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The Apollonian tiling of the plane into circles is analyzed with respect to its group properties.
The relevant group, which is noncompact and discrete, is found to be identical to the symmetry
group of a particular geometric tree graph in hyperbolic three-space. A linear recursive method to
compute the radii is obtained. Certain modifications of the problem are investigated, and relations
to other problems, such as the universal scaling of circle maps, are pointed out.
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I. INTRODUCTION

A number of papers have appeared, see, e.g., [1-4],
that deal with the fractal properties of various coverings
of the plane by an infinite set of mutually tangent circles,
such as the Apollonian tiling and space-filling bearings.
These can be seen as toy models of the fractal structures
appearing in various systems, e.g., in foam or in turbulent
flow, and they have a high degree of symmetry. This will
be explored in this paper, where the Apollonian tiling
and its complement S will be discussed from a group-
theoretical point of view.

The fractal set S is defined in Sec. II, and its basic
properties are discussed in terms of mappings in the
plane. In Sec. III, a generic vector representation of
spheres is defined, in terms of which basis sets of tan-
gent spheres are discussed. The recursive structure of
the Apollonian tiling is analyzed in Sec. IV, and based
on this, a very fast linear recursive algorithm for compu-
tation of the radii of the circles is derived, and formulated
in terms of matrix multiplication. The 4x4 matrices in-
volved are shown in Sec. V to be equivalent to SO(3,1)
matrices. A brief discussion of the curved versions of
Apollonian tiling is also discussed there. A dual set of
circles, orthogonal to the ones making up the Apollonian
tiling, are defined in Sec. VI. In Sec. VII some special scal-
ing limits are analyzed, based on the previously defined
formalism. A fully symmetrized version of S is defined
in Sec. VIII. The Apollonian tiling is related to a certain
symmetric tree structure. A generic discussion of such
structures in various dimensions is given in Sec. IX, and
the symmetry group G of the Apollonian tiling, a cer-
tain noncompact discrete subgroup of the Lorentz group
SO(3,1) = SL(2, C)/Z,, is identified. Finally, various
generalizations of the Apollonian tiling and their frac-
tal properties are discussed in Sec. X, where also certain
relations to known problems (such as the Farey decompo-
sition of the interval in one dimension) are pointed out,
and the author’s conclusions are presented.

II. THE APOLLONIAN SET &

The Apollonian tiling (from Apollonius of Perga, 200
B.C.) is a particular covering of the plane by an infinite
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set of open circular disks, where recursively new disks are
inscribed in the enclosed space between triples of already
defined, mutually tangent disks.

The complementary set S is a self-similar fractal set
in the plane, defined, e.g., by the following recursive pro-
cess:

1. Pick three mutually tangent circles (the generators)
A, B, and C in the plane. They enclose an area in
the form of a curvilinear triangle. Its closure is the
lowest-order approximation S{© = Sy to S.

2. There is a unique circle of} that can be inscribed

in SO such that it touches the three circular parts
of the boundary. Subtracting the corresponding
open disk from &jj, we are left with three (almost)
disjoint parts, to be labeled S, (tangent to B and
C), Sp)», and Si. Each of them is a conformal

“copy” of 8. Their union defines the first-order
set SU = S[a] @] S[b] U S[c] c 8O,

3. Repeat the procedure for each of the three subsets
of S, removing from S[q) the open disk inside the
inscribed circle o) to define Siaq), Sjat]s Sjac)s ete.
In this way S® ¢ SO is defined, consisting of nine
almost disjoint subsets. Treating S(?) the same way
gives S® ¢ 8@ etc.

The Nth-order set S™V) will consist of 3V almost disjoint
subsets, labeled by words of the type [abc...] of length
N constructed from the three-letter alphabet {abc}. In
the limit as N — oo we obtain the Cantor set S, cf. Fig.
1.

If the plane is regarded as the complex plane, there are
three fractional linear mappings (FLM’s) F,, Fy, F, that
generate the set S from S;j. An FLM is a mapping of
the type

az+b
L 2eTe

Pt a,b,c,d complex, ad — bc = 1. (1)

FLM’s always map circles onto circles (if straight lines are
regarded as circles). They are conveniently represented in
an obvious way by complex 2 x 2 matrices with determi-
nant one, defining the group SL(2,C). Functional com-
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FIG.1. Some low-order approximations to the Apollonian
set S: (a) SO, (b) MW, (c) §@, and (d) S itself.

position then corresponds to the group operation, i.e.,
matrix multiplication.

Now, F, is defined by demanding that it map A, B,
and C onto o[}, B, and C, respectively. It obviously also
maps S} onto Sjg), and Sp) onto Siap), etc. Fy and F are
defined in a similar way. In effect, F, (F}, F.) adds an a
(b, ¢) to the head of the word.

For the set S, we now have the self-similarity identity

S = F,(S) U Fy(S) U F«(S), 2)

which can be used to generate S recursively, starting from
Spy.-
”The effect of choosing a different set of generating cir-
cles A, B, C merely corresponds to an FLM transforma-
tion of S; the corresponding F,, Fy, and F, will undergo
a similarity transform. The fractal properties of S are of
course invariant under such transformations, as long as
the image remains compact.

III. SPHERES AS VECTORS

A sphere in R? is defined by its center a and its radius
R. Tt is the union of all solutions x to the equation
x> —2a-x+ (a? = R?) =0. (3)

Out of linear combinations of the D + 2 coefficients of
the terms in the left member, divided by R, we can define
a vector as follows:

V=W...,Vby1)

. 14+a2—-R?2 1—a?+ R? ay ap (4)

- 2R ’ 2R "R’ R )
This is a spacelike, normalized vector in the Minkowski
space Mpa:

V‘VEV02—V12"‘—'V3+1=_1. (5)

The vector V' constitutes a particularly useful represen-
tation of oriented spheres. A conformal transformation

of the sphere is represented by a SO(1,D+1) transfor-
mation of V. SO(1,D+1) is isomorphic to the conformal

group in RP.

The curvature ¢ = 1/R (defined positive for orienta-
tion outwards) is obtained from V' as the scalar product
with the lightlike vector A = (1,-1,0,...,0). The cut-
ting angle o between two different spheres, i.e., the angle
between the normals at the contact points, is obtained

from the scalar product between their respective vectors
Vi and V5!

Vi-Va=—cosa. (6)
In particular, cosa = —1 corresponds to oppositely ori-

ented tangent spheres, whereas if |V; - V5| > 1 the spheres
do not touch.

A. Tangent spheres

For a (D + 2)-tuple of mutually tangent spheres, rep-
resented by V;,i=1,...,D + 2, we have

Vi-Vj=1-26; = gij, (7)

defining the “metric” g. They make up a complete basis
in Mp42. The completeness is expressed by

S g (Vi-w) (Vs y)=z-y, ©,y €Mpia,  (8)
%,J
with g—! the matrix inverse of the metric g:
9;;' = (1 — D&;)/2D. (9)

In particular, if we set z = y = X in Eq. (8), we obtain a
quadratic identity for the curvatures g;:

2
(Z q,) = DZ qz. (10)

B. The dual set
Of interest is also the dual basis {U;},
Ui=Y g;'V; = Ui-V; =6 (11)
J

Properly normalized, the U; represent a set of spheres,
each orthogonal to all but one of the V;. Their mutual
cutting angle g3 is given by cos 3 = —5—. Thus, only
for D = 2 do we have the self-dual case that also the U;
are mutually tangent.

Suppose the V; cut each other at an arbitrary angle a,

instead of being tangent. Then,

cosa
=—— 12
cos 3 Dcosa+1 (12)
If cosa = —%, self-duality is reinforced: cosf = cosa.
Conversely, if cosa = ‘D_I—Tv then cos 3 = —1, and the

dual spheres are tangent.

IV. CURVATURE AND RECURRENCE

When it comes to analyzing the fractal properties of
the Apollonian set S, a size measure is needed on the
subsets S[) (w word). The obvious choice is the radius
T[] Of the inscribed circle o[y
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The V vectors, as defined in the preceding section for
D = 2, can be used to represent the inscribed circles.
The FLM’s that generate S recursively act as SO(1,3)
transformations on V. These can, in principle, be used to
compute the radii recursively, but in a way that depends
on the initial choice of generating circles A, B, and C.
An equivalent, but manifestly universal, method will be
derived below.

A. Parents and daughters

The circle o[} touches A, B, and C. Similarly, every
circle of,) touches three mutually tangent lower-order cir-
cles, defining its parents.

The three parent words are given by truncating the
tail of the daughter word just before the last a, b, or c,
thus defining the a, b, or ¢ parent, respectively. If no a
is found, the a parent is A, etc. Thus, for 0jgc; €.8., the
a, b, and c parents are o[}, B, and 0,

The parent closest in order to the daughter is called
the mother. Its label is obviously obtained by removing
the last letter in the word, and it is thus of order one
less than the daughter. The remaining two parents are
inherited from the mother.

Conversely, every circle is the mother of three daugh-
ters, obtained by adding an a, b, or ¢ to the tail of the
mother word.

B. Recurrence

In the Apollonian tiling problem, we have D = 2 and
cosa = —1, and the identity (10) becomes the well-
known relation between the curvatures ¢; = 1/r; of four
mutually tangent circles in the plane:

(+e+atau)’=23+E+d+d). (13)

Thus, the curvature ¢ of a circle is given in terms of the
ones of its parents, g4, ¢B, gc, by Soddy’s formula [1]:

q=4qa+9B+dc +2VqaqB + qa9c + qBqc- (14)

This constitutes a (four-term) nonlinear recurrence re-
lation for the radii, and was used in Ref. [2] to compute
the fractal dimension of S, dp = 1.305684 £ 0.000010.
The recurrence relations can be further simplified, how-
ever.

C. Linear recurrence

As previously stated, the two remaining parents are
inherited from mother to daughter. Given a circle and
its three parents, denote their curvatures ¢, ¢4, gz, and
gc, and denote by g, the curvature of the a daughter.
We then have

9. = q+4qB + gc +2+/99B + 99c + gBqC- (15)

Replacing g, with g4 will not change the quadratic rela-
tion leading to this equation, so the only change must be
in the sign in front of the square root:

qa = q+gqB + qc — 2v/49B8 + 94c + aB4c- (16)

This gives a five-term linear recurrence relation,

4o =2(¢ +9B +49c) —qa, (17)

that provides an even faster recursive method to compute
the radii of the Apollonian tiling. Analogous linear rela-
tions exist for other problems of this type, also in higher
dimensions.

D. Matrix formulation

Any multiterm scalar recurrence relation such as
Eq. (17) can be replaced by a two-term vector relation.
Define the vector Q for a circle to have the components
(q’ qA, 4B, qc)' Thus, e.g.,

Qiabes) = (Qabeb]s 9[> Yabe)> Iiab))- (18)

Then, the corresponding vector for the a, b, or ¢ daughter
is obtained simply by multiplying @ by one of the integer
matrices

2-122
1 000
0 010}’
0 001

22-12
01 00
10 00}’
00 01

222-1
010 0
001 0
\100 0

AT =

BT = (19)

CcT =

These matrices are of a degenerate type, in that the spec-
tral equation has the single solution 1. They all satisfy
the equation

(M-1)®=0, M=A,B,C. (20)

We now obtain Q for a given word by multiplying Qy;
by the product of matrices defined by the letters of the
word, but in opposite order. Thus, e.g.,

Qabse) = CTBTBTATQ( = T4 Qs (21)

and the curvature q is simply the first component of Q,
or, formally

Qlabbc) = XE]-Q[abbc]a (22)

using the coefficient vector X|; = (1,0,0,0).
Transposing to get things in the right order, we obtain

Gatbg = Q[JABBCX(1 = Qly Xpq)

T T
= Q[ X[abbe] = Q[)T{abbe) X
(23)
with obvious notation.
The universality modulo the choice of generating cir-
cles A, B,C is obvious — the dependence sits entirely in

Q-
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V. MINKOWSKI VERSION: SO(1,3)

Obviously, the quadratic identity satisfied by Q is pre-
served under the above transformations. The identity
can be written as

QTGQ =0 with G = 3 (24)

—
b
et et et

1
1
-1
1

|
Y

The invariance of the metric G under the transformations

can be expressed as
AGAT =BGBT =CGCT =aG. (25)

G is equivalent to the Minkowski metric H =

diag(1, -1, —1,—1), by the orthogonal similarity trans-
formation
1111
. 11 1-1-1
T —
G=U HUWlt:hU—2 1-1 1-1 (26)
1-1-1 1

Thus, Q is related to a lightlike Minkowski vector Q, and
the daughter-generating transformations A, B, and C are
in fact disguised SO(1,3) (i.e., Lorentz) transformations.
The Minkowski versions are also integer:

21 1 1
. [-10-1-1
A={ 111 0)
11 0 1
2 11 1
- 1 11 0
B=|_1-101 " (27)
1 01 1
2 1 11
- 1 1 01
=110 11
~1-1-10

They are the exponentials of degenerate SO(1,3) genera-
tors, e.g.,

00 1 1
P 00-1-1
A =exp 11 0 ol° (28)
11 0 0
with “electric” and “magnetic” parts K = (0,1,1), J =

(0,1, —1), leading to the vanishing of the two invariants
2K - J = K? — J2 = 0. The expression for g is of course
still of the same form:

Qlabbe] = Q[}ABBCX{] = Q[T (abbe) X[)
Q-SX labbe] = Q[abbc]X [ (29)

with Q[] lightlike and X (] given by the spacelike vector
Xy = -1-(1,1,1, 1). (30)

Obviously, Q[] and X [w] 8T€ related to the Lorentz vec-
tors A and V, introduced in Sec. III, by a transformation

carrying the dependence on the initial choice of generat-
ing circles A, B, C.

If the set S is conformally mapped onto the unit sphere,
the radii will be modified, but the basic geometrical prop-
erties will remain unchanged. The relation (13) between
the curvatures, leading to the linear recurrence (17), will
undergo a simple modification.

With r;, i = 1,...,4 denoting the radii (arc lengths)
of four mutually tangent circles on the sphere, the cur-
vatures are given by g; = cot(r;). The relation between
the curvatures then reads as

(@ +a+a3+90)°=2(g +95+95+d3) +4 (31)
as can be shown by considering five spheres in three-
dimensional Euclidean space. Thus, the curvature ¢ of
a circle is given in terms of the ones, g4,¢935,qc, of its
parents as

q=4qa+39B+4dc +2vq49B + qaqc +qBec — 1. (32)

But this does not change the linear recurrence relations,
thus, e.g., for the a daughter, we still have

9% =2(g+¢gB +4c) - ga. (33)
Hence, we can use the same disguised SO(1,3) matrices
T,, Ty, and T, (and the same X|;).

The only difference is that @ corresponds to a time-
like rather than a lightlike Minkowski vector, due to the
inhomogeneity in the relation (31). Similarly, on a mani-
fold of negative curvature, the @ vectors will be spacelike.
Hence, the formalism is universal also with respect to the
curvature of the underlying space — all dependence on the
particular representation of S resides in Q) alone.

VI. DUAL CIRCLES

All geometric information about a certain subset iy
can be extracted from the corresponding @ vector. In
the above we have concentrated on the curvature g of the
inscribed circle, but that gives only partial information
on the local geometry.

Another measure with a simple interpretation is the
curvature p of the dual circle Oy}, which circumscribes
the subset and cuts the parents of the inscribed circle at
right angles at their three points of contact, i.e., at the
“corners” of the subset. It is given by

1
P =449 + 9B9c + qBIC = 5(4 — g4 —4gB —qC)-
(34)

It is obtained simply by replacing the coefficient vector
Xy by

1
Y= -2-(1, -1,-1,-1) = -GX|. (35)
The Minkowski version is
~ 1
=-=(-1,1,1,1 36
]/[] 2( 1’ y Ly )7 ( )

which is a spacelike vector, just like X“, from which it
can be obtained by a “time” inversion.
Obviously, the dual curvatures p have their own lin-
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ear recurrence relations, obtained by inserting GG = 1
between all the factors in the expression (34) for p. We
obtain

P=YTTQy = %GCTTGGQ = X T Ry,
37)

where in the last expression we have introduced the P
vector,

P = —-GQ = (p, —Pas —Pb, —Pc)» (38)

with p, referring to p for the a daughter, etc., and where
we also have used the identity

GT'G=T". (39)

Thus, the formalism for P is the same as for @Q, provided
the transformation matrix T'7 is replaced by 7.

Note that the six points of contact among a dual circle
Opw) and its daughters are identical to the ones among
the circle o, and its parents, and that the former cut
the latter at these points at right angles. The curvatures
of the circumscribed circles Oy, transform with the in-
verse of the transposed transfer matrix, and they make
a four-tuple of tangent circles with the daughters rather
than with the parents, which further underlines their dual
relationship to the inscribed ones.

The dual circle circumscribing a subset Sp, is in turn
inscribed in a triangle A, defined by joining the centers
of the inscribed circles of the parents by straight lines.
We thus have (int denotes interior)

int(O[w]) C S C in’c(O[w]) C A (40)

cf. Fig. 2. The actual area of such a triangle is p/g4gBgc.-
The set of all such triangles at a given level (equal to word
length) constitute a partitioning of the initial triangle
A(, independently of the level.

VII. SOME SPECIAL SCALING LIMITS

We can now easily compute the scaling properties at
different corners of S. We consider some simple periodic
words.

(1) [@™): The dynamics is governed by the limiting
behavior of high powers of Tj,). Using (T' —1)® =0, we
easily obtain

FIG. 2. The inscribed circle, the subset, the dual circle,
and the triangle corresponding to one and the same word.

1+N N 00

_N 1-N 00
N(N+1)N(N-1)10 |’ (41)
N(N+1)N(N -1)01

N _
Tiq =

with a leading N2 behavior. Acting on X [) or Y[}, it gives
X[aaa...]=(1+N7 "‘NvN(N+1)7N(N+1))7 (42)
Yisaa.) = 3(1,~1,2N ~1,2N ~ 1), (43)

with different power behaviors, since Y}; eliminates the
leading terms. For ¢ and p, we get an N2 and N behavior,
respectively. The subsets in this limit become very long
and narrow, with width oc 1/N?2 and length oc 1/N.

(2) [(ab)%l']: We get the leading behavior by find-
ing the solutions to the characteristic equation for Tj,),
which are in this case also the eigenvalues. These are
1,1,v% 1/7*%, where v is the golden mean (~ 1.618). The
dominant eigenvalue is ¥4, and r and R will both go like
y~2N (~1/2.618Y).

(3) [(abc) 13!]: Doing the same thing for Tjas), we get the

eigenvalues (v £ /7)3, (—1/7 £ 44/1/7)3. The dominant
eigenvalue is here (y + /)3, and r and R proceed as
(v=v7)N (= 1/2.890"). This is the case with the fastest
decrease of size, and it is the analogy for this system of
the golden mean for the rationals.

For longer periodic words, the scaling properties can be
computed in a similar way — by making a spectral analysis
of the corresponding transfer matrix.

VIII. EXTENSION OF 8

The Apollonian set S is not in itself invariant under
the FLM’s F,, Fy, and F,, but it can easily be extended
to a larger set S*, that is. It is defined by adding to S
three copies of it: S4, Sg, and S¢, where

Sq = Fb_IS[a] = Fc_lsla], (44)

etc.

The extended set S* does not contain any unmatched
“corners.” To the lowest order it has the topology of
a tetrahedron, cf. Fig. 3. It is invariant under a dis-
crete subgroup G of SL(2,C)/Z2 containing the elements
corresponding to the conformal mappings F,, Fp, and
F,. The same group, represented by SO(1,3) transforma-
tions, leaves the corresponding extended set of Q vectors
invariant.

FIG. 3. The extended set S*.
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Due to the noncompact nature of G, no finite measure
can be defined on 8*, that is invariant under G.

This group is also the symmetry group of a certain
geometric structure, as will be shown in the next section.

IX. REGULAR STRUCTURES

A. Two dimensions

An icosahedron, e.g., can be viewed as a regular graph-
like structure in a two-dimensional manifold of con-
stant positive curvature (& the unit sphere). Such two-
dimensional highly symmetric structures can be labeled
by two integers k,l > 2, with k defining the type of area
element, and ! the coordination number around a node.
The dual structure is obtained by interchanging & and I.

The curvature of the embedding space depends on the
sign of the expression:

u= sin—;cI — cos % (45)

This is zero precisely when (k — 2)(l — 2) = 4, defining
the planar case. For the positive curvature case, p > 0,
the only possibilities are

e (3,3) = tetrahedron,
(3,4) = octahedron,
(4,3) = cube,

(3,5) = icosahedron,

(5,3) = dodecahedron.

In the planar case, u = 0, we obtain
e (3,6) = lattice of isosceles triangles,
e (4,4) = square lattice,
e (6,3) = honeycomb lattice.

For higher k and/or higher !, we have 4 < 0, and
such structures must be embedded in a negatively curved
space.

In particular, this is true for critical (barely self-
avoiding) regular trees, which are defined by k¥ — oo.
Such a tree, when pictured in the Poincaré circle, asymp-
totically generates a dense set of points at the boundary
r =1, cf. Fig. 4 for the case of [ = 3.

FIG. 4. The Farey tree (0o,3) in the Poincaré circle. It
does a Farey organization of the boundary r = 1.
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B. Three dimensions

The above type of structures can be generalized to
three dimensions: there we need three integers (k,!,m),
all > 2. Then (k,!) defines the body type of the build-
ing block, and (I, m) the coordination of neighbor nodes.
Thus, e.g., (4,3,5) defines a structure with cubes as
building blocks, and an icosahedrical arrangement of
neighbor nodes. The dual structure is defined by (m, [, k).

Also here, the curvature of the embedding space is
given by the sign of a simple expression:

v =sin % sin % — cos ; (46)
Again, trees are defined by & = oo, and must be embed-
ded in a space with negative curvature.

The symmetry group G of the extended Apollonian
set &* is the symmetry group of such a regular graph-
like structure in a three-dimensional manifold of constant
negative curvature (such as the unit mass shell in My).

In this case, the “Apollonian tree,” we have

(k,l,m) = (00,3, 3), (47)

and the graph is a tree with coordination number four.
For every node of the tree, the neighbor nodes are tetra-
hedrically arranged. The dual structure consists of infi-
nite hyperbolic tetrahedra.

C. The Apollonian group

The discrete symmetry group G of this structure (ex-
cluding reflections) is generated by three elements, Q, R,
and P, satisfying the following constraints:

Q?=R®=P?=(QR)*= (PR)’ =1, (48)

where Q and R generate the tetrahedric little group of a
node 4, while P interchanges this node with the neighbor
node j that is invariant under R.

In terms of these, A, B, and C are given as

A=PQ, B=PQRQ, C = PRQR, (49)

and they all map node 7 onto node j.

The group G has a covering group G’ with a nontriv-
ial center Z;. The simplest representation of the corre-
sponding elements in G’ is given (mod a sign) by the 2 x 2
integer complex matrices

a=(29) . o= () o= (11,1
(50)

The subgroup of G’ generated by A and B alone is the
modular group SL(2,Z), related to the Farey organiza-
tion of the rationals [5]. The corresponding factor group
SL(2,Z)/Z, is the symmetry group of the subtree (oo, 3)
of the Apollonian tree, displayed in Fig. 4.

The Apollonian tree can be generated by recursively
applying the corresponding triple of SO(1,3) matrices,
A, B, and C, as previously defined, to the starting point
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(1,0,0,0), and adding also the preimages (which can be
obtained as simple rotations of the images).

D. The Poincaré sphere representation

In order to be able to display the tree in a compact
manner, we need a compactified representation of the
unit mass shell. The mass shell, w? — k? = 1,k € R3,
w > 0, is a three-dimensional manifold with a constant
negative curvature. From the usual Minkowski metric we
obtain the induced metric,

—ds? = —dw? + dk? + k2dQ? = dk?/w? + K2dQ%  (51)

(with € representing the angles).
Now define r € R3, r2 < 1, by

k or 14 r2
HAREIS i 1-r2 YT 12 (52)
Then the metric in terms of r is conformal:
4
—de? — 2 | .2302
ds A=) (dr* + rdQ*) (53)

and the curvature is —1.

This defines the Poincaré sphere representation, which
is used to picture the Apollonian tree in Fig. 5. The
result is striking: The asymptotic picture that emerges
when r — 1 is precisely a conformal mapping of the (ex-
tended) Apollonian set. The circular voids correspond to
the noncompact building blocks of type (o0, 3), each of
which occupy a circular part of the border r = 1.

There seems to be no way to define a finite scalar mea-
sure on such a tree, that transforms simply under the
symmetry group, since the group (and the tree) is non-
compact. This can only be done on a subtree, obtained
by cutting the full tree at a node or, equivalently, at a
link.

X. DISCUSSION

The Apollonian packing has been shown to have many
interesting properties, such as the possession of a high
degree of symmetry, described by a discrete noncompact
group G, and the relation to a certain regular tree struc-
ture.

A. Generalizations

Alternatively, one may consider trees with cubical
(00,4,3), octahedrical (oo,3,4), etc., arrangement of

FIG. 5. The Apollonian tree in the Poincaré sphere rep-
resentation (stereo picture).

neighbors, which are related to generalizations of the
Apollonian tiling of the plane.

By varying the invariant link length of a tree, the cut-
ting angle a of the circular voids is modified. This is
equivalent to modification of the integer k describing the
surface element in the corresponding regular structure.

Thus, with a real finite a, k formally will become imag-
inary, and a supercritical tree results: The branches, as
seen in the Poincaré representation, diverge. The cor-
responding Apollonian set becomes completely discon-
nected, and the fractal dimension decreases.

For certain (imaginary) values of o, k will be integer:
the result is a graph (k, 3, 3) with k-fold loops. The kth
power of the corresponding group elements A, B,C will
become the identity element, and the symmetry group
will be a factor group of G. The corresponding Apollo-
nian set is connected, and the fractal dimension larger.

For a small enough k, the graph becomes finite. The
(extended) Apollonian set is replaced by a circular disk
with a finite number of circular holes. The fractal dimen-
sion becomes two.

In D = 2, the case (00, 3) is related to the Farey orga-
nization of rationals, as previously mentioned, cf. Fig 4.
With an imaginary k, a topologically similar tree is ob-
tained, but the branches diverge. At the boundary of the
Poincaré circle a fractal occurs with a finite void for ev-
ery rational, which is reminiscent of the devil’s staircase
for the mode locking in circle maps LS]

For D = 4, various tilings of R°® by spheres result,
which can be used to model different kinds of space-filling
packings by spheres, such as fractal foams or gravel. By
modifying the cutting angle, the packing of soft spheres
can also be described. Such packings are related to reg-
ular structures in curved four-space, described by three
integers (k, [, m,n).

In all cases, and for every D > 2, there is a linear
recurrence relation such as Eq. (17), by which all radii
can be computed.

A different kind of generalization, space-filling bear-
ings, has been studied, e.g., by Manna and Herrmann
[2]. These are labeled by two integers, m,n, where each
choice corresponds to a tree with two types of alternating
nodes with local Z,, 3 or Z, 3 symmetries. Also there,
the recursive computation of radii can be linearized, in
much the same way as in the case of Apollonian packing.

Combining this type of generalization with the kind
described above, a very general class of circular packings
can be defined.

B. Fractal properties

In a multifractal analysis [6] one can study, e.g., the
partition function

Zn(d) =) 14, (54)

where the sum runs over the subsets of SV, and ! is some
length measure of the subsets. The fractal dimension dp
is then given by the smallest d, such that Zn(d) stays
finite in the high-level limit N — oo.
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With 1/ chosen as some linear combination (such as
q or p) of the components of the vector @ associated
with a subset, Zx(d) can be computed analytically for
every nonpositive integer value of d, simply by finding the
dominant eigenvalue of A + B + C in the representations
of G, which are symmetric direct products of the vector
representation, to which @ belongs. Unfortunately, that
does not help much, since dg is positive.

For numerical computations of dr, the obvious choice
for a length measure would be 1/q or 1/p. A toy-sized
numerical computation of dr was performed (on a DEC-
station 3100), using the ratio Z;2/Z1;. The result for dp
was 1.31415 using 1/p as a length measure, and 1.297 28
using 1/q. The average of the two is 1.305 71, quite close
to the result 1.305684+0.000010 of Ref. [2].

C. Conclusion

Given their simple analytical and computational prop-
erties, the various generalizations of the Apollonian tiling
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might be useful as models of various fractal structures ex-
isting in nature.

The inherent symmetry properties in packings of this
type, and the existence of simple vector representations
with linear recurrence relations, gives — apart from math-
ematical beauty — good reason to hope for a better ana-
lytical understanding of their structure.

The (multi-) fractal properties of these packings have
so far only been studied numerically. The fractal dimen-
sion dr of a generalized Apollonian set is intimately re-
lated to the properties of the corresponding symmetry
group G, and one might hope that an understanding,
e.g., of the unitary representations of G could provide
some means for an analytical determination of dg.
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