
Chapter 6

Regression Diagnostics

Using one or a few numerical summaries to characterize the relationship
between x and y runs the risk of missing important features, or worse, of

being misled.
Chambers, Cleveland, Kleiner, and Tukey (1983, p. 76)

6.1 Numerical Diagnostics

Diagnostics are used to check whether model assumptions are reasonable.
Section 6.4 provides a graph for assessing model adequacy for very general
regression models while the first three sections of this chapter focus on di-
agnostics for the multiple linear regression model with iid constant variance
symmetric errors. Under this model,

Yi = xT
i β + ei

for i = 1, ..., n where the errors are iid from a symmetric distribution with
E(ei) = 0 and VAR(ei) = σ2.

It is often useful to use notation to separate the constant from the non-
trivial predictors. Assume that xi = (1, xi,2, ..., xi,p)

T ≡ (1, uT
i )T where the

(p−1)×1 vector of nontrivial predictors ui = (xi,2, ..., xi,p)
T . In matrix form,

Y = X + e,

X = [X1, X2, ..., Xp] = [1, U ],

1 is an n × 1 vector of ones, and U = [X2, ..., Xp] is the n × (p − 1) matrix
of nontrivial predictors. The kth column of U is the n × 1 vector of the
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jth predictor Xj = (x1,j, ..., xn,j)
T where j = k + 1. The sample mean and

covariance matrix of the nontrivial predictors are

u =
1

n

n∑
i=1

ui (6.1)

and

C = Cov(U ) =
1

n − 1

n∑
i=1

(ui − u)(ui − u)T , (6.2)

respectively.

Some important numerical quantities that are used as diagnostics measure
the distance of ui from u and the influence of case i on the OLS fit β̂ ≡ β̂OLS.
Recall that the vector of fitted values =

Ŷ = Xβ̂ = X(XT X)−1XTY = HY

where H is the hat matrix. Recall that the ith residual ri = Yi− Ŷi. Case (or
leave one out or deletion) diagnostics are computed by omitting the ith case
from the OLS regression. Following Cook and Weisberg (1999a, p. 357), let

Ŷ (i) = Xβ̂(i) (6.3)

denote the n × 1 vector of fitted values for estimating β with OLS without
the ith case. Denote the jth element of Ŷ (i) by Ŷ(i),j. It can be shown that
the variance of the ith residual VAR(ri) = σ2(1 − hi). The usual estimator
of the error variance is

σ̂2 =

∑n
i=1 r2

i

n − p
.

The (internally) studentized residual

êi =
ri

σ̂
√

1 − hi

has zero mean and unit variance.

Definition 6.1. The ith leverage hi = H ii is the ith diagonal element of
the hat matrix H . The ith squared (classical) Mahalanobis distance

MD2
i = (ui − u)TC−1(ui − u).
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The ith Cook’s distance

CDi =
(β̂(i) − β̂)T XTX(β̂(i) − β̂)

pσ̂2
=

(Ŷ (i) − Ŷ )T (Ŷ (i) − Ŷ )

pσ̂2
(6.4)

=
1

pσ̂2

n∑
j=1

(Ŷ(i),j − Ŷj)
2.

Proposition 6.1. a) (Rousseeuw and Leroy 1987, p. 225)

hi =
1

n − 1
MD2

i +
1

n
.

b) (Cook and Weisberg 1999a, p. 184)

hi = xT
i (XT X)−1xi = (xi − x)T (UT U)−1(xi − x) +

1

n
.

c) (Cook and Weisberg 1999a, p. 360)

CDi =
r2
i

pσ̂2(1 − hi)

hi

1 − hi

=
ê2

i

p

hi

1 − hi

.

When the statistics CDi, hi and MDi are large, case i may be an outlier or
influential case. Examining a stem plot or dot plot of these three statistics for
unusually large values can be useful for flagging influential cases. Cook and
Weisberg (1999a, p. 358) suggest examining cases with CDi > 0.5 and that
cases with CDi > 1 should always be studied. Since H = HT and H = HH ,
the hat matrix is symmetric and idempotent. Hence the eigenvalues of H
are zero or one and trace(H) =

∑n
i=1 hi = p. Rousseeuw and Leroy (1987, p.

220 and p. 224) suggest using hi > 2p/n and MD2
i > χ2

p−1,0.95 as benchmarks
for leverages and Mahalanobis distances where χ2

p−1,0.95 is the 95th percentile
of a chi–square distribution with p − 1 degrees of freedom.

Note that Proposition 6.1c) implies that Cook’s distance is the product
of the squared residual and a quantity that becomes larger the farther ui is
from u. Hence influence is roughly the product of leverage and distance of
Yi from Ŷi (see Fox 1991, p. 21). Mahalanobis distances and leverages both
define ellipsoids based on a metric closely related to the sample covariance
matrix of the nontrivial predictors. All points ui on the same ellipsoidal
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contour are the same distance from u and have the same leverage (or the
same Mahalanobis distance).

Cook’s distances, leverages, and Mahalanobis distances can be effective
for finding influential cases when there is a single outlier, but can fail if there
are two or more outliers. Nevertheless, these numerical diagnostics combined
with plots such as residuals versus fitted values and fitted values versus the
response are probably the most effective techniques for detecting cases that
effect the fitted values when the multiple linear regression model is a good
approximation for the bulk of the data. In fact, these diagnostics may be
useful for perhaps up to 90% of such data sets while residuals from robust
regression and Mahalanobis distances from robust estimators of multivariate
location and dispersion may be helpful for perhaps another 3% of such data
sets.

6.2 Graphical Diagnostics

Automatic or blind use of regression models, especially in exploratory work,
all too often leads to incorrect or meaningless results and to confusion

rather than insight. At the very least, a user should be prepared to make
and study a number of plots before, during, and after fitting the model.

Chambers, Cleveland, Kleiner, and Tukey (1983, p. 306)

A scatterplot of x versus y (recall the convention that a plot of x versus
y means that x is on the horizontal axis and y is on the vertical axis) is
used to visualize the conditional distribution y|x of y given x (see Cook and
Weisberg 1999a, p. 31). For the simple linear regression model (with one
nontrivial predictor x2), by far the most effective technique for checking the
assumptions of the model is to make a scatterplot of x2 versus Y and a
residual plot of x2 versus ri. Departures from linearity in the scatterplot
suggest that the simple linear regression model is not adequate. The points
in the residual plot should scatter about the line r = 0 with no pattern. If
curvature is present or if the distribution of the residuals depends on the
value of x2, then the simple linear regression model is not adequate.

Similarly if there are two nontrivial predictors, say x2 and x3, make a
three-dimensional (3D) plot with Y on the vertical axis, x2 on the horizontal
axis and x3 on the out of page axis. Rotate the plot about the vertical
axis, perhaps superimposing the OLS plane. As the plot is rotated, linear
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combinations of x2 and x3 appear on the horizontal axis. If the OLS plane
b1 +b2x2+b3x3 fits the data well, then the plot of b2x2 +b3x3 versus Y should
scatter about a straight line. See Cook and Weisberg (1999a, ch. 8).

In general there are more than two nontrivial predictors and in this set-
ting two plots are crucial for any multiple linear regression analysis,
regardless of the regression estimator (eg OLS, L1 etc.). The first plot is a

scatterplot of the fitted values Ŷi versus the residuals ri, and the second plot
is a scatterplot of the fitted values Ŷi versus the response Yi.

Definition 6.2. A residual plot is a plot of a variable wi versus the
residuals ri. Typically wi is a linear combination of the predictors: wi = aT xi

where a is a known p×1 vector. A response plot is a plot of the fitted values
Ŷi versus the response Yi.

The most used residual plot takes a = β̂ with wi = Ŷi. Plots against the
individual predictors xj and potential predictors are also used. If the residual
plot is not ellipsoidal with zero slope, then the multiple linear regression
model with iid constant variance symmetric errors is not sustained. In other
words, if the variables in the residual plot show some type of dependency, eg
increasing variance or a curved pattern, then the multiple linear regression
model may be inadequate. The following proposition shows that the response
plot simultaneously displays the fitted values, response, and residuals. The
plotted points in the response plot should scatter about the identity line if
the multiple linear regression model holds. Note that residual plots magnify
departures from the model while the response plot emphasizes how well the
model fits the data. Cook and Weisberg (1997, 1999a ch. 17) call a plot that
emphasizes model agreement a model checking plot.

Proposition 6.2. Suppose that the regression estimator b of β is used
to find the residuals ri ≡ ri(b) and the fitted values Ŷi ≡ Ŷi(b) = xT

i b. Then

in the response plot of Ŷi versus Yi, the vertical deviations from the identity
line (that has unit slope and zero intercept) are the residuals ri(b).

Proof. The identity line in the response plot is Y = xT b. Hence the
vertical deviation is Yi − xT

i b = ri(b). QED

One of the themes of this text is to use a several estimators to create plots
and estimators. Many estimators bj are consistent estimators of β when the
multiple linear regression model holds.
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Definition 6.3. Let b1, ..., bJ be J estimators of β. Assume that J ≥
2 and that OLS is included. A fit-fit (FF) plot is a scatterplot matrix

of the fitted values Ŷ (b1), ..., Ŷ (bJ). Often Y is also included in the FF
plot. A residual-residual (RR) plot is a scatterplot matrix of the residuals
r(b1), ..., r(bJ ).

If the multiple linear regression model holds, if the predictors are bounded,
and if all J regression estimators are consistent estimators of β, then the sub-
plots in the FF and RR plots should be linear with a correlation tending to
one as the sample size n increases. To prove this claim, let the ith residual
from the jth fit bj be ri(bj) = Yi−xT

i bj where (Yi, x
T
i ) is the ith observation.

Similarly, let the ith fitted value from the jth fit be Ŷi(bj) = xT
i bj. Then

‖ri(b1) − ri(b2)‖ = ‖Ŷi(b1) − Ŷi(b2)‖ = ‖xT
i (b1 − b2)‖

≤ ‖xi‖ (‖b1 − β‖ + ‖b2 − β‖). (6.5)

The FF plot is a powerful way for comparing fits. The commonly sug-
gested alternative is to look at a table of the estimated coefficients, but
coefficients can differ greatly while yielding similar fits if some of the pre-
dictors are highly correlated or if several of the predictors are independent
of the response. Adding the response Y to the scatterplot matrix of fitted
values can also be useful.

To illustrate the RR plot, we examined two moderately-sized data sets (in
Chapter 1) with four R/Splus estimators: OLS, ALMS = the default version
of lmsreg, ALTS = the default version of ltsreg and the MBA estimator
described in Chapter 7. In the 2007 version of R, the last three estimators
change with each call.

Example 6.1. Gladstone (1905-6) records the brain weight and various
head measurements for 276 individuals. This data set, along with the Buxton
data set in the following example, can be downloaded from the text’s website.
We’ll predict brain weight using six head measurements (head height, length,
breadth, size, cephalic index and circumference) as predictors, deleting cases
188 and 239 because of missing values. There are five infants (cases 238, and
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263-266) of age less than 7 months that are x-outliers. Nine toddlers were
between 7 months and 3.5 years of age, four of whom appear to be x-outliers
(cases 241, 243, 267, and 269). (The points are not labeled on the plot, but
the five infants are easy to recognize.)

Figure 1.1 (on p. 7) shows the RR plot. The five infants seem to be
“good leverage points” in than the fit to the bulk of the data passes through
the infants. Hence the OLS fit may be best, followed by ALMS. Note that
ALTS and MBA make the absolute residuals for the infants large. The
ALTS and MBA fits are not highly correlated for the remaining 265 points,
but the remaining correlations are high. Thus the fits agree on these cases,
focusing attention on the infants. The ALTS and ALMS estimators change
frequently, and are implemented differently in R and Splus. Often the “new
and improved” implementation is much worse than older implementations.

Figure 1.2 (on p. 8) shows the residual plots for the Gladstone data when
one observation, 119, had head length entered incorrectly as 109 instead of
199. This outlier is easier to detect with MBA and ALTS than with ALMS.

Example 6.2. Buxton (1920, p. 232-5) gives 20 measurements of 88
men. We chose to predict stature using an intercept, head length, nasal
height, bigonal breadth, and cephalic index. Observation 9 was deleted since
it had missing values. Five individuals, numbers 62-66, were reported to be
about 0.75 inches tall with head lengths well over five feet! This appears to
be a clerical error; these individuals’ stature was recorded as head length and
the integer 18 or 19 given for stature, making the cases massive outliers with
enormous leverage. These absurdly bad observations turned out to confound
the standard high breakdown (HB) estimators. Figure 7.1 (on p. 246) shows
the RR plot for Splus-2000 implementations of lmsreg and ltsreg. Only
the MBA estimator makes the absolute residuals large. Problem 6.1 shows
how to create RR and FF plots.

Example 6.3. Figure 1.6 (on p. 16) is nearly identical to a response
plot. Since the plotted points do not scatter about the identity line, the
multiple linear regression model is not appropriate. Nevertheless,

Yi ∝ (xT
i β̂OLS)3.

In Chapter 12 it will be shown that the response plot is useful for visualizing
the conditional distribution Y |βT x in 1D regression models where

Y x|βTx.
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6.3 Outlier Detection

Do not attempt to build a model on a set of poor data! In human surveys,
one often finds 14–inch men, 1000–pound women, students with “no” lungs,
and so on. In manufacturing data, one can find 10,000 pounds of material

in a 100 pound capacity barrel, and similar obvious errors. All the
planning, and training in the world will not eliminate these sorts of

problems. ... In our decades of experience with “messy data,” we have yet
to find a large data set completely free of such quality problems.

Draper and Smith (1981, p. 418)

There is an enormous literature on outlier detection in multiple linear re-
gression. Typically a numerical measure such as Cook’s distance or a residual
plot based on resistant fits is used. The following terms are frequently en-
countered.

Definition 6.4. Suppose that some analysis to detect outliers is per-
formed. Masking occurs if the analysis suggests that one or more outliers
are in fact good cases. Swamping occurs if the analysis suggests that one or
more good cases are outliers.

The following techniques are useful for detecting outliers when the mul-
tiple linear regression model is appropriate.

1. Find the OLS residuals and fitted values and make a response plot and
a residual plot. Look for clusters of points that are separated from the
bulk of the data and look for residuals that have large absolute values.
Beginners frequently label too many points as outliers. Try to estimate
the standard deviation of the residuals in both plots. In the residual
plot, look for residuals that are more than 5 standard deviations away
from the r = 0 line.

2. Make an RR plot. See Figures 1.1 and 7.1 on p. 7 and p. 246, respec-
tively.

3. Make an FF plot. See Problem 6.1.

4. Display the residual plots from several different estimators. See Figure
1.2 on p. 8.
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Figure 6.1: Residual and Response Plots for the Tremearne Data
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5. Display the response plots from several different estimators. This can
be done by adding Y to the FF plot.

6. Make a scatterplot matrix of several diagnostics such as leverages,
Cook’s distances and studentized residuals.

Example 6.4. Tremearne (1911) presents a data set of about 17 mea-
surements on 115 people of Hausa nationality. We deleted 3 cases (107, 108
and 109) because of missing values and used height as the response variable
Y . The five predictor variables used were height when sitting, height when
kneeling, head length, nasal breadth, and span (perhaps from left hand to right
hand). Figure 6.1 presents the OLS residual and response plots for this data
set. Points corresponding to cases with Cook’s distance > min(0.5, 2p/n) are
shown as highlighted squares (cases 3, 44 and 63). The 3rd person was very
tall while the 44th person was rather short. From the plots, the standard
deviation of the residuals appears to be around 10. Hence cases 3 and 44 are
certainly worth examining. Two other cases have residuals near fifty.

Data sets like this one are very common. The majority of the cases seem
to follow a multiple linear regression model with iid Gaussian errors, but
a small percentage of cases seem to come from an error distribution with
heavier tails than a Gaussian distribution.

Detecting outliers is much easier than deciding what to do with them.
After detection, the investigator should see whether the outliers are recording
errors. The outliers may become good cases after they are corrected. But
frequently there is no simple explanation for why the cases are outlying.
Typical advice is that outlying cases should never be blindly deleted and that
the investigator should analyze the full data set including the outliers as well
as the data set after the outliers have been removed (either by deleting the
cases or the variables that contain the outliers).

Typically two methods are used to find the cases (or variables) to delete.
The investigator computes OLS diagnostics and subjectively deletes cases,
or a resistant multiple linear regression estimator is used that automatically
gives certain cases zero weight.

Suppose that the data has been examined, recording errors corrected, and
impossible cases deleted. For example, in the Buxton (1920) data, 5 people
with heights of 0.75 inches were recorded. For this data set, these heights
could be corrected. If they could not be corrected, then these cases should
be discarded since they are impossible. If outliers are present even after
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correcting recording errors and discarding impossible cases, then we can add
two additional rough guidelines.

First, if the purpose is to display the relationship between the predictors
and the response, make a response plot using the full data set (computing the
fitted values by giving the outliers weight zero) and using the data set with
the outliers removed. Both plots are needed if the relationship that holds for
the bulk of the data is obscured by outliers. The outliers are removed from
the data set in order to get reliable estimates for the bulk of the data. The
identity line should be added as a visual aid and the proportion of outliers
should be given. Secondly, if the purpose is to predict a future value of the
response variable, then a procedure such as that described in Example 1.4
on p. 12–13 should be used.

6.4 A Simple Plot for Model Assessment

Regression is the study of the conditional distribution Y |x of the response
Y given the p × 1 vector of predictors x. Many important statistical models
have the form

Yi = m(xi1, ..., xip) + ei = m(xT
i ) + ei ≡ mi + ei (6.6)

for i = 1, ..., n where the zero mean error ei is independent of xi. Additional
assumptions on the errors are often made.

The above class of models is very rich. Many anova models, categorical
models, nonlinear regression, nonparametric regression, semiparametric and
time series models have this form. An additive error single index model uses

Y = m(βT x) + e. (6.7)

The multiple linear regression model is an important special case. A multi–
index model with additive error has the form

Y = m(βT
1 x, ..., βT

k x) + e (6.8)

where k ≥ 1 is as small as possible. Another important special case of model
(6.6) is the response transformation model where

Zi ≡ t−1(Yi) = t−1(βTxi + ei)
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and thus
Yi = t(Zi) = βTxi + ei. (6.9)

There are several important regression models that do not have additive
errors including generalized linear models. If

Y = g(βT x, e) (6.10)

then the regression has 1–dimensional structure while

Y = g(βT
1 x, ..., βT

k x, e) (6.11)

has k–dimensional structure if k ≥ 1 is as small as possible. These models
do not necessarily have additive errors although models (6.7) and (6.8) are
important exceptions.

Definition 6.5 (Cook and Weisberg 1997, 1999a, ch. 17): A plot of aT x
versus Y for various choices of a is called a model checking plot.

This plot is useful for model assessment and emphasizes the goodness of
fit of the model. In particular, plot each predictor xj versus Y , and also plot

β̂
T
x versus Y if model (6.10) holds. Residual plots are also used for model

assessment, but residual plots emphasize lack of fit.
The following notation is useful. Let m̂ be an estimator of m. Let the

ith predicted or fitted value Ŷi = m̂i = m̂(xT
i ), and let the ith residual

ri = Yi − Ŷi.

Definition 6.6. Then a fit–response plot or FY plot is a plot of Ŷ versus
Y .

Application 6.1. Use the FY plot to check the model for goodness of
fit, outliers and influential cases.

To understand the information contained in the FY plot, first consider a
plot of mi versus Yi. Ignoring the error in the model Yi = mi+ei gives Y = m
which is the equation of the identity line with unit slope and zero intercept.
The vertical deviations from the identity line are Yi−mi = ei. The reasoning
for the FY plot is very similar. The line Y = Ŷ is the identity line and the
vertical deviations from the line are the residuals Yi − m̂i = Yi − Ŷi = ri.
Suppose that the model Yi = mi + ei is a good approximation to the data
and that m̂ is a good estimator of m. If the identity line is added to the plot
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as a visual aid, then the plotted points will scatter about the line and the
variability of the residuals can be examined.

For a given data set, it will often be useful to generate the FY plot,
residual plots, and model checking plots. An advantage of the FY plot is
that if the model is not a good approximation to the data or if the estimator
m̂ is poor, then detecting deviations from the identity line is simple. Also,
residual variability is easier to judge against a line than a curve. On the
other hand, model checking plots may provide information about the form
of the conditional mean function E(Y |x) = m(xT ). See Chapter 12.

Many numerical diagnostics for detecting outliers and influential cases on
the fit have been suggested, and often this research generalizes results from
Cook (1977, 1986) to various models of form (6.6). Information from these
diagnostics can be incorporated into the FY plot by highlighting cases that
have large absolute values of the diagnostic.

The most important example is the multiple linear regression (MLR)
model. For this model, the FY plot is the response plot. If the MLR model
holds and the errors ei are iid with zero mean and constant variance σ2,
then the plotted points should scatter about the identity line with no other
pattern.

When the bulk of the data follows the MLR model, the following rules
of thumb are useful for finding influential cases and outliers. Look for points
with large absolute residuals and for points far away from Y . Also look for
gaps separating the data into clusters. To determine whether small clusters
are outliers or good leverage points, give zero weight to the clusters, and fit
a MLR estimator to the bulk of the data. Denote the weighted estimator
by β̂w. Then plot Ŷw versus Y using the entire data set. If the identity line
passes through the bulk of the data but not the cluster, then the cluster
points may be outliers.

To see why gaps are important, suppose that OLS was used to obtain
Ŷ = m̂. Then the squared correlation (corr(Y, Ŷ ))2 is equal to the coefficient
of determination R2. Even if an alternative MLR estimator is used, R2 over
emphasizes the strength of the MLR relationship when there are two clusters
of data since much of the variability of Y is due to the smaller cluster.

A commonly used diagnostic is Cook’s distance CDi. Assume that OLS
is used to fit the model and to make the FY plot Ŷ versus Y . Then CDi

tends to be large if Ŷ is far from the sample mean Y and if the corresponding
absolute residual |ri| is not small. If Ŷ is close to Y then CDi tends to be
small unless |ri| is large. An exception to these rules of thumb occurs if a
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group of cases form a cluster and the OLS fit passes through the cluster.
Then the CDi’s corresponding to these cases tend to be small even if the
cluster is far from Y .

Now suppose that the MLR model is incorrect. If OLS is used in the FY
plot, and if Y = g(βT x, e), then the plot can be used to visualize g for many
data sets (see Ch. 12). Hence the plotted points may be very far from linear.
The plotted points in FY plots created from other MLR estimators may not
be useful for visualizing g, but will also often be far from linear.

An advantage of the FY plot over numerical diagnostics is that while it
depends strongly on the model m, defining diagnostics for different fitting
methods can be difficult while the FY plot is simply a plot of Ŷ versus Y . For
the MLR model, the FY plot can be made from any good MLR estimator,
including OLS, least absolute deviations and the R/Splus estimator lmsreg.

Example 6.2 (continued): Figure 6.2 shows the response plot and
residual plot for the Buxton data. Although an index plot of Cook’s distance
CDi may be useful for flagging influential cases, the index plot provides no
direct way of judging the model against the data. As a remedy, cases in the
response plot with CDi > min(0.5, 2p/n) were highlighted. Notice that the
OLS fit passes through the outliers, but the response plot is resistant to Y –
outliers since Y is on the vertical axis. Also notice that although the outlying
cluster is far from Y only two of the outliers had large Cook’s distance. Hence
masking occurred for both Cook’s distances and for OLS residuals, but not
for OLS fitted values. Figure 7.1 on p. 246 shows that plots using lmsreg

and ltsreg were similar, but MBA was effective.
High leverage outliers are a particular challenge to conventional numerical

MLR diagnostics such as Cook’s distance, but can often be visualized using
the response and residual plots. (Using the trimmed views of Section 11.3
and Chapter 12 is also effective for detecting outliers and other departures
from the MLR model.)

Example 6.5. Hawkins, Bradu, and Kass (1984) present a well known ar-
tificial data set where the first 10 cases are outliers while cases 11-14 are good
leverage points. Figure 6.3 shows the residual and response plots based on the
OLS estimator. The highlighted cases have Cook’s distance > min(0.5, 2p/n),
and the identity line is shown in the response plot. Since the good cases 11-14
have the largest Cook’s distances and absolute OLS residuals, swamping has
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Figure 6.2: Plots for Buxton Data
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Figure 6.3: Plots for HBK Data

215



FIT

Y

-1.5 -1.0 -0.5 0.0 0.5

-2
.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

2
3

8

5

10
4

7
1
6

9

FY PLOT

Figure 6.4: Projection Pursuit Regression, Artificial Data

FIT

Y

4 5 6 7 8 9

4
5

6
7

8
9

Figure 6.5: Fit–Response Plot for Log(Lynx) Data

216



occurred. (Masking has also occurred since the outliers have small Cook’s
distances, and some of the outliers have smaller OLS residuals than clean
cases.) To determine whether both clusters are outliers or if one cluster con-
sists of good leverage points, cases in both clusters could be given weight
zero and the resulting response plot created. (Alternatively, response plots
based on the tvreg estimator of Section 11.3 could be made where the cases
with weight one are highlighted. For high levels of trimming, the identity
line often passes through the good leverage points.)

The above example is typical of many “benchmark” outlier data sets for
MLR. In these data sets traditional OLS diagnostics such as Cook’s distance
and the residuals often fail to detect the outliers, but the combination of the
response plot and residual plot is usually able to detect the outliers.

Example 6.6. MathSoft (1999a, p. 245-246) gives an FY plot for sim-
ulated data. In this example the simulated data set is modified by planting
10 outliers. Let x1 and x2 be iid uniform U(−1, 1) random variables, and let
Y = x1x2 + e where the errors e are iid N(0, 0.04) random variables. The ar-
tificial data set uses 400 cases, but the first 10 cases used Y ∼ N(−1.5, 0.04),
x1 ∼ N(0.2, 0.04) and x2 ∼ N(0.2, 0.04) where Y, x1, and x2 were indepen-
dent. The model Y = m(x1, x2) + e was fitted nonparametrically without
using knowledge of the true regression relationship. The fitted values m̂
were obtained from the Splus function ppreg for projection pursuit regres-
sion (Friedman and Stuetzle, 1981). The outliers are easily detected with
the FY plot shown in Figure 6.4.

Example 6.7. The lynx data is a well known time series concerning the
number Zi of lynx trapped in a section of Northwest Canada from 1821 to
1934. There were n = 114 cases and MathSoft (1999b, p. 166-169) fits an
AR(11) model Yi = β0 + β1Yi−1 + β2Yi−2 + · · · + β11Yi−11 + ei to the data
where Yi = log(Zi) and i = 12, 13, ..., 114. The FY plot shown in Figure 6.5
suggests that the AR(11) model fits the data reasonably well. To compare
different models or to find a better model, use an FF plot of Y and the fitted
values from several competing time series models. See Problem 6.4.

6.5 Complements

Excellent introductions to OLS diagnostics include Fox (1991) and Cook and
Weisberg (1999a, p. 161-163, 183-184, section 10.5, section 10.6, ch. 14, ch.
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15, ch. 17, ch. 18, and section 19.3). More advanced works include Belsley,
Kuh, and Welsch (1980), Cook and Weisberg (1982), Atkinson (1985) and
Chatterjee and Hadi (1988). Hoaglin and Welsh (1978) examines the hat
matrix while Cook (1977) introduces Cook’s distance.

Some other papers of interest include Barrett and Gray (1992), Gray
(1985), Hadi and Simonoff (1993), Hettmansperger and Sheather (1992),
Velilla (1998), and Velleman and Welsch (1981).

Hawkins and Olive (2002, p. 141, 158) suggest using the RR and FF
plots. Typically RR and FF plots are used if there are several estimators for
one fixed model, eg OLS versus L1 or frequentist versus Bayesian for multiple
linear regression, or if there are several competing models. An advantage of
the FF plot is that the response Y can be added to the plot. The FFλ
plot is an FF plot where the fitted values were obtained from competing
power transformation models indexed by the power transformation parameter
λ ∈ Λc. Variable selection uses both FF and RR plots.

Rousseeuw and van Zomeren (1990) suggest that Mahalanobis distances
based on robust estimators of location and dispersion can be more useful
than the distances based on the sample mean and covariance matrix. They
show that a plot of robust Mahalanobis distances RDi versus residuals from
robust regression can be useful.

Several authors have suggested using the response plot to visualize the
coefficient of determination R2 in multiple linear regression. See for example
Chambers, Cleveland, Kleiner, and Tukey (1983, p. 280). Anderson-Sprecher
(1994) provides an excellent discussion about R2.

Some papers about the single index model include Aldrin, Bφlviken, and
Schweder (1993), Härdle, Hall, and Ichimura (1993), Naik and Tsai (2001),
Simonoff and Tsai (2002), Stoker (1986) and Weisberg and Welsh (1994).
Also see Olive (2004b). An interesting paper on the multi–index model is
Hristache, Juditsky, Polzehl, and Spokoiny (2001).

The fact that the fit–response (FY) plot is extremely useful for model
assessment and for detecting influential cases and outliers for an enormous
variety of statistical models does not seem to be well known. Certainly in
any multiple linear regression analysis, the response plot and the residual
plot of Ŷ versus r should always be made. The FY plot is not limited to
models of the form (6.6) since the plot can be made as long as fitted values
Ŷ can be obtained from the model. If Ŷi ≈ Yi for i = 1, ..., n then the plotted
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points will scatter about the identity line. Section 5.3 and Olive (2007) use
the response plot to explain prediction intervals. Zheng and Agresti (2000)
suggest using corr(Y, Ŷ ) as a R2 type measure.

6.6 Problems

R/Splus Problems

Warning: Use the command source(“A:/rpack.txt”) to download
the programs and the command source(“A:/robdata.txt”) to download
the data. See Preface or Section 14.2. Typing the name of the rpack

function, eg MLRplot, will display the code for the function. Use the args

command, eg args(MLRplot), to display the needed arguments for the func-
tion.

6.1∗. a) After entering the two source commands above, enter the follow-
ing command.

> MLRplot(buxx,buxy)

Click the rightmost mouse button (and in R click on Stop). The response
plot should appear. Again, click the rightmost mouse button (and in R click
on Stop). The residual plot should appear. Hold down the Ctrl and c keys
to make a copy of the two plots. Then paste the plots in Word.

b) The response variable is height, but 5 cases were recorded with heights
about 0.75 inches tall. The highlighted squares in the two plots correspond
to cases with large Cook’s distances. With respect to the Cook’s distances,
what is happening, swamping or masking?

c) RR plots: One feature of the MBA estimator (see Chapter 7) is that it
depends on the sample of 7 centers drawn and changes each time the function
is called. In ten runs, about seven plots will look like Figure 7.1, but in about
three plots the MBA estimator will also pass through the outliers.

If you use R, type the following command and include the plot in Word.

> library(MASS)

> rrplot2(buxx,buxy)

If you use Splus, type the following command and include the plot in
Word.
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> library(MASS)

> rrplot(buxx,buxy)

d) FF plots: the plots in the top row will cluster about the identity line if
the MLR model is good or if the fit passes through the outliers.

If you use R, type the following command and include the plot in Word.

> library(MASS)

> ffplot2(buxx,buxy)

If you use Splus, type the following command and include the plot in
Word.

> ffplot(buxx,buxy)

6.2. a) If necessary, enter the two source commands above Problem 6.1.
The diagplot function makes a scatterplot matrix of various OLS diagnos-
tics.

b) Enter the following command and include the resulting plot in Word.

> diagplot(buxx,buxy)

6.3. This problem makes the fit–response plot for the lynx data in Ex-
ample 6.7.

a) Check that the lynx data is in Splus by typing the command help(lynx).
A window will appear if the data is available.

b) For Splus, enter the following Splus commands to produce the FY plot.
Include the plot in Word. The command abline(0,1) adds the identity line.

> Y <- log(lynx)

> out <- ar.yw(Y)

> FIT <- Y - out$resid

> plot(FIT,Y)

> abline(0,1)

For R, enter the following R commands to produce the FY plot. Include
the plot in Word. The command abline(0,1) adds the identity line.
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> library(stats)

> data(lynx)

> Y <- log(lynx)

> out <- ar.yw(Y)

> Yts <- Y[12:114]

> FIT <- Yts - out$resid[12:114]

> plot(FIT,Yts)

> abline(0,1)

6.4∗. Following Lin and Pourahmadi (1998), consider the lynx time se-
ries data and let the response Yt = log10(lynx). Moran (1953) suggested the
autoregressive AR(2) model Ŷt = 1.05 + 1.41Yt−1 − 0.77Yt−2. Tong (1977)
suggested the AR(11) model Ŷt = 1.13Yt−1 − .51Yt−2 + .23Yt−3 − 0.29Yt−4 +
.14Yt−5 −0.14Yt−6 + .08Yt−7 − .04Yt−8 + .13Yt−9 +0.19Yt−10 − .31Yt−11. Brock-
well and Davis (1991, p. 550) suggested the AR(12) model Ŷt = 1.123 +
1.084Yt−1 − .477Yt−2 + .265Yt−3 − 0.218Yt−4 + .180Yt−9 − 0.224Yt−12. Tong
(1983) suggested the following two self–exciting autoregressive models. The
SETAR(2,7,2) model uses Ŷt = .546 + 1.032Yt−1 − .173Yt−2 + .171Yt−3 −
0.431Yt−4 + .332Yt−5 − 0.284Yt−6 + .210Yt−7 if Yt−2 ≤ 3.116 and Ŷt = 2.632 +
1.492Yt−1 − 1.324Yt−2, otherwise. The SETAR(2,5,2) model uses Ŷt = .768+
1.064Yt−1 − .200Yt−2 + .164Yt−3 − 0.428Yt−4 + .181Yt−5 if Yt−2 ≤ 3.05 and
Ŷt = 2.254 + 1.474Yt−1 − 1.202Yt−2 , otherwise. The FF plot of the fitted
values and the response can be used to compare the models. Type the rpack
command fflynx() (in R, 1st type library(stats) and data(lynx)).

a) Include the resulting plot and correlation matrix in Word.

b) Which model seems to be best? Explain briefly.

c) Which two pairs of models gave very similar fitted values?

6.5. This problem may not work in R. Type help(ppreg) to make
sure that Splus has the function ppreg. Then make the FY plot for Example
6.6 with the following commands. Include the plot in Word.

> set.seed(14)

> x1 <- runif(400,-1,1)

> x2 <- runif(400,-1,1)

> eps <- rnorm(400,0,.2)

> Y <- x1*x2 + eps

> x <- cbind(x1,x2)
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> x[1:10,] <- rnorm(20,.2,.2)

> Y[1:10] <- rnorm(10,-1.5,.2)

> out <- ppreg(x,Y,2,3)

> FIT <- out$ypred

> plot(FIT,Y)

> abline(0,1)

Arc problems

Warning: The following problem uses data from the book’s web-
page. Save the data files on a disk. Get in Arc and use the menu com-
mands “File > Load” and a window with a Look in box will appear. Click
on the black triangle and then on 3 1/2 Floppy(A:). Then click twice on the
data set name.

Using material learned in Chapters 5–6, analyze the data sets described
in Problems 6.6–6.16. Assume that the response variable Y = t(Z) and
that the predictor variable X2, ..., Xp are functions of remaining variables
W2, ..., Wr. Unless told otherwise, the full model Y, X1, X2, ..., Xp (where
X1 ≡ 1) should use functions of every variable W2, ..., Wr (and often p = r +
1). (In practice, often some of the variables and some of the cases are deleted,
but we will use all variables and cases, unless told otherwise, primarily so
that the instructor has some hope of grading the problems in a reasonable
amount of time.) See pages 176–180 for useful tips for building a full model.
Read the description of the data provided by Arc. Once you have a
good full model, perform forward selection and backward elimination. Find
the model that minimizes Cp(I) and find the smallest value of k such that
Cp(I) ≤ 2k. The minimum Cp model often has too many terms while the
2nd model sometimes has too few terms.

a) Give the output for your full model, including Y = t(Z) and R2. If it
is not obvious from the output what your full model is, then write down the
full model. Include a response plot for the full model. (This plot should be
linear).

b) Give the output for your final submodel. If it is not obvious from the
output what your submodel is, then write down the final submodel.

c) Give between 3 and 5 plots that justify that your multiple linear re-
gression submodel is reasonable. Below or beside each plot, give a brief
explanation for how the plot gives support for your model.
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6.6. For the file bodfat.lsp, described in Example 1.4, use Z = Y but do
not use X1 as a predictor in the full model. Do parts a), b) and c) above.

6.7∗. For the file boston2.lsp, described in Examples 1.6, 12.6 and 12.7
use Z = (y =) CRIM. Do parts a), b) and c) above Problem 6.6.

Note: Y = log(CRIM), X4, X8, is an interesting submodel, but more
predictors are probably needed.

6.8∗. For the file major.lsp, described in Example 6.4, use Z = Y . Do
parts a), b) and c) above Problem 6.6.

Note: there are 1 or more outliers that affect numerical methods of vari-
able selection.

6.9. For the file marry.lsp, described below, use Z = Y . This data set
comes from Hebbler (1847). The census takers were not always willing to
count a woman’s husband if he was not at home. Do not use the predictor
X2 in the full model. Do parts a), b) and c) above Problem 6.6.

6.10∗. For the file museum.lsp, described below, use Z = Y . Do parts
a), b) and c) above Problem 6.6.

This data set consists of measurements taken on skulls at a museum and
was extracted from tables in Schaaffhausen (1878). There are at least three
groups of data: humans, chimpanzees and gorillas. The OLS fit obtained
from the humans passes right through the chimpanzees. Since Arc numbers
cases starting at 0, cases 47–59 are apes. These cases can be deleted by
highlighting the cases with small values of Y in the scatterplot matrix and
using the case deletions menu. (You may need to maximize the window
containing the scatterplot matrix in order to see this menu.)

i) Try variable selection using all of the data.
ii) Try variable selection without the apes.
If all of the cases are used, perhaps only X1, X2 and X3 should be used

in the full model. Note that
√

Y and X2 have high correlation.

6.11∗. For the file pop.lsp, described below, use Z = Y . Do parts a), b)
and c) above Problem 6.6.

This data set comes from Ashworth (1842). Try transforming all variables
to logs. Then the added variable plots show two outliers. Delete these
two cases. Notice the effect of these two outliers on the p–values for the
coefficients and on numerical methods for variable selection.

Note: then log(Y ) and log(X2) make a good submodel.
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6.12∗. For the file pov.lsp, described below, use i) Z = flife and ii)
Z = gnp2 = gnp + 2. This dataset comes from Rouncefield (1995). Making
loc into a factor may be a good idea. Use the commands poverty>Make
factors and select the variable loc. For ii), try transforming to logs and
deleting the 6 cases with gnp2 = 0. (These cases had missing values for gnp.
The file povc.lsp has these cases deleted.) Try your final submodel on the
data that includes the 6 cases with gnp2 = 0. Do parts a), b) and c) above
Problem 6.6.

6.13∗. For the file skeleton.lsp, described below, use Z = y.
This data set is also from Schaaffhausen (1878). At one time I heard

or read a conversation between a criminal forensics expert with his date. It
went roughly like “If you wound up dead and I found your femur, I could tell
what your height was to within an inch.” Two things immediately occurred
to me. The first was “no way” and the second was that the man must not
get many dates! The files cyp.lsp and major.lsp have measurements including
height, but their R2 ≈ 0.9. The skeleton data set has at least four groups:
stillborn babies, newborns and children, older humans and apes.

a) Take logs of each variable and fit the regression on log(Y) on log(X1),
..., log(X13). Make a residual plot and highlight the case with the with the
smallest residual. From the Case deletions menu, select Delete selection from
data set. Go to Graph&Fit and again fit the regression on log(Y) on log(X1),
..., log(X13) (you should only need to click on OK). The output should say
that case 37 has been deleted. Include this output for the full model in Word.

b) Do part b) above Problem 6.6.
c) Do part c) above Problem 6.6.

6.14. Activate big-mac.lsp in Arc. Assume that a multiple linear regres-
sion model holds for t(y) and some terms (functions of the predictors) where
y is BigMac = hours of labor to buy Big Mac and fries. Using techniques
you have learned in class find such a model. (Hint: Recall from Problem 5.27
that transforming all variables to logs and then using the model constant,
log(service), log(TeachSal) and log(TeachTax) was ok but the residuals did
not look good. Try adding a few terms from the minimal Cp model.)

a) Write down the full model that you use (eg a very poor full model is
exp(BigMac) = β1 + β2 exp(EngSal) + β3(TeachSal)3 + e) and include a
response plot for the full model. (This plot should be linear). Give R2 for
the full model.
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b) Write down your final model (eg a very poor final model is
exp(BigMac) = β1 + β2 exp(EngSal) + β3(TeachSal)3 + e).

c) Include the least squares output for your model and between 3 and
5 plots that justify that your multiple linear regression model is reasonable.
Below or beside each plot, give a brief explanation for how the plot gives
support for your model.

6.15. This is like Problem 6.14 with the BigMac data. Assume that a
multiple linear regression model holds for t(Y ) and for some terms (usually
powers or logs of the predictors). Using the techniques learned in class,
find such a model. Give output for the full model, output for the final
submodel and use several plots to justify your choices. These data sets, as
well as the BigMac data set, come with Arc. See Cook and Weisberg (1999a).
(INSTRUCTOR: Allow 2 hours for each part.)

file response Y

a) allomet.lsp BRAIN

b) casuarin.lsp W

c) evaporat.lsp Evap

d) hald.lsp Y

e) haystack.lsp Vol

f) highway.lsp rate

(from the menu Highway, select ‘‘Add a variate" and type

sigsp1 = sigs + 1. Then you can transform sigsp1.)

g) landrent.lsp Y

h) ozone.lsp ozone

i) paddle.lsp Weight

j) sniffer.lsp Y

k) water.lsp Y

i) Write down the full model that you use and include the full model
residual plot and response plot in Word. Give R2 for the full model.

ii) Write down the final submodel that you use.

iii) Include the least squares output for your model and between 3 and
5 plots that justify that your multiple linear regression model is reasonable.
Below or beside each plot, give a brief explanation for how the plot gives
support for your model.
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6.16∗. a) Activate buxton.lsp (you need to download the file onto your
disk Floppy 3 1/2 A:). From the “Graph&Fit” menu, select “Fit linear LS.”
Use height as the response variable and bigonal breadth, cephalic index, head
length and nasal height as the predictors. Include the output in Word.

b) Make a response plot (L1:Fit-Values in H and height in V) and residual
plot (L1:Fit-Values in H and L1:Residuals in V) and include both plots in
Word.

c) In the residual plot use the mouse to move the curser just above and
to the left of the outliers. Hold the leftmost mouse button down and move
the mouse to the right and then down. This will make a box on the residual
plot that contains the outliers. Go to the “Case deletions menu” and click
on Delete selection from data set. From the “Graph&Fit” menu, select “Fit
linear LS” and fit the same model as in a) (the model should already be
entered, just click on “OK”). Include the output in Word.

d) Make a response plot (L2:Fit-Values in H and height in V) and residual
plot (L2:Fit-Values in H and L2:Residuals in V) and include both plots in
Word.

e) Explain why the outliers make the MLR relationship seem much stronger
than it actually is. (Hint: look at R2.)
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