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Abstract

The polynomial relationship between elementary symmetric functions
(Cauchy enumeration formula) is formulated via a “raising operator” and
Fock space construction. A simple graphical proof of this relation is pro-
posed. The new operator extends the Heisenberg algebra so that the num-
ber operator becomes a Lie product. This study is motivated by natural
appearance of these polynomials in the theory of invariants for Lax equa-
tions and in classical and topological field theories.
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1 Motivations

An endomorphism of a linear space L may be characterized by its invariants
with respect to some symmetry group, most generally GL(n), n = dimL. The
basic invariants are the determinant and the trace, which are special cases of the
coefficients of the secular equations (here called prodeterminants), but also in-
clude power traces. These invariants appear naturally in many areas of physics:
power traces in the theory of integrable systems on Lie algebras (Lax equation),
generalized determinants in classical field theory, and symmetrized traces in
topological field theory (Chern classes), to mention a few.

Tradition reserves different invariants for different theories, but, since they
can be viewed as symmetric functions evaluated at eigenvalues of the given en-
domorphism, they are related. In particular, prodeterminants can be expressed
as polynomials in power traces, with the Cauchy enumeration formula giving
the coefficients.
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In these notes, we introduce a “raising operator” which allows one to con-
struct the Cauchy coefficients in these polynomial relation. We study some of its
properties.

Although this work is motivated by the invariants of endomorphisms, the
results are valid also for the theory of symmetric functions in general. Sections 2
and 3 are reviews of the basic facts on prodeterminants and symmetric functions.
Sections 4, 5 and 6 deal with new results.

2 Determinants and traces of an endomorphism

Determinant and trace are examples of invariants with respect to the adjoin ac-
tion of the general linear group GL(n) acting on a linear space L, that is

Tr gAg−1 = TrA det gAg−1 = detA

for any endomorphism A ∈ EndL of a linear space L and g ∈ GL(n). These
generalize into two families of invariants. The elements of one, called power-
traces, are defined

Ik = Tr Ak, k = 1, 2, . . . (2.1)

The other family generalizes determinant; its elements, denoted by Ji, are de-
fined as coefficients of the characteristic polynomial for the endomorphism A,
namely

det (A− λ) =
n∑
i=0

(−λ)n−i Ji (2.2)

where n = dimL. We shall call Jk a prodeterminant of order k. In particular

J1(A) = TrA (= I1(A))
Jn(A) = detA

Remark: Generalized determinant (prodeterminant) can also be defined also as

Jk =
(−1)n−k

(n− k)!

dn−k

dλn−k
det (A− λ)

∣∣
λ=0

or, in a more explicit form, as

Jk =
∑

A[a1, a2, . . . , ak] (2.3)

where A[. . .] denotes determinant of the k× k minor (submatrix) determined by
the set of columns and rows indexed by the same subset [a1, . . . , ak] of the set
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[1, . . . , n]. The summation in (2.3) extends over all
(
n
k

)
possible selections of such

subsets.

Example: Let A be a 3× 3 matrix

A =

 a b c
d e f
g h i


Then one has the following prodeterminants

J1 = a+ e+ i

J2 = det
[
a b
d e

]
+ det [ a cg i ] + det

[
e f
h i

]
J3 = detA

while the power-traces are

I1 = a+ e+ i
I2 = a2 + e2 + i2 + 2db+ 2gc+ 2fh
I3 = a3 + e3 + i3 + 3abd+ 3cdg + 3bde

+3efg + 3bfh+ 3fgi+ 3ach+ 3chi

Particular applications in systems with symmetries favor one of the two types of
invariants, like Lax equations use rather I while the theory of Chern classes and
some particle models — J (see Appendix A). But, in fact, the two are dependent:

J1 = I1
2J2 = I21 − I2
6J3 = I31 − 3I1I2 + 2I3

12J4 = I41 − 6I21I2 + 8I1I3 + 3I22 − 6I4
. . .

(2.4)

The polynomials on the right side of (2.4) will be denoted by j and called Cauchy
polynomials — they are the central topic of this note. The question is to deter-
mine the coefficients of these polynomials. They are known to be directly related
to the rank of the conjugacy classes of the symmetric group (group of permuta-
tions). Section 4 will present a new formula generating the polynomials with the
corresponding coefficients. But first, we review some basic facts about symmet-
ric functions.
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3 Symmetric functions and Cauchy formula

Connection of the invariants with the symmetric functions follows directly from
the fact that if an endomorphism A has a diagonal matrix form in some basis,
with eigenvalues on the diagonal

A =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

0 0 λn

 ,
then clearly

Ik =

n∑
i

λki

and
Jk =

∑
λa1 · λa2 · . . . · λak ,

where the last sum runs over all
(
n
k

)
selections of k among the set of the n eigen-

values λ of the endomorphism A. These expressions can easily be recognized as
the symmetric functions evaluated on the set of eigenvalues of A. Invariants I
and J corresponds to the two types of basic symmetric functions. Consequently,
relations (2.4) may be understood as a transformation formula for the change of
basis of the space of symmetric functions.

Let us recall some basic facts about symmetric functions. The space of sym-
metric functions of degree k is denoted by Sk. The three most frequently used
families of basic symmetric functions in variables x1, x2, . . . , xn are these:

A. Elementary symmetric functions:

ck =
∑

xi1xi2 . . . xik 1 ≤ i1 < i2 < . . . < ik ≤ n

B. Power sums:

sk = xk1 + xk2 + . . .+ xkn (3.1)

C. Wronski functions:

wk =
∑

xi1xi2 . . . xik 1 ≤ i1 ≤ i2 ≤ . . . ≤ ik ≤ n
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The number n of variables in these definitions may essentially be unrestricted —
one can always set xi = 0 for i > n. Here is an example of the basic symmetric
functions of degree 1, 2 and 3 in three variables:

c1 = s1 = w1 = x1 + x2 + x3

c2 = x1x2 + x2x3 + x1x3
s2 = x21 + x22 + x23
w2 = x21 + x22 + x23 + x1x2 + x2x3 + x1x3

c3 = x1x2x3
s3 = x31 + x32 + x33
w3 = x31 + x32 + x33 + x1x2x3 + x21x2 + x1x

2
2

+x21x3 + x1x
2
3 + x22x3 + x2x

2
3

Definition 3.1 By λ ` k we denote a fact that the set λ = (λ1, λ2, . . .) is a partition
of natural number k, that is:

λ1 + λ2 + . . .+ λk = k
λ1 ≤ λ2 ≤ . . . ≤ λk

A partition can alternatively be described by a partition symbol α = [α1, α2, . . . , αk]
in which αi denotes the number of i’s among the elements of set λ. Thus

1 · α1 + 2 · α2 + . . .+ k · αk = k

By α |= k we denote that α is a partition symbol of k.

Example: Number 10 admits partition 1 + 1 + 1 + 3 + 4 = 10, thus we write
(1, 1, 1, 3, 4) ` 10. For the partition symbol we write [3, 0, 1, 1] |= 10.

The fundamental theorem of symmetric functions states that basis of the
space of homogeneous symmetric functions of degree k may be composed from
products of members of any of these families. If bi denotes the members of any
of the families of the basic functions (3.1), then the set of products

{ bα1
1 · b

α2
2 · · · · · b

αk
k | α|=k }

forms a basis of the space Sk of symmetric functions of degree k. The relation
between the types of symmetric functions is well known (see, e.g., [9]). In par-
ticular:
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Theorem 3.2 Any elementary symmetric function can be expressed as a linear combi-
nation of products of the power sums:

ck =
∑
α|=k

(−1)α2+α4+... · h(α)

n!
· sα1

1 · s
α2
2 · . . . · s

αk
k

where the sum runs over all partitions of k and where h(α) is known as Cauchy formula,
is given by

h(α) =
n!

α1!α2! · · · αk! · 1α12α2 · · · kαk
.

This theorem provides the coefficients of the polynomial expansion of prode-
terminants in terms of traces, (Eq. 2.4).

Interestingly, the relation between Wronski functions w and power sums s
utilizes the same Cauchy formula, but without alternating sign:

wk =
∑
α|=k

h(α)

n!
sα1
1 · s

α2
2 · . . . · s

αk
k

Proofs of this statements involve usually a rather unpleasant juggling with sums,
indices, and logarithms [9]. In the next section, we shall give a different deriva-
tion on Cauchy coefficients. An alternative simple proof will be provided in
Section 6.

Remark 3.3 Cauchy formula appears naturally in yet another context, namely in the
theory of symmetric groups. It is well known that any element of symmetric group Sn
can be written as a product of cyclic permutations. Two elements of Sn belong to the
same adjoint class if both are composed from cycles of the same length. From this, it
immediately follows that a conjugacy class may be labeled uniquely by a partition of n,
say by a partition symbol α = [α1, α2, . . . , αn], and that the size of the corresponding
class is

h(α) =
n!

α1!α2! · · ·αk! · 1α12α2 · · · kαk

This is a straightforward enumeration formula. Typically, these two appearances of
Cauchy formula — in the theory of symmetric functions and in symmetric group — are
left unrelated. Our proof of the prodeterminant-trace formula is actually based on the
combinatorial meaning of the Cauchy formula.
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4 Fock construction for Cauchy polynomials (main result)

In this section we provide some insight into the structure of relations (2.4) in
terms a Fock space construction. Here we abstract from the functional mean-
ing of the components of these relations, but rather we will treat these relations
as polynomials on their own. In particular, polynomials (2.4) are obtained in a
recursive process of raising a “vacuum” state in the space of multivariate poly-
nomials. (Not to be confused with the raising operator appearing in a related
context, like in [2]).

Let P[x] be a linear space of finite polynomials over variables x1, x2, x3 . . .
etc. We shall use the multi-index notation (n) = (n1, n2, . . .). The monomials

x(n) = xn1
1 xn2

2 xn3
3 . . .

form a basis of P[x], and a general element of P[x] is

p(x) =
∑
(n)

c(n) x
(n)

with some coefficients c(n). We shall also use Dirac notation and write x(n) =
|n1, n2, . . .〉, so that

p(x) =
∑
(n)

c(n)|n〉

Clearly, c(n) = 〈 n | p(x) 〉.

Definition 4.1 Derivation operator δ ∈ EndP[x] is defined by its action on a single
variable and by Leibniz rule

(i) δ xk = k xk+1

(ii) δ (ab) = δa · b+ a · δb (4.1)

Proposition 4.2 For a simple power xnk and for a general monomial, one has respec-
tively the following formulae

(i) δ xnk = nk xn−1k xk+1

(ii) δ x(n) =
∑

i: ni>0

i · ni · x(n) · xni+1+1 / xni .
(4.2)
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The last formula can be written in Dirac notation as

δ |n1, n2, . . .〉 =
∑
i

i ni |n1, n2, . . . , ni−1, ni − 1, ni+1 + 1, ni+2, . . . 〉 (4.3)

where the sum extends over the terms for which ni > 0. (Or, equivalently, one
can simply set |n1, n2, . . .〉 = 0 whenever ni < 0 for some i).

We shall now define a raising operator ∆− ∈ EndP[x] by

∆− = x̂1 − δ , (4.4)

where x̂1 denotes operator of multiplication by variable x1. Consider a sequence
of polynomials (coherent states) determined by a consecutive application of the
raising operator ∆−, namely

(i) j1 (x) = x1
(ii) jk+1(x) = ∆−jk = (x̂1 − δ)jk .

(4.5)

One can easily generate the following sequence of polynomials:

j1(x) = x1
j2(x) = x21 − x2
j3(x) = x31 − 3x1x2 + 2x3
j4(x) = x41 − 6x21x2 + 8x1x3 + 3x22 − 6x4
j5(x) = x51 − 10x31x2 + 20x21x3 + 15x1x

2
2 − 30x1x4 − 20x2x3 + 24x5

. . .

(4.6)

where the first polynomial j1 = x1 may be viewed as a “vacuum state” and
jk = ∆kj1 as the k-th “excited state” obtained via the raising operator ∆−. One
may easily recognize in the above the polynomials (2.4):

Theorem 4.3 The system determined by raising operator ∆− and Fock space construc-
tion (4.5) coincides with Cauchy polynomials. In particular, let A ∈ EndL be an endo-
morphism of a linear space. Denote Ii = TrAi. Then the k-th prodeterminant Jk(A)
is

Jk(A) =
1

k!
jk(I1, I2, ..., Ik)

A graphical proof of this theorem is provided in section 6.

Remark 4.4 The family of polynomials ji together with the raising operator ∆− may
be interpreted and studied as a so-called Appell system (see [5]).
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One may define a complementary raising operator

∆+ = x̂1 + δ

and the corresponding sequence of polynomials

(i) k1(x) = x1
(ii) ki+1(x) = (x̂1 + δ)ki

Interestingly enough, the absolute values of the coefficients of these two types
of polynomials coincide, i.e.

〈 j(x) | n 〉 = ± 〈 k(x) | n 〉

Thus ∆+ enumerates directly the conjugacy classes of symmetric group:

Corollary 1 The number of elements of the conjugacy class of symmetric group Sn
corresponding to a partition symbol α |= n (i.e., consisting of elements that are compo-
sition of cycles in which cycle of length i appears αi times) is a coefficient at x(α) of the
generating function

(x1 + δ)(α1+...+αk) x1 =
∑

c(α) x
(α)

or, in Dirac notation,

〈 (xi + δ)(α1+...+αk)x1 | α1, . . . , αk 〉 =
∑
|α〉

cn |α1, . . . , αk 〉

5 Lie algebra

The operators x̂i of multiplication by xi, the partial derivatives ∂i ≡ ∂/∂xi with respect
to xi and identity, all acting in the space of polynomials P[x], form Heisenberg Lie alge-
bra H, the algebra of the harmonic oscillator. By including the derivation δ defined in
(4.1), this algebra may be extended to a Lie algebra

H̄ = gen {∂i, x̂j , δ} . (5.1)

with the following commutation relations for the generators:

[ ∂i, x̂j ] = δij
[ δ, x̂j ] = j · x̂j+1

[ ∂j , δ ] = j · x̂j+1 · x̂−2j

It is easy to calculate the Lie bracket of the two raising operators:

[ ∆−, ∆+ ] = 2x2δ
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Consider a subspace J [x] ⊂ P[x] spanned by polynomials {j1, j2, . . .} of Equation (4.6).
By definition, ∆− is a raising operator in the subspace J [x]. The derivative with respect
to the first variable acts as a lowering operator:

∂1jn = n · jn−1

Derivative with respect to the k-th variable lowers the index by k:

∂kjn =

(
n

k

)
· jn−k

Recall that the number operator is an operator N in the Fock space, defined on basis
elements by Njk = k · jk (eigenvectors). In the context of the standard Heisenberg
algebra, the number operator does not lie in the Lie algebra, and must be defined as an
element of the enveloping algebra, namely as a product N = x̂∂. It is remarkable that
the Lie algebra Ĥ (5.1) does contain the number operator, since

[ ∂1, ∆− ]jn = n jn

In general, one has:
[ ∆−, ∂k ] jn = (−)k

(
n
k

)
jn

[ ∆+, ∂k ] kn =
(
n
k

)
kk

6 Graphic representation

Prodeterminants (2.2) can equivalently be defined as “averages” over traces:

Jk =
1

k!

∑
σ∈Sk

sgn (σ) Ai1σ(i1) A
i2
σ(i2)

· · · Aikσ(ik)

where an additional sum over repeated indices of terms is understood (Einstein’s sum-
mation convention) (cf. Appendix A). This leads to a more geometric formulation of the
algebraic objects discussed. Here we show how a simple proof of Theorem 3.2 on the
Fock space structure of Cauchy polynomials (Appell system) may be obtained using a
graphical language for the category of tensor spaces. It also ties symmetric functions
with the combinatorial meaning of the Cauchy formula of Remark 3.3.

In spirit, the graphical language for tensor contractions that we want to use is cog-
nate with a number of approaches related to the language of tensor operads like that of
[11], [4], [10], or [6]. Such a graphical language — besides the conceptual value — may
lead to nice simplifications of proofs, like the one we present.

Here, we represent an endomorphism A by a square with two arrows, one going
out and one going in. The arrows may be viewed as representing indices, upper and
lower, respectively, if A is represented by a matrix. In general, the arrows represent
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“slots” of A viewed as a tensor, contravariant and covariant, respectively. A vector
will be represented by a square with a single arrow out (“contravariant slot”); and a
linear form (covector), by a single arrow in (“covariant slot”). Figure 1 shows graphical
representation of basic linear operations (contractions).

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A 
A v α

α

v

A 

A A A A 

A 

A 

A A A A A A 

A A A A 

Tr A =  Tr A2 =  Tr A3 =  

A A 

A A A A A A A A A 

A A A A A A A A A A 

(Tr A)3 3 (Tr A2) Tr A 2 Tr A3 J3(A)    – + =  

A ∈ End L v ∈ L α ∈ L* Av ∈ L αA ∈ L* 

(Tr A)2  Tr A2 J2(A)    – =  

A A A A … … 

… 

∧ 

∧ 

… 

… 
∧ 

Figure 1: Contractions of tensors

The trace and power-traces can be viewed as seen in Figure 2.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A 
A v α

α

v

A 

A A A A 

A 

A 

A A A A A A 

A A A A 

Tr A =  Tr A2 =  Tr A3 =  
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(Tr A)3 3 (Tr A2) Tr A 2 Tr A3 J3(A)    – + =  

A ∈ End L v ∈ L α ∈ L* Av ∈ L αA ∈ L* 

(Tr A)2  Tr A2 J2(A)    – =  

A A A A … … 

… 

∧ 

∧ 

… 

… 
∧ 

Figure 2: Power traces of an endomorphism A

The prodeterminants Jk are obtained as follows. Consider a tensor product of k copies
of A, namely the (k, k)-type tensor A ⊗ A . . . ⊗ A (left side of Figure 3). One can take
a trace of this operator by closing the k out-arrows with the k in-arrows . There are k!
such possible pairings of the k arrows with the k slots.
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(Tr A)3 3 (Tr A2) Tr A 2 Tr A3 J3(A)    – + =  

A ∈ End L v ∈ L α ∈ L* Av ∈ L αA ∈ L* 

(Tr A)2  Tr A2 J2(A)    – =  

A A A A … … 

… 

∧ 

∧ 

… 

… 
∧ 

Figure 3: Tensor product A⊗n and alternating tensor ∧

Scalar Jk is obtained by taking a sum over all possibilities (permutations), each term
assuming the sign corresponding to the parity of the permutation. In other words, we
contractA⊗A⊗. . .⊗Awith the (k, k)-type alternating tensor “∧”, totally antisymmetric
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in both sectors (represented in the right side of Figure 3). Figure 4 illustrates the case of
J2.
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Figure 4: The origin for the second Cauchy polynomial.

This gives the formula relating generalized determinants with power-traces! In a similar
simple combinatorial play with strings one obtains the next invariant J3, see Figure 5.
The general form of Cauchy polynomials as a result of the action of the raising operator
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Figure 5: The origin of the third Cauchy polynomial.

(4.4) emerges by induction and combinatorial meaning of the above tensor contractions.
Indeed, increasing the number of the “tensor boxes” on the left side on any of the last
three figures will add under contraction two types of new graphical loops: either the
new tensor makes a single loop with itself, or it will get in the path of one of the existing
loops increasing their length by one. The former case corresponds to the operator x̂1 in
(4.4), the latter to δ.

Appendix

A. Geometric definition of prodeterminant

Given linear space L of dimension d. Consider Grassmann space (tensor space)

∧kL = L ∧ L ∧ . . . ∧ L
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Any endomorphism A ∈ EndL has a natural extension to an endomorphism A∧k ∈
End ∧k L which for a simple multi-vector v1 ∧ v2 ∧ · · · ∧ vk is defined

A∗(v1 ∧ v2 ∧ · · · ∧ vk) = A(v1) ∧A(v2) ∧ · · · ∧A(vk)

Note that if {ei} is a basis of L, and {εi} is the dual basis of L∗, then A = εiAjiej , and

A∧k = A ∧A ∧ · · · ∧A = Aj1i1A
j2
i2
. . . Ajkik ej1 ∧ ej2 ∧ . . . ∧ ejk ⊗ ε

i1 ∧ εi2 ∧ . . . ∧ εik

Since multi-vectors ej1 ∧ ej2 ∧ . . .∧ ejk form a basis in the Grassmann space, the formula
for prodeterminant can be easily written as a trace of the induced endomorphism

Jk(A) = TrA∧k

In particular, J1(A) = TrA and Jn(A) = TrA∧n.

B. Matrix manifolds

Consider orbits of the adjoint action of the general linear group GL(n) acting on the
space of endomorphisms End (L) over some field of some spaceL of dimension dimL =
n:

g : M −→ gMg−1

The n× n dimensional space End ∼= Rn×n is foliated by the orbits of this action, which
we call matrix manifolds (see [8], where the case of complex spaces is considered). Thus
the prodeterminants Jk are invariant with respect to this action and they are natural
objects to consider in this context. In particular, a set of n values determines an orbit
(that is, the set of orbits is parameterized by the values of J ’s). If a matrix M is an
element of some orbit OM , then

Ker J1(M) ∩Ker J2(M) ∩ . . . ∩Ker Jn(M) = TMO (6.1)

For more (the role played by the rank of M and for applications in field theory), see [8].

Lax equation

Consider a matrix representation of Lie algebra L and a dynamical system

Ṁ = [M,B]

The power-traces of M provide natural invariants (called Casimir invariants) of the Lax
dynamical system. Indeed

d
dt TrMn = n Tr ṀMn−1 = nTr [M,B]Mn−1

= n(TrMBMn−1 − TrBMMn−1) = 0
(5)
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In particular, one can consider the adjoint representation of L and then M and B are
directly elements of L. Let L be a Lie algebra. In [7] we consider the space of L as a
manifold and define a (1,1)-type tensor field (a field of endomorphisms) by

Ax(ṽ) = (ad xv)∼ = [x, v]∼

If xi are (linear) coordinates on L then

A = xi ckij
∂

∂xk
⊗ dxj

At every point a ∈ L, tensorA can be viewed as an endomorphism of the tangent space,
A : TaL → TaL. One can define a distribution =A ⊂ TL. It is easy to show that this
distribution is integrable; the integral manifoldsO coincide with the orbits of the adjoint
action of L, and:

=A = TO

The power-traces of the adjoint representation provide a set of scalar functions Ii : L→
R. One of them, I2, is the Killing form (known in this context as Cartan quadratic func-
tion)

I2(a) = K(a, a) = cqipc
p
qja

iaj

Constant value of the Killing function determine a pseudosphere (hyperbolic sphere —
in the case of semi-simple algebras). Orbits of the adjoint action of the corresponding
Lie group lie in these spheres. They lie inside the surfaces determined by all the higher-
order power-traces. Thus, if for a set of n numbers r we define a submanifold of L

S(r1, . . . , rn) = { a ∈ L | I1(a) = r1, . . . , In(a) = rn }

then at any point a ∈ L
Oa ⊂ S(I1(a), . . . , In(a))

Given vector field B on L, define a new vector field of a dynamical system

XB = A B

Thus we have a corollary: every Lax dynamical system on L preserves each Ii as the
first integral of motion. Indeed:

XBf = df XB = df A B = 0

References

[1] Arnol’d, V.I., The Hamiltonian nature of the Euler equations in the dynamics of a
rigid body and an ideal fluid, Usp. Mat. Nauk, 24, pp. 225-226 (1969), (in Russian).

[2] F. Bergeron and A. Garsia, Science Fiction and Macdonald Polynomials, in Algebraic
methods and q-special functions (eds. R. Floreanini, L. Vinet, CRM Proceedings &
Lecture Notes, Am. Math. Soc., 22, pp. 1-52 (1999).

14



[3] David H. Collingwood & William M. McGovern, Nilpotent Orbits in Semisimple Lie
Algebras, (Van Nostrand Reinhold, New York, 1992).
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