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The design of the arch window illustrated in FIGURES 1 and 2 should please every fan of 
geometry.  With this window in my home, whether the circular medallion of FIGURE 1 or semi-
circular arch of FIGURE 2, I would offer guests a puzzle:  start with two small central circles of 
unit diameter. Then find the radius R of the two circles on their left and right, given that a a pair 
of congruent circles (dotted) that are simultaneously tangent to all the other circles.   
 
 
 
 
 
 
 
 
 
 
 
Guests could deduce, by multiple application of the Pythagorean Theorem, for instance, that R = 
ϕ  ≈ 1.618,  the golden ratio!   
       There is more: the centers of the two circles of radius R are located at distance 1+ϕ = ϕ2 
from the center of the window and the radius of the big circumscribing circle is the cube of the 
golden ratio, 1+2ϕ = ϕ3.  Actually, the figure is replete with the golden ratio and its powers; 
hence the design deserves the name golden window.   
       I could spend time calling my guests’ attention to its “golden” attributes of the window. To 
start with, the window contains powers of the golden ratio from ϕ0 to ϕ4, as shown in FIGURE 2. 
It also contains various segments with golden cuts, as shown in the same figure below the 
window. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

R = ? 

1 

Figure 2  Golden Window 
– proportions. 

Figure 1  A puzzle. 
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Recognizing such segments is an easy game (once you establish that R = ϕ) if only you 
remember the fundamental properties of the golden ratio, namely 
 

ϕn = ϕn–1 + ϕn–2       and        ϕn = Fnϕ + Fn–1 , 
 
where Fn denotes the n-th Fibonacci number, F1 = 1, F2 = 1, F3 = 2, etc., with Fn+1 = Fn + Fn–1.  
For small n we have: 
 
    ϕ2  = ϕ1 + ϕ0   =   ϕ + 1 
     ϕ3  = ϕ2 + ϕ    =  2ϕ + 1 
   ϕ4  = ϕ3 + ϕ2   =  3ϕ + 2 
   ϕ5  = ϕ4 + ϕ3   =  5ϕ + 3,        etc. 
 
Next, I would point to various golden rectangles in the construction: 
 
 
 
 
 
 
 
 
 
 
 
 
 
If the window were truncated to the upper half, I would expect my guests to spot these golden 
rectangles: 
 
 
 
 
 
 
 
 
The culmination would be the challenge of finding the silhouette of the Khu-fu pyramid of 
Giza.  Recall that the pyramid’s half-silhouette makes (intentionally or not) a nearly perfect 
model of the so-called Kepler’s triangle, a right triangle whose edges form a geometric 
progression.  The only such triangle has sides proportional to 1 : √ϕ : ϕ.  The shaded triangle 
shown below at the left has just such proportions. 
 
 
 
 
 
 
 
 
 

ϕ2 

ϕ3 
ϕ5/2 
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Indeed, its height h can be calculated from its base ϕ2 and its hypotenuse ϕ3 with the 
Pythagorean theorem: 
 

h2  =  (ϕ3)2 – (ϕ2)2  =  ϕ6 – ϕ4  =  ϕ4 (ϕ2 – 1)  =  ϕ4ϕ  =  ϕ5 . 
 
Thus we have the triangle (ϕ2, ϕ5/2, ϕ3)  =  ϕ2(1, √ϕ, ϕ) — Kepler’s golden triangle scaled by the 
factor ϕ2. The pyramid may of course be drawn in a central position as well (the trick to see it is 
to apply reflective symmetry to the initial triangle). 
 
       A last challenge would be to consider the two small circles in the upper left and right of the 
window.  The question is:  are their centers collinear with the center of the other upper circle? 
And are they vertically aligned with the circles below them, or do they only seem so?  The 
emerging rectangle (dotted lines) seems to be composed of two squares (the center of either 
small upper circle and the principal center would form a square’s diagonal); is it indeed a 
square?  
 
 
 
  
 
 
 
 
 
 
 
 
 
This would lead us to consider Descartes’ circle formula [1], its extension [7], and its 
generalization [5].  But that would have to wait until after dinner. 
 
 
 

Figure 3  Are the 
centers aligned? 
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Tools for tangent circles 
 
Readers may have solved the original puzzle—to find the radii of the circles that make the 
construction possible—by repeated use of the Pythagorean Theorem, but the last few questions 
present quite a computational challenge if this is the only tool available.. A more insightful 
approach to circles in various configurations starts with Descartes theorem, its extension (which 
was discovered only in 2001), and finally the most general theorem.  They are collected below 
for the convenience of the reader and as an inducement to study further the beautiful geometry 
of circles.  
 
Level 1: Descartes theorem 
 
In 1643, René Descartes gave a remarkable formula that relates the radii of four mutually 
tangent circles [2]:  
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Using the reciprocals of radii, i.e., curvatures, the formula reads   
 

(a + b + c + d)2   =  2 (a2 + b2 + c2 + d2) ,   
 
where a=1/r1, b=1/r2,  etc.  It is assumed that if a circle contains the other circles, its curvature is 
negative.   
 
       Descartes’ formula has been rediscovered many times and its higher-dimensional 
generalization has also been found [1, 10, 4].  A system of four pairwise tangent circles is called 
the Descartes configuration, and sometimes Soddy’s circles [8], after one of the re-discoverers 
[10]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       One could use Descartes’ formula to determine the radius of the upper corner circles in 
FIGURE 3.  They each belong to a Descartes configuration together with three other circles of 
curvatures  
 

a = ϕ –1,   b  =  √5ϕ –3,   c  =   – ϕ –3. 
 
Substituting in (2) we get d = √5 ϕ –1, which gives the radius r = ϕ /√5 = (5 + √5)/10.  This 
suffices to establish the co-linearity of points hypothesized in the puzzle, except that one would 
need first to know the radius of the central upper circle.   
 
 
 
 

(1) 

(2) 

Figure 4  Examples of four circles in the Descartes configuration 
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Level 2: Extended Descartes theorem 
 
Note that Descartes’ formula is quadratic and may be represented in matrix form. If b1 = 1/r1, b2 
= 1/r2, etc., denote curvatures then  
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or — briefly — BTDB = 0, with the obvious association of symbols.  The Extended Descartes 
theorem was proposed in 2002 in [7].  In addition to the curvatures, it includes the positions of 
the centers (xi, yi), i = 1,…,4, and some additional variables, yet to be explained.  First let us 
enjoy the nice matrix form: 
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Note that the original Descartes formula (3) is embedded in (4). The dotted variables represent 
“reduced coordinates” — reduced by the corresponding radii: ix& = xi/ri and iy& = yi/ri .  The 
barred bs denote the “co-curvatures” of the circles and are defined as byxb /)1( 22 −+= &&  for 
each circle, but they need not concern us:  For our purposes one needs only to extract from (4) 
three equations,  XTDX = – 4,  YTDY = – 4, and BTDB = 0, where X, Y, and B denote the first 
three columns of the third matrix, respectively. 
 
Level 3: General circle theorem 
 
Unfortunately the crucial circles in the Golden Window do not form a Descartes configuration.  
The question is: is there a formula that would apply to not-necessarily-tangent circles?  I am 
happy to report that there is.   
 
       Suppose you have four circles in general position (some tangent, some possibly orthogonal, 
etc.).  Define a “circle configuration matrix” f with entries  
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The six numbers dij denote the distances between the centers of the corresponding circles.   
 
 
 
 
 
 
 
 

(3) 

(4) 

(5) 

d12 C1 C2 

C3 C4 

r1 

r2 Figure 5  Four circles in 
general position. 
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Theorem  (Circle Configuration Theorem) [6]:  With the above notation, four circles in 
general position satisfy 
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or AFAT = G, where F is the inverse of the configuration matrix, F = f–1 .   
 
       The truncated version for curvatures only is thus  BT F B = 0, or  
 

∑
ji,

Fij bi bj  =   0  

and may be viewed as a strong generalization of the Descartes formula. 
 
       Fortunately, finding the entries of the matrix f is often quite simple and direct, without the 
need of equation (4).  Special cases are shown in FIGURE 6, where the ij-th entry is denoted as a 
“product of two circles”,  fij = 〈Ci, Cj〉, called in [5] the “Pedoe product”, since it may indeed be 
traced to D. Pedoe [9, p. 155].  
 
 
 
 
 
 
 
 
 

Figure 6 Pedoe inner product of two circles (possible entries of matrix f) 
 
        Note that in the special case of mutually tangent circles, FIGURE 6, matrix f is the one in 
equation (3). Its inverse is F = f –1 = 4f ;  thus the Descartes formula (including the extended 
version) follows as a very special case. 
 
       The theorem may be used to solve the puzzle.  Nota bene, the design is a special case of a 
“lens chain” – a collinear system of tangent circles simultaneously tangent to two congruent 
disks; more on this may be found in [6]. 
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Summary Finding appearances of the golden ratio in various nooks and crannies of mathematics brings delight, often 
surprise. This note presents, in the form of a puzzle, a configuration of circles that is replete with the golden ratio. But 
that is only the surface. One tool to analyze such figures is the “master matrix equation” that rules circle (and n-
sphere) configurations. This equation generalizes the famous circle theorem of Descartes (known also as Soddy’s 
kissing circle theorem). 
 
 
Questions answered  
 
The first two questions posed at the end of this note have positive answers: the centers of the 
little corner circles are indeed aligned with the centers of the adjacent circles.  Their exact 
positions and radii are shown in the figure below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A-4  Some answers 
 
 
As to the “square”, it turns out that it is actually a rectangle of proportion 2 : √5, as can be seen 
above.  
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