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Abstract

A family of sequences produced by a non-homogeneous linear recurrence formula
derived from the geometry of circles inscribed in lenses is introduced and studied.
Mysterious “underground” sequences underlying them are discovered in this paper.
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5. Underground sequences
6. Summary

1 Introduction

We investigate a new family of integer sequences. They are generated by a geometric con-
struction, which we now describe.

Start with three circles of curvatures a, b, and c centered on the same line, so that pairs of
consecutive circles are tangent, as in the left side of Figure 1.1. The three circles determine
a pair of congruent circles that are simultaneously tangent to the original triple (right side
of Figure 1.1). The common region formed by this pair defines a symmetric lens. Now,
continue to inscribe circles inside the lens, as shown in Fig. 1.1. The resulting chain of
circles defines a bilateral sequence of curvatures (bi), i ∈ Z. Sequences obtained this way
will be called lens sequences.
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1. Introduction 
 
We investigate a new family of integer sequences.  They are generated by a geometric 
construction, which we now describe. 
 
 
 
 
 
 
 

Figure 1.1:  Three circles determine a sequence 
 
Start with three circles of curvatures  a, b, and c, each centered on a line, so that pairs of 
consecutive circles are tangent, as in the left side of Figure 1.1.  They determine a pair of 
congruent circles simultaneously tangent to the original triple (right side of Figure 1.1).  
The common region formed by this pair defines a symmetric lens.  Now, continue to 
inscribe circles inside the lens, as shown in Fig. 1.1.  The resulting chain of circles 
defines a sequence of curvatures (bi).  Clearly, the sequence is bidirectional, i∈Z.  
Sequences obtained this way will be called lens sequences.   
 
Terminology: The resulting circles form lens circle chain. We shall say that a triplet of 
circles (a,b,c) generates the lens sequence, and will call it a seed of the sequence. Notice 
that any three consecutive terms of a lens sequence may form a seed. Two circles that 
form the lens will be called lens circles. 

b0=a b1=b b2=c b3 b4 b5 a b c 

Figure 1.1: Three circles determine a sequence

Terminology. The resulting circles form a lens circle chain. We shall say that a triplet
of circles (a, b, c) generates the lens sequence, and we will call it a seed of the sequence.
Notice that any three consecutive terms of a lens sequence define a seed. The two circles
that form the lens will be called lens circles.

Notation. Typically, we denote circles and their curvatures by the same letter (circle a
has curvature a, i.e., radius 1/a).

Our opening result (proved in the next section) is this:

Theorem A. Let a, b and c be the curvatures of the initial three circles generating a lens
sequence, b 6=0. Then the sequence is determined by the following inhomogeneous three-term
recurrence formula:

bn = α bn−1 − bn−2 + β , (1.1)

where α and β are constants determined by the original triple:

α =
ab + bc + ca

b2
− 1 and β =

b2 − ac

b
. (1.2)

In particular, if b0 = a and b1 = b then b2 = c .

Constants α and β are “invariants” of the sequence – their values may be determined
from any three consecutive terms of the sequence.

If a, b, c as well as α and β are integers, then (bn) is an integer sequence. Surprisingly,
this family of sequences includes a wide range of known sequences [9]. However, for some of
these sequences, properties that we develop in this paper seem to be new. For now, let us
look at a few examples.

Example 1.1 (Vesica Piscis). Starting with (a, b, c) = (3,1,3) we get the recurrence formula

bn = 14bn−1 − bn−2 − 8 ,

which produces

. . .3, 1, 3, 33, 451, 6273, 87363, 1216801, 16947843, 236052993, . . . ,
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a sequence known as A011922. Note that if one starts with values twice as large, the whole
sequence is doubled:

. . .6, 2, 6, 66, 902, 12546, 174726, 2433602, 33895686, 472105986, . . .

and the recurrence formula becomes bn = 14bn−1− bn−2−16 (the same α and twice β). (The
lens circles traverse each others center, forming a well-known figure of Vesica Piscis, hence
the name of the example.)

Example 1.2 (Golden Vesica). Start with (a, b, c) = (1, 2, 10). Equations (4.2) give α = 7
and β = −3; hence the sequence is generated by

bn = 7bn−1 − bn−2 − 3

and is

1, 2, 10, 65, 442, 3026, 20737, 142130, 974170, . . .

for positive n. This sequence, listed as Sloan’s A064170, is known for its interesting prop-
erties. Its terms are products of pairs of non-consecutive Fibonacci numbers: 1 · 2, 2 · 5,
5 · 13, 13 · 34, . . . , etc. They also coincide with the denominators in a system of Egyp-
tian fraction for ratios of consecutive Fibonacci numbers: 1/2 = 1/2, 3/5 = 1/2 + 1/10,
8/13 = 1/2 + 1/10 + 1/65, etc. (The geometry of the lens relates to the golden proportion,
hence the proposed name.)

Example 1.3. Triplet (−1, 3, 15) gives

. . . 99, 63, 35, 15, 3, −1, 3, 15, 35, 63, 99, 143, . . .

from the recurrence
bn = 2bn−1 − bn−2 + 8 .

The sequence (3, 15, 35, . . . ) is known as A000466 and is defined by bn = 4n2 − 1. The
occurrence of negative curvatures will be explained later.

Example 1.4. A lens sequence does not necessarily need to be symmetric. For instance the
triple (2,1,3) produces the following bilateral sequence:

. . . , 12972, 1311, 133, 14, 2, 1, 3, 24, 232, 2291, 22673, 224434, . . .

Example 1.5 (More Examples). The lens sequences possess an ample diversity. They
include such basic examples as (i) the powers of 2 (A000079), and (ii) triangular numbers
(A000217).

(i) 1, 2, 4, 8, 16, 32, 64, 128, 256, . . . bn = 5/2 bn−1 − bn−2

(ii) 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, . . . bn = 2bn−1 − bn−2 + 1

A more extensive list with references to OEIS [9] is provided in Tables 4.1 through 4.3.
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The sequence b1=3, b2=15,…etc, is known as A000466 and is defined by  bn = 4n2 – 1.  
The occurrence of negative curvatures will be explained later.  
 
Example 1.4.  A lens sequence does not necessarily need to be symmetric.  For instance 
the triple  (2,1,3) produces the following bidirectional sequence: 
 

…, 12972, 1311, 133, 14, 2, 1, 3, 24, 232, 2291, 22673, 224434, … 
 
This may be understood as the concatenation of two sequences, a right side (bn) = 
(1,3,24,…) and a left side (b–n) = (1,2,14,…).  The recurrence formula for both directions 
is the same:   
 

 bn  =  10 bn–1  –  bn–2 – 5 
 
 
Example 1.5 (more examples):  The lens sequences possess an ample diversity.  They 
include such basic examples as (i) the powers of 2 (A000079), (ii)  triangular numbers 
(A000217), or  (iii)  recurring sequences for which the first derived sequence and the 
Galois transformed sequence coincide, like A032908.  
 
 (i)      1, 2, 4, 8, 16, 32, 64, …     bn  = 5/2 bn–1 –  bn–2  
 (ii)     1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, … bn  = 2 bn–1 –  bn–2 + 1 
 (iii)    2, 3, 6, 14, 35, 90, 234, 611, 1598, 4182, …  bn  = 3 bn–1 –  bn–2 – 1 
 
A more extensive list with references to EIS [Slo] is provided in Tables 3.1 through 3.3. 
 
 
Remark:  Certain circle packings (so-called Apollonian gaskets [Man]) result in integral 
curvatures for all of the circles (see e.g., [LMW]). One such gasket, which we call an 
Apollonian Window (see [K1,K2]) is presented in Fig. 1.2.  Interestingly, it contains an 
infinite number of lens sequences, from which the three shown in Fig. 1.2 are particularly 
conspicuous.  They correspond to the Examples 1, 2, and 3, given above (up to scaling).  
This observation was the author’s initial motivation for this study. 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.2:  Sequences A011922,  A064170 and A000466  in the Apollonian window 
 
 
The negative term of Example three (the third figure) has a clear geometric meaning: it is 
the curvature of the greatest disc in the sequence, which, unlike the other sequence discs, 
contains the lens circles (as well as the rest of the sequence).   
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Figure 1.2: Sequences A011922, A064170, and A000466 in the Apollonian window

Remark 1.6. Certain circle packings, known as Apollonian gaskets [5], result in integral
curvatures for all of the circles (see e.g., [4]). One such gasket, an Apollonian Window (see
[2, 3]), is presented in Fig. 1.2. Interestingly, it contains an infinite number of lens sequences,
from which the three shown in Fig. 1.2 are especially conspicuous. They correspond to the
Examples 1.1, 1.2, and 1.3, given above (up to scaling). This observation was the author’s
initial motivation for this study.

The negative term of Example 1.3 (the third one in Figure 1.2) has a clear geometric
meaning: it is the curvature of the greatest disc in the sequence, which — unlike the other
discs in the sequence — contains the lens circles (as well as the rest of the sequence).

A number of interesting features are common to all lens sequences:

1. Limits. In many cases, the limit of the ratios of consecutive entries is well defined. For
instance, referring to the above examples:

Example 1 [A011922]: lim
n→∞

bn+1

bn

= 7 + 4
√

3 = (2 +
√

3)2

Example 2 [A064170]: lim
n→∞

bn+1

bn

=
7 + 3

√
5

2
=

(
1 +

√
5

2

)4

Example 3 [A000466]: lim
n→∞

bn+1

bn

= 1

These numbers are examples of Pisot numbers and will be called characteristic constants of
the sequences denoted λ = (α +

√
α2 − 4).

2. Sums. The reciprocals of curvatures are the circles’ radii. Their sum is determined by
the length of the lens. For instance:
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Example 1 [A011922]: Σ∞i=1 1/bi = 1 + 1/3 + 1/33 + 1/451 + . . . =
√

3/2

Example 2 [A064170]: Σ∞i=1 1/bi = 1 + 1/2 + 1/10 + 1/65 + . . . = (1 +
√

5)/2 = 1.618 . . .

Example 3 [A000466]: Σ∞n=1 1/bn =
∑

n 1/(n2 − 1) = 1/3 + 1/15 + 1/35 + . . . = 1

3. Binet-type formulas. For α 6= 2, the curvatures may be expressed in terms a non-
homogeneous Binet-type formulas:

Example 1 [Vesica Piscis, A011922]: 3 1 3 33 451 6273 87363 . . . ,

bn =
4 + (2 +

√
3)2n + (2−

√
3)2n

6
.

Example 2. [Golden Vesica [A064170]: . . .2 1 2 10 35 442 . . . ,

bn =
3 +

(
1+
√

5
2

)4n

+
(

1−
√

5
2

)4n

5

Example 3. Also non-symmetric lens sequences can be expressed this way. For instance, the
sequence extended from (6, 2, 3), which is (. . . 2346 299 39 6 2 3 15 110 858 6747. . . ), with
the recurrence bn = 8bn−1 − bn−2 − 7, may be obtained from

bn =
(25− 3

√
15)(4 +

√
15)n + (25 + 3

√
15)(4−

√
15)n

60
+

7

6

The above properties are known for some of the sequences, but now they acquire a
geometric interpretation. Other related concepts include geometry of inversions, Chebyshev
polynomials, etc.

The most remarkable and perhaps surprising property is that the integer lens sequences
are “shifted squares” of yet deeper integer “underground” sequences. This discovery is the
topic of the final section of this paper.

2 Recurrence formula from geometry

In this section we prove Theorem A on the recurrence formula for lens sequences. A reader
interested in the algebraic properties of these sequences may skip it without loss of continuity.

We shall need a theorem on circle configurations generalizing that of Descartes’ theorem
on “kissing circles” ([1, 2]). If C1 and C2 denote two circles of radii r1 and r2 respectively,
and d denotes the distance between their centers, then one defines a product of the circles
as

〈C1, C2〉 =
d2 − r2

1 − r2
2

2r1r2

, (2.1)

5
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which we propose to call the Pedoe product. Its values for a few cases are shown in Figure
2.1. For any four circles Ci, i = 1, . . . , 4, define a configuration matrix f as the matrix
with entries

fij = 〈Ci, Cj〉 ,
where the brackets denote the Pedoe inner product of circles.
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2.   Recurrence formula from geometry 
 
In this section we prove Theorem A on the recurrence formula for lens sequences. We 
shall need a theorem on circle configurations generalizing that of Descartes’ theorem on 
“kissing circles” ([K1])  
 
If C1 and C2 denote two circles of radii r1 and r2 respectively, and d denotes the distance 
between their centers then one defines a product of the circles as 
 

〈C1,C2〉  =  
2 2 2

1 2

1 22
d r r

r r
− − , 

 
which we propose to call the Pedoe product.  Its values for a few cases are shown in 
Figure 2.1.   
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1:  Pedoe product of circles 
 
For any four circles Ci, i = 1,…,4, define a configuration matrix f as a matrix with 
entries 
 

fij  =  〈Ci,Cj〉, 
 
where the brackets denote the Pedoe inner product of circles. 
 
Theorem 2.1 [K1]: A configuration of four circles in general position satisfies the 
following quadratic equation 
 

bTF b = 0 
 
where b = [ b1, b2, b3, b4 ]T  is the vector made of the curvatures of the four circles, and 
where F= f–1 is the inverse of the configuration matrix.   
  
Remark 1:  Equation (2.1) is only a fragment of the full matrix formula, which 
incorporates also the positions of the centers of the circles.  For more on this theorem, its 
proof, and the associated Minkowski geometry of circles, see [K1].  For our purposes 
Formula (2.1) is sufficient. 
 
Notation:  In the following by a lens we mean “symmetric lens” — the intersection of 
interiors (exteriors) of two congruent circles, called in this context  lens circles.   A chain 
of circles is a sequence of circles such that every two consecutive circles are tangent. 
 

(2.2) 

external 
tangency 

〈C1,C2〉  =  1    

internal 
tangency 

〈C1,C2〉  =  –1    

intersecting 
circles 

〈C1,C2〉  =  cos ϕ 

ϕ 

(2.1) 

ϕ = 180° ϕ = 0°

Figure 2.1: Pedoe product of circles

Theorem 2.1 ([2]). A configuration of four circles in general position satisfies the following
quadratic equation

bT Fb = 0 (2.2)

where b = [b1, b2, b3, b4]
T is the vector made of the curvatures of the four circles, and where

F = f−1 is the inverse of the configuration matrix.

Remark 2.2. Equation (2.2) is only a fragment of the full matrix formula, which incorpo-
rates also the positions of the centers of the circles. For more on this theorem, its proof,
and the associated Minkowski geometry of circles, see [2]. For our purposes Formula (2.2) is
sufficient.

Notation. In the following by a lens we mean “symmetric lens” — the intersection of the
interiors (exteriors) of two congruent circles, called in this context lens circles. A chain of
circles is a sequence of circles such that every two consecutive circles are tangent.

We are now ready to prove the basic result.

Theorem 2.3. A sequence (bn) of curvatures of a chain of circles inscribed in a lens satisfies
a non-homogeneous linear recurrence formula of the form

bn+1 = αbn − bn−1 + β

for some constants α and β, with

α =
6− 2K

1 + K
=

8

1 + K
− 2 and β =

8A

1 + K
, (2.3)

where K is the Pedoe product of the two lens circles and A = 1/R is the curvature of each
lens circle.
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Proof. Consider two consecutive circles in the lens, of curvatures say a and b. Denote the
curvatures of the circles that form the lens by A, and their Pedoe product by K (K = cos ϕ,
if the circles intersect). The configuration matrix f and its inverse are easy to find. In the
case of converging lenses we can read it off from Fig. 2.2a:

f =


−1 K −1 −1
K −1 −1 −1
−1 −1 −1 +1
−1 −1 +1 −1


where the indices are ordered as (A, A, x, y). Its inverse F is easy to find, and the master
equation (2.1), after multiplying by a factor of 8, becomes:

A
A
x
y


T


4
K+1

−4
K+1

2 2
−4

K+1
4

K+1
2 2

2 2 K + 1 K − 3

2 2 K − 3 K + 1




A
A
x
y

 = 0

This quadratic equation is equivalent to:

(1 + K)x2 + (1 + K)y2 + 2(K − 3)xy + 8Ax + 8Ay = 0 .

One may solve it for y to get two solutions (corresponding to two signs at the square root):

y1,2 =
4A + (K − 3)x± 2

√
2(1−K)x2 − 8Ax + 4A2

1 + K
(2.4)

Note that the two solutions y1 and y2 correspond to the two possible circles tangent to x:
one on the left and one on the right. To eliminate radicals, add the two solutions:

y1 + y2 =
6− 2K

1 + K
x− 8A

1 + K
.

Since the triple (y1, x, y2) forms a sequence in a chain of inscribed circles, we may label these
curvatures as bn−1 = y1, bn = x, and bn+1 = y2, to get

bn+1 + bn−1 = α bn + β ,

which is equivalent to (2.3). The case of the diverging lens results from similar reasoning,
with slightly different initial matrix F .

Corollary 2.4. The sequence constants are related: α + R β = −2.

Now let us see how three circles determine a sequence.

Theorem 2.5. Let a, b and c be curvatures of three consecutive circles inscribed in a lens.
Then the sequence of the circle curvatures is determined by the following three-term recur-
rence formula:

bn = α bn−1 − bn−2 + β , (2.5)

where α = ab+bc+ca
b2

−1 and β = b2−ac
b

. If b0 = a and b1 = b then b2 = c , that is, αb+β = a+c.

Proof. We apply Theorem 2.1 in each of the three steps to a different quadruple of circles.

7
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which is equivalent to (2.3). The case of the diverging lens results by similar reasoning, 
with slightly different initial matrix F.    
 
Corollary 2.3:  The sequence constants are related:  α + Rβ  =  –2.   
 
Now, let us see how three circles determine a sequence. 
 
Theorem 2.4:  Let a, b and c be curvatures of three consecutive circles in a lens. Then 
the sequence of the circle curvatures is determined by the following three-term recurrence 
formula: 
 

bn  =  α bn–1  –  bn–2 + β ,  
 

where    α = 2 1ab bc ca
b

+ +
−     and   β  =  

2b ac
b
− .   If   b0 = a and  b1 = b then b2 = c.  

 

Formula tying α and β:      αb + β = a + c.    
 
 
Proof:  We apply Theorem 2.1 in each of the three to a different quadruple of circles. 
 
 
 
 
 
  

Figure 2.2: Three steps of the proof of Thm 2.4. 
 
Step 1.  Consider a configuration of four circles:  a triple of three consecutive circles in 
the chain, say a, b, c,  and one of the circles forming the lens, say d=1/R.  The Pedoe 
product of two external circles a and c may be easily evaluated; since the distance 
between their centers is (1/a+2/b+1/c), we have: 
 

〈a,c〉   =    

2 2 21 2 1 1 1

1 12

a b c a c

a c

⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⋅ ⋅
    =    2 2

ab bc ca
b

+ +  + 1. 

 

Denote the main fraction of the last expression by z = 2

ab bc ca
b

+ + .  Then the 

configuration matrix and its inverse are 
 

f = 

1 1 2 1 1
1 1 1 1

2 1 1 1 1
1 1 1 1

z

z

− + −⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥+ − −
⎢ ⎥
− − − −⎣ ⎦

 ,           F = 1
4

1 1
1 1

1 1
1 1

1 1
1 ( 1) 1 1

1 1
1 1 1 ( 1)

z z

z z

z z

z z

+ +

+ +

− −⎡ ⎤
⎢ ⎥− + −⎢ ⎥
⎢ ⎥− −
⎢ ⎥
− − − − +⎣ ⎦

 

 
 
(the order of entries is: abcd). 
 
 
 

(2.5) 

a b c d a b 

d’ 

d y1 x y2 

K=? 

step 1 step 2 step 3 

Figure 2.2: The three steps of the proof of Thm. 2.5
.

Step 1. Consider a configuration of four circles: a triple of three consecutive circles in the
chain, say a, b, c, plus one circle forming the lens, say d = 1/R. The Pedoe product of two
external circles a and c may be easily evaluated; since the distance between their centers is
(1/a + 2/b + 1/c), we have:

〈a, c〉 =

(
1
a

+ 2
b
+ 1

c

)2 − ( 1
a

)2 − (1
c

)2
2 · 1

a
· 1

c

= 2
ab + bc + ca

b2
+ 1 .

Denote the main fraction of the last expression by z = ab+bc+ca
b2

. Then the configuration
matrix and its inverse are

f =


−1 1 2z + 1 −1

1 −1 1 −1
2z + 1 1 −1 −1
−1 −1 −1 −1

 , F = 1
4


− 1

z+1
1 1

z+1
−1

1 −(z + 1) 1 z − 1
1

z+1
1 − 1

z+1
−1

−1 z − 1 −1 −(z + 1)


(the order of entries is: abcd). Denoting v = [a, b, c, d]T and solving the quadratic equation
vT Fv = 0 for d readily leads to

d =
b(ac− b2)

ab + bc + ca + b2
.

This gives us the curvature of each of the two lens circles. Now we need to find the product
of these two lens circles.

Step 2. Use a quadruple of circles: a, b, and the two circles forming the lens, d and d′. The
latter two have the same curvature d = d′, the value of which we know from the previous
step. The goal is to find the Pedoe product K = 〈d, d′〉 . The configuration matrix and its
inverse are

f =


−1 1 −1 −1

1 −1 −1 −1
−1 −1 −1 K
−1 −1 K −1

 F = 1
4


−1−K 3−K −2 −2

3−K −1−K −2 −2

−2 −2 − 4
K+1

4
K+1

−2 −2 4
K+1

− 4
K+1
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(the order of indices agrees with abdd′). Applying vector v = [a, b, d, d]T to the quadratic
equation vT Fv = 0 gives

K =
8b2

(a + b)(b + c)
− 1 (2.6)

Step 3. Now we can either build the matrix for configuration (c) in Figure 2.2 and mimic
the proof of Theorem 2.3, or simply substitute for K from (2.6) in (2.4) to get the result.

3 More on lens geometry

Although we are mainly interested in the algebraic properties of lens sequences, some geo-
metric properties explicate their algebraic behavior. Below, we summarize basic facts.

Proposition 3.1. The radius R of the lens circles is determined by three circles and may
be expressed in terms of the sequence constants α and β:

R =
α + 2

−β
=

(a + b)(b + c)

(ac− b2)b
. (3.1a)

The Pedoe inner product of the lens circles is

K =
6− α

2 + α
=

8b2

(a + b)(b + c)
− 1 =

1

2

(
δ

R

)2

− 1 = cos ϕ , (3.1b)

where the last equation is valid if the circles intersect. The length L of the lens, if defined,
is

L = 2R

√
α− 2

α + 2
= −2

√
α2 − 4

β
= 2

√
(a + b)(b + c)[(a + b)(b + c)− 4b2]

(ac− b2)b
. (3.1c)

The separation of the lens circles (distance between their centers) is

δ =
4R√
α + 2

= −4
√

α + 2

β
and

δ

R
=

4√
α + 2

. (3.1d)

Proof. All are direct corollaries of Theorem 2.3 and simple geometric constructions.

Figure 3.1 contains these findings for easy reference.

Figure 3.2 categorizes a variety of geometric situations for a lens sequence. In the case of
converging lenses, when two circles of radius R intersect at angle ϕ, the recurrence formula
is:

bn =

(
8

1 + cos ϕ
− 2

)
bn−1 − bn−2 −

1

R

8

1 + cos ϕ
.

This answers the question of which lenses may lead to integer sequences. Indeed, denote
n = 8

1+cos ϕ
. Then α = n − 2, β = −n/R. For n to be an integer, n ∈ N, we need

cos ϕ = 8/n− 1. Table 3.1 shows some values.
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Figure 3.1: Sequence constants and geometry of a lens
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Figure 3.2:  Types of lenses and associated sequences 
 
 
Figure 3.1 categorizes different geometric situations for a lens sequence. In the case of 
converging lens, when two circles of radius R intersect under angle ϕ, recurrence formula 
is: 

bn = 8 2
1 cosϕ
⎛ ⎞

−⎜ ⎟+⎝ ⎠
 bn–1  –  bn–2  –  1 8

1 cosR ϕ+
 

 
This answers the question, which lenses may lead to integer sequences.  Indeed, denote   

n = 8
1 cosϕ+

.   Then   α  =  n – 2 ,     β  = –n/R.  For n to be an integer, n∈N ,  we need 

cos ϕ + 1 =  8/n, or cos ϕ  =  8/n – 1.  Here is a table of some values:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

n           K(=cos ϕ)   α                             example 
 
0               ∞          –2     periodic              ( 1,-1 ) 
1               7           –1     periodic             (6,3,-2) 
2               3             0     periodic            (3,6,2,-1) 
3             5/3            1    periodic          (2,10,15,12,4,-1) 
 

4              1              2     Ex. 1.3      (-1,3,15) 
5             3/4            3                               (3,2,2,3) 
6             1/3            4     vesica piscis      (2,1,1,2) 
7             1/7            5                                (5,2,2,5) 
8               0             6                                 (3,1,1,3) 
9            –1/9           7    golden vesica       (2,1,2) 
10          –1/5           8                                (4,1,1,4) 
11          –3/11         9 
12          –1/3          10                                (3,1,2) 
13          –5/13        11 
14          –3/7          12                              (6,1,1,6) 
15          –7/15        13                               (4,1,2) 
16          –1/2          14    vesica piscis       (3,1,3) 
17          –9/17        15 
18          –5/9          16                              (8,1,1,8) 
20          – 3/5         17 

converging lens diverging lens 
(regular) 

diverging lens 
(corrupted) 

prism slab 

α>2,  β<0 α<2,  β>0 α>2,  β>0 α>2,  β>0 α=2,  β=0 

Table 3.1:  Admissible values of α  

disjoint lens circles 

intersecting lens circles 

tangent lens circles 

Figure 3.2: Types of lenses and associated sequences

Figure 3.2 relates the geometry of lenses to the values of the sequence constant α and
the Pedoe product K. Inspect Tables 4.1 through 4.3 (and associated figures) in the next
section for various examples of lens sequences.

Note that if α 6 2, then only external sequences are possible (corresponding to diverging
lenses). Moreover, if α < 2, then the integer sequence must be periodic. If α > 2, then we
can have two families of sequences: inner (inside a converging lens) or outer (outside the
lens circles, i.e., inside a corrupted diverging lens (corrupted, because of the missing central
part)). In the case of the outer sequence we will have exactly one negative entry (the most
external circle) or two adjacent “0” entries (two vertical lines).
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n K α example

0 ∞ −2 periodic (order 2) (1,−1)
1 7 −1 periodic (order 3) (6, 3,−2)
2 3 0 periodic (order 4) (3, 6, 2,−1)
3 5/3 1 periodic (order 6) (2, 10, 15, 12, 4,−1)

4 1 2 Example 1.3 (−1, 3, 15)
5 3/4 3 (3, 2, 2, 3)
6 1/3 4 (2, 1, 1, 2)
7 1/7 5 (5, 2, 2, 5)
8 0 6 orthogonal (3, 1, 1, 3)
9 −1/9 7 golden Vesica (2, 1, 2)
10 −1/5 8 (4, 1, 1, 4)
11 −3/11 9
12 −1/3 10 (3, 1, 2)
13 −5/3 11
14 −3/7 12 (6, 1, 1, 6)
15 −7/15 13 (4, 1, 2)
16 −1/2 14 Vesica Piscis (3, 1, 3)
17 −9/17 15
18 −5/9 16 (8, 1, 1, 8)
20 −3/5 17

 disjoint lens

circles

← tangent lens

circles

intersecting lens

circles

Table 3.1: Admissible values of α

4 Basic algebraic properties of lens sequences

Theorem A suggests the following definition:

Definition 4.1. A formal sequence extended from a triplet (a, b, c), called a seed, is
defined by the following inhomogeneous three-term recurrence formula:

bn = α bn−1 − bn−2 + β , (4.1)

where α and β are constants determined by the original triple:

α =
ab + bc + ca

b2
− 1 and β =

b2 − ac

b
. (4.2)

and b0 = a and b1 = b. (It follows that b2 = c) .

The values of the constants α and β do not depend on the particular choice of the triplet
of consecutive terms (seed). Moreover, if α > −2, then the sequence may be interpreted in
terms of a chain of circles inscribed in a lens made by two disks each of curvature R−1 =
−β/(α + 2) separated by distance δ = 4R/

√
α + 2. Formal integer lens sequences exist also
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for α < −2 (see Table 4.4 for examples), but in such a case the geometric interpretation is
unclear as the distance between the lens circles becomes imaginary.

In general, lens sequences take real values. However, if any three terms of a lens sequence
are rational, so is the whole sequence. The question whether a particular seed produces an
integer sequence will be answered for now this way:

Proposition 4.2 (Integrality Criterion 1). If b|ac and b2|(ab + bc + ca), for any a, b, c ∈ N,
then a lens sequence extended from (a, b, c) consists of integers.

Here are basic properties of lens sequences:

Proposition 4.3. Let (bn) be a lens sequence. Then the following holds:

(i) Sequence (bn) satisfies a homogeneous 4-term linear recurrence formula

bn = (α + 1)bn−1 − (α + 1)bn−2 + bn−3 . (4.3)

(ii) If α ≥ 2 then the sum of the reciprocals converges and equals:

∞∑
n=−∞

1

bn

=
2
√

α2 − 4

−β
=

L

2
. (4.4)

(iii) If α >2 then the limit of the ratios of consecutive terms exists and equals:

λ =
α +

√
α2 − 4

2
=

√
α + 2 +

√
α− 2

2
. (4.5)

(iv) If α 6= 2, then the lens sequence generated from a seed (a, b, c) has the following
Binet-like formula

bn = wλn + w̄λ̄n + γ (4.6)

where

λ =
α +

√
α2 − 4

2
λ̄ =

α−
√

α2 − 4

2
.

and where

w =
a− 2b + c

2(α− 2)
+

c− a

2(α2 − 4)

√
α2 − 4, γ =

−β

α− 2

and w̄ and λ̄ denote conjugates of w and λ in Q(
√

α2 − 4), respectively. In particular,
(a, b, c) = (b−1, b0, b1).

Proof. (i) Elementary. (ii) From the geometry of lenses, cf. (3.1c). See also Figure 4.1.
(iii) Divide the recurrence formula by bn−1 to get

bn/bn−1 = α− bn−2/bn−1 + β/bn−1 .

For large values of n, since the sequence is divergent, the last term becomes irrelevant and
the equation becomes λ = α− 1/λ, or simply

λ2 − αλ + 1 = 0 , (4.7)
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4. Basic algebraic properties of lens sequences 
 
Here are the basic three properties of lens sequences: 
 
Proposition 4.1:  Let (bn) be a lens sequence.  Then the following holds: 
 
   (i)   Sequence (bn) satisfies a homogeneous 4-term linear recurrence formula 
 

bn  =  (α+1) bn–1  – (α+1) bn–2 + bn–3 . 
 
   (ii)  If α>1 then the sum of the inverses exists and equals: 
 

21 4
n nb

α
β
−

=
−∑  . 

 

   (iii)  If α>2 then the limit of the ratios of consecutive terms exists and equals: 
 

λ  =  
2 4

2
α α+ − . 

 
Proof:  (i) Elementary.  (ii)  From the geometry of lenses, cf. (3.1c).  See also figure 4.1.  
(iii)  Divide the recurrence formula by bn–1 to get 
 

bn  /bn–1  =    α  –  bn–2 /bn–1  +   β/bn–1 . 
 

For big values of  n, since the sequence is increasing, the last term becomes irrelevant and 
the equation becomes λ = α – 1/λ,  or simply   
 

λ2  – αλ  + 1  =  0, 
 
with the solution as above.  Figure 4.1 provides the geometric insight, which also relates 
λ to the lens angle via similar triangles.   
 
The value of λ (4.3) will be called the characteristic constant of the sequence.  The ring 
over rational numbers generated by 2 4α −  plays an important role in other properties 
of lens sequences, as we shall see soon. Note that the sequence constant α may be 
expressed in terms of the characteristic constant in this graceful way: 
 

α = 1λ
λ

+  

 
 
 
 
 
 
 
 
 
 

Figure 4.1:  Geometric meaning of 1/ n
n

b∑  and λ  (see Proposition 4.1) 
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Figure 4.1: Geometric meaning of
∑
n

1/bn and λ (see Proposition 4.3)

with the solution as above. Figure 4.1 provides the geometric insight, which also relates λ to
the lens angle via similar triangles. (iv) Define a new sequence whose entries are shifted by a
constant, namely an = bn +β/(α−2). The sequence (an) satisfies a homogeneous three-term
recurrence formula an = α an−1− an−2, which resolves to 4.6 by the standard procedure.

The value of λ (given by (4.5)) will be called the characteristic constant of the se-
quence. The ring over rational numbers generated by

√
α2 − 4 plays an important role in

other properties of lens sequences, as we shall soon see. Note that the sequence constant α
may be expressed in terms of the characteristic constant in a graceful way:

α = λ +
1

λ

Alternative generating formulae

Note that the three term formula (4.1), with given coefficients α and β, requires only two
initial entries to produce a sequence. Yet not all such initial values will produce a lens
sequence of the type under discussion. This is because arbitrary initial values b0 and b1 do
not need to be geometrically inscribable into a lens defined by α and β as two consecutive
circles. The following will clarify the situation:

Proposition 4.4 (Compatibility condition). Two consecutive circles a and b in a lens chain
satisfy the following condition:

a2 + b2 = αab + β(a + b) . (4.8)

Proof. Eliminate c from the expressions for α and β in (4.2), and simplify.

The above formula may actually be used as an alternative definition of lens sequences.
Indeed,

Proposition 4.5. Consider the following properties:

(a) Recurrence bn+1 = αbn − bn−1 + β , for all n,

13



(b) Constants α = bn−1bn+bnbn+1+bn+1bn−1

bn02 − 1 and β = b2n−bn−1bn+1

bn
.

(c) a2 + b2 = α ab + β(a + b) , for a = bn and b = bn+1.

The following descriptions of a sequence (bi) are equivalent:

(i) Recurrence (a), and constants (b) for some n (definition of a lens sequence);

(ii) Recurrence (a) and compatibility condition (c) for some n;

(iii) Any of the two constant formulas (b) for all n;

(iv) Compatibility condition (c) for all n.

Proof. Let us show that the compatibility condition together with the recurrence theorem
imply our standard formulas for both α and β. Starting with (ii) we get

b2
n+1 + b2

n = α bnbn+1 + β(bn + bn+1)

= bn+1(α bn + β) + βbn

= bn+1(bn+1 + bn−1) + βbn .

Subtracting b2
n+1 from both sides, we get b2

n = bn+1bn−1 + β bn , which gives

β =
b2
n − bn−1bn+1

bn

.

To get α, substitute this result in the compatibility condition and simplify. The other
equivalences follow easily.

Here is yet another intriguing formula that will prove itself handy later.

Proposition 4.6. Constant α has an alternative form involving any four consecutive entries
of a lens sequence:

α =
bn−1

bn

+
bn+2

bn+1

. (4.9)

Proof. Start with the formula for β and express it as follows:

β =
b2
n − bn+1bn−1

bn

= bn −
bn+1bn−1

bn

⇒ bn − β =
bn+1bn−1

bn

.

Use the recurrence formula to modify the left-hand side of the last equation,

α bn+1 − bn+2 =
bn+1bn−1

bn

.

Now extract α to get 4.9.
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Integrality condition

Lens sequences are self-generating in the sense that any three consecutive entries (a, b, c),
a seed, determine the whole sequence (unless b = 0). The question is how to choose seeds
(a, b, c) in order to obtain lens sequences that are integer. Below we give only a partial
answer to this problem of integrality conditions; the last section will provide the solution.

Definition 4.7. An integer lens sequence is primitive if the common divisor of three con-
secutive entries is 1.

Proposition 4.8. If gcd(bk, bk+1, bk+2) = n holds for some k, then it holds for all k ∈ Z.

Proof. If n divides each of (bk, bk+1, bk+2), then it divides β of the recurrence formula. Hence
it divides the neighboring terms bk+2 and bk−1. By induction, n divides every term of the
sequence.

Recall that to insure that α and β are integers, we need to choose (a, b, c) so that b|ac
and b2|ab + bc + ca, or, equivalently, that b2|(a + b)(b + c). Thus triples of the form (a, 1, c)
always generate integer sequences for any a, c ∈ N . For now, let us review the following
families of integer lens sequences:

A. A sequence is called central if it contains a triple of the form (a, b, a). Only b = ±1
leads to primitive integer sequences.

B. A lens sequence is called bicentral, if it contains a quadruplet of the form (a, b, b, a).
Only if b is chosen from {0, 1, 2}, does a primitive integer sequence result. (For the case
b = 0, the seed needs to be chosen in the form (0, a, c)).

In either case A or case B, the sequence is called symmetric. Table 4.1 shows examples
of symmetric lenses for small values of the initial terms. (Only the right tail is displayed.)

C. Here is a method of getting a not-necessarily symmetric integer sequence: choose arbi-
trarily a couple (a, b) and some integer k (only one of a or b can be negative). Then a seed
(a, b, c) with

c = b(bk − 1) , (4.10)

will generate an integer sequence. Indeed, calculate the recurrence constants α and β from
(4.10) to get the integer values

α = (a + b)k − 2

β = (a + b)− ab k .
(4.11)

The triple of integers [a, b; k] will be called the label of a lens sequence of this type. (Note
that it includes the symmetric lens sequences as a special case; for examples of non-symmetric
sequences, see Table 4.2.)

The pair (a, b) in the label may be chosen so that it contains the smallest element of the
sequence.

15



central
elements constants OEIS nr sequence label and symbol

Central sequences
1. (2, 1, 2) α = 7, β = −3 A064170 1, 2, 10, 65, 442, 3026, 20737, 142130, . . . [1,2;3] 3(1, 1)3

2. (3, 1, 3) α = 14, β = −8 A011922 1, 3, 33, 451, 6273, 87363, 1216801, 16947843, . . . [1,3;4] 4(1, 1)4

3. (4, 1, 4) α = 23, β = −15 — 1, 4, 76, 1729, 39676, 910804, 20908801, . . . [1,4;5] 5(1, 1)5

4. (5, 1, 5) α = 34, β = −24 — 1, 5, 145, 4901, 166465, 5654885, 192099601, . . . [1,5;6] 6(1, 1)6

5. (3,−1, 3) α = 2, β = 8 A000466 −1, 3, 15, 35, 63, 99, 143, 195, 255, 323, 399, . . . [−1, 3; 2] 2(1, 3)2

6. (4,−1, 4) α = 7, β = 15 A081078 −1, 4, 44, 319, 2204, 15124, 103679, 710644, . . . [−1, 4; 3] 3(1, 4)3

7. (5,−1, 5) α = 14, β = 24 — −1, 5, 95, 1349, 18815, 262085, 3650399 [−1, 5; 4] 4(1, 5)4

8. (6,−1, 6) α = 23, β = 35 — −1, 6, 174, 4031, 92574, 2125206, 48787199, . . . [−1, 6; 5] 5(1, 6)5

Bicentral sequences
9. (2, 1, 1, 2) α = 4, β = −1 A101265 1, 2, 6, 21, 77, 286, 1066, 3977, 14841, . . . [1,1;3] 2(1, 1)3

10. (3, 1, 1, 3) α = 6, β = −2 A011900 1, 3, 15, 85, 493, 2871, 16731, 97513, 568345, . . . [1,1;4] 2(1, 1)4

11. (4, 1, 1, 4) α = 8, β = −3 — 1, 4, 28, 217, 1705, 13420, 105652, 831793, . . . [1,1;5] 2(1, 1)5

12. (5, 1, 1, 5) α = 10, β = −4 A054318 1, 5, 45, 441, 4361, 43165, 427285, 4229681, . . . [1,1;6] 2(1, 1)6

13. (3, 2, 2, 3) α = 3, β = −1 A032908 2, 3, 6, 14, 35, 90, 234, 611, 1598, 4182, 10947, . . . [2,3;1] 5(1, 2)1

14. (5, 2, 2, 5) α=5, β= –3 — 2, 5, 20, 92, 437, 2090, 10010, 47957, 229772, . . . [2,5;1] 7(1, 2)1

15. (0, 0, 1, 3) α = 2, β = 1 A000217 0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, . . . [0,1;4] 1(1, 1)4

16. (0, 0, 1, 4) α = 3, β = 1 A027941 0, 1, 4, 12, 33, 88, 232, 609, 1596, 4180, . . . [0,1;5] 1(1, 1)5

17. (0, 0, 1, 5) α = 4, β = 1 A061278 0, 1, 5, 20, 76, 285, 1065, 3976, 14840, 55385, . . . [0,1;6] 1(1, 1)6

Table 4.1: Examples of symmetric lens sequences

seed constants sequence label and symbol

1a. (3, 1, 2) α = 10, β = −5 24, 3, 1, 2, 14, 133, 1311, 12972, 128404, 1271063,... [1,2;4] 3(1, 2)4

b. (2, 1, 3) 14, 2, 1, 3, 24, 232, 2291, 22673, 224434, 2221662,... [1,3;3] 4(1, 3)3

2. (5, 3, 6) α = 6, β = −7 . . . , 108, 20, 5, 3, 6, 26, 143, 825, 4800, 27968, ... [5,3;1] 8(1, 3)1

3. (3,−1, 4) α = 4, β = 11 . . . , 403, 104, 24, 3, −1, 4, 28, 119, 459, 1728,. . . [−1,4;2] 3(1, 4)2

4. (15, 12, 20) α = 4, β = −13 . . . , 400, 112, 35, 15, 12, 20, 55, 187, 680, 2520, ... — 2(4, 5)3

5. (21, 6, 10) α = 10, β = −29 . . . , 16796, 1700, 175, 21, 6, 10, 65, 611, 6016, . . . — 4(2, 5)3

6. (1, 2, 4) α = 5/2, β = 0 . . . , 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . . [1,2;3/2] 3(1, 2)2/3

Table 4.2: Examples of non-symmetric sequences. Example 6 (A000079) is integer in one
direction only.

seed constants sequence label and symbol

1. (2, −1,2) α = −1, β = 3 2, 2, −1, 2, 2, −1, 2, 2, −1, 2, 2, −1, 2, 2, . . . [−1,2;1] 1(1, 2)1

2. (3, −1, 2) α = 0, β = 5 2, 6, 3, −1, 2, 6, 3, −1, 2, 6, −1, 2, 6,−1, . . . [−1,2;2] 1(1, 2)2

3. (14, -6, 15) α = 0, β = 29 14, -6, 15, 35, 14, -6, 15, 10, 35, 14, -6 . . . — 2(5, 7)1

4. (1, 1, 0) α = 0, β = 1 1, 1, 0, 0, 1, 1, 0, 0, 1, 1,0, 0, 1, 1, 0, 0, 1, 1, . . . [0,1;2] 1(1, 1)2

5. (4, -1, 2) α = 1, β = 7 2, 10, 15, 12, 4, -1, 2, 10, 15, 15, 12, 4, -1 . . . [−1,2;3] 1(1, 2)3

6. (10, −6, 33) α = 1, β = 49 33, 88, 104, 65, 10, −6, 33, 88, 104, 65, 10, −6, ... — 3(5, 2)1

Table 4.3: Examples of periodic sequences. Example 4 is known as A021913.
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central      
elements                                    EIS nr sequence      symbol 
 
Central sequences 
 

1.  (2, 1, 2)        α=7, β=–3      A064170        1,  2,  10,  65,  442,  3026,  20737,  142130, …  [1,2;3] 
2.  (3, 1, 3)        α=14, β=–8    A011922        1, 3, 33, 451, 6273, 87363, 1216801,  16947843,   … [1,3;4] 
3.  (4, 1, 4)        α=23, β=–15      —            1, 4, 76, 1729, 39676, 910804, 20908801,  …  [1,4;5] 
4.  (5, 1, 5)        α=34, β=–24      —            1, 5, 145, 4901, 166465, 5654885, 192099601, , … [1,5;6] 
5.  (3, -1, 3)       α=2, β=8        A000466    –1, 3, 15, 35, 63, 99, 143, 195, 255, 323, 399, …  [-1,3;2] 
6.  (4, -1, 4)       α=7, β=15      A081078    –1, 4, 44, 319, 2204, 15124, 103679, 710644,  …  [-1,4;3] 
7.  (5, -1, 5)       α=14, β=24       —          –1, 5, 95, 1349, 18815, 262085, 3650399, 50843525,   [-1,5;4] 
8.  (6, -1, 6)       α=23,  β=35      —          –1, 6, 174, 4031, 92574, 2125206, 48787199,   … [-1,6;5] 
 

Bicentral sequences  
 

9.   (2, 1, 1, 2 )    α=4, β= –1    A101265      1,  2,  6,  21,  77, 286,  1066,  3977,  14841,  … [1,1;3] 
10.  (3, 1, 1, 3)    α=6, β= –2    A011900      1, 3, 15, 85, 493, 2871, 16731, 97513, 568345,  …     [1,1;4] 
11.  (4. 1, 1, 4)    α=8, β= –3         —          1, 4, 28, 217, 1705, 13420, 105652, 831793, …  [1,1;5] 
12.  (5,1, 1, 5)     α=10, β= –4  A054318     1, 5, 45, 441, 4361, 43165, 427285, 4229681,  …  [1,1;6] 
13.  (3,2, 2, 3)     α=3,  β= –1   A032908      2, 3, 6, 14, 35, 90, 234, 611, 1598, 4182, 10947, …  [2,3;1] 
14.  (5, 2, 2, 5)    α=5, β= –3       —            2, 5, 20, 92, 437, 2090, 10010, 47957, 229772,  …  [2,5;1] 
15.  (0, 0, 1,3)     α=2, β= 1      A000217      0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, …    [0,1;4] 
16.  (0, 0, 1,4)     α=3, β= 1      A027941      0  , 1, 4, 12, 33, 88, 232, 609, 1596, 4180,  …   [0,1;5] 
17.  (0, 0, 1,5)     α=4, β= 1      A061278      0, 1, 5, 20, 76, 285, 1065, 3976, 14840, 55385,  …  [0,1;6] 
 

 
Table 1: Examples of symmetric lens sequences 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Geometric representations (only general shape) for examples 
from Table 1:  (a) Examples 1–4,   (b)  Examples 9–14,    

(c ) Examples 5–8,  (d) Examples 15–17. 
 
 
 
 
 
 
 
 
 

(a) (b) 

(c) (d) 

Figure 4.2: Geometric representations (only general shape) for examples from Table 4.1:
(a) Examples 1–4, (b) Examples 9–14, (c) Examples 5–8, (d) Examples 15–17.
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      central 
     elements      constants              sequence                                                                            symbol 
 

    1a.  (3,1,2)       α=10, β = –5         1, 2, 14, 133, 1311, 12972, 128404, 1271063,  …      [1,2;4] 
      b.  (3,1,2)                                     1, 3, 24, 232, 2291, 22673, 224434, 2221662,  …      [1,3;3] 
 

    2a.  (5,3,6)         α=6, β = –7         3, 6, 26, 143, 825, 4800, 27968, 163001,   …        [5,3;1] 
      b.  (6,3,5)                                     3, 5, 20, 108, 621, 3611, 21038, 122610,  …          [3,5;1] 
 

    3.  (3, -1, 4)      α=4,  β = 11        –1, 4, 28, 119, 459, 1728, 6464, 24139, 90103,  …      [–1,4;2] 
                                                         –1, 3, 24, 104, 403, 1519, 5684, 21228, 79239, …       [–1,3;3] 
 

    4.  (1,2,4)      α=5/2,  β = 0           1, 2,  4, 8, 16, 32, 64, 128, 256, 512, 1024 …          [1,2;3/2] 
 

 
Table 2:  Nonsymmetric sequences.  Example 4 (EIS:A000079)  is integer only in one direction. 

 
 
 
 
 
 
 
 
 
 
 
 
                          Figure 2: Geometric representations for examples from Table 2: 
                                          (a) Examples 1– 2   (b)  Example 3,   (c ) Example 4.   
 
 

 
         seed         constants        sequence                                           symbol 
 
     1.  (2, -1,2)        α= –1, β = 3      2, 2, -1, 2, 2, -1, 2, 2, -1, 2, 2, -1, 2, 2,  …   [-1,2;1] 
     2.  (3, -1, 2)       α=0,    β = 5      2, 6, 3, -1, 2, 6, 3, -1, 2, 6, …                 [-1,2;2] 
     3.  (1, 1, 0)        α=0,    β = 1      1, 1, 0, 0, 1, 1, 0, 0, 1, 1, …                         [0,1;2]  
     4.  (4, –1, 2)      α= 1,   β = 7      2, 10, 15, 12, 4, -1, 2, 10, 15, 12, 4, -1,  … [-1,2;3] 

 
 

Table 3:  Examples of periodic sequences.  Example 3 is known in EIS as A021913. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             Figure 3: Geometric representations for examples from Table 3: 
                            (a) Examples 1,  (b) Example 2,  (c) Example 3,  (d) Example 4.  

R=

R=

(a) (b) (c) 

(a) (b) (c) (d) 

Figure 4.3: Geometric representations for examples from Table 4.2: (a) Examples 1–2
(b) Example 3, (c) Example 4.

 18

 
      central 
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    1a.  (3,1,2)       α=10, β = –5         1, 2, 14, 133, 1311, 12972, 128404, 1271063,  …      [1,2;4] 
      b.  (3,1,2)                                     1, 3, 24, 232, 2291, 22673, 224434, 2221662,  …      [1,3;3] 
 

    2a.  (5,3,6)         α=6, β = –7         3, 6, 26, 143, 825, 4800, 27968, 163001,   …        [5,3;1] 
      b.  (6,3,5)                                     3, 5, 20, 108, 621, 3611, 21038, 122610,  …          [3,5;1] 
 

    3.  (3, -1, 4)      α=4,  β = 11        –1, 4, 28, 119, 459, 1728, 6464, 24139, 90103,  …      [–1,4;2] 
                                                         –1, 3, 24, 104, 403, 1519, 5684, 21228, 79239, …       [–1,3;3] 
 

    4.  (1,2,4)      α=5/2,  β = 0           1, 2,  4, 8, 16, 32, 64, 128, 256, 512, 1024 …          [1,2;3/2] 
 

 
Table 2:  Nonsymmetric sequences.  Example 4 (EIS:A000079)  is integer only in one direction. 
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         seed         constants        sequence                                           symbol 
 
     1.  (2, -1,2)        α= –1, β = 3      2, 2, -1, 2, 2, -1, 2, 2, -1, 2, 2, -1, 2, 2,  …   [-1,2;1] 
     2.  (3, -1, 2)       α=0,    β = 5      2, 6, 3, -1, 2, 6, 3, -1, 2, 6, …                 [-1,2;2] 
     3.  (1, 1, 0)        α=0,    β = 1      1, 1, 0, 0, 1, 1, 0, 0, 1, 1, …                         [0,1;2]  
     4.  (4, –1, 2)      α= 1,   β = 7      2, 10, 15, 12, 4, -1, 2, 10, 15, 12, 4, -1,  … [-1,2;3] 

 
 

Table 3:  Examples of periodic sequences.  Example 3 is known in EIS as A021913. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             Figure 3: Geometric representations for examples from Table 3: 
                            (a) Examples 1,  (b) Example 2,  (c) Example 3,  (d) Example 4.  

R=
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(a) (b) (c) 

(a) (b) (c) (d) 

Figure 4.4: Geometric representations for examples from Table 4.3: (a) Example 1, (b)
Example 2, (c) Example 3, (d) Example 4.

constants OEIS sequence label and symbol

1. α = −3, β = 1 A001654 0, 1,−2, 6,−15, 40,−104, 273,−714, 1870,−4895, 12816, . . . [0,1;–1] 1(1, 1)−1

2. α = −3, β = 5 A075269 2,−3, 12,−28, 77,−198, 522,−1363, 3572,−9348, . . . [2,2;1] −1(1, 2)1

3. α = −4, β = 3 — 1,−2, 10,−35, 133,−494, 1846,−6887, 25705,−95930, . . . [1,1;–1] 2(1, 1)−1

4. α = −4, β = −1 A109437 0,−1, 3,−12, 44,−165, 615,−2296, 8568,−31977, . . . [0,–1;2] 2(1, 3)−1

5. α = −5, β = 1 A099025 0, 1,−4, 20,−95, 456,−2184, 10465,−50140, 240236, . . . [0,1;–3] −3(1, 1)1

6. α = −6, β = −4 A084159 1,−3, 21,−119, 697,−4059, 23661,−137903, 803761, . . . [1,1;–2] −2(1, 1)−2

6. α = −6, β = 1 A084158 0, 1,−5, 30,−174, 1015,−5915, 34476,−200940, . . . [0,1;–4] −4(1, 1)1

Table 4.4: Examples of formal lens sequences
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But the above types of sequences do not exhaust the possibilities, as this example shows:

. . . 2331, 407, 77, 21, 15, 35, 161, 897, 5187 . . . ,

which is a lens sequence with recurrence formula bn = 6bn−1 − bn−2 − 34. We will arrive
at a general rule that produces all integer lens sequences and an improved version of the
integrality criterion in the last section.

Invariants

The formulas for the coefficients α and β in the recurrence formula (4.1) may be represented
diagrammatically as shown in Figure 4.5, which exhibits the coefficients’ algebraic “struc-
ture” (the mnemonic role aside). The dots on the line represent the consecutive terms of the
sequence. The arcs represent products of the joined terms, and the position above/below
the line position indicates their appearance in the numerator/denominator of the formula.
Dotted lines are to be taken with the negative sign.

 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

α+2 β 
2

ab bc ca
b
+ +

 
2b ac
b
−  

n 

bc
bdac +  

 

α

Figure 4.5: Diagrammatic representation of the lens sequence invariants

Since the formulas do not depend on the particular choice of the three seed circles, one
may position the diagram at any place in the line/sequence. In this sense, α and β represent
invariants of the sequence with respect to translation along the sequence. But this also
means that each of them gives rise to a new non-linear recurrence formula!

Additional remarks on the Binet-like formula

Denoting “jumps” around the central element b0 by ∆+ = b1− b0 and by ∆− = b0− b−1, we
get a more suggestive form of term w in the Binet-like formula for lens sequences, namely:

w =
∆+ −∆−

2(α− 2)
+

∆+ + ∆−

α2 − 4

√
α2 − 4 .

Expressing α in terms of λ we also obtain

w =
∆+ −∆−

2(λ + λ−1 − 2)
+

∆+ + ∆−√
λ2 + λ−2

.

Other representations of the formula for w include:

w =

(
b0

2
+

β

α− 2

)
+

b1 − b−1

2α2 − 8

√
α2 − 4 ,

w =
(α + 2)(b1 − 2b0 + b−1) + (b1 − b−1)

√
α2 − 4

2(α2 − 4)
.
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Note that re-indexing the sequence so that another term of (bn) becomes the central “b0”
will change the value of w in the formula (4.6).

In order to better understand the situation, note the following simple general rule for
this type of recurrences:

Theorem 4.9. Let a sequence (xn) be given by the following Binet-like formula

xn = aωn + bω−n + c (4.12)

for some constants a, b, c and ω. Then the sequence satisfies a non-homogeneous 3-term
linear recurrence formula

xn+2 = (ω + 1/ω)xn+1 − xn + c(2− ω − 1/ω) .

Moreover, if |ω| > 1 then lim
n→∞

xn+1

xn
= ω, and for large n we have xn ' aωn + c.

Proof. Direct. First note that (4.12) for the (n + 2)-nd term gives

xn+2 = aω2ωn + bω−2ω−n + c .

Adding these two gives, after some simple algebraic operations:

xn + xn+2 = (ω + 1/ω)xn+1 + c(2− ω − 1/ω)

which is equivalent to (4.12).

Looking at the above, one hardly escapes the thought that lens sequences could be
“explained” in terms of Chebyshev polynomials. This path did not however return any
deeper insight. Instead, consider the following.
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5 Underground sequences

There are still some mysteries in the structure of lens sequences. One of the most remarkable
properties is this: the entries of an integer lens sequence are products of consecutive pairs of
a certain “underlying” integer sequence. Here is an example of a sequence of Vesica Piscis
(A011922, see Example 1.1 in Section 1):

 30

8.  Underground sequences 
 
There are still some mysteries of the structure of lens sequences.  One of the most 
remarkable property is this:  the entries of an integer lens sequence are products of 
consecutive pairs of a certain “underlying” integer sequence.  Here is an example of 
sequence of Vesica Piscis (A011922 , see Example 1 in Section 1): 
 
 
 
 
 
 
Thus the lens sequence may be represented as bi = xi–1xi , for some integer “underground” 
sequence (xi).  We present the formalism of this amazing and unexpected property.  
 
Theorem 8.1:  Let a sequence be defined by 
 

xn  =  1 2

1 2

if is even
if is odd

n n

n n

kx x n
sx x n

− −

− −

−⎧
⎨ −⎩

 

 

Let  bn  =  xn–1xn.  Then sequence (bn) satisfies a nonhomogeneous three term recurrence 
formula 
 

bn  =  α bn–1  –  bn–2 + β 
 

where  
     α  =  ks – 2   
     β  =  kx1

2 + sx0
2 – ks x0x1 ,    

 
and where  (bn) satisfies the “compatibility condition” 
 

bn
2 + bn–1

2  =  αbnbn–1  +β(bn + bn–1) , 
 
and therefore forms a lens sequence. 
 
Sequence (xi) will be called in this context the underground sequence of sequence (bi). It 
is a three-term linear recurrence sequence  (xi) with variable “constants”. 
 
Before we prove the above, let us first prove this property: 
 
Proposition 8.2:   The following is an invariant of a sequence (8.1), 
 

Δn  =  1

3 2

det n n

n n

x x
x x

−

− −

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 
Proof:  Let p denote a or b, depending whether n is even or odd (it will not matter).  Then 
 

    Δn     =   1

3 2

det n n

n n

x x
x x

−

− −

⎡ ⎤
⎢ ⎥
⎣ ⎦

      =  1 1 2

3 3 4

det n n n

n n n

x px x
x px x

− − −

− − −

−⎡ ⎤
⎢ ⎥−⎣ ⎦

  

                 

                     =  1 2

3 4

det n n

n n

x x
x x

− −

− −

−⎡ ⎤
⎢ ⎥−⎣ ⎦

    =  2 1

4 3

det n n

n n

x x
x x

− −

− −

⎡ ⎤
⎢ ⎥
⎣ ⎦

      =     Δn–1 . 

 

Thus, by induction, the value of Δn  does not depend on n.   

(8.1) 

(8.2) 

(8.3) 

bi:      …   3       1       3      33      451    6273      87363   1216801   … 

 
xi:                  1       1       3       11       41        153        571       2131 

multiply 

(8.4) 

(8.2’) 

Thus the lens sequence may be represented as bi = fi−1fi, for some integer sequence (fi).
Sequence (fi) will be called in this context the underground sequence of sequence (bi)
(Table 6.1 provides examples). We present the formalism of this amazing and unexpected
property.

Let us start with a general fact.

Theorem 5.1. Any factorization {fn} of lens sequence in a sense that bn = fn−1fn satisfies
3-term recurrence formula

fn+2 + fn−2 = αfn (5.1)

Proof. Starting with the expression for α given in Proposition 3.1, we have

α =
bn−1

bn

+
bn+2

bn+1

=
fn−2fn−1

fn−1fn

+
fn+1fn+2

fnfn+1

=
fn−2

fn

+
fn+2

fn

=
fn−2 + fn+2

fn

It should be borne in mind that this property is true for any —not necessarily integer—
factorization of {bi}. Such factorizations are easy to produce, e.g., set f0 = 1, f1 = b1,
f2 = b2/b1, f3 = b3b1/b0, f4 = b4b2b0/b3b1, etc. However:

Theorem 5.2 (Factorization theorem). Any integer lens sequence (bn) may be factored into
an integer sequence (fn) so that bn = fn−1fn. If the lens sequence is primitive, the factoriza-
tion is —up to a sign —unique. Moreover, in such a case |fn| = gcd(bn, bn+1).

Proof. Assume that (bn) is a primitive lens sequence. Consider three consecutive terms
(a, b, c) and define

f0 =
a

gcd(a, b)
f1 = gcd(a, b) f2 =

b

f1

=
b

gcd(a, b)
f3 =

c

f2

=
gcd(a, b)c

b

Clearly, a = f0f1, b = f1f2, and c = f2f3. We need to show that these four terms are
integers. Terms f0, f1, and f2 are integer by definition. As to the last term, use the formula
β = b2−ac

b
:

β ∈ Z ⇒ ac

b
∈ Z ⇒ gcd(ab)c

b
∈ Z
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hence f3 is an integer. Thus f0, f1, f2, f3 ∈ Z and the integrality of the whole sequence (fn)
follows immediately from 5.1.

As to uniqueness of factorization of a primitive lens sequence, assume a contrario that
two integer quadruples, {f0, f1, f2, f3} and {g0, g1, g2, g3} are the initial terms of two different
factorizations of (bn). Then g0/f0 = p/q for some mutually prime p, q ∈ Z. At least one of
p and q is not 1; assume that it is p 6= 1. Since gigi+1 = fifi+1, we must have

{g0, g1, g2, g3} = {p

q
f0,

q

p
f1,

p

q
f2,

q

p
f3} ⊂ Z .

Thus q|f0 and q|f2 (because gcd(p, q) = 1). But this means that q | a (since a=f0f1), q | b
(since b=f1f2), and q | c (since c=f2f3), against the assumption of primitivity of the lens
sequence.

The 3-term recurrence 5.1 for the underground sequence involves only α. Another inter-
esting non-linear 4-term recurrence involves only β:

Proposition 5.3. Any underground sequence {fi} of a lens sequence {bi} satisfies the fol-
lowing quadratic recurrence formula:

det

[
fn fn+1

fn+2 fn+3

]
≡ fn+3fn − fn+1fn+2 = −β. (5.2)

Proof. For any n we have

fnfn+3 − fn+1fn+2 =
fnfn+1fn+2fn+3

fn+1fn+2

− fn+1fn+2

=
bn+1bn+3

bn+2

− bn+2 =
bn+1bn+3 − b2

n+2

bn+2

= −β

Note that not any initial quadruple (f1, f2, f3, f4) leads via recurrence 5.1 or 5.6to a
sequence that underlines a lens sequence. When do they? First, we notice that the under-
ground sequences of lens sequences have an interesting anatomy. It turns out that they are
determined by three-term linear recurrences with variable “constants”. Here is the central
theorem for the underground sequences:

Theorem 5.4 (Underground Sequence Structure). (i) Let k, s ∈ Z be two constants. Define
a sequence f by

fn =

{
kfn−1 − fn−2 if n is even

sfn−1 − fn−2 if n is odd.
(5.3)

with some arbitrary initial terms f0, f1 ∈ Z. Define bn = fn−1fn. Then (bn) is a lens
sequence. The constants of its recurrence formula

bn = α bn−1 − bn−2 + β (5.4)
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are {
α = ks− 2

β = kf 2
1 + sf 2

0 − ks f0f1 ,
(5.5)

(ii) Every lens sequence is of such type. In particular, for a primitive lens sequence with a
seed (b−1, b0, b1) = (a, b, c) the underground sequence is defined

f0 = gcd(a, b), f1 = gcd(b, c),

s =
a + b

f 2
0

, k =
b + c

f 2
1

.

Proof. We start with part (ii). Let (fi) be a sequence defined by 5.3. First, we shall show
that the following expression

∆n = det

[
fn−3 fn−2

fn−1 fn

]
(5.6)

is an invariant of a sequence (5.3), that is it does not depend on n. Indeed, let p denote k
or s, depending on whether n is even or odd (it will not matter!). Then

∆n = det

[
fn−3 fn−2

fn−1 fn

]
= det

[
fn−3 pfn−3 − fn−4

fn−1 pfn−1 − fn−2

]
= det

[
fn−3 −fn−4

fn−1 −fn−2

]
= det

[
fn−2 fn−1

fn−4 fn−3

]
= ∆n−1 .

Thus, by induction, the value of ∆n does not depend on n. Hence it may be brought down
to the first two terms of the sequence and, after simple substitution, shown to be

∆n = kf 2
1 + sf 2

0 − ks f0f1 .

As to the recurrence formula, calculate the sum bn−1 + bn+1 :

bn+1 + bn−1 = fnfn+1 + fn−2fn−1 = (afn−1 − fn−2)(bfn − fn−1) + fn−2fn−1

= ks fn−1fn − kf 2
n−1 − sfnfn−2 + fn−1fn−2 + fn−1fn−2

= ks fn−1fn − fn−1(kfn−1 − fn−2)− fn−2(sfn − fn−1)

= ks fn−1fn − fn−1fn − fn−2fn+1

= ks fn−1fn − 2fn−1fn + fn−1fn − fn−2fn+1

= (ks− 2) fn−1fn + (fn−1fn − fn−2fn+1)

= (ks− 2) bn −∆n .

(5.7)

Now, rename ks− 2 = α, and ∆n = −β (as it does not depend on n). Then (5.7) becomes
an inhomogeneous three-term recurrence formula

bn+1 + bn−1 = α bn + β .
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Finally, we need to show that (bn) is actually a lens system sequence. As for α, we need
simply to show

α =
bn−1

bn

+
bn+2

bn+1

(see Proposition 3.1). Consider the right hand side:

bn−1

bn

+
bn+2

bn+1

=
fn−2fn−1

fn−1fn

+
fn+1fn+2

fnfn+1

=
fn−2

fn

+
fn+2

fn

=
fn−2 + fn+2

fn

= α ,

where the last step is true because of (5.3). Indeed, assume n is even:

fn−2 + fn+2

fn

=
fn−2 + kfn+1 − fn

fn

=
fn−2 + k(sfn − fn−1)− fn

fn

=
ksfn − kfn−1 − fn−2 − fn

fn

=
ksfn − fn − fn

fn

= ks− 2 = α .

As to the formula for β in terms of a seed, follow similar calculations as in the proof of
Proposition 5.3:

∆n = det

[
f0 f1

f2 f3

]
= f0f3 − f1f2 =

f0f1f2f3 − (f1f2)
2

f1f2

=
b1b3 − b2

2

b2

= −β ,

This ends the proof of (i). The proof of (ii) follows easily. Let (a, b, c) be a primitive seed of an
integer sequence. Define a quadruple of numbers (f0, f1, f2, f3, f4) by setting f1 = gcd(a, b),
f2 = gcd(b, c), and f0 = a/f1, and f4 = c/f2. Then k = (f0+f2)/f1 and s = (f1+f3)/f2.

Remark 5.5. Note that ∆i may be viewed as a quadratic form given by the matrix

G =

[
k ks
0 s

]
evaluated on the vector v = [f0, f1]

T , i.e., ∆n = vT Gv. In particular, vectors (fi, fi+1) ∈ R
all stay on a quadratic defined by G.

As a corollary of the above theorem, we arrive at a simple criterion on whether a triple
of integers is a good candidate for an integer lens sequence, improving that of Proposition
4.2:

Theorem 5.6 (Integrality Criterion 2). A triple (a, b, c) ⊂ Z is a seed of an integer lens
sequence iff

(i) gcd(a, b) gcd(b, c) = b gcd(a, b, c)

(ii) (gcd(a, b))2 divides (a + b) gcd(a, b, c)

(iii) (gcd(b, c))2 divides (b + c) gcd(a, b, c)
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8.  Underground sequences 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.1:   Diagrammatic representation of the lens sequence… 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

bi:      …   3       1       3      33      451    6273      87363   1216801   … 

 
xi:                  1       1       3       11       41        153        571       2131 

multiply 

α+2 β

 
1 1 2 2 3 3

1 2

n n n n n n n n

n n

x x x x x x x x
x x

+ + + + + +

+ +

+ + +
 

1 2 3n n n nx x x x+ + +−  

xn 

2       3       13 

5 

2       3       13 

5 

… -6      -7       -1       2       3       13       10       37 … 

5 1 5 5 1 1 

start with these two 

    …   42      7       -2       6       39       130       370   … 
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Figure 5.1: Diagrammatic representation of the lens sequence invariants, calculated from the
underground sequence (cf. Fig. 3.2)

The above result leads to another property of lens sequences:

Corollary 5.7. The sum of any pair of consecutive terms of a lens sequence is a multiple
of a square, namely:

bn + bn+1 =

{
kf2

n if n is even
sf 2

n if n is odd
=

{
k · square if n is even
s · square if n is odd.

Proof. Elementary: bn + bn+1 = fnfn−1 + fn+1fn = fn(fn+1 + fn−1) = fnpfn, where p stands
for k or s, depending on the parity of n.

For example, the sums of two consecutive entries of A011922 are perfect squares:
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Now we may check that  Δn  =  kx1

2 + sx0
2 – ks x0x1.  Indeed: 
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b b b
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which ends the proof.   
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The sequence A101265 (of label [1,1;3]) gives:
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Generating lens sequences

Let us return to the question of generating integer lens sequences. In Section 2, we considered
triplets of the form (a, b; k) that label a large family of lens sequences (see (3.1)), but not all
of them. The existence of underground sequences allows one to label all lens sequences.

Definition 5.8. A symbol of a lens sequence is the quadruple s(p, q)k which defines the
underground sequence (fi) with f0 = p, f1 = q, and with constant s and k in (5.3), and
therefore defines the corresponding lens sequence (bi), namely, bi = fi−1fi. More directly,
symbol s(p, q)k defines a lens sequence via its seed (a, b, c) = ((sp− q)p, pq, q(kq − p)).
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Any integer quadruple s(p, q)k leads to an integer lens sequence. And vice versa, given a
seed of a primitive sequence (a, b, c), we easily reproduce the symbol:

p = gcd(a, b), k =
b + c

q2
,

q = gcd(b, c), s =
a + b

p2
.

Proposition 5.9. The lens sequence generated by s(p, q)k is primitive if and only if

gcd(p, q) = gcd(p, k) = gcd(s, q) = 1. (5.8)

Proof. Write the “central” four terms of the underground sequences and the corresponding
lens sequence:

(fi) : . . ., f−1 = (sp− q), f0 = p, f1 = q, f2 = (kq − p), . . .

(bi) : . . ., a = (sp− q)p, b = pq, c = q(kq − p), . . .

For (bi) to be primitive we must have gcd(a, b, c) = 1, which implies (5.8).

Corollary 5.10. If the underground sequence (fi) contains p = ±1, then the corresponding
lens sequence (bi) admits label (a, b; k). More precisely:

(a, b; k) corresponds to the symbol a+b(1, b)k ;

the symbol s(1, b)k corresponds to (s− b, b; k) .

Remark 5.11. To use this generator of sequences as a unique label system for lens sequences,
one would have to remove the ambiguity of the choice of the initial terms. We may demand
that, say, p = f0 has the smallest absolute value among (fi) and that |f−1| > f0 6 f1.

Remark on diagrammatic use of symbols. The first of the following two diagrams
means that 13 is obtained as 13 = 5× 3− 2. The second represents equation 2 = 5× 3− 2:
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More on generating lens sequences 
 
Let us return to the question of generating integer lens sequences.  In Section 2, we 
considered triplets of form (a,b;k) that label a large family of lens sequences (see (3.10), 
but not all of them.  The existence of underground sequences allows one to label all lens 
sequences. 
 
Definition 8.4:  A symbol of a lens sequence is the quadruple  s(p, q)k which defines the 
underground sequence (xi) with x0 = p,  x1 = q,  and with constant s and k in (8.1),  and 
therefore defines the corresponding lens sequence (bi),  bi = xi–1xi. More directly, symbol 
s(p, q)k defines a lens sequence via its seed (a,b,c) = ((sp – q)p, pq, q(kq – p)).   
 
Any integer quadruple s(p, q)k leads to an integer lens sequence.  And vice versa, given a 
seed of a primitive sequence (a,b,c), we easily reproduce the symbol:  
 
    p = gcd(a,b),       k = (c/q + p)/q,   
     q = gcd(b,c),       s = (a/p + q)/p. 
 
Proposition 8.5: The lens sequence generated by  s(p, q)k is primitive if and only if  
 

gcd(p,q) = gcd(p,k) = gcd(s,q) = 1. 
 
Proof: Write the “central” four terms of the underground sequences and the 
corresponding lens sequence:  
 
                         (xi):     …,  x–1 = (sp – q),   x0 = p,   x1 = q,   x2 = (kq – p), … 
 
                         (bi):           … ,   a = (sp – q)p,   b = pq,   c = q(kq – p),  … 
 
For (bi) to be primitive we must have gcd(a,b,c)=1, which implies (8.6).   
 
 
Corollary 8.6: If p=1, then the family of sequences reduces to the one labeled by the 
symbol (a,b; k). More precisely: 
   

(a, b; k)  corresponds to the symbol   a+b(1, b)k 
the symbol s(1, b)k corresponds to  (s–b, b; k)   

 
Remark: To use this generator of sequences as a unique label system for lens sequences, 
one would have to remove the ambiguity of the choice of the initial terms. We may 
demand that say p = x0 has the smallest absolute value among (xi) and that |x–1| > x0 ≤ x1. 
 
 
Remark on diagrammatic use of symbols:  The first of the following two diagrams 
means that 13 is obtained as  13 = 5×3 – 2.  The second represents equation 2 = 5×3 – 2: 
 
 
 
 
 
 
 

(8.6) 

2       3       13 

5 

2       3       13 

5 

Now, the symbol 1(2, 3)5 may be graphically developed into an underground sequence (fi),
and consequently into a lens sequence (bi), in the following way:
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Now, a symbol 1(2,3)5 may be graphically developed into an underground sequence (xi), 
and consequently into a lens sequence (bi), this way:   
 
 
 
 
 
 
 
 
 
 
 
 
 
Note that only the four central terms of (xi) suffice to get the three central terms of (bi), 
which suffice to get the constants α and β. The latter determine the rest of (bi).  They may 
also be obtained directly from equations (8.2) and (8.2’). 
 
Note also that the recurrence formula for sequence (xi) is bidirectional and may 
diagrammatically be represented as shown below: 
 
 
 
 
 
 
 
 
  
Towards the meaning of the underground sequence 
 
Finally, let us consider yet another recurrence formula for lens sequences and its 
surprising context.  Let us start with this: 
 
Proposition 8.7:  The lens sequences obey the following nonlinear 4-step recurrence 
formula:  

bn+2 = 1

1

( )( )n n

n

b b
b
β β+

−

− −  . 

 
Proof: Rewrite the definition of β in a form ac = b(b–β).  Since the three consecutive 
terms (a,b,c) may start with any entry of the sequence, let us write its two instances: 
 
    bn+1 bn–1  =  bn(bn – β) 
 

    bn+2 bn  =  bn+1(bn+1 – β) 
 
Multiply side-wise to get  bn+1bn–1bn+2bn = (bn – β)(bn+1 – β)bnbn+1. Canceling the repeated 
terms results in 

 bn–1 bn+2  =  (bn – β)(bn+1 – β) , 
 
which is equivalent to (8.7).   

(8.7) 

… -6      -7       -1       2       3       13       10       37 … 

5 1 5 5 1 1 

start with these two 

    …   42      7       -2       6       39       130       370   … 

multiply consecutive pairs 

   (xi) 

   (bi) 

… -6       -7        -1        2        3        13        10        37 … 

5 1 5 

5 1 

5 1 5 5 

5 1 5 1 1 
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Note that the four central terms of (fi) suffice to generate the three central terms of (bi),
which yield the constants α and β. The recurrence formula for sequence (fi) is bilateral and
may be represented diagrammatically as shown below:
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Example 1 (Vesica Piscis): b = A011922 f = A001835 = A079935
{bi} = (..., 1, 3, 33, 451, 6273, 87363, . . .), bn+1 = 14bn − bn−1 − 8
{fi} = (..., 1, 3, 11, 41, 153, 571, . . . ), 4(1, 1)4 (number of domino packings in a (3× 2n) rectangle)

Example 2 (Golden Vesica): b = A064170 f = A001519
{bi} = (..., 1, 2, 10, 65, 442, 30, 26, 20737, . . .) bn+1 = 7bn − bn−1 − 3
{fi} = (..., 1, 2, 5, 13, 34, 89, 233, . . . ), 3(1, 1)3 (odd Fibonacci numbers)

Example 3: b = A000466 f = A005408
{bi} = (...,−1, 3, 15, 35, 63, 99, 143, 195, 255, . . .) bn+1 = 2bn − bn−1 + 8
{fi} = (...− 1, 1, 3, 5, 7, 9, 11, 13, 15, . . . ), 2(−1, 1)2 (odd numbers)

Example 4: b = A081078 f = A002878
{bi} = (...,−1, 4, 44, 319, 2204, . . .) bn+1 = 7bn − bn−1 + 15
{fi} = (...− 1, 1, 4, 11, 29, 76, 199, 521, 1364 . . . ) , 3(−1, 1)3 (odd Lucas numbers)

Example 5: b = A005247 f = A005247
{bi} = (..., 2, 2, 3, 6, 14, 35, 90, 234, 611, 1598, . . .) bn+1 = 3bn − bn−1 − 1
{fi} = (..., 2, 1, 3, 2, 7, 5, 18, 13, 47, 34, . . . ), , 1(2, 1)5

(even Lucas numbers interlaced with odd Fibonacci numbers)

Example 6: b = A027941 f = A005013
{bi} = (..., 0, 1, 4, 12, 33, 88, 232, 609, . . .) bn+1 = 3bn − bn−1 + 1
{fi} = (..., 0, 1, 1, 4, 3, 11, 8, 29, 21, 76, . . . ), , 1(1, 1)5

(odd Lucas numbers interlaced with even Fibonacci numbers)

Example 7: b =A000217 f = A026741
{bi} = (..., 0, 1, 3, 6, 10, 15, 21, 28 . . .) bn+1 = 2bn − bn−1 + 1
{fi} = (..., 0, 1, 1, 3, 2, 5, 3, 7, 4, 9, . . . ) , 4(0, 1)1

(the sequence of natural numbers interlaced with odd natural numbers): fn =

{
n if n is odd
n/2 if n is even

Table 5.1: Examples of underground sequences f for some integer lens sequences b.

Towards the meaning of the underground sequence

Finally, let us consider yet another recurrence formula for lens sequences and its surprising
context. Let us start with this:

Proposition 5.12. Lens sequences obey the following nonlinear 4-step recurrence formula:

bn+2 =
(bn+1 − β)(bn − β)

bn−1

. (5.9)
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Proof. Rewrite the definition of β in the form ac = b(b − β). Since the three consecutive
terms (a, b, c) may start with any entry of the sequence, let us write its two instances:{

bn+1bn−1 = bn(bn − β)

bn+2bn = bn+1(bn+1 − β)

Multiply side-wise to get bn+1bn−1bn+2bn = (bn−β)(bn+1−β)bnbn+1. Canceling the repeated
terms results in

bn−1bn+2 = (bn − β)(bn+1 − β),

which is equivalent to (5.9).

Corollary 5.13. A lens sequence satisfies the following identity:

det

[
bn+1 − β bn+2

bn−1 bn − β

]
= 0 .

This leads to yet another implication. The above determinant (5.9) may be written in
the form:

det

([
bn+1 bn+2

bn−1 bn

]
−
[

β 0
0 β

])
= 0 ,

which looks like a characteristic equation with β playing the role of the eigenvalue. Note
that it does not depend on n. What are the corresponding eigenvectors?

Theorem 5.14. If (fi) is the underground sequence of a lens sequence (bi), then the following
“eigen-equation” holds:[

bn+1 bn+2

bn−1 bn

] [
fn+1

−fn−1

]
= β

[
fn+1

−fn−1

]
.

Proof. Write b’s in terms of f ’s and use the definition of β written in terms of f ’s.

6 Summary

A lens sequence is an integer sequence (bi) that satisfies two conditions:

(i) bn = αbn−1 − bn−2 + β [recurrence formula]

(ii) a2 + b2 = α ab + β(a + b) [compatibility relation]

where α and β are constants and a and b are any two consecutive terms of (bi). These two
conditions assure that the sequence has a geometric realization in terms of the curvatures of
a chain of circles inscribed in a symmetric lens (the space of the overlap of the interiors or
exteriors of two congruent circles). The sequence constants may be viewed as invariants of
a process i → bi. They may be calculated from a seed, i.e., any three consecutive sequence
terms (a, b, c):

α =
ab + bc + ca

b2
− 1 and β =

b2 − ac

b
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or, for α, alternatively

α =
bn−1

bn

+
bn+2

bn+1

.

Other, nonlinear, recurrence formulas for the lens sequence include:

[two-step formula] 2bn+1 = bnα + β ±
√

(α2 − 4) b2
n + 2(α + 2)β bn + β2

[three-step formula] bn+1bn + bn+1bn−1 + bnbn−1 = (α + 1)b2
n (only α)

[three-step formula] bnbn − bn+1bn−1 = βbn (only β)

[four-step formula] bn+2bn−1 = (bn+1 − β)(bn − β)

[four-step formula] bn+1bn−1 + bnbn−2 = αbnbn−1

The sequence constants have a geometric meaning: α codes the angle under which the
circles forming the lens intersect (if they do), or, more generally, the Pedoe product of the
lens circles. The value of β reflects the size of the system. There are two basic properties
determined by geometry: (a) the sum of the inverses is determined by the length of the lens,
and (b) the limit of the ratio of consecutive terms is determined by the aforementioned lens
angle: ∑

n

2

bn

=

√
α2 − 4

−β
and lim

i→∞

bi+1

bi

=
α +

√
α2 − 4

2
= λ ,

The number λ, the characteristic constant of (bi), allows one to express the lens sequence
by a Binet-type formula

bn = wλn + w̄λ̄n + γ

where

w =
a− 2b + c

2(α− 2)
+

c− a

2(α2 − 4)

√
α2 − 4, γ =

−β

α− 2
,

and where the bar denotes natural conjugation in the field Q(
√

α2 − 4) . The constant λ
is an example of a (quadratic) Pisot number, an algebraic integer, the powers of which
approximate natural numbers. In particular, bn ≈ wλn +γ. Lens sequences can be expressed
also as combinations of Chebyshev polynomials.

The most mysterious property of a lens sequence is that its terms may be formed by taking
products of pairs of consecutive terms of another sequence. This “underground” sequence
has an alternating recurrence rule, different for odd and even terms. Namely bn = fn−1fn ,
where:

fn =

{
kfn−1 − fn−2 if n is even
sfn−1 − fn−2 if n is odd.

The constants of the sequence (bi) may now be expressed as{
α = ks− 2

β = sf 2
0 + kf 2

1 − ks f0f1 .
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It follows that the integer lens sequences may be determined by four arbitrary integers

s(f0, f1)
k .

Choosing for f0 the term with smallest absolute value allows one to treat the above quadruple
as a symbol that labels the corresponding lens sequence.

The underground sequences automatically satisfy the following two recurrence formulas:

(i) fn+2 + fn−2 = αfn

(ii) fn+2fn−1 − fnfn+1 = −β or det

[
fn−1 fn

fn+1 fn+2

]
= −β

More precisely, the set of the sequences that are underground sequences for lens sequences
coincides with the intersection Λ ∩ ∆, where Λ denotes the space of sequences satisfying
linear recurrence (i), and ∆ denotes the set of sequences satisfying (ii).

An intriguing property holds — the eigenvectors of matrices assembled from the terms
of a lens sequence are vectors with entries from the corresponding underground sequence:[

bn+1 bn+2

bn−1 bn

] [
fn+1

−fn−1

]
= β

[
fn+1

−fn−1

]
.

But the full meaning of the underground sequences remains to be understood.

Appendix

Below, we summarize the general formulas for each of the five types of symmetric integer
lens sequences. Recall that L = length of the lens, R = radius of the lens circles, δ = their
relative distance, and λ = characteristic constant. Due to symmetry, the sums of the recip-
rocals are curtailed to one (right) tail of the sequence.

1. Seed: [n, 1, n] . Symbol: n+1(1, 1)n+1. Recurrence: α = (n+1)2−2, β = 1−n2

Geometry: R = n+1
n−1

, L = 2n+3
n−1

, δ = 4
n+1

. (Inner chain)

Characteristic constant: λ =

(
n+1+

√
(n+3)(n−1)

2

)2

=
n2+2n−1+(n+1)

√
(n+3)(n−1)

2

Binet: bk = λk+λ̄k+n+1
n+3

Sum of reciprocals:
∞∑

k=0

1/bk = 1 + 1
n

+ . . . = 1
2

+ 1
2

√
n+3
n−1
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2. Seed: [n, 1, 1, n] . Symbol: 2(1, 1)n+1. Recurrence: α = 2n , β = 1− n .

Geometry: R = 2n+1
n−1

, L = 2
√

n+1
n−1

, δ = 4√
2(n+1)

. (Inner chain)

Characteristic constant: λ =
(√

2n+2+
√

2n−2
2

)2

= n+
√

n2−1
2

Binet: bk = 1
4

(
1 +

√
n−1
n+1

)
λk + 1

4

(
1−

√
n−1
n+1

)
λ−k + 1

2

Sum of reciprocals:
∞∑

k=1

1/bk = 1 + 1
n

+ . . . =
√

n+1
n−1

3. Seed: [n, 2, 2, n] . Symbol: 1(2, 1)n+2. Recurrence: α = n , β = 2− n .

Geometry: R = n+2
n−2

, L = 2
√

R = 2n+2
n−2

, δ = 4√
n+2

. (Inner chain)

Characteristic constant: λ =

(√
n+2+

√
(n−2)

2

)2

= n+
√

n2−4
2

Binet: bk = 1
2

(
1 +

√
n−2
n+2

)
λk + 1

2

(
1−

√
n−2
n+2

)
λ−k + 1

Sum of reciprocals:
∞∑

k=1

1/bk = 1
2

+ 1
n

+ . . . = 1
2

√
n+2
n−2

4. Seed: [n,−1, n] . Symbol: n−1(1, 1)n+1. Recurrence: α = (n−1)2−2, β = n2−1.

Geometry: R = −n−1
n+1

, L = 2n−3
n+1

, δ = 4
n−1

. (Outer chain)

Characteristic constant: λ =

(
n−1+

√
(n−3)(n+1)

2

)2

=
n2−2n−1+(n−1)

√
(n−3)(n+1)

2

Binet: bk = λk+λ̄k−(n−1)
n−3

Sum of reciprocals:
∞∑

k=1

1/bk = 1
n

+ . . . = 4
n+1

5. Seed: [0, 1, n] . Symbol: 1(1, 1)n+1. Recurrence: α = n− 1 , β = 1.

Geometry: R = −(n + 1), L = 2
√

(n + 1)(n− 3), δ = 4√
n+1

. (Outer chain)

Characteristic constant: λ =

(
n+1+

√
(n−3)

2

)2

=
n−1+

√
(n+1)(n−3)

2

Binet: bk = 1
2

(
n−2
n−3

+ n√
(n+1)(n−3)

)
λk + 1

2

(
n−2
n−3

− n√
(n+1)(n−3)

)
λ−k + 1

n−3

Sum of reciprocals:
∞∑

k=0

1/bk = 1 + 1
n

+ . . . =
n+1−

√
(n+1)(n−3)

2
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