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Elastic collision of two balls on a line is discussed in terms of their configuration space. The
optical-mechanical analogy is analyzed in this context. In particular, the law of collision is
reinterpreted as Heron’s law of light reflection. ®99 American Association of Physics Teachers.

[. INTRODUCTION mechanics. One may ask how far this analogy goes. In par-

ticular, if the masses of the particles differ, is the optical
One of the standard tricks used in describing physical SYSanalogy still valid for elastic C(F))Ilision? P

tems is construction of eonfiguration spaceBy definition, Remark:lt was Heron of Alexandria who in the first cen-
a_pointin a configuration space corresponds to a com‘iguratury derived the “law of angles” from the minimum
tion of the system. The t_>a5|3€: example concerns the manysiincipie—the position of the point of reflection from a mir-
body problemk particles inR* may equivalently be repre- yor minimizes the length of the light path from the source to
sented by one “particle” irR®". HereR® is a model of the  the point of arrival(his proof is purely geometrical This
“visual space,” R®" is the “configuration space.” Thus the historical fact is well-known among mathematici&sit is
low dimensionality of the visual space is traded for simplic-hardly acknowledged within the lore of the history of
ity (one point). physics? despite the fact that it has served Fermat as the
In the following, we give a geometric description of the motivation for his “minimum principle” for optics, which
elastic collision of two particles on a line. Despite its sim- later led to Maupertuis’ principl&2 Hamilton’s method of
plicity, this example illustrates the idea of “dimensional characteristics, etc., becoming the source and the prototype
blow-up,” provides an interesting example of an optical- of the variational calculus in physics.
mechanical analogy, and illustrates the role of Euclidean ge- In the following, the law of equal angles for mirrors will
ometry in classical mechanics. be addressed simply &teron’s law
A matrix approach to analysis of elastic collisions was
introduced by Romet,and was employed later for related
problems>® Other aspects of geometry of elastic collisions
are also investigated in Refs. 4—6. lll. COLLISION MATRIX

Il. ELASTIC COLLISION Throughout this section we use the following notation:
Consider two particles on a lin®. The configuration Particle A Particle B
space is a two-dimensional plafi?. If x, andxg denote M
o : . ; ass Mp Mg
positions of the first and second particles, thenRf the Initial velocity VA Ve
pair (xa,Xg) Sstands for the single poir(say, abiparticle) Final velocity A W

that represents the system. Since particles cannot occupy the _ o N ]
same positon at the same time, the diagonal et We know that, given masses and initial velocities, the final

={(Xa,Xs)|Xxa=xXg} must be excluded from the configura- velocities after an elastic collision are determined by the

tion s/?:)’ac‘:ge AT laws of energy and of momentum conservation. In our case
We shall see that thelastic collisionof two particles inR ~ ©f @ one-dimensional system, from

corresponds teeflectionfrom the setA in R?. Indeed, if two (i) energy COﬂSErV&tiOﬂmAUE\-F mBUZBZmAW/Z.\+ mBWZBv

particles have the same mass, a collision is just an exchange _ (3.1)
of velocities(see Fig. 1 That is to say, iy, andvg are the (i) momentum conservationmav,+mMgvg
initial velocities onR, then the after-collision velocities are =MW+ MgWg

wa=vg andwg=uv, . In the configuration spade?, this can

be viewed as a reflection of a velocity vector (v, ,vg) one gets the result:

from the “mirror” A with resulting vectorw=(w,,wg). (Mma—mg)va+2mpug
This reflection of velocity is a linear transformatiofv Wa= ma+m ’
. . . A B
=w, that in coordinates translates irfto: (3.2)
(Mg—Mp)vg+2Mava '
Wal| 01 Ua 2.1 BT ma+m
wel~|1 ollvsl" (2.7 At Mg

o . . . Notice that this is a linear transformation and can be written
As a motivational exercise, the reader is asked to interprgl, matrix form (cf. Ref. 1)

the events shown in Fig. 2.

According to thelaw of anglesfor reflection of light in a
mirror, the angle of incidence equals the angle of reflection.
It is interesting that in the construction of configuration space
described above, a law of optics seems to replace laws afhere
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allel to A [see Fig. 2 to avoid passing through it. But then
va=Wpa=vg=Wg holds all the time, and3.4) is trivially
satisfied. O

Now, a derivation of the formula for elastic collisid8.2)
becomes painless. Let us first restate it in matrix form.

Law 2: (Elastic collision If vectors v=(v,,vg) andw
Configuration space =(wa,Wg) represent velocities of two particles i before
Visual space 7 X, and after collision, respectively, then

w=Tyv, (3.5

v, v X
N B . BEFORE B

\ W,
A .__ B AFTER

Fig. 1. A two-particle system on a lif@) as a single particle in a plariB). L.
where the matrixT is

mA_mB sz

mA_mB 2mB

Mma+Mmg mMp+mg T=
=0 , (3.3 2my  mMg—my

My M= My Mp+Mmg Ma+mg

Ma+Mg Mp+mg

ma+mg Ma+Mmg

. . . ) Proof: The law of averaging velocitie€3.4) reduces the
will be called thecollision matrix Notice thatT assumes the problem to a system of two linear equations that may be

form of (2.1) if the masses are equal. solved almost instantly. Indeed, recall
Although (3.1) involves quadratic equations, one can de-

rive (3.2 without leaving the domain of linear algebra. We velocity averaging:w,—Wg=va—vg,
start by introducing the following: '
Law 1: (Law of averaging velocitigsElastic collision of ~momentum conservationmav o+ Mgvg=MaWa+ MgWg,

two balls makes their average velocities equal: . . . .
g g which may be written in matrix form:

UA+WA:UB+WB. (34) 1 1 1 1
Proof: Rewrite the law of energy conservati¢®.1i) in a Wal_ val
form of square differences: My Mg || We mp Mg|lUB
ML 2~ MAWA = MgW3— Mgu 3. Since the left-hand-side matrix is nonsingular, one can write
This may be expressed in terms of products Wi 1 —-11"YY-1 1 VA
MA(VA—=Wa) (VaA+Wa) =Mg(Wg—vg)(vg+Wg). Wg| |ma Mg | m, mgllVs]
In the general case, one may cancel out the law of momenry, s the collision matrix is
tum conservatior3.1ii) (also in the form of differencesand )
get (3.4). If vo—w,=0 (and consequentlyg—wg=0), 1 —-1]7Y-1 1
then such a cancellation is invalid. However, in this case, T= _— me  m
collision cannot occur: Indeed,y=w, and vg=wg imply ACTBELTATE
that the trajectory forms a straight line, which must be par- 1 mg 1|—-1 1
N mA+ mB - mA 1 mA mB
1 mA_ mB ZmB

N ~ e

which ends the proof. O

Remark 1:Notice that if one of the masses is negligible,
sayma=0, then the collision matrix does not depend on the
other mass and is

-1 2
0 1)

2mA mB_mA

T:

Thus, simplywg=vg (the heavy particle is not affected by
the collision, while wy=—v,+2vg (the velocity of the
light particle is inverted in the reference system of the heavy
particle.

Remark 2:Notice that the triple of law$3.1i,ii) and(3.4),
i.e., energy conservation, momentum conservation, and ve-
locity averaging, form a system in which any two laws de-

/ termine the third one. One may imagine a civilization in
which Law 1 is the fundamental law of mechanics and ob-
Fig. 2. Heron's law of elastic collisions. viates the need for the law of momentum conservatian
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maybe energy conservatipamong fundamental principles.

What would the science of mechanics, and consequently

physics look like?
Corollary 1: The collision matrix satisfies

ToT=I, detT=—1 TrT=0, (3.6

wherel stands for identity matrix, and represents reflection
in R2. (Note that reflection is not necessarily arthogonal
operatoy.

Exercise 1:Find the eigenvalues and eigenvectorsTof
Determine a geometric method to fing givenv and masses
m, andmg.

IV. HERON'S LAW FOR ELASTIC COLLISION

What happened to the simplicity of E.1)? Is the col-
lision matrix T still a “mirror reflection” from the diagonal
in R2?

It is easy to find that the eigenvectors Dhre

Mg

1 N=
’ - _mA

1

with eigenvalues 1 and-1, respectively. The vectdd de-
termines the orientation of the mirrax. (If the biparticle

D= 4.1

slides along the mirror, no actual reflection, i.e., change o

the velocity, occurs The other eigenvectolN, with eigen-
value —1, indicates that a system with initial velocity paral-
lel to N will be reflected fromA with exactly the opposite
velocity. But N does not appear to be orthogonal A9 so

Fig. 3. The geometry of Heron’s law of collision.

ssociated with three images: the mechanics of collision of
W0 masses, the geometry of ricochet of one point off a wall,
and the optics of reflection of a ray from a mirror. The three
laws of mechanics translate into the trigonometry of reflec-
tion, and into Heron’s law of optics.
(1) The scalar product4.2) has the meaning of kinetic

Heron's law seems to be violated for nonequal massesnergy of the system. In particular, the law of energy con-

Unles . ..
Definition: Define a metric tensor iR? by
my O
= . 4.2
9= o mJ (4.2

In terms of coordinates,a(b) =maasb,+ mgaghg replaces
the standard produet-b.

Corollary 2: The reflection matrixT is orthogonal with
respect to the metrig.

Proof: An easy calculation shows th&fgT=g, which is
the condition for orthogonality of. O

Thus Heron’s law for elastic collisions is satisfied in the

general casef the proper Euclidean structure, that(df2),
is recognized[Matrix (4.2) of the metric appears in Romer’s
analysis as a transformation to U space”]. However, the

servation(3.1i) translates into

(v,v)=(w,w).

(4.5

Geometrically, this means that the length of incident and
reflected vectors are equal in terms of megyitn optics, this
means that the speed of the light ray before and after reflec-
tion is the same.

(2) Also, momentum conservatiof8.1ii) has a simple
geometric meaning. It can be written in the scalar product

" M)

o

This says that the tangent velocity, i.e., the component
parallel to the mirror surfaca, is conserved. Trigonometri-

(4.6

form of Corollary 2 may be found to be too abstract—let uscally, this is Heron’s law in the form: sia=sing. Thus the
see Heron's law more directly. First, notice that the eigenJaw of momentum conservation can be interpreted as a law

vectors of T are mutually orthogonaDL N:

1
1 L
To ensure thall obeys Heron’s law, we need to look more
closely at the geometry of the event of reflectiGnthat the
final velocity w has the same length as the initial velooity
(measured in terms @j); (ii) that the component of velocity
parallel to the mirrorA is preserved during the collision; as
well as (iii ) that the normal part o¥ is opposite to the nor-
mal part ofw. Briefly:

Mg

©ON=(|3]|

4.3

D =mpmg— MmMymp=0.

(i) [vI=|wl, (4.4)

(see Fig. 3 These geometric requirements will clearly en-
sure that the angle of incideneeequals the angle of reflec-

(") VH:WH’ (|||) VJ_:_WJ_

tion B. But there is more than that. These three conditions are:
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of optics: “the angle of an incident beam equals the angle of
the reflected beam.”

Table I. Correspondence between the different representations of collision.

Mechanics Geometry Optics

Two particles inR One particle inR? Ray inR?
Collision Ricochet Reflection
masses metric tensor transparency
Energy conserved V(V) = (w,w) speed preserved
Momentum conserved v(D)=(w,D) Heron'’s law

(sina=sinp)

Velocities averaged VN)=—(w,N) Heron’s law

(cosa=cosp)

“perfect collision” eigenvectors mirror orientation
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A length(in the sense of the metr@ of the incoming vectov.
This ellipse is similarescaled and shiftedo the prototype
ellipse drawn at 0.
w (3) Determine a line tangent to the ellipse through the end
point of vectorv. Then, draw a parallel line through the
center of ellipse.
m (4) The vector spanned along this line from the ellipse
: center to the intersection with the ellipse is the postcollision
velocity vectorw.
1/m!2 X Note that by appropriately rescaling the axes in Fig. 4, say
x—X"=xymp/mg, the ellipse can be transformed into a
circle. Then the visual representation of the general case co-
incides with the equal-mass case, i.e., the incidence and re-
flection axedook equal, except the diagonal skis skewed,

(3) The law of averaging velocities is geometrically dual i-€., iS NOWX' yMg=Yyma. -
to that of momentum conservation. Indeed, it can be written Notice that the ellipse in the construction in Fig. 4 can be
as viewed as indicatrix for light propagatidn.
) T R. H. Romer, “Matrix description of collisions on an air track,” Am. J.
. . . . . Phys.35, 862—868(1967).
But thls IS reqU|remen¢4:4“|).! The trigoNOMEtriC Version 2z ‘Garwin, “Kinematics of an ultraelastic rough ball,” Am. J. Phg,
of (4.7) is cosa=cosB, which is just another form of Her-  88-92(1969.
on’s law. 3D. H. Towne and C. R. Hadlock, “One-dimensional collisions and Cheby-
A table of correspondence between these three picturegshev polynomials,” Am. J. Physt5, 255-259(1979.
can thus be create(dee Table)l The “perfect collision” in T. A. Walkiewicz and N. D. Newhby, “Linear collisions,” Am. J. Phy45,
X e . 255-259(1977).
the first column den_o'ges a 5|tuat|_on Whe_n th_e_partltﬁtﬂs SE. Pifm, “Binary collisions in velocity space,” Am. J. Phyds, 528—529
balls) leave the collision preserving their original speeds (1978.
(with the same or inverted velocities _ 8G. P. Ramsey, “A simplified approach to collision processes,” Am. J.
Solution to Exercise 1Here is a simple geometric con-  Phys.65, 384-389(1997.
struction of the final velocityw given the initial Velocity\/ "Note on notation: Vectors are to be understood in the coordinate system as

and massem, and Mg (see Fig. 4 columns, even if they appear as rows in regular text.
(1) As an initial exercise, draw iR? an ellipse that has the "R. Courant and H. Robbinsihat is MathematicgOxford U.P., New
’ p York, 1949

main axes along the coordinate axes, with points of intersecsconsult, e.g., such basic textbooks as M. Born and E. Walficiples of

tion +=m%? alongx and =m; Y2 alongy. This ellipse repre-  Optics (Pergamon, Oxford, 19750r R. K. Luneburg,Mathematical

sents a unit circle with respect to the meicin the optical ~ Theory of OptiCSFU”ivef?ity thCa_"fOf”ia Press, Befklf'ey' 1964
interpretation, it determines points that would be reached by,RenePugasA History of MechanicsDover, New York, 1988
For a detailed analysis of the interrelations between Huygens’ principle of

||ght pr"paga“”g from a_p0|r(10)2|n a unit t|me_. . . optics and the Hamilton—Jacobi equation of classical mechanics see V. I.
(2) At the C0”|5|0n_ point ofR<, Whe_re the incomingpi- Arnold, Mathematical Methods of Classical Mechani&pringer-Verlag,
particle strikes the mirrorA, draw an ellipse of all vectors of ~ New York, 1978, Chap. 9.46.

X2

\4

Fig. 4. Geometric construction of the result of collision.
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3Electronic mail: jkocik@physics.uiuc.edu
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SIMPLIFICATION

Classical science...works because it simplifies. It takes on only those problems that gan be
solved by the known method. The entire scientific edifice, for all its hermetic inaccessibility tp the
uninitiated, is a vast monument to simplification.

Bryan AppleyardUnderstanding the Present—Science and the Soul of Modern(Rtam Books, London, 1992p. 150.
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