
Chapter 7

Robust and Resistant
Regression

7.1 High Breakdown Estimators

Assume that the multiple linear regression model

Y = Xβ + e

is appropriate for all or for the bulk of the data. For a high breakdown (HB)
regression estimator b of β, the median absolute residual

MED(|r|i) ≡ MED(|r(b)|1, ..., |r(b)|n)

stays bounded even if close to half of the data set cases are replaced by
arbitrarily bad outlying cases; ie, the breakdown value of the regression esti-
mator is close to 0.5. The concept of breakdown will be made more precise
in Section 9.4.

Perhaps the first HB regression estimator proposed was the least median
of squares (LMS) estimator. Let |r(b)|(i) denote the ith ordered absolute
residual from the estimate b sorted from smallest to largest, and let r2

(i)(b)
denote the ith ordered squared residual. Three of the most important robust
estimators are defined below.

Definition 7.1. The least quantile of squares (LQS(cn)) estimator mini-
mizes the criterion

QLQS(b) = r2
(cn)(b). (7.1)
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When cn/n → 1/2, the LQS(cn) estimator is also known as the least median
of squares estimator (Hampel 1975, p. 380).

Definition 7.2. The least trimmed sum of squares (LTS(cn)) estimator
(Rousseeuw 1984) minimizes the criterion

QLTS(b) =
cn∑
i=1

r2
(i)(b). (7.2)

Definition 7.3. The least trimmed sum of absolute deviations (LTA(cn))
estimator (Hössjer 1991) minimizes the criterion

QLTA(b) =

cn∑
i=1

|r(b)|(i). (7.3)

These three estimators all find a set of fixed size cn = cn(p) ≥ n/2 cases
to cover, and then fit a classical estimator to the covered cases. LQS uses
the Chebyshev fit, LTA uses L1, and LTS uses OLS.

Definition 7.4. The integer valued parameter cn is the coverage of the
estimator. The remaining n−cn cases are given weight zero. In the literature
and software,

cn = �n/2� + �(p + 1)/2� (7.4)

is often used as the default. Here �x� is the greatest integer less than or
equal to x. For example, �7.7� = 7.

Remark 7.1. Warning: In the literature, HB regression estimators
seem to come in two categories. The first category consists of estimators
that have no rigorous asymptotic theory but can be computed for very small
data sets. The second category consists of estimators that have rigorous
asymptotic theory but are impractical to compute. Due to the high compu-
tational complexity of these estimators, they are rarely used; however, the
criterion are widely used for fast approximate algorithm estimators that can
detect certain configurations of outliers. These approximations are typically
inconsistent estimators with low breakdown. One of the most disappointing
aspects of robust literature is that frequently no distinction is made between
the impractical HB estimators and the inconsistent algorithm estimators used
to detect outliers. Chapter 8 shows how to fix some of these algorithms so
that the resulting estimator is

√
n consistent and high breakdown.
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7.2 Two Stage Estimators

The LTA and LTS estimators are very similar to trimmed means. If the
coverage cn is a sequence of integers such that cn/n → τ ≥ 0.5, then 1 − τ
is the approximate amount of trimming. There is a tradeoff in that the
Gaussian efficiency of LTA and LTS seems to rapidly increase to that of the
L1 and OLS estimators, respectively, as τ tends to 1, but the breakdown
value 1− τ decreases to 0. We will use the unifying notation LTx(τ ) for the
LTx(cn) estimator where x is A, Q, or S for LTA, LQS, and LTS, respectively.
Since the exact algorithms for the LTx criteria have very high computational
complexity, approximations based on iterative algorithms are generally used.
We will call the algorithm estimator β̂A the ALTx(τ ) estimator.

Many algorithms use Kn randomly selected “elemental” subsets of p cases
called a “start,” from which the residuals are computed for all n cases. The
efficiency and resistance properties of the ALTx estimator depend strongly
on the number of starts Kn used. Chapter 8 describes such approximations
in much greater detail.

For a fixed choice of Kn, increasing the coverage cn in the LTx criterion
seems to result in a more stable ALTA or ALTS estimator. For this reason,
in 2000 Splus increased the default coverage of the ltsreg function to 0.9n
while Rousseeuw and Hubert (1999) recommend 0.75n. The price paid for
this stability is greatly decreased resistance to outliers.

Similar issues occur in the location model: as the trimming proportion α
decreases, the Gaussian efficiency of the α trimmed mean increases to 1, but
the breakdown value decreases to 0. Chapters 2 and 4 described the following
procedure for obtaining a robust two stage trimmed mean. The metrically
trimmed mean Mn computes the sample mean of the cases in the interval

[MED(n) − kMAD(n), MED(n) + kMAD(n)]

where MED(n) is the sample median and MAD(n) is the sample median
absolute deviation. A convenient value for the trimming constant is k = 6.
Next, find the percentage of cases trimmed to the left and to the right by
Mn, and round both percentages up to the nearest integer and compute the
corresponding trimmed mean. Let TA,n denote the resulting estimator. For
example, if Mn trimmed the 7.3% smallest cases and the 9.76% largest cases,
then the final estimator TA,n is the (8%, 10%) trimmed mean. TA,n is asymp-
totically equivalent to a sequence of trimmed means with an asymptotic
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variance that is easy to estimate.

To obtain a regression generalization of the two stage trimmed mean, com-
pute the ALTx(cn) estimator where cn ≡ cn,1 is given by Equation (7.4). Con-
sider a finite number L of coverages cn,1 and cn,j = �τj n� where j = 2, ..., L
and τj ∈ G. We suggest using L = 5 and G = {0.5, 0.75, 0.90, 0.99, 1.0}. The
exact coverages c are defined by cn,1 ≡ cn, cn,2 = �.75 n�, cn,3 = �.90 n�,
cn,4 = �.99 n�, and cn,5 = n. (This choice of L and G is illustrative. Other
choices, such as G = {0.5, 0.6, 0.7, 0.75, 0.9, 0.99, 1.0} and L = 7, could be
made.)

Definition 7.5. The RLTx(k) estimator is the ALTx(τR) estimator
where τR is the largest τj ∈ G such that �τj n� ≤ Cn(β̂ALTx(cn)) where

Cn(b) =
n∑

i=1

I [|r|(i)(b) ≤ k |r|(cn)(b)] =
n∑

i=1

I [r2
(i)(b) ≤ k2 r2

(cn)(b)]. (7.5)

The two stage trimmed mean inherits the breakdown value of the median
and the stability of a trimmed mean with a low trimming proportion. The
RLTx estimator can be regarded as an extension of the two stage mean to
regression. The RLTx estimator inherits the high breakdown value of the
ALTx(0.5) estimator, and the stability of the ALTx(τR) where τR is typically
close to one.

The tuning parameter k ≥ 1 controls the amount of trimming. The in-
equality k ≥ 1 implies that Cn ≥ cn, so the RLTx(k) estimator generally has
higher coverage and therefore higher statistical efficiency than ALTx(0.5).
Notice that although L estimators ALTx(cn,j) were defined, only two are
needed: ALTx(0.5) to get a resistant scale and define the coverage needed,
and the final estimator ALTx(τR). The computational load is typically less
than twice that of computing the ALTx(0.5) estimator since the computa-
tional complexity of the ALTx(τ ) estimators decreases as τ increases from
0.5 to 1.

The behavior of the RLTx estimator is easy to understand. Compute
the most resistant ALTx estimator β̂ALTx(cn) and obtain the corresponding
residuals. Count the number Cn of absolute residuals that are no larger than
k |r|(cn) ≈ kMED(|r|i). Then find τR ∈ G and compute the RLTx estimator.
(The RLTx estimator uses Cn in a manner analogous to the way that the two
stage mean uses kMAD(n).) If k = 6, and the regression model holds, the
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RLTx estimator will be the classical estimator or the ALTx estimator with
99% coverage for a wide variety of data sets. On the other hand, if β̂ALTx(cn)

fits cn cases exactly, then |r|(cn) = 0 and RLTx = ALTx(cn).
The RLTx estimator has the same breakdown point as the ALTx(0.5)

estimator. Theoretical results and a simulation study, based on Olive and
Hawkins (2003) and presented in Sections 7.4 and 7.5, suggest that the RLTx
estimator is simultaneously more stable and more resistant than the ALTx(
0.75 n) estimator for x = A and S. Increasing the coverage for the LQS
criterion is not suggested since the Chebyshev fit tends to have less efficiency
than the LMS fit.

7.3 Estimators with Adaptive Coverage

Estimators with adaptive coverage (EAC estimators) are also motivated by
the idea of varying the coverage to better model the data set, but differ from
the RLTx estimators in that they move the determination of the covered
cases “inside the loop”. Let cn and Cn be given by (7.4) and (7.5). Hence

Cn(b) =
n∑

i=1

I [r2
(i)(b) ≤ k2 r2

(cn)(b)].

Definition 7.6. The least adaptive quantile of squares (LATQ(k)) esti-
mator is the L∞ fit that minimizes

QLATQ(b) = r2

(Cn(b))
(b).

The least adaptively trimmed sum of squares (LATS(k)) estimator is the OLS
fit that minimizes

QLATS(b) =

Cn(b)∑
i=1

r2
(i)(b).

The least adaptively trimmed sum of absolute deviations (LATA(k)) estimator
is the L1 fit that minimizes

QLATA(b) =

Cn(b)∑
i=1

|r|(i)(b).
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Note that the adaptive estimators reduce to the highest breakdown ver-
sions of the fixed coverage estimators if k = 1 and (provided there is no exact
fit to at least cn of the cases) to the classical estimators if k = ∞.

These three adaptive coverage estimators simultaneously achieve a high
breakdown value with high coverage, as do the RLTx estimators, but there
are important outlier configurations where the resistance of the two estima-
tors differs. The notation LATx will sometimes be used.

7.4 Theoretical Properties

Many regression estimators β̂ satisfy

√
n(β̂ − β)

D→ Np(0, V (β̂, F ) W ) (7.6)

when
XT X

n
→ W −1,

and when the errors ei are iid with a cdf F and a unimodal pdf f that is
symmetric with a unique maximum at 0. When the variance V (ei) exists,

V (OLS, F ) = V (ei) = σ2 while V(L1, F) =
1

4[f(0)]2
.

See Koenker and Bassett (1978) and Bassett and Koenker (1978). Broffitt
(1974) compares OLS, L1, and L∞ in the location model and shows that the
rate of convergence of the Chebyshev estimator is often very poor.

Remark 7.2. Obtaining asymptotic theory for LTA and LTS is a very
challenging problem. Maš̈ıček (2004), Čı́žek (2006) and Vı́̌sek (2006) claim to
have shown asymptotic normality of LTS under general conditions. For the
location model, Yohai and Maronna (1976) and Butler (1982) derived asymp-
totic theory for LTS while Tableman (1994ab) derived asymptotic theory for
LTA. Shorack (1974) and Shorack and Wellner (1986, section 19.3) derived
the asymptotic theory for a large class of location estimators that use ran-
dom coverage (as do many others). In the regression setting, it is known that
LQS(τ ) converges at a cube root rate to a non-Gaussian limit (Davies 1990,
Kim and Pollard 1990, and Davies 1993, p. 1897), and it is known that scale
estimators based on regression residuals behave well (see Welsh 1986).
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Negative results are easily obtained. If the “shortest half” is not unique,
then LQS, LTA, and LTS are inconsistent. For example, the shortest half is
not unique for the uniform distribution.

The asymptotic theory for RLTx depends on that for ALTx. Most ALTx
implementations have terrible statistical properties, but an exception
is the easily computed

√
n consistent HB CLTS estimator given in Theorem

8.8 (and Olive and Hawkins 2007b, 2008). The following lemma can be used
to estimate the coverage of the RLTx estimator given the error distribution
F.

Lemma 7.1. Assume that the errors are iid with a density f that is sym-
metric about 0 and positive and continuous in neighborhoods of F−1(0.75)
and kF−1(0.75). If the predictors x are bounded in probability and β̂n is
consistent for β, then

Cn(β̂n)

n

P→ τF ≡ τF (k) = F (k F−1(0.75)) − F (−k F−1(0.75)). (7.7)

Proof. First assume that the predictors are bounded. Hence ‖x‖ ≤ M
for some constant M . Let 0 < γ < 1, and let 0 < ε < 1. Since β̂n is
consistent, there exists an N such that

P (A) = P (β̂j,n ∈ [βj − ε

4pM
, βj +

ε

4pM
], j = 1, ..., p) ≥ 1 − γ

for all n ≥ N. If n ≥ N , then on set A,

sup
i=1,...,n

|ri − ei| = sup
i=1,...,n

|
p∑

i=1

xi,j(βj − β̂j,n)| ≤ ε

2
.

Since ε and γ are arbitrary,

ri − ei
P→ 0.

This result also follows from Rousseeuw and Leroy (1987, p. 128). In par-
ticular,

|r|(cn)
P→ MED(|e1|) = F−1(0.75).

Now there exists N1 such that

P (B) ≡ P (|ri − ei| <
ε

2
, i = 1, ..., n & | |r|(cn) − MED(|e1|)| <

ε

2k
) ≥ 1 − γ

233



for all n ≥ N1. Thus on set B,

1

n

n∑
i=1

I [−kMED(|e1|) + ε ≤ ei ≤ kMED(|e1|)− ε] ≤ Cn(β̂n)

n

≤ 1

n

n∑
i=1

I [−kMED(|e1|) − ε ≤ ei ≤ kMED(|e1|) + ε],

and the result follows since γ and ε are arbitrary and the three terms above
converge to τF almost surely as ε goes to zero.

When x is bounded in probability, fix M and suppose Mn of the cases
have predictors xi such that ‖xi‖ ≤ M. By the argument above, the propor-
tion of absolute residuals of these cases that are below |r|(cMn ) converges in
probability to τF . But the proportion of such cases can be made arbitrarily
close to one as n increases to ∞ by increasing M . QED

Under the same conditions of Lemma 7.1,

|r|(cn)(β̂n)
P→ F−1(0.75).

This result can be used as a diagnostic – compute several regression estima-
tors including OLS and L1 and compare the corresponding median absolute
residuals.

A competitor to RLTx is to compute ALTx, give zero weight to cases
with large residuals, and fit OLS to the remaining cases. He and Portnoy
(1992) prove that this two–stage estimator has the same rate as the initial
estimator. Theorem 7.2 gives a similar result for the RLTx estimator, but
the RLTx estimator could be an OLS, L1 or L∞ fit to a subset of the data.
Theorem 7.2 shows that the RLTQ estimator has an OP (n−1/3) rate if the
exact LTQ estimator is used, but this estimator would be impractical to com-
pute. ALTS could be the CLTS estimator of Theorem 8.8, but the resulting
RLTS estimator is inferior to the CLTS estimator.

Theorem 7.2. If ‖β̂ALTx(τj) − β‖ = OP (n−δ) for all τj ∈ G, then

‖β̂RLTx − β‖ = OP (n−δ).

Proof. Since G is finite, this result follows from Pratt (1959). QED
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Theorem 7.3 shows that the RLTx estimator is asymptotically equivalent
to an ALTx estimator that typically has high coverage.

Theorem 7.3. Assume that τj, τj+1 ∈ G. If

P [Cn(β̂ALTx(0.5))/n ∈ (τj, τj+1)]
P→ 1,

then the RLTx estimator is asymptotically equivalent to the ALTx(τj) esti-
mator.

The next theorem gives a case where RLTx can have an OP (n−1/2) con-
vergence rate even though the ALTx(0.5) rate is poor. The result needs to
be modified slightly for uniform data since then the ALTx constant is not
consistent even if the slopes are.

Theorem 7.4. Assume that the conditions of Lemma 7.1 hold, that the
predictors are bounded, and that the errors ei have support on [−d, d]. If the
ALTx(0.5) estimators are consistent and if k > d/F−1(0.75), then the RLTx
estimators are asymptotically equivalent to the L1, L∞, and OLS estimators
for x = A, Q, and S respectively.

Proof. The proof of Lemma 7.1 shows that k|r|(cn)(b) converges to
kF−1(0.75) > d where b is the ALTx(0.5) estimator and that the residuals
ri converge to the errors ei. Hence the coverage proportion converges to one
in probability. QED

Choosing a suitable k for a target distribution F is simple. Assume
Equation (7.7) holds where τF is not an element of G. If n is large, then with
high probability τR will equal the largest τi ∈ G such that τi < τF . Small
sample behavior can also be predicted. For example, if the errors follow a
N(0, σ2) distribution and n = 1000, then

P (−4σ < ei < 4σ, i = 1, ..., 1000) ≈ (0.9999)1000 > 0.90.

On the other hand, |r|(cn) is converging to Φ−1(0.75)σ ≈ 0.67σ. Hence if
k ≥ 6.0 and n < 1000, the RLTS estimator will cover all cases with high
probability if the errors are Gaussian. To include heavier tailed distributions,
increase k. For example, similar statements hold for distributions with lighter
tails than the double exponential distribution if k ≥ 10.0 and n < 200.
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Proposition 7.5: Breakdown of LTx, RLTx, and LATx Estima-
tors. LMS(τ ), LTS(τ ), and LTA(τ ) have breakdown value

min(1 − τ, τ ).

The breakdown value for the LATx estimators is 0.5, and the breakdown
value for the RLTx estimators is equal to the breakdown value of the ALTx(cn)
estimator.

The breakdown results for the LTx estimators are well known. See Hössjer
(1994, p. 151). Breakdown proofs in Rousseeuw and Bassett (1991) and
Niinimaa, Oja, and Tableman (1990) could also be modified to give the result.
See Section 9.4 for the definition of breakdown.

Theorem 7.6. Under regularity conditions similar to those in Conjec-
ture 7.1 below,

a) the LMS(τ ) converges at a cubed root rate to a non-Gaussian limit.
b) The estimator β̂LTS satisfies Equation (7.6) and

V (LTS(τ ), F ) =

∫ F−1(1/2+τ/2)

F−1(1/2−τ/2)
w2dF (w)

[τ − 2F−1(1/2 + τ/2)f(F−1(1/2 + τ/2))]2
. (7.8)

The proof of Theorem 7.6a is given in Davies (1990) and Kim and Pollard
(1990). Also see Davies (1993, p. 1897). The proof of b) is given in Maš̈ıček
(2004), Čı́žek (2006) and Vı́̌sek (2006).

Conjecture 7.1. Let the iid errors ei have a cdf F that is continuous
and strictly increasing on its interval support with a symmetric, unimodal,
differentiable density f that strictly decreases as |x| increases on the support.

Then the estimator β̂LTA satisfies Equation (7.6) and

V (LTA(τ ), F ) =
τ

4[f(0) − f(F−1(1/2 + τ/2))]2
. (7.9)

See Tableman (1994b, p. 392) and Hössjer (1994).

As τ → 1, the efficiency of LTS approaches that of OLS and the efficiency
of LTA approaches that of L1. Hence for τ close to 1, LTA will be more
efficient than LTS when the errors come from a distribution for which the
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sample median is more efficient than the sample mean (Koenker and Bassett,
1978). The results of Oosterhoff (1994) suggest that when τ = 0.5, LTA will
be more efficient than LTS only for sharply peaked distributions such as the
double exponential. To simplify computations for the asymptotic variance of
LTS, we will use truncated random variables (see Definition 2.17).

Lemma 7.7. Under the symmetry conditions given in Conjecture 7.1,

V (LTS(τ ), F ) =
τσ2

TF(−k, k)

[τ − 2kf(k)]2
(7.10)

and
V (LTA(τ ), F ) =

τ

4[f(0) − f(k)]2
(7.11)

where
k = F−1(0.5 + τ/2). (7.12)

Proof. Let W have cdf F and pdf f . Suppose that W is symmetric
about zero, and by symmetry, k = F−1(0.5 + τ/2) = −F−1(0.5− τ/2). If W
has been truncated at a = −k and b = k, then the variance of the truncated
random variable WT by

VAR(WT ) = σ2
TF (−k, k) =

∫ k

−k
w2dF (w)

F (k)− F (−k)

by Definition 2.17. Hence

∫ F−1(1/2+τ/2)

F−1(1/2−τ/2)

w2dF (w) = τσ2
TF(−k, k)

and the result follows from the definition of k.

This result is useful since formulas for the truncated variance have been
given in Chapter 4. The following examples illustrate the result. See Hawkins
and Olive (1999b).

Example 7.1: N(0,1) Errors. If YT is a N(0, σ2) truncated at a = −kσ
and b = kσ, VAR(YT ) =

σ2[1 − 2kφ(k)

2Φ(k) − 1
].
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At the standard normal

V (LTS(τ ), Φ) =
1

τ − 2kφ(k)
(7.13)

while

V (LTA(τ ), Φ) =
τ

4[φ(0) − φ(k)]2
=

2πτ

4[1 − exp(−k2/2)]2
(7.14)

where φ is the standard normal pdf and

k = Φ−1(0.5 + τ/2).

Thus for τ ≥ 1/2, LTS(τ ) has breakdown value of 1 − τ and Gaussian effi-
ciency

1

V (LTS(τ ), Φ)
= τ − 2kφ(k). (7.15)

The 50% breakdown estimator LTS(0.5) has a Gaussian efficiency of 7.1%.
If it is appropriate to reduce the amount of trimming, we can use the 25%
breakdown estimator LTS(0.75) which has a much higher Gaussian efficiency
of 27.6% as reported in Ruppert (1992, p. 255). Also see the column labeled
“Normal” in table 1 of Hössjer (1994).

Example 7.2: Double Exponential Errors. The double exponential
(Laplace) distribution is interesting since the L1 estimator corresponds to
maximum likelihood and so L1 beats OLS, reversing the comparison of the
normal case. For a double exponential DE(0, 1) random variable,

V (LTS(τ ), DE(0, 1)) =
2 − (2 + 2k + k2) exp(−k)

[τ − k exp(−k)]2

while

V (LTA(τ ), DE(0, 1)) =
τ

4[0.5 − 0.5 exp(−k)]2
=

1

τ

where k = − log(1− τ ). Note that LTA(0.5) and OLS have the same asymp-
totic efficiency at the double exponential distribution. Also see Tableman
(1994ab).

Example 7.3: Cauchy Errors. Although the L1 estimator and the
trimmed estimators have finite variance when the errors are Cauchy, the
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OLS estimator has infinite variance (because the Cauchy distribution has
infinite variance). If XT is a Cauchy C(0, 1) random variable symmetrically
truncated at −k and k, then

VAR(XT ) =
k − tan−1(k)

tan−1(k)
.

Hence

V (LTS(τ ), C(0, 1)) =
2k − πτ

π[τ − 2k
π(1+k2)

]2

and
V (LTA(τ ), C(0, 1)) =

τ

4[ 1
π
− 1

π(1+k2)
]2

where k = tan(πτ/2). The LTA sampling variance converges to a finite value
as τ → 1 while that of LTS increases without bound. LTS(0.5) is slightly
more efficient than LTA(0.5), but LTA pulls ahead of LTS if the amount of
trimming is very small.

7.5 Computation and Simulations

In addition to the LMS estimator, there are at least two other regression
estimators, the least quantile of differences (LQD) and the regression depth
estimator, that have rather high breakdown and rigorous asymptotic theory.
The LQD estimator is the LMS estimator computed on the (n−1)n/2 pairs of
case difference (Croux, Rousseeuw and Hössjer 1994). The regression depth
estimator (Rousseeuw and Hubert 1999) is interesting because its criterion
does not use residuals. The large sample theory for the depth estimator is
given by Bai and He (1999). The LMS, LTS, LTA, LQD and depth estimators
can be computed exactly only if the data set is tiny.

Proposition 7.8. a) There is an LTS(c) estimator β̂LTS that is the OLS
fit to the cases corresponding to the c smallest LTS squared residuals.
b) There is an LTA(c) estimator β̂LTA that is the L1 fit to the cases corre-
sponding to the c smallest LTA absolute residuals.
c) There is an LQS(c) estimator β̂LQS that is the Chebyshev fit to the cases
corresponding to the c smallest LQS absolute residuals.
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Proof. a) By the definition of the LTS(c) estimator,

c∑
i=1

r2
(i)(β̂LTS) ≤

c∑
i=1

r2
(i)(b)

where b is any p×1 vector. Without loss of generality, assume that the cases
have been reordered so that the first c cases correspond to the cases with the
c smallest residuals. Let β̂OLS(c) denote the OLS fit to these c cases. By the
definition of the OLS estimator,

c∑
i=1

r2
i (β̂OLS(c)) ≤

c∑
i=1

r2
i (b)

where b is any p× 1 vector. Hence β̂OLS(c) also minimizes the LTS criterion
and thus β̂OLS(c) is an LTS estimator. The proofs of b) and c) are similar.
QED

Definition 7.7. In regression, an elemental set is a set of p cases.

One way to compute these estimators exactly is to generate all C(n, c)
subsets of size c, compute the classical estimator b on each subset, and find
the criterion Q(b). The robust estimator is equal to the bo that minimizes
the criterion. Since c ≈ n/2, this algorithm is impractical for all but the
smallest data sets. Since the L1 fit is an elemental fit, the LTA estimator can
be found by evaluating all C(n, p) elemental sets. See Hawkins and Olive
(1999b). Since any Chebyshev fit is also a Chebyshev fit to a set of p + 1
cases, the LQS estimator can be found by evaluating all C(n, p+1) cases. See
Stromberg (1993ab) and Appa and Land (1993). The LMS, LTA, and LTS
estimators can also be evaluated exactly using branch and bound algorithms
if the data set size is small enough. See Agulló (1997, 2001).

Typically HB algorithm estimators should not be used unless the criterion
complexity is O(n). The complexity of the estimator depends on how many
fits are computed and on the complexity of the criterion evaluation. For
example the LMS and LTA criteria have O(n) complexity while the depth
criterion complexity is O(np−1 log n). The LTA and depth estimators eval-
uates O(np) elemental sets while LMS evaluates the O(np+1) subsets of size
p+1. The LQD criterion complexity is O(n2) and evaluates O(n2(p+1)) subsets
of case distances.

Consider the algorithm that takes a subsample of nδ cases and then
computes the exact algorithm to this subsample. Then the complexities
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of the LTA, LMS, depth and LQD algorithms are O(nδ(p+1)), O(nδ(p+2)),
O(nδ(2p−1) log nδ) and O(nδ(2p+4)), respectively. The convergence rates of the
estimators are nδ/3 for LMS and nδ/2 for the remaining three estimators (if
the LTA estimator does indeed have the conjectured

√
n convergence rate).

These algorithms rapidly become impractical as n and p increase. For ex-
ample, if n = 100 and δ = 0.5, use p < 7, 6, 4, 2 for these LTA, LMS, depth,
and LQD algorithms respectively. If n = 10000, this LTA algorithm may not
be practical even for p = 3. These results suggest that the LTA and LMS
approximations will be more interesting than depth or LQD approximations
unless a computational breakthrough is made for the latter two estimators.

We simulated LTA and LTS for the location model using normal, dou-
ble exponential, and Cauchy error models. For the location model, these
estimators can be computed exactly: find the order statistics

Y(1) ≤ Y(2) ≤ · · · ≤ Y(n)

of the data. For LTS compute the sample mean and for LTA compute the
sample median (or the low or high median) and evaluate the LTS and LTA
criteria of each of the n−c+1 “c-samples” Y(i), . . . , Y(i+c−1), for i = 1, . . . , n−
c + 1. The minimum across these samples then defines the LTA and LTS
estimates.

We computed the sample standard deviations of the resulting location es-
timate from 1000 runs of each sample size studied. The results are shown in
Table 7.1. For Gaussian errors, the observed standard deviations are smaller
than the asymptotic standard deviations but for the double exponential er-
rors, the sample size needs to be quite large before the observed standard
deviations agree with the asymptotic theory.

Table 7.2 presents the results of a small simulation study. We compared
ALTS(τ ) for τ = 0.5, 0.75, and 0.9 with RLTS(6) for 6 different error dis-
tributions – the normal(0,1), double exponential, uniform(−1, 1) and three
60% N(0,1) 40 % contaminated normals. The three contamination scenar-
ios were N(0,100) for a “scale” contaminated setting, and two “location”
contaminations: N(5.5,1) and N(12,1). The mean of 5.5 was intended as a
case where the ALTS(0.5) estimator should outperform the RLTS estima-
tor, as these contaminants are just small enough that many pass the k = 6
screen, and the mean of 12 to test how the estimators handled catastrophic
contamination.
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Table 7.1: Monte Carlo Efficiencies Relative to OLS.

dist n L1 LTA(0.5) LTS(0.5) LTA(0.75)
N(0,1) 20 .668 .206 .223 .377
N(0,1) 40 .692 .155 .174 .293
N(0,1) 100 .634 .100 .114 .230
N(0,1) 400 .652 .065 .085 .209
N(0,1) 600 .643 .066 .091 .209
N(0,1) ∞ .637 .053 .071 .199

DE(0,1) 20 1.560 .664 .783 1.157
DE(0,1) 40 1.596 .648 .686 1.069
DE(0,1) 100 1.788 .656 .684 1.204
DE(0,1) 400 1.745 .736 .657 1.236
DE(0,1) 600 1.856 .845 .709 1.355
DE(0,1) ∞ 2.000 1.000 .71 1.500

The simulation used n = 100 and p = 6 (5 slopes and an intercept) over
1000 runs and computed ‖β̂−β‖2/6 for each run. Note that for the three CN
scenarios the number of contaminants is a binomial random variable which,
with probability 6% will exceed the 47 that the maximum breakdown setting
can accommodate.

The means from the 1000 values are displayed. Their standard errors are
at most 5% of the mean. The last column shows the percentage of times that
τR was equal to .5, .75, .9, .99 and 1.0. Two fitting algorithms were used
– a traditional elemental algorithm with 3000 starts and a concentration
algorithm (see Chapter 8). As discussed in Hawkins and Olive (2002) this
choice, chosen to match much standard practice, is far fewer than we would
recommend with a raw elemental algorithm.

All of the estimators in this small study are inconsistent zero
breakdown estimators, but some are useful for detecting outliers. (A
better choice than the inconsistent estimators is to use the easily computed√

n consistent HB CLTS estimator given in Theorem 8.8.) The concentration
algorithm used 300 starts for the location contamination distributions, and
50 starts for all others, preliminary experimentation having indicated that
this many starts were sufficient. Comparing the ‘conc’ mean squared errors
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Table 7.2: ‖β̂ − β‖2/p, 1000 runs

pop.-alg. ALTS ALTS ALTS RLTS % of runs that τR

(.5) (.75) (.9) (6) = .5,.75,.9,.99 or 1

N(0,1)-conc 0.0648 0.0350 0.0187 0.0113 0,0,6,18,76
DE(0,1)-conc 0.1771 0.0994 0.0775 0.0756 0,0,62,23,15
U(−1, 1)-conc 0.0417 0.0264 0.0129 0.0039 0,0,2,6,93
scale CN-conc 0.0560 0.0622 0.2253 0.0626 2,96,2,0,0

5.5 loc CN-conc 0.0342 0.7852 0.8445 0.8417 0,4,19,9,68
12 loc CN-conc 0.0355 3.5371 3.9997 0.0405 85,3,2,0,9

N(0,1)-elem 0.1391 0.1163 0.1051 0.0975 0,0,1,6,93
DE(0,1)-elem 0.9268 0.8051 0.7694 0.7522 0,0,20,28,52
U(−1, 1)-elem 0.0542 0.0439 0.0356 0.0317 0,0,0,1,98
scale CN-elem 4.4050 3.9540 3.9584 3.9439 0,14,40,18,28

5.5 loc CN-elem 1.8912 1.6932 1.6113 1.5966 0,0,1,3,96
12 loc CN-elem 8.3330 7.4945 7.3078 7.1701 4,0,1,2,92

with the corresponding ‘elem’ confirms the recommendations in Hawkins and
Olive (2002) that far more than 3000 elemental starts are necessary to achieve
good results. The ‘elem’ runs also verify that second-stage refinement, as
supplied by the RLTS approach, is not sufficient to overcome the deficiencies
in the poor initial estimates provided by the raw elemental approach.

The RLTS estimator was, with one exception, either the best of the 4
estimators or barely distinguishable from the best. The single exception
was the concentration algorithm with the contaminated normal distribution
F (x) = 0.6Φ(x) + 0.4Φ(x− 5.5), where most of the time it covered all cases.
We already noted that location contamination with this mean and this choice
of k is about the worst possible for the RLTS estimator, so that this worst-
case performance is still about what is given by the more recent recommen-
dations for ALTx coverage – 75% or 90% is positive. This is reinforced by
RLTS’ excellent performance with 12σ location outliers.

The simulation suggests that the RLTx method with concentration is a
better approach for improving the resistance and performance of the inconsis-
tent Splus ltsreg estimator than increasing the coverage from 50% to 90%.
The simulation also suggests that even the inconsistent version of RLTx used
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in the study is useful for detecting outliers. The concentration RLTx estima-
tor would be improved if max(n, 500) starts were used instead of 50 starts.
Although the easily computed

√
n consistent HB CLTS estimator of Theo-

rem 8.8 can be used to make a
√

n consistent HB RLTS estimator (as soon
as the CLTS estimator is available from the software), the CLTS estimator
may be superior to the resulting RLTS estimator.

7.6 Resistant Estimators

Definition 7.8. A regression estimator β̂ of β is a resistant estimator if β̂
is known to be useful for detecting certain types of outliers. (Often we also
require β̂ to be a consistent estimator of β.)

Typically resistant estimators are useful when the errors are iid from a
heavy tailed distribution. Some examples include the L1 estimator, which
can be useful for detecting Y -outliers, and some M , R, GM , and GR esti-
mators. M-estimators tend to obtain a tradeoff between the resistance of the
L1 estimator and the Gaussian efficiency of the OLS estimator. This trade-
off is especially apparent with the Huber M-estimator. Street, Carroll, and
Ruppert (1988) discuss the computation of standard errors for M-estimators.
R-estimators have elegant theory similar to that of OLS, and the Wilcoxon
rank estimator is especially attractive. See Hettmansperger and McKean
(1998, ch. 3). GM-estimators are another large class of estimators. Carroll
and Welsh (1988) claim that only the Mallows class of GM-estimators
are consistent for slopes if the errors are asymmetric. Also see Simp-
son, Ruppert, and Carroll (1992, p. 443). The Mallows estimator may have
a breakdown value as high as 1/(p + 1). A discussion of GR-estimators is in
Hettmansperger and McKean (1998, ch. 5). The resistant trimmed views
estimator (tvreg) is presented in Section 11.3.

For illustration, we will construct a simple resistant algorithm estimator,
called the median ball algorithm (MBA or mbareg). The Euclidean distance
of the ith vector of predictors xi from the jth vector of predictors xj is

Di(xj) =
√

(xi − xj)T (xi − xj).

For a fixed xj consider the ordered distances D(1)(xj), ..., D(n)(xj). Next,

let β̂j(α) denote the OLS fit to the min(p + 3 + �αn/100�, n) cases with

244



the smallest distances where the approximate percentage of cases used is
α ∈ {1, 2.5, 5, 10, 20, 33, 50}. (Here �x� is the greatest integer function so
�7.7� = 7. The extra p+3 cases are added so that OLS can be computed for
small n and α.) This yields seven OLS fits corresponding to the cases with
predictors closest to xj. A fixed number K of cases are selected at random
without replacement to use as the xj. Hence 7K OLS fits are generated. We
use K = 7 as the default. A robust criterion Q is used to evaluate the 7K
fits and the OLS fit to all of the data. Hence 7K + 1 OLS fits are generated
and the MBA estimator is the fit that minimizes the criterion. The median
squared residual, the LTA criterion, and the LATA criterion are good choices
for Q. Replacing the 7K + 1 OLS fits by L1 fits increases the resistance of
the MBA estimator.

Three ideas motivate this estimator. First, x-outliers, which are outliers
in the predictor space, tend to be much more destructive than Y -outliers
which are outliers in the response variable. Suppose that the proportion of
outliers is γ and that γ < 0.5. We would like the algorithm to have at least
one “center” xj that is not an outlier. The probability of drawing a center
that is not an outlier is approximately 1 − γK > 0.99 for K ≥ 7 and this
result is free of p. Secondly, by using the different percentages of coverages,
for many data sets there will be a center and a coverage that contains no
outliers.

Thirdly, the MBA estimator is a
√

n consistent estimator. To see this,
assume that n is increasing to ∞. For each center xj,n there are 7 spheres
centered at xj,n. Let rj,h,n be the radius of the hth sphere with center xj,n.
Fix an extremely large N such that for n ≥ N these 7K regions in the
predictor space are fixed. Hence for n ≥ N the centers are xj,N and the
radii are rj,h,N for j = 1, ..., K and h = 1, ..., 7. Since only a fixed number
(7K +1) of

√
n consistent fits are computed, the final estimator is also a

√
n

consistent estimator of β, regardless of how the final estimator is chosen (by
Pratt 1959).

Section 11.3 will compare the MBA estimator with other resistant es-
timators including the R/Splus estimator lmsreg and the trimmed views
estimator. Splus also contains other regression estimators (such as ltsreg,
lmRobMM and rreg), but the current (as of 2000) implementations of ltsreg
and rreg are not very useful for detecting outliers. Section 6.3 suggested
using resistant estimators in RR and FF plots to detect outliers. Chapter
8 discusses some of the more conventional algorithms that have appeared in
the literature.
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Figure 7.1: RR plot for the Buxton Data
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Example 7.4. Buxton (1920, p. 232-5) gives 20 measurements of 88
men. Height was the response variable while an intercept, head length, nasal
height, bigonal breadth, and cephalic index were used as predictors in the
multiple linear regression model. Observation 9 was deleted since it had
missing values. Five individuals, numbers 62–66, were reported to be about
0.75 inches tall with head lengths well over five feet! Figure 7.1 shows the
RR plot for the Splus 2000 estimators lsfit, l1fit, lmsreg, ltsreg and
the MBA estimator. Note that only the MBA estimator gives large absolute
residuals to the outliers. One feature of the MBA estimator is that it depends
on the sample of 7 centers drawn and changes each time the function is called.
In ten runs, about seven plots will look like Figure 7.1, but in about three
plots the MBA estimator will also pass through the outliers.

7.7 Complements

The LTx and LATx estimators discussed in this chapter are not useful for
applications because they are impractical to compute; however, the criterion
are useful for making resistant or robust algorithm estimators. In particular
the robust criterion are used in the MBA algorithm (see Problem 7.5) and in
the easily computed

√
n consistent HB CLTS estimator described in Theorem

8.8 and in Olive and Hawkins (2007b, 2008).

Section 7.3 is based on Olive and Hawkins (1999) while Sections 7.2, 7.4,
7.5 and 7.6 follow Hawkins and Olive (1999b), Olive and Hawkins (2003) and
Olive (2005).

Several HB regression estimators are well known, and perhaps the first
proposed was the least median of squares (LMS) estimator. See Hampel
(1975, p. 380). For the location model, Yohai and Maronna (1976) and Butler
(1982) derived asymptotic theory for LTS. Rousseeuw (1984) generalized the
location LTS estimator to the LTS regression estimator and the minimum
covariance determinant estimator for multivariate location and dispersion
(see Chapter 10). Bassett (1991) suggested the LTA estimator for location
and Hössjer (1991) suggested the LTA regression estimator.

Two stage regression estimators compute a high breakdown regression
(or multivariate location and dispersion) estimator in the first stage. The
initial estimator is used to weight cases or as the initial estimator in a one
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step Newton’s method procedure. The goal is for the two stage estimator
to inherit the outlier resistance properties of the initial estimator while hav-
ing high asymptotic efficiency when the errors follow a zero mean Gaussian
distribution. The theory for many of these estimators is often rigorous, but
the estimators are even less practical to compute than the initial estima-
tors. There are dozens of references including Jureckova and Portnoy (1987),
Simpson, Ruppert and Carroll (1992), Coakley and Hettmansperger (1993),
Chang, McKean, Naranjo and Sheather (1999), and He, Simpson and Wang
(2000). The “cross checking estimator,” see He and Portnoy (1992, p. 2163)
and Davies (1993, p. 1981), computes a high breakdown estimator and OLS
and uses OLS if the two estimators are sufficiently close.

The easily computed HB CLTS estimator from Theorem 8.8 makes two
stage estimators such as the cross checking estimator practical for the first
time. However, CLTS is asymptotically equivalent to OLS, so the cross
checking step is not needed.

The theory of the RLTx estimator is very simple, but it can be used to
understand other results. For example, Theorem 7.3 will hold as long as
the initial estimator b used to compute Cn is consistent. Suppose that the
easily computed

√
n consistent HB CLTS estimator b (from Theorem 8.8) is

used. The CLTS(0.99) estimator is asymptotically equivalent to OLS, so the
RLTS estimator that uses b as the initial estimator will have high Gaussian
efficiency. Similar results have appeared in the literature, but their proofs
are very technical, often requiring the theory of empirical processes.

The major drawback of high breakdown estimators that have nice the-
oretical results such as high efficiency is that they tend to be impractical
to compute. If an inconsistent zero breakdown initial estimator is used, as
in most of the literature and in the simulation study in Section 7.5, then
the final estimator (including even the simplest two stage estimators such
as the cross checking and RLTx estimators) also has zero breakdown and
is often inconsistent. Hence

√
n consistent resistant estimators such as the

MBA estimator often have higher outlier resistance than zero breakdown
implementations of HB estimators such as ltsreg.

Another drawback of high breakdown estimators that have high efficiency
is that they tend to have considerably more bias than estimators such as
LTS(0.5) for many outlier configurations. For example the fifth row of Ta-
ble 7.2 shows that the RLTS estimator can perform much worse than the
ALTS(0.5) estimator if the outliers are within the k = 6 screen.
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7.8 Problems

R/Splus Problems
Warning: Use the command source(“A:/rpack.txt”) to download

the programs. See Preface or Section 14.2. Typing the name of the
rpack function, eg mbamv, will display the code for the function. Use the
args command, eg args(mbamv), to display the needed arguments for the
function.

7.1. a) Download the R/Splus function nltv that computes the asymp-
totic variance of the LTS and LTA estimators if the errors are N(0,1).
b) Enter the commands nltv(0.5), nltv(0.75), nltv(0.9) and nltv(0.9999).
Write a table to compare the asymptotic variance of LTS and LTA at these
coverages. Does one estimator always have a smaller asymptotic variance?

7.2. a) Download the R/Splus function deltv that computes the asymp-
totic variance of the LTS and LTA estimators if the errors are double expo-
nential DE(0,1).
b) Enter the commands deltv(0.5), deltv(0.75), deltv(0.9) and deltv(0.9999).
Write a table to compare the asymptotic variance of LTS and LTA at these
coverages. Does one estimator always have a smaller asymptotic variance?

7.3. a) Download the R/Splus function cltv that computes the asymp-
totic variance of the LTS and LTA estimators if the errors are Cauchy C(0,1).

b) Enter the commands cltv(0.5), cltv(0.75), cltv(0.9) and cltv(0.9999).
Write a table to compare the asymptotic variance of LTS and LTA at these
coverages. Does one estimator always have a smaller asymptotic variance?

7.4∗. a) If necessary, use the commands source(“A:/rpack.txt”) and
source(“A:/robdata.txt”).

b) Enter the command mbamv(belx,bely) in R/Splus. Click on the right-
most mouse button (and in R, click on Stop). You need to do this 7 times
before the program ends. There is one predictor x and one response Y . The
function makes a scatterplot of x and y and cases that get weight one are
shown as highlighted squares. Each MBA sphere covers half of the data.
When you find a good fit to the bulk of the data, hold down the Ctrl and c
keys to make a copy of the plot. Then paste the plot in Word.

c) Enter the command mbamv2(buxx,buxy) in R/Splus. Click on the right-
most mouse button (and in R, click on Stop). You need to do this 14 times
before the program ends. There is one predictor x and one response Y . The
function makes the response and residual plots based on the OLS fit to the
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highlighted cases. Each MBA sphere covers half of the data. When you find
a good fit to the bulk of the data, hold down the Ctrl and c keys to make a
copy of the two plots. Then paste the plots in Word.

7.5∗. This problem compares the MBA estimator that uses the median
squared residual MED(r2

i ) criterion with the MBA estimator that uses the
LATA criterion. On clean data, both estimators are

√
n consistent since both

use 50
√

n consistent OLS estimators. The MED(r2
i ) criterion has trouble

with data sets where the multiple linear regression relationship is weak and
there is a cluster of outliers. The LATA criterion tries to give all x–outliers,
including good leverage points, zero weight.

a) If necessary, use the commands source(“A:/rpack.txt”) and
source(“A:/robdata.txt”). The mlrplot2 function is used to compute both
MBA estimators. Use the rightmost mouse button to advance the plot (and
in R, highlight stop).

b) Use the command mlrplot2(belx,bely) and include the resulting plot in
Word. Is one estimator better than the other, or are they about the same?

c) Use the command mlrplot2(cbrainx,cbrainy) and include the resulting
plot in Word. Is one estimator better than the other, or are they about the
same?

d) Use the command mlrplot2(museum[,3:11],museum[,2]) and include
the resulting plot in Word. For this data set, most of the cases are based on
humans but a few are based on apes. The MBA LATA estimator will often
give the cases corresponding to apes larger absolute residuals than the MBA
estimator based on MED(r2

i ).
e) Use the command mlrplot2(buxx,buxy) until the outliers are clustered

about the identity line in one of the two response plots. (This will usually
happen within 10 or fewer runs. Pressing the “up arrow” will bring the
previous command to the screen and save typing.) Then include the resulting
plot in Word. Which estimator went through the outliers and which one gave
zero weight to the outliers?

f) Use the command mlrplot2(hx,hy) several times. Usually both MBA
estimators fail to find the outliers for this artificial Hawkins data set that is
also analyzed by Atkinson and Riani (2000, section 3.1). The lmsreg estima-
tor can be used to find the outliers. In Splus, use the command ffplot(hx,hy)
and in R use the commands library(MASS) and ffplot2(hx,hy). Include the
resulting plot in Word.
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