
Chapter 14

Stuff for Students

14.1 Tips for Doing Research

As a student or new researcher, you will probably encounter researchers who
think that their method of doing research is the only correct way of doing
research, but there are dozens of methods that have proven effective.

Familiarity with the literature is important since your research should
be original. The field of high breakdown (HB) robust statistics has perhaps
produced more literature in the past 40 years than any other field in statistics.

This text presents the author’s applied research in the fields of high break-
down robust statistics and regression graphics from 1990–2008, and a sum-
mary of the ideas that most influenced the development of this text follows.
Important contributions in the location model include detecting outliers with
dot plots and other graphs, the sample median and the sample median ab-
solute deviation. Stigler (1973a) and Tukey and McLaughlin (1963) (and
others) developed inference for the trimmed mean. Gnanadesikan and Ket-
tenring (1972) suggested an algorithm similar to concentration and suggested
that robust covariance estimators could be formed by estimating the elements
of the covariance matrix with robust scale estimators. Hampel (1975) intro-
duced the least median of squares estimator. The LTS and LTA estimators
were interesting extensions. Devlin, Gnanadesikan and Kettenring (1975,
1981) introduced the concentration technique. Siegel (1982) suggested using
elemental sets to find robust regression estimators. Rousseeuw (1984) pop-
ularized LMS and extended the LTS/MCD location estimator to the MCD
estimator of multivariate location and dispersion. Ruppert (1992) used con-
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centration for HB multiple linear regression. Cook and Nachtsheim (1994)
showed that robust Mahalanobis distances could be used to reduce the bias
of 1D regression estimators. Rousseeuw and Van Driessen (1999) introduced
the DD plot. Important references from the regression graphics literature in-
clude Stoker (1986), Li and Duan (1989), Cook (1998a), Cook and Ni (2005),
Cook and Weisberg (1999a), Li (2000) and Xia, Tong, Li, and Zhu (2002).

Much of the HB literature is not applied or consists of ad hoc methods.
In far too many papers, the estimator actually used is an ad hoc inconsistent
zero breakdown approximation of an estimator for which there is theory. The
MCD, LTS, LMS, LTA, depth and MVE estimators are impractical to com-
pute. The S estimators and projection estimators are currently impossible
to compute. Unless there is a computational breakthrough, these estimators
can rarely be used in practical problems. Similarly, two stage estimators need
a good initial HB estimator, but no good initial HB estimator was available
until Olive (2004a) and Olive and Hawkins (2007b, 2008).

There are hundreds of papers on outlier detection. Most of these compare
their method with an existing method on one or two outlier configurations
where their method does better. However, the new method rarely outper-
forms the existing method (such as lmsreg or cov.mcd) if a broad class of
outlier configurations is examined. In such a paper, check whether the new
estimator is consistent and if the author has shown types of outlier configura-
tions where the method fails. Try to figure out how the method would
perform for the cases of one and two predictors.

Dozens of papers suggest that a classical method can be made robust by
replacing a classical estimator with a robust estimator. Again inconsistent
robust estimators are usually used. These methods can be very useful, but
rely on perfect classification of the data into outliers and clean cases. Check
whether these methods can find outliers that can not be found by the response
plot, FCH DD plot and FMCD DD plot.

For example consider making a robust Hotelling’s t–test. If the paper uses
the FMCD cov.mcd algorithm, then the procedure is relying on the perfect
classification paradigm. On the other hand, Srivastava and Mudholkar (2001)
present an estimator that has large sample theory.

Beginners can have a hard time determining whether a robust algorithm
estimator is consistent or not. As a rule of thumb, assume that the ap-
proximations (including those for depth, LTA, LMS, LTS, MCD, MVE, S,
projection estimators and two stage estimators) are inconsistent unless the
authors show that they understand Hawkins and Olive (2002) and Olive
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and Hawkins (2007b, 2008). In particular, the elemental or basic resam-
pling algorithms, concentration algorithms and algorithms based on random
projections should be considered inconsistent until you can prove otherwise.

After finding a research topic, paper trailing is an important technique
for finding related literature. To use this technique, find a paper on the topic,
go to the bibliography of the paper, find one or more related papers and
repeat. Often your university’s library will have useful internet resources for
finding literature. Usually a research university will subscribe to either The
Web of Knowledge with a link to ISI Web of Science or to the Current Index to
Statistics. Both of these resources allow you to search for literature by author,
eg Olive, or by topic, eg robust statistics. Both of these methods search for
recent papers. With Web of Knowledge, find an article with General Search,
click on the article and then click on the Find Related Articles icon to get a
list of related articles. For papers before 1997, use the free Current Index to
Statistics website (http://query.statindex.org/CIS/OldRecords/queryOld).

The search engines (www.google.com), (www.ask.com), (www.msn.com),
(www.yahoo.com), (www.info.com) and (www.scirus.com) are also useful.
The google search engine also has a useful link to “Google Scholar.” When
searching, enter a topic and the word robust or outliers. For example, enter
the keywords robust factor analysis or factor analysis and outliers. The key-
words sliced inverse regression, dimension reduction and single index models
are useful for finding regression graphics literature.

The STATLIB site (http://lib.stat.cmu.edu/) is useful for finding statis-
tics departments, data sets and software. Statistical journals often have
websites that make abstracts and preprints available. Two useful websites
are given below.

(www.stat.ucla.edu/journals/ProbStatJournals/)

(www.statsci.org/jourlist.html)

Websites for researchers or research groups can be very useful. Below are
websites for Dr. Rousseeuw’s group, Dr. He, Dr. Rocke, Dr. Croux, Dr.
Hubert’s group and for the University of Minnesota.

(www.agoras.ua.ac.be/)

(www.stat.uiuc.edu/~he/index.html)
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(http://handel.cipic.ucdavis.edu/~dmrocke/preprints.html)

(www.econ.kuleuven.ac.be/public/NDBAE06/)

(http://wis.kuleuven.be/stat/robust.html)

(www.stat.umn.edu)

The latter website has useful links to software. Arc and R can be down-
loaded from these links. Familiarity with a high level programming
language such as FORTRAN or R/Splus is essential. A very useful R link
is (www.r-project.org/#doc).

Finally, a Ph.D. student needs an advisor or mentor and most researchers
will find collaboration valuable. Attending conferences and making your
research available over the internet can lead to contacts.

Some references on research, including technical writing and presenta-
tions, include American Society of Civil Engineers (1950), Becker and Keller-
McNulty (1996), Ehrenberg (1982), Freeman, Gonzalez, Hoaglin and Kilss
(1983), Hamada and Sitter (2004), Rubin (2004) and Smith (1997).

14.2 R/Splus and Arc

R is the free version of Splus. The website (www.stat.umn.edu) has useful
links for Arc which is the software developed by Cook and Weisberg (1999a).
The website (www.stat.umn.edu) also has a link to Cran which gives R
support. As of June 2008, the author’s personal computer has Version 2.4.1
(December 18, 2006) of R, Splus–2000 (see Mathsoft 1999ab) and Version
1.03 (August 2000) of Arc. Many of the text R/Splus functions and figures
were made in the middle 1990’s using Splus on a workstation.

Downloading the book’s R/Splus functions rpack.txt into R or
Splus:

Many of the homework problems use R/Splus functions contained in the
book’s website (www.math.siu.edu/olive/ol-bookp.htm) under the file name
rpack.txt. Suppose that you download rpack.txt onto a disk. Enter R and
wait for the cursor to appear. Then go to the File menu and drag down
Source R Code. A window should appear. Navigate the Look in box until it
says 3 1/2 Floppy(A:). In the Files of type box choose All files(*.*) and then
select rpack.txt. The following line should appear in the main R window.
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> source("A:/rpack.txt")

Type ls(). About 90 R/Splus functions from rpack.txt should appear.
When you finish your R/Splus session, enter the command q(). A window

asking “Save workspace image?” will appear. Click on No if you do not want
to save the programs in R. (If you do want to save the programs then click
on Yes.)

If you use Splus, the command

> source("A:/rpack.txt")

will enter the functions into Splus. Creating a special workspace for the
functions may be useful.

This section gives tips on using R/Splus, but is no replacement for books
such as Becker, Chambers, and Wilks (1988), Braun and Murdoch (2007),
Chambers (1998), Crawley (2005), Fox (2002) or Venables and Ripley (2003).
Also see Mathsoft (1999ab) and use the website (www.google.com) to search
for useful websites. For example enter the search words R documentation.

The command q() gets you out of R or Splus.
Least squares regression is done with the function lsfit.
The commands help(fn) and args(fn) give information about the function

fn, eg if fn = lsfit.
Type the following commands.

x <- matrix(rnorm(300),nrow=100,ncol=3)

y <- x%*%1:3 + rnorm(100)

out<- lsfit(x,y)

out$coef

ls.print(out)

The first line makes a 100 by 3 matrix x with N(0,1) entries. The second
line makes y[i] = 0+1∗x[i, 1]+2∗x[i, 2]+3∗x[i, 2]+e where e is N(0,1). The
term 1:3 creates the vector (1, 2, 3)T and the matrix multiplication operator is
%∗%. The function lsfit will automatically add the constant to the model.
Typing “out” will give you a lot of irrelevant information, but out$coef and
out$resid give the OLS coefficients and residuals respectively.

To make a residual plot, type the following commands.
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fit <- y - out$resid

plot(fit,out$resid)

title("residual plot")

The first term in the plot command is always the horizontal axis while the
second is on the vertical axis.

To put a graph in Word, hold down the Ctrl and c buttons simultane-
ously. Then select “paste” from the Word Edit menu.

To enter data, open a data set in Notepad or Word. You need to know
the number of rows and the number of columns. Assume that each case is
entered in a row. For example, assuming that the file cyp.lsp has been saved
on your disk from the webpage for this book, open cyp.lsp in Word. It has
76 rows and 8 columns. In R or Splus, write the following command.

cyp <- matrix(scan(),nrow=76,ncol=8,byrow=T)

Then copy the data lines from Word and paste them in R/Splus. If a cursor
does not appear, hit enter. The command dim(cyp) will show if you have
entered the data correctly.

Enter the following commands

cypy <- cyp[,2]

cypx<- cyp[,-c(1,2)]

lsfit(cypx,cypy)$coef

to produce the output below.

Intercept X1 X2 X3 X4

205.40825985 0.94653718 0.17514405 0.23415181 0.75927197

X5 X6

-0.05318671 -0.30944144

To check that the data is entered correctly, fit LS in Arc with the re-
sponse variable height and the predictors sternal height, finger to ground,
head length, nasal length, bigonal breadth, and cephalic index (entered in
that order). You should get the same coefficients given by R or Splus.

Making functions in R and Splus is easy.

For example, type the following commands.
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mysquare <- function(x){

# this function squares x

r <- x^2

r }

The second line in the function shows how to put comments into functions.

Modifying your function is easy.

Use the fix command.
fix(mysquare)

This will open an editor such as Notepad and allow you to make changes.
In Splus, the command Edit(mysquare) may also be used to modify the

function mysquare.

To save data or a function in R, when you exit, click on Yes when the
“Save worksheet image?” window appears. When you reenter R, type ls().
This will show you what is saved. You should rarely need to save anything
for the material in the first thirteen chapters of this book. In Splus, data
and functions are automatically saved. To remove unwanted items from the
worksheet, eg x, type rm(x),
pairs(x) makes a scatterplot matrix of the columns of x,
hist(y) makes a histogram of y,
boxplot(y) makes a boxplot of y,
stem(y) makes a stem and leaf plot of y,
scan(), source(), and sink() are useful on a Unix workstation.
To type a simple list, use y <− c(1,2,3.5).
The commands mean(y), median(y), var(y) are self explanatory.

The following commands are useful for a scatterplot created by the com-
mand plot(x,y).
lines(x,y), lines(lowess(x,y,f=.2))
identify(x,y)
abline(out$coef), abline(0,1)

The usual arithmetic operators are 2 + 4, 3 − 7, 8 ∗ 4, 8/4, and

2^{10}.

The ith element of vector y is y[i] while the ij element of matrix x is
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x[i, j]. The second row of x is x[2, ] while the 4th column of x is x[, 4]. The
transpose of x is t(x).

The command apply(x,1,fn) will compute the row means if fn = mean.
The command apply(x,2,fn) will compute the column variances if fn = var.
The commands cbind and rbind combine column vectors or row vectors with
an existing matrix or vector of the appropriate dimension.

Downloading the book’s R/Splus data sets robdata.txt into R or
Splus is done in the same way for downloading rpack.txt. Use the following
command.

> source("A:/robdata.txt")

For example the command

> lsfit(belx,bely)

will perform the least squares regression for the Belgian telephone data.

Transferring Data to and from Arc and R or Splus.
For example, suppose that the Belgium telephone data (Rousseeuw and Leroy
1987, p. 26) has the predictor year stored in x and the response number of
calls stored in y in R or Splus. Combine the data into a matrix z and then
use the write.table command to display the data set as shown below. The

sep=’ ’

separates the columns by two spaces.

> z <- cbind(x,y)

> write.table(data.frame(z),sep=’ ’)

row.names z.1 y

1 50 0.44

2 51 0.47

3 52 0.47

4 53 0.59

5 54 0.66

6 55 0.73

7 56 0.81

8 57 0.88

9 58 1.06
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10 59 1.2

11 60 1.35

12 61 1.49

13 62 1.61

14 63 2.12

15 64 11.9

16 65 12.4

17 66 14.2

18 67 15.9

19 68 18.2

20 69 21.2

21 70 4.3

22 71 2.4

23 72 2.7073

24 73 2.9

To enter a data set into Arc, use the following template new.lsp.

dataset=new

begin description

Artificial data.

Contributed by David Olive.

end description

begin variables

col 0 = x1

col 1 = x2

col 2 = x3

col 3 = y

end variables

begin data

Next open new.lsp in Notepad. (Or use the vi editor in Unix. Sophisti-
cated editors like Word will often work, but they sometimes add things like
page breaks that do not allow the statistics software to use the file.) Then
copy the data lines from R/Splus and paste them below new.lsp. Then mod-
ify the file new.lsp and save it on a disk as the file belg.lsp. (Or save it in
mdata where mdata is a data folder added within the Arc data folder.) The
header of the new file belg.lsp is shown on the next page.
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dataset=belgium

begin description

Belgium telephone data from

Rousseeuw and Leroy (1987, p. 26)

end description

begin variables

col 0 = case

col 1 = x = year

col 2 = y = number of calls in tens of millions

end variables

begin data

1 50 0.44

. . .

. . .

. . .

24 73 2.9

The file above also shows the first and last lines of data. The header file
needs a data set name, description, variable list and a begin data command.
Often the description can be copied and pasted from source of the data, eg
from the STATLIB website. Note that the first variable starts with Col 0.

To transfer a data set from Arc to R or Splus, select the item
“Display data” from the dataset’s menu. Select the variables you want to
save, and then push the button for “Save in R/Splus format.” You will be
prompted to give a file name. If you select bodfat, then two files bodfat.txt and
bodfat.Rd will be created. The file bodfat.txt can be read into either R or Splus
using the read.table command. The file bodfat.Rd saves the documentation
about the data set in a standard format for R.

As an example, the following command was used to enter the body fat
data into Splus. (The mdata folder does not come with Arc. The folder
needs to be created and filled with files from the book’s website. Then the
file bodfat.txt can be stored in the mdata folder.)

bodfat <- read.table("C:\\ARC\\DATA\\MDATA\\BODFAT.TXT",header=T)

bodfat[,16] <- bodfat[,16]+1

The last column of the body fat data consists of the case numbers which
start with 0 in Arc. The second line adds one to each case number.
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As another example, use the menu commands
“File>Load>Data>Arcg>forbes.lsp” to activate the forbes data set. From
the Forbes menu, select Display Data. A window will appear. Double click
on Temp and Pressure. Click on Save Data in R/Splus Format and save as
forbes.txt in the folder mdata.

Enter Splus and type the following command.

forbes<-read.table("C:\\ARC\\DATA\\ARCG\\FORBES.TXT",header=T)

The command forbes will display the data set.

Getting information about a library in R
In R, a library is an add–on package of R code. The command library()

lists all available libraries, and information about a specific library, such as
MASS for robust estimators like cov.mcd or ts for time series estimation, can
be found, eg, with the command library(help=MASS).

Downloading a library into R
Many researchers have contributed a library of R code that can be down-

loaded for use. To see what is available, go to the website
(http://cran.us.r-project.org/) and click on the Packages icon. Suppose you
are interested the Weisberg (2002) dimension reduction library dr. Scroll
down the screen and click on dr. Then click on the file corresponding to your
type of computer, eg dr 2.0.0.zip for Windows. My unzipped files are stored
in my directory

C:\unzipped.

The file

C:\unzipped\dr

contains a folder dr which is the R library. Cut this folder and paste it into
the R library folder. (On my computer, I store the folder rw1011 in the file

C:\R-Gui.

The folder

C:\R-Gui\rw1011\library
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contains the library packages that came with R.) Open R and type the fol-
lowing command.

library(dr)
Next type help(dr) to make sure that the library is available for use.

Warning: R is free but not fool proof. If you have an old version of
R and want to download a library, you may need to update your version of
R. The libraries for robust statistics may be useful for outlier detection, but
the methods have not been shown to be consistent or high breakdown. All
software has some bugs. For example, Version 1.1.1 (August 15, 2000) of R
had a random generator for the Poisson distribution that produced variates
with too small of a mean θ for θ ≥ 10. Hence simulated 95% confidence
intervals might contain θ 0% of the time. This bug seems to have been fixed
in Version 2.4.1.

14.3 Projects

Straightforward Projects

• Compare the response transformation method illustrated in Example
1.5 with the method given in Section 5.1. Use simulations and real
data.

• Investigate the approximations for MED(Y ) and MAD(Y ) for Gamma
data. See Table 2.3.

• Application 2.2 suggests using Un = n − Ln where Ln = �n/2� −
�√n/4 � and

SE(MED(n)) = 0.5(Y(Un) − Y(Ln+1)).

Then use the tp approximation with p = Un − Ln − 1 ≈ � √
n �.

Run a simulation to compare a 95% CI with this interval and a 95%
CI that uses

SE(MED(n)) = 0.5(Y(Un) − Y(Ln))

with z1−α/2 instead of tp,1−α/2.

• Find a useful technique in Chambers, Cleveland, Kleiner and Tukey
(1983), Cook (1998a) or Cook and Weisberg (1999a) that was not pre-
sented in this course. Analyze a real data set with the technique.
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• Read Stigler (1977). This paper suggests a method for comparing new
estimators. Use this method with the two stage estimators TS,n and
TA,n described in Section 2.6.

• Read Anscombe (1961) and Anscombe and Tukey (1963). These papers
suggest graphical methods for checking multiple linear regression and
experimental design methods that were the “state of the art” at the
time. What graphical procedures did they use and what are the most
important procedures that were not suggested?

• Read Bentler and Yuan (1998) and Cattell (1966). These papers use
scree plots to determine how many eigenvalues of the covariance ma-
trix are nonzero. This topic is very important for dimension reduction
methods such as principal components.

• The simulation study in Section 4.6 suggests that TS,n does not work
well on exponential data. Find a coarse grid so that TS,n works well
normal and exponential data. Illustrate with a simulation study.

• Examine via simulation how the graphical method for assessing variable
selection complements numerical methods. Find at least two data sets
where deleting one case changes the model selected by a numerical
variable selection method such as Cp.

• Are numerical diagnostics such as Cook’s distance needed? Examine
whether Cook’s distance can detect influential points that can not be
found using the OLS response plot. Are there data sets where the
response plot is more effective?

• Are robust estimators needed for multiple linear regression? Examine
whether using the OLS response plot is as effective as robust methods
for detecting outliers.

• Find some benchmark multiple linear regression outlier data sets. Fit
OLS, L1 and M-estimators from R/Splus. Are any of the M-estimators
as good as L1? (Note: l1fit is in Splus but not in R.)

• Compare lmsreg and the MBA regression estimator on real and simu-
lated multiple linear regression data.
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• Find some benchmark multiple linear regression outlier data sets. Fit
robust estimators such as ltsreg from R/Splus, but do not use lmsreg.
Are any of the robust estimators as good as the MBA estimator?

• Make a graphical version of the Durbin-Watson test for dependent er-
rors in multiple linear regression.

• There are several papers that give tests or diagnostics for linearity.
Find a data set from such a paper and find the fitted values from some
nonparametric method. Plot these fitted values versus the fitted values
from a multiple linear regression such as OLS. What should this plot
look like? How can the response plot and trimmed views be used as a
diagnostic for linearity? See Hawkins and Olive (2002, p. 158).

• R/Splus provides several regression functions for examining data when
the multiple linear regression model is not appropriate such as projec-
tion pursuit regression and methods for time series. Examine the FY
plot of Section 6.4 for such methods. Generate outlier data and check
whether the outliers can be found with the FY plot. Run the rpack

function fysim and include the output and last plot in Word.

• Remark 10.3 estimates the percentage of outliers that the FMCD algo-
rithm can tolerate. At the end of Section 10.7, data is generated such
that the FMCD estimator works well for p = 4 but fails for p = 8.
Generate similar data sets for p = 8, 9, 10, 12, 15, 20, 25, 30, 35, 40, 45,
and 50. For each value of p find the smallest integer valued percentage
of outliers needed to cause the FMCD and FCH estimators to fail. Use
the rpack function concsim. If concsim is too slow for large p, use
covsim2 which will only give counts for the fast FCH estimator. As a
criterion, a count ≥ 16 is good. Compare these observed FMCD per-
centages with Remark 10.3 (use the gamper2 function). Do not forget
the library(MASS) command if you use R.

• DD plots: compare classical–FCH vs classical–cov.mcd DD plots on
real and simulated data. Do problems 10.14, 11.2 and 11.3 but with a
wider variety of data sets, n, p and gamma.

• Many papers substitute the latest MCD (or LTS) algorithm for the
classical estimator and have titles like “Fast and Robust Factor Anal-
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ysis.” Find such a paper (see Section 11.4) that analyzes a data set
on

i) factor analysis,

ii) discriminant analysis,

iii) principal components,

iv) canonical correlation analysis,

v) Hotelling’s t test, or

vi) principal component regression.

For the data, make a scatterplot matrix of the classical, FCH and
FMCD Mahalanobis distances. Delete any outliers and run the classical
procedure on the undeleted data. Did the paper’s procedure perform
as well as this procedure?

• Examine the DD plot as a diagnostic for multivariate normality and
elliptically contoured distributions. Use real and simulated data.

• Resistant regression: modify tvreg by using OLS–covfch instead of
OLS–cov.mcd. (L1–cov.mcd and L1–covfch are also interesting.) Com-
pare your function with tvreg. The tvreg and covfch functions are
in rpack.txt.

• Using ESP to Search for the Missing Link: Compare trimmed views

which uses OLS and cov.mcd with another regression–MLD combo.
There are 8 possible projects: i) OLS–FCH, ii) OLS–Classical (use
ctrviews), iii) SIR–cov.mcd (sirviews), iv) SIR–FCH, v) SIR–class-
ical, vi) lmsreg–cov.mcd (lmsviews), vii) lmsreg–FCH, and viii) lmsreg
–classical. Do Problem 12.7ac (but just copy and paste the best view
instead of using the essp(nx,ncuby,M=40) command) with both your
estimator and trimmed views. Try to see what types of functions
work for both estimators, when trimmed views is better and when the
procedure i)–viii) in better. If you can invent interesting 1D functions,
do so.

• Many 1D regression models where Yi is independent of xi given the
sufficient predictor xT

i β can be made resistant by making EY plots of
the estimated sufficient predictor xT

i β̂ versus Yi for the 10 trimming
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proportions. Since 1D regression is the study of the conditional distri-
bution of Yi given xT

i β, the EY plot is used to visualize this distribution
and needs to be made anyway. See how well trimmed views work when
outliers are present.

• Investigate using trimmed views to make various procedures such as
sliced inverse regression resistant against the presence of nonlinearities.
The functions sirviews, drsim5, drsim6 and drsim7 in rpack.txt may be
useful.

• Examine the method of variable selection for 1D regression models
suggested in Section 12.4.

• The DGK estimator with 66% coverage should be able to tolerate a
cluster of about 30% extremely distant outliers. Compare the DGK es-
timators with 50% and 66% coverage for various outlier configurations.

Harder Projects

• Which estimator is better FCH, RFCH, CMBA or RCMBA?

• For large data sets, make the DD plot of the DGK estimator vs MB
estimator and the DD plot of the classical estimator versus the MB
estimator. Which DD plot is more useful? Does your answer depend
on n and p? These two plots are among the fastest outlier diagnostics
for multivariate data.

• Resampling algorithms such as the bootstrap, jackknife and permu-
tation tests draw Bn random samples from the set of all bootstrap
samples, all jackknife samples or all permutations. A statistic Tn is
computed from each sample resulting in Bn statistics. If Hn is the cdf
of the statistic Tn computed from all possible samples, then the sample
of Bn statistics is often used to estimate the α1 and α2 percentiles ξαi

of Hn where PHn(Tn ≤ ξαi) = αi and α1 +1−α2 = α. Use α = 0.05 and
the SHORTH estimator on the Bn values of Tn to estimate ξαi in the
same way that Olive (2007) used the SHORTH estimator to estimate
percentiles for prediction intervals.
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• Olive (2007) gives a technique for finding asymptotically optimal 100(1−
α)% prediction intervals for regression models of the form Y = m(x, β)+
e where the errors are iid with zero mean and constant variance. The
intervals tend to be too short for finite n. Try to get good simu-
lated coverage for moderate n by using an asymptotically conservative
100(1 − α/2)% PI in place of the 100(1 − α)% PI. So use a 95% PI if
a 90% PI is desired and use a 97.5% PI if a 95% PI is desired.

• The Super Duper Outlier Scooper for MLR: Consider the MLR algo-
rithm from Theorem 8.8 that uses LTS concentration steps to create
attractors as well. OLS and a high breakdown estimator are also used
as attractors. The attractors can be screened with either the LMS or
the LTS criterion. Which criterion results in a better estimator? Write
R/Splus functions to compute the two estimators. Compare these es-
timators with lmsreg and ltsreg on real and simulated data.

• The Super Duper Outlier Scooper for Multivariate Location and Disper-
sion: Consider the modified MBA estimator for multivariate location
and dispersion given in Problem 10.18. This MBA estimator uses 8
starts using 0%, 50%, 60%, 70%, 80%, 90%, 95% and 98% trimming of
the cases closest to the coordinatewise median in Euclidean distance.
The estimator is

√
n consistent on elliptically contoured distributions

with nonsingular covariance matrix. For small data sets the cmba2
function can fail because the covariance estimator applied to the clos-
est 2% cases to the coordinatewise median is singular. Modify the
function so that it works well on small data sets. Then consider the
following proposal that may make the estimator asymptotically equiv-
alent to the classical estimator when the data are from a multivari-
ate normal (MVN) distribution. The attractor corresponding to 0%
trimming is the DGK estimator (μ̂0, Σ̂0). Let (μ̂T , Σ̂T ) = (μ̂0, Σ̂0)
if det(Σ̂0) ≤ det(Σ̂M) and (μ̂T , Σ̂T ) = (μ̂M , Σ̂M) otherwise where
(μ̂M , Σ̂M) is the attractor corresponding to M% trimming. Then make
the DD plot of the classical Mahalanobis distances versus the distances
corresponding to (μ̂T , Σ̂T ) for M = 50, 60, 70, 80, 90, 95 and 98. If all
seven DD plots “look good” then use the classical estimator. The
resulting estimator will be asymptotically equivalent to the classical
estimator if P(all seven DD plots “look good”) goes to one as n → ∞.
We conjecture that all seven plots will look good because if n is large
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and the trimmed attractor “beats” the DGK estimator, then the plot
will look good. Also if the data is MVN but not spherical, then the
DGK estimator will almost always “beat” the trimmed estimator, so
all 7 plots will be identical.

• The TV estimator for MLR has a good combination of resistance and
theory. Consider the following modification to make the method asymp-
totically equivalent to OLS when the Gaussian model holds: if each
trimmed view “looks good,” use OLS. The method is asymptotically
equivalent to OLS if the probability P(all 10 trimmed views look good)
goes to one as n → ∞. Rousseeuw and Leroy (1987, p. 128) shows
that if the predictors are bounded, then the ith residual ri converges
in probability to the ith error ei for i = 1, ..., n. Hence all 10 trimmed
views will look like the OLS view with high probability if n is large.

• Modify the trimmed views estimator for resistant logistic regression.
Make an ESS plot for each of the trimming proportions with the logistic
curve and step function of observed proportions added to the plot. The
rpack function lressp may be useful.

• Modify the trimmed views estimator for resistant Poisson regression.
Make an EY plot for each of the trimming proportions with the expo-
nential curve and lowess curve added to the plot. The rpack function
llressp may be useful.

• Try to robustify the discriminant function estimators for binary re-
gression given in Definition 13.4 by replacing the classical estimator of
multivariate location and dispersion by the FCH or FMCD estimator.

• Modify the minimum chi–square estimator to make a resistant Poisson
regression estimator by replacing OLS by a resistant regression estima-
tor such as tvreg, mbareg or lmsreg. The rpack function llrwtfrp

may be useful.

• For nonlinear regression models of the form yi = m(xi, β)+ei, the fitted
values are ŷi = m(xi, β̂) and the residuals are ri = yi − ŷi. The points
in the FY plot of the fitted values versus the response should follow
the identity line. The TV estimator would make FY and residual plots
for each of the trimming proportions. The MBA estimator with the
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median squared residual criterion can also be used for many of these
models.

• A useful plot for 1D binary regression is the binary response plot of
the first SIR direction versus the second SIR direction. Cases with
y = 0 are plotted with an open circle while cases with y = 1 are
plotted with a cross. If the 1D binary regression model holds and if the
first SIR direction is a useful estimated sufficient predictor, then the
symbol density in any narrow vertical strip is approximately constant.
See Cook (1998a, ch. 5), Cook and Lee (1999) and Cook and Weisberg
(1999a, section 22.2). In analogy with trimmed views, use trimming to
make ten binary response plots.

• Econometrics project: Suppose that the MLR model holds but Var(e) =
σ2Σ and Σ = UU ′ where U is known and nonsingular. Show that
U−1Y = U−1Xβ + U−1e, and the TV and MBA estimators can be
applied to Ỹ = U−1Y and X̃ = U−1X provided that OLS is fit
without an intercept.

• Econometrics project: Modify the MBA estimator for time series by
choosing cases that are close together in time. For example, if the time
series is y1, y2, ..., y1000 and if y100 is a center, then the 10% of cases
closest to y100 in time are (roughly) y50, ..., y150.

• Agresti (2002, p. 109) states that a confidence interval for μ1 − μ2

based on single sample estimates μ̂i and confidence intervals (Li, Ui)
for i = 1, 2 is

(
d̂ −

√
(μ̂1 − L1)2 + (U2 − μ̂2)2, d̂ +

√
(U1 − μ̂1)2 + (μ̂2 − L2)2

)

where d̂ = μ̂1−μ̂2. This method is used when μi is a proportion or odds
ratio. Try the method when μi is a mean and compare this method to
Welch intervals given by Remark 2.2.

• Compare outliers and missing values, especially missing and outlying
at random. See Little and Rubin (2002).

• Suppose that the data set contains missing values. Code the missing
value as ±99999+ rnorm(1). Run a robust procedure on the data. The
idea is that the case with the missing value will be given weight zero if
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the variable is important, and the variable will be given weight zero if
the case is important. See Hawkins and Olive (1999b).

• Econometrics project: Let wi = xT
i β be the fitted values for the L1

estimator. Apply regression quantiles (see Koenker, 2005) to the re-
sponse and wi and plot the result. When is this technique competitive
with the usual regression quantiles method?

• Read Stefanski and Boos (2002). One of the most promising uses of
M-estimators is as generalized estimating equations.

• Download the dr function for R, (contributed by Sanford Weisberg),
and make PHD and SAVE trimmed views.

• Example 1.4 illustrates a robust prediction interval for multiple linear
regression. Run a simulation study to compare the simulated coverage
proportion with the nominal coverage.

• Robust sequential procedures do not seem to work very well. Try using
analogs of the two stage trimmed means. An ad hoc procedure that
has worked very well is to clean the data using the median and mad
at each sample size. Then apply the classical sequential method and
stopping rule to the cleaned data. This procedure is rather expensive
since the median and mad need to be recomputed with each additional
observation until the stopping rule ends data collection. Another idea
is to examine similar methods in the quality control literature.

• Try to make nonparametric prediction intervals for multiple linear re-
gression by finding ordering the residuals and taking the “shortest in-
terval” containing 90% of the residuals where shortest is in the sense
of LMS, LTS or LTA. See Di Bucchianico, Einmahl and Mushkudiani
(2001) and Olive (2007). The functions piplot and pisim in rpack.txt
may be useful.

• See if swapping with elemental sets is a good technique.

• Apply the Cook and Olive (2001) graphical procedure for response
transformations described in Section 5.1 with the power family replaced
by the Yeo and Johnson (2000) family of transformations.

Research Ideas that have Confounded the Author
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• If the attractor of a randomly selected elemental start is (in)consistent,
then FMCD and FLTS are (in)consistent. Hawkins and Olive (2002)
showed that the attractor is inconsistent if k concentration steps are
used. Suppose K elemental starts are used for an LTS or MCD con-
centration estimator and that the starts are iterated until convergence
instead of for k steps. Prove or disprove the conjecture that the re-
sulting estimator is inconsistent. (Intuitively, the elemental starts are
inconsistent and hence are tilted away from the parameter of interest.
Concentration may reduce but probably does not eliminate the tilt.)

• Prove that applying an LTA concentration step results in an estimator
with the same rate as the start.

• Prove Conjecture 7.1: the LTA estimator is consistent and Op(n
−1/2).

• Do elemental set and concentration algorithms for MLR give consistent
estimators if the number of starts increases to ∞ with the sample size
n? For example, prove or disprove Conjecture 8.1. (Algorithms that
use a fixed number of elemental sets along with the classical estimator
and a biased but easily computed high breakdown estimator will be
easier to compute and have better statistical properties. See Theorem
8.8 and Olive and Hawkins, 2007bc.)

• Prove or disprove Conjecture 11.1. Do elemental set and concentration
algorithms for multivariate location and dispersion (MLD) give consis-
tent estimators if the number of starts increases to ∞ with the sample
size n? (Algorithms that use a fixed number of elemental sets along
with the classical estimator and a biased but easily computed high
breakdown estimator will be easier to compute and have better statis-
tical properties. See Theorem 10.15 and Olive and Hawkins, 2007b,
2008.)

It is easy to create consistent algorithm estimators that use O(n) ran-
domly chosen elemental sets. He and Wang (1997) show that the all
elemental subset approximation to S estimators for MLD is consistent
for (μ, cΣ). Hence an algorithm that randomly draws g(n) elemental
sets and searches all C(g(n), p + 1) elemental sets is also consistent if
g(n) → ∞ as n → ∞. For example, O(n) elemental sets are used if
g(n) ∝ n1/(p+1).
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When a fixed number of K elemental starts are used, the best attractor
is inconsistent but gets close to (μ, cMCDΣ) if the data distribution is
EC. (The estimator may be unbiased but the variability of the com-
ponent estimators does not go to 0 as n → ∞.) If K → ∞, then the
best attractor should approximate the highest density region arbitrar-
ily closely and the algorithm should be consistent. However, the time
for the algorithm greatly increases, the convergence rate is very poor
(possibly between K1/2p and K1/p), and the elemental concentration
algorithm can not guarantee that the determinant is bounded when
outliers are present.

• A promising two stage estimator is the “cross checking estimator” that
uses a standard consistent estimator and an alternative consistent es-
timator with desirable properties such as a high breakdown value. The
final estimator uses the standard estimator if it is “close” to the alterna-
tive estimator, and hence is asymptotically equivalent to the standard
estimator for clean data. One important area of research for robust
statistics is finding good computable consistent robust estimators to be
used in plots and in the cross checking algorithm. The estimators given
in Theorems 10.14 and 10.15 (see Olive 2004a and Olive and Hawkins
2007b, 2008) finally make the cross checking estimator practical, but
better estimators are surely possible. He and Wang (1996) suggested
the cross checking idea for multivariate location and dispersion, and
additional applications are given in He and Fung (1999).

For MLR, cross checking is not needed since Theorem 8.8 and Remark
8.7 provide a better way for making a HB MLR estimator asymptoti-
cally equivalent to an efficient MLR estimator.

14.4 Hints for Selected Problems

Chapter 1

1.1 ‖ri,1 − ri,2‖ = ‖Yi − xT
i β̂1 − (Yi − xT

i β̂2)‖ = ‖xT
i β̂2 − xT

i β̂1‖ =

‖Ŷ2,i − Ŷ1,i‖ = ‖Ŷ1,i − Ŷ2,i‖.
1.2 The plot should be similar to Figure 1.6, but since the data is simu-

lated, may not be as smooth.
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1.3 c) The histograms should become more like a normal distribution as
n increases from 1 to 200. In particular, when n = 1 the histogram should be
right skewed while for n = 200 the histogram should be nearly symmetric.
Also the scale on the horizontal axis should decrease as n increases.

d) Now Y ∼ N(0, 1/n). Hence the histograms should all be roughly
symmetric, but the scale on the horizontal axis should be from about −3/

√
n

to 3/
√

n.

1.4 e) The plot should be strongly nonlinear, having “V” shape.

1.5 You could save the data set from the text’s website on a disk, and
then open the data in Arc from the disk.

c) Most students should delete cases 5, 47, 75, 95, 168, 181, and 199.

f) The forward response plot looks like a line while the residual plot looks
like a curve. A residual plot emphasizes lack of fit while the forward response
plot emphasizes goodness of fit.

h) The quadratic model looks good.

Chapter 2

2.2. FW (w) = P (W ≤ w) = P (Y ≤ w − μ) = FY (w − μ). So fW (w) =
d

dw
FY (w − μ) = fY (w − μ).

2.3. FW (w) = P (W ≤ w) = P (Y ≤ w/σ) = FY (w/σ). So fW (w) =
d

dw
FY (w/σ) = fY (w/σ) 1

σ
.

2.4. FW (w) = P (W ≤ w) = P (σY ≤ w − μ) = FY (w−μ
σ

). So fW (w) =
d

dw
FY (w−μ

σ
) = fY (w−μ

σ
) 1

σ
.

2.5 N(0, σ2
M )

2.9 a) 8.25 ± 0.7007 = (6.020, 10.480)

b) 8.75 ± 1.1645 = (7.586, 9.914).

2.10 a) Y = 24/5 = 4.8.

b)

S2 =
138 − 5(4.8)2

4
= 5.7

so S =
√

5.7 = 2.3875.

c) The ordered data are 2,3,5,6,8 and MED(n) = 5.
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d) The ordered |Yi − MED(n)| are 0,1,2,2,3 and MAD(n) = 2.

2.11 a) Y = 15.8/10 = 1.58.

b)

S2 =
38.58 − 10(1.58)2

9
= 1.5129

so S =
√

1.5129 = 1.230.

c) The ordered data set is 0.0,0.8,1.0,1.2,1.3,1.3,1.4,1.8,2.4,4.6 and
MED(n) = 1.3.

d) The ordered |Yi − MED(n)| are 0,0,0.1,0.1,0.3,0.5,0.5,1.1,1.3,3.3 and
MAD(n) = 0.4.

e) 4.6 is unusually large.

2.12 a) S/
√

n = 3.2150.

b) n − 1 = 9.

c) 94.0

d) Ln = �n/2� − �√n/4 � = �10/2� − �√10/4 � = 5 − 2 = 3.

e) Un = n − Ln = 10 − 3 = 7.

f) p = Un − Ln − 1 = 7 − 3 − 1 = 3.

g) SE(MED(n)) = (Y(Un) − Y(Ln+1))/2 = (95 − 90.0)/2 = 2.5.

2.13 a) Ln = �n/4� = �2.5� = 2.

b) Un = n − Ln = 10 − 2 = 8.

c) p = Un − Ln − 1 = 8 − 2 − 1 = 5.

d) (89.7 + 90.0 + · · · + 95.3)/6 = 558/6 = 93.0.

e) 89.7 89.7 89.7 90.0 94.0 94.0 95.0 95.3 95.3 95.3

f) (
∑

di)/n = 928/10 = 92.8.

g) (
∑

d2
i −n(d)2)/(n−1) = (86181.54−10(92.8)2)/9 = 63.14/9 = 7.0156.

e)

VSW =
S2

n(d1, ..., dn)

([Un − Ln]/n)2
=

7.0156

(8−2
10

)2
= 19.4877,

so
SE(Tn) =

√
VSW /n =

√
19.4877/10 = 1.3960.

2.14 a) Ln = �n/2� − �√n/4 � = �5/2� − �√5/4 � = 2 − 2 = 0.
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Un = n − Ln = 5 − 0 = 5.

p = Un − Ln − 1 = 5 − 0 − 1 = 4.

SE(MED(n)) = (Y(Un) − Y(Ln+1))/2 = (8 − 2)/2 = 3.

b) Ln = �n/4� = �1� = 1.

Un = n − Ln = 5 − 1 = 4.

p = Un − Ln − 1 = 4 − 1 − 1 = 2.

Tn = (3 + 5 + 6)/3 = 4.6667.

The d′s are 3 3 5 6 6.

(
∑

di)/n = 4.6

(
∑

d2
i − n(d)2)/(n − 1) = (115 − 5(4.6)2)/4 = 9.2/4 = 2.3.

VSW =
S2

n(d1, ..., dn)

([Un − Ln]/n)2
=

2.3

(4−1
5

)2
= 6.3889,

so
SE(Tn) =

√
VSW /n =

√
6.3889/5 = 1.1304.

The R/Splus functions for Problems 2.15–2.29 are available from the
text’s website file rpack.txt and should have been entered into the computer
using the source(“A:/rpack.txt”) as described on p. 482-483.

2.16 Simulated data: a) about 0.669 b) about 0.486.

2.17 Simulated data: a) about 0.0 b) Y ≈ 1.00 and Tn ≈ 0.74.

2.21 Simulated data gives about (1514,1684).

2.22 Simulated data gives about (1676,1715).

2.23 Simulated data gives about (1679,1712).

Chapter 3

3.2 a) F (y) = 1 − exp(−y/λ) for y ≥ 0. Let M = MED(Y ) = log(2)λ.
Then F (M) = 1−exp(− log(2)λ/λ) = 1−exp(− log(2)) = 1−exp(log(1/2)) =
1 − 1/2 = 1/2.

b) F (y) = Φ([log(y) − μ]/σ) for y > 0. Let M = MED(Y ) = exp(μ).
Then F (M) = Φ([log(exp(μ)) − μ]/σ) = Φ(0) = 1/2.

3.3 a) M = μ by symmetry. Since F (U) = 3/4 and F (y) = 1/2 +
(1/π)arctan([y − μ]/σ), want arctan([U − μ]/σ) = π/4 or (U − μ)/σ = 1.
Hence U = μ + σ and MAD(Y ) = D = U − M = μ + σ − μ = σ.
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b) M = θ by symmetry. Since F (U) = 3/4 and F (y) = 1−0.5 exp(−[y−
θ]/λ) for y ≥ 0, want 0.5 exp(−[U − θ]/λ) = 0.25 or exp(−[U − θ]/λ) = 1/2.
So −(U − θ)/λ = log(1/2) or U = θ − λ log(1/2) = θ − λ(− log(2)) =
θ + λ log(2). Hence MAD(Y ) = D = U − M = U − θ = λ log(2).

3.4. f) E(Y r) = E(erX) = mX(r) = exp(rμ + r2σ2/2) where mX(t) is
the mgf of a N(μ, σ2) random variable. Use r = 1.

k) Use the fact that E(Y r) = E[(Y φ)r/φ] = E(W r/φ) where W ∼ EXP (λ).
Take r = 1.

3.5. f) E(Y r) = E(erX) = mX(r) = exp(rμ + r2σ2/2) where mX(t) is
the mgf of a N(μ, σ2) random variable. Use r = 1, 2.

k) Use the fact that E(Y r) = E[(Y φ)r/φ] = E(W r/φ) where W ∼ EXP (λ).
Use r = 1, 2.

3.9 a) MED(W ) =
√

λ log(2).

3.10 a) MED(W ) = θ − σ log(log(2)).

b) MAD(W ) ≈ 0.767049σ.

c) Let Wi = log(Xi) for i = 1, ..., n. Then
σ̂ = MAD(W1, ..., Wn)/0.767049 and θ̂ = MED(W1, ..., Wn) − σ̂ log(log(2)).
So take φ̂ = 1/σ̂ and λ̂ = exp(θ̂/σ̂).

3.11 a) MED(Y ) = μ.

b) MAD(Y ) = 1.17741σ.

3.12 a) MED(Y ) = μ + σ.

b) MAD(Y ) = 0.73205σ.

3.13 Let μ̂ = MED(W1, ..., Wn) and σ̂ = MAD(W1, ..., Wn).

3.14 μ + log(3)σ

3.15 a) MED(Y ) = 1/φ
b) τ̂ = log(3)/MAD(W1, ..., Wn) and φ̂ = 1/MED(Y1, ..., Yn).

3.16 MED(Y ) ≈ (p − 2/3)/p ≈ 1 if p is large.

3.21.
MED(Y ) =

σ

[Φ−1(3/4)]2
.
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3.22. Let MED(n) and MAD(n) be computed using W1, ..., Wn. Use
− log(τ̂ ) = MED(n)−1.440MAD(n) ≡ A, so τ̂ = e−A. Also λ̂ = 2.0781MAD(n).

Chapter 4

4.1 a) 200

b) 0.9(10) + 0.1(200) = 29

4.2 a) 400(1) = 400

b) 0.9(10) + 0.1(400) = 49

The R/Splus functions for Problems 4.10–4.14 are available from the
text’s website file rpack.txt and should have been entered into the computer
using the source(“A:/rpack.txt”) as described on p. 482-483.

4.13b i) Coverages should be near 0.95. The lengths should be about 4.3
for n = 10, 4.0 for n = 50 and 3.96 for n = 100.

ii) Coverage should be near 0.78 for n = 10 and 0 for n = 50, 100. The
lengths should be about 187 for n = 10, 173 for n = 50 and 171 for n = 100.
(It can be shown that the expected length for large n is 169.786.)

Chapter 5

5.1 a) 7 + βXi

b) b =
∑

(Yi − 7)Xi/
∑

X2
i

c) The second derivative = 2
∑

X2
i > 0.

5.4 Fo = 0.904, p–value > 0.1, fail to reject Ho, so the reduced model is
good

5.5 a) 25.970

b) Fo = 0.600, p–value > 0.5, fail to reject Ho, so the reduced model is
good

5.6 a) b3 =
∑

X3i(Yi − 10− 2X2i)/
∑

X2
3i. The second partial derivative

=
∑

X2
3i > 0.

5.9 a) (1.229, 3.345)

b) (1.0825, 3.4919)
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5.11 c) Fo = 265.96, pvalue = 0.0, reject Ho, there is a MLR relationship
between the response variable height and the predictors sternal height and
finger to ground.

5.13 No, the relationship should be linear.

5.14 No, since 0 is in the CI. X could be a very useful predictor for Y ,
eg if Y = X2.

5.16 The model using constant, finger to ground and sternal height is a
good candidate. So is the model using constant and sternal height. (You can
tell what the variable are by looking at which variables are deleted.)

5.17 Use L3. L1 and L2 have more predictors and higher Cp than L3
while L4 does not satisfy the Cp ≤ 2k screen.

5.18 Use L3. L1 has too many predictors. L2 has almost the same
summary statistics as L3 but has one more predictor while L4 does not
satisfy the Cp ≤ 2k screen.

5.19 Use a constant, A, B and C since this is the only model that satisfies
the Cp ≤ 2k screen.

b) Use the model with a constant and B since it has the smallest Cp and
the smallest k such that the Cp ≤ 2k screen is satisfied.

5.20 d) The plot should have log(Y ) on the horizontal axis.

e) Since randomly generated data is used, answers vary slightly, but
̂log(Y ) ≈ 4 + X1 + X2 + X3.

5.22 a) The plot looks roughly like the SW corner of a square.

b) No, the plot is nonlinear.

c) Want to spread small values of y, so make λ smaller. Hence use y(0) =
log(y).

5.23 d) The first assumption to check would be the constant variance
assumption.

5.24 Several of the marginal relationships are nonlinear, including E(M |H).

5.25 This problem has the student reproduce Example 5.1. Hence log(Y )
is the appropriate response transformation.
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5.26 Plots b), c) and e) suggest that log(ht) is needed while plots d), f)
and g) suggest that log(ht) is not needed. Plots c) and d) show that the
residuals from both models are quite small compared to the fitted values.
Plot d) suggests that the two models produce approximately the same fitted
values. Hence if the goal is prediction, the expensive log(ht) measurement
does not seem to be needed.

5.27 h) The submodel is ok, but the forward response and residual plots
found in f) for the submodel do not look as good as those for the full model
found in d). Since the submodel residuals do not look good, more terms are
probably needed in the model.

5.30 b) Forward selection gives constant, (size)1/3, age, sex, breadth and
cause.

c) Backward elimination gives constant, age, cause, cephalic, headht,
length and sex.

d) Forward selection is better because it has fewer terms and a smaller
Cp.

e) The variables are highly correlated. Hence backward elimination quickly
eliminates the single best predictor (size)1/3 and can not get a good model
that only has a few terms.

f) Although the model in c) could be used, a better model uses constant,
age, sex and (size)1/3.

j) The FF and RR plots are good and so are the forward response and
residual plots if you ignore the good leverage points corresponding to the 5
babies.

Chapter 6

6.1 b) Masking since 3 outliers are good cases with respect to Cook’s
distances.

c) and d) usually the MBA residuals will be large in magnitude, but for
some students MBA, ALMS and ALTS will be highly correlated.

6.4 a) The AR(2) model has the highest correlation with the response
and is the simplest model. The top row of the scatterplot matrix gives the
FY plots for the 5 different estimators.

b) The AR(11) and AR(12) fits are highly correlated as are the SE-
TAR(2,7,2) and SETAR(2,5,2) fits.
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6.6 The response Y with a constant and X3, X7, X13 and X14 as predictors
is a good submodel. (A competitor would delete X13 but then the residual
plot is not as good.)

6.8 The response Y with a constant, X2 and X5 as predictors is a good
submodel. One outlier is visible in the residual plot. (A competitor would
also use X3.)

6.9 The submodel using a constant and X1 is ok although the residual
plot does not look very good.

6.13 The model using log(X3), log(X4), log(X6), log(X11), log(X13) and
log(X14) plus a constant has a good FF plot but more variables may be
needed to get a good RR plot.

6.14 There are many good models including the submodel that uses
Y = log(BigMac) and a constant, log(BusFare) log(EngSal), log(Service),
log(TeachSal) and log(TeachTax) as predictors.

6.16 e) R2 went from 0.978 with outliers to R2 = 0.165 without the
outliers. (The low value of R2 suggests that the MLR relationship is weak,
not that the MLR model is bad.)

Chapter 7

7.4 b) The line should go through the left and right cluster but not
through the middle cluster of outliers.

c) The identity line should NOT PASS through the cluster of outliers
with Y near 0 and the residuals corresponding to these outliers should be
large in magnitude.

7.5 e) Usually the MBA esitmator based on the median squared residual
will pass through the outliers with the MBA LATA estimator gives zero
weight to the outliers (so that the outliers are large in magnitude).

Chapter 8

8.1 Approximately 2 nδ f(0) cases have small errors.

Chapter 9

9.3 Adding 1 to Y is equivalent to using u = (1, 0, ..., 0)T in Equation
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(9.7), and the result follows.

Chapter 10

10.1 a) X2 ∼ N(100, 6).

b) (
X1

X3

)
∼ N2

( (
49
17

)
,

(
3 −1
−1 4

) )
.

c) X1 X4 and X3 X4.

d)

ρ(X1, X2) =
Cov(X1, X3)√

VAR(X1)VAR(X3)
=

−1√
3
√

4
= −0.2887.

10.2 a) Y |X ∼ N(49, 16) since Y X. (Or use E(Y |X) = μY +
Σ12Σ

−1
22 (X − μx) = 49 + 0(1/25)(X − 100) = 49 and VAR(Y |X) = Σ11 −

Σ12Σ
−1
22 Σ21 = 16 − 0(1/25)0 = 16.)

b) E(Y |X) = μY +Σ12Σ
−1
22 (X−μx) = 49+10(1/25)(X −100) = 9+0.4X.

c) VAR(Y |X) = Σ11 − Σ12Σ
−1
22 Σ21 = 16 − 10(1/25)10 = 16 − 4 = 12.

10.4 The proof is identical to that given in Example 10.2. (In addition,
it is fairly simple to show that M1 = M2 ≡ M . That is, M depends on Σ
but not on c or g.)

10.6 a) Sort each column, then find the median of each column. Then
MED(W ) = (1430, 180, 120)T .

b) The sample mean of (X1, X2, X3)
T is found by finding the sample mean

of each column. Hence x = (1232.8571, 168.00, 112.00)T .

10.11 ΣB = E[E(X|BT X)XTB)] = E(MBBT XXT B) = MBBT ΣB.
Hence MB = ΣB(BTΣB)−1.

10.15 The 4 plots should look nearly identical with the five cases 61–65
appearing as outliers.

10.16 Not only should none of the outliers be highlighted, but the high-
lighted cases should be ellipsoidal.

10.17 Answers will vary since this is simulated data, but should get gam
near 0.4, 0.3, 0.2 and 0.1 as p increases from 2 to 20.
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Chapter 11

11.2 b Ideally the answer to this problem and Problem 11.3b would be
nearly the same, but students seem to want correlations to be very high and
use n too high. Values of n around 60, 120 and 120 for p = 2, 3 and 4 should
be enough.

11.3 b Values of n should be near 60, 120 and 120 for p = 2, 3 and 4.

11.4 This is simulated data, but for most plots the slope is near 2.

11.8 The identity line should NOT PASS through the cluster of out-
liers with Y near 0. The amount of trimming seems to vary some with the
computer (which should not happen unless there is a bug in the tvreg2 func-
tion or if the computers are using different versions of cov.mcd), but most
students liked 70% or 80% trimming.

Chapter 12

12.1
a) êi = Yi − T (Y ).
b) êi = Yi − xT

i β̂.
c)

êi =
Yi

β̂1 exp[β̂2(xi − x̄)]
.

d) êi =
√

wi(Yi − xT
i β̂).

12.2
a) Since Y is a (random) scalar and E(w) = 0, Σx,Y = E[(x−E(x))(Y −

E(Y ))T ] = E[w(Y −E(Y ))] = E(wY ) −E(w)E(Y ) = E(wY ).

b) Using the definition of z and r, note that Y = m(z) + e and
w = r + (Σxβ)βT w. Hence E(wY ) = E[(r + (Σxβ)βTw)(m(z) + e)] =
E[(r +(Σxβ)βT w)m(z)] +E[r+(Σxβ)βTw]E(e) since e is independent of
x. Since E(e) = 0, the latter term drops out. Since m(z) and βTwm(z) are
(random) scalars, E(wY ) = E[m(z)r] + E[βT w m(z)]Σxβ.

c) Using result b), Σ−1
x Σx,Y = Σ−1

x E[m(z)r] + Σ−1
x E[βTw m(z)]Σxβ =

E[βT w m(z)]Σ−1
x Σxβ+Σ−1

x E[m(z)r] = E[βT w m(z)]β+Σ−1
x E[m(z)r] and

the result follows.
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d) E(wz) = E[(x−E(x))xT β] = E[(x−E(x))(xT −E(xT )+E(xT ))β]
= E[(x− E(x))(xT − E(xT ))]β + E[x − E(x)]E(xT )β = Σxβ.

e) If m(z) = z, then c(x) = E(βT wz) = βT E(wz) = βTΣxβ = 1 by
result d).

f) Since z is a (random) scalar, E(zr) = E(rz) = E[(w − (Σxβ)βT w)z]
= E(wz)−(Σxβ)βT E(wz). Using result d), E(rz) = Σxβ−ΣxββTΣxβ =
Σxβ −Σxβ = 0.

g) Since z and r are linear combinations of x, the joint distribution of
z and r is multivariate normal. Since E(r) = 0, z and r are uncorrelated
and thus independent. Hence m(z) and r are independent and u(x) =
Σ−1

x E[m(z)r] = Σ−1
x E[m(z)]E(r) = 0.

12.4 The submodel I that uses a constant and A, C, E, F, H looks best
since it is the minimum Cp(I) model and I has the smallest value of k such
that Cp(I) ≤ 2k.

12.6 a) No strong nonlinearities for MVN data but there should be some
nonlinearities present for the non–EC data.

b) The plot should look like a cubic function.

c) The plot should use 0% trimming and resemble the plot in b), but may
not be as smooth.

d) The plot should be linear and for many students some of the trimmed
views should be better than the OLS view.

e) The EY plot should look like a cubic with trimming greater than 0%.

f) The plot should be linear.

12.7 b) and c) It is possible that none of the trimmed views look much
like the sinc(ESP) = sin(ESP)/ESP function.

d) Now at least one of the trimmed views should be good.

e) More lms trimmed views should be good than the views from the other
2 methods, but since simulated data is used, one of the plots from b) or c)
could be as good or even better than the plot in d).

Chapter 13

13.2 a) ESP = 1.11108, exp(ESP ) = 3.0376 and ρ̂ = exp(ESP )/(1 +
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exp(ESP )) = 3.0376/(1 + 3.0376) = 0.7523.

13.3 G2(O|F ) = 62.7188 − 13.5325 = 49.1863, df = 3, p–value = 0.00,
reject Ho, there is a LR relationship between ape and the predictors lower
jaw, upper jaw and face length.

13.4 G2(R|F ) = 17.1855−13.5325 = 3.653, df = 1, 0.05 < p–value < 0.1,
fail to reject Ho, the reduced model is good.

13.5a ESP = 0.2812465 and μ̂ = exp(ESP ) = 1.3248.

13.6 G2(O|F ) = 187.490 − 138.685 = 48.805, df = 2, p–value = 0.00,
reject Ho, there is a LLR relationship between possums and the predictors
habitat and stags.

13.8 a) B4

b) EE plot
c) B3 is best. B1 has too many predictors with large Wald p–values, B2

still has too many predictors (want ≤ 300/10 = 30 predictors) while B4 has
too small of a p–value for the change in deviance test.

13.12 a) A good submodel uses a constant, Bar, Habitat and Stags as
predictors.

d) The EY and EE plots are good as are the Wald p–values. Also
AIC(full) = 141.506 while AIC(sub) = 139.644.

13.14 b) Use the log rule: (max age)/(min age) = 1400 > 10.

e) The slice means track the logistic curve very well if 8 slices are used.

i) The EE plot is linear.

j) The slice means track the logistic curve very well if 8 slices are used.

n) The slice form −0.5 to 0.5 is bad since the symbol density is not
approximately constant from the top to the bottom of the slice.

13.15 a) Should have 200 cases, df = 178 and deviance = 112.168.

b) The ESS plot with 12 slices suggests that the full model is good.

c) The submodel I1 that uses a constant, AGE, CAN, SYS, TYP and
FLOC and the submodel I2 that is the same as I1 but also uses FRACE
seem to be competitors. If the factor FRACE is not used, then the EY plot
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follows 3 lines, one for each race. The Wald p–values suggest that FRACE
is not needed.

13.16 b) The ESS plot (eg with 4 slices) is bad, so the LR model is bad.

d) Now the ESS plot (eg with 12 slices) is good in that slice smooth and
the logistic curve are close where there is data (also the LR model is good at
classifying 0’s and 1’s).

f) The MLE does not exist since there is perfect classification (and the
logistic curve can get close to but never equal a discontinuous step function).
Hence Wald p–values tend to have little meaning; however, the change in
deviance test tends to correctly suggest that there is an LR relationship
when there is perfect classification.

For this problem, G2(O|F ) = 62.7188 − 0.00419862 = 62.7146, df = 1,
p–value = 0.00, so reject Ho and conclude that there is an LR relationship
between ape and the predictor x3.

13.18 k) The deleted point is certainly influential. Without this case,
there does not seem to be a LLR relationship between the predictors and the
response.

m) The weighted residual plot suggests that something is wrong with the
model since the plotted points scatter about a line with positive slope rather
than a line with 0 slope. The deviance residual plot does not suggest that
anything is wrong with the model.

13.19 The ESS plot should look ok, but the function uses a default num-
ber of slices rather than allowing the user to select the number of slices using
a “slider bar” (a useful feature of Arc).

13.20 a) Since this is simulated LLR data, the EY plot should look ok, but
the function uses a default lowess smoothing parameter rather than allowing
the user to select smoothing parameter using a “slider bar” (a useful feature
of Arc).

b) The data should the identity line in the weighted forward response
plots. In about 1 in 20 plots there will be a very large count that looks
like an outlier. The weighted residual plot based on the MLE usually looks
better than the plot based on the minimum chi-square estimator (the MLE
plot tend to have less of a “left opening megaphone shape”).
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13.21 a)

Number in Model Rsquare C(p) Variables in model

6 0.2316 7.0947 X3 X4 X6 X7 X9 X10

c) The slice means follow the logistic curve fairly well with 8 slices.

e) The EE plot is linear.

f) The slice means follow the logistic curve fairly well with 8 slices.
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14.5 Tables

Tabled values are F(0.95,k,d) where P (F < F (0.95, k, d)) = 0.95.
00 stands for ∞. Entries produced with the qf(.95,k,d) command in R.
The numerator degrees of freedom are k while the denominator degrees of
freedom are d.

k 1 2 3 4 5 6 7 8 9 00

d

1 161 200 216 225 230 234 237 239 241 254

2 18.5 19.0 19.2 19.3 19.3 19.3 19.4 19.4 19.4 19.5

3 10.1 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.53

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.63

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.37

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 3.67

7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.23

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 2.93

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 2.71

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.54

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.41

12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.30

13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.21

14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.13

15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.07

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.01

17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 1.96

18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 1.92

19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 1.88

20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 1.84

25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 1.71

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 1.62

00 3.84 3.00 2.61 2.37 2.21 2.10 2.01 1.94 1.88 1.00
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Tabled values are tα,d where P (t < tα,d) = α where t has a t distribution
with d degrees of freedom. If d > 30 use the N(0, 1) cutoffs given in the
second to last line with d = Z = ∞.

alpha 0.95 0.975 0.995

d

1 6.314 12.706 63.657

2 2.920 4.303 9.925

3 2.353 3.182 5.841

4 2.132 2.776 4.604

5 2.015 2.571 4.032

6 1.943 2.447 3.707

7 1.895 2.365 3.499

8 1.860 2.306 3.355

9 1.833 2.262 3.250

10 1.812 2.228 3.169

11 1.796 2.201 3.106

12 1.782 2.179 3.055

13 1.771 2.160 3.012

14 1.761 2.145 2.977

15 1.753 2.131 2.947

16 1.746 2.120 2.921

17 1.740 2.110 2.898

18 1.734 2.101 2.878

19 1.729 2.093 2.861

20 1.725 2.086 2.845

21 1.721 2.080 2.831

22 1.717 2.074 2.819

23 1.714 2.069 2.807

24 1.711 2.064 2.797

25 1.708 2.060 2.787

26 1.706 2.056 2.779

27 1.703 2.052 2.771

28 1.701 2.048 2.763

29 1.699 2.045 2.756

30 1.697 2.042 2.750

Z 1.645 1.960 2.576

CI 90% 95% 99%
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