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We investigate the structure of the Schrödinger algebra. Two constructions are given that yield the physical
realization via general methods starting from the abstract Lie algebra. Representations are found on a Fock
space with basis given by a canonical Appell system. Generalized coherent states are used in the construction
of the Hilbert space of functions on which certain commuting elements act as self-adjoint operators. This
yields a probabilistic interpretation of these operators as random variables. An interesting feature is how
the semidirect product structure of the Lie algebra is reflected in the probability density function. A Leibniz
function and orthogonal basis for the Hilbert space are found. Then certain evolution equations connected
with canonical Appell systems on this algebra are shown.
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344 P. Feinsilver et al.: Representations of the Schrödinger algebra

1 Introduction

The Schrödinger Lie algebra plays an important role in mathematical physics and its applications. It has
been introduced and investigated as the algebra of symmetries of the free Schrödinger equation. (see,
e.g., [3, 4, 12, 14]). The (1+1) case was noticed to represent a low-dimensional Wick algebra, and as such
to be isomorphic to the 2-photon algebra [2, 6]. The resulting structure of the semidirect product of the
Heisenberg algebra and sl(2) was investigated in [9].

Unitary irreducible (projective) representations of the Schrödinger group were studied in [15]. A clas-
sification of the irreducible lowest weight representations of Schrödinger Lie algebra was found via the
technique of singular vectors in [7]. The main feature of the present paper is to present representations of
the Schrödinger algebra in an alternative way using generalized Appell systems (see Sects. 2, 3).

We begin in Sect. 2 with some preliminaries on Wick products and Appell polynomials. In Sect. 3 we
give some interpretations of the notion of ‘Appell systems’. Sect. 4 contains basic details of our approach to
representations of the Schrödinger algebra. In particular, we show how it is built and determine a standard
form. Some group calculations are done using a matrix realization of the algebra. It is remarked how to
recover the physical realization of the algebra from a general approach. In Sect. 5 we construct canonical
Appell systems and find a family of probability distributions associated to the Schrödinger algebra that
reflects its Lie algebraic structure. In particular, we see that the results of [7] on polynomial representations
based on lowest weight modules fit into our picture. The details of the associated Hilbert space comprise
Sect. 6. This starts with computing the Leibniz function. We show how to recover the Lie algebra from the
Leibniz function and obtain an orthogonal basis for the Hilbert space. Here again the physical realization is
found in a natural way. In the final section, we show how to construct Appell systems which provide solutions
to generalized heat equations on the Schrödinger algebra, corresponding to classical two-dimensional real
Lévy processes.

2 Wick products and Appell polynomials

Appell polynomials are closely related to Wick products. The presentation below closely follows [1].
LetX1, X2, . . . be a sequence of random variables. The Wick powers are defined inductively as follows.

For k = 0, the Wick power is equal to 1. Denoting expectation values by 〈 〉, for k > 0, : X1, X2, . . . , Xk :
is defined recursively by

〈 : X1, X2, . . . , Xk : 〉 = 0

and

∂

∂Xi
: X1, X2, . . . , Xk : = : X1, . . . , Xi−1, X̂i, Xi+1, . . . , Xk :

where X̂i denotes the absence of the variable Xi.

Example 2.1 The first two Wick products are

: X1 : = X1 − 〈X1〉
: X1, X2 : = X1X2 −X1〈X2〉 −X2〈X1〉 + 2〈X1〉〈X2〉 − 〈X1X2〉 .

The Appell polynomials Pn(x) are then defined by

Pn(x) = PX,n(x) = : X, . . . ,X :︸ ︷︷ ︸
n times

∣∣∣∣
X=x

.
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Example 2.2 Take X with mean µ1 = 〈X〉 = 0 and µi = 〈Xi〉, i = 2, 3, . . .. Then

P0(x) = 1 ,

P1(x) = x ,

P2(x) = x2 − µ2 ,

P3(x) = x3 − 3µ2x− µ3 ,

P4(x) = x4 − 6µ2x
2 − 4µ3x+ 6µ2

2 − µ4 ,

P5(x) = x5 − 10µ2x
3 − 10µ3x

2 + 5x(6µ2
2 − µ4) + 20µ2µ3 − µ5 .

Remark 2.3 If X ∼ N(0, 1), then we get the Hermite polynomials. However, Appell polynomials
are not necessarily orthogonal polynomials. Appell polynomials Pn(x), n ∈ N, are characterized by the
two conditions

1. Pn(x) is a polynomial of degree n,

2. d
dxPn(x) = nPn−1(x) .

Interesting examples are furnished by moment polynomials,

Pn(x) =
∫ ∞

−∞
(x+ y)n p(dy)

where p is a probability measure on R with all moments finite. In the Gaussian case these are “heat
polynomials,” closely related to the Hermite polynomials. In [10] the probabilistic interpretation of Appell
polynomials is used to define their analog on Lie groups where, in general, they are no longer polynomials.
This explains the terminology Appell systems.

3 Appell systems: some interpretations

Here are three interpretations of the notion of ‘Appell systems’:

1. Appell systems in the classical sense. We will look at these below in connection with symmetry algebras.

2. Canonical Appell systems associated to a Lie algebra. The modifier “canonical” refers to the fact that
the Appell system forms a basis for a representation of the Heisenberg-Weyl algebra, i.e., it is generated
by boson creation and annihilation operators. One uses the Lie algebra to construct a Hilbert space
with the Appell system as basis. This Hilbert space is a type of Fock space, with finitely many degrees
of freedom. See Sect. 4.

3. General Appell systems on Lie groups. Here one uses the Lie algebra and group structure as a ‘black
box’ into which a classical stochastic process goes in and produces a ‘Lie response’ – typically a
process consisting of iterated stochastic integrals of the input process ( [10, 11]). We will not pursue
this direction in the present paper.

Now consider the first point of view.
Let D denote the differentiation operator. We may think of the space of polynomials of degree not

exceeding n as the space of solutions, Zn, to the equation Dn+1ψ = 0. In this context an Appell system is
defined to be a sequence of nonzero polynomials {ψ0, ψ1, . . . , ψn, . . .} satisfying:

1. ψn ∈ Zn, ∀n ≥ 0 ,

2. Dψn = ψn−1, for n ≥ 1 .
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(Note that this differs slightly from the usual definition, as given above, Remark 2.3, which has Dψn =
nψn−1). By analogy, for any operator V , the canonical lowering operator, we define a V -Appell system as
follows. Set

Zn = {ψ : V n+1ψ = 0 }

for n ≥ 0. Then the V -Appell space decomposition is the system of embeddings Z0 ⊂ Z1 ⊂ Z2 ⊂ . . .,
and a V -Appell system is a sequence of nonzero functions {ψ0, ψ1, . . . , ψn, . . .} satisfying:

1. ψn ∈ Zn, ∀n ≥ 0 ,

2. V ψn = ψn−1, for n ≥ 1 .

Typically, one starts with a ‘standard Appell system’, such as ψn = xn/n!, for V = D. Then Appell
systems are generated from the standard one via time-evolution. To accomplish this for V -Appell systems,
the symmetry algebra of V comes into play.

If V is an operator acting on a space of smooth functions, its unrestricted symmetry algebra is the Lie
algebra g(V ) of vector fields, X , such that there exists an operator Λ(X) in the center of g(V ) with

[X,V ] = Λ(X)V .

If we require Λ to be multiplication by a scalar function, we shall talk of the restricted symmetry algebra, as
in [7]. If we consider only thoseX for which Λ(X) = 0, we have the strict symmetry algebra g0(V ) ⊂ g(V ).
Clearly, V ∈ g0(V ). Also, it is clear that g0(V ) contains the center of g(V ).

Proposition 3.1 The strict symmetry algebra contains the derived algebra of unrestricted symmetries:
g′(V ) ⊂ g0(V ). That is, Y ∈ g′(V ) implies [Y, V ] = 0.

P r o o f. Let [X1, V ] = Λ(X1)V and [X2, V ] = Λ(X2)V . Then, by the Jacobi identity,

[[X1, X2], V ] = [X1,Λ(X2)V ] + [Λ(X1)V,X2]

= Λ(X2) [X1, V ] + Λ(X1) [V,X2]

= Λ(X2)Λ(X1)V − Λ(X1)Λ(X2)V = 0 ,

using the property that the Λ operators are central.

The relevance for V -Appell systems is this.

Proposition 3.2 The unrestricted symmetry algebra g(V ) of an operator V preserves the Appell space
decomposition Z0 ⊂ Z1 ⊂ Z2 ⊂ . . ., that is, XZn ⊂ Zn for every X ∈ g(V ).

P r o o f. Write [X,V ] = Λ(X)V in the form V X = (X−Λ(X))V . Fix n ≥ 0 and let ψ ∈ Zn. Since
Λ(X) commutes with V , we have V n+1Xψ = (X − (n+ 1)Λ(X))V n+1ψ = 0.

New Appell systems are generated from a given one by the adjoint action of a group element generated
by a ‘Hamiltonian’ – a function of elements of the symmetry algebra. The structure of the spaces Zn is
preserved, while the Appell systems provide ‘polynomial solutions’ to the evolution equation corresponding
to the Hamiltonian. Indeed, if H is a function of operators in g(V ), with Hψ0 = 0, then hn = exp(tH)ψn

will be an Appell system. For each n, the function hn satisfies ut = Hu, with u(0) = ψn. In the simplest
situation where H is a function of D and the initial Appell sequence is ψn = xn/n!, different choices of
H yield many of the classically important sequences of polynomials (with perhaps minor variations).

In [7], a hierarchy of solutions to S(p/2)ψ = 0 is developed for the Schrödinger operator S. The
representations discussed there can be viewed as S-Appell systems in the above sense. These correspond
to finite-dimensional representations of sl(2) in the standard form of the Schrödinger algebra given below.
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4 Schrödinger algebra

Referring to [7] for details, we recall the (n = 1, centrally-extended) Schrödinger algebra S1. Here we give
the physical realization in terms of operators, vector fields and multiplication by functions of x and t, with
their corresponding physical meaning/transformations indicated. Note that m and d are given parameters.
The identity operator is denoted by I.

M = m I mass ,

K = t2∂t + t x∂x + m
2 x

2 − td special conformal transformation ,

G = t∂x +mx Galilei boost ,

D = 2t∂t + x∂x − d dilation (not differentiation!) ,

Px = ∂x spatial translation ,

Pt = ∂t time translation

(1)

which satisfy commutation relations given by the following multiplication table

M K G D Px Pt

M 0 0 0 0 0 0
K 0 0 0 −2K −G −D
G 0 0 0 −G −M −Px

D 0 2K G 0 −Px −2Pt

Px 0 G M Px 0 0
Pt 0 D Px 2Pt 0 0

.

Note that the elements {M,G,Px} span a Heisenberg-Weyl subalgebra, while {K,D,Pt} span an sl(2)
subalgebra. This fact, that the Schrödinger algebra is a semidirect product

S1 ∼= H ⊕s sl(2)

is the basis for analyzing the representations of the Schrödinger algebra. We continue with the n = 1 case
and indicate briefly how the case n > 1 goes at the end of the discussion of the standard form, since the
rotation generators, Jij , do not appear in the case n = 1.

4.1 Structural decomposition for Fock calculus

In general, in order to construct representations, we first seek a generalized Cartan decomposition of the
Schrödinger algebra into a triple of subalgebras g = P⊕K⊕L where P and L are abelian, and K normalizes
both P and L:

[K, L] ⊂ L , [K, P] ⊂ P , [P, L] ⊂ K .

The main idea is that elements of P and L act as raising and lowering operators, respectively (cf. [13, p. 31]).
The possibility of finding a scalar product in which each element of P has a corresponding adjoint in L is
important, since we wish to construct a family of selfadjoint operators that provide commuting quantum
observables – classical random variables in the probabilistic interpretation. In many cases, this family arises
by conjugating elements of P by a group element with a generator from L. This technique may be viewed
as an extension of the Cayley transform for symmetric spaces. Notice that for this to work, the subalgebras
P and L must be in one-to-one correspondence, the Cartan involution in the theory of symmetric spaces.

The Schrödinger algebra g = S1 admits the following generalized Cartan decomposition:

{M,K,G} ⊕ {D,Px} ⊕ {Pt} . (2)
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Note however that P and L cannot be put into 1–1 correspondence and therefore this is of no direct use
for us.

We use instead the following decomposition:

{K,G}︸ ︷︷ ︸
P

⊕ {M,D}︸ ︷︷ ︸
K

⊕ {Pt, Px}︸ ︷︷ ︸
L

. (3)

Even though the decomposition (3) is not technically a Cartan decomposition (the requirement [P, L] ⊂
K is not satisfied), it will lead to interesting results for representations of the Schrödinger algebra.

We take R1 = K and R2 = G as raising operators, and M as (multiplication by) a scalar m. The
operator Px, not properly in “Cartan’s L” of eq. (2), will be used as the lowering operator dual to G. Thus
we have lowering operators L1 = Pt and L2 = Px.

4.2 A matrix representation and group calculations

A 4-dimensional representation (see [6]) of the Schrödinger algebra (n = 1) is given by embedding into
su(4). Let X denote a typical element of the Lie algebra. Set,

X = a1m+ a2K + a3G+ a4D + a5Px + a6Pt =




0 a5 a3 2a1

0 a4 a2 a3

0 −a6 −a4 −a5

0 0 0 0


 . (4)

Using this basis, a typical group element may be parametrized via coordinates of the second kind {Ai}
as

g(A1, A2, A3, A4, A5, A6) =

exp(A1m) exp(A2K) exp(A3G) exp(A4D) exp(A5Px) exp(A6Pt) .

In particular, the group element corresponding to (4) is

g(A1, A2, A3, A4, A5, A6) = e−A4 ·




eA4 A5eA4 −A3A6 A3 2A1eA4 −A3A5

0 e2A4 −A2A6 A2 −A3eA4 −A2A5

0 −A6 1 −A5

0 0 0 eA4


 .

Proposition 4.1 The coordinates of the second kind, (A1, . . . , A6), of a group element g given as a
matrix (gij) are:

A1 = − 1
2

∣∣∣∣∣g13 g14

g33 g34

∣∣∣∣∣
g33

, A2 =
g23
g33

, A3 =
g13
g33

,

A4 = − log(g33) , A5 = −g34
g33

, A6 = −g32
g33

.

Remark 4.2 Using pi-matrix techniques as expounded in [8, 11], we can find vector fields acting on
functions of the variables (A1, . . . , A6) dual to the action of the Lie algebra on its universal enveloping
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algebra by multiplication from the right. This is the right dual. One finds for the Schrödinger algebra, with
∂i denoting ∂/∂Ai, i = 1, . . . , 6:

M∗ = ∂1 ,

K∗ = 1
2A

2
5∂1 + e2A4∂2 +A5eA4∂3 +A6(∂4 +A5∂5 +A6∂6) ,

G∗ = A5∂1 + eA4∂3 +A6∂5 ,

D∗ = ∂4 +A5∂5 + 2A6∂6 ,

P ∗
x = ∂5 ,

P ∗
t = ∂6 .

Comparing with eqs. (1), suggests acting with these vector fields on functions of the form emA1 e−dA4

f(A5, A6). Notice that the additional degrees of freedom corresponding to the variables A2 and A3 are
ignored in this case. It is now seen that the physical realization is recovered from the right dual acting on
functions of the form just indicated by the correspondence x ↔ A5 and t ↔ A6.

Referring to decomposition (3), we specialize variables, writing V1, V2, B1, B2 for A2, A3, A6, A5 re-
spectively. Basic for our analysis is to establish the partial group law:

eB1Pt+B2Px eV1K+V2G = ?

We will get the required results using the matrix representation (4) noted above. The general elements of P
and L are:

B1Pt +B2Px =




0 B2 0 0

0 0 0 0

0 −B1 0 −B2

0 0 0 0


 ,

V1K + V2G =




0 0 V2 0

0 0 V1 V2

0 0 0 0

0 0 0 0


 .

As the square of each of these matrices is zero, the exponential of each reduces to simply adding the
identity. We find the matrix product

eB1Pt+B2Px eV1K+V2G =




1 B2 V2 + B2 V1 B2 V2

0 1 V1 V2

0 −B1 1 − B1 V1 −B1 V2 − B2

0 0 0 1


 .
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Applying Proposition 4.1 to the matrix found above yields

Proposition 4.3 In coordinates of the second kind, we have the Leibniz formula,

g(0, 0, 0, 0, B2, B1) g(0, V1, V2, 0, 0, 0)

= g

(
1
2
B1 V2

2 + 2B2 V2 +B2
2V1

1 −B1 V1
,

V1

1 −B1 V1
,
V2 +B2 V1

1 −B1 V1
,

− log(1 −B1 V1),
B1 V2 +B2

1 −B1 V1
,

B1

1 −B1 V1

)
.

In general, a Leibniz formula is the group law for commuting the L operators past the R’s, in analogy to
the classical formula of Leibniz for derivatives.

4.3 Standard form of the Schrödinger algebra

Now we show the internal structure of the Schrödinger algebra (n = 1).

Remark 4.4 Note that we work in enveloping algebras throughout, so our calculations are based on
relations in an associative algebra. In particular, we often use

[A,BC] = [A,B]C +B[A,C] and [A,B2] = [A,B]B +B[A,B] . (5)

Definition 4.5 Denote the basis for a standard Heisenberg-Weyl (HW) algebra, H = span{P,X,H},
satisfying

[P,X] = H, [P,H] = [X,H] = 0 .

A representation of HW-algebra such thatH acts as the scalarm times the identity operator will be denoted
as m-HW algebra.

Definition 4.6 Denote the basis for a standard sl(2) algebra, K, by {L,R, ρ}, satisfying

[L,R] = ρ, [ρ,R] = 2R, [L, ρ] = 2L .

We write K : = {L,R, ρ}.

The following Lemma is well-known. It follows readily from the equations in remark 4.4 (also see
calculations below).

Lemma 4.7 Given an m-HW algebra, setting

L =
1

2m
P 2, ρ =

1
m
XP +

1
2
, R =

1
2m

X2

yields a standard sl(2) algebra.

Now for our first main observation, which follows immediately from the commutation rules for the
Schrödinger algebra.

Theorem 4.8 (HW form of the Schrödinger algebra) Given an m-HW algebra, setting

m = H , K =
1

2m
X2 , G = X , D =

1
m
XP +

1
2
, Px = P , Pt =

1
2m

P 2

yields a representation of S.

And the main theorem, which gives the standard form.
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Theorem 4.9 (Standard form of the Schrödinger algebra) Any representation of the Schrödinger algebra
S = span{m,K,G,D, Px, Pt} contains a standard sl(2) algebra K0 = span{L0, R0, ρ0} such that, with
the m-HW algebra H = span{Px, G,m} from the given representation of S, the sl(2) subalgebra is of
the form

K = R0 +
1

2m
G2, D = ρ0 +

1
m
GPx +

1
2
, Pt = L0 +

1
2m

P 2
x

where K0 commutes with H.
Conversely, given any m-HW representation, use it for H := {Px, G,m}. Now take any sl(2) algebra

commuting with H, and form the direct product with the standard sl(2) algebra constructed from H by the
Lemma. Then this yields a representation of S.

P r o o f. The converse is clear by construction and our previous observations. What must be checked
is that given a representation of S, setting

R0 = K − 1
2m

G2 , ρ0 = D −
(

1
m
GPx +

1
2

)
, L0 = Pt − 1

2m
P 2

x

yields an sl(2) algebra that commutes with H. From eq. (5), we have

[L0, G] = [Pt, G] − 1
2m

[
P 2

x , G
]

= Px − Px = 0

and similar relations for R0 and ρ0 show that K0 commutes with H. Now, using remark 4.4, we note
these relations[

P 2
x ,K

]
= PxG+GPx = 2GPx +m,

[GPx,K] = 0 · Px +G ·G = G2 ,

[Pt, GPx] = P 2
x .

Thus, using the fact that [K0,H] = 0, we have

[L0, R0] = [L0,K − 1
2m

G2]

= [Pt − 1
2m

P 2
x ,K] + [L0,− 1

2m
G2]

= D − 1
m
GPx− 1

2
= ρ0

while

[ρ0, R0] = [ρ0,K − 1
2m

G2] = [ρ0,K]

= [D,K] − 1
m

[GPx,K]

= 2K − 1
m
G2 = 2R0

and

[L0, ρ0] = [Pt − 1
2m

P 2
x , ρ0]
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352 P. Feinsilver et al.: Representations of the Schrödinger algebra

= [Pt, D] − [Pt,
1
m
GPx]

= 2Pt − 1
m
P 2

x = 2L0

which completes the proof.

Remark 4.10 The theorem, extended to include rotations, holds also for n > 1, where we use K0
spanned by

L0 =
1

2m

∑
i

P 2
i , R0 =

1
2m

∑
i

G2
i , ρ0 =

1
m

∑
i

GiPi +
n

2

and for the rotations,

J0,ij = Jij − 1
m

(GiPj −GjPi)

with the J0 rotations commuting with H.

As an application of Theorem 4.8, consider the special realization, with scalar M = m and x denoting
multiplication by the variable x,

G = mx , Px =
d

dx
, Pt =

1
2m

d2

dx2 , K =
mx2

2
, D = x

d

dx
+

1
2
. (6)

In this realization, acting on the function identically equal to 1, we have Pt1 = Px1 = 0, andD1 = 1/2.
Applying a group element to the function 1, we find

g(A1, A2, A3, A4, A5, A6) 1 = exp
(
A1m+A2

mx2

2
+A3mx+A4/2

)
.

Clearly, f(x)1 can be identified with the function f(x) itself. Now apply the Leibniz formula, Proposition
4.3, to find

Corollary 4.11 The differential realization of the Schrödinger algebra S1 has the following “partial
group law”

exp
(
B1

2m
d2

dx2 +B2
d

dx

)
exp

(
V1
mx2

2
+ V2mx

)

= exp
(

V1

1 −B1V1

mx2

2
+
V1B2 + V2

1 −B1V1
mx

)

× (1 −B1V1)−1/2 exp

(
m

2
B1 V2

2 + 2B2 V2 +B2
2V1

1 −B1 V1

)
.

5 Canonical Appell systems for the Schrödinger algebra

Now we are ready to construct the representation space and basis – the canonical Appell system. To start,
define a vacuum state Ω. The (commuting) elements K and G of P can be used to form basis elements

|jk〉 = KjGkΩ , j, k ≥ 0

of a Fock space F = span{|jk〉} on which K and G act as raising operators, while Pt and Px act as
lowering operators. That is, for constants m and c,

KΩ = |10〉 , GΩ = |01〉 ,
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PtΩ = 0 , PxΩ = 0 ,

MΩ = m|00〉 , DΩ = c|00〉 .
Notation The standard form (cf. Theorem 4.9) gives D = ρ0 + (1/m)GPx + 1/2, which shows that

ρ0Ω = (c− 1/2)Ω. Hence in the following we denote c− 1/2 by ċ.

5.1 Adjoint operators and Appell systems

The goal is to find an abelian subalgebra spanned by some selfadjoint operators acting on the representation
space just constructed. Such a two-dimensional subalgebra can be obtained by an appropriate “turn” of the
plane P in the Lie algebra, namely via the adjoint action of the group element formed by exponentiating
Pt. The resulting plane, Pβ say, is abelian and is spanned by

X1 = eβPtKe−βPt = exp(adβPt)K = K + βD + β2Pt ,

X2 = eβPtGe−βPt = G+ βPx . (7)

Next we determine our canonical Appell systems. We want to compute exp(z1X1 + z2X2)Ω. Setting
V1 = z1, V2 = z2, B1 = β, and B2 = 0 in Proposition 4.3 yields

ez1X1ez2X2Ω = eβPtez1Kez2Ge−βPtΩ = eβPtez1Kez2GΩ

= exp
(

z1K

1 − βz1

)
exp

(
z2G

1 − βz1

)
(1 − βz1)

−c exp
(
m

2
βz2

2

1 − βz1

)
Ω . (8)

From eq. (8), we see K and G, our raising operators, while their respective adjoints Pt and Px act as
lowering operators on the basis |jk〉 = KjGkΩ. To get the generating function for the basis |jk〉, set
in eq. (8)

v1 =
z1

1 − βz1
, v2 =

z2
1 − βz1

. (9)

Substituting throughout, we have

Proposition 5.1 The generating function for the canonical Appell system, {|jk〉 = KjGkΩ} is

ev1Kev2GΩ = exp
(
x1

v1
1 + βv1

)
exp

(
x2

v2
1 + βv1

)
(1 + βv1)

−c exp
(

−mβ
2

v2
2

1 + βv1

)
where we identify X1Ω = x1 · 1 and X2Ω = x2 · 1 in the realization as functions of x1, x2.

With v2 = 0, we recognize the generating function for the Laguerre polynomials, while v1 = 0 reduces
to the generating function for Hermite polynomials. This corresponds to the results of Sect. 4 of [7].

From the exponentials exp(ziXi), eq. (8), we identify as operators z1 = ∂/∂x1 and z2 = ∂/∂x2. Using
script notation for the vi as operators, relations (9) take the form

V1 =
(

1 − β
∂

∂x1

)−1
∂

∂x1
,

V2 =
(

1 − β
∂

∂x2

)−1
∂

∂x2
.

To act on polynomials, expand (1 − β ∂/∂xi)−1 in geometric series

(1 − β ∂/∂xi)−1 =
∑
n≥0

βn

(
∂

∂xi

)n

.

c© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



354 P. Feinsilver et al.: Representations of the Schrödinger algebra

So we have both a V1-Appell system and a V2-Appell system as in Sect. 3. The Appell space decompositions
are, for V1 and V2,

Z(1)
n = | polyn(K) poly(G) Ω 〉 ,

Z(2)
n = | polyn(G) poly(K) Ω 〉

respectively, where poly(·), resp. polyn(·), denote arbitrary polynomials in the indicated variable, resp. of
degree a most n in the variable. Now symmetries are generated by functions of ∂/∂x1 and ∂/∂x2. We will
see explicit examples in Sect. 7.

5.2 Probability distributions

Now we shall consider some probabilistic observations. We introduce an inner product such thatK∗ = β2Pt

and G∗ = βPx. The Xi, which are formally symmetric, extend to self-adjoint operators on appropriate do-
mains.

Expectation values are taken in the state Ω, i.e., for any operator Q,

〈Q〉Ω = 〈Ω, QΩ〉

where the normalization 〈Ω,Ω〉 = 1 is understood.
From PtΩ = PxΩ = 0 follows that 〈Pt〉Ω = 〈Px〉Ω = 0 and moving K and G across in the inner

product, that 〈K〉Ω = 〈G〉Ω = 0 as well. Going back to eq. (8), take the inner product on the left with Ω.
The exponential factors in K and G average to 1, yielding

〈
ez1X1ez2X2

〉
Ω

= (1 − βz1)
−c exp

(
m

2
βz2

2

1 − βz1

)
.

This result has an interesting probabilistic interpretation for positive values of β and c. Observe that the
marginal distribution of X1 (i.e., for z2 = 0) is gamma distribution, while the marginal distribution of X2
(now z1 = 0) is Gaussian. Note, however, that these are not independent random variables.

To recover the joint distribution of X1, X2, let us first recall some probability integrals (Fourier trans-
forms): ∫ ∞

−∞
eiξye−λyyt−1λt θ(y) dy/Γ(t) = (1 − iξ/λ)−t , for t > 0 ,

∫ ∞

−∞
e−iηue−u2/(2v) du =

√
2πv e−η2v/2 , for v > 0

where θ(x) denotes the usual Heaviside function, θ(x) = 1 if x ≥ 0, zero otherwise. Replacing z1, z2
by iz1, iz2 respectively and taking inverse Fourier transforms, we have

Proposition 5.2 The joint density p(x0, x2) of the random variables X1, X2 is given by

p(x0, x2) = e−x0/βe−x2
2/(2mβ)xċ−1

0 β−ċ θ(x0)
dx0 dx2

Γ(ċ)
√

2πmβ

for c, β > 0, where ċ = c− 1/2 and x0 = x1 − x2
2/(2m).

The result says that the marginal distribution of X2 is Gaussian with mean 0 and variance 2mβ. Condi-
tional on X2, X1 is gamma with parameters 1/β and c− 1/2 taking values in the interval (x2

2/(2m),∞).
In the special case c = 1/2, i.e., ċ = 0, the gamma density collapses to a delta function: δ(x1 − x2

2/(2m)).
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6 Leibniz function and orthogonal basis

Once the Leibniz formula for the Lie algebra S1 is known (Proposition 4.3), we can proceed to define
coherent states, find the Leibniz function – inner product of coherent states – and show that we have a
Hilbert space with self-adjoint commuting operators X1 = Pt + D + K and X2 = G + Px (here the β
in eqs. (7) is set equal to 1). We recover the raising and lowering operators as elements of the Lie algebra
acting on the Hilbert space with basis consisting of the canonical Appell system.

The two-parameter family of coherent states is defined as

ψV = ψV1,V2 = eV1KeV2GΩ .

Using Proposition 4.3, we see

Proposition 6.1 With K∗ = Pt and G∗ = Px, the Leibniz function is

ΥBV = (1 −B1V1)−c exp
(
m

2
B1V

2
2 + 2B2V2 +B2

2V1

1 −B1V1

)
.

P r o o f. Use Proposition 4.3 in the relation

ΥBV = 〈ψB , ψV 〉 =
〈
Ω, eB2PxeB1Pt eV1KeV2GΩ

〉
.

Note that the Leibniz function is symmetric in B and V , which is equivalent to the inner product being
symmetric, and thus the Hilbert space being well-defined.

It is remarkable that the Lie algebra can be reconstructed from the Leibniz function ΥBV . The idea is
that differentiation ΥBV with respect to V1 brings downK acting on ψV , while differentiation with respect
to B1 brings down a K acting on ψB which moves across the inner product as Pt acting on ψV . Similarly
for G and Px. We thus introduce creation operators Ri, and annihilation (velocity) operators Vi, satisfying
[Vi,Rj ] = δijI. Expressing the Lie algebra in terms of these operators is the boson realization. We thus
identify K = R1, G = R2. Note, however, that V1 is not the adjoint of R1, nor V2 that of R2. In fact, our
goal is to determine the boson realization of Pt and Px, the respective adjoints.

Here is a method to find the boson realization. First, one determines the partial differential equa-
tions for Υ = ΥBV :

∂Υ
∂B1

= V 2
1
∂Υ
∂V1

+ V1V2
∂Υ
∂V2

+ cV1Υ + m
2 V

2
2 Υ ,

∂Υ
∂B2

= V1
∂Υ
∂V2

+mV2Υ .

Then, one interprets each multiplication by Vi as the operator Vi and each differentiation by Vi as the
operator Ri. This gives the following action of the operators Px and Pt on polynomial functions of K
and G:

Px = mV2 + R2V1 , Pt = cV1 + R1V2
1 + m

2 V2
2 + R2V1V2 .

This means that Px acts on |jk〉 = Rj
1Rk

2 |00〉 as follows

Px|jk〉 = mk|j, k − 1〉 + j|j − 1, k + 1〉

and Pt does similarly. The element D is recovered via

D = [Pt,K] =
[
cV1 + R1V2

1 + m
2 V2

2 + R2V1V2,R1
]

= c I + 2R1V1 + R2V2 .
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To tie in with more usual notation for bosons, let us set a1 = V1, a2 = V2, a+
1 = R1, and a+

2 = R2,
with the proviso that a1 and a+

1 , e.g., are not in fact adjoint to each other. We may formulate the boson
realization thus:

M = m I ,

K = a+
1 ,

G = a+
2 ,

D = c I + 2a+
1 a1 + a+

2 a2 ,

Px = ma2 + a+
2 a1 ,

Pt = c a1 + a+
1 a

2
1 + m

2 a
2
2 + a+

2 a1a2 .

To recover the physical realization, eqs. (1), first use the natural involution on the algebra K ↔ Pt,
G ↔ Px, then note the substitutions a1 → t, a2 → x, a+

1 → ∂t, a
+
2 → ∂x, c → −d. Then reorder so that

the derivatives are on the right (Wick ordering).
Summarizing the action of the boson realization, we have

Theorem 6.2 The representation of the Schrödinger algebra on the Fock space F with basis |j, k〉 =
KjGkΩ is given by

K |j, k〉 = |j+1, k〉 ,
G |j, k〉 = |j, k+1〉 ,
Px |j, k〉 = mk |j, k−1〉 + j |j−1, k+1〉 ,
Pt |j, k〉 = j(c+k+j−1) |j−1, k〉 + m

2k(k−1) |j, k−2〉 ,
D |j, k〉 = (c+2j+k) |j, k〉 ,
M |j, k〉 = m |j, k〉 .

Corollary 6.3 In the above representation, the Schrödinger operator S = Pt −P 2
x/(2m) is represented

by S = ċV1 + RoV2
1 , or ċ a1 + a+

0 a
2
1, i.e.,

S |j, k〉 = j(ċ+ j − 1)|j − 1, k〉 + 1
2mj(j − 1) |j − 2, k + 2〉

where we define R0 = R1 − R2
2/(2m), a+

0 = a+
1 − (a+

2 )2/(2m), cf. Theorem 4.9.

A very important feature of the Leibniz function ΥBV is that it is the generating function for the inner
products of the elements of the basis. Indeed, expanding the exponentials defining the coherent states yields

ΥBV =
∑

j,k,j′,k′
〈jk|j′k′〉B

j
1B

k
2V

j′
1 V k′

2

j!k!j′!k′!
.

For an orthogonal basis, a necessary and sufficient condition is that this must be a function only of the pair
products B1V1 and B2V2. We proceed to find an orthogonal basis.

Lemma 6.4 The Leibniz function can be expressed as

ΥBV = (1 −B1V1)−ċ exp
(
B1

2m
∂2

∂B2
2

+
V1

2m
∂2

∂V 2
2

)
emB2V2

with ċ = c− 1/2.
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P r o o f. In the formulation of Corollary 4.11 first set B2 = 0. Then use the special realization as in
eq. (6) with x = B2. As in Corollary 4.11

exp
(
B1

2m
d2

dB2
2

)
exp

(
V1
mB2

2

2
+ V2mB2

)

= exp
(

V1

1 −B1V1

mB2
2

2
+

V2

1 −B1V1
mB2

)
(1 −B1V1)−1/2 exp

(
m

2
B1 V

2
2

1 −B1 V1

)

which combines to yield ΥBV up to the factor (1 −B1V1)−ċ. Now observe that

emB2V2+(m/2)V1B2
2 = exp

(
V1

2m
∂2

∂V 2
2

)
emB2V2

where on exp(mB2V2), ∂/∂V2 acts simply as multiplication by mB2. Combining with the above observa-
tions yields the result.

Now for the main result, expressing the basis in terms of R0 = K −G2/(2m), cf. Corollary 6.3.

Theorem 6.5 The set |rs〉 = Rr
0G

sΩ, r, s ≥ 0, forms an orthogonal basis with squared norms

〈rs|rs〉 = (ċ)r r!s!ms

where (ċ)r = ċ(ċ+ 1) . . . (ċ+ r − 1).
P r o o f. From Lemma 6.4,

(1 −B1V1)−ċ emB2V2 = exp
(

− B1

2m
∂2

∂B2
2

− V1

2m
∂2

∂V 2
2

)〈
eB1K+B2GΩ, eV1K+V2GΩ

〉
=
〈
eB1(K−G2/(2m))+B2G)Ω, eV1(K−G2/(2m))+V2GΩ

〉
=
〈
eB1R0+B2GΩ, eV1R0+V2GΩ

〉
.

Now we have the generating function for the inner products 〈rs|r′s′〉 depending only on the pair products
B1V1, B2V2. Hence orthogonality. Expanding the left-hand side of the equation yields the squared norms.

Similarly, we have for the canonical Appell system,

Proposition 6.6 Let X0 = X1 −X2
2/(2m), with the identification X0Ω = x0 · 1. Then

ev0R0ev2GΩ = exp
(
x0

v0
1 + βv0

)
(1 + βv0)

−ċ exp
(
x2v2 − βmv2

2/2
)
.

P r o o f. First substitute v0 for v1 in Proposition 5.1. And observe that

ev0R0ev2GΩ = exp
(

− v0
2m

∂2

∂v2
2

)
ev0Kev2GΩ .

Now use the special realization, eq. (6), taking x = v2 in Corollary 4.11, with

B1 = −v0 , B2 = 0 , V1 = − β

1 + βv0
, V2 =

x2/m

1 + βv0
.

After substituting accordingly and simplifying, one finds the stated result.

Note that now the system decouples into Laguerre polynomials in the variable x0 and Hermite polyno-
mials in the variable x2.
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7 Appell systems and evolution equations

The generating function, hence basis functions, for a canonical Appell system will, in general, satisfy a

system of evolution equations of the form
∂u

∂τi
= Hiu with the Hi commuting natural Hamiltonians for

the system (cf. [5] where their Hamiltonians are our X’s). These correspond to the abelian subalgebra of
Cartan elements, acting as scalars on the vacuum state. For the Schrödinger algebra these are M and D.
The corresponding variables are m and c. In this context, then, set τ1 = c, τ2 = m.

In Proposition 5.1, denote the generating function by u. Observe that(
1 − β

∂

∂x1

)
u =

1
1 + βv1

u ,

∂u

∂x2
=

v2
1 + βv1

u .

Thus, substituting c = τ1, m = τ2 we find the evolution equations

∂u

∂τ1
= − log(1 + βv1)u=H1u= log

(
1 − β

∂

∂x1

)
u ,

∂u

∂τ2
= −β

2
v2
2

1 + βv1
u =H2u= − β

2

(
1 − β

∂

∂x1

)−1
∂2u

∂x2
2
.

Comparing with Proposition 5.2 shows that the first equation corresponds to a Lévy process with time-
parameter τ1, a gamma process, i.e., convolution powers of an exponential distribution. The second equation,
a modified Fokker-Planck equation, corresponds to a coupled Brownian motion.

The system is decoupled in the variables x0, x2, as indicated in Proposition 6.6. Proceeding similarly
as above, substitute ċ = τ1, m = τ2 in the generating function expressed in the variables x0, x2. Now we
have the evolution equations

∂u

∂τ1
= H1u= log

(
1 − β

∂

∂x0

)
u ,

∂u

∂τ2
= H2u= − β

2
∂2u

∂x2
2
.

From which it is clear that the system corresponds to independent Lévy processes: a gamma process and a
Brownian motion process.

8 Conclusion

The methods indicated here that have been developed for Lie algebras/Lie groups show nicely the structure
of the Schrödinger algebra and the connections between the Schrödinger algebra and quantum probability.
It is interesting to see that physically interesting representations/realizations are natural consequences of our
approaches: the duality approach via pi-matrices and the approach via the Leibniz function using generalized
coherent states/Berezin quantization.

The methods used here extend to the n = d+ 1-dimensional Schrödinger algebra. Of special interest is
the rôle played by the subgroup of rotations.
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