
International Journal of Theoretical Physics, Vol. 38, No. 8, 1999

Duplex Numbers, Diffusion Systems, and
Generalized Quantum Mechanics
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We show that the relation between the SchroÈ dinger equation and diffusion
processes has an algebraic nature and can be revealed via the structure of ª duplex
numbers.º This helps to clarify that quantum mechanics cannot be reduced to
diffusion theory. Also, a generalized version of quantum mechanics where C is
replaced by a normed algebra with a unit is proposed.

INTRODUCTION

The idea that extending the formalism of quantum mechanics beyond

the field of complex numbers may bring about some additional interesting

structure has been investigated since the 1960s (Finkelstein et al., 1962;

Emch, 1963; Nash and Joshi, 1992; Adler, 1995; and references therein).
The argument that the extended field must be a division algebra limits the

investigations via the Frobenius (1878) theorem to three fields: real numbers

R , the complex plane C , and quaternions H . One can argue, however, that

the object replacing complex numbers may be any associative algebra with

a quadratic norm, not necessarily positive definite. This leads to a wide
spectrum of interesting possibilities, among which the Clifford algebras may

serve as the simplest generalization (encompassing quaternions and duplex

numbers investigated below).

Nagasawa (1993) introduced a certain type of diffusion system and

showed that it can replace the SchroÈ dinger equation under appropriate change

of potential. This observation led him to conclude that quantum mechanics
can be demystified and replaced by a more ª intuitiveº and less mysterious

diffusion theory.
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In this paper we introduce ª quantum mechanicsº over duplex numbers,

i.e., with the imaginary unit I satisfying I 2 5 1 1. We show that the Nagasawa

type of diffusion systems may be understood within the quantum formalism
over the field of duplex numbers. In this framework, we can see why, contrary

to some claims, the standard quantum mechanics cannot be reduced to a

diffusion system, and the argument is topological in nature. [This is relevant

to the question of whether ª one needs i in quantum mechanicsº (Jauch, 1973;

Jammer, 1974).]

The example presented here shows also that the formalism of quantum
mechanics may be extended beyond the paradigm of division fields R , C ,

and H . Some comments on generalized quantum mechanics follow.

1. THE ALGEBRA OF DUPLEX NUMBERS

Duplex numbers were introduced by Clifford (1873, 1878) as ª double

numbersº and they have recently gained interest among physicists [see, e.g.,

Hucks (1993) for the relation to Dirac spinors and Kunstatter et al. (1983)
for applications in the theory of gravitation].

By duplex numbers we understand the algebra D 5 {a 1 bI ) a, b P
R } with I 2 5 1 1. In many respects, D is similar to the field of complex

numbers C , except that the elements of the form a 6 aI do not have an

inverse. The conjugation of a duplex number z 5 a 1 bI is defined as zÅ 5
a 2 bI, and a norm is defined via

) z ) 2 5 zzÅ 5 (a 1 bI )(a 2 bI ) 5 a2 2 b2 (1.1)

Thus, duplex numbers D form a plane R 2 5 span {1, I } with hyperbolic

geometry. The inverse of z is z 2 1 5 zÅ / ) z ) 2. Duplex numbers can be expressed

in the polar form

z 5 r eI w 5 r (cosh w 1 I sinh w ) (1.2)

with tanh w 5 b/a and r P R for numbers of positive square norm, ) z ) 2 .
0, and r P I ? R otherwise. In particular, a hyperbolic version of de Moivre’ s

formula holds:

r 1e
I w 1 ? r 2e

I w 2 5 r 1 r 2e
I( w 1 1 w 2) (1.3)

Duplex numbers manifest two-dimensional space-time structure in an alge-

braic form. In particular, elements of form

eI w (1.4)

represent hyperbolic rotations of the plane D (ª boostsº ) and represent the

connected component of the Lie group SO(1, 1) containing the group unit.
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2. QUANTUM MECHANICS OVER DUPLEX NUMBERS

The standard SchroÈ dinger equation of quantum mechanics over complex

numbers is

i - t C 1 1±2 D C 2 U ? C 5 0 (2.1)

(m 5 1, i 5 1), where C : R n ® C is a complex-valued wave function, the

Laplacian D 5 ¹ ? ¹ is a composition of gradients, and U: R n ® R is a

potential. We can express the wave function in polar (logarithmic) coordinates
as C 5 eR 1 iS. It is a well-known result (Nelson, 1966; Pelce; 1996) that the

SchroÈ dinger equation resolves into a pair of partial differential equations for

the real-valued functions R and S:

H 2 - tS 1 1±2 D R 1 1±2 ( ¹ R)2 2 1±2 ( ¹ S)2 2 U 5 0

- tR 1 1±2 D S 1 ¹ S ? ¹ R 5 0
(2.2)

Indeed, let C 5 ez. Then (2.1) is equivalent to i - tz 1 1±2 D z 1 1±2 ( ¹ z)2 2 U 5
0. Now, substituting z 5 R 1 iS and separating the real and the imaginary

parts gives the two equations of (2.2).

Consider now an analog of the SchroÈ dinger equation over duplex

numbers,

I - t f 1 1±2 D f 2 W ? f 5 0 (2.3)

for some potential W: R n ® R . Assume f 5 eR 1 IS. Then the duplex SchroÈ d-

inger equation resolves into a pair of diffusion-type equations

H - tS 1 1±2 D R 1 1±2 ( ¹ R)2 1 1±2 ( ¹ S)2 2 W 5 0

- tR 1 1±2 D S 1 ¹ S ? ¹ R 5 0
(2.4)

This result may be restated in a notation that encompasses both the complex

and the duplex case. A quantum wave function C : R n ® R 2 assumes values

in two-dimensional algebra with a unit, spanned by {1, a}.

Theorem 1. Define a (generalized) SchroÈ dinger equation

6[a; U ] C [a; R, S] 5 0 (2.5a)

where 6 is an operator based on an (invertible) algebraic unit a,

6[a; U ] 5 a 2 1 - t 1 1±2 a 2 2 D 1 U ? (2.5b)

and the generalized wave function has the polar form,

C [a; R, S] 5 eR 1 aS (2.5c)

Then if a2 5 2 1, 6[a, U ] is the standard SchroÈ dinger operator and (2.5a)



2224 Kocik

describes a quantum system with potential U. If a2 5 1, then 6[a, W ] is the

ª duplex SchroÈ dinger operatorº describing the diffusion system (2.4).

The question is whether these two systems can be equivalent. Compari-

son of (2.2) and (2.4) leads immediately to the following.

Proposition 2. The solutions to the two equations

(i) 6[i, U ] C [i, R, S] 5 0, i2 5 2 1 (2.6)

(ii) 6[I, W ] C [I, R8, S8] 5 0, I 2 5 1 1

coincide, i.e., S [ S8 and R [ R8, if

W 5 U 1 2 - tS 1 ( ¹ S)2 (2.7a)

or, equivalently, if

W 5 2 U 1 D R 1 ( ¹ R)2 (2.7b)

The equivalence of SchroÈ dinger’ s equation (2.1) and the diffusion system

(2.4) upon condition (2.7a) is studied by Nagasawa (1993). Here, we have

established that this relation is algebraic and originates in the opposition of

the complex versus duplex numbers.

Here is an algebraic difference between D - and C -quantum mechanics.

Corollary 3. The duplex SchroÈ dinger equation (2.4) can be written in

an isotropic form

H - t(S 1 R) 1 1±2 D (S 1 R) 1 1±2 ( ¹ (S 1 R))2 5 W

- t(S 2 R) 1 1±2 D (S 2 R) 1 1±2 ( ¹ (S 2 R))2 5 0
(2.8a)

which, by introducing vectors Z 5 [S 1 R, S 2 R] and W 5 [W, 0], we

can express as

- tZ 1 1±2 D Z 1 1±2 ( ¹ Z )2 5 W (2.8b)

This can easily be verified directly from (2.4). Notice that the standard
(complex) SchroÈ dinger system does not admit such a representation. The

symmetry of (2.8) is due to the geometry of duplex numbers; indeed, two

isotropic elements

g 5
1

! 2
(1 1 I ), g Å 5

1

! 2
(1 2 I )

satisfy the following multiplication table:

g 2 5 g g Å 2 5 g Å , g ? g Å 5 0

Units g and g Å determine the isotropic coordinates (ª light coneº ) on D (algebra-

ically, each generates an ideal in D ). For any element z 5 a g 1 b g Å , one has
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zÅ 5 b g 1 a g Å

with the norm

zzÅ 5 ( a g 1 b g Å ) ( b g 1 a g Å ) 5 a b ( g 1 g Å ) 5 ! 2 a b

Now, we can see that Eq. (2.8) corresponds to the split R 1 IS 5
(1/ ! 2)(R 1 I ) g 1 (1/ ! 2)(R 2 I ) g Å .

It is easy to see that the above two cases exhaust all two-dimensional

cases. Let the `imaginary’ element a be of a general form, such that a2 5
a 1 a b 5 [ a , b ]. Setting a Þ 0 assures invertibility of a. Any specification

of the vector [ a , b ] is equivalent to one of two cases,

[ 2 1, 0] ® standard QM (a 5 i)
(2.9)

[ 1 1, 0] ® diffusion process (a 5 I )

discussed above (2.2), (2.4). Indeed, transformation of basis {1, a} into a
new basis {1, f} with f defined as

f 5 H (2a 2 b )/ ! ) b 2 1 4 a ) if a Þ 2 b 2/2

a 2 b /2 otherwise

establishes an algebra isomorphism to one of the cases (2.9), since f 2 5 1 ?
sgn ( b 2 1 4 a ).

Direct calculations show that in the general basis, (2.5) separates into

a system of two equations:

(i) - tR 1 1±2 D S 1 ¹ S ? ¹ R 1 b ( - tS 1 1±2 ( ¹ S)2 1 U ) 5 0
(2.10)

(ii) 1±2 D R 1 1±2 ( ¹ R)2 1 a ( - tS 1 1±2 ( ¹ S)2 5 0

For the sake of illustration, consider the idempotent case [0, 1], i.e., a2 5 a:

H D R 1 ( ¹ R)2 5 2W

- t(R 1 S) 1 1±2 D S 1 1±2 ( ¹ S)2 1 ¹ S ¹ R 5 0
(2.11)

The equivalence of (2.11) with the standard SchroÈ dinger system (in the sense

of Proposition 2) can be ensured by W [ U and 2 - tS 1 ( ¹ S)2 5 0. This

case is isomorphic to the diffusion case [1, 0], as a substitution b 5 2a 2
1 shows, since b2 5 4a2 2 4a 1 1 5 1.

3. DOES QUANTUM PHYSICS NEED ! 2 1?

It has been argued (Nagasawa, 1993) that the quantum formalism can

be reduced to a study of diffusion processes and that the equivalence of

SchroÈ dinger ’ s equation to diffusion systems ª demystifiesº quantum mechan-
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ics (see also Collins, 1992). Let us look at this proposition. Since the diffusion

systems in consideration can be viewed in terms of duplex algebra, we can

now restate the question: ª Can quantum mechanics be rewritten in terms of
duplex numbers?º That is to say, are quantum formalisms with imaginary

units a2 5 6 1 equivalent in their ability to describe concrete physical systems?

Many features of the ª duplex SchroÈ dinger mechanicsº invite one to

advocate such a view; let us review some of them. First, the probability

density in the probabilistic interpretation can be obtained via an equivalent

of the familiar Born formula

C C Å 5 e(R 1 IS)e(R 2 IS) 5 e2R (3.1)

which is analogous to the standard complex version. The additivity of phases

also holds, due to (1.2). Note also that the second equations of both versions

of SchroÈ dinger’ s equation, the complex (2.2) and the duplex (2.4), coincide;

both represent the ª continuity equation,º which can be rewritten as

- tP 1 ¹ J 5 0 (3.2)

where P and J are the scalar-valued ª densityº and vector-valued ª current,º
respectively. In the duplex case, they are defined as real functions (in position

and time):

P 5 C C Å 5 e2R J 5
1

2I
( C Å ¹ C 2 C ¹ C Å ) 5 e2R ¹ S (3.3)

Thus, the ª kinematicº components of the two SchroÈ dinger formalisms, com-

plex and duplex, coincide. The other (first) equations in (2.2) and (2.4) are
extended versions of the Jacobi±Hamilton equation of classical mechanics,

and differ in the two cases, complex and duplex. The question is whether a

particular dynamical system can be expressed equally well by either of them.

The free particle satisfies the equivalence condition (2.7) trivially, W 5 U 5
0, and

C , eI( px 2 Et) (3.4)

with E 5 p2/2. Similarly, one can replace the complex (quantum) form by

the duplex (diffusion) form for any stationary system. Indeed, assume that

C is separable

C (t, x) 5 e 2 IEt ? u(x) (3.5)

Here we have - tS 5 2 E 5 const and - tR 5 0, hence the second (continuity)

equation of (2.2) is satisfied automatically. The duplex SchroÈ dinger equation

(2.4) reduces to its time-independent version
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1±2 ¹ u(x) 5 (E 1 W(x)) ? u(x) (3.6)

Compare it with the standard SchroÈ dinger equation

1±2 ¹ u(x) 5 (U(x) 2 E ) ? u(x) (3.7)

These two differ only in interpretation of the energy; an identification W 5
U 2 2E makes the two descriptions, complex and duplex, equivalent. For

instance, W 5 x2/2 leads to the Hermite polynomials, as U 5 2 x2/2 does in

the standard quantum mechanics.
These simple cases may indeed suggest that the two descriptions are

interchangeable. However, the equivalence breaks down once one goes

beyond the configuration spaces of trivial topology, and the reason lies in (i)

the superposition principle and (ii) the different topology of the unit circles

in C and D , or the different ª symmetry groupsº :

SO(2) 5 {ei f } , S1 , C (compact)
(3.8)

SO - (1,1) 5 {eI f } , R , D (noncompact)

The essence of the formalism of quantum mechanics lies in its ability to deal

with systems, where a number of states can coexist in superposition and

interfere at the time of observation. Consider the classic Young two-slit
experiment as an example. Standard cursory estimations (with zero potential)

of the intensity at position x on the screen near its center (x 5 0) leads to a

sinusoidal pattern

) ei w 1 ei( w 1 d ) ) 2 , cos2( d /2) (3.9)

where the phase difference from the slits is approximately

d 5 x ? d/L

with d the distance between slits and L the distance to the screen (d ¿ L).

A similar estimation (with zero potential) for the duplex wave gives

) eI w 1 eI( w 1 d ) ) 2 , cosh2( d /2) (3.10)

which has one maximum at the center and vanishes as ) x ) increases.

The fringe pattern in the two-slit experiment arises from the phase

periodicity and therefore cannot be explained by diffusion equations. (In the

complex case, phase S develops modulo 2 p on the circle, while in the duplex

case, it may develop in an unbounded manner.) For this reason, results

of any path-split type of experiment (involving configuration space with a
nontrivial fundamental group) cannot be explained within the framework of

duplex quantum mechanics.

In conclusion, the interpretational problems of quantum mechanics can-

not be resolved in terms of diffusion processes (beyond simple cases of
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topologically trivial configuration spaces). These two phenomena, quantum

processes and diffusion processes, are different in nature as they correspond

to different nonisomorphi c algebras C and D with topologically different
symmetry groups.

The above discussion is relevant to the old question of whether ª quantum

mechanics requires the imaginary unit iº [see summaries of the discussion

in Jauch (1973) and Jammer (1974)]. It was first posed by P. Ehrenfest and

(unsatisfactorily) addressed by Pauli (1933). Later, Stueckelberg et al. (1960;

Stueckelberg and Guenin, 1961) considered real Hilbert spaces and showed
that the uncertainty principle requires a superselection rule that is equivalent

to a complex structure in the Hilbert space. The present paper points to the

topological nature of the problem and to the compactness of S1 , C as the

source of the experimental results (ª fringesº ) in the topologically nontrivial

configuration spaces.

4. QUANTUM MECHANICS GENERALIZED

A possible generalization of the formalism of quantum mechanics has

been advocated for some time, but has typically been limited to the division
algebras R , C , and H (Adler, 1995). Starting from the classical dynamical

interpretation of the SchroÈ dinger equation (Strochi, 1966; Rowe et al., 1980;

Heslot, 1985; Jones, 1992), Millard (1997) has recently proposed a generaliza-

tion to the case of an associative ring with a conjugation. The present paper

also encourages one to go beyond this paradigm and consider a quantum

formalism based on algebras with a norm relaxed from the condition of
positive definiteness. Here we present a general outline; a more detailed

exposition will be developed elsewhere.

Let A be an associative algebra with a unit and a (quadratic) norm | ? |2

that is not necessarily positive definite (and possibly degenerate). We shall

demand that

|ab|2 5 |a|2 ? |b|2 (4.1)

which is dictated by the correspondence principle (Adler, 1995). In an A-

quantum mechanics, the Hilbert space is replaced by a right A-module with

a set of A-valued operators acting on the left. In particular, the canonical

commutation rules

[pÃ, xÃ] 5 a ? " ? id (4.2)

for some fixed invertible a P A (hereafter " 5 m 5 1) are consistent with

the SchroÈ dinger representation
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xÃ5 x ? , pÃ5 a 2 1 " ¹ , HÃ 5 2 a 2 1 " - t (4.3)

For instance, a particle in potential U is described by

2 a 2 1 - t C 5 1±2 a 2 2 D C 1 U C (4.4)

Clifford algebras (Porteous, 1981) present an example of normed alge-

bras with a unit and therefore determine a family of generalized forms of

quantum mechanics. Let V 5 R (p,q) be an n-dimensional space equipped with
a pseudo-Euclidean structure of signature ( p, q) where n 5 p 1 q. The

corresponding Clifford algebra R (p,q) can be viewed as a 2n-dimensional

Grassmann space A 5 Ù V with the algebra product induced from

vw 5 2 g(v, w) 1 v Ù w (4.5)

for v, w P V , A [in particular, vv 5 2 g(v, v)]. Let {ei} be an orthonormal

basis in V. Denote the ordered set of its indices by I 5 {1, 2,. . . , n}. Any

index subset A , I defines a basis element eA of A; for instance,

e f 5 1, e{i} 5 ei e{1,3,7} 5 e1e3e7 eI 5 e1e2 . . . en

where f denotes the empty subset.

Now, let us consider Clifford quantum mechanics. It seems natural (but

not necessary) to chose a of Eq. (4.3) to be the volume element (pseudoscalar)

a 5 eI (clearly, e2
I 5 6 1). Thus the commutation rules (4.2) read [pÃ, xÃ] 5

eIid, and the SchroÈ dinger representation xÃ5 x ? , pÃ5 e 2 1
I ¹ gives, after multi-

plying both sides by e2
I ,

2 eI - t C 5 1±2 D C 6 U C (4.6)

where the undetermined sign is that of e2
I 5 ( 2 )n(n 2 1)/2 1 p. Due to the noncom-

mutativity of Clifford algebras, the polar form of the SchroÈ dinger equation
does not emerge naturally. The SchroÈ dinger equation resolves into 2n inter-

twined equations of a general form

- t C A 5 6 1±2 D C A
c 6 U C A

c

labeled by subsets A , I, where Ac 5 I 2 A. Intuitively, subspaces with

e2
A 5 1 correspond to ª diffusion sectors,º and those with e2

A 5 2 1 correspond

to ª quantum sectors.º
The two algebras C and D juxtaposed in this paper correspond to two

cases of Clifford algebras based on one-dimensional spaces (with e1 identified

with i or I, respectively). The low-dimensional cases encompass the following:

R 1,0 ® standard quantum mechanics

R 0,1 ® diffusion system
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R 0,0 ® heat equation (a 5 1)

R 2,0 ® quaternionic quantum mechanics

In particular, quaternions correspond to the Clifford algebra of R (2,0) and have

a basis i 5 e1, j 5 e2, k 5 e1 Ù e2. One can express the wave function as a

sum of two ª complexº -valued functions

C 5 c 1 k f 5 ( c 1 1 i c 2) 1 k( f 1 1 i f 2) (4.7)

with c 1, c 2, f 1, and f 2 real. Then, assuming U real or complex, the generalized

SchroÈ dinger equation resolves into a pair

- t c 5 2 1±2 D f 1 U f (4.8)

2 - t f 5 2 1±2 D c 1 U c

A detailed description of Clifford quantum mechanics involves commu-
tation rules of Clifford algebras, which goes beyond the scope of this paper

and will be presented elsewhere.
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