles”) formed between the circles. Figure 1 shows a few examples, including (a)
a special case of the noncompact “Apollonian Strip”, (b) the Apollonian Window
which is the only case that has symmetry D2, (c) the regular threefold gasket, which
has symmetry D3, and (d) a general gasket that may have no mirror symmetry.

Figure 1. Various Apollonian disk packings

It turns out that there exist an infinite number of integral Apollonian packings,
where the curvature of every circle/disk is an integer.

Recall that four pairwise tangent circles are said to be in Descartes configuration.
Suppose a, b, c, d are curvatures of four such circles. Then Descartes’ circle formula
states

2(a2 + b2 + c2 + d2) = (a+ b+ c+ d)2. (1.1)
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One may use this formula to obtain the curvature of the fourth circle d, given the
first three. Being a quadratic equation, it yields two solutions, say d1 and d2, such
that

d1 + d2 = d(a+ b+ c). (1.2)

Disks d1 and d2 will be called Boyd-dual. As observed by Boyd [1], this “linearized”
version of (1.1) provides a handy tool for determining the curvatures in a particular
Apollonian gasket starting with the first four values. In particular, it follows that if
the first four values are integers, so are all.

Remark. For consistency, the curvature of the circle that contains all of the remain-
ing ones must be given a negative value for equations (1.1) and (1.2) to hold. It is
customary to replace the term “curvature” by “bend” to account for this convention.
Another way of looking at this is to think of disks rather than circles, where the
greatest circle is the boundary of an exterior, unbounded, region. This way no two
disks in an Apollonian gasket overlap.

In this note, Apollonian gaskets will be labeled by the bends of the five greatest
circles, i.e., by the five least bends. Why five will become clear when we consider
symmetries, Appendix A.

Examples of integral Apollonian gaskets include these:

(0, 0, 1, 1, 1) − Apollonian belt (Figure 1a)

(−1, 2, 2, 3, 3) − Apollonian window (Figure 1c)

(−2, 3, 6, 7, 7) − less regular gasket, but with D1 symmetry

(−6, 11, 14, 15, 23) − quite irregular case

Note that the regular gasket (see Figure 1) cannot have integer bends, as its quintet
of curvatures is, up to scale, (1 −

√
3, 2, 2, 2, 10 + 2

√
3), hence its curvatures are

populated by elements of Z[
√

3]. Due to (1.2), the integrality of the first four circles
determines integrality of all disks in the packing. An integral Apollonian packing is
irreducible if the bends have no common factor except 1.

The problem is to classify and determine all irreducible integral Apollonian gaskets.

2. Integer disk packing – the formula

All integral Apollonian disk packings may be determined using a simple Diophan-
tine quadratic equation with constraints. The derivation of this formula is a much
simpler alternative to that of “super-Apollonian packing” [2]–[4] and is based on
inversive geometry.

Theorem 2.1. There is a one to one correspondence between the irreducible integral
Apollonian gaskets and the irreducible quadruples of non-negative integers B, k, n, µ ∈
N that are solutions to quadratic equation

B2 + µ2 = kn (2.1)
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Figure 2. An Apollonian gasket and its four greatest circles (smallest curvatures)

with constraints
(i) 0 ≤ µ ≤ B/

√
3,

(ii) 2µ ≤ k ≤ n.

Every solution to (2.1) corresponds to an Apollonian gasket with the following quintet
of the major bends (curvatures):

(B0, B1 , B2, B3, B4) = (−B, B + k, B + n, B + k + n− 2µ, B + k + n+ 2µ)

Corollary 1. The Apollonian gasket is integral iff gcd(B, k, n) = 1.

Figure 2 locates the curvatures of the theorem in the Apollonian gasket. Note that
the triple of integers (B, µ, k) is also a good candidate for a label that uniquely
identifies an Apollonian gasket (since n is determined by: n = (B2 + µ2)/k).

Equation (2.1) leads to an algorithm producing all integral Apollonian gaskets,
ordered by the curvatures, presented in Figure 3:

Figure 3. An algorithm that produces all integral disk packings.
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Appendix A shows the first 183 entries for the main bend varying from 0 through
32.

Example 1. The table below shows that there are only 3 Apollonian gaskets for
B = 6.

Proof Theorem 2.1. (We denote a circle and its curvature by the same symbol). Con-
sider an Apollonian gasket of disks inscribed inside a circle of curvature B (bend equal
to −B). Draw an axis through the center of this circle and the center of the next
largest circle B1 (the horizontal axis A in Figure 4). Inverting the gasket through a
circle K of radius 2/B will produce an Apollonian belt, shown in the figure on the
right side of the gasket. Denote its width by 2ρ. Lines L0 and L1 are the images of
B and B1, respectively.

The next largest circle, B2, will show up in the strip as a circle B′2 . It will intersect
the axis A. Various Apollonian gaskets will result by varying the strip’s width (that
is the parameter ρ) and the height h of the center of the circle B′2 above the axis.
Clearly, the range of h is the interval [0, ρ), as going beyond would result in repetitions
of the Apollonian arrangements.

Recall the basic formulas of inversive geometry: inversion through a circle of radius
K centered at O carries a point at distance d from O to a point at distance d′ according
to

dd′ = K2 (2.2)
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Figure 4. The method of inversion.

and a disk of radius r with center distance d from O is mapped to a disk of radius r′

with its center located at distance d′ according to

(i) r′ =
rR2

d2 − r2
, (ii) d′ =

dR2

d2 − r2
. (2.3)

We shall analyze the Apollonian gasket as the inversive image of the Apollonian strip,
disk by disk:

Step 0. Recall that B ∈ N represents the curvature of the encompassing circle of
the gasket.

Step 1. To calculate the curvature B1 of the greatest circle inside (the image of L1),
apply (2.3)i) to the point of intersection of L1 and axis A to get:

B1 = B + B2ρ︸︷︷︸
k

.

Since B is an integer, so is the last term; denote it by k = B2ρ. Clearly, k can be
any nonnegative integer (to make B1 ≥ B).

Step 2. For B2, the image of B′2, use (2.3)ii to get

B2 =
1

r′
=

1

ρ
· d

2 − ρ2

2/B)2
=
B2

4ρ
· (d2 − ρ2) (simplification)

=
B2

4ρ
·
(
(2/B + ρ)2 + h2 − ρ2

)
(Pythagorean thm)

= B =
4 + h2B2

4ρ︸ ︷︷ ︸
n
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As before, we conclude that the last term must be an integer; denote it by n. Clearly,
n ≥ k (to make B2 ≥ B1).

Step 3. Similarly, we get a formula for the next largest circle B3 located below B2,
the image of B′3. Simply use the above formula with h′ = h− 2ρ instead of h to get

B3 =
1

ρ
· d

2 − ρ2

(2/B)2
=
B2

4ρ
·
(
(2/B + ρ)2 + (h2 − ρ2)2 − ρ2

)
= B + ρB2︸︷︷︸

k

+
4 + h2B

4ρ︸ ︷︷ ︸
n

− hB2︸︷︷︸
m

Quite pleasantly, the first three terms coincide with terms from previous steps. Since
we have already established that they must be integers, so is the last one; denote it
by m. Thus we have three integers defined by the geometry of the construction:

n =
4 + h2B2

4ρ
, k = ρB2, m = hB2. (2.4)

Integers k, n and m are not independent; take the definition for n and eliminate h
and r from it to get

4nk = 4B2 +m2,

from which it follows immediately that m must be even, say m = 2µ. Reduce the
common factor of 4 to get the “master equation” (2.1).

As to the constraints, the order of the curvatures gives three inequalities:

B1 ≥ B ⇒ k ≥ 0, B2 ≥ B1 ⇒ n ≥ 0, B3 ≥ B2 ⇒ k ≥ 2µ. (2.5)

The additional upper bound for µ comes from the fact that k takes its greatest value
at k =

√
B2 + µ2 . Thus the last inequality of (2.5), k ≥ 2µ, implies:√

B2 + µ2 ≥ 2µ

and therefore (after squaring)
B2 > 3µ2.

This ends the proof. �

3. Symbols of the circles in an Apollonian gasket

The symbol of a circle [5, 6] is a formal fraction

ẋ, ẏ

b

where b = 1/r denotes the bend (signed curvature) of the circle and the position of
the center is

(x, y) =

(
ẋ

b

ẏ

b

)
.

By reduced coordinates we mean the pair (ẋ, ẏ). In the case of the Apollonian Win-
dow (packing with the major curvatures (−1, 2, 2, 3, 3)), the reduced coordinates
and the bend of each circle are integers, see Figure 5.
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Figure 5. Apollonian Window with labels.

Boyd’s linearization (1.2) for bends in Descartes configurations holds for the re-
duced coordinates, since they satisfy a quadratic equation due to the extended
Descartes Circle Theorem [2, 3, 4]. Thus:

ẋ4 + ẋ′4 = 2(ẋ1 + ẋ2 + ẋ3) and ẏ4 + ẏ′4 = 2(ẏ1 + ẏ2 + ẏ3). (3.1)

Remark. The geometric interpretation of the integrality of the labels. Every circle
in the Apollonian Window is an integer multiple of its radius above the horizontal
axis and from the vertical axis. This is a generalization of Pappus’ Arbelos Theorem
[11] for a single chain in an arbelos-like figure, illustrated in Figure 6.

Figure 6. Classical Pappus’ Arbelos Theorem: the base is divided
randomly, yet every circle in the chain is an even multiple of its radius
above the axis.

The question is whether the same may be expected for other integer Apollonian
disk packings, that is: Are the three numbers in the label all integers?
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B2−(k+µ)2
Bk

, 2(k+µ)
k

B + k + n+ 2µ

B2−µ2
Bk

, 2µ
k

B + n

B2−(k−µ)2
Bk

,−2(k−µ)
k

B + k + n− 2µ

Figure 7. Labels of circles in the Apollonian packing [B, µ, n, k]

Proposition 3.1. In the case of the coordinate system with the center located at the
center of circle B (see Figure 4), the labels for the Apollonian gasket generated from
(B, n, k, µ) are as presented in Figure 7.

Proof. Direct calculations. �

One can check that the circles of curvatures B + k + n ± µ are Boyd-dual with
respect to the triple of mutually tangent circles of bends (−B, B + n, B + k).

The above proposition implies that the reduced coordinates for circles are frac-
tional unless B|k (see the symbol for B1 in the figure). Since we have also 2µ ≤ k
(constraints) and the need for k|2µ (see the symbols for the reduced y-coordinate),
we conclude that we would need µ = 0 or k = 2µ.

This happens in two cases: Apollonian Window (−1, 2, 2, 3, 3), and Apollonian
Strip (0, 0, 1, 1, 1), that is for [B, µ, k, n] equal [1, 0, 1, 1] or [0, 0, 0, 1], respectively.
However, if k|µ (which happens “often”, whenever µ = 0), all reduced y-coordinates
are integer. This is a special (integral) case of Pappus’ observation, since µ = 0
corresponds to the pattern shown in Figure 6, see Appendix).

4. Pythagorean triples in Apollonian gaskets

Given two tangent circles C1 and C2, we construct a triangle whose hypotenuse
joins the centers and the other sides of which are horizontal or vertical with respect
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to some fixed axes.

We shall associate with this triangle a triple of numbers, namely

(∆,Γ, H) = (b1ẋ2 − b2ẋ1, b1ẏ2 − b2ẏ1, b1 + b2). (4.1)

The actual size of the triangle’s sides is the above triple scaled down by the factor of
b1b2. Hence the symbol for such triangles:

∆,Γ, H

b1b2
. (4.2)

Clearly, ∆2 + Γ2 = H2. If the reduced coordinates are integers, then the triples
(4.1) are Pythagorean triples! The Apollonian Window thus contains infinitely many
Pythagorean triples [5, 6]. A few are displayed in Figure 8.

Figure 8. Pythagorean triples in the Apollonian Window

Now, for the arbitrary integer packing. Consider the four major circles B0, B1, B2,
B3 in an Apollonian gasket (Figure 6). Pairwise, they determine six right triangles.
Each of the thick segments in Figure 9 represents the hypotenuse of one of them.
This sextet will be called the principal frame for the gasket.

We shall prove later that if the corresponding triples ∆, Γ, H are integers, so are
all triples in the gasket, But first:
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B2−µ2
Bk

, 2µ
k

B + n

B2−(k−µ)2
Bk

,−2(k−µ)
k

B + n+ k − 2µ

Figure 9. Labels of circles in the Apollonian packing [B, µ, n, k]

Proposition 4.1. The labels of the six right triangles in an Apollonian gasket whose
hypotenuses join the pairs of the first four greatest circles are, in notation as in Figure
7 and 9, as follows:

a =
k, 0, k

−B(B + k)

b =
n− 2B2/k, −2µB/k, n

−B(B + n)

c =
k + n− 2µ− 2B2/k, 2B − 2µB/k, k + n− 2µ

−B(B + k + n− 2µ)

A =
−2b− k + 2µ+ 4Bµ/k, −2(B − n+ µ+ 2B2/k), 2B + 2n+ k − 2µ

(B + n)(B + k + n− 2µ)

B =
−2B + n− 2µ− 2B2/k, 2(B + k − µ− 2Bµ/k), 2B + n+ 2k − 2µ

−B(B + k + n− 2µ)

C =
2B + k − n+ 2B2/k, 2µ+ 2µB/k, 2B + k + n

(B + k)(B + n)

(4.3)

Proof. Direct calculation from the data of Proposition 3.1. �

The master equation is used to bring the triples to a form where the only fractional
terms contain B/k as a factor. Note that, in general, each of the entries for the
reduced coordinates is a linear combination with integer coefficients of B, k, n and µ
plus the only, possibly, non-integer term, a multiple of 2Bµ/k or 2B2/k. The fact
that it can be done proves the following theorem:



ON A DIOPHANTINE EQUATION THAT GENERATES ALL APOLLONIAN GASKETS 11

Theorem 4.1. If k|2B2 (or, equivalently k|2Bµ) then all triples (4.1) in the integer
Apollonian gasket (B, µ, k) are integers (form Pythagorean triples).

Proof. The following implication is direct

k|2B2 ⇒ k|(2µk − 2µ2)⇒ k|2µ2.

Combining the premise with the result: k2|2B22µ2 ⇒ k2|4(Bµ)2 ⇒ k|2µB. Every
entry of (4.3) may be expressed as a linear integral combination of B, k, n, µ and an
extra term of either 2Bµ/k or 2Bµ/k. This proves the claim. �

Integer Pythagorean triples happen frequently. For instance, each of the conditions:
µ = 0, or k = 1, or k = 2, is sufficient.

5. Linear recurrence for Pythagorean triples in an Apollonian
gasket

Consider four circles in Descartes configuration, C1, . . . , C4 (see Figure 10). The
four centers determine six segments that we view as hypotenuses of triangles. They
give, after rescaling, six Pythagorean triangles with sides denoted as follows:

horizontal side: ∆ij = bibj(xi − xj) = ẋibj − ẋjbi
vertical side: Γij = bibj(yi − yj) = ẏibj − ẏjbi
hypotenuse: Bij = bibj(1/bi + 1/bj) = bi + bj

(5.1)

with i, j = 1, . . . 4. Note that ∆ij = −∆ji and Γij = −Γji but Bij = Bji. They form
the frame of the Descartes configuration.

Now, complement the picture with a circle C ′4, Boyd-dual to C1 (see Figure 10).
This leads to a new frame, the frame of the Descartes configuration C ′4, C2, C3, C4.
Quite interestingly, the elements of the new frame are linear combinations of the
elements of the initial frame.

Theorem 5.1. Following the notation of (5.1) and Figure 7, the transition of frames
is given by

∆′41 = −∆41 + 2∆21 − 2∆13

Γ′41 = −Γ41 + 2Γ′21 − 2Γ′13

B′41 = −B41 + 2B12 + 2B13

Proof. Using the linear relations (1.2) and (3.1), we can express the position and the
curvature of the new, fifth, circle in terms of the initial four:

ẋ′4 = 2ẋ1 + 2ẋ2 + 2ẋ3 − ẋ4
ẏ′4 = 2ẏ1 + 2ẏ2 + 2ẏ3 − ẏ4
b′4 = 2b1 + 2b2 + 2b3 − b4

We can calculate the Pythagorean vectors for each pair C ′4Ci, i = 1, 2, 3. By some
magic, due to the following regroupings and adding zeros, these can be expressed in
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terms of the initial four Pythagorean vectors only, as shown here for the pair C ′4C1:

∆′41 = ẋ′4b1 − ẋ1b′4
= (2ẋ1 + 2ẋ2 + 2ẋ3 − ẋ4)b1 − ẋ1(2b1 + 2b2 + 2b3 − b4)
= ẋ1b4 − ẋ4b1 + 2(ẋ2b1 − ẋ1b21) + 2(ẋ3b1 − ẋ1b3)
= −Delta41 + 2∆21 − 2∆13 .

The Γ’s follow the same argument. Only B′s are slightly different:

B′41 = b′4 + b1

= −b4 + 3b1 + 2b2 + 2b3

= 4b1 + 2b2 + 2b3 − (b1 + b4)

= −B41 + 2B12 + 2B13 .

Thus the transformation is linear in the entries of ∆, Γ, and, B, with integer coeffi-
cients, as stated. �

Figure 10. (a) A frame (b) and an adjacent frame. Circle 4′ is shaded.

Actually, we have proved a little more:

Corollary 2. If the (scaled) triangles formed by the initial Descartes configuration
are integer, so are all of the triangles of the Apollonian window.

Matrix description: Now we may rephrase our findings on transitions be-
tween frames in terms of matrices. The data for the Pythagorean triangles in
each frame may be expressed as three vectors (columns), e.g., for the initial frame:
∆ = [∆41,∆42,∆43,∆12,∆23,∆31]

T and similarly for Γ and B. Similarly for the sec-
ond frame we have ∆′, Γ′ and B′.

Here are the three matrices of the transition from a frame to the corresponding
subsequent frame:

A =


1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0
0 0 0 1 −2 −2
2 0 1 0 2 0
−2 −1 0 0 0 2

 B =


0 0 0 0 0 −1
0 1 0 0 0 0
0 0 0 1 0 0
0 −2 −1 2 0 0
0 0 0 −2 1 −2
1 2 0 0 0 2


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C =


0 0 0 0 1 0
0 0 0 −1 0 0
0 0 1 0 0 0
0 1 2 2 0 0
−1 0 −2 0 2 0

0 0 0 −2 2 1


(vertical and horizontal lines in the matrices are drawn for easier inspection). Now
acting with them on the initial vectors ∆ and Γ one may reconstruct all the interior
triangles. Vectors ∆ and Γ may be combined into a single matrix, T = [∆|Γ].

T =


∆41 Γ41

∆42 Γ42

∆43 Γ43

∆12 Γ12

∆23 Γ23

∆31 Γ31

 B′ =


B41

B42

B43

B12

B23

B31


The vector B is transformed to B′ by matrices like A,B,C, where all of the entries
are to be replaced by their absolute values.

We conclude with two examples of Apollonian packings in which every triangle for
adjacent circles determines a Pythagorean triple, see Figures 10 and 11. Only some
of the triangles are displayed.

6. Concluding remarks

Integral Apollonian disk packings have a topic of much interest for a while [2]-[4],
[8]–[9] and their occurrence has been analyzed. Yet it is not clear whether the integral
Apollonian disk packings admit coordinate systems in which the reduced coordinates
are integral, except the known cases of Apollonian Strip and Apollonian Window.
We have however a frequent occurrence of gaskets that admit integral Pythagorean
triples, constructed in Sections 4 and 5.

Yet another intriguing remark concerns the master equation

B2 + µ2 − nk = 0.

If we see it as B2 + µ2 = hypotenuse2 – one may identify the corresponding (scaled)
triangle in Figure 4 as the one with legs being the diameter 2/B of the encompassing
circle and altitude h of the center of circle B2 – the inversive image of circle B2. Each
solution to the master equation may also be viewed as an integral isotropic vector
[B, µ, n, k]T in the Minkowski space R3,1 a la Pedoe map from circles to vectors, see
[6]. Such vectors represent points in this Minkowski space – degenerated circles of
radius 0.
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Figure 11. Arrangement (b0, b1, b2, b3) = (−2, 3, 6, 7) or (B, µ, k, n) =
(2, 4, 4, 5). Left side shows symbols of the principal and other circles,
right side shows Pythagorean triples.

Figure 12. Arrangement (b0, b1, b2, b3) = (−3, 5, 8, 8) or (B, µ, k, n) =
(3, 4, 5, 5). Both symbols (left) and Pythagorean triples (right). The
triangles are reported with absolute values of sides.
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Appendix A. List of integral packings

Here we provide a list of the first 200 integer Apollonian packings. First, however,
a few words on symmetry of these arrangements.

Figure A1. Types of symmetries and arrangements. The second cir-
cle, b, is thicker.

Only two integral Apollonian packings have rich symmetry: that of Apollonian
Strip, and of Apollonian Window (D2). Otherwise we have two cases, that of sym-
metry C1 and D1, which will be labeled as follows:

Skew means no nontrivial symmetry (thus symmetry of type C1).

For cases with single axis symmetry (D1) we shall distinguish two cases:

Odd – mirror symmetry D1, with exactly three circles cut by the axis of
symmetry
Even – mirror symmetry with infinitely many circles on the axis
Even* – even symmetry that is obtained “accidentally” by algorithm in Fig-
ure 3, where the two greatest congruent circles are not images of the congruent
disks in the Apollonian strip

Consult Figure A1 for visualization.
Yet another attribute of an Apollonian packing is a shift, which we define as the

degree the disk on the horizontal axis in the Apollonian strip is raised above this axis
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in terms of the fraction of its radius.

shift = h/ρ =
2µ

k
.

See Figure 4. It has values in the interval [0,1] and it measures the degree the gasket
is off the axial symmetry: 0 for odd symmetry D1 and 1 for even symmetry D1. The
fractional value indicates lack of axial symmetry, except the cases of “accidental”
even* symmetry, when n = k (this gives B1 = B2).

Table A1 displays first 24 integral Apollonian gaskets including symmetry type,
principal disk quintet, the parameters B, k, n, µ, and the shift factor. The first even*
case is also included.

Table A2 contains a longer list of integer Apollonian gaskets for the principal cur-
vatures from 1 through 32. Curvature quintets (in brackets) are followed by shift
factor.

Table A1. Bend quintets for Apollonian integer disk packings for
principal curvatures 1 through 15, including four indices and shifts.
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Table A2. Bend quintets for Apollonian integer disk packings for
principal curvatures 1 through 32.
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[10] G. F. Tóth, J. C. Lagarias, Guest editors’ foreword, Discrete & Computational Geometry, 36(1):

(2006), 1–3.
[11] J. B. Wilker, Inversive Geometry, in: The Geometric Vein, (C. Davis, B. Grünbaum, F.A. Sherk,
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