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Abstract

We show that every Lie algebra is equipped with a natural (1, 1)-variant
tensor field, the “canonical endomorphism field”, naturally determined by
the Lie structure, and satisfying a certain Nijenhuis bracket condition. This
observation may be considered as complementary to the Kirillov-Kostant-
Souriau theorem on symplectic geometry of coadjoint orbits. We show its
relevance for classical mechanics, in particular for Lax equations. We show
that the space of Lax vector fields is closed under Lie bracket and we intro-
duce a new bracket for vector fields on a Lie algebra. This bracket defines
a new Lie structure on the space of vector fields.
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Notation. We shall distinguish between purely algebraic and differential prod-
ucts by using two types of brackets:

[,] — Liealgebraproduct,

[,] — Lie commutator of vector fields, Schouten bracket, Nijenhuis bracket.
The summation convention over repeated indices is adopted throughout the

paper.

1 Introduction

It is well-known that the underlying dual space L* of a Lie algebra L possesses
— as a manifold — a canonical Poisson structure in terms of a smooth bi-vector
field Q € A2TL*, which satisfies the Jacobi condition [2, )] = 0, and, when
restricted to coadjoint orbits, is nondegenerate and therefore invertible into a
symplectic structure [16, 17, 12]. The existence of these symplectic sheets is the
content of the Kirillov-Kostant-Souriau Theorem [3, 9, 15].



In this paper we present an overlooked fact that the Lie algebra L itself also
possesses — as a manifold — a natural differential-geometric object, namely a
(1,1)-type tensor field A € TV L that we shall call the canonical endomor-
phism field on L. The principal geometric property of A is that it is propor-
tional to its own Nijenhuis derivative (Theorem 2.1).

We discuss the relevance of this object for dynamical systems. It turns out
that what Hamilton equations are for the dual space L*, Lax equations are for
L. The principal property of A assures that the space of “Lax vector fields” is
closed under the Lie commutator and, moreover, it allows one to introduce a
new bracket of vector fields on L, which is the analog for Lax equations of the
Poisson bracket on Hamiltonian vector fields.

2 The canonical endomorphism field on a Lie alge-
bra

Customarily one defines a Lie algebra as a linear space L with a product L x
L — L denoted [v, w] (double bracket). The product is bilinear, skew-symmetric
(i), and satisfies the Jacobi identity (ii):

(i) [[vaﬂ = _[[wvv]]
i) v, [w, 2]] + [w, [z, 2]] + [z, [w, 2]] = 0

In a basis {e; }, the commutator can be represented via “structure constants”:

1)

[eise;] = ijek (2)

Here we shall rather follow [10] and define a Lie algebra as a pair {L, ¢} where
cisa (1,2)-type tensor that in the above basis is

c= %cfj et ANET @ ey (3)

where {¢'} is the dual basis. The algebra product becomes a secondary, de-
rived, concept: v, w] = (v A w)_e = iyiyc. Similarly, the adjoint action of
v € L is defined simply as a (1,1)-tensor ad,, = v_lcin L. Of course, from the
structural point of view both definitions are equivalent, {L,c} ={L, [, -]}
The point of the present paper is to look at the space L as a flat manifold and
consider various differential-geometric objects on it. (We shall assume that L is
a real and finite dimensional.) The linear structure of this manifold allow one
to prolong any tensor 7" in L to the (“constant”) tensor field T" on the manifold
L. In particular, the manifold L is equipped with a constant (1, 2)-type tensor
field A = ¢
A= icf; da* Ada? @ O (4)

where {z'} are coordinates on L associated with the basis {e;} and where we
denote 0; = 0/0x". The manifold L is also equipped with a natural vector field,
the Liouville vector field, which in a linear coordinate system is



Here is our basic observation:

Theorem 2.1. The manifold of the Lie algebra L possesses a natural field of endomor-
phisms (i.e., a (1,1)-variant tensor field) A € TV L defined by

A=J_\ (6)
Its Nijenhuis derivative [A, A] is a vector-valued biform
[A,A =-2)_1A (7)
Moreover A acts on the adjoint orbits on L.

We shall call A the canonical endomorphism field on L. In the coordinate
description, A and its Nijenhuis derivative are

A = ai ey da? © 0y, ®)
(A A = —aF ¢ cby (da® A da®) ® 0

The endomorphism field .A may be viewed as a family of local transformations
that at point 2 € L can be represented by matrix A¥(z) = 2" cf;.

Before we give its proof, let us restate the theorem in more standard terms.
The natural isomorphism of a tangent space at any # € L with the space L
itself will be denoted by i, : T, L — L. Then Theorem 2.1 states that every Lie
algebra L possesses, as a manifold, a unique natural tensor field A € THV L,
which at point x € L is defined as an endomorphism taking a tangent vector

veT,Lto
A, (v) = (M;1 o ady o pg)(v) )

or, in a somewhat sloppy notation, A(v) = [z, v]. Its Nijenhuis derivative [A, A]
is a vector-valued biform the evaluation of which equals for any v,w € T'L:

[A, A](v,w) = —2A([v, w])
= —2([Av, w] + v, Aw]) 10)

at point = € L, the dependence of which was suppressed in the notation.

Remark 2.2. The canonical endomorphism field A is defined for an arbitrary
algebra and its differential-geometric properties, including the Nijenhuis bracket
[A, A], will reflect the type of this algebra. In the present paper we restrict to Lie
algebras where the Jacobi identity implies particularly pleasant consequences.

The above theorem may be viewed as a counterpart of the KKS theorem:
the essence of which is that the dual space L* is equipped with a bi-vector
field Q = xy.c};0' A 97 (in our language Q = .J _I)\). Instead of the Nijenhuis
bracket we have the Schouten bracket [(2, Q]s.;, = 0. Thus Q2 defines a Poisson
structure, which, moreover, restricts to the coadjoint orbits, on which its inverse
w defines a symplectic structure, w = 0. Section 8 summarizes these parallels.



3 Lie algebra in pictures

Tensor calculus gains much transparency when expressed in graphical lan-
guage.

Basic Glyphs. Here are the basic glyphs corresponding to various tensors:

s dn £ o

> T

scalar vector 1-form endomorphism  scalar product (3,?)-variant
ensor

where s is a scalar, v is a vector, « is a covector, A is an endomorphism, g is a
metric or biform. The links with arrows — and links with circles —o0 rep-
resent the contravariant and the covariant attributes of a tensor, respectively.
You may think of them as contravariant/covariant (upper/lower) indices in
some basis description. Scalars have none.

The “in” and “out” links may go any direction. Turning and weaving in
space does not have any meaning (unlike in some other convections). For in-

stance: \ /</‘ \ /

is as good as this T /\\/
I LT

The links may leave the box at any position, but the order of the point of
departure is fixed: the contravariant indices are ordered clockwise, while the
covariant indices counterclockwise. Links may cross without any meaning im-
plied.

this representation

Glyphs may be composed into pictograms that represent terms resulting by
manipulation with tensors. The tensor contractions are obtained by joining
”ins” with “outs”. Here are some basic cases:

Evaluation: Here is the evaluation of a covector on a form:

« (%

(a,v) = a(v) = or simply




Scalar product: The scalar product of two vectors is a scalar g(v, w) =, but if
only one vector is contracted with g, then the result is a one-form:

Endomorphism A acting on a vector v or covector « results in a vector or cov-
ector, respectively:

Trace may be represented by connecting “in” with “out” in a pictogram; If
A, B,C € End L are endomorphism of some linear space L, then we have:

The notable property of trace of a composition of endomorphisms, namely its
invariance under cyclic permutation of the entries, Tr A; o ... 0 Ap_1 0 Ay =
TrAs o ... o Ay o A1, becomes in graphical language verifiable with a simplicity
of a mantra on a japa mala.

Lie algebra in pictures. An algebra is defined by a (1,2)-variant tensor c, as
shown below on the left. Also a product and adjoint representation is shown:

Alg structure =

If a single algebra is considered, the letter “c” will be suppressed.

In the case of a Lie algebra, besides skew-symmetry we have the Jacobi iden-



tity, which may be written this way
- D @
a b b a
a b

The labels o and b are only to discern between different entries.

Perhaps the simplest derived object is a characteristic one-form xy € L* the
value of which on a vector v € L is x(v) = —Trad,. Its pictograph is

(This one-form vanishes for semisimple algebras.)

The Killing form is defined as an inner product K (v, w) = Trad,ad,. In the
diagrammatic script it is easy to define the corresponding 2-covariant tensor K

Every Lie algebra possesses a skew-symmetric exterior Lie 3-form w that for
any triple v,w,z € L takes value w(v,w, z) = Trady,, ,jad.. Using diagram-
matic script we may “draw” the form w directly — here it is, simplified with
the use of Jacobi identity (11):

e oo

where a and b are merely labels to distinguish the covariant entries. If we use
symbol the A or “alt” inside a loop to denote the signed sum over all permuta-
tions of entries of a tensor (skewsymmetrization), then the Lie 3-covariant form
is



@ - py

4 Differential geometry on a Lie algebra

Let us now look at the differential geometry of Lie algebra viewed as a mani-

fold. In the diagrammatic language the objects of Theorem 2.1 are

Definiion: A= | | Theorem: 1[A, A] =

Since the contraction with J is introduces dependence on poisition (coordi-
nates x), we shall use rather notation that will be easier perceptually. Thus, for

instance:

=
I

||
Il

° "

Every element (vector) v € L defines a “constant” vector field v € XL
on manifold L obtained by parallel transport; in coordinates,, if v = v'e; then
v = v'9;. The canonical endomorphism field .4 on manifold L applied to such
fields defines a representation of Lie algebra L in terms of vector fields on L,

namely with every algebra element v € L, we associate a vector field

X, =Av

= z'v? cfj O =

Proposition 4.1. The map v — X, defines a homomorphism {L, [-, -]} — {XL,[-, -

(the infinitesimal representation of L in terms of X L):
[X’LM Xw] = X[[v,w]]
If the center of L is trivial, the map presents a monomorphism.

Proof. The proposition readily follows from the Jacobi identity.

(12)

(13)



Corollary 4.2. The following are convenient formulae

(0)  [Xo, wl = [o,v]
@) [©.0]= [l
) [0,w] =0
The image of A spans at every point a subspace of the tangent space of L,
defining in this way a distribution

D=ImA=span{X, |veL} (14)

The integral manifolds of this distribution coincide with the adjoint orbits de-
termined by the action of a Lie group on Lie algebra. Note however that we
may define “adjoint orbits” without reference to the Lie group simply as the
integral manifolds O of D, satisfying TO = D.

Now we prove the theorem.

Proof of Theorem 2.1: Recall that the Nijenhuis bracket [K, K] of a vector-valued
one-form (endomorphism field) K with itself is a vector-valued bi-form that,
evaluated on two fields X and Y/, takes the value according to

1
2
(see, e.g., [13]). Evaluating (half of) the Nijenhuis bracket [A4, A] on two con-

stant vector fields v and w and using formulae of Proposition 4.1 and 4.2, one
gets

[K,K|(X,Y)=[KX,KY] - K[KX,Y] - K[X,KY] + K*[X,Y] (15

1 - - -

5[“4’ A](uw) = [Xv7 Xw] - A([me]) - A([U, Xw]) +0
= Xl = Xow] = X[ou]
= _X[[v,w]]

In particular, substitution X = d, and Y = 0, leads to the coordinate formula
(8). Now, let us show that A can be restricted to orbits, i.e., A(T,,0) C T, O for
each point = € O. First, rewrite (9) for X € T, L:

AX) = p " ([, (12 (X)])
Vector of the vector field X, at point € L can be expressed as
Xo(2) = A(v) =z ([, v])
Thus
AXy) = pg ([2, (X)) = 1 ([, [, 0]]) = X o) € TO

which was to be proven. O



Example 4.3. Consider the 2-dimensional solvable algebra defined by [e1, e2] =
es. Then
A =1z dre ® 0o
[.A, A} = —2x (dl‘l A\ daig) ® 0o

The adjoint orbits are lines parallel to e; and the canonical endomorphism —
when restricted to any of them — becomes a dilation.

Example 4.4. The Lie algebra of 3-dimensional rotations, sos3, is defined by
relations |e;, e;[= ¢, ex. Thus
A= (dz® ® 05 — da® @ 9o) + (cyclic terms)
[A, A] = dz* A da® @ (21 0y — 220;) + (cyclic terms)

The orbits are spheres defined by the Killing form. On the unit sphere, tensor
A forms an almost complex structure, A o A = —id.

Remark 4.5. Although the Nijenhuis bracket (7) vanishes for two-step nilpo-
tent algebras, (including Heisenberg-type algebras [8, 7]), in general it does not,
and therefore endomorphism field A is in general not integrable. Note that for
vector fields of infinitesimal representation, the bi-form (7) takes at any point
x a vector-value

[-’4’ A](vaxw) = P';l ° [[xa M.’L‘,U]], [[xav]]]]]] (16)

Thus A restricted to an orbit O C L is (locally) integrable if [z, [[z, v], [z, v]]] =
0 for every z € O and every v,w € L. This is true for so(n), n < 4 and for
nilpotent algebras of the upper-triangular n x n matrices, n < 5.

5 Other basic properties of the endomorphism field

The fundamental property of the canonical endomorphism field (Theorem 2.1)
is

A A =-2X1A
Other basic properties of the geometry of a Lie algebra are summarized below:
Corollary 5.1. The endomorphism field on a Lie algebra satisfies:
(1) £,A=A4A
(1) JIA=0
(ii) ImAl, = Imad]

(iv) Ker A!O = Kerad, N Imad,

(17)

Here is a property analogous to the coadjoint representation preserving the
Kirillov-Poisson structure on the dual Lie algebra.



Proposition 5.2. The endomorphism A is preserved by the action of the adjoint rep-
resentation, that is
£x, A=0 WYwel (18)

Proof. Use Leibniz rule to show that (£x A)(w) = 0 for every w: (£x, A)(w) =
£X1, (A(w)) — Aﬁwi = £Xva - A[[U,’LU] = X[[U,w]] — X[[ww]] =0. O

Proposition 5.3. The endomorphism field on a Lie algebra satisfies:

(i) Tr(AoA)=K(J,J)
(i) Tr(A) =x(J) (19)
(131) K(Av,w) = —K(v, Aw)

where the objects are as follows: K is the Killing form defined for two vectors as
K(v,w) = Trad, o ad,,. When evaluated for (J, J), it becomes a quadratic scalar
function K(J,J) = x%a®cF.ci,. Similarly, x € L* is a characteristic form on L de-
fined x(v) = Trad,,. Property (iii) states that the endomorphism A is skew-symmetric
with respect to the Killing (possibly degenerated) scalar product.

The endomorphism defines for every k = 1,2, ..., a scalar function of the
power trace
I,=TrA*=Tr(ad, o ... oad,) (20)

that will be called Casimir polynomials on L. In the diagrammatical language
they are:

xT T T x T T x xT T T

etc. Clearly, the second invariant is a quadratic function related to Killing form
and will be denoted x = I, = K(J,J) = &, but the third is obviously not
related to the Lie 3-form.

Corollary 5.4. Differentials of the trace functions are among the annihilators of A,
ie.,
Addl, =0 (21)

10



6 The endomorphism field and dynamical systems

Since the dual Lie algebra L* with its Poisson structure has deep connections
with classical mechanics, namely with Hamiltonian formalism, one may ex-
pect that so does a Lie algebra with its endomorphism field .A. The candidate
coming to mind first is Lagrangian mechanics, as suggested by this chain of
correspondences:

KKS theorem  —  symplectic = — Hamilton

(Lie coalgebras) geometry equations
Theorem 2.1 — endomorphic — ?
(Lie algebras) geometry

Duality between tangent bundle T'Q) over a manifold M, which possesses enough
structure so that any (“regular”) function £ on T'() defines a dynamical system
via Lagrange equations, and the cotangent bundle 7 M with its own symplec-
tic structure w granting a Hamiltonian formalism induced by the Hamiltonian
H, suggests that the question mark in the above diagram of analogies should
be replaced by some sort of Lagrange formalism. This guess may be supported
by the fact that the Lagrange formalism is actually based on the natural endo-
morphism field on the tangent fiber bundle (see Appendix B).

Yet it seems that the most direct formalism at the question mark seems —
much generalized — Lax equations of motion.

Although Lax equations are typically defined as matrix equations, the en-
domorphism A allows one to geometrize it in a new way. In the next sections
we shall discuss “Lax vector fields” on a Lie algebra and will push the analogy
with symplectic geometry to see how far it goes.

We show that, quite pleasantly, “Lax vector fields” form a closed subalgebra
under vector field commutator. We shall also define a new “Poisson bracket” in
the space of vector fields on Lie algebra, and prove a homomorphism between
Lie algebra of vector fields with this bracket with the standard Lie algebra of
vector field.

7 The algebra of Lax vector fields

Let us start with a general construction. By analogy to symplectic geometry
dealing with manifolds equipped with symplectic structure, {M, w}, we may
consider a pair { M, A} where manifold M is equipped with a structure defined
by a field of endomorphisms — (1,1)-variant tensor field on M. Exploring fur-
ther the analogy, we may study dynamical systems described by vector fields
that are defined by their “potentials” — other vector-fields. Thus, instead of
Hamilton equations, we have a map

XM — XM: B — Xg=B_JA = AB. (22)

11



This contrast with symplectic geometry, where the potentials of dynamical sys-
tems are differential forms, namely differentials of Hamiltonians. It would be
natural to require that the set of all such dynamical systems , X4 M = {AY]Y €
XM}, be closed under the Lie bracket of vector fields. This way it would form a
subalgebra of { Y M, [., .]}. The final demand would be to have a well-defined
product of vector fields (potentials) such that the map (22) is a homomorphism
of the corresponding algebras.

One may ask why one would want to replace one vector field by another:
one gain may be that in the new form some integrals of motion may be found
more easily.

In this section we show that a Lie algebra with the endomorphism field de-
fined in the previous sections forms such a system. In particular, it is equipped
with a bracket for potentials that we define below.

Consider the underlying linear space L of a Lie algebra {L, [, |} as a man-
ifold. Any smooth vector field B can be viewed as a generator (or “potential”)
of a dynamical system defined by vector field X5 defined

Xp = AB (23)

The integral curves of Xy satisfy the Lax equations, which in a somewhat im-
precise way are expressed
£(t) = [z, By]

where the x on the left side is understood as a point in L, while the x inside the
bracket on the right side as a vector in L. More accurately,

é(t) = [Jey» Bew)]
— Ao Bocl)

Definition 7.1. Vector fields on a Lie algebra L of form (23) will be called Lax
vector fields generated by B, or Lax dynamical systems. In the diagrammatic
representation, the Lax vector field is:

Xp=BlA= | | (24)

r [B]
The space of Lax vector fields will be denoted by X4 L = A(XL) C XL.

A simple and a well-known fact is the existence of Casimir invariants:

Corollary 7.2. The dynamical system defined by a Lax vector field (23) leaves Casimir
polynomials I}, invariant, Xl = 0, for any B € X' L.

Proof: (graphical) We show the reasoning for I, = K(J, J) (quadratic polyno-
mials defined by Killing form):

12



XBIQ = (XB ®J)JI2 =2X

where first we used Jacobi identity (11) and then skewsymmetry of the result-
ing w. The right side vanishes as w has two identical entries, x. The argument
for the other Casimir invariants is similar. [

The geometric meaning of the fundamental Nijenhuis property of the en-
domorphism field becomes clear in the current context. Namely, it implies that
the space of Lax vector fields X 4L is closed under the commutator of vector
fields [X 4L, X4L] C X4L. A new bracket of vector fields is implied.

Theorem 7.3. The space of Lax vector field forms a subalgebra of the algebra of smooth
vector fields, XL < X L. In particular, if Xp and X¢ are two (global) Lax vector
fields, then their commutator is a Lax vector field with potential

{B,C} = —=[B,C] + [XB,C] + [B, Xc| — XiB,¢] (25)

so that there is an homomorphism between the Lax vector fields with the reqular vector
field commutator and all vector fields with { , } product:

[(XB, Xc] = X(B,cy (26)

Proof. This follows from the fact that [A, A] is proportional to A. Rewrite the
definition of the Nijenhuis bracket (15) for A and use Theorem 2.1:

(X, Xc] =[AB,AC|

1[A, Al(B,C) + AlAB,C] + A[B, AC] — A?[B, C|
=—A[B,C] + A[Xp,C|+ A[B, X¢] — AX B,
=A ( —HB,CH + [XB,C] + [BvXC] - X[B,C] )

(27)

where in the last part we see that the endomorphism field A may be “factored
out” thanks to Theorem 2.1. Thus the commutator is of the form (23) the for-
mulas in the theorem follow. O

Proposition 7.4. The bracket (25) can be calculated by the following formula
{A,B}:[[A, B]]—FXAB—XBA (28)
N—————’
(4,B)
where X B = 2 AJ ¢f; 0, BP 0,

Notice that although the two right-most terms are defined in coordinates,
their difference has a coordinate-free meaning, as it can be defined by X4 B —

13



XpA={A B} —[A, BI.

The bracket { , } turns the space of vector fields on L into a Lie algebra
and can be viewed as a “differential deformation” of the Lie algebra bracket
[ . ]. Due to its involved nature, it may be a rather surprising that defines
a Lie algebra. The Jacobi identity is not a direct consequence and results by
intertwined interaction of the Jacobi identities of the Lie algebra L and of the
Lie algebra of vector fields.

Remark 7.5. For two constant vector fields v and w that extend vectors v, w €
L,itis {v,w} = [v,w] . Thus the bracket formula (26) reduces in this case to
the infinitesimal representation [X,, Xy = X[y, -

Theorem 7.6. The pair {XL, { -, - } } forms a Lie algebra, i.e., the bracket (25,29)
of vector fields satisfies the following properties:

(i) (linearity)
(i) {A,B} =—{B,A} (skewsymmetry) (29)
(t11) {A{B,C}}+{B,{C,A}} +{C,{A,B}} =0 (Jacobi identity)
Proof. If X,Y € XL are two vector fields, then we denote X > Y = X(9,Y7)0;

a vector field calculated in linear coordinate system. Thus, formula (28) can be

written as
{A,B} =[A, B + (A, B)

where
(A, B):XADB—XBDA

Now, using the formula X 4 = [z, A], we get
{4, B}, Cy={[A, Bl + (4, B), C}
= MA7 B]]? O]] + [[(Av B)’ O]] ""([[Av Bﬂv C)""((Av B)v C)

(a) (b) (c) (d)
=[[4, B],C]  (a)

(0)
+ [[=, A] > B, C] —[[=, B]» A, C] (b)
(1) 2
+ [z, [4, B]]>»C —[[z, C]> A, B] —[A, [z, C]> B] (¢)
(

(5) 1) (2)
+ [z, [z, A]> B]»>C —[[z, C], A]> B — [z, [z, C]>A]>B (d)

]
(3) (5) (3)
— [, [z, B]> A]>C+[[xz, C], B]> A+ [z, [z, C]>B]> A (d)

(4) (5) 4)

(+)

14



where the letters (a), (b), (c), and (d) are used to indicate the origin of terms in
the second part of the equation. The sum

{{4, B}, C} + {{B, C}, A} + {{C, A}, B}

contains every term of equation (x) in each of the three cyclic permutations
of A,B, and C. The sum of such terms marked by any of the numbers (1) to
(4) vanish due to opposite signs. The group of terms marked by (0) and terms
marked by (5) both vanish, each due to the Jacobi identity of the Lie algebra
product. O

Corollary 7.7. There is a Lie algebra homomorphism {XL,{., .}} — {Xa, [., .|}
between Lie algebra of vector fields on L with bracket defined by (25) and the Lie algebra
vector fields on L restricted to Lax vector fields.

By analogy to Hamiltonian formalism of classical mechanics we have a
property that may be viewed as a counterpart of Poisson Theorem:

Corollary 7.8 (“a la Poisson”). If vector fields B and C are Lax potentials of sym-
metries of a dynamical system, then so is { B, C'}.

Proof. Use the Jacobi identity for vector fields

(XB, [Xo, X] |+ [X, [XB,Xc] |+ [Xe, [X,XB]]=0
0 X(p.c} 0

hence the claim: £, X =0. O

Basic examples. What can be used as a Lax potential? The simplest are constant
vector fields, in which case the homomorphism reduces to Proposition 4.1 (see
Remark 7.5). Also, a Lax vector field may be “reused” as a potential for a new
Lax vector field. The following formulas for bracket {-,-} may be useful for
such dynamical systems

{U7w} = [[v,w]] {Xvaw} = X[[U,w]] {Xvan} = X.A[[v,w]] - [[Xmeﬂ

where v and w are understood as constant vector fields (the tilde is suppressed
for simplicity).

Another class consists of Lax vector fields generated from linear vector
fields on L. Euler’s equations of the motion a rigid body belongs to this cat-
egory. Here is their — somewhat naive — generalization to arbitrary Lie alge-
bra: Let R € End L be a matrix describing the tensor of inertia. If vector field
J JRis used as a “potential”, the resulting Lax vector field X = A(J I R) de-
scribes the dynamical system of “rotating body”. In the case of the Lie algebra
of 3-dimensional orthogonal group L = so(3,R), with the standard coordinates
(z,y, z),and for a diagonal matrix R = diag(a, b, c), we get the standard Euler’s
equations

X =(b—a)zyd, + (c — b)yz0; + (a — ¢)zx0,

(or & = (¢ — b)zy, etc.). A more accurate description will be given elsewhere.

15



8 Analogies and dualities

The analogies between differential geometry (calculus) on a Lie algebra and
on a Lie coalgebra are shown in the following table. Note that the Lie algebra
structure c is a (1,2)-variant tensor on the Lie algebra L, but it is a (2,1)-variant
tensor on the dual space L*. This results in quite different calculus on both

spaces treated as manifolds.

Lie algebra L Lie coalgebra L*
as manifold as a manifold
Coordinates {x;} {x'}
Constant structure tensor A=¢C N=¢
...in coordinates = %cfj O ® dx A dxd = %ij dzr, @ O* A&
Jacobi vector field J = x;0 J =z,
Primary differential object A=J_X Q=J_XN

...in coordinates

Basic rule

(consequence of Jacobi identity)

“A potential”

...generates dynamical system

= scfat O © da
(endomorphism field)

[A A = —2AX

B € XL (vector field)
Xp=B_1A=AB
(Lax equations)

(Poissor{ structure)

2,0 =0

H € FL (function)
Xy =dH _1Q
(Hamilton equations)

Table 1: Legend: 9; = 9/9x;, 0" = 0/0z". Tilde ~ denotes extension of tensors
to tensor fields on L and on L*, defined by the affine structure on linear spaces.

On L* as a manifold, A is (2.1) variant. In pictures, the canonical Poisson
structure on L* and Hamiltonian mechanics may be illustrated as follows:

X
N ‘/#' O=J N ‘/#' Xy = dH_1Q =

9 Remark on Lagrange equations

T

dH

While the cotangent bundle 7@ over a manifold () possesses a canonical dif-
ferential biform w € A%Q defining symplectic structure, the tangent bundle
TQ possesses a canonical (1,1)-variant tensor field S € THYDTQ defining an
endomorphism field (endomorphisms of T(7'Q) and T*(7'Q)). In the natural
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coordinates (z?,v%) on T'Q, this tensor can be expressed as S = z2: ® dz’ (sum
over 7). Its basic property is Ker S = Im S (implying nilpotence S o S = 0). If £
is a function on T'Q) (a Lagrangian), then one defines a biformw =d o S o d L,
which for a “regular” Lagrangian is nondegenerate and therefore forms a sym-
plectic structure. It is easy to see that Lagrange equations may be written as

£4(SodL) =dL

The existence of S and its role in Lagrangian mechanics was noticed rather late
[11]; it replaces a rather awkward notion of “vertical derivative” used before in
an attempt to geometrize Euler-Lagrange equations [1].

In a series of papers [4, 5], a notion of almost tangent structure on a differen-
tial manifold M has been introduced, as a tensor S € T, M that satisfies

(1) KerS=ImS (= S.5=0) (30)
(ii) (5.5 =0
where the second condition (ii) is a generalization of the Schouten-Nijenhuis
bracket to “vector-valued differential forms” (see e.g. [17] and [18]), which as-
sures (local) integrability of the distribution Ker S. As a result, one obtains all
of the structure of the tangent bundle (Ker S gives the fibering) except distin-
guishing the zero-section.
A Lie algebra may provide an example of a generalized version of such an
Euler-Lagrange structure, in which the above conditions (30) are relaxed.

Hamilton — cotangentbundle —  symplectic = —  KKS theorem
equations T°Q geometry (Lie coalgebras)

Lagrange —  tangentbundle — endomorphic —  Theorem 2.1
equations TQ geometry (Lie algebras)

Whether such potential relationship between Lie algebras and generalized
Lagrangian formalism would be fruitful is an interesting question in the con-
text of geometric quantization and representation theory known for coadjoint
orbits in the Lie co-algebras.
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