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Preface

Many statistics departments offer a one semester graduate course in high
dimensional statistics using texts such as Bülmann and van de Geer (2011),
Giraud (2022), Lederer (2022), or Wainwright (2019). Statistical learning
texts are also used. See Hastie et al. (2009), Hastie et al. (2015), and James
et al. (2021). Also see Fujikoshi, Ulyanov, and Shimizu (2010), Koch (2014),
Olive (2023e), and Rish and Grabarnik (2015).

High dimensional statistics are used when n < 5p where n is the sample size
and p is the number of predictors p. Consider the multiple linear regression
model Yi = α + xT

i β + ei = α+ xi1β1 + · · ·+ xipβp + ei for i = 1, ..., n. Let
the full model use all p predictors with β = βF . In low dimensions where

n ≥ 10p, often
√
n(β̂−β)

D→ Np(0,Σ) where Σ is estimated by Σ̂ = σ̂2Ĉ
−1

where the errors ei have variance V (ei) = σ2 and where the inverse matrix

Ĉ
−1

does not exist if p > n. Much of the high dimensional literature seeks
bounds on the Euclidean norm ‖β̂ − β‖. However, if β̂ is a

√
n consistent

estimator of βF , then β̂i − βi is proportional to 1/
√
n. Hence ‖β̂ − β‖2 is

proportional to p/n which tends to be large when p >> n. Similar results

hold for estimators θ̂ of θ for statistical models that depend on a p×1 vector
of parameters θ. Often the high dimensional literature imposes regularity
conditions, that are much too strong, to force ‖β̂F − βF‖ to be small as
both n and p→ ∞.

This text uses large sample theory = asymptotic theory to justify many
of the methods used in the test. Several dimension reduction techniques are
used. One technique is to use data splitting and variable selection to choose
a model I with k predictors where n ≥ 10k, and then apply the standard
low dimensional inference on the resulting model. This changes the high di-
mensional problem into a low dimensional problem. Sometimes we use the
strong assumption that the cases (xT

i , Yi)
T are independent and identically

distributed (iid). Then variable selection methods often work because the con-
ditional distribution Y |xT

I βI has much more information than the marginal
distribution for Y .
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A second technique is to use large sample theory such that
√
n(θ̂ − θ)

D→
Np(0,Σ) where Σ is estimated by Σ̂ = Ĉ where the inverse matrix Ĉ

−1

is not used. Then tests and confidence intervals for quantities that only use
a few of the parameters, such as θi or θi − θk can be derived. Hence low
dimensional quantities are tested.

A third technique is to replace θ by the norm ‖θ|| or θ1 −θ2 by the norm
‖θ1 − θ2‖, reducing the p-dimensional problem of testing H0 : θ = 0 or
H0 : θ1 = θ2 to the one-dimensional problem of testing H0 : ‖θ‖ = 0 or
H0 : ‖θ1 − θ2‖ = 0.

The prerequisite for this text is a calculus based course in statistics at
the level of Chihara and Hesterberg (2011), Hogg, Tanis, and Zimmerman
(2020), Larsen and Marx (2017), Wackerly, Mendenhall and Scheaffer (2008)
or Walpole, Myers, Myers and Ye (2016). Linear algebra and one computer
programming class are essential. Knowledge of regression would be useful.
See Olive (2017a) and Cook and Weisberg (1999). Knowledge of multivariate
analysis would be useful. See Olive (2017b) and Johnson and Wichern (2007).

Some highlights of this text follow.

• Prediction intervals are given that can be useful even if n < p.
• The response plot is useful for checking the model.
• The large sample theory for the elastic net, lasso, and ridge regression is

greatly simplified.
• The large sample theory for some data splitting estimators, variable selec-

tion estimators, marginal maximum likelihood estimators, and one com-
ponent partial least squares will be given. See Olive and Zhang (2024),
Olive et al. (2024), and Rathnayake and Olive (2023).

Downloading the book’s R functions hdpack.txt and data files hd-
data.txt into R: The commands

source("http://parker.ad.siu.edu/Olive/hdpack.txt")

source("http://parker.ad.siu.edu/Olive/hddata.txt")

The R software is used in this text. See R Core Team (2020). Some packages
used in the text include glmnet Friedman et al. (2015), leaps Lumley
(2009), MASS Venables and Ripley (2010), and pls Mevik et al. (2015).
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Chapter 1

Introduction

This chapter provides a preview of the book, and some techniques useful
for visualizing data in the background of the data are given in Section 1.2.
Sections 1.3 and 1.7 review the multivariate normal distribution and multiple
linear regression. Section 1.4 suggests methods for outlier detection. Some
large sample theory is presented in Section 1.5, and Section 1.6 covers mixture
distributions.

1.1 Overview

For low dimensional statistics, the number of variables p is much less than
the sample size n. For high dimensional statistics, p is not much less than
n. Let z = (z1, ..., zk)

T where z1, ..., zk are k random variables. Often z =
(Y,xT )T where xT = (x1, ..., xp) is the vector of predictors and Y is the
variable of interest, called a response variable. Predictor variables are also
called independent variables, covariates, or features. The response variable
is also called the dependent variable. Usually context will be used to decide
whether z is a random vector or the observed random vector.

Definition 1.1. A case or observation consists of k random variables
measured for one person or thing. The ith case zi = (zi1, ..., zik)

T . The
training data consists of z1, ..., zn. A statistical model or method is fit
(trained) on the training data. The test data consists of zn+1, ..., zn+m, and
the test data is often used to evaluate the quality of the fitted model.

For low dimensional statistics, assume n ≥ Jk where J ≥ 5 is large enough
for the statistical method to be useful. For example, the model may be used
to a) visualize the data, b) perform inference with large sample theory, or c)
prediction. For regression models with one response variable, often k = p or

1



2 1 Introduction

k = p+1. For multivariate regression models with q response variables, often
k = q+ p. In the following definition, often J much larger than 5 is needed.

Definition 1.2. For low dimensional statistics, n ≥ Jk with J ≥ 5.

For classical statistical methods, high dimensional statistics refers to data
sets where n is not large enough for the classical statistical method to be
useful. For example, typically there are too many predictors, compared to the
sample size, to do classical inference. In particular, often n is not large enough
for large sample theory inference. For some researchers, high dimensional
statistics means that k or p are quite large. Sometimes p > Kn with K ≥ 10
is called ultrahigh dimensional statistics or ultra high dimensional statistics.
The following definition is much more general. For example, there could be
p = 2 predictors and one response variable Y , but n = 7.

Definition 1.3. For high dimensional statistics, n < 5k.

Statistical Learning methods are often useful for high dimensional statis-
tics. Following James et al. (2013, p. 30), the previously unseen test data is not
used to train the Statistical Learning method, but interest is in how well the
method performs on the test data. If the training data is (x1, Y1), ..., (xn, Yn),
and the previously unseen test data is (xf , Yf), then particular interest is in

the accuracy of the estimator Ŷf of Yf obtained when the Statistical Learning

method is applied to the predictor xf . The estimator Ŷf is a prediction if the
response variable Yf is continuous, as occurs in regression models. If Yf is

categorical, then Ŷf is a classification. For example, if Yf can be 0 or 1, then

xf is classified to belong to group i if Ŷf = i for i = 0 or 1. The multiple
linear regression (MLR) model is Yi = β1 +x2β2 + · · ·+xpβp + e = xT β + e,
is an important regression model.

Notation: Typically lower case boldface letters such as x denote column
vectors, while upper case boldface letters such as S or Y are used for ma-
trices or column vectors. If context is not enough to determine whether y

is a random vector or an observed random vector, then Y = (Y1, ..., Yp)
T

may be used for the random vector, and y = (y1 , ..., yp)
T for the observed

value of the random vector. An upper case letter such as Y will usually be a
random variable. A lower case letter such as x1 will also often be a random
variable. An exception to this notation is the generic multivariate location
and dispersion estimator (T,C) where the location estimator T is a p × 1
vector such as T = x. C is a p× p dispersion estimator and conforms to the
above notation.

The main focus of the first three chapters is developing tools to analyze
the multiple linear regression (MLR) model Yi = xT

i β + ei for i = 1, ..., n.
Classical regression techniques use (ordinary) least squares (OLS) and assume
n >> p, but Statistical Learning methods often give useful results if p >> n.
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OLS forward selection, lasso, ridge regression, marginal maximum likelihood
(MMLE), one component partial least squares (OPLS), the elastic net, partial
least squares (PLS), and principal component regression (PCR) will be some
of the techniques examined. See Chapter 2.

Acronyms are widely used in statistics, and some of the more important
acronyms appear in Table 1.1. Also see the text’s index.

For classical regression and multivariate analysis, we often want n ≥ 10p.
Note a high dimensional regression model has n < 5p by Definition 1.3 with
k = p.

Definition 1.4. A model with n < 5p is overfitting: the model does not
have enough data to estimate p parameters accurately. A high dimensional
regression model has n < 5p. A fitted or population regression model is sparse
if a of the predictors are active (have nonzero β̂i or βi) where n ≥ Ja with
J ≥ 10. Otherwise the model is nonsparse. A high dimensional population
regression model is abundant or dense if the regression information is spread
out among the p predictors (nearly all of the predictors are active). Hence an
abundant model is a nonsparse model.

Remark 1.1. There are several important techniques for high dimensional
statistics.

Technique 1. One important technique is variable selection: select pre-
dictors I = {i1, ..., ik} such that n ≥ Jk with J ≥ 5. This technique turns the
high dimensional statistics problem into a low dimensional statistics problem.
Hence results from classical statistics are still useful.

Following Olive and Hawkins (2005), a model for variable selection can be
described by

xT β = xT
SβS + xT

EβE = xT
SβS (1.1)

where x = (xT
S ,x

T
E)T , xS is an aS ×1 vector, and xE is a (p−aS)×1 vector.

Given that xS is in the model, βE = 0 and E denotes the subset of terms
that can be eliminated given that the subset S is in the model. Let xI be the
vector of a terms from a candidate subset indexed by I, and let xO be the
vector of the remaining predictors (out of the candidate submodel). Suppose
that S is a subset of I and that model (1.1) holds. Then

xT β = xT
SβS = xT

I βI + xT
O0 = xT

I βI .

Thus βO = 0 if S ⊆ I. The model using xT β is the full model. The full model
uses all of the predictors with βF = β.

To clarify notation, suppose p = 4, a constant x1 = 1 corresponding to β1 is
always in the model, and β = (β1, β2, 0, 0)T . Then the J = 2p−1 = 8 possible
subsets of {1, 2, ..., p} that always contain 1 are I1 = {1}, S = I2 = {1, 2},
I3 = {1, 3}, I4 = {1, 4}, I5 = {1, 2, 3}, I6 = {1, 2, 4}, I7 = {1, 3, 4}, and
I8 = {1, 2, 3, 4}. There are 2p−aS = 4 subsets I2, I5, I6, and I8 such that

S ⊆ Ij. Let β̂I7
= (β̂1 , β̂3, β̂4)

T and xI7
= (x1, x3, x4)

T .
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Table 1.1 Acronyms

Acronym Description
AER additive error regression
AP additive predictor = SP for a GAM
cdf cumulative distribution function
cf characteristic function
CI confidence interval

CLT central limit theorem
CV cross validation
DA discriminant analysis
EC elliptically contoured

EAP estimated additive predictor = ESP for a GAM
ESP estimated sufficient predictor
ESSP estimated sufficient summary plot = response plot
FDA Fisher’s discriminant analysis
GAM generalized additive model
GLM generalized linear model
iid independent and identically distributed

KNN K–nearest neighbors discriminant analysis
lasso an MLR method
LDA linear discriminant analysis
LR logistic regression

MAD the median absolute deviation
MCLT multivariate central limit theorem
MED the median
mgf moment generating function
MLD multivariate location and dispersion
MLR multiple linear regression

MMLE marginal maximum likelihood estimator
MVN multivariate normal
OLS ordinary least squares

OPLS one component partial least squares
PCA principal component analysis
PCR principal component(s) regression
PLS partial least squares
pdf probability density function
PI prediction interval
pmf probability mass function
QDA quadratic discriminant analysis
SE standard error
SP sufficient predictor
SSP sufficient summary plot
SVM support vector machine
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Let Imin correspond to the set of predictors selected by a variable selection
method such as forward selection or lasso variable selection. See Chapter 2
for more on these methods. If β̂I is a× 1, use zero padding to form the p× 1

vector β̂I,0 from β̂I by adding 0s corresponding to the omitted variables. For

example, if p = 4 and β̂Imin
= (β̂1, β̂3)

T , then the observed variable selection

estimator β̂V S = β̂Imin,0 = (β̂1 , 0, β̂3, 0)T . As a statistic, β̂V S = β̂Ik,0 with
probabilities πkn = P (Imin = Ik) for k = 1, ..., J where there are J subsets,
e.g. J = 2p − 1.

Often the estimator β̂ is
√
n consistent with β̂i−βi ∝ 1/n and the squared

Euclidean distance ‖β̂F − βF ‖2 ∝ p/n where the symbol ∝ means “propor-
tional to.” For low dimensional regression, p is fixed and p/n→ 0 as n→ ∞.

Hence β̂F is a consistent estimator of βF . For a high dimensional regression

data set, suppose p = pn = nτ+1 . Then ‖β̂F − βF ‖2 ∝ nτ can be quite large

and β̂F is generally not a good estimator of βF .
There is a rather large literature in high dimensional statistics that gives

regularity conditions where ‖β̂F −βF ‖2 ≤ dn/n with high probability where
dn/n is rather small. Let I be the subset selected by some method. For
variable selection, I = Imin is common. The oracle property holds if P (Imin =

S) → 1 as n → ∞. Then ‖β̂F −βF ‖2 ≈ ‖β̂S −βS‖2 which can be small for a
sparse population regression model where βS is an aS×1 vector an n ≥ 10aS .
The oracle property can sometimes be shown to hold if the predictors are
approximately orthogonal. Another common assumption is that there is a
sparse population regression model, S ⊆ I, n ≥ 10aI , and βI,0 = βF . This
assumption is roughly the “bet on sparsity principle.”

Even if the population model is not sparse, sparse fitted models are often
useful for high dimensional data sets. This fact gives a second reason for why
sparse regression models such as lasso can be useful. For the sparse fitted
model, n ≥ 10aI, and often βI,0 6= βF . Hence β̂I can be a good estimator of
βI even if the population full model is not sparse. Turn the high dimensional
problem into a low dimensional problem and check that model using βI is
good.

Data splitting divides the training data set of n cases into two sets: H and
the validation set V where H has nH of the cases and V has the remaining
nV = n − nH cases i1, ..., inV . An application of data splitting is to use a
variable selection method, such as forward selection or lasso, on H to get
submodel Imin with a predictors, then fit the selected model to the cases in
the validation set V using standard inference.

Technique 2. A second important technique for high dimensional statis-
tics is useful for hypothesis testing. This technique is useful for sample

means, sample proportions, and sample covariances. Suppose
√
n(θ̂ − θ)

D→
Np(0,ΣF ) for fixed p as n → ∞. When n < 5p often a good nonsingular

estimator Σ̂F of ΣF is not available. Often Σ̂F = C−1
F where the inverse

matrix can not be computed if p > n.
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Sometimes θ̂ = (θ̂1, ..., θ̂P )T where θ̂i is a componentwise estimator: take

the estimators θ̂i of the components θi and stack them into a vector. For
example, the sample mean x of E(x) = (µ1, ..., µp)

T is a componentwise esti-
mator of θ = µ. Similarly, x1 −x2 is a componentwise estimator of µ1 −µ2.

Vectors of covariances, such as Σ̂xY = (Ĉov(x1, Y ), ..., Ĉov(xp, Y ))T , are
another example. The one component partial least squares (OPLS) estima-
tor and marginal maximum likelihood estimator (MMLE) for multiple linear

regression both use Σ̂xY .
Suppose AIθ = (θi1 , ..., θik)

T with i1, i2, ..., ik distinct and n ≥ Jk with

J ≥ 10. Suppose Σ̂F = (σ̂ij) and

AIΣ̂F AT
I = Σ̂I = (σ̂ij,id) =




σ̂i1,i1 σ̂i1,i2 · · · σ̂i1,ik

σ̂i2,i1 σ̂i2,i2 · · · σ̂i2,ik

...
...

...
...

σ̂ik,i1 σ̂ik,i2 · · · σ̂ik,ik


 .

If
√
n(θ̂I − θI)

D→ Nk(0,ΣI) as n → ∞, then we can get large sample tests
for H0 : BθI = 0. In particular, we can do tests such as H0 : θi = 0 and
H0 : θi −θj = 0. Hence for high dimensional data, we can do low dimensional
tests.

Technique 3. Consider testing H0 : µ = 0 where µ is a p × 1 vector
with p > n. Typically µ̂ is not a good estimator of µ since ‖µ̂−µ‖2 will not
be small, but we often can get a good estimator of ‖µ‖2 = µT µ, and test
H0 : µT µ = 0. �

Remark 1.2. Techniques 1-3 all involve some form of dimension reduction.
Technique 1 replaces the p× 1 vector βF by the aI × 1 vector βI . Technique
2 replaces test H0 : θ = 0 by low dimensional tests such as H0 : θi = 0, and
technique 3 replaces H0 : µ = 0 by the equivalent test H0 : µT µ = 0.

1.2 Response Plots and Response Transformations

This section will consider tools for visualizing the regression model in the
background of the data. The definitions in this section tend not to depend
on whether n/p is large or small, but the estimator ĥ tends to be better if
n/p is large. In regression, the response variable is the variable of interest:
the variable you want to predict. The predictors or features x1, ..., xp are
variables used to predict Y .

Definition 1.5. In a 1D regression model, regression is the study of
the conditional distribution of Y given the sufficient predictor SP = h(x),
written

Y |SP or Y|h(x), (1.2)
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where the real valued function h : R
p → R. The estimated sufficient pre-

dictor ESP = ĥ(x). An important special case is a model with a linear

predictor h(x) = α+βT x where ESP = α̂+ β̂
T
x and often α = 0. This class

of models includes the generalized linear model (GLM). Another important
special case is a generalized additive model (GAM), given the additive predic-
tor AP = SP = α+

∑p
j=1 Sj(xj) for some (usually unknown) functions Sj .

The estimated additive predictor EAP = ESP = α̂+
∑p

j=1 Ŝj(xj).

Remark 1.3. The literature often claims that Y is conditionally indepen-
dent of x given the sufficient predictor SP = h(x), written

Y x|SP or Y x|h(x). (1.3)

Hence the response variable depends on the vector of predictors x only
through the sufficient predictor SP = h(x). The literature also often claims
that Y |x = Y |SP or Y |x = Y |βT x. This claim is often much too strong.

Notation. Often the index i will be suppressed. For example, the multiple
linear regression model

Yi = xT
i β + ei (1.4)

for i = 1, ..., n where β is a p× 1 unknown vector of parameters, and ei is a
random error. This model could be written Y = xT β + e. More accurately,
Y |xT β = xT β + e, but the conditioning on xT β will often be suppressed.
Often the errors e1, ..., en are iid (independent and identically distributed)
from a distribution that is known except for a scale parameter. For example,
the ei’s might be iid from a normal (Gaussian) distribution with mean 0
and unknown standard deviation σ. For this Gaussian model, estimation of
β and σ is important for inference and for predicting a new future value of
the response variable Yf given a new vector of predictors xf .

1.2.1 Response and Residual Plots

Definition 1.6. An estimated sufficient summary plot (ESSP) or response
plot is a plot of the ESP versus Y . A residual plot is a plot of the ESP versus
the residuals.

Notation: In this text, a plot of x versus Y will have x on the horizontal
axis, and Y on the vertical axis. For the additive error regression model
Y = m(x)+e, the ith residual is ri = Yi −m̂(xi) = Yi− Ŷi where Ŷi = m̂(xi)
is the ith fitted value. The additive error regression model is a 1D regression
model with sufficient predictor SP = h(x) = m(x).
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For the additive error regression model, the response plot is a plot of Ŷ
versus Y where the identity line with unit slope and zero intercept is added as
a visual aid. The residual plot is a plot of Ŷ versus r. Assume the errors ei are
iid from a unimodal distribution that is not highly skewed. Then the plotted
points should scatter about the identity line and the r = 0 line (the horizontal
axis) with no other pattern if the fitted model (that produces m̂(x)) is good.
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Fig. 1.1 Residual and Response Plots for the Tremearne Data

Example 1.1. Tremearne (1911) presents a data set of about 17 mea-
surements on 115 people of Hausa nationality. We deleted 3 cases because
of missing values and used height as the response variable Y . Along with a
constant xi,1 ≡ 1, the five additional predictor variables used were height
when sitting, height when kneeling, head length, nasal breadth, and span (per-
haps from left hand to right hand). Figure 1.1 presents the (ordinary) least
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squares (OLS) response and residual plots for this data set. These plots show
that an MLR model Y = xT β + e should be a useful model for the data
since the plotted points in the response plot are linear and follow the identity
line while the plotted points in the residual plot follow the r = 0 line with
no other pattern (except for a possible outlier marked 44). Note that many
important acronyms, such as OLS and MLR, appear in Table 1.1.

To use the response plot to visualize the conditional distribution of Y |xT β,

use the fact that the fitted values Ŷ = xT β̂. For example, suppose the height
given fit = 1700 is of interest. Mentally examine the plot about a narrow
vertical strip about fit = 1700, perhaps from 1685 to 1715. The cases in the
narrow strip have a mean close to 1700 since they fall close to the identity
line. Similarly, when the fit = w for w between 1500 and 1850, the cases have
heights near w, on average.

Cases 3, 44, and 63 are highlighted. The 3rd person was very tall while
the 44th person was rather short. Beginners often label too many points as
outliers: cases that lie far away from the bulk of the data. Mentally draw a
box about the bulk of the data ignoring any outliers. Double the width of the
box (about the identity line for the response plot and about the horizontal
line for the residual plot). Cases outside of this imaginary doubled box are
potential outliers. Alternatively, visually estimate the standard deviation of
the residuals in both plots. In the residual plot look for residuals that are
more than 5 standard deviations from the r = 0 line. In Figure 1.1, the
standard deviation of the residuals appears to be around 10. Hence cases 3
and 44 are certainly worth examining.

The identity line can also pass through or near an outlier or a cluster
of outliers. Then the outliers will be in the upper right or lower left of the
response plot, and there will be a large gap between the cluster of outliers and
the bulk of the data. Figure 1.1 was made with the following R commands,
using hdpack function MLRplot and the major.lsp data set from the text’s
webpage.

major <- matrix(scan(),nrow=112,ncol=7,byrow=T)

#copy and paste the data set, then press enter

major <- major[,-1]

X<-major[,-6]

Y <- major[,6]

MLRplot(X,Y) #left click the 3 highlighted cases,

#then right click Stop for each of the two plots

A problem with response and residual plots is that there can be a lot of
black in the plot if the sample size n is large (more than a few thousand).
A variant of the response plot for the additive error regression model would
plot the identity line, the two lines parallel to the identity line corresponding
to large sample 100(1 − δ)% prediction intervals for Yf that depends on Ŷf .
Then plot points corresponding to training data cases that do not lie in their
100(1− δ)% PI. Use δ = 0.01 or 0.05. Try the following commands that used
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δ = 0.2 since n is small. The commands use the hdpack function AERplot.
See Problem 1.10.

out<-lsfit(X,Y)

res<-out$res

yhat<-Y-res

AERplot(yhat,Y,res=res,d=2,alph=1) #usual response plot

AERplot(yhat,Y,res=res,d=2,alph=0.2)

#plots data outside the 80% pointwise PIs

n<-100000; q<-7

b <- 0 * 1:q + 1

x <- matrix(rnorm(n * q), nrow = n, ncol = q)

y <- 1 + x %*% b + rnorm(n)

out<-lsfit(x,y)

res<-out$res

yhat<-y-res

dd<-length(out$coef)

AERplot(yhat,y,res=res,d=dd,alph=1) #usual response plot

AERplot(yhat,y,res=res,d=dd,alph=0.01)

#plots data outside the 99% pointwise PIs

AERplot2(yhat,y,res=res,d=2)

#response plot with 90% pointwise prediction bands

1.2.2 Response Transformations

A response transformation Y = tλ(Z) can make the MLR model or additive
error regression model hold if the variable of interest Z is measured on the
wrong scale. For MLR, Y = tλ(Z) = xT β +e, while for additive error regres-
sion, Y = tλ(Z) = m(x) + e. Predictor transformations are used to remove
gross nonlinearities in the predictors, and this technique is often very useful.
However, if there are hundreds or more predictors, graphical methods for
predictor transformations take too long. Olive (2017a, Section 3.1) describes
graphical methods for predictor transformations.

Power transformations are particularly effective, and a power transforma-
tion has the form x = tλ(w) = wλ for λ 6= 0 and x = t0(w) = log(w) for
λ = 0. Often λ ∈ ΛL where

ΛL = {−1,−1/2,−1/3, 0, 1/3, 1/2, 1} (1.5)

is called the ladder of powers. Often when a power transformation is needed,
a transformation that goes “down the ladder,” e.g. from λ = 1 to λ = 0 will
be useful. If the transformation goes too far down the ladder, e.g. if λ = 0
is selected when λ = 1/2 is needed, then it will be necessary to go back “up
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the ladder.” Additional powers such as ±2 and ±3 can always be added. The
following rules are useful for both response transformations and predictor
transformations.

a) The log rule states that a positive variable that has the ratio between
the largest and smallest values greater than ten should be transformed to
logs. So W > 0 and max(W )/min(W ) > 10 suggests using log(W ).

b) The ladder rule appears in Cook and Weisberg (1999a, p. 86), and is
used for a plot of two variables, such as ESP versus Y for response transfor-
mations or x1 versus x2 for predictor transformations.
Ladder rule: To spread small values of a variable, make λ smaller.
To spread large values of a variable, make λ larger.

Consider the ladder of powers. Often no transformation (λ = 1) is best,
then the log transformation, then the square root transformation, then the
reciprocal transformation.
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Fig. 1.2 Plots to Illustrate the Ladder Rule

Example 1.2. Examine Figure 1.2. Since w is on the horizontal axis,
mentally add a narrow vertical slice to the plot. If a large amount of data falls
in the slice at the left of the plot, then small values need spreading. Similarly,
if a large amount of data falls in the slice at the right of the plot (compared
to the middle and left of the plot), then large values need spreading. For
the variable on the vertical axis, make a narrow horizontal slice. If the plot
looks roughly like the northwest corner of a square then small values of the
horizontal and large values of the vertical variable need spreading. Hence in
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Figure 1.2a, small values of w need spreading. If the plot looks roughly like
the northeast corner of a square, then large values of both variables need
spreading. Hence in Figure 1.2b, large values of x need spreading. If the plot
looks roughly like the southwest corner of a square, as in Figure 1.2c, then
small values of both variables need spreading. If the plot looks roughly like
the southeast corner of a square, then large values of the horizontal and
small values of the vertical variable need spreading. Hence in Figure 1.2d,
small values of x need spreading.

Consider the additive error regression model Y = m(x) + e. Then the
response transformation model is Y = tλ(Z) = mλ(x)+ e, and the graphical
method for selecting the response transformation is to plot m̂λi(x) versus
tλi(Z) for several values of λi, choosing the value of λ = λ0 where the plotted
points follow the identity line with unit slope and zero intercept. For the
multiple linear regression model, m̂λi (x) = xT β̂λi

where β̂λi
can be found

using the desired fitting method, e.g. OLS or lasso.

Definition 1.7. Assume that all of the values of the “response” Zi are
positive. A power transformation has the form Y = tλ(Z) = Zλ for λ 6= 0
and Y = t0(Z) = log(Z) for λ = 0 where

λ ∈ ΛL = {−1,−1/2,−1/3, 0, 1/3, 1/2, 1}.

Definition 1.8. Assume that all of the values of the “response” Zi are
positive. Then the modified power transformation family

tλ(Zi) ≡ Z
(λ)
i =

Zλ
i − 1

λ
(1.6)

for λ 6= 0 and Z
(0)
i = log(Zi). Generally λ ∈ Λ where Λ is some interval such

as [−1, 1] or a coarse subset such as ΛL. This family is a special case of the
response transformations considered by Tukey (1957).

A graphical method for response transformations refits the model using
the same fitting method: changing only the “response” from Z to tλ(Z).
Compute the “fitted values” Ŵi using Wi = tλ(Zi) as the “response.” Then
a transformation plot of Ŵi versus Wi is made for each of the seven values of
λ ∈ ΛL with the identity line added as a visual aid. Vertical deviations from
the identity line are the “residuals” ri = Wi−Ŵi. Then a candidate response
transformation Y = tλ∗(Z) is reasonable if the plotted points follow the
identity line in a roughly evenly populated band if the MLR or additive error
regression model is reasonable for Y = W and x. Curvature from the identity
line suggests that the candidate response transformation is inappropriate.

Notice that the graphical method is equivalent to making “response plots”
for the seven values of W = tλ(Z), and choosing the “best response plot”
where the MLR model seems “most reasonable.” The seven “response plots”
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are called transformation plots below. Our convention is that a plot of X
versus Y means that X is on the horizontal axis and Y is on the vertical
axis.

Definition 1.9. A transformation plot is a plot of Ŵ versus W with the
identity line added as a visual aid.
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Fig. 1.3 Four Transformation Plots for the Textile Data

There are several reasons to use a coarse grid of powers. First, several of the
powers correspond to simple transformations such as the log, square root, and
cube root. These powers are easier to interpret than λ = 0.28, for example.
According to Mosteller and Tukey (1977, p. 91), the most commonly used
power transformations are the λ = 0 (log), λ = 1/2, λ = −1, and λ = 1/3

transformations in decreasing frequency of use. Secondly, if the estimator λ̂n
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can only take values in ΛL, then sometimes λ̂n will converge (e.g. in prob-
ability) to λ∗ ∈ ΛL. Thirdly, Tukey (1957) showed that neighboring power
transformations are often very similar, so restricting the possible powers to
a coarse grid is reasonable. Note that powers can always be added to the
grid ΛL. Useful powers are ±1/4,±2/3,±2, and ±3. Powers from numerical
methods can also be added.

Application 1.1. This graphical method for selecting a response trans-
formation is very simple. Let Wi = tλ(Zi). Then for each of the seven values
of λ ∈ ΛL, perform the regression fitting method, such as OLS or lasso, on
(Wi,xi) and make the transformation plot of Ŵi versus Wi. If the plotted

points follow the identity line for λ∗, then take λ̂o = λ∗, that is, Y = tλ∗(Z)
is the response transformation.

If more than one value of λ ∈ ΛL gives a linear plot, take the simplest or
most reasonable transformation or the transformation that makes the most
sense to subject matter experts. Also check that the corresponding “residual
plots” of Ŵ versus W−Ŵ look reasonable. The values of λ in decreasing order
of importance are 1, 0, 1/2,−1, and 1/3. So the log transformation would be
chosen over the cube root transformation if both transformation plots look
equally good.

After selecting the transformation, the usual checks should be made. In
particular, the transformation plot for the selected transformation is the re-
sponse plot, and a residual plot should also be made. The following example
illustrates the procedure, and the plots show W = tλ(Z) on the vertical axis.
The label “TZHAT” of the horizontal axis are the “fitted values” Ŵ that
result from using W = tλ(Z) as the “response” in the OLS software.

Example 1.3: Textile Data. In their pioneering paper on response trans-
formations, Box and Cox (1964) analyze data from a 33 experiment on the
behavior of worsted yarn under cycles of repeated loadings. The “response”
Z is the number of cycles to failure and a constant is used along with the
three predictors length, amplitude, and load. Using the normal profile log
likelihood for λo, Box and Cox determine λ̂o = −0.06 with approximate 95
percent confidence interval −0.18 to 0.06. These results give a strong indi-
cation that the log transformation may result in a relatively simple model,
as argued by Box and Cox. Nevertheless, the numerical Box–Cox transfor-
mation method provides no direct way of judging the transformation against
the data.

Shown in Figure 1.3 are transformation plots of Ŵ versus W = Zλ for
four values of λ except log(Z) is used if λ = 0. The plots show how the trans-
formations bend the data to achieve a homoscedastic linear trend. Perhaps
more importantly, they indicate that the information on the transformation
is spread throughout the data in the plot since changing λ causes all points
along the curvilinear scatter in Figure 1.3a to form along a linear scatter in
Figure 1.3c. Dynamic plotting using λ as a control seems quite effective for
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judging transformations against the data and the log response transformation
does indeed seem reasonable.

Note the simplicity of the method: Figure 1.3a shows that a response trans-
formation is needed since the plotted points follow a nonlinear curve while
Figure 1.3c suggests that Y = log(Z) is the appropriate response transforma-
tion since the plotted points follow the identity line. If all 7 plots were made
for λ ∈ ΛL, then λ = 0 would be selected since this plot is linear. Also, Figure
1.3a suggests that the log rule is reasonable since max(Z)/min(Z) > 10.

1.3 The Multivariate Normal Distribution

For much of this book, X is an n×p design matrix, but this section will usu-
ally use the notation X = (X1, ..., Xp)

T and Y for the random vectors, and
x = (x1, ..., xp)

T for the observed value of the random vector. This notation
will be useful to avoid confusion when studying conditional distributions such
as Y |X = x. It can be shown that Σ is positive semidefinite and symmetric.

Definition 1.10: Rao (1965, p. 437). A p × 1 random vector X has
a p−dimensional multivariate normal distribution Np(µ,Σ) iff tT X has a
univariate normal distribution for any p× 1 vector t.

If Σ is positive definite, then X has a pdf

f(z) =
1

(2π)p/2|Σ|1/2
e−(1/2)(z−µ)T Σ−1

(z−µ) (1.7)

where |Σ|1/2 is the square root of the determinant of Σ. Note that if p = 1,
then the quadratic form in the exponent is (z − µ)(σ2)−1(z − µ) and X has
the univariate N(µ, σ2) pdf. If Σ is positive semidefinite but not positive
definite, then X has a degenerate distribution. For example, the univariate
N(0, 02) distribution is degenerate (the point mass at 0).

Definition 1.11. The population mean of a random p × 1 vector X =
(X1, ..., Xp)

T is
E(X) = (E(X1), ..., E(Xp))

T

and the p× p population covariance matrix

Cov(X) = E(X − E(X))(X −E(X))T = (σij).

That is, the ij entry of Cov(X) is Cov(Xi, Xj) = σij.

The covariance matrix is also called the variance–covariance matrix and
variance matrix. Sometimes the notation Var(X) is used. Note that Cov(X)
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is a symmetric positive semidefinite matrix. If X and Y are p × 1 random
vectors, a a conformable constant vector, and A and B are conformable
constant matrices, then

E(a + X) = a + E(X) and E(X + Y ) = E(X) +E(Y ) (1.8)

and
E(AX) = AE(X) and E(AXB) = AE(X)B. (1.9)

Thus
Cov(a + AX) = Cov(AX) = ACov(X)AT . (1.10)

Some important properties of multivariate normal (MVN) distributions are
given in the following three theorems. These theorems can be proved using
results from Johnson and Wichern (1988, pp. 127-132) or Severini (2005, ch.
8).

Theorem 1.1. a) If X ∼ Np(µ,Σ), then E(X) = µ and

Cov(X) = Σ.

b) If X ∼ Np(µ,Σ), then any linear combination tT X = t1X1 + · · · +
tpXp ∼ N1(t

T µ, tT Σt). Conversely, if tT X ∼ N1(t
T µ, tT Σt) for every p×1

vector t, then X ∼ Np(µ,Σ).

c) The joint distribution of independent normal random variables
is MVN. If X1, ..., Xp are independent univariate normal N(µi, σ

2
i ) random

vectors, then X = (X1 , ..., Xp)
T is Np(µ,Σ) where µ = (µ1, ..., µp)

T and
Σ = diag(σ2

1 , ..., σ
2
p) (so the off diagonal entries σij = 0 while the diagonal

entries of Σ are σii = σ2
i ).

d) If X ∼ Np(µ,Σ) and if A is a q×pmatrix, then AX ∼ Nq(Aµ,AΣAT ).
If a is a p × 1 vector of constants and b is a constant, then a + bX ∼
Np(a + bµ, b2Σ). (Note that bX = bIpX with A = bIp.)

It will be useful to partition X, µ, and Σ. Let X1 and µ1 be q×1 vectors,
let X2 and µ2 be (p − q) × 1 vectors, let Σ11 be a q × q matrix, let Σ12

be a q × (p − q) matrix, let Σ21 be a (p − q) × q matrix, and let Σ22 be a
(p− q) × (p− q) matrix. Then

X =

(
X1

X2

)
, µ =

(
µ1

µ2

)
, and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

Theorem 1.2. a) All subsets of a MVN are MVN: (Xk1
, ..., Xkq)

T

∼ Nq(µ̃, Σ̃) where µ̃i = E(Xki) and Σ̃ij = Cov(Xki , Xkj). In particular,
X1 ∼ Nq(µ1,Σ11) and X2 ∼ Np−q(µ2,Σ22).

b) If X1 and X2 are independent, then Cov(X1,X2) = Σ12 =
E[(X1 −E(X1))(X2 − E(X2))

T ] = 0, a q × (p− q) matrix of zeroes.
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c) If X ∼ Np(µ,Σ), then X1 and X2 are independent iff Σ12 = 0.

d) If X1 ∼ Nq(µ1,Σ11) and X2 ∼ Np−q(µ2,Σ22) are independent, then

(
X1

X2

)
∼ Np

((
µ1

µ2

)
,

(
Σ11 0
0 Σ22

))
.

Theorem 1.3. The conditional distribution of a MVN is MVN. If
X ∼ Np(µ,Σ), then the conditional distribution of X1 given that X2 = x2

is multivariate normal with mean µ1 + Σ12Σ
−1
22 (x2 − µ2) and covariance

matrix Σ11 − Σ12Σ
−1
22 Σ21. That is,

X1|X2 = x2 ∼ Nq(µ1 + Σ12Σ
−1
22 (x2 − µ2),Σ11 − Σ12Σ

−1
22 Σ21).

Example 1.4. Let p = 2 and let (Y,X)T have a bivariate normal distri-
bution. That is,

(
Y
X

)
∼ N2

((
µY

µX

)
,

(
σ2

Y Cov(Y,X)
Cov(X, Y ) σ2

X

))
.

Also, recall that the population correlation between X and Y is given by

ρ(X, Y ) =
Cov(X, Y )√

VAR(X)
√

VAR(Y )
=

σX,Y

σXσY

if σX > 0 and σY > 0. Then Y |X = x ∼ N(E(Y |X = x),VAR(Y |X = x))
where the conditional mean

E(Y |X = x) = µY + Cov(Y,X)
1

σ2
X

(x− µX) = µY + ρ(X, Y )

√
σ2

Y

σ2
X

(x− µX)

and the conditional variance

VAR(Y |X = x) = σ2
Y − Cov(X, Y )

1

σ2
X

Cov(X, Y )

= σ2
Y − ρ(X, Y )

√
σ2

Y

σ2
X

ρ(X, Y )
√
σ2

X

√
σ2

Y

= σ2
Y − ρ2(X, Y )σ2

Y = σ2
Y [1 − ρ2(X, Y )].

Also aX + bY is univariate normal with mean aµX + bµY and variance

a2σ2
X + b2σ2

Y + 2ab Cov(X, Y ).

Remark 1.4. There are several common misconceptions. First, it is not
true that every linear combination tT X of normal random variables
is a normal random variable, and it is not true that all uncorrelated
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normal random variables are independent. The key condition in The-
orem 1.1b and Theorem 1.2c is that the joint distribution of X is MVN. It
is possible that X1, X2, ..., Xp each has a marginal distribution that is uni-
variate normal, but the joint distribution of X is not MVN. See Seber and
Lee (2003, p. 23), and examine the following example from Rohatgi (1976,
p. 229). Suppose that the joint pdf of X and Y is a mixture of two bivariate
normal distributions both with EX = EY = 0 and VAR(X) = VAR(Y ) = 1,
but Cov(X, Y ) = ±ρ. Hence f(x, y) =

1

2

1

2π
√

1 − ρ2
exp(

−1

2(1 − ρ2)
(x2 − 2ρxy + y2)) +

1

2

1

2π
√

1 − ρ2
exp(

−1

2(1 − ρ2)
(x2 + 2ρxy + y2)) ≡ 1

2
f1(x, y) +

1

2
f2(x, y)

where x and y are real and 0 < ρ < 1. Since both marginal distributions of
fi(x, y) are N(0,1) for i = 1 and 2 by Theorem 1.2 a), the marginal distribu-
tions of X and Y are N(0,1). Since

∫ ∫
xyfi(x, y)dxdy = ρ for i = 1 and −ρ

for i = 2, X and Y are uncorrelated, but X and Y are not independent since
f(x, y) 6= fX(x)fY (y).

Remark 1.5. In Theorem 1.3, suppose that X = (Y,X2, ..., Xp)
T . Let

X1 = Y and X2 = (X2, ..., Xp)
T . Then E[Y |X2] = β1 + β2X2 + · · ·+ βpXp

and VAR[Y |X2] is a constant that does not depend on X2. Hence Y |X2 =
β1 + β2X2 + · · ·+ βpXp + e follows the multiple linear regression model.

1.4 Outlier Detection

Outliers are cases that lie far away from the bulk of the data, and outliers can
ruin a statistical analysis. For multiple linear regression, the response plot is
often useful for outlier detection. Look for gaps in the response plot and for
cases far from the identity line. There are no gaps in Figure 1.1, but case 44
is rather far from the identity line. Figure 1.4 has a gap in the response plot.

Next, this section discusses a technique for outlier detection that works
well for certain outlier configurations provided bulk of the data consists of
more than n/2 cases. The technique could fail if there are g > 2 groups of
about n/g cases per group. First we need to define Mahalanobis distances
and the coordinatewise median. Some univariate estimators will be defined
first.
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1.4.1 The Location Model

The location model is

Yi = µ+ ei, i = 1, . . . , n (1.11)

where e1, ..., en are error random variables, often independent and identically
distributed (iid) with zero mean. The location model is used when there is
one variable Y , such as height, of interest. The location model is a special
case of the multiple linear regression model and of the multivariate location
and dispersion model, where there are p variables x1, ..., xp of interest, such as
height and weight if p = 2. Statistical Learning is the analysis of multivariate
data, and the location model is an example of univariate data, not an example
of multivariate data.

The location model is often summarized by obtaining point estimates and
confidence intervals for a location parameter and a scale parameter. Assume
that there is a sample Y1, . . . , Yn of size n where the Yi are iid from a distri-
bution with median MED(Y ), mean E(Y ), and variance V (Y ) if they exist.
Also assume that the Yi have a cumulative distribution function (cdf) F that
is known up to a few parameters. For example, Yi could be normal, exponen-
tial, or double exponential. The location parameter µ is often the population
mean or median while the scale parameter is often the population standard
deviation

√
V (Y ). The ith case is Yi.

Point estimation is one of the oldest problems in statistics and four impor-
tant statistics for the location model are the sample mean, median, variance,
and the median absolute deviation (MAD). Let Y1, . . . , Yn be the random
sample; i.e., assume that Y1, ..., Yn are iid. The sample mean is a measure of
location and estimates the population mean (expected value) µ = E(Y ).

Definition 1.12. The sample mean

Y =

∑n
i=1 Yi

n
. (1.12)

If the data set Y1, ..., Yn is arranged in ascending order from smallest to
largest and written as Y(1) ≤ · · · ≤ Y(n), then Y(i) is the ith order statistic
and the Y(i)’s are called the order statistics. If the data Y1 = 1, Y2 = 4, Y3 =

2, Y4 = 5, and Y5 = 3, then Y = 3, Y(i) = i for i = 1, ..., 5 and MED(n) = 3
where the sample size n = 5. The sample median is a measure of location
while the sample standard deviation is a measure of spread. The sample mean
and standard deviation are vulnerable to outliers, while the sample median
and MAD, defined below, are outlier resistant.

Definition 1.13. The sample median

MED(n) = Y((n+1)/2) if n is odd, (1.13)
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MED(n) =
Y(n/2) + Y((n/2)+1)

2
if n is even.

The notation MED(n) = MED(n, Yi) = MED(Y1, ..., Yn) will also be used.

Definition 1.14. The sample variance

S2
n =

∑n
i=1(Yi − Y )2

n− 1
=

∑n
i=1 Y

2
i − n(Y )2

n− 1
, (1.14)

and the sample standard deviation Sn =
√
S2

n.

Definition 1.15. The sample median absolute deviation is

MAD(n) = MED(|Yi − MED(n)|, i = 1, . . . , n). (1.15)

Since MAD(n) = MAD(n, Yi) is the median of n distances, at least half of
the observations are within a distance MAD(n) of MED(n) and at least half
of the observations are a distance of MAD(n) or more away from MED(n).
Like the standard deviation, MAD(n) is a measure of spread.

Example 1.5. Let the data be 1, 2, 3, 4, 5, 6, 7, 8, 9. Then MED(n) = 5
and MAD(n) = 2 = MED{0, 1, 1, 2, 2, 3, 3, 4, 4}.

1.4.2 Outlier Detection with Mahalanobis Distances

Now suppose the multivariate data has been collected into an n× p matrix

W = X =




xT
1
...

xT
n


 =




x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p

...
...

. . .
...

xn,1 xn,2 . . . xn,p


 =

[
v1 v2 . . . vp

]

where the ith row of W is the ith case xT
i and the jth column vj of W

corresponds to n measurements of the jth random variableXj for j = 1, ..., p.
Hence the n rows of the data matrix W correspond to the n cases, while the
p columns correspond to measurements on the p random variables X1, ..., Xp.
For example, the data may consist of n visitors to a hospital where the p = 2
variables height and weight of each individual were measured.

Definition 1.16. The coordinatewise median MED(W ) = (MED(X1), ...,
MED(Xp))

T where MED(Xi) is the sample median of the data in column i
corresponding to variable Xi and vi.

Example 1.6. Let the data forX1 be 1, 2, 3, 4, 5, 6, 7, 8, 9while the data for
X2 is 7, 17, 3, 8, 6, 13, 4, 2, 1. Then MED(W ) = (MED(X1),MED(X2))

T =
(5, 6)T .
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For multivariate data, sample Mahalanobis distances play a role similar to
that of residuals in multiple linear regression. Let the observed training data
be collected in an n× p matrix W . Let the p× 1 column vector T = T (W )
be a multivariate location estimator, and let the p × p symmetric positive
definite matrix C = C(W ) be a dispersion estimator.

Definition 1.17. Let x1j, ..., xnj be measurements on the jth random
variable Xj corresponding to the jth column of the data matrix W . The

jth sample mean is xj =
1

n

n∑

k=1

xkj. The sample covariance Sij estimates

Cov(Xi, Xj) = σij = E[(Xi −E(Xi))(Xj − E(Xj))], and

Sij =
1

n− 1

n∑

k=1

(xki − xi)(xkj − xj).

Sii = S2
i is the sample variance that estimates the population variance

σii = σ2
i . The sample correlation rij estimates the population correlation

Cor(Xi, Xj) = ρij =
σij

σiσj
, and

rij =
Sij

SiSj
=

Sij√
SiiSjj

=

∑n
k=1(xki − xi)(xkj − xj)√∑n

k=1(xki − xi)2
√∑n

k=1(xkj − xj)2
.

Definition 1.18. Let x1, ...,xn be the data where xi is a p × 1 vector.
The sample mean or sample mean vector

x =
1

n

n∑

i=1

xi = (x1, ..., xp)T =
1

n
W T1

where 1 is the n × 1 vector of ones. The sample covariance matrix

S =
1

n − 1

n∑

i=1

(xi − x)(xi − x)T = (Sij).

That is, the ij entry of S is the sample covariance Sij . The classical estimator
of multivariate location and dispersion is (T,C) = (x,S).

It can be shown that (n− 1)S =
∑n

i=1 xix
T
i − x xT =

W T W − 1

n
W T11T W .

Hence if the centering matrix H = I − 1

n
11T , then (n− 1)S = W T HW .
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Definition 1.19. The sample correlation matrix

R = (rij).

That is, the ij entry of R is the sample correlation rij.

Let the standardized random variables

Zj =
xj − xj√

Sjj

for j = 1, ..., p.Then the sample correlation matrix R is the sample covariance
matrix of the zi = (Zi1, ..., Zip)

T where i = 1, ..., n.
Often it is useful to standardize variables with a robust location estimator

and a robust scale estimator. The R function scale is useful. The R code
below shows how to standardize using

Zj =
xj − MED(xj)

MAD(xj)

for j = 1, ..., p. Here MED(xj) = MED(x1j, ..., xnj) and MAD(xj) =
MAD(x1j, ..., xnj) are the sample median and sample median absolute de-
viation of the data for the jth variable: x1j, ..., xnj. See Definitions 1.13 and
1.15. Some of these results are illustrated with the following R code.

x <- buxx[,1:3]; cov(x)

len nasal bigonal

len 118299.9257 -191.084603 -104.718925

nasal -191.0846 18.793905 -1.967121

bigonal -104.7189 -1.967121 36.796311

cor(x)

len nasal bigonal

len 1.00000000 -0.12815187 -0.05019157

nasal -0.12815187 1.00000000 -0.07480324

bigonal -0.05019157 -0.07480324 1.00000000

z <- scale(x)

cov(z)

len nasal bigonal

len 1.00000000 -0.12815187 -0.05019157

nasal -0.12815187 1.00000000 -0.07480324

bigonal -0.05019157 -0.07480324 1.00000000

medd <- apply(x,2,median)

madd <- apply(x,2,mad)/1.4826

z <- scale(x,center=medd,scale=madd)

ddplot4(z)#scaled data still has 5 outliers
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cov(z) #in the length variable

len nasal bigonal

len 4731.997028 -12.738974 -6.981262

nasal -12.738974 2.088212 -0.218569

bigonal -6.981262 -0.218569 4.088479

cor(z)

len nasal bigonal

len 1.00000000 -0.12815187 -0.05019157

nasal -0.12815187 1.00000000 -0.07480324

bigonal -0.05019157 -0.07480324 1.00000000

apply(z,2,median)

len nasal bigonal

0 0 0

#scaled data has coord. median = (0,0,0)ˆT

apply(z,2,mad)/1.4826

len nasal bigonal

1 1 1 #scaled data has unit MAD

Notation. A rule of thumb is a rule that often but not always works well
in practice.

Rule of Thumb 1.1. Multivariate procedures in low dimensions often
start to give good results for n ≥ 10p, especially if the distribution is close to
multivariate normal. In particular, we want n ≥ 10p for the sample covariance
and correlation matrices. For procedures with large sample theory on a large
class of distributions, for any value of n, there are always distributions where
the results will be poor, but will eventually be good for larger sample sizes.
Hence sometimes smaller n can be used, and sometimes much larger n is
needed. This rule of thumb is called the One in Ten Rule by Wikepedia.
Also see Austin and Steyerberg (2015), Green (1991), Harrell (2015, p. 72),
Harrell, Lee, and Mark (1996), Hair et al. (2009, pp. 573-574), Norman and
Streiner (1986, pp. 122, 130, 157), and Vittinghoff and McCulloch (2006).
This rule of thumb is much like the rule of thumb that says the central limit
theorem normal approximation for Y starts to be good for many distributions
for n ≥ 30. For high dimensional statistics, this rule of thumb can be useful
after variable selection results in k predictors if n ≥ 10k.

Definition 1.20. The ith Mahalanobis distance Di =
√
D2

i where the ith
squared Mahalanobis distance is

D2
i = D2

i (T (W ),C(W )) = (xi − T (W ))T C−1(W )(xi − T (W )) (1.16)

for each point xi. Notice that D2
i is a random variable (scalar valued). Let

(T,C) = (T (W ),C(W )). Then
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D2
x(T,C) = (x− T )T C−1(x− T ).

Hence D2
i uses x = xi.

Let the p × 1 location vector be µ, often the population mean, and let
the p × p dispersion matrix be Σ, often the population covariance matrix.
See Definition 1.11. Notice that if x is a random vector, then the population
squared Mahalanobis distance is

D2
x(µ,Σ) = (x − µ)T Σ−1(x − µ) (1.17)

and that the term Σ−1/2(x− µ) is the p−dimensional analog to the z-score
used to transform a univariate N(µ, σ2) random variable into a N(0, 1) ran-
dom variable. Hence the sample Mahalanobis distance Di =

√
D2

i is an ana-
log of the absolute value |Zi| of the sample Z-score Zi = (Xi −X)/σ̂. Also
notice that the Euclidean distance of xi from the estimate of center T (W )
is Di(T (W ), Ip) where Ip is the p× p identity matrix.

1.4.3 Outlier Detection if p > n

Most outlier detection methods work best if n ≥ 20p, but often data sets have
p > n, and outliers are a major problem. One of the simplest outlier detection
methods uses the Euclidean distances of the xi from the coordinatewise me-
dianDi = Di(MED(W ), Ip). Concentration type steps compute the weighted
median MEDj : the coordinatewise median computed from the “half set” of
cases xi with D2

i ≤ MED(D2
i (MEDj−1, Ip)) where MED0 = MED(W ).

We often used j = 0 (no concentration type steps) or j = 9. Let Di =
Di(MEDj, Ip). Let Wi = 1 if Di ≤ MED(D1, ..., Dn) + kMAD(D1, ..., Dn)
where k ≥ 0 and k = 5 is the default choice. Let Wi = 0, otherwise. Using
k ≥ 0 insures that at least half of the cases get weight 1. This weighting
corresponds to the weighting that would be used in a one sided metrically
trimmed mean (Huber type skipped mean) of the distances.

Application 1.2. This outlier resistant regression method uses terms from
the following definition. Let the ith case wi = (Yi,x

T
i )T where the continuous

predictors from xi are denoted by ui for i = 1, ..., n. Apply the covmb2

estimator to the ui, and then run the regression method on the m cases wi

corresponding to the covmb2 set B indices i1, ..., im, where m ≥ n/2.

Definition 1.21. Let the covmb2 set B of at least n/2 cases correspond
to the cases with weight Wi = 1. Then the covmb2 estimator (T,C) is the
sample mean and sample covariance matrix applied to the cases in set B.
Hence
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T =

∑n
i=1Wixi∑n

i=1Wi
and C =

∑n
i=1Wi(xi − T )(xi − T )T

∑n
i=1Wi − 1

.

Example 1.7. Let the clean data (nonoutliers) be i 1 for i = 1, 2, 3, 4, and
5 while the outliers are j 1 for j = 16, 17, 18, and 19. Here n = 9 and 1 is p×1.
Making a plot of the data for p = 2 may be useful. Then the coordinatewise
median MED0 = MED(W ) = 5 1. The median Euclidean distance of the data
is the Euclidean distance of 5 1 from 1 1 = the Euclidean distance of 5 1 from
9 1. The median ball is the hypersphere centered at the coordinatewise median
with radius r = MED(Di(MED(W ), Ip), i = 1, ..., n) that tends to contain
(n+1)/2 of the cases if n is odd. Hence the clean data are in the median ball
and the outliers are outside of the median ball. The coordinatewise median
of the cases with the 5 smallest distances is the coordinatewise median of
the clean data: MED1 = 3 1. Then the median Euclidean distance of the
data from MED1 is the Euclidean distance of 3 1 from 1 1 = the Euclidean
distance of 3 1 from 5 1. Again the clean cases are the cases with the 5 smallest
Euclidean distances. Hence MEDj = 3 1 for j ≥ 1. For j ≥ 1, if xi = j 1, then
Di = |j − 3|√p. Thus D(1) = 0, D(2) = D(3) =

√
p, and D(4) = D(5) = 2

√
p.

Hence MED(D1, ..., Dn) = D(5) = 2
√
p = MAD(D1, ..., Dn) since the median

distance of the Di from D(5) is 2
√
p − 0 = 2

√
p. Note that the 5 smallest

absolute distances |Di − D(5)| are 0, 0,
√
p,
√
p, and 2

√
p. Hence Wi = 1 if

Di ≤ 2
√
p + 10

√
p = 12

√
p. The clean data get weight 1 while the outliers

get weight 0 since the smallest distance Di for the outliers is the Euclidean
distance of 3 1 from 16 1 with a Di = ‖16 1 − 3 1‖ = 13

√
p. Hence the

covmb2 estimator (T,C) is the sample mean and sample covariance matrix
of the clean data. Note that the distance for the outliers to get zero
weight is proportional to the square root of the dimension

√
p.

The covmb2 estimator attempts to give a robust dispersion estimator
that reduces the bias by using a big ball about MEDj instead of a ball that
contains half of the cases. The weighting is the default method, but you can
also plot the squared Euclidean distances and estimate the number m ≥ n/2
of cases with the smallest distances to be used. The hdpack function medout

makes the plot, and the hdpack function getB gives the set B of cases that
got weight 1 along with the index indx of the case numbers that got weight
1. The function vecw stacks the columns of the dispersion matrix C into a
vector. Then the elements of the matrix can be plotted.

The function ddplot5 plots the Euclidean distances from the coordi-
natewise median versus the Euclidean distances from the covmb2 location
estimator. Typically the plotted points in this DD plot cluster about the
identity line, and outliers appear in the upper right corner of the plot with
a gap between the bulk of the data and the outliers. An alternative for out-
lier detection is to replace C by Cd = diag(σ̂11, ..., σ̂pp). For example, use
σ̂ii = Cii. See Ro et al. (2015) and Tarr et al. (2016) for references.
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Example 1.8. For the Buxton (1920) data with multiple linear regression,
height was the response variable while an intercept, head length, nasal height,
bigonal breadth, and cephalic index were used as predictors in the multiple
linear regression model. Observation 9 was deleted since it had missing values.
Five individuals, cases 61–65, were reported to be about 0.75 inches tall with
head lengths well over five feet! See Problem 1.13 to reproduce the following
plots.
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a) lasso
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b) lasso using covmb set B

Fig. 1.4 Response plot for lasso and lasso applied to the covmb2 set B.

Figure 1.4a) shows the response plot for lasso. The identity line passes
right through the outliers which are obvious because of the large gap. Figure
1.4b) shows the response plot from lasso for the cases in the covmb2 set
B applied to the predictors, and the set B included all of the clean cases
and omitted the 5 outliers. The response plot was made for all of the data,
including the outliers. Prediction interval (PI) bands are also included for
both plots. Both plots are useful for outlier detection, but the method for
plot 1.4b) is better for data analysis: impossible outliers should be deleted or
given 0 weight, we do not want to predict that some people are about 0.75
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Fig. 1.5 DD plot.

inches tall, and we do want to predict that the people were about 1.6 to 1.8
meters tall. Figure 1.5 shows the DD plot made using ddplot5. The five
outliers are in the upper right corner.

Also see Problem 1.14 where the covmb2 set B deleted the 8 cases with
the largest Di, including 5 outliers and 3 clean cases.

Example 1.9. This example helps illustrate the effect of outliers on clas-
sical methods. The artificial data set had n = 50, p = 100, and the clean
data was iid Np(0, Ip). Hence the diagonal elements of the population co-
variance matrix are 0 and the diagonal elements are 1. Plots of the elements
of the sample covariance matrix S and the covmb2 estimator C are not
shown, but were similar to Figure 1.6. Then the first ten cases were contam-
inated: xi ∼ Np(µ, 100Ip) where µ = (10, 0, ..., 0)T. Figure 1.6 shows that
the covmb2 dispersion matrix C was not much effected by the outliers. The
diagonal elements are near 1 and the off diagonal elements are near 0. Figure
1.7 shows that the sample covariance matrix S was greatly effected by the
outliers. Several sample covariances are less than −20 and several sample
variances are over 40.

R code to used to produce Figures 1.6 and 1.7 is shown below.

#n = 50, p = 100

x<-matrix(rnorm(5000),nrow=50,ncol=100)

out<-medout(x) #no outliers, try ddplot5(x)

out <- covmb2(x,msteps=0)
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Fig. 1.6 Elements of C for outlier data.
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Fig. 1.7 Elements of the classical covariance matrix S for outlier data.
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z<-out$cov

plot(diag(z)) #plot the diagonal elements of C

plot(out$center) #plot the elements of T

vecz <- vecw(z)$vecz

plot(vecz)

out<-covmb2(x,m=45)

plot(out$center)

plot(diag(out$cov))

#outliers

x[1:10,] <- 10*x[1:10,]

x[1:10,1] <- x[1:10]+10

medout(x) #The 10 outliers are easily detected in

#the plot of the distances from the MED(X).

ddplot5(x) #two widely separated clusters of data

tem <- getB(x,msteps=0)

tem$indx #all 40 clean cases were used

dim(tem$B) #40 by 100

out<-covmb2(x,msteps=0)

z<-out$cov

plot(diag(z))

plot(out$center)

vecz <- vecw(z)$vecz

plot(vecz) #plot the elements of C

#Figure 1.6

#examine the sample covariance matrix and mean

plot(diag(var(x)))

plot(apply(x,2,mean)) #plot elements of xbar

zc <- var(x)

vecz <- vecw(zc)$vecz

plot(vecz) #plot the elements of S

#Figure 1.7

out<-medout(x) #10 outliers

out<-covmb2(x,m=40)

plot(out$center)

plot(diag(out$cov))

The covmb2 estimator can also be used for n > p. The hdpack function
mldsim6 suggests that for 40% outliers, the outliers need to be further away
from the bulk of the data (covmb2(k=5) needs a larger value of pm) than for
the other six estimators if n ≥ 20p. With some outlier types, covmb2(k=5)
was often near best. Try the following commands. The other estimators need
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n > 2p, and as n gets close to 2p, covmb2 may outperform the other esti-
mators. Also see Problem 1.15.

#near point mass on major axis

mldsim6(n=100,p=10,outliers=1,gam=0.25,pm=25)

mldsim6(n=100,p=10,outliers=1,gam=0.4,pm=25) #bad

mldsim6(n=100,p=40,outliers=1,gam=0.1,pm=100)

mldsim6(n=200,p=60,outliers=1,gam=0.1,pm=100)

#mean shift outliers

mldsim6(n=100,p=40,outliers=3,gam=0.1,pm=10)

mldsim6(n=100,p=40,outliers=3,gam=0.25,pm=20)

mldsim6(n=200,p=60,outliers=3,gam=0.1,pm=10)

#concentration steps can help

mldsim6(n=100,p=10,outliers=3,gam=0.4,pm=10,osteps=0)

mldsim6(n=100,p=10,outliers=3,gam=0.4,pm=10,osteps=9)

Elliptically contoured distributions, defined below, are an important class
of distributions for multivariate data. The multivariate normal distribution
is also an elliptically contoured distribution. This distributions is useful for
discriminant analysis in Chapter 8 and for multivariate analysis in Chapter
10.

Definition 1.22: Johnson (1987, pp. 107-108). A p×1 random vector
X has an elliptically contoured distribution, also called an elliptically sym-
metric distribution, if X has joint pdf

f(z) = kp|Σ|−1/2g[(z − µ)T Σ−1(z − µ)], (1.18)

and we say X has an elliptically contoured ECp(µ,Σ, g) distribution.

If X has an elliptically contoured (EC) distribution, then the characteristic
function of X is

φX(t) = exp(itT µ)ψ(tT Σt) (1.19)

for some function ψ. If the second moments exist, then

E(X) = µ (1.20)

and
Cov(X) = cXΣ (1.21)

where
cX = −2ψ′(0).
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1.5 Large Sample Theory

The first three subsections will review large sample theory for the univariate
case, then multivariate theory will be given.

1.5.1 The CLT and the Delta Method

Large sample theory, also called asymptotic theory, is used to approximate
the distribution of an estimator when the sample size n is large. This the-
ory is extremely useful if the exact sampling distribution of the estimator is
complicated or unknown. To use this theory, one must determine what the
estimator is estimating, the rate of convergence, the asymptotic distribution,
and how large n must be for the approximation to be useful. Moreover, the
(asymptotic) standard error (SE), an estimator of the asymptotic standard
deviation, must be computable if the estimator is to be useful for inference.
Often the bootstrap can be used to compute the SE.

Theorem 1.4: the Central Limit Theorem (CLT). Let Y1, ..., Yn be
iid with E(Y ) = µ and VAR(Y ) = σ2. Let the sample mean Y n = 1

n

∑n
i=1 Yi.

Then √
n(Y n − µ)

D→ N(0, σ2).

Hence
√
n

(
Y n − µ

σ

)
=

√
n

(∑n
i=1 Yi − nµ

nσ

)
D→ N(0, 1).

Note that the sample mean is estimating the population mean µ with a
√
n

convergence rate, the asymptotic distribution is normal, and the SE = S/
√
n

where S is the sample standard deviation. For distributions “close” to the
normal distribution, the central limit theorem provides a good approximation
if the sample size n ≥ 30. Hesterberg (2014, pp. 41, 66) suggests n ≥ 5000 is
needed for moderately skewed distributions, but the n ≥ 30 rule works fairly
well for the exponential distribution. A special case of the CLT is proven
after Theorem 1.17.

Notation. The notation X ∼ Y and X
D
= Y both mean that the random

variables X and Y have the same distribution. Hence FX(x) = FY (y) for all

real y. The notation Yn
D→ X means that for large n we can approximate the

cdf of Yn by the cdf of X. The distribution of X is the limiting distribution
or asymptotic distribution of Yn. For the CLT, notice that

Zn =
√
n

(
Y n − µ

σ

)
=

(
Y n − µ

σ/
√
n

)
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is the z–score of Y . If Zn
D→ N(0, 1), then the notation Zn ≈ N(0, 1), also

written as Zn ∼ AN(0, 1), means approximate the cdf of Zn by the standard
normal cdf. See Definition 1.23. Similarly, the notation

Y n ≈ N(µ, σ2/n),

also written as Y n ∼ AN(µ, σ2/n), means approximate the cdf of Y n as
if Y n ∼ N(µ, σ2/n). The distribution of X does not depend on n, but the
approximate distribution Y n ≈ N(µ, σ2/n) does depend on n.

The two main applications of the CLT are to give the limiting distribution
of

√
n(Y n −µ) and the limiting distribution of

√
n(Yn/n−µX) for a random

variable Yn such that Yn =
∑n

i=1Xi where the Xi are iid with E(X) = µX

and VAR(X) = σ2
X .

Example 1.10. a) Let Y1, ..., Yn be iid Ber(ρ). Then E(Y ) = ρ and
VAR(Y ) = ρ(1 − ρ). (The Bernoulli (ρ) distribution is the binomial (1,ρ)
distribution.) Hence

√
n(Y n − ρ)

D→ N(0, ρ(1− ρ))

by the CLT.

b) Now suppose that Yn ∼ BIN(n, ρ). Then Yn
D
=
∑n

i=1Xi where
X1, ..., Xn are iid Ber(ρ). Hence

√
n

(
Yn

n
− ρ

)
D→ N(0, ρ(1 − ρ))

since
√
n

(
Yn

n
− ρ

)
D
=

√
n(Xn − ρ)

D→ N(0, ρ(1 − ρ))

by a).
c) Now suppose that Yn ∼ BIN(kn , ρ) where kn → ∞ as n→ ∞. Then

√
kn

(
Yn

kn
− ρ

)
≈ N(0, ρ(1 − ρ))

or
Yn

kn
≈ N

(
ρ,
ρ(1 − ρ)

kn

)
or Yn ≈ N(knρ, knρ(1 − ρ)) .

Theorem 1.5: the Delta Method. If g does not depend on n, g′(θ) 6= 0,
and √

n(Tn − θ)
D→ N(0, σ2),

then √
n(g(Tn) − g(θ))

D→ N(0, σ2[g′(θ)]2).
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Example 1.11. Let Y1, ..., Yn be iid with E(Y ) = µ and VAR(Y ) = σ2.
Then by the CLT, √

n(Y n − µ)
D→ N(0, σ2).

Let g(µ) = µ2. Then g′(µ) = 2µ 6= 0 for µ 6= 0. Hence

√
n((Y n)2 − µ2)

D→ N(0, 4σ2µ2)

for µ 6= 0 by the delta method.

Example 1.12. Let X ∼ Binomial(n, p) where the positive integer n is

large and 0 < p < 1. Find the limiting distribution of
√
n

[ (
X

n

)2

− p2

]
.

Solution. Example 1.10b gives the limiting distribution of
√
n(X

n − p). Let
g(p) = p2. Then g′(p) = 2p and by the delta method,

√
n

[ (
X

n

)2

− p2

]
=

√
n

(
g

(
X

n

)
− g(p)

)
D→

N(0, p(1− p)(g′(p))2) = N(0, p(1− p)4p2) = N(0, 4p3(1 − p)).

Example 1.13. Let Xn ∼ Poisson(nλ) where the positive integer n is
large and λ > 0.

a) Find the limiting distribution of
√
n

(
Xn

n
− λ

)
.

b) Find the limiting distribution of
√
n

[ √
Xn

n
−

√
λ

]
.

Solution. a) Xn
D
=
∑n

i=1 Yi where the Yi are iid Poisson(λ). Hence E(Y ) =
λ = V ar(Y ). Thus by the CLT,

√
n

(
Xn

n
− λ

)
D
=

√
n

( ∑n
i=1 Yi

n
− λ

)
D→ N(0, λ).

b) Let g(λ) =
√
λ. Then g′(λ) = 1

2
√

λ
and by the delta method,

√
n

[ √
Xn

n
−

√
λ

]
=

√
n

(
g

(
Xn

n

)
− g(λ)

)
D→

N(0, λ (g′(λ))2) = N

(
0, λ

1

4λ

)
= N

(
0,

1

4

)
.

Example 1.14. Let Y1, ..., Yn be independent and identically distributed
(iid) from a Gamma(α, β) distribution.
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a) Find the limiting distribution of
√
n
(
Y − αβ

)
.

b) Find the limiting distribution of
√
n
(

(Y )2 − c
)

for appropriate con-
stant c.

Solution: a) Since E(Y ) = αβ and V (Y ) = αβ2, by the CLT√
n
(
Y − αβ

) D→ N(0, αβ2).
b) Let µ = αβ and σ2 = αβ2. Let g(µ) = µ2 so g′(µ) = 2µ and

[g′(µ)]2 = 4µ2 = 4α2β2. Then by the delta method,
√
n
(

(Y )2 − c
) D→

N(0, σ2[g′(µ)]2) = N(0, 4α3β4) where c = µ2 = α2β2 .

1.5.2 Modes of Convergence and Consistency

Definition 1.23. Let {Zn, n = 1, 2, ...} be a sequence of random variables
with cdfs Fn, and letX be a random variable with cdf F . Then Zn converges
in distribution to X, written

Zn
D→ X,

or Zn converges in law to X, written Zn
L→ X, if

lim
n→∞

Fn(t) = F (t)

at each continuity point t of F . The distribution of X is called the limiting
distribution or the asymptotic distribution of Zn.

An important fact is that the limiting distribution does not depend
on the sample size n. Notice that the CLT and delta method give the
limiting distributions of Zn =

√
n(Y n − µ) and Zn =

√
n(g(Tn) − g(θ)),

respectively.
Convergence in distribution is useful if the distribution of Xn is unknown

or complicated and the distribution of X is easy to use. Then for large n we
can approximate the probability that Xn is in an interval by the probability

that X is in the interval. To see this, notice that if Xn
D→ X, then P (a <

Xn ≤ b) = Fn(b) − Fn(a) → F (b) − F (a) = P (a < X ≤ b) if F is continuous
at a and b.

Warning: convergence in distribution says that the cdf Fn(t) of Xn gets
close to the cdf of F (t) of X as n → ∞ provided that t is a continuity
point of F . Hence for any ε > 0 there exists Nt such that if n > Nt, then
|Fn(t) −F (t)| < ε. Notice that Nt depends on the value of t. Convergence in
distribution does not imply that the random variables Xn ≡ Xn(ω) converge
to the random variable X ≡ X(ω) for all ω.
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Example 1.15. Suppose that Xn ∼ U(−1/n, 1/n). Then the cdf Fn(x) of
Xn is

Fn(x) =





0, x ≤ −1
n

nx
2

+ 1
2
, −1

n
≤ x ≤ 1

n
1, x ≥ 1

n
.

Sketching Fn(x) shows that it has a line segment rising from 0 at x = −1/n
to 1 at x = 1/n and that Fn(0) = 0.5 for all n ≥ 1. Examining the cases
x < 0, x = 0, and x > 0 shows that as n → ∞,

Fn(x) →





0, x < 0
1
2 x = 0
1, x > 0.

Notice that the right hand side is not a cdf since right continuity does not
hold at x = 0. Notice that if X is a random variable such that P (X = 0) = 1,
then X has cdf

FX(x) =

{
0, x < 0
1, x ≥ 0.

Since x = 0 is the only discontinuity point of FX(x) and since Fn(x) → FX(x)
for all continuity points of FX(x) (i.e. for x 6= 0),

Xn
D→ X.

Example 1.16. Suppose Yn ∼ U(0, n). Then Fn(t) = t/n for 0 < t ≤ n
and Fn(t) = 0 for t ≤ 0. Hence limn→∞ Fn(t) = 0 for t ≤ 0. If t > 0 and
n > t, then Fn(t) = t/n → 0 as n → ∞. Thus limn→∞ Fn(t) = 0 for all
t, and Yn does not converge in distribution to any random variable Y since
H(t) ≡ 0 is not a cdf.

Definition 1.24. A sequence of random variables Xn converges in distri-
bution to a constant τ (θ), written

Xn
D→ τ (θ), if Xn

D→ X

where P (X = τ (θ)) = 1. The distribution of the random variable X is said
to be degenerate at τ (θ) or to be a point mass at τ (θ).

Definition 1.25. A sequence of random variables Xn converges in prob-
ability to a constant τ (θ), written

Xn
P→ τ (θ),

if for every ε > 0,

lim
n→∞

P (|Xn − τ (θ)| < ε) = 1 or, equivalently, lim
n→∞

P(|Xn − τ (θ)| ≥ ε) = 0.
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The sequence Xn converges in probability to X, written

Xn
P→ X,

if Xn −X
P→ 0.

Notice that Xn
P→ X if for every ε > 0,

lim
n→∞

P (|Xn −X| < ε) = 1, or, equivalently, lim
n→∞

P(|Xn − X| ≥ ε) = 0.

Definition 1.26. Let the parameter space Θ be the set of possible values
of θ. A sequence of estimators Tn of τ (θ) is consistent for τ (θ) if

Tn
P→ τ (θ)

for every θ ∈ Θ. If Tn is consistent for τ (θ), then Tn is a consistent esti-
mator of τ (θ).

Consistency is a weak property that is usually satisfied by good estimators.
Tn is a consistent estimator for τ (θ) if the probability that Tn falls in any
neighborhood of τ (θ) goes to one, regardless of the value of θ ∈ Θ.

Definition 1.27. For a real number r > 0, Yn converges in rth mean to a
random variable Y , written

Yn
r→ Y,

if
E(|Yn − Y |r) → 0

as n→ ∞. In particular, if r = 2, Yn converges in quadratic mean to Y ,
written

Yn
2→ Y or Yn

qm→ Y,

if
E[(Yn − Y )2] → 0

as n → ∞.

Theorem 1.6: Generalized Chebyshev’s Inequality. Let u : R →
[0,∞) be a nonnegative function. If E[u(Y )] exists then for any c > 0,

P [u(Y ) ≥ c] ≤ E[u(Y )]

c
.

If µ = E(Y ) exists, then taking u(y) = |y− µ|r and c̃ = cr gives
Markov’s Inequality: for r > 0 and any c > 0,

P [|Y − µ| ≥ c] = P [|Y − µ|r ≥ cr] ≤ E[|Y − µ|r]
cr

.
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If r = 2 and σ2 = VAR(Y ) exists, then we obtain
Chebyshev’s Inequality:

P [|Y − µ| ≥ c] ≤ VAR(Y )

c2
.

Proof. The proof is given for pdfs. For pmfs, replace the integrals by sums.
Now

E[u(Y )] =

∫

R

u(y)f(y)dy =

∫

{y:u(y)≥c}
u(y)f(y)dy +

∫

{y:u(y)<c}
u(y)f(y)dy

≥
∫

{y:u(y)≥c}
u(y)f(y)dy

since the integrand u(y)f(y) ≥ 0. Hence

E[u(Y )] ≥ c

∫

{y:u(y)≥c}
f(y)dy = cP [u(Y ) ≥ c]. �

The following theorem gives sufficient conditions for Tn to be a consistent
estimator of τ (θ). Notice that Eθ[(Tn − τ (θ))2] = MSEτ(θ)(Tn) → 0 for all

θ ∈ Θ is equivalent to Tn
qm→ τ (θ) for all θ ∈ Θ.

Theorem 1.7. a) If

lim
n→∞

MSEτ(θ)(Tn) = 0

for all θ ∈ Θ, then Tn is a consistent estimator of τ (θ).

b) If
lim

n→∞
VARθ(Tn) = 0 and lim

n→∞
Eθ(Tn) = τ (θ)

for all θ ∈ Θ, then Tn is a consistent estimator of τ (θ).

Proof. a) Using Theorem 1.6 with Y = Tn, u(Tn) = (Tn − τ (θ))2 and
c = ε2 shows that for any ε > 0,

Pθ(|Tn − τ (θ)| ≥ ε) = Pθ[(Tn − τ (θ))2 ≥ ε2] ≤ Eθ[(Tn − τ (θ))2 ]

ε2
.

Hence
lim

n→∞
Eθ[(Tn − τ (θ))2] = lim

n→∞
MSEτ(θ)(Tn) → 0

is a sufficient condition for Tn to be a consistent estimator of τ (θ).
b) Recall that

MSEτ(θ)(Tn) = VARθ(Tn) + [Biasτ(θ)(Tn)]
2
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where Biasτ(θ)(Tn) = Eθ(Tn) − τ (θ). Since MSEτ(θ)(Tn) → 0 if both
VARθ(Tn) → 0 and Biasτ(θ)(Tn) = Eθ(Tn) − τ (θ) → 0, the result follows
from a). �

The following result shows estimators that converge at a
√
n rate are con-

sistent. Use this result and the delta method to show that g(Tn) is a consistent
estimator of g(θ). Note that b) follows from a) with Xθ ∼ N(0, v(θ)). The
WLLN shows that Y is a consistent estimator of E(Y ) = µ if E(Y ) exists.

Theorem 1.8. a) Let Xθ be a random variable with distribution depend-
ing on θ, and 0 < δ ≤ 1. If

nδ(Tn − τ (θ))
D→ Xθ

then Tn
P→ τ (θ).

b) If √
n(Tn − τ (θ))

D→ N(0, v(θ))

for all θ ∈ Θ, then Tn is a consistent estimator of τ (θ).

Definition 1.28. A sequence of random variables Xn converges almost
everywhere (or almost surely, or with probability 1) to X if

P ( lim
n→∞

Xn = X) = 1.

This type of convergence will be denoted by

Xn
ae→ X.

Notation such as “Xn converges to X ae” will also be used. Sometimes “ae”
will be replaced with “as” or “wp1.” We say that Xn converges almost ev-
erywhere to τ (θ), written

Xn
ae→ τ (θ),

if P (limn→∞Xn = τ (θ)) = 1.

Theorem 1.9. Let Yn be a sequence of iid random variables with E(Yi) =
µ. Then

a) Strong Law of Large Numbers (SLLN): Y n
ae→ µ, and

b) Weak Law of Large Numbers (WLLN): Y n
P→ µ.

Proof of WLLN when V (Yi) = σ2: By Chebyshev’s inequality, for every
ε > 0,

P (|Y n − µ| ≥ ε) ≤ V (Y n)

ε2
=

σ2

nε2
→ 0

as n → ∞. �
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In proving consistency results, there is an infinite sequence of estimators
that depend on the sample size n. Hence the subscript n will be added to the
estimators.

Definition 1.29. Lehmann (1999, pp. 53-54): a) A sequence of random
variables Wn is tight or bounded in probability, written Wn = OP (1), if for
every ε > 0 there exist positive constants Dε and Nε such that

P (|Wn| ≤ Dε) ≥ 1 − ε

for all n ≥ Nε. Also Wn = OP (Xn) if |Wn/Xn| = OP (1). Similarly, Wn =
OP (n−1/2) if |√n Wn| = OP (1).

b) The sequence Wn = oP (n−δ) if nδWn = oP (1) which means that

nδWn
P→ 0.

c) Wn has the same order as Xn in probability, written Wn �P Xn, if for
every ε > 0 there exist positive constants Nε and 0 < dε < Dε such that

P

(
dε ≤

∣∣∣∣
Wn

Xn

∣∣∣∣ ≤ Dε

)
= P

(
1

Dε
≤
∣∣∣∣
Xn

Wn

∣∣∣∣ ≤
1

d ε

)
≥ 1 − ε

for all n ≥ Nε.
d) Similar notation is used for a k × r matrix An = A = [ai,j(n)] if each

element ai,j(n) has the desired property. For example, A = OP (n−1/2) if
each ai,j(n) = OP (n−1/2).

Definition 1.30. Let Wn = ‖µ̂n − µ‖.
a) If Wn �P n−δ for some δ > 0, then both Wn and µ̂n have (tightness)

rate nδ.
b) If there exists a constant κ such that

nδ(Wn − κ)
D→ X

for some nondegenerate random variable X, then both Wn and µ̂n have
convergence rate nδ .

Theorem 1.10. Suppose there exists a constant κ such that

nδ(Wn − κ)
D→ X.

a) Then Wn = OP (n−δ).
b) If X is not degenerate, then Wn �P n−δ .

The above result implies that if Wn has convergence rate nδ, then Wn has
tightness rate nδ, and the term “tightness” will often be omitted. Part a) is
proved, for example, in Lehmann (1999, p. 67).
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The following result shows that if Wn �P Xn, then Xn �P Wn, Wn =
OP (Xn), and Xn = OP (Wn). Notice that if Wn = OP (n−δ), then nδ is
a lower bound on the rate of Wn. As an example, if the CLT holds then
Y n = OP (n−1/3), but Y n �P n−1/2.

Theorem 1.11. a) If Wn �P Xn, then Xn �P Wn.
b) If Wn �P Xn, then Wn = OP (Xn).
c) If Wn �P Xn, then Xn = OP (Wn).
d) Wn �P Xn iff Wn = OP (Xn) and Xn = OP (Wn).

Proof. a) Since Wn �P Xn,

P

(
dε ≤

∣∣∣∣
Wn

Xn

∣∣∣∣ ≤ Dε

)
= P

(
1

Dε
≤
∣∣∣∣
Xn

Wn

∣∣∣∣ ≤
1

d ε

)
≥ 1 − ε

for all n ≥ Nε. Hence Xn �P Wn.
b) Since Wn �P Xn,

P (|Wn| ≤ |XnDε|) ≥ P

(
dε ≤

∣∣∣∣
Wn

Xn

∣∣∣∣ ≤ Dε

)
≥ 1 − ε

for all n ≥ Nε. Hence Wn = OP (Xn).
c) Follows by a) and b).
d) If Wn �P Xn, then Wn = OP (Xn) and Xn = OP (Wn) by b) and c).

Now suppose Wn = OP (Xn) and Xn = OP (Wn). Then

P (|Wn| ≤ |Xn|Dε/2) ≥ 1 − ε/2

for all n ≥ N1, and

P (|Xn| ≤ |Wn|1/dε/2) ≥ 1 − ε/2

for all n ≥ N2. Hence

P (A) ≡ P

(∣∣∣∣
Wn

Xn

∣∣∣∣ ≤ Dε/2

)
≥ 1 − ε/2

and

P (B) ≡ P

(
dε/2 ≤

∣∣∣∣
Wn

Xn

∣∣∣∣
)

≥ 1 − ε/2

for all n ≥ N = max(N1, N2). Since P (A∩B) = P (A)+P (B)−P (A∪B) ≥
P (A) + P (B) − 1,

P (A ∩B) = P (dε/2 ≤
∣∣∣∣
Wn

Xn

∣∣∣∣ ≤ Dε/2) ≥ 1 − ε/2 + 1 − ε/2− 1 = 1 − ε

for all n ≥ N. Hence Wn �P Xn. �
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The following result is used to prove the following Theorem 1.13 which says
that if there are K estimators Tj,n of a parameter β, such that ‖Tj,n −β‖ =
OP (n−δ) where 0 < δ ≤ 1, and if T ∗

n picks one of these estimators, then
‖T ∗

n − β‖ = OP (n−δ).

Theorem 1.12: Pratt (1959). Let X1,n, ..., XK,n each be OP (1) where
K is fixed. Suppose Wn = Xin,n for some in ∈ {1, ..., K}. Then

Wn = OP (1). (1.22)

Proof.

P (max{X1,n, ..., XK,n} ≤ x) = P (X1,n ≤ x, ..., XK,n ≤ x) ≤

FWn(x) ≤ P (min{X1,n, ..., XK,n} ≤ x) = 1 − P (X1,n > x, ..., XK,n > x).

SinceK is finite, there exists B > 0 andN such that P (Xi,n ≤ B) > 1−ε/2K
and P (Xi,n > −B) > 1 − ε/2K for all n > N and i = 1, ..., K. Bonferroni’s

inequality states that P (∩K
i=1Ai) ≥

∑K
i=1 P (Ai) − (K − 1). Thus

FWn(B) ≥ P (X1,n ≤ B, ..., XK,n ≤ B) ≥

K(1 − ε/2K)− (K − 1) = K − ε/2 −K + 1 = 1 − ε/2

and
−FWn(−B) ≥ −1 + P (X1,n > −B, ..., XK,n > −B) ≥

−1 +K(1 − ε/2K) − (K − 1) = −1 +K − ε/2−K + 1 = −ε/2.
Hence

FWn(B) − FWn(−B) ≥ 1 − ε for n > N. �

Theorem 1.13. Suppose ‖Tj,n − β‖ = OP (n−δ) for j = 1, ..., K where
0 < δ ≤ 1. Let T ∗

n = Tin,n for some in ∈ {1, ..., K} where, for example, Tin,n

is the Tj,n that minimized some criterion function. Then

‖T ∗
n − β‖ = OP (n−δ). (1.23)

Proof. Let Xj,n = nδ‖Tj,n−β‖. Then Xj,n = OP (1) so by Theorem 1.12,
nδ‖T ∗

n − β‖ = OP (1). Hence ‖T ∗
n − β‖ = OP (n−δ). �

1.5.3 Slutsky’s Theorem and Related Results

Theorem 1.14: Slutsky’s Theorem. Suppose Yn
D→ Y and Wn

P→ w for
some constant w. Then

a) Yn +Wn
D→ Y + w,

b) YnWn
D→ wY, and
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c) Yn/Wn
D→ Y/w if w 6= 0.

Theorem 1.15. a) If Xn
P→ X, then Xn

D→ X.

b) If Xn
ae→ X, then Xn

P→ X and Xn
D→ X.

c) If Xn
r→ X, then Xn

P→ X and Xn
D→ X.

d) Xn
P→ τ (θ) iff Xn

D→ τ (θ).

e) If Xn
P→ θ and τ is continuous at θ, then τ (Xn)

P→ τ (θ).

f) If Xn
D→ θ and τ is continuous at θ, then τ (Xn)

D→ τ (θ).

Suppose that for all θ ∈ Θ, Tn
D→ τ (θ), Tn

r→ τ (θ), or Tn
ae→ τ (θ). Then

Tn is a consistent estimator of τ (θ) by Theorem 1.15. We are assuming that
the function τ does not depend on n.

Example 1.17. Let Y1, ..., Yn be iid with mean E(Yi) = µ and variance
V (Yi) = σ2. Then the sample mean Y n is a consistent estimator of µ since i)
the SLLN holds (use Theorems 1.9 and 1.15), ii) the WLLN holds, and iii)
the CLT holds (use Theorem 1.8). Since

lim
n→∞

VARµ(Y n) = lim
n→∞

σ2/n = 0 and lim
n→∞

Eµ(Y n) = µ,

Y n is also a consistent estimator of µ by Theorem 1.7b. By the delta method
and Theorem 1.8b, Tn = g(Y n) is a consistent estimator of g(µ) if g′(µ) 6= 0
for all µ ∈ Θ. By Theorem 1.15e, g(Y n) is a consistent estimator of g(µ) if g
is continuous at µ for all µ ∈ Θ.

Theorem 1.16. Assume that the function g does not depend on n.

a) Generalized Continuous Mapping Theorem: If Xn
D→ X and the

function g is such that P [X ∈ C(g)] = 1 where C(g) is the set of points

where g is continuous, then g(Xn)
D→ g(X).

b) Continuous Mapping Theorem: If Xn
D→ X and the function g is

continuous, then g(Xn)
D→ g(X).

Remark 1.6. For Theorem 1.15, a) follows from Slutsky’s Theorem by

taking Yn ≡ X = Y and Wn = Xn − X. Then Yn
D→ Y = X and Wn

P→ 0.

Hence Xn = Yn +Wn
D→ Y +0 = X. The convergence in distribution parts of

b) and c) follow from a). Part f) follows from d) and e). Part e) implies that
if Tn is a consistent estimator of θ and τ is a continuous function, then τ (Tn)
is a consistent estimator of τ (θ). Theorem 1.16 says that convergence in dis-
tribution is preserved by continuous functions, and even some discontinuities
are allowed as long as the set of continuity points is assigned probability 1
by the asymptotic distribution. Equivalently, the set of discontinuity points
is assigned probability 0.
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Example 1.18. (Ferguson 1996, p. 40): If Xn
D→ X, then 1/Xn

D→ 1/X
if X is a continuous random variable since P (X = 0) = 0 and x = 0 is the
only discontinuity point of g(x) = 1/x.

Example 1.19. Show that if Yn ∼ tn, a t distribution with n degrees of

freedom, then Yn
D→ Z where Z ∼ N(0, 1).

Solution: Yn
D
= Z/

√
Vn/n where Z Vn ∼ χ2

n. If Wn =
√
Vn/n

P→ 1,

then the result follows by Slutsky’s Theorem. But Vn
D
=
∑n

i=1Xi where the

iid Xi ∼ χ2
1. Hence Vn/n

P→ 1 by the WLLN and
√
Vn/n

P→ 1 by Theorem
1.15e.

Theorem 1.17: Continuity Theorem. Let Yn be sequence of random
variables with characteristic functions φn(t). Let Y be a random variable
with characteristic function (cf) φ(t).

a)

Yn
D→ Y iff φn(t) → φ(t) ∀t ∈ R.

b) Also assume that Yn has moment generating function (mgf) mn and Y
has mgf m. Assume that all of the mgfs mn and m are defined on |t| ≤ d for
some d > 0. Then if mn(t) → m(t) as n→ ∞ for all |t| < c where 0 < c < d,

then Yn
D→ Y .

Application: Proof of a Special Case of the CLT. Following
Rohatgi (1984, pp. 569-9), let Y1, ..., Yn be iid with mean µ, variance σ2, and
mgf mY (t) for |t| < to. Then

Zi =
Yi − µ

σ

has mean 0, variance 1, and mgf mZ(t) = exp(−tµ/σ)mY (t/σ) for |t| < σto.
We want to show that

Wn =
√
n

(
Y n − µ

σ

)
D→ N(0, 1).

Notice that Wn =

n−1/2
n∑

i=1

Zi = n−1/2
n∑

i=1

(
Yi − µ

σ

)
= n−1/2

∑n
i=1 Yi − nµ

σ
=
n−1/2

1
n

Y n − µ

σ
.

Thus

mWn(t) = E(etWn) = E[exp(tn−1/2
n∑

i=1

Zi)] = E[exp(
n∑

i=1

tZi/
√
n)]
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=

n∏

i=1

E[etZi/
√

n] =

n∏

i=1

mZ(t/
√
n) = [mZ(t/

√
n)]n.

Set ψ(x) = log(mZ (x)). Then

log[mWn(t)] = n log[mZ(t/
√
n)] = nψ(t/

√
n) =

ψ(t/
√
n)

1
n

.

Now ψ(0) = log[mZ(0)] = log(1) = 0. Thus by L’Hôpital’s rule (where the
derivative is with respect to n), limn→∞ log[mWn(t)] =

lim
n→∞

ψ(t/
√
n )

1
n

= lim
n→∞

ψ′(t/
√
n )[−t/2

n3/2 ]

(−1
n2 )

=
t

2
lim

n→∞
ψ′(t/

√
n )

1√
n

.

Now

ψ′(0) =
m′

Z(0)

mZ(0)
= E(Zi)/1 = 0,

so L’Hôpital’s rule can be applied again, giving limn→∞ log[mWn(t)] =

t

2
lim

n→∞

ψ′′(t/
√
n )[ −t

2n3/2 ]

( −1
2n3/2 )

=
t2

2
lim

n→∞
ψ′′(t/

√
n ) =

t2

2
ψ′′(0).

Now

ψ′′(t) =
d

dt

m′
Z(t)

mZ(t)
=
m′′

Z(t)mZ(t) − (m′
Z (t))2

[mZ(t)]2
.

So
ψ′′(0) = m′′

Z(0) − [m′
Z(0)]2 = E(Z2

i ) − [E(Zi)]
2 = 1.

Hence limn→∞ log[mWn(t)] = t2/2 and

lim
n→∞

mWn(t) = exp(t2/2)

which is the N(0,1) mgf. Thus by the continuity theorem,

Wn =
√
n

(
Y n − µ

σ

)
D→ N(0, 1). �

1.5.4 Multivariate Limit Theorems

Many of the univariate results of the previous 3 subsections can be extended
to random vectors. For the limit theorems, the vector X is typically a k × 1
column vector and XT is a row vector. Let ‖x‖ =

√
x2

1 + · · ·+ x2
k be the

Euclidean norm of x.
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Definition 1.31. Let Xn be a sequence of random vectors with joint cdfs
Fn(x) and let X be a random vector with joint cdf F (x).

a) Xn converges in distribution to X, written Xn
D→ X , if Fn(x) →

F (x) as n → ∞ for all points x at which F (x) is continuous. The distribution
of X is the limiting distribution or asymptotic distribution of Xn.

b) Xn converges in probability to X, written Xn
P→ X, if for every

ε > 0, P (‖Xn − X‖ > ε) → 0 as n→ ∞.
c) Let r > 0 be a real number. Then Xn converges in rth mean to X ,

written Xn
r→ X, if E(‖Xn − X‖r) → 0 as n → ∞.

d) Xn converges almost everywhere to X , written Xn
ae→ X, if

P (limn→∞ Xn = X) = 1.

Theorems 1.18 and 1.19 below are the multivariate extensions of the
limit theorems in subsection 1.5.1. When the limiting distribution of Zn =√
n(g(T n) − g(θ)) is multivariate normal Nk(0,Σ), approximate the joint

cdf of Zn with the joint cdf of the Nk(0,Σ) distribution. Thus to find proba-
bilities, manipulate Zn as if Zn ≈ Nk(0,Σ). To see that the CLT is a special
case of the MCLT below, let k = 1, E(X) = µ, and V (X) = Σx = σ2.

Theorem 1.18: the Multivariate Central Limit Theorem (MCLT).
If X1, ...,Xn are iid k × 1 random vectors with E(X) = µ and Cov(X) =
Σx, then √

n(Xn − µ)
D→ Nk(0,Σx)

where the sample mean

Xn =
1

n

n∑

i=1

X i.

To see that the delta method is a special case of the multivariate delta
method, note that if Tn and parameter θ are real valued, then Dg(θ)

= g′(θ).

Theorem 1.19: the Multivariate Delta Method. If g does not depend
on n and √

n(T n − θ)
D→ Nk(0,Σ),

then √
n(g(T n) − g(θ))

D→ Nd(0,Dg(θ)ΣDT
g(θ)

)

where the d× k Jacobian matrix of partial derivatives

Dg(θ)
=




∂
∂θ1

g1(θ) . . . ∂
∂θk

g1(θ)
...

...
∂

∂θ1
gd(θ) . . . ∂

∂θk
gd(θ)


 .
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Here the mapping g : R
k → R

d needs to be differentiable in a neighborhood
of θ ∈ R

k.

Definition 1.32. If the estimator g(T n)
P→ g(θ) for all θ ∈ Θ, then g(T n)

is a consistent estimator of g(θ).

Theorem 1.20. If 0 < δ ≤ 1, X is a random vector, and

nδ(g(T n) − g(θ))
D→ X ,

then g(T n)
P→ g(θ).

Theorem 1.21. If X1, ...,Xn are iid, E(‖X‖) <∞, and E(X) = µ, then

a) WLLN: Xn
P→ µ, and

b) SLLN: Xn
ae→ µ.

Theorem 1.22: Continuity Theorem. Let Xn be a sequence of k × 1
random vectors with characteristic functions φn(t), and let X be a k × 1
random vector with cf φ(t). Then

Xn
D→ X iff φn(t) → φ(t)

for all t ∈ R
k.

Theorem 1.23: Cramér Wold Device. Let Xn be a sequence of k× 1
random vectors, and let X be a k × 1 random vector. Then

Xn
D→ X iff tTXn

D→ tTX

for all t ∈ R
k.

Application: Proof of the MCLT Theorem 1.18. Note that for fixed
t, the tT X i are iid random variables with mean tT µ and variance tT Σt.

Hence by the CLT, tT√n(Xn − µ)
D→ N(0, tT Σt). The right hand side has

distribution tT X where X ∼ Nk(0,Σ). Hence by the Cramér Wold Device,
√
n(Xn − µ)

D→ Nk(0,Σ). �

Theorem 1.24. a) If Xn
P→ X , then Xn

D→ X .
b)

Xn
P→ g(θ) iff Xn

D→ g(θ).

Let g(n) ≥ 1 be an increasing function of the sample size n: g(n) ↑ ∞, e.g.
g(n) =

√
n. See White (1984, p. 15). If a k×1 random vector T n−µ converges

to a nondegenerate multivariate normal distribution with convergence rate√
n, then T n has (tightness) rate

√
n.
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Definition 1.33. Let An = [ai,j(n)] be an r × c random matrix.
a) An = OP (Xn) if ai,j(n) = OP (Xn) for 1 ≤ i ≤ r and 1 ≤ j ≤ c.
b) An = op(Xn) if ai,j(n) = op(Xn) for 1 ≤ i ≤ r and 1 ≤ j ≤ c.
c) An �P (1/(g(n)) if ai,j(n) �P (1/(g(n)) for 1 ≤ i ≤ r and 1 ≤ j ≤ c.
d) Let A1,n = T n − µ and A2,n = Cn − cΣ for some constant c > 0. If
A1,n �P (1/(g(n)) and A2,n �P (1/(g(n)), then (T n,Cn) has (tightness)
rate g(n).

Theorem 1.25: Continuous Mapping Theorem. Let Xn ∈ R
k. If

Xn
D→ X and if the function g : R

k → R
j is continuous, then

g(Xn)
D→ g(X).

The following two theorems are taken from Severini (2005, pp. 345-349,
354).

Theorem 1.26. Let Xn = (X1n, ..., Xkn)T be a sequence of k × 1
random vectors, let Y n be a sequence of k × 1 random vectors, and let
X = (X1 , ..., Xk)

T be a k× 1 random vector. Let W n be a sequence of k× k
nonsingular random matrices, and let C be a k × k constant nonsingular
matrix.

a) Xn
P→ X iff Xin

P→ Xi for i = 1, ..., k.

b) Slutsky’s Theorem: If Xn
D→ X and Y n

P→ c for some constant k×1

vector c, then i) Xn + Y n
D→ X + c and

ii) Y T
nXn

D→ cT X .

c) If Xn
D→ X and W n

P→ C, then W nXn
D→ CX, XT

nW n
D→ XT C,

W−1
n Xn

D→ C−1X , and XT
n W−1

n
D→ XT C−1.

Theorem 1.27. LetWn, Xn, Yn, and Zn be sequences of random variables
such that Yn > 0 and Zn > 0. (Often Yn and Zn are deterministic, e.g.
Yn = n−1/2.)

a) If Wn = OP (1) and Xn = OP (1), then Wn +Xn = OP (1) and WnXn =
OP (1), thus OP (1) + OP (1) = OP (1) and OP (1)OP (1) = OP (1).

b) If Wn = OP (1) and Xn = oP (1), then Wn +Xn = OP (1) and WnXn =
oP (1), thus OP (1) + oP (1) = OP (1) and OP (1)oP (1) = oP (1).

c) If Wn = OP (Yn) and Xn = OP (Zn), then Wn +Xn = OP (max(Yn, Zn))
and WnXn = OP (YnZn), thus OP (Yn) + OP (Zn) = OP (max(Yn, Zn)) and
OP (Yn)OP (Zn) = OP (YnZn).

Theorem 1.28. i) Suppose
√
n(Tn − µ)

D→ Np(θ,Σ). Let A be a q × p

constant matrix. Then A
√
n(Tn−µ) =

√
n(ATn −Aµ)

D→ Nq(Aθ,AΣAT ).
ii) Let Σ > 0. Assume n is large enough so that C > 0. If (T,C)

is a consistent estimator of (µ, s Σ) where s > 0 is some constant, then
D2

x(T,C) = (x − T )T C−1(x − T ) = s−1D2
x(µ,Σ) + oP (1), so D2

x(T,C) is
a consistent estimator of s−1D2

x(µ,Σ).



48 1 Introduction

iii) Let Σ > 0. Assume n is large enough so that C > 0. If
√
n(T − µ)

D→
Np(0,Σ) and if C is a consistent estimator of Σ, then n(T − µ)T C−1(T −
µ)

D→ χ2
p. In particular,

n(x− µ)T S−1(x − µ)
D→ χ2

p.

Proof: ii) D2
x(T,C) = (x − T )T C−1(x− T ) =

(x− µ + µ− T )T [C−1 − s−1Σ−1 + s−1Σ−1](x− µ + µ− T )
= (x − µ)T [s−1Σ−1](x − µ) + (x − T )T [C−1 − s−1Σ−1](x− T )
+(x − µ)T [s−1Σ−1](µ− T ) + (µ− T )T [s−1Σ−1](x − µ)
+(µ − T )T [s−1Σ−1](µ− T ) = s−1D2

x(µ,Σ) + OP (1).
(Note that D2

x(T,C) = s−1D2
x(µ,Σ) +OP (n−δ) if (T,C) is a consistent

estimator of (µ, s Σ) with rate nδ where 0 < δ ≤ 0.5 if [C−1 − s−1Σ−1] =
OP (n−δ).)

Alternatively, D2
x(T,C) is a continuous function of (T,C) if C > 0 for

n > 10p. Hence D2
x(T,C)

P→ D2
x(µ, sΣ).

iii) Note that Zn =
√
n Σ−1/2(T − µ)

D→ Np(0, Ip). Thus ZT
nZn =

n(T − µ)T Σ−1(T − µ)
D→ χ2

p. Now n(T − µ)T C−1(T − µ) =

n(T − µ)T [C−1 − Σ−1 + Σ−1](T − µ) = n(T − µ)T Σ−1(T − µ) +

n(T −µ)T [C−1 −Σ−1](T −µ) = n(T −µ)T Σ−1(T −µ)+ oP (1)
D→ χ2

p since√
n(T − µ)T [C−1 − Σ−1]

√
n(T − µ) = OP (1)oP (1)OP (1) = oP (1). �

Example 1.20. Suppose that xn yn for n = 1, 2, .... Suppose xn
D→ x,

and yn
D→ y where x y. Then

[
xn

yn

]
D→
[

x

y

]

by Theorem 1.22. To see this, let t = (tT
1 , t

T
2 )T , zn = (xT

n , y
T
n )T , and z =

(xT , yT )T . Since xn yn and x y, the characteristic function

φzn(t) = φxn(t1)φyn
(t2) → φx(t1)φy(t2) = φz(t).

Hence g(zn)
D→ g(z) by Theorem 1.25.

Remark 1.7. In the above example, we can show x y instead of assum-
ing x y. See Ferguson (1996, p. 42).

Remark 1.8. The behavior of convergence in distribution to a MVN
distribution in B) is much like the behavior of the MVN distributions in
A). The results in B) can be proven using the multivariate delta method. Let
A be a q× k constant matrix, b a constant, a a k× 1 constant vector, and d

a q × 1 constant vector. Note that a + bXn = a+ AXn with A = bI . Thus
i) and ii) follow from iii).

A) Suppose X ∼ Nk(µ,Σ), then
i) AX ∼ Nq(Aµ,AΣAT ).



1.6 Mixture Distributions 49

ii) a + bX ∼ Nk(a + bµ, b2Σ).
iii) AX + d ∼ Nq(Aµ + d,AΣAT ).
(Find the mean and covariance matrix of the left hand side and plug in those
values for the right hand side. Be careful with the dimension k or q.)

B) Suppose Xn
D→ Nk(µ,Σ). Then

i) AXn
D→ Nq(Aµ,AΣAT ).

ii) a + bXn
D→ Nk(a + bµ, b2Σ).

iii) AXn + d
D→ Nq(Aµ + d,AΣAT ).

1.6 Mixture Distributions

Mixture distributions are useful for model and variable selection since β̂Imin,0

is a mixture distribution of β̂Ij,0, and the lasso estimator β̂L is a mixture

distribution of β̂L,λi
for i = 1, ...,M . See Chapter 2. A random vector u has

a mixture distribution if u equals a random vector uj with probability πj

for j = 1, ..., J . See Definition 1.11 for the population mean and population
covariance matrix of a random vector.

Definition 1.34. The distribution of a g×1 random vector u is a mixture
distribution if the cumulative distribution function (cdf) of u is

Fu(t) =
J∑

j=1

πjFuj
(t) (1.24)

where the probabilities πj satisfy 0 ≤ πj ≤ 1 and
∑J

j=1 πj = 1, J ≥ 2,
and Fuj

(t) is the cdf of a g × 1 random vector uj . Then u has a mixture
distribution of the uj with probabilities πj.

Theorem 1.29. Suppose E(h(u)) and the E(h(uj)) exist. Then

E(h(u)) =

J∑

j=1

πjE[h(uj)]. (1.25)

Hence

E(u) =

J∑

j=1

πjE[uj ], (1.26)

and Cov(u) = E(uuT ) −E(u)E(uT ) = E(uuT ) − E(u)[E(u)]T =∑J
j=1 πjE[uju

T
j ]− E(u)[E(u)]T =
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J∑

j=1

πjCov(uj) +

J∑

j=1

πjE(uj)[E(uj)]
T −E(u)[E(u)]T . (1.27)

If E(uj) = θ for j = 1, ..., J , then E(u) = θ and

Cov(u) =

J∑

j=1

πjCov(uj).

This theorem is easy to prove if the uj are continuous random vectors with
(joint) probability density functions (pdfs) fuj (t). Then u is a continuous
random vector with pdf

fu(t) =

J∑

j=1

πjfuj (t), and E(h(u)) =

∫ ∞

−∞
· · ·
∫ ∞

−∞
h(t)fu(t)dt

=
J∑

j=1

πj

∫ ∞

−∞
· · ·
∫ ∞

−∞
h(t)fuj

(t)dt =
J∑

j=1

πjE[h(uj)]

where E[h(uj)] is the expectation with respect to the random vector uj . Note
that

E(u)[E(u)]T =

J∑

j=1

J∑

k=1

πjπkE(uj)[E(uk)]T . (1.28)

Alternatively, with respect to a Riemann Stieltjes integral, E[h(u)] =∫
h(t)dF (t) provided the expected value exists, and the integral is a lin-

ear operator with respect to both h and F . Hence for a mixture distribution,
E[h(u)] =

∫
h(t)dF (t) =

∫
h(t) d




J∑

j=1

πjFuj (t)


 =

J∑

j=1

πj

∫
h(t)dFuj(t) =

J∑

j=1

πjE[h(uj)].

1.7 A Review of Multiple Linear Regression

The following review follows Olive (2017a: ch. 2) closely. Several of the results
in this section will be covered in more detail or proven in Chapter 2.

Definition 1.35. For an important class of regression models, regression
is the study of the conditional distribution Y |xT β of the response variable
Y given xT β where the vector of predictors x = (x1, ..., xp)

T .

Definition 1.36. A quantitative variable takes on numerical values
while a qualitative variable takes on categorical values.
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Definition 1.37. Suppose that the response variable Y and at least one
predictor variable xi are quantitative. Then the multiple linear regression
(MLR) model is

Yi = xi,1β1 + xi,2β2 + · · ·+ xi,pβp + ei = xT
i β + ei (1.29)

for i = 1, . . . , n. Here n is the sample size and the random variable ei is the
ith error. Suppressing the subscript i, the model is Y = xT β + e.

In matrix notation, these n equations become

Y = Xβ + e, (1.30)

where Y is an n × 1 vector of dependent variables, X is an n × p matrix
of predictors, β is a p × 1 vector of unknown coefficients, and e is an n × 1
vector of unknown errors. Equivalently,




Y1

Y2

...
Yn


 =




x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p

...
...

. . .
...

xn,1 xn,2 . . . xn,p







β1

β2

...
βp


+




e1
e2
...
en


 . (1.31)

Often the first column of X is X1 = 1, the n × 1 vector of ones. The ith
case (xT

i , Yi) = (xi1, xi2, ..., xip, Yi) corresponds to the ith row xT
i of X and

the ith element of Y (if xi1 ≡ 1, then xi1 could be omitted). In the MLR
model Y = xT β + e, the Y and e are random variables, but we only have
observed values Yi and xi. If the ei are iid (independent and identically
distributed) with zero mean E(ei) = 0 and variance VAR(ei) = V (ei) = σ2,
then regression is used to estimate the unknown parameters β and σ2.

Definition 1.38. The constant variance MLR model uses the as-
sumption that the errors e1, ..., en are iid with mean E(ei) = 0 and variance
VAR(ei) = σ2 <∞. Also assume that the errors are independent of the pre-
dictor variables xi. The predictor variables xi are assumed to be fixed and
measured without error. The cases (xT

i , Yi) are independent for i = 1, ..., n.

If the predictor variables are random variables, then the above MLR model
is conditional on the observed values of the xi. That is, observe the xi and
then act as if the observed xi are fixed.

Definition 1.39. The unimodal MLR model has the same assumptions
as the constant variance MLR model, as well as the assumption that the zero
mean constant variance errors e1, ..., en are iid from a unimodal distribution
that is not highly skewed. Note that E(ei) = 0 and V (ei) = σ2 <∞.

Definition 1.40. The normal MLR model or Gaussian MLR model has
the same assumptions as the unimodal MLR model but adds the assumption
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that the errors e1, ..., en are iidN(0, σ2) random variables. That is, the ei are
iid normal random variables with zero mean and variance σ2.

The unknown coefficients for the above 3 models are usually estimated
using (ordinary) least squares (OLS).

Notation. The symbol A ≡ B = f(c) means that A and B are equivalent
and equal, and that f(c) is the formula used to compute A and B.

Definition 1.41. Given an estimate b of β, the corresponding vector of
predicted values or fitted values is Ŷ ≡ Ŷ (b) = Xb. Thus the ith fitted value

Ŷi ≡ Ŷi(b) = xT
i b = xi,1b1 + · · ·+ xi,pbp.

The vector of residuals is r ≡ r(b) = Y − Ŷ (b). Thus ith residual ri ≡
ri(b) = Yi − Ŷi(b) = Yi − xi,1b1 − · · · − xi,pbp.

Most regression methods attempt to find an estimate β̂ of β which mini-
mizes some criterion function Q(b) of the residuals.

Definition 1.42. The ordinary least squares (OLS) estimator β̂OLS min-
imizes

QOLS(b) =

n∑

i=1

r2i (b), (1.32)

and β̂OLS = (XT X)−1XT Y .

The vector of predicted or fitted values Ŷ OLS = Xβ̂OLS = HY where the
hat matrix H = X(XT X)−1XT provided the inverse exists. Typically the
subscript OLS is omitted, and the least squares regression equation is
Ŷ = β̂1x1 + β̂2x2 + · · ·+ β̂pxp where x1 ≡ 1 if the model contains a constant.

Definition 1.43. For MLR, the response plot is a plot of the ESP = fitted
values = Ŷi versus the response Yi, while the residual plot is a plot of the
ESP = Ŷi versus the residuals ri.

Theorem 1.30. Suppose that the regression estimator b of β is used to
find the residuals ri ≡ ri(b) and the fitted values Ŷi ≡ Ŷi(b) = xT

i b. Then

in the response plot of Ŷi versus Yi, the vertical deviations from the identity
line (that has unit slope and zero intercept) are the residuals ri(b).

Proof. The identity line in the response plot is Y = xT b. Hence the
vertical deviation is Yi − xT

i b = ri(b). �

The results in the following theorem are properties of least squares (OLS),
not of the underlying MLR model. Definitions 1.41 and 1.42 define the hat
matrix H , vector of fitted values Ŷ , and vector of residuals r. Parts f) and
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g) make residual plots useful. If the plotted points are linear with roughly
constant variance and the correlation is zero, then the plotted points scatter
about the r = 0 line with no other pattern. If the plotted points in a residual
plot of w versus r do show a pattern such as a curve or a right opening
megaphone, zero correlation will usually force symmetry about either the
r = 0 line or the w = median(w) line. Hence departures from the ideal plot
of random scatter about the r = 0 line are often easy to detect.

Let the n× p design matrix of predictor variables be

X =




x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p

...
...

. . .
...

xn,1 xn,2 . . . xn,p


 =

[
v1 v2 . . . vp

]
=




xT
1
...

xT
n




where v1 = 1.
Warning: If n > p, as is usually the case for the full rank linear model,

X is not square, so (XT X)−1 6= X−1(XT )−1 since X−1 does not exist.

Theorem 1.31. Suppose that X is an n× p matrix of full rank p. Then
a) H is symmetric: H = HT .
b) H is idempotent: HH = H .
c) XT r = 0 so that vT

j r = 0.
d) If there is a constant v1 = 1 in the model, then the sum of the residuals

is zero:
∑n

i=1 ri = 0.

e) rT Ŷ = 0.
f) If there is a constant in the model, then the sample correlation of the

fitted values and the residuals is 0: corr(r, Ŷ ) = 0.
g) If there is a constant in the model, then the sample correlation of the

jth predictor with the residuals is 0: corr(r, vj) = 0 for j = 1, ..., p.

Proof. a) XT X is symmetric since (XT X)T = XT (XT )T = XT X .
Hence (XT X)−1 is symmetric since the inverse of a symmetric matrix is
symmetric. (Recall that if A has an inverse then (AT )−1 = (A−1)T .) Thus
using (AT )T = A and (ABC)T = CT BT AT shows that

HT = XT [(XT X)−1]T (XT )T = H.

b) HH = X(XT X)−1XT X(XT X)−1XT = H since (XT X)−1XT X =
Ip, the p× p identity matrix.

c) XT r = XT (Ip − H)Y = [XT − XT X(XT X)−1XT ]Y =

[XT −XT ]Y = 0. Since vj is the jth column of X , vT
j is the jth row of XT

and vT
j r = 0 for j = 1, ..., p.

d) Since v1 = 1, vT
1 r =

∑n
i=1 ri = 0 by c).

e) rT Ŷ = [(In −H)Y ]THY = Y T (In −H)HY = Y T (H −H)Y = 0.
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f) The sample correlation between W and Z is corr(W,Z) =

∑n
i=1(wi − w)(zi − z)

(n− 1)swsz
=

∑n
i=1(wi −w)(zi − z)√∑n

i=1(wi −w)2
∑n

i=1(zi − z)2

where sm is the sample standard deviation of m for m = w, z. So the result

follows if A =
∑n

i=1(Ŷi − Ŷ )(ri − r) = 0. Now r = 0 by d), and thus

A =

n∑

i=1

Ŷiri − Ŷ

n∑

i=1

ri =

n∑

i=1

Ŷiri

by d) again. But
∑n

i=1 Ŷiri = rT Ŷ = 0 by e).

g) Following the argument in f), the result follows if A =∑n
i=1(xi,j − xj)(ri − r) = 0 where xj =

∑n
i=1 xi,j/n is the sample mean of

the jth predictor. Now r =
∑n

i=1 ri/n = 0 by d), and thus

A =

n∑

i=1

xi,jri − xj

n∑

i=1

ri =

n∑

i=1

xi,jri

by d) again. But
∑n

i=1 xi,jri = vT
j r = 0 by c). �

1.7.1 The ANOVA F Test

After fitting least squares and checking the response and residual plots to see
that an MLR model is reasonable, the next step is to check whether there is
an MLR relationship between Y and the nontrivial predictors x2, ..., xp. If

at least one of these predictors is useful, then the OLS fitted values Ŷi should
be used. If none of the nontrivial predictors is useful, then Y will give as
good predictions as Ŷi. Here the sample mean Y is given by Definition 1.12.
In the definition below, SSE is the sum of squared residuals and a residual
ri = êi = “errorhat.” In the literature “errorhat” is often rather misleadingly
abbreviated as “error.”

Definition 1.44. Assume that a constant is in the MLR model.
a) The total sum of squares

SSTO =
n∑

i=1

(Yi − Y )2. (1.33)

b) The regression sum of squares
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SSR =

n∑

i=1

(Ŷi − Y )2. (1.34)

c) The residual sum of squares or error sum of squares is

SSE =

n∑

i=1

(Yi − Ŷi)
2 =

n∑

i=1

r2i . (1.35)

The result in the following theorem is a property of least squares (OLS),
not of the underlying MLR model. An obvious application is that given any
two of SSTO, SSE, and SSR, the 3rd sum of squares can be found using the
formula SSTO = SSE + SSR.

Theorem 1.32. Assume that a constant is in the MLR model. Then
SSTO = SSE + SSR.

Proof.

SSTO =
n∑

i=1

(Yi − Ŷi + Ŷi − Y )2 = SSE + SSR + 2
n∑

i=1

(Yi − Ŷi)(Ŷi − Y ).

Hence the result follows if

A ≡
n∑

i=1

ri(Ŷi − Y ) = 0.

But

A =

n∑

i=1

riŶi − Y

n∑

i=1

ri = 0

by Theorem 1.31 d) and e). �

Definition 1.45. Assume that a constant is in the MLR model and that
SSTO 6= 0. The coefficient of multiple determination

R2 = [corr(Yi, Ŷi)]
2 =

SSR

SSTO
= 1 − SSE

SSTO

where corr(Yi, Ŷi) is the sample correlation of Yi and Ŷi.

Warnings: i) 0 ≤ R2 ≤ 1, but small R2 does not imply that the MLR
model is bad.

ii) If the MLR model contains a constant, then there are several equivalent
formulas for R2. If the model does not contain a constant, then R2 depends
on the software package.

iii) R2 does not have much meaning unless the response plot and residual
plot both look good.

iv) R2 tends to be too high if n is small.
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v) R2 tends to be too high if there are two or more separated clusters of
data in the response plot.

vi) R2 is too high if the number of predictors p is close to n.
vii) In large samples R2 will be large (close to one) if σ2 is small compared

to the sample variance S2
Y of the response variable Y . R2 is also large if the

sample variance of Ŷ is close to S2
Y . Thus R2 is sometimes interpreted as

the proportion of the variability of Y explained by conditioning on x, but
warnings i) - v) suggest that R2 may not have much meaning.

The following 2 theorems suggest that R2 does not behave well when many
predictors that are not needed in the model are included in the model. Such
a variable is sometimes called a noise variable and the MLR model is “fitting
noise.” Theorem 1.34 appears, for example, in Cramér (1946, pp. 414-415),
and suggests that R2 should be considerably larger than p/n if the predictors
are useful. Note that if n = 10p and p ≥ 2, then under the conditions of
Theorem 1.34, E(R2) ≤ 0.1.

Theorem 1.33. Assume that a constant is in the MLR model. Adding a
variable to the MLR model does not decrease (and usually increases) R2.

Theorem 1.34. Assume that a constant β1 is in the MLR model, that
β2 = · · · = βp = 0 and that the ei are iid N(0, σ2). Hence the Yi are iid
N(β1, σ

2). Then

a) R2 follows a beta distribution: R2 ∼ beta(p−1
2 , n−p

2 ).

b)

E(R2) =
p− 1

n− 1
.

c)

VAR(R2) =
2(p− 1)(n− p)

(n− 1)2(n+ 1)
.

Notice that each SS/n estimates the variability of some quantity. SSTO/n
≈ S2

Y , SSE/n ≈ S2
e = σ2, and SSR/n ≈ S2

Ŷ
.

Definition 1.46. Assume that a constant is in the MLR model. Associated
with each SS in Definition 1.44 is a degrees of freedom (df) and a mean
square = SS/df . For SSTO, df = n − 1 and MSTO = SSTO/(n − 1).
For SSR, df = p − 1 and MSR = SSR/(p − 1). For SSE, df = n − p and
MSE = SSE/(n − p).

Under mild conditions, if the MLR model is appropriate, then MSE is a√
n consistent estimator of σ2 by Su and Cook (2012).

The ANOVA F test tests whether any of the nontrivial predictors x2, ..., xp

are needed in the OLS MLR model, that is, whether Yi should be predicted
by the OLS fit Ŷi = β̂1 + xi,2β̂2 + · · · + xi,pβ̂p or with the sample mean Y .
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ANOVA stands for analysis of variance, and the computer output needed
to perform the test is contained in the ANOVA table. Below is an ANOVA
table given in symbols. Sometimes “Regression” is replaced by “Model” and
“Residual” by “Error.”

Summary Analysis of Variance Table

Source df SS MS F p-value

Regression p− 1 SSR MSR F0=MSR/MSE for H0:
Residual n− p SSE MSE β2 = · · · = βp = 0

Remark 1.9. Recall that for a 4 step test of hypotheses, the p–value is the
probability of getting a test statistic as extreme as the test statistic actually
observed and that H0 is rejected if the p–value < δ. As a benchmark for this
textbook, use δ = 0.05 if δ is not given. The 4th step is the nontechnical
conclusion which is crucial for presenting your results to people who are not
familiar with MLR. Replace Y and x2, ..., xp by the actual variables used in
the MLR model.

Notation. The p–value ≡ pvalue given by output tends to only be cor-
rect for the normal MLR model. Hence the output is usually only giving an
estimate of the pvalue, which will often be denoted by pval. So reject H0 if
pval ≤ δ. Often

pval− pvalue
P→ 0

(converges to 0 in probability, so pval is a consistent estimator of pvalue) as
the sample size n→ ∞. See Section 1.5. Then the computer output pval is a
good estimator of the unknown pvalue. We will use Fo ≡ F0, Ho ≡ H0, and
Ha ≡ HA ≡ H1.

The 4 step ANOVA F test of hypotheses is below.
i) State the hypotheses H0 : β2 = · · · = βp = 0 HA: not H0.
ii) Find the test statistic F0 = MSR/MSE or obtain it from output.
iii) Find the pval from output or use the F –table: pval =

P (Fp−1,n−p > F0).

iv) State whether you reject H0 or fail to reject H0. If H0 is rejected, conclude
that there is an MLR relationship between Y and the predictors x2, ..., xp. If
you fail to reject H0, conclude that there is not an MLR relationship between
Y and the predictors x2, ..., xp. (Or there is not enough evidence to conclude
that there is an MLR relationship between Y and the predictors.)

Some assumptions are needed on the ANOVA F test. Assume that both
the response and residual plots look good. It is crucial that there are no
outliers. Then a rule of thumb is that if n − p is large, then the ANOVA
F test p–value is approximately correct. An analogy can be made with the
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central limit theorem, Y is a good estimator for µ if the Yi are iid N(µ, σ2)
and also a good estimator for µ if the data are iid with mean µ and variance
σ2 if n is large enough.

If all of the xi are different (no replication) and if the number of predictors
p = n, then the OLS fit Ŷi = Yi and R2 = 1. Notice that H0 is rejected if the
statistic F0 is large. More precisely, reject H0 if

F0 > Fp−1,n−p,1−δ

where
P (F ≤ Fp−1,n−p,1−δ) = 1 − δ

when F ∼ Fp−1,n−p. Since R2 increases to 1 while (n− p)/(p− 1) decreases
to 0 as p increases to n, Theorem 1.35a below implies that if p is large then
the F0 statistic may be small even if some of the predictors are very good. It
is a good idea to use n ≥ 10p or at least n ≥ 5p if possible.

Theorem 1.35. Assume that the MLR model has a constant β1.
a)

F0 =
MSR

MSE
=

R2

1 − R2

n− p

p− 1
.

b) If the errors ei are iid N(0, σ2), and if H0 : β2 = · · · = βp = 0 is true,
then F0 has an F distribution with p− 1 numerator and n − p denominator
degrees of freedom: F0 ∼ Fp−1,n−p.

c) If the errors are iid with mean 0 and variance σ2, if the error distribution
is close to normal, and if n − p is large enough, and if H0 is true, then
F0 ≈ Fp−1,n−p in that the p-value from the software (pval) is approximately
correct.

Remark 1.10. When a constant is not contained in the model (i.e. xi,1 is
not equal to 1 for all i), then the computer output still produces an ANOVA
table with the test statistic and p–value, and nearly the same 4 step test of
hypotheses can be used. The hypotheses are now H0 : β1 = · · · = βp = 0
HA: not H0, and you are testing whether or not there is an MLR relationship
between Y and x1, ..., xp. An MLR model without a constant (no intercept)
is sometimes called a “regression through the origin.” See Section 1.7.5.

1.7.2 The Partial F Test

Suppose that there is data on variables Z, w1, ..., wr and that a useful MLR
model has been made using Y = t(Z), x1 ≡ 1, x2, ..., xp where each xi is
some function of w1, ..., wr. This useful model will be called the full model. It
is important to realize that the full model does not need to use every variable
wj that was collected. For example, variables with outliers or missing values



1.7 A Review of Multiple Linear Regression 59

may not be used. Forming a useful full model is often very difficult, and it is
often not reasonable to assume that the candidate full model is good based
on a single data set, especially if the model is to be used for prediction.

Even if the full model is useful, the investigator will often be interested in
checking whether a model that uses fewer predictors will work just as well.
For example, perhaps xp is a very expensive predictor but is not needed given
that x1, ..., xp−1 are in the model. Also a model with fewer predictors tends
to be easier to understand.

Definition 1.47. Let the full model use Y , x1 ≡ 1, x2, ..., xp and let the
reduced model use Y , x1, xi2 , ..., xiq where {i2, ..., iq} ⊂ {2, ..., p}.

The partial F test is used to test whether the reduced model is good in
that it can be used instead of the full model. It is crucial that the reduced
and full models be selected before looking at the data. If the reduced model
is selected after looking at the full model output and discarding the worst
variables, then the p–value for the partial F test will be too high. If the
data needs to be looked at to build the full model, as is often the case, data
splitting is useful.

For (ordinary) least squares, usually a constant is used, and we are assum-
ing that both the full model and the reduced model contain a constant. The
partial F test has null hypothesis H0 : βiq+1

= · · · = βip = 0, and alternative
hypothesis HA : at least one of the βij 6= 0 for j > q. The null hypothesis is
equivalent to H0: “the reduced model is good.” Since only the full model and
reduced model are being compared, the alternative hypothesis is equivalent
to HA: “the reduced model is not as good as the full model, so use the full
model,” or more simply, HA : “use the full model.”

To perform the partial F test, fit the full model and the reduced model
and obtain the ANOVA table for each model. The quantities dfF , SSE(F)
and MSE(F) are for the full model and the corresponding quantities from
the reduced model use an R instead of an F . Hence SSE(F) and SSE(R) are
the residual sums of squares for the full and reduced models, respectively.
Shown below is output only using symbols.
Full model

Source df SS MS F0 and p-value
Regression p − 1 SSR MSR F0=MSR/MSE

Residual dfF = n− p SSE(F) MSE(F) for H0 : β2 = · · · = βp = 0

Reduced model

Source df SS MS F0 and p-value

Regression q − 1 SSR MSR F0=MSR/MSE
Residual dfR = n− q SSE(R) MSE(R) for H0 : β2 = · · · = βq = 0
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The 4 step partial F test of hypotheses is below. i) State the hy-
potheses. H0: the reduced model is good HA: use the full model
ii) Find the test statistic. FR =

[
SSE(R) − SSE(F )

dfR − dfF

]
/MSE(F )

iii) Find the pval = P(FdfR−dfF ,dfF > FR). ( Here dfR−dfF = p−q = number
of parameters set to 0, and dfF = n−p, while pval is the estimated p–value.)
iv) State whether you reject H0 or fail to reject H0. Reject H0 if the pval ≤ δ
and conclude that the full model should be used. Otherwise, fail to reject H0

and conclude that the reduced model is good.

Sometimes software has a shortcut. In particular, the R software uses the
anova command. As an example, assume that the full model uses x2 and
x3 while the reduced model uses x2. Both models contain a constant. Then
the following commands will perform the partial F test. (On the computer
screen the second command looks more like
red < − lm(y∼x2).)

full <- lm(y˜x2+x3)

red <- lm(y˜x2)

anova(red,full)

For an n × 1 vector a, let

‖a‖ =
√
a2
1 + · · ·+ a2

n =
√

aT a

be the Euclidean norm of a. If r and rR are the vector of residuals from
the full and reduced models, respectively, notice that SSE(F ) = ‖r‖2 and
SSE(R) = ‖rR‖2.

The following theorem suggests that H0 is rejected in the partial F test if
the change in residual sum of squares SSE(R) − SSE(F ) is large compared
to SSE(F ). If the change is small, then FR is small and the test suggests
that the reduced model can be used.

Theorem 1.36. Let R2 and R2
R be the multiple coefficients of determi-

nation for the full and reduced models, respectively. Let Ŷ and Ŷ R be the
vectors of fitted values for the full and reduced models, respectively. Then
the test statistic in the partial F test is

FR =

[
SSE(R) − SSE(F )

dfR − dfF

]
/MSE(F ) =

[
‖Ŷ ‖2 − ‖Ŷ R‖2

dfR − dfF

]
/MSE(F ) =
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SSE(R) − SSE(F )

SSE(F )

n− p

p − q
=
R2 −R2

R

1 −R2

n− p

p− q
.

Definition 1.48. An FF plot is a plot of fitted values from 2 different
models or fitting methods. An RR plot is a plot of residuals from 2 different
models or fitting methods.

Six plots are useful diagnostics for the partial F test: the RR plot with
the full model residuals on the vertical axis and the reduced model residuals
on the horizontal axis, the FF plot with the full model fitted values on the
vertical axis, and always make the response and residual plots for the full
and reduced models. Suppose that the full model is a useful MLR model. If
the reduced model is good, then the response plots from the full and reduced
models should be very similar, visually. Similarly, the residual plots from
the full and reduced models should be very similar, visually. Finally, the
correlation of the plotted points in the RR and FF plots should be high,
≥ 0.95, say, and the plotted points in the RR and FF plots should cluster
tightly about the identity line. Add the identity line to both the RR and
FF plots as a visual aid. Also add the OLS line from regressing r on rR to
the RR plot (the OLS line is the identity line in the FF plot). If the reduced
model is good, then the OLS line should nearly coincide with the identity line
in that it should be difficult to see that the two lines intersect at the origin.
If the FF plot looks good but the RR plot does not, the reduced model may
be good if the main goal of the analysis is to predict Y. These plots are also
useful for other methods such as lasso.

1.7.3 The Wald t Test

Often investigators hope to examine βk in order to determine the importance
of the predictor xk in the model; however, βk is the coefficient for xk given
that the other predictors are in the model. Hence βk depends strongly on
the other predictors in the model. Suppose that the model has an intercept:
x1 ≡ 1. The predictor xk is highly correlated with the other predictors if
the OLS regression of xk on x1, ..., xk−1, xk+1, ..., xp has a high coefficient of
determination R2

k. If this is the case, then often xk is not needed in the model
given that the other predictors are in the model. If at least one R2

k is high
for k ≥ 2, then there is multicollinearity among the predictors.

As an example, suppose that Y = height, x1 ≡ 1, x2 = left leg length, and
x3 = right leg length. Then x2 should not be needed given x3 is in the model
and β2 = 0 is reasonable. Similarly β3 = 0 is reasonable. On the other hand,
if the model only contains x1 and x2, then x2 is extremely important with β2

near 2. If the model contains x1, x2, x3, x4 = height at shoulder, x5 = right
arm length, x6 = head length, and x7 = length of back, then R2

i may be high
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for each i ≥ 2. Hence xi is not needed in the MLR model for Y given that
the other predictors are in the model.

Definition 1.49. The 100 (1 − δ) % CI for βk is β̂k ± tn−p,1−δ/2 se(β̂k).
If the degrees of freedom d = n − p ≥ 30, the N(0,1) cutoff z1−δ/2 may be
used.

Know how to do the 4 step Wald t–test of hypotheses.
i) State the hypotheses H0 : βk = 0 HA : βk 6= 0.

ii) Find the test statistic to,k = β̂k/se(β̂k) or obtain it from output.
iii) Find pval from output or use the t–table: pval =

2P (tn−p < −|to,k|) = 2P (tn−p > |to,k|).

Use the normal table or the d = Z line in the t–table if the degrees of freedom
d = n − p ≥ 30. Again pval is the estimated p–value.
iv) State whether you reject H0 or fail to reject H0 and give a nontechnical
sentence restating your conclusion in terms of the story problem.

Recall thatH0 is rejected if the pval≤ δ. As a benchmark for this textbook,
use δ = 0.05 if δ is not given. If H0 is rejected, then conclude that xk is needed
in the MLR model for Y given that the other predictors are in the model.
If you fail to reject H0, then conclude that xk is not needed in the MLR
model for Y given that the other predictors are in the model. (Or there is
not enough evidence to conclude that xk is needed in the MLR model given
that the other predictors are in the model.) Note that xk could be a very
useful individual predictor, but may not be needed if other predictors are
added to the model.

1.7.4 The OLS Criterion

The OLS estimator β̂ minimizes the OLS criterion

QOLS(η) =

n∑

i=1

r2i (η)

where the residual ri(η) = Yi−xT
i η. In other words, let ri = ri(β̂) be the OLS

residuals. Then
∑n

i=1 r
2
i ≤∑n

i=1 r
2
i (η) for any p×1 vector η, and the equality

holds (if and only if) iff η = β̂ if the n×p design matrix X is of full rank p ≤ n.
In particular, if X has full rank p, then

∑n
i=1 r

2
i <

∑n
i=1 r

2
i (β) =

∑n
i=1 e

2
i

even if the MLR model Y = Xβ + e is a good approximation to the data.
Warning: Often η is replaced by β: QOLS(β) =

∑n
i=1 r

2
i (β). This no-

tation is often used in Statistics when there are estimating equations. For
example, maximum likelihood estimation uses the log likelihood log(L(θ))
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Fig. 1.8 The OLS Fit Minimizes the Sum of Squared Residuals

where θ is the vector of unknown parameters and the dummy variable in the
log likelihood.

Example 1.21. When a model depends on the predictors x only through
the linear combination xT β, then xT β is called a sufficient predictor and
xT β̂ is called an estimated sufficient predictor (ESP). For OLS the model is
Y = xT β + e, and the fitted value Ŷ = ESP . To illustrate the OLS criterion
graphically, consider the Gladstone (1905) data where we used brain weight as
the response. A constant, x2 = age, x3 = sex, and x4 = (size)1/3 were used
as predictors after deleting five “infants” from the data set. In Figure 1.8a, the
OLS response plot of the OLS ESP = Ŷ versus Y is shown. The vertical devi-
ations from the identity line are the residuals, and OLS minimizes the sum of
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squared residuals. If any other ESP xT η is plotted versus Y , then the vertical
deviations from the identity line are the residuals ri(η). For this data, the OLS

estimator β̂ = (498.726,−1.597, 30.462, 0.696)T. Figure 1.8b shows the re-
sponse plot using the ESP xT η where η = (498.726,−1.597, 30.462, 0.796)T.
Hence only the coefficient for x4 was changed; however, the residuals ri(η) in
the resulting plot are much larger in magnitude on average than the residuals
in the OLS response plot. With slightly larger changes in the OLS ESP, the
resulting η will be such that the squared residuals are massive.

Theorem 1.37. The OLS estimator β̂ is the unique minimizer of the OLS
criterion if X has full rank p ≤ n.

Proof: Seber and Lee (2003, pp. 36-37). Recall that the hat matrix
H = X(XT X)−1XT and notice that (I−H)T = I−H, that (I−H)H = 0
and that HX = X . Let η be any p× 1 vector. Then

(Y − Xβ̂)T (Xβ̂ − Xη) = (Y − HY )T (HY − HXη) =

Y T (I − H)H(Y − Xη) = 0.

Thus QOLS(η) = ‖Y − Xη‖2 = ‖Y − Xβ̂ + Xβ̂ − Xη‖2 =

‖Y − Xβ̂‖2 + ‖Xβ̂ − Xη‖2 + 2(Y − Xβ̂)T (Xβ̂ − Xη).

Hence
‖Y − Xη‖2 = ‖Y − Xβ̂‖2 + ‖Xβ̂ − Xη‖2. (1.36)

So
‖Y − Xη‖2 ≥ ‖Y − Xβ̂‖2

with equality iff
X(β̂ − η) = 0

iff β̂ = η since X is full rank. �

Alternatively calculus can be used. Notice that ri(η) = Yi−xi,1η1−xi,2η2−
· · · − xi,pηp. Recall that xT

i is the ith row of X while vj is the jth column.
Since QOLS(η) =

n∑

i=1

(Yi − xi,1η1 − xi,2η2 − · · · − xi,pηp)
2,

the jth partial derivative

∂QOLS(η)

∂ηj
= −2

n∑

i=1

xi,j(Yi−xi,1η1−xi,2η2−· · ·−xi,pηp) = −2(vj)
T (Y −Xη)

for j = 1, ..., p. Combining these equations into matrix form, setting the
derivative to zero and calling the solution β̂ gives
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XT Y − XT Xβ̂ = 0,

or
XT Xβ̂ = XT Y . (1.37)

Equation (1.37) is known as the normal equations. If X has full rank then

β̂ = (XT X)−1XT Y . To show that β̂ is the global minimizer of the OLS
criterion, use the argument following Equation (1.36).

1.7.5 The No Intercept MLR Model

The no intercept MLR model, also known as regression through the origin, is
still Y = Xβ+e, but there is no intercept in the model, so X does not contain
a column of ones 1. Hence the intercept term β1 = β1(1) is replaced by β1xi1.
Software gives output for this model if the “no intercept” or “intercept = F”
option is selected. For the no intercept model, the assumption E(e) = 0 is
important, and this assumption is rather strong.

Many of the usual MLR results still hold: β̂OLS = (XT X)−1XT Y , the

vector of predicted fitted values Ŷ = Xβ̂OLS = HY where the hat matrix
H = X(XT X)−1XT provided the inverse exists, and the vector of residuals

is r = Y − Ŷ . The response plot and residual plot are made in the same way
and should be made before performing inference.

The main difference in the output is the ANOVA table. The ANOVA F
test in Section 1.7.1 tests H0 : β2 = · · · = βp = 0. The test in this subsection
tests H0 : β1 = · · · = βp = 0 ≡ H0 : β = 0. The following definition and test
follows Guttman (1982, p. 147) closely.

Definition 1.50. Assume that Y = Xβ +e where the ei are iid. Assume
that it is desired to test H0 : β = 0 versus HA : β 6= 0.

a) The uncorrected total sum of squares

SST =

n∑

i=1

Y 2
i . (1.38)

b) The model sum of squares

SSM =

n∑

i=1

Ŷ 2
i . (1.39)

c) The residual sum of squares or error sum of squares is

SSE =

n∑

i=1

(Yi − Ŷi)
2 =

n∑

i=1

r2i . (1.40)
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d) The degrees of freedom (df) for SSM is p, the df for SSE is n − p and
the df for SST is n. The mean squares are MSE = SSE/(n− p) and MSM =
SSM/p.

The ANOVA table given for the “no intercept” or “intercept = F” option
is below.

Summary Analysis of Variance Table

Source df SS MS F p-value

Model p SSM MSM F0=MSM/MSE for H0:
Residual n− p SSE MSE β = 0

The 4 step no intercept ANOVA F test for β = 0 is below.
i) State the hypotheses H0 : β = 0, HA : β 6= 0.
ii) Find the test statistic F0 = MSM/MSE or obtain it from output.
iii) Find the pval from output or use the F –table: pval = P (Fp,n−p > F0).
iv) State whether you reject H0 or fail to reject H0. If H0 is rejected, conclude
that there is an MLR relationship between Y and the predictors x1, ..., xp. If
you fail to reject H0, conclude that there is not an MLR relationship between
Y and the predictors x1, ..., xp. (Or there is not enough evidence to conclude
that there is an MLR relationship between Y and the predictors.)

1.8 Summary

1) Statistical Learning techniques extract information from multivariate data.
A case or observation consists of k random variables measured for one
person or thing. The ith case zi = (zi1, ..., zik)

T . The training data consists
of z1, ..., zn. A statistical model or method is fit (trained) on the training
data. The test data consists of zn+1, ..., zn+m, and the test data is often
used to evaluate the quality of the fitted model.

2) Suppose a case has k random variables. For low dimensional statistics,
n ≥ Jk with J ≥ 5. For high dimensional statistics, n < 5k.

3) Suppose a regression model studies Y |xT β where x is a p × 1 vector
of predictors. A model with n < 5p is overfitting: the model does not have
enough data to estimate p parameters accurately. A high dimensional regres-
sion model has n < 5p. A fitted or population regression model is sparse if
a of the predictors are active (have nonzero β̂i or βi) where n ≥ Ja with
J ≥ 10. Otherwise the model is nonsparse. A high dimensional population
regression model is abundant or dense if the regression information is spread
out among the p predictors (nearly all of the predictors are active). Hence an
abundant model is a nonsparse model.

4) An important class of regression models investigates how the response
variable Y changes with the value of xT β where x is a p × 1 vector of pre-
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dictors. In a 1D regression model, regression is the study of the condi-
tional distribution of Y given the sufficient predictor SP = h(x), written
Y |SP or Y|h(x), where the real valued function h : R

p → R. The esti-

mated sufficient predictor ESP = ĥ(x). An important special case is a

model with a linear predictor h(x) = α + βT x where ESP = α̂ + β̂
T
x and

often α = 0. A response plot is a plot of the ESP versus the response Y .
Often SP = xT β and ESP = xT β̂. A residual plot is a plot of the ESP ver-
sus the residuals. Tip: if the model for Y (more accurately Y |h(x)) depends
on x only through the real valued function h(x), then SP = h(x).

5) a) The log rule states that a positive variable that has the ratio between
the largest and smallest values greater than ten should be transformed to logs.
So W > 0 and max(W )/min(W ) > 10 suggests using log(W ).

b) The ladder rule: to spread small values of a variable, make λ smaller,
to spread large values of a variable, make λ larger.

6) Let the ladder of powers ΛL = {−1,−1/2,−1/3, 0, 1/3, 1/2, 1}. Let
tλ(Z) = Zλ for λ 6= 0 and Y = t0(Z) = log(Z) for λ = 0. Consider the addi-
tive error regression model Y = m(x)+ e. Then the response transformation
model is Y = tλ(Z) = mλ(x) + e. Compute the “fitted values” Ŵi using
Wi = tλ(Zi) as the “response.” Then a transformation plot of Ŵi versus Wi

is made for each of the seven values of λ ∈ ΛL with the identity line added
as a visual aid. Make the transformations for λ ∈ ΛL, and choose the trans-
formation with the best transformation plot where the plotted points scatter
about the identity line.

7) For the location model, the sample mean Y =

∑n
i=1 Yi

n
, the sample

variance S2
n =

∑n
i=1(Yi − Y )2

n− 1
, and the sample standard deviation Sn =

√
S2

n. If the data Y1, ..., Yn is arranged in ascending order from smallest to
largest and written as Y(1) ≤ · · · ≤ Y(n), then Y(i) is the ith order statistic
and the Y(i)’s are called the order statistics. The sample median

MED(n) = Y((n+1)/2) if n is odd,

MED(n) =
Y(n/2) + Y((n/2)+1)

2
if n is even.

The notation MED(n) = MED(Y1, ..., Yn) will also be used. The sample me-
dian absolute deviation is MAD(n) = MED(|Yi − MED(n)|, i = 1, . . . , n).

8) Suppose the multivariate data has been collected into an n × p matrix

W = X =




xT
1
...

xT
n


 .
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The coordinatewise median MED(W ) = (MED(X1), ...,MED(Xp))T where
MED(Xi) is the sample median of the data in column i corresponding to

variable Xi. The sample mean x =
1

n

n∑

i=1

xi = (X1, ..., Xp)
T where Xi is

the sample mean of the data in column i corresponding to variable Xi. The
sample covariance matrix

S =
1

n − 1

n∑

i=1

(xi − x)(xi − x)T = (Sij).

That is, the ij entry of S is the sample covariance Sij . The classical estimator
of multivariate location and dispersion is (T,C) = (x,S).

9) Let (T,C) = (T (W ),C(W )) be an estimator of multivariate location
and dispersion. The ith Mahalanobis distance Di =

√
D2

i where the ith
squared Mahalanobis distance is D2

i = D2
i (T (W ),C(W )) =

(xi − T (W ))T C−1(W )(xi − T (W )).
10) The squared Euclidean distances of the xi from the coordinatewise

median is D2
i = D2

i (MED(W ), Ip). Concentration type steps compute the
weighted median MEDj: the coordinatewise median computed from the cases
xi withD2

i ≤ MED(D2
i (MEDj−1, Ip)) where MED0 = MED(W ). Often used

j = 0 (no concentration type steps) or j = 9. Let Di = Di(MEDj , Ip). Let
Wi = 1 if Di ≤ MED(D1, ..., Dn)+kMAD(D1, ..., Dn) where k ≥ 0 and k = 5
is the default choice. Let Wi = 0, otherwise.

11) Let the covmb2 set B of at least n/2 cases correspond to the cases
with weight Wi = 1. Then the covmb2 estimator (T,C) is the sample mean
and sample covariance matrix applied to the cases in set B. Hence

T =

∑n
i=1Wixi∑n

i=1Wi
and C =

∑n
i=1Wi(xi − T )(xi − T )T

∑n
i=1Wi − 1

.

The function ddplot5 plots the Euclidean distances from the coordinatewise
median versus the Euclidean distances from the covmb2 location estimator.
Typically the plotted points in this DD plot cluster about the identity line,
and outliers appear in the upper right corner of the plot with a gap between
the bulk of the data and the outliers.

12) If X and Y are p×1 random vectors, a a conformable constant vector,
and A and B are conformable constant matrices, then

E(X+Y ) = E(X)+E(Y ), E(a+Y ) = a+E(Y ), & E(AXB) = AE(X)B.

Also
Cov(a + AX) = Cov(AX) = ACov(X)AT .

Note that E(AY ) = AE(Y ) and Cov(AY ) = ACov(Y )AT .
13) If X ∼ Np(µ,Σ), then E(X) = µ and Cov(X) = Σ.
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14) If X ∼ Np(µ,Σ) and if A is a q×pmatrix, then AX ∼ Nq(Aµ,AΣAT ).
If a is a p × 1 vector of constants, then X + a ∼ Np(µ + a,Σ).

15) Let Xn be a sequence of random vectors with joint cdfs Fn(x) and let
X be a random vector with joint cdf F (x).

a) Xn converges in distribution to X, written Xn
D→ X , if Fn(x) →

F (x) as n → ∞ for all points x at which F (x) is continuous. The distribution
of X is the limiting distribution or asymptotic distribution of Xn. Note
that X does not depend on n.

b) Xn converges in probability to X, written Xn
P→ X, if for every

ε > 0, P (‖Xn − X‖ > ε) → 0 as n→ ∞.
16) Multivariate Central Limit Theorem (MCLT): If X1, ...,Xn are iid

k × 1 random vectors with E(X) = µ and Cov(X) = Σx, then

√
n(Xn − µ)

D→ Nk(0,Σx)

where the sample mean

Xn =
1

n

n∑

i=1

X i.

17) Suppose
√
n(Tn − µ)

D→ Np(θ,Σ). Let A be a q × p constant matrix.

Then A
√
n(Tn − µ) =

√
n(ATn − Aµ)

D→ Nq(Aθ,AΣAT ).

18) Suppose A is a conformable constant matrix and Xn
D→ X . Then

AXn
D→ AX .

19) A g × 1 random vector u has a mixture distribution of the uj

with probabilities πj if u is equal to uj with probability πj. The cdf of

u is Fu(t) =
J∑

j=1

πjFuj
(t) where the probabilities πj satisfy 0 ≤ πj ≤

1 and
∑J

j=1 πj = 1, J ≥ 2, and Fuj (t) is the cdf of a g × 1 ran-

dom vector uj . Then E(u) =
∑J

j=1 πjE[uj ] and Cov(u) = E(uuT ) −
E(u)E(uT ) = E(uuT )−E(u)[E(u)]T =

∑J
j=1 πjE[uju

T
j ]−E(u)[E(u)]T =∑J

j=1 πjCov(uj) +
∑J

j=1 πjE(uj)[E(uj)]
T −E(u)[E(u)]T . If E(uj) = θ for

j = 1, ..., J , then E(u) = θ and Cov(u) =
∑J

j=1 πjCov(uj). Note that

E(u)[E(u)]T =
∑J

j=1

∑J
k=1 πjπkE(uj)[E(uk)]T .

1.9 Complements

Graphical response transformation methods similar to those in Section 1.2
include Cook and Olive (2001) and Olive (2004, 2017a: section 3.2). A nu-
merical method is given by Zhang and Yang (2017).
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Section 1.5 followed Olive (2014, ch. 8) closely, which is a good Master’s
level treatment of large sample theory. Olive (2023d) is an online text. There
are several PhD level texts on large sample theory including, in roughly in-
creasing order of difficulty, Lehmann (1999), Ferguson (1996), Sen and Singer
(1993), and Serfling (1980). White (1984) considers asymptotic theory for
econometric applications.

For a nonsingular matrix, the inverse of the matrix, the determinant of
the matrix, and the eigenvalues of the matrix are continuous functions of
the matrix. Hence if Σ̂ is a consistent estimator of Σ, then the inverse,
determinant, and eigenvalues of Σ̂ are consistent estimators of the inverse,
determinant, and eigenvalues of Σ > 0. See, for example, Bhatia et al. (1990),
Stewart (1969), and Severini (2005, pp. 348-349).

Outliers
The outlier detection methods of Section 1.4 are due to Olive (2017b, sec-

tion 4.7). For competing outlier detection methods, see Boudt et al. (2017).
Also, google “novelty detection,” “anomaly detection,” and “artefact identi-
fication.”

Big Data Sets
Sometimes n is huge and p is small. Then importance sampling and se-

quential analysis with sample size less than 1000 can be useful for inference
for regression and time series models. Sometimes n is much smaller than p,
for example with microarrays. Sometimes both n and p are large.

1.10 Problems

crancap hdlen hdht Data for 1.1

1485 175 132

1450 191 117

1460 186 122

1425 191 125

1430 178 120

1290 180 117

90 75 51

1.1∗. The table (W ) above represents 3 head measurements on 6 people
and one ape. Let X1 = cranial capacity, X2 = head length, and X3 = head
height. Let x = (X1, X2, X3)

T . Several multivariate location estimators, in-
cluding the coordinatewise median and sample mean, are found by applying
a univariate location estimator to each random variable and then collecting
the results into a vector. a) Find the coordinatewise median MED(W ).

b) Find the sample mean x.

1.2. The table W shown below represents 4 measurements on 5 people.
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age breadth cephalic size

39.00 149.5 81.9 3738

35.00 152.5 75.9 4261

35.00 145.5 75.4 3777

19.00 146.0 78.1 3904

0.06 88.5 77.6 933

a) Find the sample mean x.
b) Find the coordinatewise median MED(W ).

1.3. Suppose x1, ...,xn are iid p × 1 random vectors from a multivariate
t-distribution with parameters µ and Σ with d degrees of freedom. Then

E(xi) = µ and Cov(x) =
d

d− 2
Σ for d > 2. Assuming d > 2, find the

limiting distribution of
√
n(x − c) for appropriate vector c.

1.4. Suppose x1, ...,xn are iid p× 1 random vectors where E(xi) = e0.51
and Cov(xi) = (e2 − e)Ip. Find the limiting distribution of

√
n(x − c) for

appropriate vector c.

1.5. Suppose x1, ...,xn are iid 2 × 1 random vectors from a multivariate
lognormal LN(µ, Σ) distribution. Let xi = (Xi1, Xi2)

T . Following Press
(2005, pp. 149-150), E(Xij) = exp(µj + σ2

j /2),

V (Xij) = exp(σ2
j )[exp(σ2

j ) − 1] exp(2µj) for j = 1, 2, and

Cov(Xi1, Xi2) = exp[µ1 + µ2 + 0.5(σ2
1 + σ2

2) + σ12][exp(σ12) − 1]. Find the
limiting distribution of

√
n(x − c) for appropriate vector c.

1.6. The most used Poisson regression model is Y |x ∼ Poisson(exp(xT β)).
What is the sufficient predictor SP = h(x)?

1.7. Let Z be the variable of interest and let Y = t(z) be the response
variable for the multiple linear regression model Y = xT β + e. For the four
transformation plots shown in Figure 1.9, n = 1000, and p = 4. The fitting
method was the elastic net. What response transformation should be used?

1.8. The data set follows the multiple linear regression model Y = xT β+e
with n = 100 and p = 101. The response plots for two methods are shown
in Figure 1.10. Which method fits the data better, lasso or ridge regression?
For ridge regression, is anything wrong with yhat = Ŷ .

1.9. For the Buxton (1920) data with multiple linear regression, height was
the response variable while an intercept, head length, nasal height, bigonal
breadth, and cephalic index were used as predictors in the multiple linear
regression model. Observation 9 was deleted since it had missing values. Five
individuals, cases 61–65, were reported to be about 0.75 inches tall with head
lengths well over five feet! The response plot shown in Figure 1.4a) is for lasso.
The response plot in Figure 1.4b) did lasso for the cases in the covmb2 set B
applied to the predictors and set B included all of the clean cases and omitted
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Fig. 1.9 Elastic Net Transformation Plots for Problem 1.7.

the 5 outliers. The response plot was made for all of the data, including the
outliers. Both plots include the identity line and prediction interval bands.

Which method is better: Fig. 1.4 a) or Fig. 1.4 b) for data analysis?

R Problem

Use the command source(“G:/hdpack.txt”) to download the func-
tions and the command source(“G:/sldata.txt”) to download the data.
See Preface or Section 8.1. Typing the name of the hdpack func-
tion, e.g. tplot2, will display the code for the function. Use the args com-
mand, e.g. args(tplot2), to display the needed arguments for the function.
For the following problem, the R command can be copied and pasted from
(http://parker.ad.siu.edu/Olive/slrhw.txt) into R.

1.10. This problem uses some of the R commands at the end of Section
1.2.1. A problem with response and residual plots is that there can be a lot
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Fig. 1.10 Response Plots for Problem 1.8.

of black in the plot if the sample size n is large (more than a few thousand).
A variant of the response plot for the additive error regression model Y =
m(x) + e would plot the identity line, the two lines parallel to the identity
line corresponding to large sample 100(1 − δ)% prediction intervals for Yf

that depends on Ŷf . Then plot points corresponding to training data cases
that do not lie in their 100(1 − δ)% PI. We will use δ = 0.01, n = 100000,
and p = 8.

a) Copy and paste the commands for this part into R. They make the
usual response plot with a lot of black. Do not include the plot in Word.

b) Copy and paste the commands for this part into R. They make the
response plot with the points within the pointwise 99% prediction interval
bands omitted. Include this plot in Word. For example, left click on the plot
and hit the Ctrl and c keys at the same time to make a copy. Then paste the
plot into Word, e.g., get into Word and hit the Ctrl and v keys at the same
time.
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c) The additive error regression model is a 1D regression model. What is
the sufficient predictor = h(x)?

1.11. The hdpack function tplot2 makes transformation plots for the
multiple linear regression model Y = t(Z) = xT β + e. Type = 1 for full
model OLS and should not be used if n < 5p, type = 2 for elastic net, 3 for
lasso, 4 for ridge regression, 5 for PLS, 6 for PCR, and 7 for forward selection
with Cp if n ≥ 10p and EBIC if n < 10p. These methods are discussed in
Chapter 3.

Copy and paste the three library commands near the top of slrhw into R.
For parts a) and b), n = 100, p = 4 and Y = log(Z) = 0x1 + x2 + 0x3 +

0x4 + e = x2 + e. (Y and Z are swapped in the R code.)
a) Copy and paste the commands for this part into R. This makes the

response plot for the elastic net using Y = Z and x when the linear model
needs Y = log(Z). Do not include the plot in Word, but explain why the plot
suggests that something is wrong with the model Z = xT β + e.

b) Copy and paste the command for this part into R. Right click Stop 3
times until the horizontal axis has log(z). This is the response plot for the
true model Y = log(Z) = xT β + e = x2 + e. Include the plot in Word. Right
click Stop 3 more times so that the cursor returns in the command window.

c) Is the response plot linear?
For the remaining parts, n = p − 1 = 100 and Y = log(Z) = 0x1 + x2 +

0x3 + · · ·+ 0x101 + e = x2 + e. Hence the model is sparse.
d) Copy and paste the commands for this part into R. Right click Stop 3

times until the horizontal axis has log(z). This is the response plot for the
true model Y = log(Z) = xT β + e = x2 + e. Include the plot in Word. Right
click Stop 3 more times so that the cursor returns in the command window.

e) Is the plot linear?
f) Copy and paste the commands for this part into R. Right click Stop 3

times until the horizontal axis has log(z). This is the response plot for the true
model Y = log(Z) = xT β + e = x2 + e. Include the plot in Word. Right click
Stop 3 more times so that the cursor returns in the command window. PLS
is probably overfitting since the identity line nearly interpolates the fitted
points.

1.12. Get the R commands for this problem. The data is such that Y =
2 + x2 + x3 + x4 + e where the zero mean errors are iid [exponential(2) -
2]. Hence the residual and response plots should show high skew. Note that
β = (2, 1, 1, 1)T. The R code uses 3 nontrivial predictors and a constant, and
the sample size n = 1000.

a) Copy and paste the commands for part a) of this problem into R. Include
the response plot in Word. Is the lowess curve fairly close to the identity line?

b) Copy and paste the commands for part b) of this problem into R.
Include the residual plot in Word: press the Ctrl and c keys as the same time.
Then use the menu command “Paste” in Word. Is the lowess curve fairly
close to the r = 0 line? The lowess curve is a flexible scatterplot smoother.
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c) The output out$coef gives β̂. Write down β̂ or copy and paste β̂ into

Word. Is β̂ close to β?

1.13. For the Buxton (1920) data with multiple linear regression, height
was the response variable while an intercept, head length, nasal height, bigonal
breadth, and cephalic index were used as predictors in the multiple linear
regression model. Observation 9 was deleted since it had missing values. Five
individuals, cases 61–65, were reported to be about 0.75 inches tall with head
lengths well over five feet!

a) Copy and paste the commands for this problem into R. Include the lasso
response plot in Word. The identity line passes right through the outliers
which are obvious because of the large gap. Prediction interval (PI) bands
are also included in the plot.

b) Copy and paste the commands for this problem into R. Include the
lasso response plot in Word. This did lasso for the cases in the covmb2 set
B applied to the predictors which included all of the clean cases and omitted
the 5 outliers. The response plot was made for all of the data, including the
outliers.

c) Copy and paste the commands for this problem into R. Include the DD
plot in Word. The outliers are in the upper right corner of the plot.

1.14. Consider the Gladstone (1905) data set that has 12 variables on
267 persons after death. There are 5 infants in the data set. The response
variable was brain weight. Head measurements were breadth, circumference,
head height, length, and size as well as cephalic index and brain weight. Age,
height, and three categorical variables cause, ageclass (0: under 20, 1: 20-45,
2: over 45) and sex were also given. The constant x1 was the first variable.
The variables cause and ageclass were not coded as factors. Coding as factors
might improve the fit.

a) Copy and paste the commands for this problem into R. Include the
lasso response plot in Word. The identity line passes right through the infants
which are obvious because of the large gap. Prediction interval (PI) bands
are also included in the plot.

b) Copy and paste the commands for this problem into R. Include the
lasso response plot in Word. This did lasso for the cases in the covmb2 set
B applied to the nontrivial predictors which are not categorical (omit the
constant, cause, ageclass and sex) which omitted 8 cases, including the 5
infants. The response plot was made for all of the data.

c) Copy and paste the commands for this problem into R. Include the DD
plot in Word. The infants are in the upper right corner of the plot.

1.15. The hdpack function mldsim6 compares 7 estimators: FCH, RFCH,
CMVE, RCMVE, RMVN, covmb2, and MB described in Olive (2017b, ch.
4). Most of these estimators need n > 2p, need a nonsingular dispersion
matrix, and work best with n > 10p. The function generates data sets and
counts how many times the minimum Mahalanobis distance Di(T,C) of the
outliers is larger than the maximum distance of the clean data. The value
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pm controls how far the outliers need to be from the bulk of the data, and
pm roughly needs to increase with

√
p.

For data sets with p > n possible, the function mldsim7 used the Eu-
clidean distances Di(T, Ip) and the Mahalanobis distances Di(T,Cd) where
Cd is the diagonal matrix with the same diagonal entries as C where (T,C)
is the covmb2 estimator using j concentration type steps. Dispersion ma-
trices are effected more by outliers than good robust location estimators,
so when the outlier proportion is high, it is expected that the Euclidean
distances Di(T, Ip) will outperform the Mahalanobis distance Di(T,Cd) for
many outlier configurations. Again the function counts the number of times
the minimum outlier distance is larger than the maximum distance of the
clean data.

Both functions used several outlier types. The simulations generated 100
data sets. The clean data had xi ∼ Np(0, diag(1, ..., p)). Type 1 had outliers
in a tight cluster (near point mass) at the major axis (0, ..., 0, pm)T . Type 2
had outliers in a tight cluster at the minor axis (pm, 0, ..., 0)T. Type 3 had
mean shift outliers xi ∼ Np((pm, ..., pm)T , diag(1, ..., p)). Type 4 changed
the pth coordinate of the outliers to pm. Type 5 changed the 1st coordinate
of the outliers to pm. (If the outlier xi = (x1i, ..., xpi)

T , then xi1 = pm.)

Table 1.2 Number of Times All Outlier Distances > Clean Distances, otype=1

n p γ osteps pm FCH RFCH CMVE RCMVE RMVN covmb2 MB
100 10 0.25 0 20 85 85 85 85 86 67 89

a) Table 1.2 suggests with osteps = 0, covmb2 had the worst count. When
pm is increased to 25, all counts become 100. Copy and paste the commands
for this part into R and make a table similar to Table 1.2, but now osteps=9
and p = 45 is close to n/2 for the second line where pm = 60. Your table
should have 2 lines from output.

Table 1.3 Number of Times All Outlier Distances > Clean Distances, otype=1

n p γ osteps pm covmb2 diag
100 1000 0.4 0 1000 100 41
100 1000 0.4 9 600 100 42

b) Copy and paste the commands for this part into R and make a table
similar to Table 1.3, but type 2 outliers are used. Now γ = 0.4, the default
value.

c) When you have two reasonable outlier detectors, there are outlier con-
figurations where one will beat the other. Simulations by Wang (2018) sug-
gest that “covmb2” using Di(T, Ip) outperforms “diag” using Di(T,Cd) for
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many outlier configurations, but there are some exceptions. Copy and paste
the commands for this part into R and make a table similar to Table 1.3, but
type 3 outliers are used.





Chapter 2

Multiple Linear Regression

This chapter considers several estimators for the multiple linear regression
model. Large sample theory is give for p fixed, but the prediction intervals
can have p > n. Some testing for the OPLS and MMLE estimators can also
have p > n.

Definition 2.1. For an important class of regression models, regression
is the study of the conditional distribution Y |Ax of the response variable Y
given Ax, where the vector of predictors x = (x1, ..., xp)

T and A is a k × p
constant matrix of full rank k with 1 ≤ k ≤ p.

Remark 2.1. If A = Ip, then Y |Ax = Y |x. If β is a p × 1 coefficient

vector and A = βT , then Y |Ax = Y |βT x = Y |xT β.

Definition 2.2. A quantitative variable takes on numerical values while
a qualitative variable takes on categorical values.

Remark 2.2. The literature often claims that Y |x = Y |βT x. This claim
is often much too strong.

Notation. Often the conditioning and the index i will be suppressed. For
example, the multiple linear regression model

Yi = xT
i β + ei (2.1)

for i = 1, ..., n where β is a p× 1 unknown vector of parameters, and ei is a
random error. This model could be written Y = xT β + e. More accurately,
Y |βT x = xT β + e, but the conditioning on βT x will often be suppressed.
Often the errors e1, ..., en are iid (independent and identically distributed).
Often the distribution of the errors is unknown, but often it is assumed that
the iid ei’s come from a distribution that is known except for a scale parame-
ter. For example, the ei’s might be iid from a normal (Gaussian) distribution
with mean 0 and unknown standard deviation σ. For this Gaussian model,
estimation of β and σ is important for inference and for predicting a new
future value of the response variable Yf given a new vector of predictors xf .

79
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2.1 The MLR Model

For multiple linear regression (MLR), it is usually useful to have a
constant in the model. Sometimes it is convenient to use Y |βT x where β =
(β1, ..., βp)

T and the constant is β1. Sometimes it is convenient to separate

the constant from the nontrivial predictors and use Y |(α+ βT x) where α is
the constant. We could also use βT = (β1 ,β

T
2 ) where β1 is the intercept and

the slopes vector β2 = (β2, ..., βp)
T , and xT

i = (1,uT
i ) where the nontrivial

predictors ui = (xi2, ..., xip)
T . Hence we get the following two MLR models.

The first model is often used in the theory of linear models, while the second
model is often useful for Statistical Learning, MLR with heterogeneity, and
high dimensional statistics.

Definition 2.3. Suppose that the response variable Y and at least one
predictor variable xi are quantitative.
a) Let the MLR model 1 be

Yi = β1 + xi,2β2 + · · ·+ xi,pβp + ei = xT
i β + ei (2.2)

for i = 1, ..., n. Here n is the sample size and the random variable ei is the ith
error. Assume that the ei are iid with expected value E(ei) = 0 and variance
V (ei) = σ2. In matrix notation, these n equations become Y = Xβ + e

where Y is an n × 1 vector of dependent variables, X is an n × p matrix
of predictors, β is a p × 1 vector of unknown coefficients, and e is an n × 1
vector of unknown errors.

b) Let the MLR model 2 be

Yi = α+ xi,1β1 + · · ·+ xi,pβp + ei = α+ xT
i β + ei (2.3)

for i = 1, ..., n. For this model, we may use φ = (α,βT )T with Y = Xφ+e.

In matrix notation, suppose the n equations are

Y = Xβ + e, (2.4)

where Y is an n × 1 vector of dependent variables, X = [v1, v2, ..., vp] is
an n × p matrix of predictors with ith column vi corresponding to the ith
predictor, β is a p×1 vector of unknown coefficients, and e is an n×1 vector
of unknown errors. Equivalently,




Y1

Y2

...
Yn


 =




x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p

...
...

. . .
...

xn,1 xn,2 . . . xn,p







β1

β2

...
βp


+




e1
e2
...
en


 . (2.5)
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For MLR model 1, the first column of X is v1 = 1, the n× 1 vector of ones.
The ith case (xT

i , Yi)
T = (xi1, xi2, ..., xip, Yi)

T corresponds to the ith row
xT

i of X and the ith element of Y (if xi1 ≡ 1, then xi1 could be omitted).
In the MLR model Y = xT β + e, the Y and e are random variables, but we
only have observed values Yi and xi. MLR is used to estimate the unknown
parameters β and σ2.

Definition 2.4. The constant variance MLR model uses the assump-
tion that the errors e1, ..., en are iid with mean E(ei) = 0 and variance
VAR(ei) = σ2 <∞. Also assume that the errors are independent of the pre-
dictor variables xi. The predictor variables xi are assumed to be fixed and
measured without error. The cases (xT

i , Yi)
T are independent for i = 1, ..., n.

If the predictor variables are random variables, then the above MLR model
is conditional on the observed values of the xi. That is, observe the xi and
then act as if the observed xi are fixed.

Definition 2.5. The unimodal MLR model has the same assumptions
as the constant variance MLR model, as well as the assumption that the zero
mean constant variance errors e1, ..., en are iid from a unimodal distribution
that is not highly skewed. Note that E(ei) = 0 and V (ei) = σ2 <∞.

Definition 2.6. The normal MLR model or Gaussian MLR model has
the same assumptions as the unimodal MLR model but adds the assumption
that the errors e1, ..., en are iidN(0, σ2) random variables. That is, the ei are
iid normal random variables with zero mean and variance σ2.

The unknown coefficients for the above 3 models are usually estimated
using (ordinary) least squares (OLS).

Notation. The symbol A ≡ B = f(c) means that A and B are equivalent
and equal, and that f(c) is the formula used to compute A and B.

Definition 2.7. Given an estimate b of β, the corresponding vector of
predicted values or fitted values is Ŷ ≡ Ŷ (b) = Xb. Thus the ith fitted value

Ŷi ≡ Ŷi(b) = xT
i b = xi,1b1 + · · ·+ xi,pbp.

The vector of residuals is r ≡ r(b) = Y − Ŷ (b). Thus ith residual ri ≡
ri(b) = Yi − Ŷi(b) = Yi − xi,1b1 − · · · − xi,pbp.
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2.1.1 OLS Theory

Ordinary least squares (OLS) large sample theory will be useful. Let X =
(1 X1). For model (2.2), the ith row of X is (1, xi,2, ..., xi,p) while for model
(2.3), the ith row of X is (1, xi,1, ..., xi,p), and Y = α1+X1β+e = Xφ+e.

Definition 2.8. Using the above notation for MLR model 2 given by
Equation (2.3), let xT

i = (xi1, ..., xip), let α be the intercept, and let the
slopes vector β = (β1, ..., βp)

T . Let the population covariance matrices

Cov(x) = E[(x− E(x))(x − E(x))T ] = Σx, and

Cov(x, Y ) = E[(x−E(x))(Y −E(Y ))] = ΣxY .

If the cases (xi, Yi) are iid from some population where ΣxY exists and Σx
is nonsingular, then the population coefficients from an OLS regression of Y
on x (even if a linear model does not hold) are

α = αOLS = E(Y ) − βTE(x) and β = βOLS = Σ−1
x ΣxY .

Definition 2.9. Let the sample covariance matrices be

Σ̂x =
1

n − 1

n∑

i=1

(xi − x)(xi − x)T and Σ̂xY =
1

n− 1

n∑

i=1

(xi − x)(Yi − Y ).

Let the method of moments estimators be Σ̃x =
1

n

n∑

i=1

(xi−x)(xi−x)T and

Σ̃xY =
1

n

n∑

i=1

(xi − x)(Yi − Y ) =
1

n

n∑

i=1

xiYi − x Y .

The method of moment estimators are often called the maximum likelihood
estimators, but are the MLE if the (Yi,x

T
i )T are iid from a multivariate

normal distribution, a very strong assumption. In Theorem 2.1, note that

D = XT
1 X1 − nx xT = (n− 1)Σ̂

−1

x .

Theorem 2.1: Seber and Lee (2003, p. 106). Let X = (1 X1). Then

XT Y =

(
nY

XT
1 Y

)
=

(
nY∑n

i=1 xiYi

)
, XT X =

(
n nxT

nx XT
1 X1

)
,

and (XT X)−1 =

(
1
n + xT D−1x −xT D−1

−D−1x D−1

)

where the p× p matrix D−1 = [(n− 1)Σ̂x]−1 = Σ̂
−1

x /(n− 1).
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Under model (2.3), φ̂ = φ̂OLS = (XT X)−1XT Y .

Theorem 2.2: Second way to compute φ̂:

a) If Σ̂
−1

x exists, then α̂ = Y − β̂
T
x and

β̂ =
n

n− 1
Σ̂

−1

x Σ̃xY = Σ̃
−1

x Σ̃xY = Σ̂
−1

x Σ̂xY .

b) Suppose that (Yi,x
T
i )T are iid random vectors such that σ2

Y , Σ−1
x , and

ΣxY exist. Then α̂
P→ α and

β̂
P→ β as n → ∞

where α and β are given by Definition 2.8.
Proof. Note that

Y T X1 = (Y1 · · ·Yn)




xT
1
...

xT
n


 =

n∑

i=1

Yix
T
i

and

XT
1 Y = [x1 · · ·xn]



Y1

...
Yn


 =

n∑

i=1

xiYi.

So [
α̂

β̂

]
=

[
1
n + xT D−1x −xT D−1

−D−1x D−1

] [
1T

XT
1

]
Y =

[
1
n + xT D−1x −xT D−1

−D−1x D−1

] [
nY

XT
1 Y

]
.

Thus β̂ = −nD−1x Y + D−1XT
1 Y = D−1(XT

1 Y − nx Y ) =

D−1

[
n∑

i=1

uiYi − nx Y

]
=

Σ̂
−1

x
n − 1

nΣ̂xY =
n

n− 1
Σ̂

−1

x Σ̂xY . Then

α̂ = Y + nxT D−1x Y − xT D−1XT
1 Y = Y + [nY xT D−1 − Y T X1D

−1]x

= Y − β̂
T
x. The convergence in probability results hold since sample means

and sample covariance matrices are consistent estimators of the population
means and population covariance matrices. �

Remark 2.3. It is important to note that the convergence in probability
results are for iid (Yi,x

T
i )T with second moments and nonsingular Σx: a

linear model Y = Xβ + e does not need to hold. When the linear model
does hold, the second method for computing β̂ is still valid even if X is a
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constant matrix, and β̂
P→ β by Theorem 2.3 b). From Theorem 2.3,

n(XT X)−1 = V̂ =

(
V̂ 11 V̂ 12

V̂ 21 V̂ 22

)
P→ V =

(
V 11 V 12

V 21 V 22

)
.

Thus Σ̂
−1

x
P→ V 22, Σ̂x

P→ V −1
22 , and Σ̂xY

P→ V −1
22 β. Note that for Theorem

2.3 b) with iid cases and µx = E(x),

n(XT X)−1 P→ V =

[
1 + µT

xΣ−1
x µx −µT

xΣ−1
x

−Σ−1
x µx Σ−1

x

]
.

Definition 2.10. For OLS and MLR model 1 from Definition 2.3, β̂ =
β̂OLS = (XT X)−1XT Y . Let the hat matrix H = X(XT X)−1XT . Then

Ŷ = Ŷ OLS = HY = Xβ̂. The ith leverage hi = Hii = the ith diagonal
element of H.

There are many large sample theory results for ordinary least squares. For
Theorem 2.3, see, for example, Sen and Singer (1993, p. 280). Theorem 2.3
is analogous to the central limit theorem and the theory for the t–interval
for µ based on Y and the sample standard deviation (SD) SY . If the data
Y1, ..., Yn are iid with mean 0 and variance σ2, then Y is asymptotically
normal and the t–interval will perform well if the sample size is large enough.
The results below suggests that the OLS estimators Ŷi and β̂ are good if
the sample size is large enough. The condition maxhi → 0 in probability
usually holds if the researcher picked the design matrix X or if the xi are
iid random vectors from a well behaved population. Outliers can cause the
condition to fail. Theorem 2.3 a) implies that β̂ ≈ Np[β, σ2(XT X)−1]. For

Theorem 2.3 a), rank(X) = p since XT X is nonsingular. For Theorem 2.3
b), rank(X) = p+ 1.

Theorem 2.3, OLS CLTs. Consider the MLR model and assume that
the zero mean errors are iid with E(ei) = 0 and VAR(ei) = σ2. If the xi are
random vectors, assume that the cases (xi, Yi) are independent, and that the
ei and xi are independent. Also assume that maxi(h1, ..., hn) → 0 and

XT X

n
→ V −1

as n→ ∞ where the convergence is in probability if the xi are random vectors
(instead of nonstochastic constant vectors).

a) For Equation (2.2), the OLS estimator β̂ satisfies

√
n(β̂ − β)

D→ Np(0, σ2 V ). (2.6)

Equivalently,
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(XT X)1/2(β̂ − β)
D→ Np(0, σ

2 Ip). (2.7)

b) For Equation (2.3), the OLS estimator φ̂ satisfies

√
n(φ̂ − φ)

D→ Np+1(0, σ
2 V ). (2.8)

c) Suppose the cases (xi, Yi) are iid from some population and the Equa-
tion (2.3) MLR model Yi = α+xT

i β+ei holds. Assume that Σ−1
x and Σx,Y

exist. Then Equation (2.8) holds and

√
n(β̂ − β)

D→ Np(0, σ
2 Σ−1

x ) (2.9)

where β = βOLS = Σ−1
x Σx,Y .

Remark 2.4. I) Consider Theorem 2.3. For a) and b), the theory acts as
if the xi are constant even if the xi are random vectors. The literature says
the xi can be constants, or condition on xi if the xi are random vectors.
The main assumptions for a) and b) are that the errors are iid with second
moments and that n(XT X)−1 is well behaved. The strong assumptions for
c) are much stronger than those for a) and b), but the assumption of iid cases
is often reasonable if the cases come from some population.
II) Suppose Yi = α + xT

i β + ei where the ei are iid. Then β̂OLS ≈
Np(β,MSE Σ̂

−1

x /n) even if the cases are not iid, and Σ̂x
P→ V −1

22 , where
V −1

22 is not necessarily equal to Σx, by Remark 2.3. Thus

(β̂OLS − β)T Σ̂x(β̂OLS − β)/MSE
D→ χ2

p as n → ∞. This result is useful
since no matrix inversion is required.

Remark 2.5. Consider MLR model (2.3). Let wi = Anxi for i = 1, ..., n
where An is a full rank k × p matrix with 1 ≤ k ≤ p.

a) Let Σ∗ be Σ̂ or Σ̃. Then Σ∗
w = AnΣ∗

xAT
n and Σ∗

wY = AnΣ∗
xY .

b) If An is a constant matrix, then Σw = AnΣxAT
n and

ΣwY = AnΣxY .
c) Let β̂(u, Y ) and β(u, Y ) be the estimator and parameter from the OLS

regression of Y on u. The constant parameter vector should not depend on
n. Suppose the cases are iid and A is a constant matrix that does not depend

on n. By Theorem 2.2, β̂(w, Y ) = Σ̂
−1

w Σ̂wY = [AnΣ̂xAn]−1AnΣ̂xY =

[AnΣ̂xAn]−1AnΣ̂xβ̂(x, Y ). If An
P→ A, Σ̂x

P→ Σx, and β̂(x, Y )
P→

β(x, Y ), then β̂(w, Y )
P→ β(w, Y ) = [AΣxA]−1AΣxβ(x, Y ).

A problem with OLS, is that V generally can’t be estimated if p > n since
typically (XT X)−1 does not exist. If p > n, using φ̂ = (XT X)−XT Y is a
poor estimator that interpolates the data, where A− is a generalized inverse
of A. Often the software will not compute φ̂ if p > n.
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2.2 Statistical Learning Methods for MLR

There are many MLR methods, including OLS for the full model, forward se-
lection with OLS, the marginal maximum likelihood estimator (MMLE), elas-
tic net, principal components regression (PCR), partial least squares (PLS),
lasso, lasso variable selection, and ridge regression (RR). For the last six
methods, it is often convenient to use centered or scaled data. Suppose U
has observed values U1, ..., Un. For example, if Ui = Yi then U corresponds
to the response variable Y . The observed values of a random variable V are
centered if their sample mean is 0. The centered values of U are Vi = Ui − U
for i = 1, ..., n. Let g be an integer near 0. If the sample variance of the Ui is

σ̂2
g =

1

n− g

n∑

i=1

(Ui − U)2,

then the sample standard deviation of Ui is σ̂g. If the values of Ui are not all
the same, then σ̂g > 0, and the standardized values of the Ui are

Wi =
Ui − U

σ̂g
.

Typically g = 1 or g = 0 are used: g = 1 gives an unbiased estimator
of σ2 while g = 0 gives the method of moments estimator. Note that the
standardized values are centered, W = 0, and the sample variance of the
standardized values

1

n − g

n∑

i=1

W 2
i = 1. (2.10)

Remark 2.6. Let Y = α+xT β +e. Let wT
i = (wi,1, ..., wi,p) be the stan-

dardized vector of nontrivial predictors for the ith case. Since the standard-
ized predictors are also centered, w = 0. Let the n×p matrix of standardized
nontrivial predictors W g = (Wij) when the predictors are standardized using
σ̂g. Then the ith row of W g is wT

i . Thus,
∑n

i=1Wij = 0 and
∑n

i=1W
2
ij = n−g

for j = 1, ..., p. Hence

Wij =
xi,j − xj

σ̂j
where σ̂2

j =
1

n − g

n∑

i=1

(xi,j − xj)
2

is σ̂g for the jth variable xj. Then the sample covariance matrix of the wi is
the sample correlation matrix of the xi:

ρ̂x = Rx = (rij) =
W T

g W g

n− g
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where rij is the sample correlation of xi and xj. Thus the sample correlation
matrix Rx does not depend on g. Let Z = Y −Y where Y = Y 1. Since the
R software tends to use g = 0, let W = W 0. Note that n×p matrix W does
not include a vector 1 of ones. Then regression through the origin is used for
the model

Z = Wη + ε (2.11)

where Z = (Z1, ..., Zn)T and η = (η1, ..., ηp)
T . The vector of fitted values

Ŷ = Y + Ẑ.
Remark 2.7. i) Interest is in model (2.3): estimate Ŷf and β̂. For many

regression estimators, a method is needed so that everyone who uses the
same units of measurements for the predictors and Y gets the same (Ŷ , β̂).
Equation (2.11) is a commonly used method for achieving this goal. Suppose
g = 0. The method of moments estimator of the variance σ2

w is

σ̂2
g=0 = S2

M =
1

n

n∑

i=1

(wi −w)2.

When data xi are standardized to have w = 0 and S2
M = 1, the standardized

data wi has no units. ii) Hence the estimators Ẑ and η̂ do not depend on
the units of measurement of the xi if standardized data and Equation (2.11)
are used. Linear combinations of the wi are linear combinations of the xi.
Thus the estimators Ŷ and β̂ are obtained using Ẑ, η̂, and Y . The linear
transformation to obtain (Ŷ , β̂) from (Ẑ, η̂) is unique for a given set of units
of measurements for the xi and Y . Hence everyone using the same units of
measurements gets the same (Ŷ , β̂). iii) Also, since W j = 0 and S2

M,j = 1, the
standardized predictor variables have similar spread, and the magnitude of
η̂i is a measure of the importance of the predictor variable Wj for predicting
Y .

Definition 2.11. Consider model (2.2): Y = xT β + e. If Z = Wη + e,
where the n× q matrix W has full rank q = p− 1, then the OLS estimator

η̂OLS = (W T W )−1W T Z

minimizes the OLS criterion QOLS(η) = r(η)T r(η) over all vectors η ∈
R

p−1. The vector of predicted or fitted values ẐOLS = Wη̂OLS = HZ where
H = W (W T W )−1W T . The vector of residuals r = r(Z,W ) = Z − Ẑ =
(I − H)Z.

For model (2.2): Y = xT β + e, let x = (1 u)T , and let Z = Wη + ε.
Assume that the sample correlation matrix

Ru =
W T W

n

P→ V −1. (2.12)
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Note that V −1 = ρu, the population correlation matrix of the nontrivial
predictors ui, if the ui are a random sample from a population. Let H =

W (W T W )−1W T = (hij), and assume that maxi=1,...,n hii
P→ 0 as n → ∞.

Olive (2024) examines whether the OLS estimator satisfies

un =
√
n(η̂OLS − η)

D→ Np−1(0, σ
2V ). (2.13)

Remark 2.8. Variable selection is the search for a subset of predictor
variables that can be deleted without important loss of information if n/p
is large (and the search for a useful subset of predictors if n/p is not large).
Refer to Chapter 1: Remark 1.1 for variable selection and Equation (1.1)
where

xT β = xT
S βS + xT

EβE = xT
SβS . (2.14)

Let p be the number of predictors in the full model, including a constant.
Let q = p − 1 be the number of nontrivial predictors in the full model. Let
a = aI be the number of predictors in the submodel I, including a constant.
Let k = kI = aI − 1 be the number of nontrivial predictors in the submodel.
For submodel I, think of I as indexing the predictors in the model, including
the constant. Let A index the nontrivial predictors in the model. Hence I
adds the constant (trivial predictor) to the collection of nontrivial predictors
in A. In Equation (2.14), there is a “true submodel” Y = XSβS + e where
all of the elements of βS are nonzero but all of the elements of β that are
not elements of βS are zero. Then a = aS is the number of predictors in
that submodel, including a constant, and k = kS is the number of active
predictors = number of nonnoise variables = number of nontrivial predictors
in the true model S = IS . Then there are p− a noise variables (xi that have
coefficient βi = 0) in the full model. The true model is generally only known
in simulations. For Equation (2.14), we also assume that if xT β = xT

I βI ,
then S ⊆ I. Hence S is the unique smallest subset of predictors such that
xT β = xT

SβS .

Model selection generates M models. Then a hopefully good model is
selected from these M models. Variable selection is a special case of model
selection. Many methods for variable and model selection have been suggested
for the MLR model. We will consider several R functions including i) forward
selection computed with the regsubsets function from the leaps library,
ii) principal components regression (PCR) with the pcr function from the
pls library, iii) partial least squares (PLS) with the plsr function from the
pls library, iv) ridge regression with the cv.glmnet or glmnet function
from the glmnet library, v) lasso with the cv.glmnet or glmnet function
from the glmnet library, and vi) lasso variable selection which is OLS applied
to the lasso active set (nontrivial predictors with nonzero coefficients) and a
constant. See Sections 2.3–2.12 and James et al. (2013, ch. 6).

These six methods produce M models and use a criterion to select the
final model (e.g. Cp or 10-fold cross validation (CV)). See Section 2.14. The
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number of models M depends on the method. Often one of the models is the
full model (2.3) that uses all p − 1 nontrivial predictors. The full model is
(approximately) fit with (ordinary) least squares. For one of the M models,
some of the methods use η̂ = 0 and fit the model Yi = β1 + ei with Ŷi ≡ Y
that uses none of the nontrivial predictors. Forward selection, PCR, and PLS
use variables v1 = 1 (the constant or trivial predictor) and vj = γT

j x that are
linear combinations of the predictors for j = 2, ..., p. Model Ii uses variables
v1, v2, ..., vi for i = 1, ...,M where M ≤ p and often M ≤ min(p, n/10). Then
M models Ii are used. (For forward selection and PCR, OLS is used to regress
Y (or Z) on v1, ..., vi.) Then a criterion chooses the final submodel Id from
candidates I1, ..., IM.

Overfitting or “fitting noise” occurs when there is not enough data to
estimate the p × 1 vector β well with the estimation method, such as OLS.
The OLS model is overfitting if n < 5p. When n < p, XT X is usually not
invertible, but if n = p, then Ŷ = HY = X(XT X)−1XT Y = InY = Y

regardless of how bad the predictors are. If n < p, then the OLS program fails
or Ŷ = Y : the fitted regression plane interpolates the training data response
variables Y1, ..., Yn. The following rule of thumb is useful for many regression
methods. Note that d = p for the full OLS model.

Rule of thumb 2.1. We want n ≥ 10d to avoid overfitting. Occasionally
n as low as 5d is used, but models with n < 5d are overfitting.

Remark 2.9. Use Zn ∼ ANr (µn,Σn) to indicate that a normal approx-
imation is used: Zn ≈ Nr(µn,Σn). Let a be a constant, let A be a k × r
constant matrix (often with full rank k ≤ r), and let c be a k × 1 constant

vector. If
√
n(θ̂n − θ)

D→ Nr(0,V ), then aZn = aIrZn with A = aIr,

aZn ∼ ANr

(
aµn, a

2Σn

)
, and AZn + c ∼ ANk

(
Aµn + c,AΣnAT

)
,

θ̂n ∼ ANr

(
θ,

V

n

)
, and Aθ̂n + c ∼ ANk

(
Aθ + c,

AV AT

n

)
.

Theorem 2.3 gives the large sample theory for the OLS full model. Then
β̂ ≈ Np(β, σ

2(XT X)−1)) or β̂ ∼ ANp(β,MSE(XT X)−1)).

When minimizing or maximizing a real valued function Q(η) of the k × 1
vector η, the solution η̂ is found by setting the gradient of Q(η) equal to
0. The following definition and lemma follow Graybill (1983, pp. 351-352)
closely. Maximum likelihood estimators are examples of estimating equations.
There is a vector of parameters η, and the gradient of the log likelihood
function logL(η) is set to zero. The solution η̂ is the MLE, an estimator
of the parameter vector η, but in the log likelihood, η is a dummy variable
vector, not the fixed unknown parameter vector.
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Definition 2.12. Let Q(η) be a real valued function of the k × 1 vector
η. The gradient of Q(η) is the k × 1 vector

5Q = 5Q(η) =
∂Q

∂η
=
∂Q(η)

∂η
=




∂
∂η1

Q(η)
∂

∂η2
Q(η)
...

∂
∂ηk

Q(η)



.

Suppose there is a model with unknown parameter vector η. A set of esti-
mating equations f(η) is used to maximize or minimize Q(η) where η is a
dummy variable vector.

Often f(η) = 5Q, and we solve f(η) = 5Q set
= 0 for the solution η̂, and

f : R
k → R

k. Note that η̂ is an estimator of the unknown parameter vector
η in the model, but η is a dummy variable in Q(η). Hence we could use Q(b)
instead of Q(η), but the solution of the estimating equations would still be

b̂ = η̂.

As a mnemonic (memory aid) for the following theorem, note that the

derivative
d

dx
ax =

d

dx
xa = a and

d

dx
ax2 =

d

dx
xax = 2ax.

Theorem 2.4. a) If Q(η) = aT η = ηT a for some k × 1 constant vector
a, then 5Q = a.

b) Let A be a symmetric matrix. If Q(η) = ηT Aη for some k×k constant
matrix A, then 5Q = 2Aη.

c) If Q(η) =
∑k

i=1 |ηi| = ‖η‖1, then 5Q = s = sη where si = sign(ηi)
where sign(ηi) = 1 if ηi > 0 and sign(ηi) = −1 if ηi < 0. This gradient is only
defined for η where none of the k values of ηi are equal to 0.

Example 2.1. If Z = Wη+e, then the OLS estimator minimizesQ(η) =
‖Z − Wη‖2

2 = (Z − Wη)T (Z − Wη) = ZT Z − 2ZT Wη + ηT (W T W )η.
Using Theorem 2.4 with aT = ZT W and A = W T W shows that 5Q =
−2W T Z+2(W T W )η. Let 5Q(η̂) denote the gradient evaluated at η̂. Then
the OLS estimator satisfies the normal equations (W T W )η̂ = W T Z.

Example 2.2. The Hebbler (1847) data was collected from n = 26 dis-
tricts in Prussia in 1843. We will study the relationship between Y = the
number of women married to civilians in the district with the predictors x1

= constant, x2 = pop = the population of the district in 1843, x3 = mmen
= the number of married civilian men in the district, x4 = mmilmen = the
number of married men in the military in the district, and x5 = milwmn =
the number of women married to husbands in the military in the district.
Sometimes the person conducting the survey would not count a spouse if
the spouse was not at home. Hence Y is highly correlated but not equal to
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x3. Similarly, x4 and x5 are highly correlated but not equal. We expect that
Y = x3 +e is a good model, but n/p = 5.2 is small. See the following output.

source("http://parker.ad.siu.edu/Olive/hdpack.txt")

source("http://parker.ad.siu.edu/Olive/hddata.txt")

x <- marry[,-3]; Y <- marry[,3]; out<-lsfit(x,Y)

ls.print(out)

Residual Standard Error=392.8709

R-Square=0.9999, p-value=0

F-statistic (df=4, 21)=67863.03

Estimate Std.Err t-value Pr(>|t|)

Intercept 242.3910 263.7263 0.9191 0.3685

pop 0.0004 0.0031 0.1130 0.9111

mmen 0.9995 0.0173 57.6490 0.0000

mmilmen -0.2328 2.6928 -0.0864 0.9319

milwmn 0.1531 2.8231 0.0542 0.9572

res<-out$res

yhat<-Y-res #d = 5 predictors used including x_1

AERplot2(yhat,Y,res=res,d=5)

#response plot with 90% pointwise PIs

$respi #90% PI for a future residual

[1] -950.4811 1445.2584 #90% PI length = 2395.74

2.3 Forward Selection

Forward selection is a variable selection method where model Ij uses j pre-
dictors x∗1, ..., x

∗
j including the constant x∗1 ≡ 1. If n/p is not large, instead of

forming p submodels I1, ..., Ip, form the sequence of M submodels I1, ..., IM
where M = min(dn/Je, p) for some positive integer J such as J = 5, 10, or 20.
Here dxe is the smallest integer ≥ x, e.g., d7.7e = 8. Then for each submodel
Ij, OLS is used to regress Y on 1, x∗2, ..., x

∗
j. Then a criterion chooses which

model Id from candidates I1, ..., IM is to be used as the final submodel.

Let criteria CS(I) have the form

CS(I) = SSE(I) + aKnσ̂
2.

These criteria need a good estimator of σ2 and n/p large. See Shibata (1984).
The criterion Cp(I) = AICS(I) uses Kn = 2 while the BICS(I) criterion uses
Kn = log(n). See Jones (1946) and Mallows (1973) for Cp. It can be shown
that Cp(I) = AICS(I) is equivalent to the CP (I) criterion of Definition 2.27.
Typically σ̂2 is the OLS full model MSE when n/p is large.

The following criteria also need n/p large. AIC is due to Akaike (1973),
AICC is due to Hurvich and Tsai (1989), and BIC to Schwarz (1978) and
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Akaike (1977, 1978). Also see Burnham and Anderson (2004).

AIC(I) = n log

(
SSE(I)

n

)
+ 2a,

AICC(I) = n log

(
SSE(I)

n

)
+

2a(a+ 1)

n− a− 1
,

and BIC(I) = n log

(
SSE(I)

n

)
+ a log(n).

Suppose the selected model is Id, and βId
is ad × 1. Forward selection

with Cp and AIC often gives useful results if n ≥ 5p and if n ≥ 10ad. For
p < n < 5p, forward selection with Cp and AIC tends to pick the full model
(which overfits since n < 5p) too often, especially if σ̂2 = MSE. The Hurvich
and Tsai (1989, 1991) AICC criterion can be useful if n ≥ max(2p, 10ad).

The EBIC criterion given in Luo and Chen (2013) may be useful when

n/p is not large. Let 0 ≤ γ ≤ 1 and |I| = a ≤ min(n, p) if β̂I is a × 1. We
may use a ≤ min(n/5, p). Then EBIC(I) =

n log

(
SSE(I)

n

)
+ a log(n) + 2γ log

[(
p

a

)]
= BIC(I) + 2γ log

[(
p

a

)]
.

This criterion can give good results if p = pn = O(nk) and γ > 1 − 1/(2k).
Hence we will use γ = 1. Then minimizing EBIC(I) is equivalent to mini-
mizing BIC(I) − 2 log[(p− a)!]− 2 log(a!) since log(p!) is a constant.

The above criteria can be applied to forward selection and lasso variable
selection. The Cp criterion can also be applied to lasso. See Efron and Hastie
(2016, pp. 221, 231).

Remark 2.10. Suppose n/J is an integer. If p ≤ n/J , then forward
selection fits (p−1)+(p−2)+ · · ·+2+1 = p(p−1)/2 ≈ p2/2 models, where
p − i models are fit at step i for i = 1, ..., (p− 1). If n/J < p, then forward
selection uses (n/J)−1 steps and fits ≈ (p−1)+(p−2)+· · ·+(p−(n/J)+1) =
p((n/J) − 1) − (1 + 2 + · · ·+ ((n/J) − 1)) =

p(
n

J
− 1) −

n
J (n

J − 1)

2
≈ n

J

(2p− n
J )

2

models. Thus forward selection can be slow if n and p are both large, al-
though the R package leaps uses a branch and bound algorithm that likely
eliminates many of the possible fits. Note that after step i, the model has
i+ 1 predictors, including the constant.

The R function regsubsets can be used for forward selection if p < n,
and if p ≥ n if the maximum number of variables is less than n. Then warning
messages are common. Some R code is shown below.

#regsubsets works if p < n, e.g. p = n-1, and works
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#if p > n with warnings if nvmax is small enough

set.seed(13)

n<-100

p<-200

k<-19 #the first 19 nontrivial predictors are active

J<-5

q <- p-1

b <- 0 * 1:q

b[1:k] <- 1 #beta = (1, 1, ..., 1, 0, 0, ..., 0)ˆT

x <- matrix(rnorm(n * q), nrow = n, ncol = q)

y <- 1 + x %*% b + rnorm(n)

nc <- ceiling(n/J)-1 #the constant will also be used

nc <- min(nc,q)

nc <- max(nc,1) #nc is the maximum number of

#nontrivial predictors used by forward selection

pp <- nc+1 #d = pp is used for PI (2.14)

vars <- as.vector(1:(p-1))

temp<-regsubsets(x,y,nvmax=nc,method="forward")

out<-summary(temp)

num <- length(out$cp)

mod <- out$which[num,] #use the last model

#do not need the constant in vin

vin <- vars[mod[-1]]

out$rss

[1] 1496.49625 1342.95915 1214.93174 1068.56668

973.36395 855.15436 745.35007 690.03901

638.40677 590.97644 542.89273 503.68666

467.69423 420.94132 391.41961 328.62016

242.66311 178.77573 79.91771

out$bic

[1] -9.4032 -15.6232 -21.0367 -29.2685

-33.9949 -42.3374 -51.4750 -54.5804

-57.7525 -60.8673 -64.7485 -67.6391

-70.4479 -76.3748 -79.0410 -91.9236

-117.6413 -143.5903 -219.498595

tem <- lsfit(x[,1:19],y) #last model used the

sum(tem$residˆ2) #first 19 predictors

[1] 79.91771 #SSE(I) = RSS(I)

n*log(out$rss[19]/n) + 20*log(n)

[1] 69.68613 #BIC(I)

for(i in 1:19) #a formula for BIC(I)

print( n*log(out$rss[i]/n) + (i+1)*log(n) )

bic <- c(279.7815, 273.5616, 268.1480, 259.9162,

255.1898, 246.8474, 237.7097, 234.6043, 231.4322,

228.3175, 224.4362, 221.5456, 218.7368, 212.8099,
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210.1437, 197.2611, 171.5435, 145.5944, 69.6861)

tem<-lsfit(bic,out$bic)

tem$coef

Intercept X

-289.1846831 0.9999998 #bic - 289.1847 = out$bic

xx <- 1:min(length(out$bic),p-1)+1

ebic <- out$bic+2*log(dbinom(x=xx,size=p,prob=0.5))

#actually EBIC(I) - 2 p log(2).

Example 2.2, continued. The output below shows results from forward
selection for the marry data. The minimum Cp model Imin uses a constant
and mmem. The forward selection PIs are shorter than the OLS full model
PIs.

library(leaps);Y <- marry[,3]; X <- marry[,-3]

temp<-regsubsets(X,Y,method="forward")

out<-summary(temp)

Selection Algorithm: forward

pop mmen mmilmen milwmn

1 ( 1 ) " " "*" " " " "

2 ( 1 ) " " "*" "*" " "

3 ( 1 ) "*" "*" "*" " "

4 ( 1 ) "*" "*" "*" "*"

out$cp

[1] -0.8268967 1.0151462 3.0029429 5.0000000

#mmen and a constant = Imin

mincp <- out$which[out$cp==min(out$cp),]

#do not need the constant in vin

vin <- vars[mincp[-1]]

sub <- lsfit(X[,vin],Y)

ls.print(sub)

Residual Standard Error=369.0087

R-Square=0.9999

F-statistic (df=1, 24)=307694.4

Estimate Std.Err t-value Pr(>|t|)

Intercept 241.5445 190.7426 1.2663 0.2175

X 1.0010 0.0018 554.7021 0.0000

res<-sub$res

yhat<-Y-res #d = 2 predictors used including x_1

AERplot2(yhat,Y,res=res,d=2)

#response plot with 90% pointwise PIs

$respi #90% PI for a future residual

[1] -778.2763 1336.4416 #length 2114.72

Consider forward selection where xI is a × 1. Underfitting occurs if S
is not a subset of I so xI is missing important predictors. A special case
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of underfitting is d = a < aS . Overfitting for forward selection occurs if i)
n < 5a so there is not enough data to estimate the a parameters in βI well,
or ii) S ⊆ I but S 6= I. Overfitting is serious if n < 5a, but “not much of a
problem” if n > Jp where J = 10 or 20 for many data sets. Underfitting is a
serious problem for estimating the full model β. Let Yi = xT

I,iβI + eI,i. Then

V (eI,i) may not be a constant σ2: V (eI,i) could depend on case i, and the
model may no longer be linear. Check model I with response and residual
plots.

Forward selection is a shrinkage method: pmodels are produced and except
for the full model, some |β̂i| are shrunk to 0. Lasso and ridge regression are

also shrinkage methods. Ridge regression is a shrinkage method, but |β̂i| is

not shrunk to 0. Shrinkage methods that shrink β̂i to 0 are also variable
selection methods. See Sections 2.6, 2.7, and 2.8.

Definition 2.13. A fitted or population regression model is sparse if a of
the predictors are active (have nonzero β̂i or βi) where n ≥ Ja with J ≥ 10.
Otherwise the model is nonsparse. A high dimensional population regression
model is abundant or dense if the regression information is spread out among
the p predictors (nearly all of the predictors are active). Hence an abundant
model is a nonsparse model.

Suppose the population model has βS an aS × 1 vector, including a con-
stant. Then a = aS − 1 for the population model. Note that a = aS if the
model does not include a constant. See Equation (2.14).

2.4 Principal Components Regression

Some notation for eigenvalues, eigenvectors, orthonormal eigenvectors, posi-
tive definite matrices, and positive semidefinite matrices will be useful before
defining principal components regression, which is also called principal com-
ponent regression.

Notation: Recall that a square symmetric p × p matrix A has an eigen-
value λ with corresponding eigenvector x 6= 0 if

Ax = λx. (2.15)

The eigenvalues of A are real since A is symmetric. Note that if constant
c 6= 0 and x is an eigenvector of A, then c x is an eigenvector of A. Let
e be an eigenvector of A with unit length ‖e‖2 =

√
eT e = 1. Then e and

−e are eigenvectors with unit length, and A has p eigenvalue eigenvector
pairs (λ1, e1), (λ2, e2), ..., (λp, ep). Since A is symmetric, the eigenvectors are
chosen such that the ei are orthonormal: eT

i ei = 1 and eT
i ej = 0 for i 6=

j. The symmetric matrix A is positive definite iff all of its eigenvalues are
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positive, and positive semidefinite iff all of its eigenvalues are nonnegative.
If A is positive semidefinite, let λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0. If A is positive
definite, then λp > 0.

Theorem 2.5. Let A be a p×p symmetric matrix with eigenvector eigen-
value pairs (λ1, e1), (λ2, e2), ..., (λp, ep) where eT

i ei = 1 and eT
i ej = 0 if i 6= j

for i = 1, ..., p. Then the spectral decomposition of A is

A =

p∑

i=1

λieie
T
i = λ1e1e

T
1 + · · ·+ λpepe

T
p .

Using the same notation as Johnson and Wichern (1988, pp. 50-51),
let P = [e1 e2 · · · ep] be the p × p orthogonal matrix with ith column

ei. Then P P T = P T P = I . Let Λ = diag(λ1, ..., λp) and let Λ1/2 =

diag(
√
λ1, ...,

√
λp). If A is a positive definite p × p symmetric matrix with

spectral decomposition A =
∑p

i=1 λieie
T
i , then A = P ΛP T and

A−1 = P Λ−1P T =

p∑

i=1

1

λi
eie

T
i .

Theorem 2.6. Let A be a positive definite p× p symmetric matrix with
spectral decomposition A =

∑p
i=1 λieie

T
i . The square root matrix A1/2 =

PΛ1/2P T is a positive definite symmetric matrix such that A1/2A1/2 = A.

Let Y = α + xT β + e. Consider the correlation matrix Rx of the p
nontrivial predictors x1, ..., xp. Suppose Rx has eigenvalue eigenvector pairs

(λ̂1, ê1), ..., (λ̂K, êK) where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂K ≥ 0 where K = min(n, p).

Then Rxêi = λ̂iêi for i = 1, ..., K. Since Rx is a symmetric positive semidef-
inite matrix, the λ̂i are real and nonnegative.

The eigenvectors êi are orthonormal: êT
i êi = 1 and êT

i êj = 0 for i 6= j.
If the eigenvalues are unique, then êi and −êi are the only orthonormal
eigenvectors corresponding to λ̂i. For example, the eigenvalue eigenvector
pairs can be found using the singular value decomposition of the matrix
W g/

√
n− g where W g is the data matrix of standardized cases: the ith row

of W g is wT
i , the sample covariance matrix

Σ̂w =
W T

g W g

n− g
=

1

n− g

n∑

i=1

(wi − w)(wi − w)T =
1

n− g

n∑

i=1

wiw
T
i = Rx,

and usually g = 0 or g = 1. If n > K = p, then the spectral decomposition of
Rx is

Rx =

p∑

i=1

λ̂iêiê
T
i = λ̂1ê1ê

T
1 + · · ·+ λ̂pêpê

T
p ,
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and
∑p

i=1 λ̂i = p.
Let w1, ...,wn denote the n standardized cases of nontrivial predictors.

See Remark 2.6. Then the K principal components corresponding to the jth
case wj are Pj1 = ê

T
1 wj, ..., PjK = ê

T
Kwj. Let the transformed case, that

uses K principal components, corresponding to wj be vj = (Pj1, ..., PjK)T .
Following Hastie et al. (2009, p. 66), the ith eigenvector êi is known as the
ith principal component direction or Karhunen Loeve direction of W g.

Principal components have a nice geometric interpretation if n > K = p.
If n > K and Rx is nonsingular, then the hyperellipsoid

{w|D2
w(0,Rx) ≤ h2} = {w : wT R−1

x w ≤ h2}

is centered at 0. The volume of the hyperellipsoid is

2πK/2

KΓ (K/2)
|Rx|1/2hK .

Then points at squared distance wT R−1
x w = h2 from the origin lie on the

hyperellipsoid centered at the origin whose axes are given by the eigenvectors

êi where the half length in the direction of êi is h
√
λ̂i. Let j = 1, ..., n. Then

the first principal component Pj1 is obtained by projecting the wj on the
(longest) major axis of the hyperellipsoid, the second principal component Pj2

is obtained by projecting the wj on the next longest axis of the hyperellipsoid,
..., and the (p)th principal component Pj,p is obtained by projecting the wj

on the (shortest) minor axis of the hyperellipsoid. Examine Figure 2.3 for
two ellipsoids with 2 nontrivial predictors. The axes of the hyperellipsoid are
a rotation of the usual axes about the origin.

Let the random variable Vi correspond to the ith principal component, and
let the ith principal component vector ci = (P1i, ..., Pni)

T = (V1i, ..., Vni)
T

be the observed data for Vi. Let g = 1. Then the sample mean

V i =
1

n

n∑

k=1

Vki =
1

n

n∑

k=1

êT
i wk = êT

i w = êT
i 0 = 0,

and the sample covariance of Vi and Vj is Cov(Vi, Vj) =

1

n

n∑

k=1

(Vki − V i)(Vkj − V j) =
1

n

n∑

k=1

êT
i wkwT

k êj = êT
i Rxêj

= λ̂j ê
T
i êj = 0 for i 6= j since the sample covariance matrix of the standard-

ized data is
1

n

n∑

k=1

wkwT
k = Rx

and Rxêj = λ̂j êj. Hence Vi and Vj are uncorrelated.
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In the following definition, note that cT
i cj = êT

i W T Wêj = nêiRxêj =

nλjê
T
i êj = 0 for i 6= j. Thus ci and cj are orthogonal: ci⊥cj for i 6= j. Also,

cT
i 1 = (

∑n
k=1 wk)êi = 0T êi = 0 since the standardized predictor variables

sum to 0. The ith principle component vector ci corresponds to the derived
predictor Vi, for i = 1, ..., p− 1.

Definition 2.14. Consider the standardized model Z = Wη + ε where
Y = α+ xT β + e. Let

vi = Âk,nwi =




wT
i ê1

...
wT

i êk


 =




êT
1 wi

...

êT
k wT

i


 where Âk,n =




êT
1
...

êT
k


 .

Let

ci = Wêi =




wT
1 êi

...
wT

n êi




be the ith principle component vector for i = 1, ..., p. Principal components
regression (PCR) uses OLS regression on the principal component vectors
of the correlation matrix Rx. Hence PCR uses linear combinations of the
standardized data as predictors. Let

V k = (c1, ..., ck) =




vT
1
...

vT
n


 = W Â

T

k,n

for k = 1, ..., p. Let the working OLS model

Z = V kγk + ε = WβkPCR + ε

where ε depends on the model. Then β̂kPCR is the k-component PCR es-
timator for k = 1, ..., p. The model selection estimator chooses one of the
k-component estimators, e.g. using a holdout sample or cross validation, and
will be denoted by β̂MSPCR.

Remark 2.11. a) The set of p× 1 vectors {(1, 0, ..., 0)T , (0, 1, 0, ..., 0)T,
(0, ...0, 1)T} is the standard basis for R

p. The set of vectors {ê1, ..., êp} is also
a basis for R

p.
b) Let γ̂k = (γ̂1, ..., γ̂k)

T . Since the columns of V k are orthogonal, ci⊥cj

for i 6= j,

γ̂i =
cT

i Z

cT
i ci

=
cT

i Y

cT
i ci

.
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c) Since Ẑ = V kγ̂k +r = WÂ
T

k,nγ̂k +r = Wβ̂kPCR +r, where β̂kPCR =

Â
T

k,nγ̂k. By Remark 2.5,

γ̂k = Σ̂
−1

v Σ̂vZ = [Âk,nΣ̂wÂ
T

k,n]−1Âk,nΣ̂wZ =

[Âk,nΣ̂wÂ
T

k,n]−1Âk,nΣ̂wβ̂OLS(w, Z).

Thus

β̂kPCR = Â
T

k,nγ̂k = Â
T

k,n[Âk,nΣ̂wÂ
T

k,n]−1Âk,nΣ̂wβ̂OLS(w, Z).

Note that β̂pPCR = β̂OLS(w, Z).

d) Let ei = ei(ρ̂x) be the ith eigenvector of the population correlation

matrix ρ̂x of the x, and let

Ak =




eT
1
...

eT
i


 .

It is possible that êi,n is arbitrarily close to ei for some values of n and
arbitrarily close to −ei for other values of n so that êi ≡ êi,n oscillates and
does not converge in probability to either ei or −ei. Hence we can not say

that the ith eigenvector êi = êi,n
P→ ei or that Ak,n

P→ Ak. If Σ̂
P→ cΣ

for some constant c > 0, and if the eigenvalues λ1 > · · · > λp > 0 of Σ are
unique, then the absolute value of the correlation of êj with ej converges to

1 in probability: |corr(êj, ej)| P→ 1. See Olive (2017b, p. 190). Let γk be
the population vector from the OLS regression on the principal component
vectors of the population correlation matrix ρx. Then γk and Ak are not
unique since columns of Ak and elements of γk can be multiplied by −1
(an orthonormal eigenvector can be ei or −ei), but if a column ej of Ak is

multiplied by −1 then the jth element of γk,j is multiplied by −1 so AT
k γk

is unique. Thus Â
T

k,nγ̂k
P→ AT

k γk. Let Σ̂w
P→ ρu. Then

βkPCR = AT
k φk = AT

k [AkρxAT
k ]−1AkρxβOLS(w, Z).

See Helland and Almøy (1994).

e) In general, β̂kPCR estimates βkPCR 6= βOLS(w, Z) unless k = p. Using
standardized predictors and estimated eigenvectors likely causes problems for
finding a CLT, as in Remark 2.6.

f) Generally there is no reason why the “predictors” should be ranked from
best to worst by V1, V2, ..., Vk. For example, the last few principal component
vectors (and a constant) could be much better for prediction than the other
principal component vectors. See Jolliffe (1983) and Cook and Forzani (2008).
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g) Suppose
∑J

i=1 λ̂i ≥ q(p) where 0.5 ≤ q ≤ 1, e.g. q = 0.8 where J is a lot
smaller than p. Then the J predictors V1, ..., VJ capture much of the infor-
mation of the standardized nontrivial predictors w1, ..., wp. Then regressing
Y on 1, V1, ..., VJ may be competitive with regressing Y on w1, ..., wp. PCR
is equivalent to OLS on the full model when Y is regressed on a constant
and all K = p of the principal components. PCR can also be useful if X is
singular or nearly singular (ill conditioned).

Example 2.2, continued. The PCR output below shows results for the
marry data where 10-fold CV was used. The OLS full model was selected.

library(pls); y <- marry[,3]; x <- marry[,-3]

z <- as.data.frame(cbind(y,x))

out<-pcr(y˜.,data=z,scale=T,validation="CV")

tem<-MSEP(out)

tem

(Int) 1 comps 2 comps 3 comps 4 comps

CV 1.743e+09 449479706 8181251 371775 197132

cvmse<-tem$val[,,1:(out$ncomp+1)][1,]

nc <-max(which.min(cvmse)-1,1)

res <- out$residuals[,,nc]

yhat<-y-res #d = 5 predictors used including constant

AERplot2(yhat,y,res=res,d=5)

#response plot with 90% pointwise PIs

$respi #90% PI same as OLS full model

-950.4811 1445.2584 #PI length = 2395.74

Several statistical methods can be computed using an n × n matrix or a
p× p matrix, depending on whether n or p is smaller. The remainder of this
section shows the computations for principle components analysis (PCA),
which is used for principle components regression.

Suppose W is the standardized n × p data matrix and T = W g/
√
n− g.

If n < p, then the correlation matrix R = T T T = W T
g W g/(n− g) does not

have full rank. By singular value decomposition (SVD) theory, the SVD of T

is T = UΛV T where the positive singular values σi are square roots of the
positive eigenvalues of both T T T and of TT T . (The singular values are not
standard deviations.) Also V = (ê1 ê2 · · · êp), and T T T êi = σ2

i êi. Hence
classical principal component analysis on the standardized data can be done
using êi and λ̂i = σ2

i . The SVD of T T is T T = V ΛT UT , and

TT T =
1

n − g




wT
1 w1 wT

1 w2 . . . w
T
1 wn

...
...

. . .
...

wT
nw1 wT

n w2 . . . w
T
nwn




which is the matrix of scalar products divided by n. Similarly, if W c is the
centered data matrix (subtract the means), then T c = W c/

√
n− g, and the
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covariance matrix S = T T
c T c = W T

c W c/(n−g). For more information about
the SVD, see Datta (1995, pp. 552-556) and Fogel et al. (2013).

The following output shows how to do classical PCA with S on a data set
using the SVD and g = 1. The eigenvectors agree up to sign.

x<-cbind(buxx,buxy) # data matrix

mn <- apply(x,2,mean) #sample mean

J <- 0*1:87 + 1 # vector of n ones, n = 87

J <- J%*%t(J)/87 #J%*%x has rows = mn

zc <- x-J%*%x #centered x

yc <- zc/sqrt(87-1) #t(yc) %*% yc = cov(x)

svd(yc)$v #right eigenvectors of Yc

[,1] [,2] [,3] [,4] [,5]

[1,] 0.653883 0.75596 -0.01173 0.00988 0.0268

[2,] -0.001366 0.03980 0.06800 -0.42534 -0.9016

[3,] -0.000489 -0.01276 -0.99161 -0.12775 -0.0151

[4,] -0.000714 0.00251 -0.10890 0.89588 -0.4308

[5,] -0.756594 0.65327 -0.00952 0.00854 0.0252

> svd(t(yc))$u #left eigenvectors of YcˆT

[,1] [,2] [,3] [,4] [,5]

[1,] -0.653883 -0.75596 0.01173 -0.00988 -0.0268

[2,] 0.001366 -0.03980 -0.06800 0.42534 0.9016

[3,] 0.000489 0.01276 0.99161 0.12775 0.0151

[4,] 0.000714 -0.00251 0.10890 -0.89588 0.4308

[5,] 0.756594 -0.65327 0.00952 -0.00854 -0.0252

> prcomp(x)

Standard deviations:

[1] 523.70760 42.50435 6.06073 4.39067 3.80398

Rotation:

PC1 PC2 PC3 PC4 PC5

len 0.653883 0.75596 -0.01173 0.00988 0.0268

nasal -0.001366 0.03980 0.06800 -0.42534 -0.9016

bigonal -0.000489 -0.01276 -0.99161 -0.12775 -0.0151

cephalic -0.000714 0.00251 -0.10890 0.89588 -0.4308

buxy -0.756594 0.65327 -0.00952 0.00854 0.0252

svd(yc)$d #singular values = sqrt(eigenvalues)

[1] 523.70760 42.50435 6.06073 4.39067 3.80398

svd(t(yc))$d #singular values = sqrt(eigenvalues)

[1] 523.70760 42.50435 6.06073 4.39067 3.80398

Although PCA can be done if p > n, in general need p fixed for the sample
eigenvector to be a good estimator of a population eigenvector.
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2.5 Partial Least Squares

Consider the MLR model Yi = α+ xT
i β + ei = α+ xi,1β1 + · · ·+ xi,pβp + ei

for i = 1, ..., n. Principal components regression (PCR) and partial least
squares (PLS) models use p linear combinations ηT

1 x, ...,ηT
p x. Then there

are p conditional distributions

Y |ηT
1 x

Y |(ηT
1 x,ηT

2 x)
...

Y |(ηT
1 x,ηT

2 x, ...,ηT
p x).

Estimating the ηi and performing the ordinary least squares (OLS) regression
of Y on (η̂T

1 x, η̂T
2 x, ..., η̂T

k x) and a constant gives the k-component estima-

tor, e.g. the k-component PLS estimator β̂kPLS or the k-component PCR
estimator, for k = 1, ..., J where J ≤ p and the p-component estimator is
the OLS estimator β̂OLS . Denote the one component PLS (OPLS) estimator

by β̂OPLS . The model selection estimator chooses one of the k-component
estimators, e.g. using a holdout sample or cross validation, and will be de-
noted by β̂MSPLS . For the OPLS estimator, η1 = ΣxY and η̂1 = Σ̂xY . See
Sections 2.10 and 2.11 for more on the OPLS estimator.

Remark 2.12. Olive and Zhang (2024) showed that β̂kPLS estimates
βkPLS , and in general, βkPLS 6= βOLS for k < p. In particular, βOPLS 6=
βOLS except under very strong regularity conditions. The PLS literature
incorrectly suggests that βkPLS = βOLS , under mild regularity conditions,
for 1 ≤ k < p if p is fixed. Also see Chun and Keleş (2010), Cook (2018),
Cook et al. (2013), and Cook and Forzani (2018, 2019, 2024).

There are several ways to compute k-component partial least squares
(PLS) estimators for multiple linear regression. A simple way is to do the
OLS regression on (a constant and) W1, ...,Wk where Wj = η̂T

j x and

η̂j = Σ̂
j−1

x Σ̂xY , and k ≤ min(n − 2, p). Then the one component PLS

estimator is OPLS: β̂OPLS = β̂1PLS with k = 1, and β̂OLS = β̂pPLS

with k = p if n > p + 1. The 3-component PLS estimator regresses Y on

(a constant and) W1 = η̂T
1 x = Σ̂

T

xY x, W2 = η̂T
2 x = [Σ̂xΣ̂xY ]T x, and

W3 = η̂T
3 x = [Σ̂

2

xΣ̂xY ]T x. Let Y = α+ xT βkPLS + ε be a working model.
From Naik and Tsai (2000), Helland and Almøy (1994), and Helland (1990),

let Â
T

k,n = [Σ̂xY , Σ̂xΣ̂xY , Σ̂
2

xΣ̂xY , ..., Σ̂
k−1

x Σ̂xY ]. Let w = Âk,nx with

Y = α+ wT γk + ε the working model so β̂kPLS = Â
T

k,nγ̂k. Then β̂kPLS =

Â
T

k,n[Âk,nΣ̂xÂ
T

k,n]−1Âk,nΣ̂xY = Â
T

k,n[Âk,nΣ̂xÂ
T

k,n]−1Âk,nΣ̂xβ̂OLS(x, Y ).
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Example 2.2, continued. The PLS output below shows results for the
marry data where 10-fold CV was used. The OLS full model was selected.
The Mevik et al. (2015) pls library is useful for computing PLS and PCR.

library(pls); y <- marry[,3]; x <- marry[,-3]

z <- as.data.frame(cbind(y,x))

out<-plsr(y˜.,data=z,scale=T,validation="CV")

tem<-MSEP(out)

tem

(Int) 1 comps 2 comps 3 comps 4 comps

CV 1.743e+09 256433719 6301482 249366 206508

cvmse<-tem$val[,,1:(out$ncomp+1)][1,]

nc <-max(which.min(cvmse)-1,1)

res <- out$residuals[,,nc]

yhat<-y-res #d = 5 predictors used including constant

AERplot2(yhat,y,res=res,d=5)

$respi #90% PI same as OLS full model

-950.4811 1445.2584 #PI length = 2395.74

There are some other equivalent ways to formulate PLS. The follow-
ing formulation shows that PLS seeks PLS directions that are correlated
with Y . Note that PCR components are formed without using Y . Let Y =
α+xT βkPLS+ε be a working model. Let X = (1 X1). Chun and Keleş (2010)
noted that an equivalent way to formulate PLS is to solve an optimization
problem by forming bj iteratively where bk = arg maxb{[corr(Y ,X1b)]2V (X1b)}
subject to bT b = 1 and bT Σxbj = 0 for j = 1, ..., k− 1. Let the b̂j be the

estimates of bj, and perform the OLS regression of Y on X1Ĉk,n and a

constant where Ĉk,n = [b̂1, ..., b̂k] to find γ̂k. Then β̂kPLS = Ĉk,nγ̂k.
Here is another way to formulate PLS. Let Xc be the matrix of cen-

tered predictors (subtract the sample mean from each predictor) so that

D = XT
c Xx = (n − 1)Σ̂x and let Z be the vector of centered response

variables. Let d = XT
c Z = (n − 1)ΣxY . An equivalent way to compute the

k-component PLS estimator is to find unit vectors η̂1, ..., η̂k and perform
the OLS regression of Y on a constant and the Ui = η̂T

i x for i = 1, ..., k.
Following Brown (1993, pp. 71-72), first maximize (cT d)2 subject to the con-
straint cT c = ‖c‖2 = 1. The maximum occurs at c1 = η̂1 = d/‖d‖ =

Σ̂xY /‖Σ̂xY ‖ = η̂OPLS/‖η̂OPLS‖. Then c2 = η̂2 is found by maximizing
(cT d)2 subject to both ‖c‖ = 1 and cT Dc1 = 0 (called D-norm orthogonal-
ization) to get c2 = η̂2. Continue in this way to get the remaining vectors
c3, ..., ck.
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2.6 Ridge Regression

Consider the MLR model Y = Xβ + e. Ridge regression often uses the
centered response Zi = Yi − Y and standardized nontrivial predictors in the
model Z = Wη + ε. Then Ŷi = Ẑi + Y . Note that in Definition 2.16, λ1,n is

a tuning parameter, not an eigenvalue. The residuals r = r(β̂R) = Y − Ŷ .
Refer to Definition 2.11 for the OLS estimator η̂OLS = (W T W )−1W T Z.

Definition 2.15. Consider the MLR model Z = Wη + ε. Let b be a
(p − 1) × 1 vector. Then the fitted value Ẑi(b) = wT

i b and the residual

ri(b) = Zi − Ẑi(b). The vector of fitted values Ẑ(b) = Wb and the vector of

residuals r(b) = Z − Ẑ(b).

Definition 2.16. a) Consider fitting the MLR model Y = Xβ + e us-
ing Z = Wη + ε. The ridge regression estimator η̂R minimizes the ridge
regression criterion

QR(η) =
1

a
(Z − Wη)T (Z − Wη) +

λ1,n

a

p−1∑

i=1

η2
i (2.16)

over all vectors η ∈ R
p−1 where λ1,n ≥ 0 and a > 0 are known constants

with a = 1, 2, n, and 2n common. Then

η̂R = (W T W + λ1,nIp−1)
−1W T Z. (2.17)

The residual sum of squares RSS(η) = (Z −Wη)T (Z −Wη), and λ1,n = 0
corresponds to the OLS estimator η̂OLS. The ridge regression vector of fitted
values is Ẑ = ẐR = Wη̂R, and the ridge regression vector of residuals
rR = r(η̂R) = Z − ẐR. The estimator is said to be regularized if λ1,n > 0.

Obtain Ŷ and β̂R using η̂R, Ẑ, and Y .
b) Consider fitting the MLR model Y = Xβ+e. Let λ ≥ 0 be a constant.

One ridge regression estimator β̂R minimizes the ridge regression criterion

QR(β) =
1

a
(Y − Xβ)T (Y − Xβ) +

λ1,n

a

p∑

i=1

β2
i (2.18)

over all vectors β ∈ R
p. Then

β̂R = (XT X + λ1,nIp)
−1XT Y . (2.19)

The residual sum of squares RSS(β) = (Y −Xβ)T (Y −Xβ), and λ1,n = 0

corresponds to the OLS estimator β̂OLS . The ridge regression vector of fitted

values is Ŷ = Ŷ R = Xβ̂R, and the ridge regression vector of residuals

rR = r(β̂R) = Y − Ŷ R.
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c) Another ridge regression estimator β̃RR minimizes the ridge regression
criterion

QRR(β) =
1

a
(Y − Xβ)T (Y − Xβ) +

λ1,n

a

p∑

i=2

β2
i

over all vectors β ∈ R
p.

The estimators b) and c) agree when a) is used. Using a vector of param-
eters η and a dummy vector η in QR is common for minimizing a criterion
Q(η), often with estimating equations. See the paragraphs above and below
Definition 2.12. We could also write

QR(b) =
1

a
r(b)T r(b) +

λ1,n

a
bT b

where the minimization is over all vectors b ∈ R
p−1. Note that

∑p−1
i=1 η

2
i =

ηT η = ‖η‖2
2. The literature often uses λa = λ = λ1,n/a.

Note that λ1,nbT b = λ1,n

∑p−1
i=1 b

2
i . Each coefficient bi is penalized equally

by λ1,n. Hence using standardized nontrivial predictors makes sense so that
if ηi is large in magnitude, then the standardized variable wi is important.

Remark 2.13. i) If λ1,n = 0, the ridge regression estimator becomes the
OLS full model estimator: η̂R = η̂OLS.

ii) If λ1,n > 0, then W T W + λ1,nIp−1 is nonsingular. Hence η̂R exists
even if X and W are singular or ill conditioned, or if p > n.

iii) Following Hastie et al. (2009, p. 96), let the augmented matrix W A

and the augmented response vector ZA be defined by

W A =

(
W√

λ1,n Ip−1

)
, and ZA =

(
Z

0

)
,

where 0 is the (p− 1)× 1 zero vector. For λ1,n > 0, the OLS estimator from
regressing ZA on W A is

η̂A = (W T
AW A)−1W T

AZA = η̂R

since W T
AZA = W T Z and

W T
AW A =

(
W T

√
λ1,n Ip−1

)(
W√

λ1,n Ip−1

)
= W T W + λ1,n Ip−1.

iv) A simple way to regularize a regression estimator, such as the L1 esti-
mator, is to compute that estimator from regressing ZA on W A.

Remark 2.13 iii) is interesting. Note that for λ1,n > 0, the (n+p−1)×(p−1)
matrix W A has full rank p−1. The augmented OLS model consists of adding
p− 1 pseudo-cases (wT

n+1, Zn+1)
T , ..., (wT

n+p−1, Zn+p−1)
T where Zj = 0 and



106 2 Multiple Linear Regression

wj = (0, ...,
√
λ1,n, 0, ..., 0)T for j = n+1, ..., n+p−1 where the nonzero entry

is in the kth position if j = n + k. For centered response and standardized
nontrivial predictors, the population OLS regression fit runs through the
origin (wT , Z)T = (0T , 0)T . Hence for λ1,n = 0, the augmented OLS model
adds p − 1 typical cases at the origin. If λ1,n is not large, then the pseudo-
data can still be regarded as typical cases. If λ1,n is large, the pseudo-data
act as w–outliers (outliers in the standardized predictor variables), and the

OLS slopes go to zero as λ1,n gets large, making Ẑ ≈ 0 so Ŷ ≈ Y .
To prove Remark 2.13 ii), let (ψ, g) be an eigenvalue eigenvector pair of

W T W = nRu. Then [WT W + λ1,nIp−1]g = (ψ+ λ1,n)g, and (ψ+λ1,n, g)

is an eigenvalue eigenvector pair of W T W +λ1,nIp−1 > 0 provided λ1,n > 0.

The degrees of freedom for a ridge regression with known λ1,n is also
interesting and will be found in the next paragraph. The sample correlation
matrix of the nontrivial predictors

Ru =
1

n− g
W T

g W g

where we will use g = 0 and W = W 0. Then W T W = nRu. By singular
value decomposition (SVD) theory, the SVD of W is W = UΛV T where
the positive singular values σi are square roots of the positive eigenvalues of
both W T W and of WW T . Also V = (ê1 ê2 · · · êp), and W T Wêi = σ2

i êi.

Hence λ̂i = σ2
i where λ̂i = λ̂i(W

T W ) is the ith eigenvalue of W T W , and êi

is the ith orthonormal eigenvector of Ru and of W T W . The SVD of W T is
W T = V ΛT UT , and the Gram matrix

WW T =




wT
1 w1 wT

1 w2 . . . w
T
1 wn

...
...

. . .
...

wT
nw1 wT

n w2 . . . w
T
nwn




which is the matrix of scalar products. Warning: Note that σi is the ith
singular value of W , not the standard deviation of wi.

Following Hastie et al. (2009, p. 68), if λ̂i = λ̂i(W
T W ) is the ith eigenvalue

of W T W where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p−1, then the (effective) degrees of freedom
for the ridge regression of Z on W with known λ1,n is df(λ1,n) =

tr[W (W T W + λ1,nIp−1)
−1W T ] =

p−1∑

i=1

σ2
i

σ2
i + λ1,n

=

p−1∑

i=1

λ̂i

λ̂i + λ1,n

(2.20)

where the trace of a square (p − 1) × (p − 1) matrix A = (aij) is tr(A) =∑p−1
i=1 aii =

∑p−1
i=1 λ̂i(A). Note that the trace of A is the sum of the diagonal

elements of A = the sum of the eigenvalues of A.
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Note that 0 ≤ df(λ1,n) ≤ p − 1 where df(λ1,n) = p − 1 if λ1,n = 0 and
df(λ1,n) → 0 as λ1,n → ∞. The R code below illustrates how to compute
ridge regression degrees of freedom.

set.seed(13)

n<-100; q<-3 #q = p-1

b <- 0 * 1:q + 1

u <- matrix(rnorm(n * q), nrow = n, ncol = q)

y <- 1 + u %*% b + rnorm(n) #make MLR model

w1 <- scale(u) #t(w1) %*% w1 = (n-1) R = (n-1)*cor(u)

w <- sqrt(n/(n-1))*w1 #t(w) %*% w = n R = n cor(u)

t(w) %*% w/n

[,1] [,2] [,3]

[1,] 1.00000000 -0.04826094 -0.06726636

[2,] -0.04826094 1.00000000 -0.12426268

[3,] -0.06726636 -0.12426268 1.00000000

cor(u) #same as above

rs <- t(w)%*%w #scaled correlation matrix n R

svs <-svd(w)$d #singular values of w

lambda <- 0

d <- sum(svsˆ2/(svsˆ2+lambda))

#effective df for ridge regression using w

d

[1] 3 #= q = p-1

112.60792 103.88089 83.51119

svsˆ2 #as above

uu<-scale(u,scale=F) #centered but not scaled

svs <-svd(uu)$d #singular values of uu

svsˆ2

[1] 135.78205 108.85903 85.83395

d <- sum(svsˆ2/(svsˆ2+lambda))

#effective df for ridge regression using uu

#d is again 3 if lambda = 0

In general, if Ẑ = HλZ, then df(Ẑ) = tr(Hλ) where Hλ is a (p − 1) ×
(p− 1) “hat matrix.” For computing Ŷ , df(Ŷ ) = df(Ẑ) + 1 since a constant

β̂1 also needs to be estimated. These formulas for degrees of freedom assume
that λ is known before fitting the model. The formulas do not give the model
degrees of freedom if λ̂ is selected from M values λ1, ..., λM using a criterion
such as k-fold cross validation.

Suppose the ridge regression criterion is written, using a = 2n, as

QR,n(b) =
1

2n
r(b)T r(b) + λ2nbT b, (2.21)

as in Hastie et al. (2015, p. 10). Then λ2n = λ1,n/(2n) using the λ1,n from
(2.16).
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The following remark is interesting if λ1,n and p are fixed. However, λ̂1,n is

usually used, for example, after 10-fold cross validation. The fact that β̂R =

An,λβ̂OLS appears in Efron and Hastie (2016, p. 98), and Marquardt and
Snee (1975). See Theorem 2.7 for the ridge regression central limit theorem.

Remark 2.14. Ridge regression has a simple relationship with OLS if
n > p and (XT X)−1 exists. Then β̂R = (XT X + λ1,nIp)

−1XT Y =

(XT X + λ1,nIp)−1(XT X)(XT X)−1XT Y = An,λβ̂OLS where An,λ ≡
An = (XT X + λ1,nIp)

−1XT X . By the OLS CLT Equation (2.6) with

V̂ /n = (XT X)−1, a normal approximation for OLS is

β̂OLS ∼ ANp(β,MSE (XT X)−1).

Hence a normal approximation for ridge regression is

β̂R ∼ ANp(Anβ,MSE An(XT X)−1AT
n ) ∼

ANp[Anβ,MSE (XT X + λ1,nIp)
−1(XT X)(XT X + λ1,nIp)

−1].

If Equation (2.6) holds and λ1,n/n→ 0 as n→ ∞, then An
P→ Ip.

Remark 2.15. The ridge regression criterion from Definition 2.16 can also
be defined by

QR(η) = ‖Z − Wη‖2
2 + λ1,nηT η. (2.22)

Then by Theorem 2.4, the gradient 5QR = −2W T Z +2(W T W )η+2λ1,nη.
Cancelling constants and evaluating the gradient at η̂R gives the score equa-
tions

−W T (Z − Wη̂R) + λ1,nη̂R = 0. (2.23)

Following Efron and Hastie (2016, pp. 381-382, 392), this means η̂R = W T a

for some n× 1 vector a. Hence −W T (Z − WW T a) + λ1,nW T a = 0, or

W T (WW T + λ1,nIn)]a = W T Z

which has solution a = (WW T + λ1,nIn)−1Z. Hence

η̂R = W T a = W T (WW T + λ1,nIn)−1Z = (W T W + λ1,nIp−1)
−1W T Z.

Using the n × n matrix WW T is computationally efficient if p > n while
using the p × p matrix W T W is computationally efficient if n > p. If A is
k × k, then computing A−1 has O(k3) complexity.

The following identity from Gunst and Mason (1980, p. 342) is useful for
ridge regression inference: η̂R =(XT X + λ1,nIp)

−1XT Y

= (XT X + λ1,nIp)
−1XT X(XT X)−1XT Y
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= (XT X + λ1,nIp)
−1XT Xβ̂OLS = Anβ̂OLS =

[Ip − λ1,n(XT X + λ1,nIp)
−1]β̂OLS = Bnβ̂OLS =

β̂OLS − λ1n

n
n(XT X + λ1,nIp)

−1β̂OLS

since An − Bn = 0, where An = (XT X + λ1,nIp)
−1(XT X) = Bn

= Ip − λ1,n(XT X + λ1,nIp)
−1. See Problem 2.3. Assume

XT X

n
→ V −1

as n → ∞. If λ1,n/n→ 0 then

XT X + λ1,nIp

n

P→ V −1, and n(XTX + λ1,nIp)−1 P→ V .

Note that

An = An,λ =

(
XT X + λ1,nIp

n

)−1
XT X

n

P→ V V −1 = Ip

if λ1,n/n → 0 since matrix inversion is a continuous function of a positive
definite matrix. See, for example, Bhatia et al. (1990), Stewart (1969), and
Severini (2005, pp. 348-349).

For model selection, the M values of λ = λ1,n are denoted by λ1, λ2, ..., λM

where λi = λ1,n,i depends on n for i = 1, ...,M . If λs corresponds to the model

selected, then λ̂1,n = λs. The following theorem shows that ridge regression

and the OLS full model are asymptotically equivalent if λ̂1,n = oP (n1/2) so

λ̂1,n/
√
n

P→ 0.

Theorem 2.7, RR CLT (Ridge Regression Central Limit Theo-
rem. Assume p is fixed and that the conditions of the OLS CLT Theorem
Equation (2.6) hold for the model Y = Xβ + e.

a) If λ̂1,n/
√
n

P→ 0, then

√
n(β̂R − β)

D→ Np(0, σ
2V ).

b) If λ̂1,n/
√
n

P→ τ ≥ 0 then

√
n(β̂R − β)

D→ Np(−τV β, σ2V ).

Proof: If λ̂1,n/
√
n

P→ τ ≥ 0, then by the above Gunst and Mason (1980)
identity,

β̂R = [Ip − λ̂1,n(XT X + λ̂1,nIp)
−1]β̂OLS .
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Hence √
n(β̂R − β) =

√
n(β̂R − β̂OLS + β̂OLS − β) =

√
n(β̂OLS − β) −

√
n
λ̂1,n

n
n(XT X + λ̂1,nIp)

−1β̂OLS

D→ Np(0, σ
2V ) − τV β ∼ Np(−τV β, σ2V ). �

For p fixed, Knight and Fu (2000) note i) that β̂R is a consistent estimator
of β if λ1,n = o(n) so λ1,n/n → 0 as n → ∞, ii) OLS and ridge regression
are asymptotically equivalent if λ1,n/

√
n → 0 as n → ∞, iii) ridge regression

is a
√
n consistent estimator of β if λ1,n = O(

√
n) (so λ1,n/

√
n is bounded),

and iv) if λ1,n/
√
n → τ ≥ 0, then

√
n(β̂R − β)

D→ Np(−τV β, σ2V ).

Hence the bias can be considerable if τ 6= 0. If τ = 0, then OLS and ridge
regression have the same limiting distribution.

Even if p is fixed, there are several problems with ridge regression infer-
ence if λ̂1,n is selected, e.g. after 10-fold cross validation. For OLS forward
selection, the probability that the model Imin underfits goes to zero, and
each model with S ⊆ I produced a

√
n consistent estimator β̂I,0 of β. Ridge

regression with 10-fold CV often shrinks β̂R too much if both i) the number
of population active predictors kS = aS − 1 in Equation (2.14) and Remark
2.5 is greater than about 20, and ii) the predictors are highly correlated. If
p is fixed and λ1,n = oP (

√
n), then the OLS full model and ridge regression

are asymptotically equivalent, but much larger sample sizes may be needed
for the normal approximation to be good for ridge regression since the ridge
regression estimator can have large bias for moderate n. Ten fold CV does

not appear to guarantee that λ̂1,n/
√
n

P→ 0 or λ̂1,n/n
P→ 0.

Ridge regression can be a lot better than the OLS full model if i) XT X is
singular or ill conditioned or ii) n/p is small. Ridge regression can be much
faster than forward selection if M = 100 and n and p are large.

Roughly speaking, the biased estimation of the ridge regression estimator
can make the MSE of β̂R or η̂R less than that of β̂OLS or η̂OLS , but the
large sample inference may need larger n for ridge regression than for OLS.
However, the large sample theory has n >> p. We will try to use prediction
intervals to compare OLS, forward selection, ridge regression, and lasso for
data sets where p > n. See Sections 2.1, 2.3, 2.6, 2.7, and 2.13.

Warning. The R functions glmnet and cv.glmnet do ridge regression
using Definition 2.16 c).

Example 2.2, continued. The ridge regression output below shows results
for the marry data where 10-fold CV was used. A grid of 100 λ values was
used, and λ0 > 0 was selected. A problem with getting the false degrees of
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freedom d for ridge regression is that it is not clear that λ = λ1,n/(2n). We
need to know the relationship between λ and λ1,n in order to compute d. It
seems unlikely that d ≈ 1 if λ0 is selected.

library(glmnet); y <- marry[,3]; x <- marry[,-3]

out<-cv.glmnet(x,y,alpha=0)

lam <- out$lambda.min #value of lambda that minimizes

#the 10-fold CV criterion

yhat <- predict(out,s=lam,newx=x)

res <- y - yhat

n <- length(y)

w1 <- scale(x)

w <- sqrt(n/(n-1))*w1 #t(w) %*% w = n R_u, u = x

diag(t(w)%*%w)

pop mmen mmilmen milwmn

26 26 26 26

#sum w_iˆ2 = n = 26 for i = 1, 2, 3, and 4

svs <- svd(w)$d #singular values of w,

pp <- 1 + sum(svsˆ2/(svsˆ2+2*n*lam)) #approx 1

# d for ridge regression if lam = lam_{1,n}/(2n)

AERplot2(yhat,y,res=res,d=pp)

$respi #90% PI for a future residual

[1] -5482.316 14854.268 #length = 20336.584

#try to reproduce the fitted values

z <- y - mean(y)

q<-dim(w)[2]

I <- diag(q)

M<- w%*%solve(t(w)%*%w + lam*I/(2*n))%*%t(w)

fit <- M%*%z + mean(y)

plot(fit,yhat) #they are not the same

max(abs(fit-yhat))

[1] 46789.11

M<- w%*%solve(t(w)%*%w + lam*I/(1547.1741))%*%t(w)

fit <- M%*%z + mean(y)

max(abs(fit-yhat)) #close

[1] 8.484979

2.7 Lasso

Consider the MLR model Y = Xβ+e. Lasso often uses the centered response
Zi = Yi−Y and standardized nontrivial predictors in the model Z = Wη+ε

as described in Section 2.2. Then Ŷi = Ẑi + Y . The residuals r = r(β̂L) =

Y − Ŷ . Recall that Y = Y 1.
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Definition 2.17. a) Consider fitting the MLR model Y = Xβ + e using
Z = Wη + ε. The lasso estimator η̂L minimizes the lasso criterion

QL(η) =
1

a
(Z − Wη)T (Z − Wη) +

λ1,n

a

p−1∑

i=1

|ηi| (2.24)

over all vectors η ∈ R
p−1 where λ1,n ≥ 0 and a > 0 are known constants

with a = 1, 2, n, and 2n are common. The residual sum of squares RSS(η) =
(Z − Wη)T (Z − Wη), and λ1,n = 0 corresponds to the OLS estimator

η̂OLS = (W T W )−1W T Z if W has full rank p−1. The lasso vector of fitted

values is Ẑ = ẐL = Wη̂L, and the lasso vector of residuals r(η̂L) = Z−ẐL.

The estimator is said to be regularized if λ1,n > 0. Obtain Ŷ and β̂L using

η̂L, Ẑ, and Y .

b) The lasso estimator β̂L minimizes the lasso criterion

QL(β) =
1

a
(Y − Xβ)T (Y − Xβ) +

λ1,n

a

p∑

i=2

|βi| (2.25)

over all vectors β ∈ R
p. The residual sum of squares RSS(β) = (Y −

Xβ)T (Y − Xβ), and λ1,n = 0 corresponds to the OLS estimator β̂OLS =

(XT X)−1XT Y if X has full rank p. The lasso vector of fitted values is

Ŷ = Ŷ L = Xβ̂L, and the lasso vector of residuals r(β̂L) = Y − Ŷ L.

Using a vector of parameters η and a dummy vector η in QL is common
for minimizing a criterion Q(η), often with estimating equations. See the
paragraphs above and below Definition 2.12. We could also write

QL(b) =
1

a
r(b)T r(b) +

λ1,n

a

p−1∑

j=1

|bj|, (2.26)

where the minimization is over all vectors b ∈ R
p−1. The literature often uses

λa = λ = λ1,n/a.

For fixed λ1,n, the lasso optimization problem is convex. Hence fast algo-
rithms exist. As λ1,n increases, some of the η̂i = 0. If λ1,n is large enough,

then η̂L = 0 and Ŷi = Y for i = 1, ..., n. If none of the elements η̂i of η̂L are
zero, then η̂L can be found, in principle, by setting the partial derivatives of
QL(η) to 0. Potential minimizers also occur at values of η where not all of the
partial derivatives exist. An analogy is finding the minimizer of a real valued
function of one variable h(x). Possible values for the minimizer include values
of xc satisfying h′(xc) = 0, and values xc where the derivative does not exist.
Typically some of the elements η̂i of η̂L that minimizes QL(η) are zero, and
differentiating does not work.
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The following identity from Efron and Hastie (2016, p. 308), for example,
is useful for inference for the lasso estimator η̂L:

−1

n
XT (Y − Xβ̂L) +

λ1,n

2n
sn = 0 or − XT(Y − Xβ̂L) +

λ1,n

2
sn = 0

where sin ∈ [−1, 1] and sin = sign(β̂i,L) if β̂i,L 6= 0. Here sign(βi) = 1 if

βi > 0 and sign(βi) = −1 if βi < 0. Note that sn = s
n,

ˆβL

depends on β̂L.

Thus β̂L

= (XT X)−1XT Y − λ1,n

2n
n(XT X)−1 sn = β̂OLS − λ1,n

2n
n(XT X)−1 sn.

If none of the elements of β are zero, and if β̂L is a consistent estimator of β,

then sn
P→ s = sβ. If λ1,n/

√
n → 0, then OLS and lasso are asymptotically

equivalent even if sn does not converge to a vector s as n → ∞ since sn is
bounded. For model selection, the M values of λ are denoted by 0 ≤ λ1 <
λ2 < · · · < λM where λi = λ1,n,i depends on n for i = 1, ...,M . Also, λM

is the smallest value of λ such that β̂λM
= 0. Hence β̂λi

6= 0 for i < M . If

λs corresponds to the model selected, then λ̂1,n = λs. The following theorem
shows that lasso and the OLS full model are asymptotically equivalent if

λ̂1,n = oP (n1/2) so λ̂1,n/
√
n

P→ 0: thus
√
n(β̂L − β̂OLS) = op(1).

Theorem 2.8, Lasso CLT. Assume p is fixed and that the conditions of
the OLS CLT Theorem Equation (2.6) hold for the model Y = Xβ + e.

a) If λ̂1,n/
√
n

P→ 0, then

√
n(β̂L − β)

D→ Np(0, σ
2V ).

b) If λ̂1,n/
√
n

P→ τ ≥ 0 and sn
P→ s = sβ , then

√
n(β̂L − β)

D→ Np

(−τ
2

V s, σ2V

)
.

Proof. If λ̂1,n/
√
n

P→ τ ≥ 0 and sn
P→ s = sβ , then

√
n(β̂L − β) =

√
n(β̂L − β̂OLS + β̂OLS − β) =

√
n(β̂OLS − β) −

√
n
λ1,n

2n
n(XT X)−1sn

D→ Np(0, σ
2V ) − τ

2
V s

∼ Np

(−τ
2

V s, σ2V

)
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since under the OLS CLT, n(XT X)−1 P→ V .

Part a) does not need sn
P→ s as n→ ∞, since sn is bounded. �

Suppose p is fixed. Knight and Fu (2000) note i) that β̂L is a consistent
estimator of η if λ1,n = o(n) so λ1,n/n→ 0 as n → ∞, ii) OLS and lasso are
asymptotically equivalent if λ1,n → ∞ too slowly as n → ∞ (e.g. if λ1,n = λ
is fixed), iii) lasso is a

√
n consistent estimator of β if λ1,n = O(

√
n) (so

λ1,n/
√
n is bounded). Note that Theorem 2.8 shows that OLS and lasso are

asymptotically equivalent if λ1,n/
√
n→ 0 as n→ 0.

In the literature, the criterion often uses λa = λ1,n/a:

QL,a(b) =
1

a
r(b)T r(b) + λa

p−1∑

j=1

|bj|.

The values a = 1, 2, and 2n are common. Following Hastie et al. (2015, pp.
9, 17, 19) for the next two paragraphs, it is convenient to use a = 2n:

QL,2n(b) =
1

2n
r(b)T r(b) + λ2n

p−1∑

j=1

|bj|, (2.27)

where the Zi are centered and the wj are standardized using g = 0 so wj = 0
and nσ̂2

j =
∑n

i=1 w
2
i,j = n. Then λ = λ2n = λ1,n/(2n) in Equation (2.25).

For model selection, the M values of λ are denoted by 0 ≤ λ2n,1 < λ2n,2 <
· · ·< λ2n,M where η̂λ = 0 iff λ ≥ λ2n,M and

λ2n,max = λ2n,M = max
j

∣∣∣∣
1

n
sT

j Z

∣∣∣∣

and sj is the jth column of W corresponding to the jth standardized non-
trivial predictor Wj . In terms of the 0 ≤ λ1 < λ2 < · · · < λM , used above
Theorem 2.8, we have λi = λ1,n,i = 2nλ2n,i and

λM = 2nλ2n,M = 2 max
j

∣∣sT
j Z
∣∣ .

For model selection we let I denote the index set of the predictors in the
fitted model including the constant. The set A defined below is the index set
without the constant.

Definition 2.18. The active set A is the index set of the nontrivial pre-
dictors in the fitted model: the predictors with nonzero η̂i.

Suppose that there are k active nontrivial predictors. Then for lasso, k ≤ n.
Let the n × k matrix W A correspond to the standardized active predictors.
If the columns of W A are in general position, then the lasso vector of fitted
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values

ẐL = W A(W T
AW A)−1W T

AZ − nλ2nW A(W T
AW A)−1sA

where sA is the vector of signs of the active lasso coefficients. Here we are
using the λ2n of (2.27), and nλ2n = λ1,n/2. We could replace n λ2n by λ2 if
we used a = 2 in the criterion

QL,2(b) =
1

2
r(b)T r(b) + λ2

p−1∑

j=1

|bj|. (2.28)

See, for example, Tibshirani (2015). Note that W A(W T
AW A)−1W T

AZ is the
vector of OLS fitted values from regressing Z on W A without an intercept.

Example 2.2, continued. The lasso output below shows results for the
marry data where 10-fold CV was used. A grid of 38 λ values was used, and
λ0 > 0 was selected.

library(glmnet); y <- marry[,3]; x <- marry[,-3]

out<-cv.glmnet(x,y)

lam <- out$lambda.min #value of lambda that minimizes

#the 10-fold CV criterion

yhat <- predict(out,s=lam,newx=x)

res <- y - yhat

pp <- out$nzero[out$lambda==lam] + 1 #d for lasso

AERplot2(yhat,y,res=res,d=pp)

$respi #90% PI for a future residual

-4102.672 4379.951 #length = 8482.62

There are some problems with lasso. i) Lasso large sample theory is worse
or as good as that of the OLS full model if n/p is large. ii) Ten fold CV does

not appear to guarantee that λ̂1,n/
√
n

P→ 0 or λ̂1,n/n
P→ 0. iii) Lasso often

shrinks β̂ too much if aS ≥ 20 and the predictors are highly correlated. iv)
Ridge regression can be better than lasso if aS > n.

Lasso can be a lot better than the OLS full model if i) XT X is singular
or ill conditioned or ii) n/p is small. iii) For lasso, M = M(lasso) is often
near 100. Let J ≥ 5. If n/J and p are both a lot larger than M(lasso), then
lasso can be considerably faster than forward selection, PLS, and PCR if
M = M(lasso) = 100 and M = M(F ) = min(dn/Je, p) where F stands for
forward selection, PLS, or PCR. iv) The number of nonzero coefficients in
η̂L ≤ n even if p > n. This property of lasso can be useful if p >> n and the
population model is sparse.
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2.8 Lasso Variable Selection

Lasso variable selection applies OLS on a constant and the k active predictors
that have nonzero lasso η̂i (model I = Imin). Lasso variable selection is called
relaxed lasso by Hastie et al. (2015, p. 12), and the relaxed lasso estimator
with φ = 0 by Meinshausen (2007). The method is also called OLS-post lasso
and post model selection OLS.

Theory for lasso variable selection was given in Pelawa Watagoda and
Olive (2021b) and Rathnayake and Olive (2023). Lasso variable selection will
often be better than lasso when the model is sparse or if n ≥ 10(k+1). Lasso
can be better than lasso variable selection if (XT

I XI) is ill conditioned or
if n/(k + 1) < 10. Lasso variable selection used a grid of K λi values for
i = 1, ..., K where λ1 < λ2 < · · · < λK . If K = 100, then lasso variable
selection can be much faster than forward selection if p is large. If n/p is
not large, using K > 100 is likely a good idea due to the multitude of MLR

models result. See Section 2.16. When p is fixed, λ̂1,n/
√
n

P→ τ does not

do variable selection well. For variable selection, want λ̂1,n/
√
n → ∞, but

λ̂1,n/n → 0. See Fan and Li (2001). Let λ1 = 2nλ. Guan and Tibshirani
(2020) (and likely glmnet) use λ < Cn−1/4 for some large constant C.
Hence λ1,n = λ1 ∝ n3/4, and the consistency rate of the lasso algorithm is
as best n1/4, but variable selection lasso has the

√
n rate (if λk is selected by

lasso, make λ̂ = min(λk, n/log(n) so that λ̂/n → 0 as n → ∞.)
Suppose the n × q matrix x has the q = p − 1 nontrivial predictors. The

following R code gives some output for a lasso estimator and then the corre-
sponding lasso variable selection estimator.

library(glmnet)

y <- marry[,3]

x <- marry[,-3]

out<-glmnet(x,y,dfmax=2) #Use 2 for illustration:

#often dfmax approx min(n/J,p) for some J >= 5.

lam<-out$lambda[length(out$lambda)]

yhat <- predict(out,s=lam,newx=x)

#lasso with smallest lambda in grid such that df = 2

lcoef <- predict(out,type="coefficients",s=lam)

as.vector(lcoef) #first term is the intercept

#3.000397e+03 1.800342e-03 9.618035e-01 0.0 0.0

res <- y - yhat

AERplot(yhat,y,res,d=3,alph=1) #lasso response plot

##lasso variable selection =

#OLS on lasso active predictors and a constant

vars <- 1:dim(x)[2]

lcoef<-as.vector(lcoef)[-1] #don’t need an intercept

vin <- vars[lcoef>0] #the lasso active set

vin
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#1 2 since predictors 1 and 2 are active

sub <- lsfit(x[,vin],y) #lasso variable selection

sub$coef

# Intercept pop mmen

#2.380912e+02 6.556895e-05 1.000603e+00

# 238.091 6.556895e-05 1.0006

res <- sub$resid

yhat <- y - res

AERplot(yhat,y,res,d=3,alph=1) #response plot

Example 2.2, continued. The lasso variable selection output below shows
results for the marry data where 10-fold CV was used to choose the lasso
estimator. Then lasso variable selection is OLS applied to the active variables
with nonzero lasso coefficients and a constant. A grid of 38 λ values was used,
and λ1 > 0 was selected. The OLS SE, t statistic and pvalue are generally
not valid for lasso variable selection by Remark 2.5 and Theorem 2.4.

library(glmnet); y <- marry[,3]; x <- marry[,-3]

out<-cv.glmnet(x,y)

lam <- out$lambda.min #value of lambda that minimizes

#the 10-fold CV criterion

pp <- out$nzero[out$lambda==lam] + 1

#d for lasso variable selection

#get lasso variable selection

lcoef <- predict(out,type="coefficients",s=lam)

lcoef<-as.vector(lcoef)[-1]

vin <- vars[lcoef!=0]

sub <- lsfit(x[,vin],y)

ls.print(sub)

Residual Standard Error=376.9412

R-Square=0.9999

F-statistic (df=2, 23)=147440.1

Estimate Std.Err t-value Pr(>|t|)58

Intercept 238.0912 248.8616 0.9567 0.3487

pop 0.0001 0.0029 0.0223 0.9824

mmen 1.0006 0.0164 60.9878 0.0000

res <- sub$resid

yhat <- y - res

AERplot2(yhat,y,res=res,d=pp)

$respi #90% PI for a future residual

-822.759 1403.771 #length = 2226.53

To summarize Example 2.2, forward selection selected the model with
the minimum Cp while the other methods used 10-fold CV. PLS and PCR
used the OLS full model with PI length 2395.74, forward selection used a
constant and mmen with PI length 2114.72, ridge regression had PI length
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d) Relaxed Lasso

Fig. 2.1 Marry Data Response Plots

20336.58, lasso and lasso variable selection used a constant, mmen, and pop
with lasso PI length 8482.62 and lasso variable selection PI length 2226.53.
A PI from Section 2.13 was used. Figure 2.1 shows the response plots for
forward selection, ridge regression, lasso, and lasso variable selection (labeled
relaxed lasso). The plots for PLS=PCR=OLS full model were similar to those
of forward selection and lasso variable selection. The plots suggest that the
MLR model is appropriate since the plotted points scatter about the identity
line. The 90% pointwise prediction bands are also shown, and consist of two
lines parallel to the identity line. These bands are very narrow in Figure 2.1
a) and d).
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2.9 The Elastic Net

Following Hastie et al. (2015, p. 57), let β = (β1 ,β
T
S )T , let λ1,n ≥ 0, and let

α ∈ [0, 1]. Let

RSS(β) = (Y − Xβ)T (Y − Xβ) = ‖Y − Xβ‖2
2.

For a k×1 vector η, the squared (Euclidean) L2 norm ‖η‖2
2 = ηT η =

∑k
i=1 η

2
i

and the L1 norm ‖η‖1 =
∑k

i=1 |ηi|.

Definition 2.19. The elastic net estimator β̂EN minimizes the criterion

QEN(β) =
1

2
RSS(β) + λ1,n

[
1

2
(1 − α)‖βS‖2

2 + α‖βS‖1

]
, or (2.29)

Q2(β) = RSS(β) + λ1‖βS‖2
2 + λ2‖βS‖1 (2.30)

where 0 ≤ α ≤ 1, λ1 = (1 − α)λ1,n and λ2 = 2αλ1,n.

Note that α = 1 corresponds to lasso (using λa=0.5), and α = 0 corresponds
to ridge regression estimator of Definition 2.16 c), which is not the usual ridge
regression estimator. For α < 1 and λ1,n > 0, the optimization problem is
strictly convex with a unique solution. The elastic net is due to Zou and
Hastie (2005). It has been observed that the elastic net can have much better
prediction accuracy than lasso when the predictors are highly correlated.

As with lasso, it is often convenient to use the centered response Z = Y −Y

where Y = Y 1, and the n×(p−1) matrix of standardized nontrivial predictors
W . Then regression through the origin is used for the model

Z = Wη + e (2.31)

where the vector of fitted values Ŷ = Y + Ẑ.
Ridge regression can be computed using OLS on augmented matrices.

Similarly, the elastic net can be computed using lasso on augmented matrices.
Let the elastic net estimator η̂EN minimize

QEN (η) = RSSW (η) + λ1‖η‖2
2 + λ2‖η‖1 (2.32)

where λ1 = (1 − α)λ1,n and λ2 = 2αλ1,n. Let the (n + p − 1) × (p − 1)
augmented matrix W A and the (n + p − 1) × 1 augmented response vector
ZA be defined by

W A =

(
W√

λ1 Ip−1

)
, and ZA =

(
Z

0

)
,

where 0 is the (p− 1)× 1 zero vector. Let RSSA(η) = ‖ZA −W Aη‖2
2. Then

η̂EN can be obtained from the lasso of ZA on W A: that is, η̂EN minimizes
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QL(η) = RSSA(η) + λ2‖η‖1 = QEN (η). (2.33)

Proof: We need to show that QL(η) = QEN (η). Note that ZT
AZA = ZT Z,

W A η =

(
Wη√
λ1 η

)
,

and ZT
AW A η = ZT Wη. Then

RSSA(η) = ‖ZA − W Aη‖2
2 = (ZA − W Aη)T (ZA − W Aη) =

ZT
AZA − ZT

AW Aη − ηT W T
AZA + ηT W T

AW Aη =

ZT Z − ZT Wη − ηT W T Z +
(
ηT W T

√
λ1 ηT

)(
Wη√
λ1 η

)
.

Thus

QL(η) = ZT Z − ZT Wη − ηT W T Z + ηT W T Wη + λ1η
T η + λ2‖η‖1 =

RSS(η) + λ1‖η‖2
2 + λ2‖η‖1 = QEN(η). �

Remark 2.16. i) You could compute the elastic net estimator using a
grid of 100 λ1,n values and a grid of J ≥ 10 α values, which would take
about J ≥ 10 times as long to compute as lasso. The above equivalent lasso
problem (2.30) still needs a grid of λ1 = (1−α)λ1,n and λ2 = 2αλ1,n values.
Often J = 11, 21, 51, or 101. The elastic net estimator tends to be com-
puted with fast methods for optimizing convex problems, such as coordinate
descent. ii) Like lasso and ridge regression, the elastic net estimator is asymp-

totically equivalent to the OLS full model if p is fixed and λ̂1,n = oP (
√
n),

but behaves worse than the OLS full model otherwise. See Theorem 2.9. iii)
For prediction intervals, let d be the number of nonzero coefficients from
the equivalent augmented lasso problem (2.33). Alternatively, use d2 with
d ≈ d2 = tr[WAS(W T

ASW AS + λ2,nIp−1)
−1W T

AS ] where W AS corresponds
to the active set (not the augmented matrix). See Tibshirani and Taylor
(2012, p. 1214). Again λ2,n may not be the λ2 given by the software. iv)
The number of nonzero lasso components (not including the constant) is at
most min(n, p−1). Elastic net tends to do variable selection, but the number
of nonzero components can equal p − 1 (make the elastic net equal to ridge
regression). Note that the number of nonzero components in the augmented
lasso problem (2.33) is at most min(n+ p− 1, p− 1) = p− 1. vi) The elastic
net can be computed with glmnet, and there is an R package elasticnet.
vii) For fixed α > 0, we could get λM for elastic net from the equivalent lasso
problem. For ridge regression, we could use the λM for an α near 0.

Since lasso uses at most min(n, p−1) nontrivial predictors, elastic net and
ridge regression can perform better than lasso if the true number of active
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nontrivial predictors aS > min(n, p − 1). For example, suppose n = 1000,
p = 5000, and aS = 1500.

The following theorem is probably for the elastic net estimator that uses
the usual ridge regression estimator of Definition 2.16 b), rather that the
ridge regression estimator of Definition 2.16 c). Hence Equation (2.30) would
need to be modified. Following Jia and Yu (2010), by standard Karush-Kuhn-
Tucker (KKT) conditions for convex optimality for the “modified Equation

(2.30),” β̂EN is optimal if

2XT Xβ̂EN − 2XT Y + 2λ1β̂EN + λ2sn = 0, or

(XT X + λ1Ip)β̂EN = XT Y − λ2

2
sn, or

β̂EN = β̂R − n(XT X + λ1Ip)
−1 λ2

2n
sn. (2.34)

Hence

β̂EN = β̂OLS − λ1

n
n(XT X + λ1Ip)

−1 β̂OLS − λ2

2n
n(XT X + λ1Ip)

−1 sn

= β̂OLS − n(XT X + λ1Ip)
−1 [

λ1

n
β̂OLS +

λ2

2n
sn].

Note that if λ̂1,n/
√
n

P→ τ and α̂
P→ ψ, then λ̂1/

√
n

P→ (1−ψ)τ and λ̂2/
√
n

P→
2ψτ. The following theorem shows elastic net is asymptotically equivalent to

the OLS full model if λ̂1,n/
√
n

P→ 0. Note that we get the RR CLT if ψ = 0

and the lasso CLT (using 2λ̂1,n/
√
n

P→ 2τ ) if ψ = 1. Under these conditions,

√
n(β̂EN −β) =

√
n(β̂OLS − β) − n(XT X + λ̂1Ip)

−1 [
λ̂1√
n

β̂OLS +
λ̂2

2
√
n

sn].

The following theorem is due to Slawski et al. (2010), and summarized in
Pelawa Watagoda and Olive (2021b).

Theorem 2.9, Elastic Net CLT. Assume p is fixed and that the condi-
tions of the OLS CLT Equation (2.6) hold for the model Y = Xβ + e.

a) If λ̂1,n/
√
n

P→ 0, then

√
n(β̂EN − β)

D→ Np(0, σ
2V ).

b) If λ̂1,n/
√
n

P→ τ ≥ 0, α̂
P→ ψ ∈ [0, 1], and sn

P→ s = sβ, then

√
n(β̂EN − β)

D→ Np

(
−V [(1 − ψ)τβ + ψτs], σ2V

)
.

Proof. By the above remarks and the RR CLT Theorem 2.7,
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√
n(β̂EN −β) =

√
n(β̂EN − β̂R + β̂R −β) =

√
n(β̂R −β)+

√
n(β̂EN − β̂R)

D→ Np

(
−(1 − ψ)τV β, σ2V

)
− 2ψτ

2
V s

∼ Np

(
−V [(1 − ψ)τβ + ψτs], σ2V

)
.

The mean of the normal distribution is 0 under a) since α̂ and sn are bounded.
�

Example 2.2, continued. The slpack function enet does elastic net
using 10-fold CV and a grid of α values {0, 1/am, 2/am, ..., am/am= 1}. The
default uses am = 10. The default chose lasso with alph = 1. The function
also makes a response plot, but does not add the lines for the pointwise
prediction intervals since the false degrees of freedom d is not computed.

library(glmnet); y <- marry[,3]; x <- marry[,-3]

tem <- enet(x,y)

tem$alph

[1] 1 #elastic net was lasso

tem<-enet(x,y,am=100)

tem$alph

[1] 0.97 #elastic net was not lasso with a finer grid

The elastic net variable selection estimator applies OLS to a constant and
the active predictors that have nonzero elastic net η̂i. Hence elastic net is used
as a variable selection method. Let XA denote the matrix with a column of
ones and the unstandardized active nontrivial predictors. Hence the elastic
net variable selection estimator is β̂ENV = (XT

AXA)−1XT
AY , and elastic net

variable selection is an alternative to forward selection. Let k be the number
of active (nontrivial) predictors so β̂ENV is (k+1)×1. Let Imin correspond to

the elastic net variable selection estimator and β̂ENV,0 = β̂Imin,0 to the zero

padded elastic net variable selection estimator. When p is fixed, β̂ENV,0 is√
n consistent when elastic net is consistent, with the limiting distribution for

β̂ENV,0 given by Rathnayake and Olive (2023). Elastic net variable selection
will often be better than elastic net when the model is sparse or if n ≥
10(k + 1). The elastic net can be better than elastic net variable selection if
(XT

AXA) is ill conditioned or if n/(k + 1) < 10.

2.10 OPLS

Cook, Helland, and Su (2013) showed that the OPLS estimator β̂OPLS

estimates βOPLS , and that the OPLS estimator can be computed from

the OLS simple linear regression (SLR) of Y on W = Σ̂
T

xY x, giving
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Ŷ = α̂OPLS + λ̂W = α̂OPLS + β̂
T

OPLSx. Also see Basa et al. (2024) and
Wold (1975).

Definition 2.20. The one component partial least squares (OPLS) esti-

mator β̂OPLS = λ̂Σ̂xY estimates λΣxY = βOPLS where

λ =
ΣT

xY ΣxY

ΣT
xY ΣxΣxY

and λ̂ =
Σ̂

T

xYΣ̂xY

Σ̂
T

xYΣ̂xΣ̂xY

(2.35)

for ΣxY 6= 0. If ΣxY = 0, then βOPLS = 0.

The following Olive and Zhang (2024) theorem gives some large sample

theory for η̂ = Ĉov(x, Y ). This theory needs η = ηOPLS = ΣxY to exist for

η̂ = Σ̂xY to be a consistent estimator of η. Let xi = (xi1, ..., xip)
T and let

wi and zi be defined below where

Cov(wi) = Σw = E[(xi − µx)(xi − µx)T (Yi − µY )2)] − ΣxY ΣT
xY .

Then the low order moments are needed for Σ̂z to be a consistent estimator
of Σw . The theory uses milder regularity conditions than the theory in the
previous literature. The theory can be used for testing, including some high
dimensional tests for low dimensional quantities such as HO : βi = 0 or
H0 : βi−βj = 0. These tests depended on iid cases, but not on linearity or the
constant variance assumption. Data splitting uses model selection (variable
selection is a special case) to reduce the high dimensional problem to a low
dimensional problem. Olive et al. (2024) gave alternative proofs, and showed
that the results hold for multiple linear regression with heterogeneity.

Theorem 2.10. Assume the cases (xT
i , Yi)

T are iid. Assume E(xk
ij Y

m
i )

exist for j = 1, ..., p and k,m = 0, 1, 2. Let µx = E(x) and µY = E(Y ). Let
wi = (xi − µx)(Yi − µY ) with sample mean wn. Let η = ΣxY . Then a)

√
n(wn − η)

D→ Np(0,Σw),
√
n(η̂n − η)

D→ Np(0,Σw), (2.36)

and
√

n(η̃n − η)
D→ Np(0,Σw).

b) Let zi = xi(Yi − Y n) and vi = (xi − xn)(Yi − Y n). Then Σ̂w = Σ̂z +

OP (n−1/2) = Σ̂v + OP (n−1/2). Hence Σ̃w = Σ̃z + OP (n−1/2) = Σ̃v +
OP (n−1/2).
c) Let A be a k × p full rank constant matrix with k ≤ p, assume H0 :

AβOPLS = 0 is true, and assume λ̂
P→ λ 6= 0. Then

√
nA(β̂OPLS − βOPLS)

D→ Nk(0, λ2AΣwAT ). (2.37)

Proof. a) Note that
√
n(wn − η)

D→ Np(0,Σw) by the multivariate cen-
tral limit theorem since the wi are iid with E(wi) = η = Cov(x, Y ) and
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Cov(w) = Σw . Now nη̃n =
n∑

i=1

(xi − µx + µx − x)(Yi − µY + µY − Y ) =
∑

i

(xi − µx)(Yi − µY )

+
∑

i

(xi − µx)(µY − Y ) + (µx − x)
∑

i

(Yi − µY ) + n(µx − x)(µY − Y )

=
∑

i

wi − nan − nan + nan =
∑

i

wi − n(µx − x)(µY − Y ).

Thus
√

nη̃n =
√

n
1

n

∑

i

wi −
√

n(x − µx)
√

n(Y − µY)√
n

=
√

n wn + oP(1).

Hence
√

n(η̃n − η) =
√

n(wn − η) + oP(1).

Thus
√

n(η̃n − η)
D→ Np(0,Σw)

by Slutsky’s theorem. Now

√
n(η̂ − η) =

√
n

(
n

n− 1
η̃ − η

)
=

√
n

(
n

n− 1
η̃ − n

n − 1
η +

n

n− 1
η − η

)

=
√
n

n

n − 1
(η̃ − η) +

√
n

(
η

n − 1

)
.

Thus
√

n(η̂n − η)
D→ Np(0,Σw).

b) See Olive et al. (2024).
c) If H0 is true, then Aη = 0, and

√
nA(β̂OPLS − βOPLS) =

√
nA(λ̂η̂ − λ̂η + λ̂η − βOPLS) =

λ̂A
√
n(η̂ − η) + A

√
n(λ̂ − λ)η = Zn + bn

D→ Nk(0, λ2AΣwAT )

since bn = 0 when H0 is true. �

In Theorems 2.10 and 2.11, the scalars λ and λ̂ are given by Equation
(2.35), η = (η1, ..., ηp)

T , and Ση = Σw . Results from Su and Cook (2012)
and Olive et al. (2024), for example, show that elements of a sample covari-

ance matrix can be stacked to get large sample theory. Then λ̂ and η̂ can be
stacked as in Theorem 2.11 by the multivariate delta method. Theorem 2.10
c) and Theorem 2.11 c) are equivalent with different notation. Currently Σ

from Theorem 2.11 is difficult to estimate.

Theorem 2.11. Assume

√
n

((
λ̂
η̂

)
−
(
λ
η

))
D→ Np+1

((
0
0

)
,

(
Σλ Σλη

Σηλ Ση

))
∼ Np+1(0,Σ).
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a)
√
n(η̂ − η)

D→ Np(0,Ση).

b)
√
n(λ̂η̂ − λη) =

√
n(β̂OPLS − βOPLS)

D→ Np

(
0,DΣDT

)
with D =

[η λIp] where Ip is the p× p identity matrix.
c) Let A be a k × p full rank constant matrix with k ≤ p and AβOPLS =

0 = Aη. Then

√
n(Aβ̂OPLS − 0)

D→ Nk

(
0, λ2AΣηAT

)
.

Proof. a) Follows by Equation (2.36) or since joint convergence in distri-
bution implies marginal convergence in distribution.

b) Follows by the Multivariate Delta Method with

g

(
λ
η

)
= λη =

(λη1, ..., ληp)
T , and the Jacobian matrix of partial derivatives D = Dg.

c) By b),
√

n(Aβ̂OPLS − Aβ)
D→ Nk

(
0,ADΣDTAT

)
,

but AD = [0 λA]. Hence ADΣDT AT = λ2AΣηAT . �

Some additional useful OPLS and OLS formulas are derived next if the
cases are iid. Let β = βOLS. Then Σx,Y = Cov(x, Y ) = Cov(x)β = Σxβ.
Since Σx,Y = ΣxβOLS ,

βOPLS = λΣx,Y = λΣxβOLS , βOPLS = λCov(x)βOLS , and

βOLS =
1

λ
[Cov(x)]−1βOPLS .

Chun and Keleş (2010) suggested that β̂OPLS only estimates βOLS under
very strong regularity conditions. For iid cases, Cook and Forzani (2018, 2019)
showed that the regularity condition is Σ−1

x Σx,Y = λΣx,Y , in which case
√
n(β̂OPLS−βOLS)

D→ Np(0,C). Cook and Forzani (2018, 2019) also showed

that under very strong regularity conditions for high dimensions, β̂OPLS is
a consistent estimator of βOLS . Also see Basa et al. (2024).

In the literature, there is a tendency (perhaps a common Statistical
paradigm) to assume that if the estimated model fits the data well, then the
model corresponding to the estimator is the model for Y |x. For example, in
much of the OPLS literature, an assumption is Y |x = αOPLS +βT

OPLSx+e.
Then βOPLS = βOLS by the OLS CLT, and the results in Table 2.1 hold.

The above tendency leads to problems that have perhaps not often been
observed in the literature. To see some problems, consider multiple linear
regression with Cov(x) = diag(1, 2, ..., p). First consider OPLS with βOLS =
βOPLS . Then at most one element of Cov(x, Y ) = Σx,Y is nonzero since
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Table 2.1 OPLS Results

General βOLS = Σ
−1
x Σx,Y = λΣx,Y = βOP LS

βOLS = Σ
−1
x Σx,Y =

1

λ
[Cov(x)]−1βOP LS βOLS is an eigenvector of Σx

βOP LS = λΣx,Y = λCov(x)βOLS βOPLS is an eigenvector of Σx
Σx,Y = Cov(x)βOLS Σx,Y is an eigenvector of Σx

β̂kP LS estimates βkP LS β̂kP LS estimates βOLS

Σx,Y is an eigenvector of Cov(x). Hence at most one predictor is correlated
with Y , regardless of the value of p. This restriction is too strong.

If the cases are iid from a multivariate normal distribution, then Y |x =
αOLS + βT

OLSx + e and Y |βT
OPLSx = αOPLS + βT

OPLSx + e are both lin-
ear models by Section 2.16 where e depends on the model. Since βOPLS =
βOLS forces βOLS to be an eigenvector of Σx, if βOLS is not an eigen-
vector of Σx, then βOPLS 6= βOLS. For a computational example, let
x ∼ Np(0, diag(1, 2, 3, 4)) with Σx = diag(1, 2, 3, 4), and let the popula-
tion generating model be Yi = xi1 + xi2 + ei for i = 1, ..., n where the ei

are iid N(0, 1) and independent of the xi. Then α = 0 and β = (1, 1, 0, 0)T .
Hence βOLS = β = (1, 1, 0, 0)T , Σx,Y = ΣxβOLS = (1, 2, 0, 0)T , and

λ =
ΣT

x,Y Σx,Y

ΣT
x,Y ΣxΣx,Y

= 5/9.

Thus βOPLS = λΣx,Y = λΣxβOLS = (5/9, 10/9, 0, 0)T 6= βOLS .
Thus OLS and OPLS usually give different valid population multiple linear

regression models with βOPLS 6= βOLS . However, the model Y |βT
OPLSx =

αOPLS + βT
OPLSx + e is often a useful multiple linear regression model with

large sample theory given by Theorem 2.11. The claims in the OPLS literature
that βOLS = βOPLS = an eigenvector of Σx under mild regularity conditions
are incorrect. See, for example, Basa et al. (2024), Cook and Forzani (2018,
2019, 2024), and Cook, Helland and Su (2013). The regularity conditions for
βOLS = βOPLS are very strong. In the OLS literature βOLS can be any
vector in R

p. If βOLS , Σx,Y , and βOPLS were restricted to be eigenvectors
of Σx, then the OLS and OPLS estimators would often not fit the data well.

2.11 The MMLE

The marginal maximum likelihood estimator (MMLE or marginal least
squares estimator) is due to Fan and Lv (2008) and Fan and Song (2010).
This estimator computes the marginal regression of Y on xi resulting in the
estimator (α̂i,M , β̂i,M) for i = 1, ..., p. Then β̂MMLE = (β̂1,M , ..., β̂p,M)T .



2.12 k-Component Regression Estimators 127

For multiple linear regression, the marginal estimators are the simple linear
regression (SLR) estimators, and (α̂i,M , β̂i,M) = (α̂i,SLR, β̂i,SLR). Hence

β̂MMLE = [diag(Σ̂x)]−1Σ̂x,Y .

If the ti are the predictors are scaled or standardized to have unit sample
variances, then

β̂MMLE = β̂MMLE(t, Y ) = Σ̂tY = I−1Σ̂tY = η̂OPLS(t, Y ) (2.38)

where (t, Y ) denotes that Y was regressed on t, and I is the p × p identity
matrix. Olive et al. (2024) gave some large sample theory for the MMLE.

The MMLE is also used for variable selection. For example, standardize
the predictors and take the K − 1 variables corresponding to the largest
|β̂i| where β̂MMLE = (β̂1, ..., β̂p)T . Then perform the regression on these
variables (perhaps not standardized) and a constant. This variable selection
method is useful for very large p since the method is fast, but the selected
predictors are often highly correlated. Hence it may be useful to perform lasso
variable selection or forward selection using the variables selected by MMLE
variable selection. Choosing K near min(n/J, p) for J = 1, 5 or 10 may be
useful.

MMLE variable selection can also be useful when the predictors are or-
thogonal. See Goh and Dey (2019) for references. This result may be useful
for PCR, PLS, and wavelets.

2.12 k-Component Regression Estimators

Consider the MLR model Y = α + xT β + e. The k-component regression
estimators, such as PCR and PLS, use p linear combinations ηT

1 x, ...,ηT
p x.

Then there are p conditional distributions

Y |ηT
1 x

Y |(ηT
1 x,ηT

2 x)
...

Y |(ηT
1 x,ηT

2 x, ...,ηT
p x).

Estimating the ηi and performing the ordinary least squares (OLS) regression
of Y on (η̂T

1 x, η̂T
2 x, ..., η̂T

k x) gives the k-component estimator, e.g. the k-

component PLS estimator β̂kPLS or the k-component PCR estimator, for
k = 1, ..., J where J ≤ p and the p-component estimator is the OLS estimator
β̂OLS .

Definition 2.21. Consider the MLR model Y = α + xT β + e. Let X =
(1 X1). Let
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vi = Âk,nxi =




xT
i η̂1
...

xT
i η̂k


 =




η̂
T
1 xi

...

η̂T
k xi


 where Âk,n =




η̂
T
1
...

η̂T
k


 .

Let

ci = X1η̂i =




xT
1 η̂i
...

xT
n η̂i




be the ith component vector for i = 1, ..., p. Let

V k = (c1, ..., ck) =




vT
1
...

vT
n


 = X1Â

T

k,n

for k = 1, ..., p. Let the working OLS model

Y = αk1 + V kγk + ε

where ε depends on the model. Then β̂kE = Â
T

k,nγ̂k is the k-component
estimator for k = 1, ..., p. The model selection estimator chooses one of the
k-component estimators, e.g. using a holdout sample or cross validation, and
will be denoted by β̂MS,E .

The OLS regression of Y on w = Âk,nx gives

γ̂k = Σ̂
−1

w Σ̂w,Y = (Âk,nΣ̂xÂ
T

k,n)−1Âk,nΣ̂x,Y .

Thus

β̂kE = Â
T

k,nγ̂k = Â
T

k,n(Âk,nΣ̂xÂ
T

k,n)−1Âk,nΣ̂x,Y = Λ̂kΣ̂x,Y

= Â
T

k,n(Âk,nΣ̂xÂ
T

k,n)−1Âk,nΣ̂xβ̂OLS(x, Y ) = Λ̂kΣ̂xβ̂OLS(x, Y ).

If η̂i
P→ ηi, and

Âk,n
P→ Ak =




ηT
1
...

ηT
k


 ,

then

β̂kE
P→ βkE = AT

k (AkΣxAT
k )−1AkΣxβOLS(x, Y ) = ΛkΣxβOLS(x, Y ).

This convergence can also occur if η̂i = êi are orthonormal eigenvectors such

that Â
T

k,nγ̂k
P→ AT

k γk, which happened for PCR.



2.13 Prediction Intervals 129

The regularity conditions for βkE = βOLS(x, Y ) tend to be very strong,
at least for k near 1. Note that βpE = βOLS(x, Y ) if the inverse matrices
exist (and if p = 1), and βkE = βOLS(x, Y ) if βOLS(x, Y ) = 0. Suppose
βOLS =

∑m
j=1 cijηij

for some m where 1 ≤ m ≤ p and the cij 6= 0. If k is
large enough to include the m ηij

, then βkE = βOLS(x, Y ). This regularity
condition becomes weaker as m increases, and βkE can become very highly
correlated with βOLS(x, Y ) as k increases.

In the high dimensional setting, the regularity conditions for η̂i
P→ ηi tend

to be very strong.

2.13 Prediction Intervals

This section will use the prediction intervals applied to the MLR model with
Ŷ = xT

I β̂I and I corresponds to the predictors used by the MLR method. We
will use the six methods forward selection with OLS, PCR, PLS, lasso, lasso
variable selection, and ridge regression. The number of components for PLS
and PCR will be selected using cross validation, hence the model selction
versions of PLS and PCR are used. When p > n, results from Hastie et al.
(2015, pp. 20, 296, ch. 6, ch. 11) and Luo and Chen (2013) suggest that lasso,
lasso variable selection, and forward selection with EBIC can perform well
for sparse models: the subset S in Equation (2.14) and Remark 2.8 has aS

small.
Notation: P (An) is “eventually bounded below” by 1 − δ if P (An) gets

arbitrarily close to or higher than 1− δ as n → ∞. Hence P (An) > 1− δ− ε
for any ε > 0 if n is large enough. If P (An) → 1− δ as n→ ∞, then P (An) is
eventually bounded below by 1 − δ. The actual coverage is 1 − γn = P (Yf ∈
[Ln, Un]), the nominal coverage is 1 − δ where 0 < δ < 1. The 90% and 95%
large sample prediction intervals and prediction regions are common.

Definition 2.22. Consider predicting a future test value Yf given a p× 1
vector of predictors xf and training data (Y1,x1), ..., (Yn,xn). A large sam-

ple 100(1 − δ)% prediction interval (PI) for Yf has the form [L̂n, Ûn] where

P (L̂n ≤ Yf ≤ Ûn) is eventually bounded below by 1 − δ as the sample size
n→ ∞. A large sample 100(1− δ)% PI is asymptotically optimal if it has the
shortest asymptotic length: the length of [L̂n, Ûn] converges to Us − Ls as
n→ ∞ where [Ls, Us] is the population shorth: the shortest interval covering
at least 100(1 − δ)% of the mass.

If Yf |xf has a pdf, we often want P (L̂n ≤ Yf ≤ Ûn) → 1 − δ as n → ∞.
The interpretation of a 100 (1 − δ)% PI for a random variable Yf is similar
to that of a confidence interval (CI). Collect data, then form the PI, and
repeat for a total of k times where the k trials are independent from the
same population. If Yfi is the ith random variable and PIi is the ith PI,
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then the probability that Yfi ∈ PIi for j of the PIs approximately follows a
binomial(k, ρ= 1− δ) distribution. Hence if 100 95% PIs are made, ρ = 0.95
and Yfi ∈ PIi happens about 95 times.

There are two big differences between CIs and PIs. First, the length of the
CI goes to 0 as the sample size n goes to ∞ while the length of the PI con-
verges to some nonzero number J , say. Secondly, many confidence intervals
work well for large classes of distributions while many prediction intervals
assume that the distribution of the data is known up to some unknown pa-
rameters. Usually the N(µ, σ2) distribution is assumed, and the parametric
PI may not perform well if the normality assumption is violated. This sec-
tion will describe three nonparametric PIs for the multiple linear regression
model, Y = xT β + e, that work well for a large class of unknown zero mean
error distributions.

Consider the location model, Yi = µ + ei, where Y1, ..., Yn, Yf are iid, and
there are no vectors of predictors xi and xf . Let Y(1) ≤ Y(2) ≤ · · · ≤ Y(n)

be the order statistics of the iid training data Y1, ..., Yn. Then the unknown
future value Yf is the test data.

Remark 2.17. Confidence intervals, prediction intervals, confidence re-
gions, and prediction regions should used closed sets not open sets. The closed
sets have the same volume as the open sets, but have coverage at least as high
as the open sets with weaker regularity conditions. In particular, confidence
and prediction intervals should be closed intervals, not open intervals.

In the following theorem, if the open interval (Y(k1), Y(k2)) was used, we
would need to add the regularity condition that Yδ/2 and Y1−δ/2 are continuity
points of FY (y).

Theorem 2.12. Let Y1, ..., Yn, Yf be iid. Let Y(1) ≤ Y(2) ≤ · · · ≤ Y(n) be
the order statistics of the training data. Let k1 = dnδ/2e and k2 = dn(1−δ/2)e
where 0 < δ < 1. The large sample 100(1− δ)% percentile prediction interval
for Yf is

[Y(k1), Y(k2)]. (2.39)

The shorth(c) estimator of the population shorth is useful for making
asymptotically optimal prediction intervals. For the uniform distribution,
the population shorth is not unique. Of course the length of the population
shorth is unique. For a large sample 100(1− δ)% PI, the nominal coverage is
100(1− δ)%. Undercoverage occurs if the actual coverage is below the nom-
inal coverage. For example, if the actual coverage is 0.93 for a large sample
95% PI, than the undercoverage is 0.02.

Definition 2.23. Let the shortest closed interval containing at least c of
the Y1, ..., Yn be

shorth(c) = [Y(s),Y(s+c−1)]. (2.40)

Theorem 2.13, Frey (2013). Let Y1, ..., Yn be iid. Let
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kn = dn(1 − δ)e. (2.41)

For large nδ and iid data, the large sample 100(1−δ)% shorth(kn) prediction
interval has maximum undercoverage ≈ 1.12

√
δ/n. The maximum undercov-

erage occurs for the family of uniform U(θ1, θ2) distributions.

Theorem 2.14, Frey (2013). Let Y1, ..., Yn, Yf be iid. Let Y(1) ≤ Y(2) ≤
· · · ≤ Y(n) be the order statistics of the training data. The large sample
100(1− δ)% shorth(c) prediction interval for Yf is

[Y(s), Y(s+c−1)] where c = min(n, dn[1 − δ + 1.12
√
δ/n ] e). (2.42)

A problem with the prediction intervals that cover ≈ 100(1 − δ)% of the
training data cases Yi (such as (2.40) using c = kn given by (2.41)), is that
they have coverage lower than the nominal coverage of 1 − δ for moderate
n. This result is not surprising since empirically statistical methods perform
worse on test data. For iid data, Frey (2013) used (2.42) to correct for un-
dercoverage.

Remark 2.18. a) The shorth PI (2.42) often has good coverage for n ≥ 50
and 0.05 ≤ δ ≤ 0.1, but the convergence of Un −Ln to the population shorth
length Us −Ls can be quite slow. Under regularity conditions, Grübel (1982)
showed that for iid data, the length and center the shorth(kn) interval are

√
n

consistent and n1/3 consistent estimators of the length and center of the pop-
ulation shorth interval, respectively. The correction factor also increases the
length. For a unimodal and symmetric error distribution, the nonparametric
percentile PI (2.39) and the shorth PI (2.42) are asymptotically equivalent,
but PI (2.39) can be the shorter. b) The percentile PI (2.39) can be much
longer than the shorth PI (2.42) if the data distribution is skewed.

Example 2.3. Given below were votes for preseason 1A basketball poll
from Nov. 22, 2011 WSIL News where the 778 was a typo: the actual value
was 78. As shown below, finding shorth(3) from the ordered data is simple.
If the outlier was corrected, shorth(3) = [76,78].

111 89 778 78 76

order data: 76 78 89 111 778

13 = 89 - 76

33 = 111 - 78

689 = 778 - 89

shorth(3) = [76,89]
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Many things can go wrong with prediction. It is assumed that the test
data follows the same MLR model as the training data. Population drift is a
common reason why the above assumption, which assumes that the various
distributions involved do not change over time, is violated. Population drift
occurs when the population distribution does change over time.

A second thing that can go wrong is that the training or test data set is
distorted away from the population distribution. This could occur if outliers
are present or if the training data set and test data set are drawn from
different populations. For example, the training data set could be drawn
from three hospitals, and the test data set could be drawn from two more
hospitals. These two populations of three and two hospitals may differ.

A third thing that can go wrong is extrapolation: if xf is added to
x1, ...,xn, then there is extrapolation if xf is not like the xi, e.g. xf is an
outlier. Predictions based on extrapolation are not reliable. Check whether
the Euclidean distance of xf from the coordinatewise median MED(X) of
the x1, ...,xn satisfies Dxf

(MED(X), Ip) ≤ maxi=1,...,nDi(MED(X), Ip).
Alternatively, use the ddplot5 function, described in Chapter 1, applied to
x1, ...,xn,xf to check whether xf is an outlier.

When n ≥ 10p, let the hat matrix H = X(XT X)−1XT . Let hi = hii

be the ith diagonal element of H for i = 1, ..., n. Then hi is called the
ith leverage and hi = xT

i (XT X)−1xi. Then the leverage of xf is hf =

xT
f (XT X)−1xf . Then a rule of thumb is that extrapolation occurs if hf >

max(h1, ..., hn). This rule works best if the predictors are linearly related in
that a plot of xi versus xj should not have any strong nonlinearities. If there
are strong nonlinearities among the predictors, then xf could be far from the
xi but still have hf < max(h1, ..., hn). If the regression method, such as lasso
or forward selection, uses a set I of a predictors, including a constant, where
n ≥ 10a, the above rule of thumb could be used for extrapolation where xf ,
xi, and X are replaced by xI,f , xI,i, and XI .

Prediction intervals based on the shorth of the residuals need a correction
factor for good coverage since the residuals tend to underestimate the errors
in magnitude. With the exception of ridge regression, let d be the number of
“variables” used by the method. For MLR, forward selection, lasso, and lasso
variable selection use variables x∗1, ..., x

∗
d while PCR and PLS use variables

that are linear combinations of the predictors Vj = γT
j x for j = 1, ..., d. We

want n ≥ 10d so that the model does not overfit. (We could let d = j if j
is the degrees of freedom of the selected model if that model was chosen in
advance without model or variable selection. Hence d = j is not the model
degrees of freedom if model selection was used.) See Hong et al. (2018) for
why classical prediction intervals after variable selection fail to work.

Pelawa Watagoda and Olive (2021b) gave two prediction intervals that
can be useful even if n/p is not large. These PIs will be defined below. If the
OLS model I has d predictors, and S ⊆ I, then
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E(MSE(I)) = E

(
n∑

i=1

r2i
n− d

)
= σ2 = E

(
n∑

i=1

e2i
n

)

and MSE(I) is a
√
n consistent estimator of σ2 for many error distributions

by Su and Cook (2012). Also see Freedman (1981). For a wide range of regres-
sion models, extrapolation occurs if the leverage hf = xT

I,f (XT
I XI)

−1xI,f >
2d/n: if xI,f is too far from the data xI,1, ...,xI,n, then the model may not
hold and prediction can be arbitrarily bad. These results suggests that

√
n

n− d

√
(1 + hf) ri ≈

√
n+ 2d

n− d
ri ≈ ei.

In simulations for prediction intervals and prediction regions with n = 20d,
the maximum simulated undercoverage was near 5% if qn in (2.43) is changed
to qn = 1 − δ.

Next we give the correction factor and the first prediction interval. Let
qn = min(1 − δ + 0.05, 1− δ + d/n) for δ > 0.1 and

qn = min(1 − δ/2, 1− δ + 10δd/n), otherwise. (2.43)

If 1 − δ < 0.999 and qn < 1 − δ + 0.001, set qn = 1 − δ. Let

c = dnqne, (2.44)

and let

bn =

(
1 +

15

n

)√
n+ 2d

n− d
(2.45)

if d ≤ 8n/9, and

bn = 5

(
1 +

15

n

)
,

otherwise. As d gets close to n, the model overfits and the coverage will be
less than the nominal. The piecewise formula for bn allows the prediction
interval to be computed even if d ≥ n.

Definition 2.24. Compute the shorth(c) of the residuals = [r(s), r(s+c−1)] =

[ξ̃δ1
, ξ̃1−δ2

]. Then a 100 (1 − δ)% large sample PI for Yf is

[Ŷf + bnξ̃δ1
, Ŷf + bnξ̃1−δ2

]. (2.46)

The second PI randomly divides the data into two half sets H and V where
H has nH = dn/2e of the cases and V has the remaining nV = n− nH cases

i1, ..., inV . The estimator m̂H(x) = β̂
T

IHx is computed using the training data
set H . Then the validation residuals vj = Yij −m̂H(xij) are computed for the
j = 1, ..., nV cases in the validation set V . Find the Frey PI [v(s), v(s+c−1)]
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of the validation residuals (replacing n in (2.42) by nV = n − nH). Let

ŶfH = m̂H(xf ) = β̂
T

IHxf .

Definition 2.25. Then a 100(1 − δ)% large sample PI for Yf is

[ŶfH + v(s), ŶfH + v(s+c−1)]. (2.47)

Remark 2.19. Note that correction factors bn → 1 are used in large sam-
ple confidence intervals and tests if the limiting distribution is N(0,1) or χ2

p,
but a tdn or pFp,dn cutoff is used: tdn,1−δ/z1−δ → 1 and pFp,dn,1−δ/χ

2
p,1−δ →

1 if dn → ∞ as n → ∞. Using correction factors for large sample confi-
dence intervals, tests, prediction intervals, prediction regions, and bootstrap
confidence regions improves the performance for moderate sample size n.

Remark 2.20. For a good fitting model, residuals ri tend to be smaller in
magnitude than the errors ei, while validation residuals vi tend to be larger
in magnitude than the ei. Thus the Frey correction factor can be used for PI
(2.47) while PI (2.46) needs a stronger correction factor.

A sufficient condition for (2.46) and (2.47) to be large sample PIs, is that

the residuals need to be consistent estimators of the iid errors ei and β̂I needs
to be a consistent estimator βI where Yi = xT

i βI + ei is a valid MLR model
and the iid ei depend on I. This regularity condition tends to roughly hold
when n >> p, but the regularity condition is often much too strong if p > n.

Another regularity condition for PI (2.47) is that the cases are iid. This
assumption is strong but sometimes holds. Then we can motivate PI (2.47) by
modifying the justification for the Lei et al. (2018) split conformal prediction
interval

[m̂H(xf) − aq, m̂H(xf ) + aq] (2.48)

where aq is the 100(1 − δ)th quantile of the absolute validation residuals.
PI (2.47) is a modification of the split conformal PI that is asymptotically
optimal. Suppose (Yi,xi) are iid for i = 1, ..., n, n + 1 where (Yf ,xf) =

(Yn+1,xn+1). Compute m̂H(x) from the cases in H . For example, get β̂H

from the cases in H . Consider the validation residuals vi for i = 1, ..., nV and
the validation residual vnV +1 for case (Yf ,xf). Since these nV + 1 cases are
iid, the probability that vt has rank j for j = 1, ..., nV + 1 is 1/(nV + 1) for
each t, i.e., the ranks follow the discrete uniform distribution. Let t = nV +1
and let the v(j) be the ordered residuals using j = 1, ..., nV . That is, get the
order statistics without using the unknown validation residual vnV +1. Then
v(i) has rank i if v(i) < vnV +1 but rank i+ 1 if v(i) > vnV +1. Thus

P (Yf ∈ [m̂H(xf )+v(k), m̂H(xf )+v(k+b−1)]) = P (v(k) ≤ vnV +1 ≤ v(k+b−1)) ≥

P (vnV +1 has rank between k + 1 and k + b− 1 and there are no tied ranks)
≥ (b− 1)/(nV + 1) ≈ 1 − δ if b = d(nV + 1)(1 − δ)e + 1 and k + b− 1 ≤ nV .
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This probability statement holds for a fixed k such as k = dnV δ/2e. The
statement is not true when the shorth(b) estimator is used since the shortest
interval using k = s can have s change with the data set. That is, s is not
fixed. Hence if PI’s were made from J independent data sets, the PI’s with
fixed k would contain Yf about J(1−δ) times, but this value would be smaller
for the shorth(b) prediction intervals where s can change with the data set.
The above argument works if the estimator m̂(x) is “symmetric in the data,”
which is satisfied for multiple linear regression estimators.

Prediction intervals (2.46), (2.47), and (2.48) can be used to compare dif-
ferent MLR methods such as PLS and lasso variable selection. In the simula-
tions, none of these three prediction intervals dominates the other two. Recall
that βS is an aS × 1 vector in (2.14). If a good fitting method, such as lasso
or forward selection with EBIC, is used, and 1.5aS ≤ n ≤ 5aS, then PI (2.46)
can be much shorter than PIs (2.47) and (2.48). For n/d large, PIs (2.46) and
(2.47) can be shorter than PI (2.48) if the error distribution is not unimodal
and symmetric; however, PI (2.48) is often shorter if n/d is not large since
the sample shorth converges to the population shorth rather slowly. Grübel
(1982) shows that for iid data, the length and center the shorth(kn) interval
are

√
n consistent and n1/3 consistent estimators of the length and center of

the population shorth interval. For a unimodal and symmetric error distribu-
tion, the three PIs are asymptotically equivalent (with p fixed and n → ∞),
but PI (2.48) can be the shortest PI due to different correction factors.

If the estimator is poor, the split conformal PI (2.48) and PI (2.47) can
have coverage closer to the nominal coverage than PI (2.46). For example, if
m̂ interpolates the data and m̂H interpolates the training data from H , then
the validation residuals will be huge. Hence PI (2.48) will be long compared
to PI (2.46).

Asymptotically optimal PIs estimate the population shorth of the zero
mean error distribution. Hence PIs that use the shorth of the residuals, such
as PIs (2.46) and (2.47), may be the only easily computed asymptotically

optimal PIs for a wide range of consistent estimators β̂ of β for the multiple
linear regression model. If the error distribution is e ∼ EXP (1)−1, then the
asymptotic length of the 95% PI (2.46) or (2.47) is 2.966 while that of the
split conformal PI is 2(1.966) = 3.992. For more about these PIs applied to
MLR models, Pelawa Watagoda and Olive (2021b).

For the simulation from Pelawa Watagoda and Olive (2021b), we used
several R functions including forward selection (FS) as computed with the
regsubsets function from the leaps library, (model selection) principal
components regression (PCR) with the pcr function and (model selection)
partial least squares (PLS) with the plsr function from the pls library, and
ridge regression (RR, see Definition 2.16 c)) and lasso with the cv.glmnet
function from the glmnet library. Lasso variable selection (LVS) was applied
to the selected lasso model.

Let x = (1 uT )T where u is the (p− 1)× 1 vector of nontrivial predictors.
In the simulations, for i = 1, ..., n, we generated wi ∼ Np−1(0, I) where the
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Table 2.2 Simulated Large Sample 95% PI Coverages and Lengths, ei ∼ N(0,1)

n p ψ k FS lasso LVS RR PLS PCR
100 20 0 1 cov 0.9644 0.9750 0.9666 0.9560 0.9438 0.9772

len 4.4490 4.8245 4.6873 4.5723 4.4149 5.5647
100 40 0 1 cov 0.9654 0.9774 0.9588 0.9274 0.8810 0.9882

len 4.4294 4.8889 4.6226 4.4291 4.0202 7.3393
100 200 0 1 cov 0.9648 0.9764 0.9268 0.9584 0.6616 0.9922

len 4.4268 4.9762 4.2748 6.1612 2.7695 12.412
100 50 0 49 cov 0.8996 0.9719 0.9736 0.9820 0.8448 1.0000

len 22.067 6.8345 6.8092 7.7234 4.2141 38.904
200 20 0 19 cov 0.9788 0.9766 0.9788 0.9792 0.9550 0.9786

len 4.9613 4.9636 4.9613 5.0458 4.3211 4.9610
200 40 0 19 cov 0.9742 0.9762 0.9740 0.9738 0.9324 0.9792

len 4.9285 5.2205 5.1146 5.2103 4.2152 5.3616
200 200 0 19 cov 0.9728 0.9778 0.9098 0.9956 0.3500 1.0000

len 4.8835 5.7714 4.5465 22.351 2.1451 51.896
400 20 0.9 19 cov 0.9664 0.9748 0.9604 0.9726 0.9554 0.9536

len 4.5121 10.609 4.5619 10.663 4.0017 3.9771
400 40 0.9 19 cov 0.9674 0.9608 0.9518 0.9578 0.9482 0.9646

len 4.5682 14.670 4.8656 14.481 4.0070 4.3797
400 400 0.9 19 cov 0.9348 0.9636 0.9556 0.9632 0.9462 0.9478

len 4.3687 47.361 4.8530 48.021 4.2914 4.4764
400 400 0 399 cov 0.9486 0.8508 0.5704 1.0000 0.0948 1.0000

len 78.411 37.541 20.408 244.28 1.1749 305.93
400 800 0.9 19 cov 0.9268 0.9652 0.9542 0.9672 0.9438 0.9554

len 4.3427 67.294 4.7803 66.577 4.2965 4.6533

m = p − 1 elements of the vector wi are iid N(0,1). Let the m×m matrix
A = (aij) with aii = 1 and aij = ψ where 0 ≤ ψ < 1 for i 6= j. Then the

vector ui = Awi so that Cov(ui) = Σu = AAT = (σij) where the diagonal
entries σii = [1+(m−1)ψ2 ] and the off diagonal entries σij = [2ψ+(m−2)ψ2 ].
Hence the correlations are cor(xi, xj) = ρ = (2ψ+(m−2)ψ2)/(1+(m−1)ψ2)
for i 6= j where xi and xj are nontrivial predictors. If ψ = 1/

√
cp, then

ρ → 1/(c + 1) as p → ∞ where c > 0. As ψ gets close to 1, the predictor
vectors cluster about the line in the direction of (1, ..., 1)T. Let Yi = 1+1xi,2+
· · ·+ 1xi,k+1 + ei for i = 1, ..., n. Hence β = (1, .., 1, 0, ..., 0)T with k+ 1 ones
and p− k− 1 zeros. The zero mean errors ei were iid from five distributions:
i) N(0,1), ii) t3, iii) EXP(1) - 1, iv) uniform(−1, 1), and v) 0.9 N(0,1) +
0.1 N(0,100). Normal distributions usually appear in simulations, and the
uniform distribution is the distribution where the shorth undercoverage is
maximized by Frey (2013). Distributions ii) and v) have heavy tails, and
distribution iii) is not symmetric.

The population shorth 95% PI lengths estimated by the asymptotically
optimal 95% PIs are i) 3.92 = 2(1.96), ii) 6.365, iii) 2.996, iv) 1.90 = 2(0.95),
and v) 13.490. The split conformal PI (2.48) is not asymptotically optimal
for iii), and for iii) PI (2.48) has asymptotic length 2(1.966) = 3.992. The
simulation used 5000 runs, so an observed coverage in [0.94, 0.96] gives no
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reason to doubt that the PI has the nominal coverage of 0.95. The simulation
used p = 20, 40, 50, n, or 2n; ψ = 0, 1/

√
p, or 0.9; and k = 1, 19, or p−1. The

OLS full model fails when p = n and p = 2n, where regularity conditions
for consistent estimators are strong. The values k = 1 and k = 19 are sparse
models where lasso, lasso variable selection, and forward selection with EBIC
can perform well when n/p is not large. If k = p−1 and p ≥ n, then the model
is dense. When ψ = 0, the predictors are uncorrelated, when ψ = 1/

√
p,

the correlation goes to 0.5 as p increases and the predictors are moderately
correlated. For ψ = 0.9, the predictors are highly correlated with 1 dominant
principal component, a setting favorable for PLS and PCR. The simulated
data sets are rather small since the some of the R estimators are rather slow.

The simulations were done in R. See R Core Team (2020). The results
were similar for all five error distributions, and we show some results for
the normal and shifted exponential distributions. Tables 2.2 and 2.3 show
some simulation results for PI (2.46) where forward selection used Cp for
n ≥ 10p and EBIC for n < 10p. The other methods minimized 10-fold CV. For
forward selection, the maximum number of variables used was approximately
min(dn/5e, p). Ridge regression used the same d that was used for lasso.

For n ≥ 5p, coverages tended to be near or higher than the nominal value
of 0.95. The average PI length was often near 1.3 times the asymptotically
optimal length for n = 10p and close to the optimal length for n = 100p. Cp

and EBIC produced good PIs for forward selection, and 10-fold CV produced
good PIs for PCR and PLS. For lasso and ridge regression, 10-fold CV pro-
duced good PIs if ψ = 0 or if k was small, but if both k ≥ 19 and ψ ≥ 0.5,
then 10-fold CV tended to shrink too much and the PI lengths were often
too long. Lasso variable selection was good for n/p ≥ 5. (For MLR, the lasso

estimator β̂I,0 is a consistent estimator of β if p is fixed, λ̂1,n/n → 0, and
n→ ∞, which requires P (S ⊆ I) → 1 as n → ∞.)

For n/p not large, good performance needed stronger regularity conditions,
and all six methods can have problems. PLS tended to have severe undercov-
erage with small average length, but sometimes performed well for ψ = 0.9.
The PCR length was often too long for ψ = 0. If there was k = 1 active pop-
ulation predictor, then forward selection with EBIC, lasso, and lasso variable
selection often performed well. For k = 19, forward selection with EBIC of-
ten performed well, as did lasso and lasso variable selection for ψ = 0. (Good

performance can occur if β̂I is a good estimator of βI and Y = xT
I βI + e

where the errors e depend on I.) For dense models with k = p − 1 and n/p
not large, there was often undercoverage. Here forward selection would use
about n/5 variables. Let d− 1 be the number of active nontrivial predictors
in the selected model. For N(0, 1) errors, ψ = 0, and d < k, an asymptotic
population 95% PI has length 3.92

√
k − d+ 1. Note that when the (Yi,u

T
i )T

follow a multivariate normal distribution, every subset follows a multiple lin-
ear regression model. EBIC occasionally had undercoverage, especially for
k = 19 or p− 1, which was usually more severe for ψ = 0.9 or 1/

√
p.
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Table 2.3 Simulated Large Sample 95% PI Coverages and Lengths, ei ∼ EXP (1)−1

n p ψ k FS lasso LVS RR PLS PCR
100 20 0 1 cov 0.9622 0.9728 0.9648 0.9544 0.9460 0.9724

len 3.7909 4.4344 4.3865 4.4375 4.2818 5.5065
2000 20 0 1 cov 0.9506 0.9502 0.9500 0.9488 0.9486 0.9542

len 3.1631 3.1199 3.1444 3.2380 3.1960 3.3220
200 20 0.9 1 cov 0.9588 0.9666 0.9664 0.9666 0.9556 0.9612

len 3.7985 3.6785 3.7002 3.7491 3.5049 3.7844
200 20 0.9 19 cov 0.9704 0.9760 0.9706 0.9784 0.9578 0.9592

len 4.6128 12.1188 4.8732 12.0363 3.3929 3.7374
200 200 0.9 19 cov 0.9338 0.9750 0.9564 0.9740 0.9440 0.9596

len 4.6271 37.3888 5.1167 56.2609 4.0550 4.6994
400 40 0.9 19 cov 0.9678 0.9654 0.9492 0.9624 0.9426 0.9574

len 4.3433 14.7390 4.7625 14.6602 3.6229 4.1045

Table 2.4 Validation Residuals: Simulated Large Sample 95% PI Coverages and
Lengths, ei ∼ N(0,1)

n,p,ψ,k FS CFS LVS CLVS Lasso CL RR CRR
200,20, 0,19 cov 0.9574 0.9446 0.9522 0.9420 0.9538 0.9382 0.9542 0.9430

len 4.6519 4.3003 4.6375 4.2888 4.6547 4.2964 4.7215 4.3569
200,40,0,19 cov 0.9564 0.9412 0.9524 0.9440 0.9550 0.9406 0.9548 0.9404

len 4.9188 4.5426 5.2665 4.8637 5.1073 4.7193 5.3481 4.9348
200,200, 0,19 cov 0.9488 0.9320 0.9548 0.9392 0.9480 0.9380 0.9536 0.9394

len 7.0096 6.4739 5.1671 4.7698 31.1417 28.7921 47.9315 44.3321
400,20,0.9,19 cov 0.9498 0.9406 0.9488 0.9438 0.9524 0.9426 0.9550 0.9426

len 4.4153 4.1981 4.5849 4.3591 9.4405 8.9728 9.2546 8.8054
400,40,0.9,19 cov 0.9504 0.9404 0.9476 0.9388 0.9496 0.9400 0.9470 0.9410

len 4.7796 4.5423 4.9704 4.7292 13.3756 12.7209 12.9560 12.3118
400,400,0.9,19 cov 0.9480 0.9398 0.9554 0.9444 0.9506 0.9422 0.9506 0.9408

len 5.2736 5.0131 4.9764 4.7296 43.5032 41.3620 42.6686 40.5578
400,800,0.9,19 cov 0.9550 0.9474 0.9522 0.9412 0.9550 0.9450 0.9550 0.9446

len 5.3626 5.0943 4.9382 4.6904 60.9247 57.8783 60.3589 57.3323

Tables 2.4 and 2.5 show some results for PIs (2.47) and (2.48). Here forward
selection using the minimum Cp model if nH > 10p and EBIC otherwise. The
coverage was very good. Labels such as CFS and CLVS used PI (2.48). For
lasso variable selection, the program sometimes failed to run for 5000 runs,
e.g., if the number of variables selected d = nH . In Table 2.4, PIs (2.47) and
(2.48) are asymptotically equivalent if p is fixed, but PI (2.48) had shorter
lengths for moderate n. In Table 2.5, PI (2.47) is shorter than PI (2.48)
asymptotically, but for moderate n, PI (2.48) was often shorter.

Table 2.6 shows some results for PIs (2.46) and (2.47) for lasso and ridge
regression. The header lasso indicates PI (2.46) was used while vlasso indi-
cates that PI (2.47) was used. PI (2.47) tended to work better when the fit
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Table 2.5 Validation Residuals: Simulated Large Sample 95% PI Coverages and
Lengths, ei ∼ EXP (1)− 1

n,p,ψ,k FS CFS LVS CLVS Lasso CL RR CRR
200,20,0,1 cov 0.9596 0.9504 0.9588 0.9374 0.9604 0.9432 0.9574 0.9438

len 4.6055 4.2617 4.5984 4.2302 4.5899 4.2301 4.6807 4.2863
2000,20,0,1 cov 0.9560 0.9508 0.9530 0.9464 0.9544 0.9462 0.9530 0.9462

len 3.3469 3.9899 3.3240 3.9849 3.2709 3.9786 3.4307 3.9943
200,20,0.9,1 cov 0.9564 0.9402 0.9584 0.9362 0.9634 0.9412 0.9638 0.9418

len 3.9184 3.8957 3.8765 3.8660 3.8406 3.8483 3.8467 3.8509
200,20,0.9,19 cov 0.9630 0.9448 0.9510 0.9368 0.9554 0.9430 0.9572 0.9420

len 5.0543 4.6022 4.8139 4.3841 9.8640 9.0748 9.5218 8.7366
200,200,0.9,19 cov 0.9570 0.9434 0.9588 0.9418 0.9552 0.9392 0.9544 0.9394

len 5.8095 5.2561 5.2366 4.7292 31.1920 28.8602 47.9229 44.3251
400,40,0.9,19 cov 0.9476 0.9402 0.9494 0.9416 0.9584 0.9496 0.9562 0.9466

len 4.6992 4.4750 4.9314 4.6703 13.4070 12.7442 13.0579 12.4015

was poor while PI (2.46) was better for n = 2p and k = p − 1. The PIs are
asymptotically equivalent for consistent estimators.

Table 2.6 PIs (2.46) and (2.47): Simulated Large Sample 95% PI Coverages and
Lengths

n p ψ k dist lasso vlasso RR vRR
100 20 0 1 cov N(0,1) 0.9750 0.9632 0.9564 0.9606

len 4.8245 4.7831 4.5741 5.3277
100 20 0 1 cov EXP(1)−1 0.9728 0.9582 0.9546 0.9612

len 4.4345 5.0089 4.4384 5.6692
100 50 0 49 cov N(0,1) 0.9714 0.9606 0.9822 0.9618

len 6.8345 22.3265 7.7229 27.7275
100 50 0 49 cov EXP(1)−1 0.9716 0.9618 0.9814 0.9608

len 6.9460 22.4097 7.8316 27.8306
400 400 0 399 cov N(0,1) 0.8508 0.9518 1.0000 0.9548

len 37.5418 78.0652 244.1004 69.5812
400 400 0 399 cov EXP(1)−1 0.8446 0.9586 1.0000 0.9558

len 37.5185 78.0564 243.7929 69.5474

2.14 Cross Validation

For MLR variable selection there are many methods for choosing the final
submodel, including AIC, BIC, Cp, and EBIC. Variable selection is a special
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case of model selection where there are M models and a final model needs to
be chosen. Cross validation is a common criterion for model selection.

Definition 2.26. For k-fold cross validation (k-fold CV), randomly divide
the training data into k groups or folds of approximately equal size nj ≈ n/k
for j = 1, ..., k. Leave out the first fold, fit the statistical method to the k− 1
remaining folds, and then compute some criterion for the first fold. Repeat
for folds 2, ..., k.

Following James et al. (2013, p. 181), if the statistical method is an MLR
method, we often compute Ŷi(j) for each Yi in the fold j left out. Then

MSEj =
1

nj

nj∑

i=1

(Yi − Ŷi(j))
2 ,

and the overall criterion is

CV(k) =
1

k

k∑

j=1

MSEj .

Note that if each nj = n/k, then

CV(k) =
1

n

n∑

i=1

(Yi − Ŷi(j))
2.

Then CV(k) ≡ CV(k)(Ii) is computed for i = 1, ...,M , and the model Ic with
the smallest CV(k)(Ii) is selected.

Assume that model (2.1) holds: Y = xT β +e = xT
SβS +e where βS is an

aS × 1 vector. Suppose p is fixed and n → ∞. If β̂I is a × 1, form the p × 1

vector β̂I,0 from β̂I by adding 0s corresponding to the omitted variables.

If P (S ⊆ Imin) → 1 as n → ∞, then Section 2.17 shows that β̂Imin,0 is a√
n consistent estimator of β under mild regularity conditions. Note that if

aS = p, then β̂Imin,0 is asymptotically equivalent to the OLS full model β̂

(since S is equal to the full model).

Choosing folds for k-fold cross validation is similar to randomly allocating
cases to treatment groups. The following code is useful for a simulation. It
makes copies of 1 to k in a vector of length n called tfolds. The sample
command makes a permutation of tfolds to get the folds. The lengths of the
k folds differ by at most 1.

n<-26

k<-5

J<-as.integer(n/k)+1

tfolds<-rep(1:k,J)

tfolds<-tfolds[1:n] #can pass tfolds to a loop
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folds<-sample(tfolds)

folds

4 2 3 5 3 3 1 5 2 2 5 1 2 1 3 4 2 1 5 5 1 4 1 4 4 3

Example 2.2, continued. The slpack function pifold uses k-fold CV to
get the coverage and average PI lengths. We used 5-fold CV with coverage
and average 95% PI length to compare the forward selection models. All
4 models had coverage 1, but the average 95% PI lengths were 2591.243,
2741.154, 2902.628, and 2972.963 for the models with 2 to 5 predictors. See
the following R code.

y <- marry[,3]; x <- marry[,-3]

x1 <- x[,2]

x2 <- x[,c(2,3)]

x3 <- x[,c(1,2,3)]

pifold(x1,y) #nominal 95% PI

$cov

[1] 1

$alen

[1] 2591.243

pifold(x2,y)

$cov

[1] 1

$alen

[1] 2741.154

pifold(x3,y)

$cov

[1] 1

$alen

[1] 2902.628

pifold(x,y)

$cov

[1] 1

$alen

[1] 2972.963

#Validation PIs for submodels: the sample size is

#likely too small and the validation PI is formed

#from the validation set.

n<-dim(x)[1]

nH <- ceiling(n/2)

indx<-1:n

perm <- sample(indx,n)

H <- perm[1:nH]

vpilen(x1,y,H) #13/13 were in the validation PI

$cov

[1] 1.0
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$len

[1] 116675.4

vpilen(x2,y,H)

$cov

[1] 1.0

$len

[1] 116679.8

vpilen(x3,y,H)

$cov

[1] 1.0

$len

[1] 116312.5

vpilen(x,y,H)

$cov

[1] 1.0

$len #shortest length

[1] 116270.7

Some more code is below.

n <- 100

p <- 4

k <- 1

q <- p-1

x <- matrix(rnorm(n * q), nrow = n, ncol = q)

b <- 0 * 1:q

b[1:k] <- 1

y <- 1 + x %*% b + rnorm(n)

x1 <- x[,1]

x2 <- x[,c(1,2)]

x3 <- x[,c(1,2,3)]

pifold(x1,y)

$cov

[1] 0.96

$alen

[1] 4.2884

pifold(x2,y)

$cov

[1] 0.98

$alen

[1] 4.625284

pifold(x3,y)

$cov

[1] 0.98

$alen

[1] 4.783187
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pifold(x,y)

$cov

[1] 0.98

$alen

[1] 4.713151

n <- 10000

p <- 4

k <- 1

q <- p-1

x <- matrix(rnorm(n * q), nrow = n, ncol = q)

b <- 0 * 1:q

b[1:k] <- 1

y <- 1 + x %*% b + rnorm(n)

x1 <- x[,1]

x2 <- x[,c(1,2)]

x3 <- x[,c(1,2,3)]

pifold(x1,y)

$cov

[1] 0.9491

$alen

[1] 3.96021

pifold(x2,y)

$cov

[1] 0.9501

$alen

[1] 3.962338

pifold(x3,y)

$cov

[1] 0.9492

$alen

[1] 3.963305

pifold(x,y)

$cov

[1] 0.9498

$alen

[1] 3.96203

2.15 Data Splitting

Remark 2.21. a) When p > n, the fitted model should do better than
i) interpolating the data or ii) discarding all of the predictors and using the
location model of Section 1.4.1 for inference. If p > n, forward selection, lasso,
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lasso variable selection, elastic net, and elastic net variable selection can be
useful for several regression models. Ridge regression, partial least squares,
and principal components regression can also be computed for multiple linear
regression. Section 2.13 gives prediction intervals.

b) One of the biggest errors in regression is to use the response variable
to build the regression model using all n cases, and then do inference as if
the built model was selected without using the response, e.g., selected before
gathering data. Using the response variable to build the model is called data
snooping, then inference is generally no longer valid, and the model built from
data snooping tends to fit the data too well. In particular, do not use data
snooping and then use variable selection or cross validation. See Hastie et al
(2009, p. 245) and Olive (2017a, pp. 85-89).

c) Building a regression model from data is one of the most challeng-
ing regression problems. The “final full model” will have response variable
Y = t(Z), a constant x1, and predictor variables x2 = t2(w2, ..., wr), ..., xp =
tp(w2, ..., wr) where the initial data consists of Z, w2, ..., wr. Choosing t, t2, ..., tp
so that the final full model is a useful regression approximation to the data
can be difficult.

d) As a rule of thumb, if strong nonlinearities are apparent in the predictors
w2, ..., wp, it is often useful to remove the nonlinearities by transforming the
predictors using power transformations. When p is large, a scatterplot matrix
of w2, ..., wp can not be made, but the log rule of Section 1.2 can be useful.
Plots from Chapter 1, such as the DD plot, can also be useful. A scatterplot
matrix of the wi is an array of scatterplots of wi versus wj . A scatterplot is
a plot of wi versus wj.

Data splitting divides the data into two parts. The first part can use the
response variable to build the model, then the second part can be used for
inference. This avoids the Remark 2.21 b) error since the model is not built
using all n cases.

A common method for data splitting randomly divides the data set into
two half sets: the training set H and the validation set V . For the data in H ,
fit the model selection method, e.g. forward selection or lasso, to get model
I with a predictors. Use this model as the full model for the set V : use the
standard OLS inference from regressing the response on the predictors found
from the set H . This method can be inefficient if n ≥ 10p, but is useful for
a sparse model if n ≤ 5p, if the probability that the model underfits goes
to zero, and if n ≥ 20a. A model is sparse if the number of predictors with
nonzero coefficients is small.

For lasso, the active set I of a predictors from the data in training set H
is found, and data splitting estimator is the OLS estimator β̂I,D computed
from the validation data in set V . This estimator is not the lasso variable
selection estimator. The estimator β̂I,D has the same large sample theory as
if I was chosen before obtaining the data.
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If n/p is not large, data splitting is useful for many regression models when
the n cases are independent, including multiple linear regression, multivariate
linear regression where there are m ≥ 2 response variables, generalized linear
models (GLMs), the Cox (1972) proportional hazards regression model, and
parametric survival regression models.

Consider a regression model with response variable Y and a p×1 vector of
predictors x. This model is the full model. Suppose the n cases are indepen-
dent. To perform data splitting, randomly divide the data into two sets H and
V where H has nH of the cases and V has the remaining nV = n− nH cases
i1, ..., inV . Find a model I, possibly with data snooping or model selection,
using the data in the training set H . Use the model I as the full model to
perform inference using the data in the validation set V . That is, regress YV

on XV,I and perform the usual inference for the model using the j = 1, ..., nV

cases in the validation set V . If βI uses a predictors, we want nV ≥ 10a and
we want (YV ,XV,I) to follow a regression model, e.g. Y = xT

I βI + e where e
depends on I.

In the literature, often nH ≈ dn/2e. For model selection, use the training
set data to fit the model selection method, e.g. forward selection or lasso, to
get the a predictors. On the validation set, use the standard regression infer-
ence from regressing the response on the predictors found from the training
set data. This method can be inefficient if n ≥ 10p, but is useful for a sparse
model if n ≤ 5p, if the probability that the model underfits goes to zero, and
if n ≥ 20a.

The method is simple, use one half set to get the predictors, then fit
the regression model, such as a GLM or OLS, to the validation half set
(Y V ,XV,I). The regression model needs to hold for (Y V ,XV,I) and we want
nV ≥ 10a if I uses a predictors. The regression model can hold if S ⊆ I
and the model is sparse. Let x = (x1, ...,xp)

T where x1 is a constant. If
(Y,x2, ...,xp)T follows a multivariate normal distribution, then (Y,xI ) follows
a multiple linear regression model for every I. Hence the full model need not
be sparse, although the selected model may be suboptimal.

Of course other sample sizes than half sets could be used. For example if
n = 1000p, use n = 10p for the training set and n = 990p for the validation
set.

Remark 2.22. i) One use of data splitting is to try to transform the
p ≥ n problem into an n ≥ 10k problem. Thus this method needs the fitted
model I to be sparse. For MLR, check that Y = xT

I βI + eI with response
and residual plots. If βI is k × 1, we want n ≥ 10k and V (eI,i) = σ2

I to be
small. Note that data splitting does not need a sparse population model with
S ⊆ I and aS ≤ k. For multiple linear regression, data splitting can work
if Y ∼ Nn(Xβ, σ2I), since then all subsets I satisfy an MLR model: Yi =
xT

I,iβI +eI,i. See Section 2.16. The above multivariate normal assumption for
MLR rarely hold, but if several predictors satisfy a simple linear regression
model with Y , then those predictors often satisfy an MLR with Y .
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ii) Data splitting can be tricky for lasso, ridge regression, and elastic net
if the sample sizes of the training and validation sets differ. Roughly set
λ1,n1

/(2n1) = λ2,n2
/(2n2). Data splitting is much easier for variable selection

methods such as forward selection, lasso variable selection, and elastic net
variable selection. Find the variables x∗1, ..., x

∗
k indexed by I from the training

set, and use model I as the full model for the validation set.
iii) Another use of data splitting is that data snooping can be used on

the training set H : use the model I found from H as the full model for the
validation set V .

2.16 The Multitude of MLR Models

There are often a multitude of population regression models that are estimat-
ing different population parameters. Note that when j predictors each satisfy
a marginal regression model with the response Y (such as simple linear re-
gression), then subsets of those j predictors will often satisfy a regression
model with the response Y (such as multiple linear regression).

This chapter showed that OPLS and OLS typically estimate different
quantities. There are often a multitude of valid MLR models. For example,
if the cases (Yi xT

i )T are iid from a nonsingular multivariate normal distri-
bution, then Y |ηT x satisfies a MLR model for any linear combination ηT x.
See Olive and Zhang (2023). Under multivariate normality, it is known that
Y |xI follows a multiple linear regression model where xI = (xi1, ..., xik)

T is
a vector corresponding to a subset of the predictors. Theorem 2.15 b) gives
a similar result for every linear combination of the predictors ηT x, including
sparse and nonsparse models. Much of Theorem 2.15 b) can also be shown
by performing the population SLR of Y on ηT x, but linearity may fail to
hold if multivariate normality does not hold. Note that data sets where the
cases are iid from a multivariate normal distribution are rather uncommon.
Let ΣY = σ2

Y .
Theorem 2.15. Suppose the cases (Yi,x

T
i )T are iid from a multivariate

normal distribution:
(
Y
x

)
∼ Np+1

((
µY

µx

)
,

(
ΣY ΣY x

ΣxY Σx

))
.

a) Then Y |x ∼ Y |(αOLS + βT
OLSx) ∼ N(αOLS + βT

OLSx, σ2) follows a
multiple linear regression model.

b) So does Y |ηT x ∼ N(αO+βT
Ox, σ2

O) where αO = µY −βT
Oµx, βO = λη,

σ2
O = ΣY − βT

OΣxY , and

λ =
ΣT

xY η

ηT Σxη
.

c) So does Y |Ax where A is a full rank k× p constant matrix with k ≤ p.
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Proof. a) is a special case of c) with A = Ip, and see Remark 1.5.
b) (

1 0T

0 ηT

)(
Y
x

)
=

(
Y

ηT x

)

∼ N2

((
µY

ηT µx

)
,

(
ΣY ΣT

xY η

ηT ΣxY ηT Σxη

))
.

Hence W = Y |ηT x ∼ N(µW , σ2
W ) where

µW = µY +
ΣT

xY η

ηT Σxη
(ηT x − ηT µx) = µY − ληT µx + ληT x,

and

σ2
W = σ2

O = σ2
Y − ΣT

xY ηηT ΣxY

ηT Σxη
= σ2

Y − (ΣT
xY η)2

ηT Σxη
= σ2

Y − ληT ΣxY .

c ) (
1 0T

0 A

)(
Y
x

)
=

(
Y

Ax

)

∼ Nq+1

((
µY

Aµx

)
,

(
ΣY ΣT

xY AT

AΣxY AΣxAT

))
.

Let w = Ax. Then E(Y |w) = µY + ΣY wΣ−1
w (w − µw)

= µY −βOLS(w, Y )T µw+βOLS(w, Y )T w = αOLS(w, Y )+βOLS(w, Y )T Ax

where (w, Y ) indicates a population OLS regression of Y on w. Thus

βOLS(w, Y ) = Σ−1
w ΣT

Y w = Σ−1
w ΣwY = (AΣxAT )−1AΣxY ,

and

αOLS(wY ) = µY − βOLS(w, Y )T µw = µY − βOLS(w, Y )T Aµx.

�

Note that σ2
O < σ2

Y = ΣY unless ηT ΣxY = 0. If η = βOLS , then λ = 1
and σ2

O = σ2
Y −ΣT

xY Σ−1
x ΣxY . The population quantity estimated by the one

component partial least squares estimator corresponds to η = Cov(x, Y ) =
ΣxY . Note that b) is a special case of c) with A = ηT .

Since the Weibull regression model is a proportional hazards regression
model for Y and a multiple linear regression model for log(Y ), there can be
many linear combinations that result in a proportional hazards model. For
Poisson regression, log(Y + 1) often has a weighted least squares relation-
ship with the predictors used for minimum chi-square estimators. See Agresti
(2002, pp. 611-612) and Olive (2013). Hence often many linear combinations
will result in a Poisson regression model.
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2.17 Variable Selection Theory

From Section 1.1, a model for variable selection can be described by

xT β = xT
SβS + xT

EβE = xT
SβS (2.49)

where x = (xT
S ,x

T
E)T , xS is an aS ×1 vector, and xE is a (p−aS)×1 vector.

Given that xS is in the model, βE = 0 and E denotes the subset of terms
that can be eliminated given that the subset S is in the model. Let xI be the
vector of a terms from a candidate subset indexed by I, and let xO be the
vector of the remaining predictors (out of the candidate submodel). Suppose
that S is a subset of I and that model (2.49) holds. Then

xT β = xT
SβS = xT

I βI + xT
O0 = xT

I βI .

Thus βO = 0 if S ⊆ I. The model using xT β is the full model. The full model
uses all of the predictors with βF = β.

For multiple linear regression, if the candidate model of xI has k terms
(including the constant), then the partial F statistic for testing whether the
p− k predictor variables in xO can be deleted is

FI =
SSE(I) − SSE

(n− k) − (n − p)
/
SSE

n− p
=
n− p

p− k

[
SSE(I)

SSE
− 1

]

where SSE is the error sum of squares from the full model, and SSE(I) is the
error sum of squares from the candidate submodel. An important criterion
for variable selection is the Cp criterion.

Definition 2.27.

Cp(I) =
SSE(I)

MSE
+ 2k − n = (p − k)(FI − 1) + k

where MSE is the error mean square for the full model.

Note that when H0 : βO = 0 is true, (p− k)(FI − 1) + k
D→ χ2

p−k + 2k− p
for a large class of iid error distributions. Minimizing Cp(I) is equivalent to
minimizing MSE [Cp(I)] = SSE(I) + (2k − n)MSE = rT (I)r(I) + (2k −
n)MSE. The following theorem helps explain why Cp is a useful criterion and
suggests that for subsets I with k terms, submodels with Cp(I) ≤ min(2k, p)
are especially interesting. Denote the residuals and fitted values from the full
model by ri = Yi − xT

i β̂ = Yi − Ŷi and Ŷi = xT
i β̂ respectively. Similarly,

let β̂I be the estimate of βI obtained from the regression of Y on xI and

denote the corresponding residuals and fitted values by rI,i = Yi − xT
I,iβ̂I

and ŶI,i = xT
I,iβ̂I where i = 1, ..., n.
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Theorem 2.16. Suppose that a numerical variable selection method
suggests several submodels with k predictors, including a constant, where
2 ≤ k ≤ p.

a) The model I that minimizes Cp(I) maximizes corr(r, rI).

b) Cp(I) ≤ 2k implies that corr(r, rI) ≥
√

1 − p

n
.

c) As corr(r, rI) → 1,

corr(xTβ̂,xT
I β̂I) = corr(ESP,ESP(I)) = corr(Ŷ, ŶI) → 1.

Proof. These results are a corollary of Theorem 2.17 below. �

Consider plotting w on the horizontal axis versus z on the vertical axis.
The response plot is the plot of Ŷ versus Y , and an important residual plot
is the plot of Ŷ versus r.

Theorem 2.17. Suppose that every submodel contains a constant and
that X is a full rank matrix.
Response Plot: i) If w = ŶI and z = Y then the OLS line is the identity
line.
ii) If w = Y and z = ŶI then the OLS line has slope b = [corr(Y, ŶI )]2 = R2(I)
and intercept a = Y (1 − R2(I)) where Y =

∑n
i=1 Yi/n and R2(I) is the

coefficient of multiple determination from the candidate model.
FF or EE Plot: iii) If w = ŶI and z = Ŷ then the OLS line is the identity
line. Note that ESP (I) = ŶI and ESP = Ŷ .
iv) If w = Ŷ and z = ŶI then the OLS line has slope b = [corr(Ŷ , ŶI)]

2 =
SSR(I)/SSR and intercept a = Y [1 − (SSR(I)/SSR)] where SSR is the
regression sum of squares.
RR Plot: v) If w = r and z = rI then the OLS line is the identity line.
vi) If w = rI and z = r then a = 0 and the OLS slope b = [corr(r, rI)]

2 and

corr(r, rI) =

√
SSE

SSE(I)
=

√
n− p

Cp(I) + n − 2k
=

√
n− p

(p− k)FI + n− p
.

Proof: Recall that H and HI are symmetric idempotent matrices and
that HHI = HI . The mean of OLS fitted values is equal to Y and the
mean of OLS residuals is equal to 0. If the OLS line from regressing z on w
is ẑ = a+ bw, then a = z − bw and

b =

∑
(wi −w)(zi − z)∑

(wi −w)2
=
SD(z)

SD(w)
corr(z, w).

Also recall that the OLS line passes through the means of the two variables
(w, z).
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(*) Notice that the OLS slope from regressing z on w is equal to one if
and only if the OLS slope from regressing w on z is equal to [corr(z, w)]2.

i) The slope b = 1 if
∑
ŶI,iYi =

∑
Ŷ 2

I,i. This equality holds since Ŷ
T

I Y =

Y T HIY = Y T HIHIY = Ŷ
T

I Ŷ I . Since b = 1, a = Y − Y = 0.

ii) By (*), the slope

b = [corr(Y, ŶI )]2 = R2(I) =

∑
(ŶI,i − Y )2∑
(Yi − Y )2

= SSR(I)/SSTO.

The result follows since a = Y − bY .

iii) The slope b = 1 if
∑
ŶI,iŶi =

∑
Ŷ 2

I,i. This equality holds since

Ŷ
T
Ŷ I = Y T HHIY = Y T HIY = Ŷ

T

I Ŷ I . Since b = 1, a = Y − Y = 0.

iv) From iii),

1 =
SD(Ŷ )

SD(ŶI )
[corr(Ŷ , ŶI)].

Hence

corr(Ŷ , ŶI) =
SD(ŶI )

SD(Ŷ )

and the slope

b =
SD(ŶI )

SD(Ŷ )
corr(Ŷ , ŶI) = [corr(Ŷ , ŶI)]

2.

Also the slope

b =

∑
(ŶI,i − Y )2∑
(Ŷi − Y )2

= SSR(I)/SSR.

The result follows since a = Y − bY .

v) The OLS line passes through the origin. Hence a = 0. The slope b =
rT rI/r

T r. Since rT rI = Y T (I − H)(I − HI)Y and (I − H)(I − HI) =
I − H, the numerator rT rI = rT r and b = 1.

vi) Again a = 0 since the OLS line passes through the origin. From v),

1 =

√
SSE(I)

SSE
[corr(r, rI)].

Hence

corr(r, rI) =

√
SSE

SSE(I)
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and the slope

b =

√
SSE

SSE(I)
[corr(r, rI)] = [corr(r, rI)]

2.

Algebra shows that

corr(r, rI) =

√
n − p

Cp(I) + n− 2k
=

√
n− p

(p− k)FI + n− p
. �

Remark 2.23. a) Let Imin be the model than minimizes Cp(I) among
the models I generated from the variable selection method such as forward
selection. Assuming the full model Ip is one of the models generated, then
Cp(Imin) ≤ Cp(Ip) = p, and corr(r, rImin) → 1 as n → ∞ by Theorem 2.17
vi). Referring to Equation (2.49), if P (S ⊆ Imin) does not go to 1 as n→ ∞,
then the above correlation would not go to one. Hence P (S ⊆ Imin) → 1 as
n→ ∞. This result is due to Rathnayake and Olive (2023).

b) If none of the βi = 0, then S = F , the full model. An assumption that
some of the βi are exactly equal to zero may be very strong, but c) and d)
suggest that variable selection criterion still select models I that may be as
good or better than the full model when n ≥ Jp with J ≥ 10. Also note
that Equation (2.49) does not assume that βE = 0 if S = F , since then E
is the empty set, and x = xS = xF with β = βS = βF . For more on the
assumption H0 : βi = 0, see, for example, Gelman and Carlin (2017), Nester
(1996), and Tukey (1991).

c) If some of the nonzero βi are very small, then n may need to be very
large before P (S ⊆ Imin) is close to 1. However, by Theorem 2.16, the Cp

criterion often picks model I = Imin such that the residuals and fitted values
from model I are highly correlated with those of the full model F . Suppose
Imin uses km predictors including a constant. Then Cp(Imin) ≤ Cp(F ) = p. If

n ≥ 10p and Cp(Imin) ≤ 2km, then corr(r, rI) ≥
√

1 − p

10p
≥

√
0.9 = 0.948.

d) By Section 2.16, there is often a multitude of good MLR models, and
variable selection criterion such as Cp, AIC, and BIC tend to produce a model
I = Imin such that the residuals and fitted values from model I are highly
correlated with those of the full model F .

However, in the fixed p setting, model selection PLS and model selec-
tion PCR can be shown to give predictions similar to that of the OLS full
model. To see this, variable selection with the Mallows (1973) Cp(I) crite-
rion will be useful. Consider the OLS regression of Y on a constant and
w = (W1, ...,Wp)

T where, for example, Wj = xj or Wj = η̂T
j x. Let I index

the variables in the model so I = {1, 2, 4} means that W1,W2, and W4 were
selected. The full model I = F uses all p predictors and the constant with
βI = βF = β = βOLS . Then by Theorem 2.17 (with p+ 1 parameters), sup-
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pose model I uses k predictors including a constant with 2 ≤ k ≤ p+1. Then
the model I with k predictors that minimizes Cp(I) maximizes corr(r, rI),
that

corr(r, rI) =

√
n− (p+ 1)

Cp(I) + n− 2k
,

and under linearity, corr(r, rI) → 1 forces

corr(α̂+ wTβ̂, α̂I + wT
I β̂I) = corr(ESP,ESP(I)) = corr(Ŷ, ŶI) → 1.

Thus Cp(I) ≤ 2k implies that corr(r, rI) ≥
√

1 − p + 1

n
. Let the model Imin

minimize the Cp criterion among the models considered with Cp(I) ≤ 2kI .
Then Cp(Imin) ≤ Cp(F ) = p + 1, and if PLS or PCR is selected using
model selection (on models I1, ..., Ip with Ij = {1, 2, ..., j} corresponding to
the j-component regression) with the Cp(I) criterion, and n ≥ 20(p + 1),

then corr(r, rI) ≥
√

19/20 = 0.974. Hence the correlation of ESP(I) and
ESP(F) will typically also be high. (For PCR, the following variant should
work better: take Uj = η̂j(PCR)T x and W1 the Uj with the highest absolute
correlation with Y , W2 the Uj with the second highest absolute correlation,
etc.)

Good model selection criterion (such as k-fold cross validation) tend
to be similar to Cp(I), and also select model I such that corr(r, rI) and
corr(ESP,ESP (I)) are high. Hence if the full model is good and n >> p
is large, predictions from the model selection PLS and model selection PCR
will be similar to that of the full OLS model. Since PLS chooses components
that are correlated with Y , typically fewer PLS components should be needed
than PCR components, and model selection PLS will often outperform model
selection PCR.

For example, let Σx = diag(1, 2, ..., p) and β = 1 = (1, ..., 1)T. Let the

sample size n = 2000 and p = 100. Then β =
∑100

i=1 ηi(PCR), and model
selection PCR chose the k = 100 = p OLS estimator while model selection
PLS chose k = 6. Using β = (0, ..., 0, 1) = d100 corresponds to H1. Then
model selection PLS chose k = 2 components while model selection PCR
again chose k = 100 OLS. PCR and PLS were done using scaled predictors.
If unscaled predictors were used, then model selection PCR chose k = 89
components while model selection PLS chose k = 5. In all cases, the corre-
lations of the model selection residuals and OLS residuals were greater than
0.99. Computations were done in R with the Mevik, Wehrens, and Liland
(2015) pls package.

library(pls)

set.seed(974)

n<-2000

p<- 100

A <- diag(sqrt(1:p))
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beta <- 0*1:p + 1

x <- matrix(rnorm(n * p), nrow = n, ncol = p)

x <- x %*% A

SP <- x%*%beta

y <- SP + rnorm(n)

#MLRplot(x,y)

#OPLSplot(x,y)

#OPLSEEplot(x,y)

#plot(cor(x,y))

z <- as.data.frame(cbind(y,x))

out<-pcr(V1˜.,data=z,scale=T,validation="CV")

tem<-MSEP(out)

cvmse<-tem$val[,,1:(out$ncomp+1)][1,]

npcr <-max(which.min(cvmse)-1,1) #100

respcr <- out$residuals[,,npcr]

resols <- out$residuals[,,p]

out<-plsr(V1˜.,data=z,scale=T,validation="CV")

tem<-MSEP(out)

cvmse<-tem$val[,,1:(out$ncomp+1)][1,]

npls <-max(which.min(cvmse)-1,1) #6

res <- out$residuals[,,npls]

resols <- out$residuals[,,p]

cor(res,resols)

#[1] 0.9999812

plot(cvmse[2:101])

plot(cvmse[3:101])

plot(cvmse[4:101])

plot(cvmse[5:101])

plot(cvmse[6:101])

plot(cvmse[7:101])

beta <- 0*1:p

beta[p] <- 1

SP <- x%*%beta

y <- SP + rnorm(n)

z <- as.data.frame(cbind(y,x))

out<-pcr(V1˜.,data=z,scale=F,validation="CV")

tem<-MSEP(out)

cvmse<-tem$val[,,1:(out$ncomp+1)][1,]

npcr <-max(which.min(cvmse)-1,1)

respcr <- out$residuals[,,npcr]

resols <- out$residuals[,,p]
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#npcr=89

out<-plsr(V1˜.,data=z,scale=F,validation="CV")

tem<-MSEP(out)

cvmse<-tem$val[,,1:(out$ncomp+1)][1,]

npls <-max(which.min(cvmse)-1,1)

res <- out$residuals[,,npls]

resols <- out$residuals[,,p]

cor(res,resols)

#[1] 0.9974041

npls

#[1] 5

2.17.1 Variable Selection Theory in Low Dimensions

Large sample theory is often tractable if the optimization problem is convex.
The optimization problem for variable selection is not convex, so new tools
are needed. Tibshirani et al. (2018) and Leeb and Pötscher (2006, 2008) note

that we can not find the limiting distribution of Zn =
√
nA(β̂Imin

− βI)

after variable selection. One reason is that with positive probability, β̂Imin

does not have the same dimension as βI if AIC or Cp is used. Hence Zn is
not defined with positive probability.

2.17.2 Some Variable Selection Estimators

Consider 1D regression models that study the conditional distribution Y |xT β

of the response variable Y given xT β where x is the p×1 vector of predictors.
Many important regression models are special cases, including multiple lin-
ear regression, the Nelder and Wedderburn (1972) generalized linear models
(GLMs), and the Cox (1972) proportional hazards regression model. For-
ward selection or backward elimination with the Akaike (1973) AIC criterion
or Schwarz (1978) BIC criterion are often used for variable selection.

Sparse regression methods can also be used for variable selection even if
n/p is not large: the regression submodel, such as a Nelder and Wedderburn
(1972) generalized linear model (GLM), uses the predictors that had nonzero
sparse regression estimated coefficients. These methods include least angle re-
gression, lasso, relaxed lasso, elastic net, and sparse regression by projection.
Least angle regression variable selection is the LARS-OLS hybrid estimator
of Efron et al. (2004, p. 421). Lasso variable selection is called relaxed lasso
by Hastie, Tibshirani, and Wainwright (2015, p. 12), and the relaxed lasso
estimator with φ = 0 by Meinshausen (2007, p. 376). Also see Fan and Li
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(2001), Friedman et al. (2007), Friedman, Hastie, and Tibshirani (2010), Qi et
al. (2015), Simon et al. (2011), Tibshirani (1996), and Zou and Hastie (2005).
The Meinshausen (2007) relaxed lasso estimator fits lasso with penalty λn to
get a subset of variables with nonzero coefficients, and then fits lasso with a
smaller penalty φn to this subset of variables where n is the sample size.

Let Imin correspond to the set of predictors selected by a variable selection
method such as forward selection or lasso variable selection. If β̂I is a×1, use

zero padding to form the p×1 vector β̂I,0 from β̂I by adding 0s corresponding

to the omitted variables. For example, if p = 4 and β̂Imin
= (β̂1, β̂3)

T , then

the observed variable selection estimator β̂V S = β̂Imin,0 = (β̂1 , 0, β̂3, 0)T . As

a statistic, β̂V S = β̂Ik,0 with probabilities πkn = P (Imin = Ik) for k = 1, ..., J
where there are J subsets, e.g. J = 2p − 1.

The large sample theory for β̂MIX , defined below, is useful for explaining

the large sample theory of β̂V S . Review Section 1.6 for mixture distributions.

Definition 2.28. The variable selection estimator β̂V S = β̂Imin,0, and

β̂V S = β̂Ik,0 with probabilities πkn = P (Imin = Ik) for k = 1, ..., J where
there are J subsets.

Definition 2.29. Let β̂MIX be a random vector with a mixture distribu-

tion of the β̂Ik,0 with probabilities equal to πkn. Hence β̂MIX = β̂Ik,0 with

same probabilities πkn of the variable selection estimator β̂V S , but the Ik are
randomly selected.

2.17.3 Large Sample Theory for Variable Selection

Estimators

Theorems 2.18 and 2.19 in this subsection are due to Rathnayake and Olive
(2023), and generalize the Pelawa Watagoda and Olive (2021b) theory for
multiple linear regression to many other models. The theory assumes that
there is a “true model” S and that at least one subset I is considered such
that S ⊆ I. For example, with forward selection and backward elimination,
the theory assumes that the full model contains S. The theory does not hold
if the true model S is not a subset of any of the considered models. For
example, S could contain some interactions that were not included in the
“full” model. Checking that the full model is good is important.

Assume p is fixed. Suppose model (2.49) holds, and that if S ⊆ Ij where

the dimension of Ij is aj , then
√
n(β̂Ij

−βIj
)

D→ Naj (0,V j) where V j is the
covariance matrix of the asymptotic multivariate normal distribution. Then
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√
n(β̂Ij,0 − β)

D→ Np(0,V j,0) (2.50)

where V j,0 adds columns and rows of zeros corresponding to the xi not in
Ij, and V j,0 is singular unless Ij corresponds to the full model. This large
sample theory holds for many models, including multiple linear regression fit
by least squares (OLS), GLMs fit by maximum likelihood, and Cox regression
fit by maximum partial likelihood. See, for example, Sen and Singer (1993,
pp. 280, 309).

The first assumption in Theorem 2.18 is P (S ⊆ Imin) → 1 as n → ∞.
Then the variable selection estimator corresponding to Imin underfits with
probability going to zero, and the assumption holds under regularity condi-
tions if BIC or AIC is used for many parametric regression models such as
GLMs. See Charkhi and Claeskens (2018) and Claeskens and Hjort (2008, pp.
70, 101, 102, 114, 232). This assumption is a necessary condition for a vari-
able selection estimator to be a consistent estimator. See Zhao and Yu (2006).
Thus if a sparse estimator that does variable selection is a consistent estima-
tor of β, then P (S ⊆ Imin) → 1 as n → ∞. Hence Theorem 2.18c) proves
that the lasso variable selection and elastic net variable selection estimators
are

√
n consistent estimators of β if lasso and elastic net are consistent. Also

see Theorem 2.19. The assumption on ujn in Theorem 2.18 is reasonable by

(2.50) since S ⊆ Ij for each πj, and since β̂MIX uses random selection.
Consider the assumption P (S ⊆ Imin) → 1 as n → ∞ for multiple linear

regression. Charkhi and Claeskens (2018) proved the assumption holds for
AIC for a wide variety of error distributions. Shao (1993) gave similar re-
sults for AIC, BIC, and Cp. Also see Remark 2.23 a). The assumption holds
for lasso variable selection and elastic net variable selection provided that
λ̂n/n → 0 as n → ∞ so lasso and elastic net are consistent estimators. Here

λ̂n is the shrinkage penalty parameter selected after k-fold cross validation.
See Theorems 2.8, 2.9, Pelawa Watogoda and Olive (2021b) and Knight and
Fu (2000).

Theorem 2.18 a) proves that u is a mixture distribution of the uj with
probabilities πj, E(u) = 0, and Cov(u) = Σu =

∑
j πjV j,0. Some of the

submodels Ik will have πk = 0. For example, since the probability of underfit-
ting goes to zero, every submodel Ik that underfits has πk = 0. Hence S ⊆ Ij
corresponding to the πj > 0. If πd = 1, then submodel Id is picked with
probability going to 1 as n→ ∞, and Id is the only submodel with a positive
πk. Often πd = πS in the literature. For Tn = Aβ̂MIX with θ = Aβ, we have
√
n(Tn − θ)

D→ v by (2.52) where E(v) = 0, and Σv =
∑

j πjAV j,0A
T .

Theorem 2.18. Assume P (S ⊆ Imin) → 1 as n → ∞, and let β̂MIX =

β̂Ik,0 with probabilities πkn where πkn → πk as n→ ∞. Denote the positive

πk by πj. Assume ujn =
√
n(β̂Ij,0 − β)

D→ uj ∼ Np(0,V j,0). a) Then

un =
√
n(β̂MIX − β)

D→ u (2.51)
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where the cdf of u is Fu(t) =
∑

j πjFuj
(t). Thus u has a mixture distribution

of the uj with probabilities πj, E(u) = 0, and Cov(u) = Σu =
∑

j πjV j,0.
b) Let A be a g × p full rank matrix with 1 ≤ g ≤ p. Then

vn = Aun =
√
n(Aβ̂MIX − Aβ)

D→ Au = v (2.52)

where v has a mixture distribution of the vj = Auj ∼ Ng(0,AV j,0A
T ) with

probabilities πj .

c) The estimator β̂V S is a
√
n consistent estimator of β:

√
n(β̂V S −β) =

OP (1).

d) If πd = 1, then
√
n(β̂SEL − β)

D→ u ∼ Np(0,V d,0) where SEL is V S
or MIX.

Proof. a) Since un has a mixture distribution of the ukn with probabilities
πkn, the cdf of un is Fun(t) =

∑
k πknFukn(t) → Fu(t) =

∑
j πjFuj(t) at

continuity points of the Fuj
(t) as n→ ∞.

b) Since un
D→ u, then Aun

D→ Au.
c) The result follows since selecting from a finite number J of

√
n consistent

estimators (even on a set that goes to one in probability) results in a
√
n

consistent estimator by Pratt (1959).
d) If πd = 1, there is no selection bias, asymptotically. The result also follows
by Pötscher (1991, Lemma 1). �

The following subscript notation is useful. Subscripts before the MIX
are used for subsets of β̂MIX = (β̂1, ..., β̂p)

T . Let β̂i,MIX = β̂i. Similarly, if

I = {i1, ..., ia}, then β̂I,MIX = (β̂i1 , ..., β̂ia)
T . Subscripts after MIX denote

the ith vector from a sample β̂MIX,1, ..., β̂MIX,B . Similar notation is used for

other estimators such as β̂V S . The subscript 0 is still used for zero padding.

We may use β̂ = β̂FULL to denote the full model.
Typically the mixture distribution is not asymptotically normal unless

a πd = 1 (e.g. if S is the full model F ), or if for each πj, Auj ∼
Ng(0,AV j,0A

T ) = Ng(0,AΣAT ). Then
√
n(Aβ̂MIX − Aβ)

D→ Au ∼
Ng(0,AΣAT ). This special case occurs for β̂S,MIX if

√
n(β̂−β)

D→ Np(0,V )
where the asymptotic covariance matrix V is diagonal and nonsingular. Then
β̂S,MIX and β̂S,FULL have the same multivariate normal limiting distribu-

tion. For several criteria, this result should hold for β̂V S since asymptotically,√
n(Aβ̂V S − Aβ) is selecting from the Auj which have the same distribu-

tion. In the simulations when V is diagonal, the confidence regions applied

to Aβ̂
∗
SEL = Bβ̂

∗
S,SEL had similar volume and cutoffs where SEL is MIX,

V S, or FULL.
Theorem 2.18 can be used to justify prediction intervals after variable

selection. See Pelawa Watagoda and Olive (2021b) and Olive, Rathnayake,
and Haile (2022). Theorem 2.18 d) is useful for variable selection consistency
and the oracle property where πd = πS = 1 if P (Imin = S) → 1 as n →
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∞. See Claeskens and Hjort (2008, pp. 101-114) and Fan and Li (2001) for
references. A necessary condition for P (Imin = S) → 1 is that S is one of the
models considered with probability going to one. This condition holds under
very strong regularity conditions for fast methods if S 6= F . See Wieczorek
and Lei (2022) for forward selection and Hastie, Tibshirani, and Wainwright
(2015, pp. 295-302) for lasso, where the predictors need a “near orthogonality”
condition.

Remark 2.24. If A1, A2, ..., Ak are pairwise disjoint and if ∪k
i=1Ai = S,

then the collection of sets A1, A2, ..., Ak is a partition of S. Then the Law of
Total Probability states that if A1, A2, ..., Ak form a partition of S such that
P (Ai) > 0 for i = 1, ..., k, then

P (B) =

k∑

j=1

P (B ∩Aj) =

k∑

j=1

P (B|Aj)P (Aj).

Let sets Ak+1, ..., Am satisfy P (Ai) = 0 for i = k+1, ..., m.Define P (B|Aj) =
0 if P (Aj) = 0. Then a Generalized Law of Total Probability is

P (B) =

m∑

j=1

P (B ∩Aj) =

m∑

j=1

P (B|Aj)P (Aj),

and will be used in the proof of the result in the following paragraph.

Pötscher (1991) used the conditional distribution of β̂V S |(β̂V S = β̂Ik,0)

to find the distribution of wn =
√
n(β̂V S −β). Let β̂

C

Ik,0 be a random vector

from the conditional distribution β̂Ik,0|(β̂V S = β̂Ik,0). Let wkn =
√
n(β̂Ik,0−

β)|(β̂V S = β̂Ik,0) ∼ √
n(β̂

C

Ik,0 − β). Denote Fz(t) = P (z1 ≤ t1, ..., zp ≤ tp)
by P (z ≤ t). Then Pötscher (1991) and Pelawa Watagoda and Olive (2021b)
show

Fwn(t) = P [n1/2(β̂V S − β) ≤ t] =

J∑

k=1

Fwkn(t)πkn.

Hence β̂V S has a mixture distribution of the β̂
C

Ik,0 with probabilities πkn,
and wn has a mixture distribution of the wkn with probabilities πkn.

Proof: Let W = WV S = k if β̂V S = β̂Ik,0 where P (WV S = k) = πkn

for k = 1, ..., J. Then (β̂V S:n,WV S:n) = (β̂V S ,WV S) has a joint distribution

where the sample size n is usually suppressed. Note that β̂V S = β̂IW ,0. Then
by Remark 2.24,

Fwn(t) = P [n1/2(β̂V S − β) ≤ t] =

J∑

k=1

P [n1/2(β̂V S − β) ≤ t|(β̂V S = β̂Ik,0)]P (β̂V S = β̂Ik,0) =
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J∑

k=1

P [n1/2(β̂Ik,0 − β) ≤ t|(β̂V S = β̂Ik,0)]πkn

=

J∑

k=1

P [n1/2(β̂
C

Ik,0 − β) ≤ t]πkn =

J∑

k=1

Fwkn(t)πkn. �

Charkhi and Claeskens (2018) showed that wjn =
√
n(β̂

C

Ij,0 − β)
D→ wj

if S ⊆ Ij for the maximum likelihood estimator (MLE) with AIC, and gave
a forward selection example. They claim that wj is a multivariate truncated
normal distribution (where no truncation is possible) that is symmetric about

0. Hence E(wj) = 0, and Cov(wj) = Σj exits. Note that both
√
n(β̂MIX−β)

and
√
n(β̂V S − β) are selecting from the ukn =

√
n(β̂Ik,0 − β) and asymp-

totically from the uj . The random selection for β̂MIX does not change the
distribution of ujn, but selection bias does change the distribution of the

selected ujn and uj to that of wjn and wj. The assumption that wjn
D→ wj

may not be mild. The proof for Equation (2.53) is the same as that for (2.51).
Theorem 2.19 proves that w is a mixture distribution of the wj with proba-
bilities πj.

Theorem 2.19. Assume P (S ⊆ Imin) → 1 as n → ∞, and let β̂V S =

β̂Ik,0 with probabilities πkn where πkn → πk as n→ ∞. Denote the positive

πk by πj. Assume wjn =
√
n(β̂

C

Ij,0 − β)
D→ wj. Then

wn =
√
n(β̂V S − β)

D→ w (2.53)

where the cdf of w is Fw(t) =
∑

j πjFwj(t).

Proof. Since wn has a mixture distribution of the wkn with probabilities
πkn, the cdf of wn is Fwn(t) =

∑
k πknFwkn

(t) → Fw(t) =
∑

j πjFwj(t) at
continuity points of the Fwj (t) as n → ∞. �

Remark 2.25. a) If P (S ⊆ Imin) → 1 as n → ∞, then β̂V S is a
√
n

consistent estimator of β since selecting from a finite number J of
√
n con-

sistent estimators (even on a set that goes to one in probability) results in a√
n consistent estimator by Pratt (1959). By both this result and Theorems

2.18 and 2.19, the lasso variable selection and elastic net variable selection
estimators are

√
n consistent if lasso and elastic net are consistent.

b) If the data is not simulated, then having some βi = 0 may not be

reasonable. Then S = F and Theorem 2.19 proves that β̂V S and β̂ = β̂F are
asymptotically equivalent. Also see Remark 2.23.

Remark 2.26. Another variable selection model is xT β = xT
Si

βSi
for

i = 1, ..., K. Then submodel I underfits if no Si ⊆ I. A necessary condition
for an estimator to be consistent is P(no Si ⊆ Imin) → 0 as n → ∞. By
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Remark 2.23, the above probability holds if Cp is used. Then in Theorem
2.19, we can replace P (S ⊆ Imin) → 1 by P(no Si ⊆ Imin) → 0 as n → ∞.

Example 2.4. This is an example where the πkn → πk as n → ∞. Assume
S ⊆ I where I has a predictors, including a constant. Then for a wide variety

of iid error distributions, FI
D→ X/(p−a) where X ∼ χ2

p−a. Let F denote the
full model, and let S = I = Ii be the model that deletes predictor xi with

a = p−1. Then from Definition 2.27, Cp(I)
D→ X+p−2 where X ∼ χ2

1. Let F
denote the full model and consider all subsets variable selection withCp. Since
only S and F do not underfit, only πS and πF are positive. Since Cp(F ) = p,
I = S is selected if Cp(I) < p. Hence πS = P (χ2

1 + p − 2 < p) = P (χ2
1 <

2) = 0.8427, and πF = 1 − πS = 0.1573. This result also holds for backward
elimination since the probability that xi will be the first predictor deleted
goes to 1 as n → ∞ because Cp(Ii) = Cp(S) is bounded in probability while
Cp(Ij) diverges as n → ∞ for j 6= i. For forward selection with correlated
predictors, expect that πS < P (χ2

1 < 2), and hence πF > 1 − P (χ2
1 < 2).

For the R code below, β = (1, ..., 1, 0, ..., 0)T is a p×1 vector with k+1 ones
and p− k+ 1 zeroes. Hence k = p− 2 deletes the predictor xp. The function
belimsim generates 1000 data sets, performs backward elimination, and
finds the proportion of time the full model was selected, which was 0.158 ≈
0.1573.

belimsim(n=100,p=5,k=3,nruns=1000)

$fullprop

[1] 0.158

2.17.4 Variable Selection Theory in High Dimensions

Remark 2.27. a) When
√
n consistent estimators are used,

‖β̂ − β‖2 = ‖β̂F − βF‖2 =

n∑

i=1

(β̂i − βi)
2 ∝ p

n
. (2.54)

In low dimensions where p is fixed, p/n→ 0 as n→ ∞ and β̂ is a consistent

estimator. In high dimensions, ‖β̂ − β‖2 tends to not be close to 0. For
example, if p = pn = nτ+1 , then pn/n = nτ which tends to be large if n
is large and τ > 1. Hence in high dimensions, it is difficult to get a good
estimator β̂ of β = βF for the full model that uses all p predictors x1, ..., xp.

b) When n/p→ 0 as n→ ∞, consistent estimators of βF generally cannot
be found unless the model has a simplifying structure. A sparse population
model is one such structure. Let model I be the model selected by a procedure
such as lasso. For Equation (2.49), assume that βS is aS × 1, βI is k × 1,
S ⊆ I, n ≥ Jk with J > 1 and preferably J ≥ 10, and βI,0 = β = βF . If a
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√
n consistent estimator is used, then

‖β̂I,0 − βF‖2 = ‖β̂I − βI‖2 =

k∑

i=1

(β̂iI − βiI)
2 ∝ k/n

which can be small. This “bet on sparsity principle” requires that a large
percentage of the βi = 0 and that the method selects I such that S ⊆ I with
high probability where k/n is small. The assumptions S ⊆ I and βI,0 = βF

may be very strong. There is a large literature on “sparsity bounds.” See
Giraud (2022) and Wainwright (2019) for references.

We can also consider sparse fitted models β̂I that use k predictors with
n ≥ Jk with J ≥ 5. With the sparse fitted model, we are not necessarily
assuming that i) S ⊆ I, that ii) S 6= F , or that iii) βI,0 = βF . We can also
use data splitting with nH ≥ Jk with J ≥ 5. Check that the selected model
is reasonable, using response plots if possible.

Table 2.7 Regression Summary

low dimensions data splitting high dim. regularity
with sparse I conditions are too strong

general: β(x, Y ) = βI,0(xI , Y ) βI (xI , Y ) β(x, Y ) = βI,0(xI , Y )
data splitting: β(x, Y ) = βI,0(xI , Y ) βI (xI , Y ) β(x, Y ) = βI,0(xI , Y )

lasso: βlasso βI (xI , Y ) β(x, Y ) = βI,0(xI , Y )
OPLS: βOP LS = λΣx,Y βI,OP LS = λIΣxI,Y βOPLS = βOLS

MMLE: βMMLE = Σu,Y βI,MMLE = ΣuI,Y βMMLE = βOLS

Table 2.7 summarizes what the regression estimators tend to estimate in
low dimensions or after data splitting with a sparse fitted model I. The third
column of Table 2.7 gives some results in the high dimensional literature
where the regularity conditions are often too strong. In particular, often the
regularity conditions are too strong for low dimensional results to hold in
high dimensions.

A fast method of variable selection is to standardize each predictor so that
the sample variance of each standardized predictor is one. Then compute β̂

and retain the k variables with the largest |β̂i|. For multiple linear regression,
then the MMLE is equal to OPLS, and the k predictors retained are the ones
where the unstandardized predictors have the largest absolute correlations
with Y . So compute |corr(xi, Y )| for i = 1, ..., p and keep the predictors
xi1, ...xik with the largest absolute correlations with Y . This set of k predictor
variables is often highly correlated. So find the k = min(p,m− 5) predictors
where m = n or m = nH for data splitting. Then perform lasso variable
selection or forward selection for the regression of Y on these k predictors
and a constant, and keep the resulting k1 predictors and a constant.
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The hdpack R function mmlevs finds approximately the nh − 5 predictors
that have the largest absolute correlations with Y , where nH is supplied by
the user.

n<- 100

p <- 100

k<-1

q <- p-1

b <- 0 * 1:q

b[1:k] <- 1 #b[1:0] acts like b[1:1] = b[1]

beta <- c(1,b)

x <- matrix(rnorm(n * q), nrow = n, ncol = q)

y <- 1 + x %*% b + rnorm(n)

#beta = (1,1,0,0,...,0)

out<-mmlevs(x,y,nh=10)

> out

print(out$acorxy,digits=1)

[1] 0.734 0.270 0.104 0.007 0.167 0.054

0.133 0.027 0.118 0.157 0.055 0.007

[13] 0.103 0.047 0.020 0.067 0.011 0.067

0.247 0.116 0.071 0.004 0.072 0.031

[25] 0.034 0.038 0.005 0.050 0.008 0.091

0.021 0.072 0.122 0.031 0.074 0.275

[37] 0.011 0.055 0.108 0.022 0.077 0.007

0.081 0.026 0.080 0.165 0.029 0.050

[49] 0.109 0.006 0.007 0.123 0.044 0.067

0.103 0.111 0.019 0.120 0.077 0.184

[61] 0.102 0.280 0.193 0.072 0.232 0.126

0.106 0.011 0.118 0.037 0.104 0.022

[73] 0.139 0.108 0.094 0.032 0.096 0.054

0.124 0.214 0.061 0.042 0.076 0.121

[85] 0.062 0.045 0.042 0.065 0.106 0.078

0.017 0.012 0.104 0.155 0.015 0.005

[97] 0.006 0.008 0.081

$indices

[1] 1 2 19 36 62 65

For the above output, only the constant and x1 are needed in the model,
and |corr(x1, Y )| = 0.73. Hence the model I selected will usually satisfy
S ⊆ I.

n<- 100

p <- 10000

k<-10 #the first 10 nontrivial predictors are active

q <- p-1

b <- 0 * 1:q
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b[1:k] <- 100 #b[1:0] acts like b[1:1] = b[1]

beta <- c(1,b)

x <- matrix(rnorm(n * q), nrow = n, ncol = q)

y <- 1 + x %*% b + rnorm(n,sd=0.1)

out<-mmlevs(x,y,nh=100)

print(out$acorxy[out$indices],digits=3)

[1] 0.386 0.302 0.297 0.292 0.292 0.274

0.269 0.316 0.268 0.315 0.364 0.319

[13] 0.287 0.276 0.269 0.265 0.356 0.290

0.371 0.308 0.294 0.280 0.263 0.277

[25] 0.278 0.269 0.272 0.307 0.270 0.269

0.312 0.274 0.302 0.268 0.310 0.268

[37] 0.274 0.351 0.264 0.302 0.270 0.313

0.264 0.269 0.287 0.284 0.268 0.271

[49] 0.288 0.279 0.279 0.304 0.268 0.284

0.272 0.350 0.302 0.295 0.263 0.314

[61] 0.274 0.262 0.261 0.326 0.270 0.261

0.263 0.322 0.262 0.305 0.377 0.272

[73] 0.286 0.272 0.267 0.260 0.278 0.277

0.269 0.279 0.261 0.345 0.297 0.280

[85] 0.381 0.266 0.301 0.275 0.301 0.326

0.340 0.349 0.292 0.316 0.306 0.276

> out$indices

[1] 2 3 5 6 7 197 280

319 326 468 530 540 588 628 711

[16] 725 751 812 1030 1072 1074 1608

1751 1863 1886 1990 2250 2365 2611 2803

[31] 2927 2929 3022 3226 3364 3481 3503

4046 4276 4474 4837 5048 5234 5289 5397

[46] 5427 5648 5650 5687 5784 5934 6128

6201 6250 6411 6475 6515 6629 6665 6703

[61] 6764 6844 6854 6915 7008 7069 7114

7171 7446 7523 7645 7746 7906 7998 8136

[76] 8253 8367 8390 8453 8538 8756 8854

8969 8983 9061 9081 9176 9182 9212 9283

[91] 9411 9622 9628 9674 9685 9744

For the output above, the first 9 out of 999 nontrivial predictors are active,
with βi = 100. Only 5 of these predictors among the 96 predictors with the
largest absolute sample correlations with Y .

n<- 100

p <- 10000

k<-90

q <- p-1

b <- 0 * 1:q
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b[1:k] <- 1 #b[1:0] acts like b[1:1] = b[1]

beta <- c(1,b)

x <- matrix(rnorm(n * q), nrow = n, ncol = q)

y <- 1 + x %*% b + rnorm(n)

out<-mmlevs(x,y,nh=100)

length(out$indices)

96 #most are spurious

out$indices

[1] 11 13 16 33 40 79 121

380 418 733 746 751 1015 1037 1050

[16] 1098 1222 1228 1632 1697 1698 1722

1752 1860 2015 2065 2124 2152 2933 3067

[31] 3084 3327 3335 3350 3376 3654 3713

3798 3845 3854 3993 4084 4285 4476 4659

[46] 4863 5114 5386 5626 6209 6301 6322

6374 6376 6468 6486 6554 6596 6702 6707

[61] 6798 6800 6819 6924 7035 7371 7445

7476 7508 7606 7653 7682 7759 7792 7934

[76] 7953 7985 8010 8047 8253 8314 8569

8783 8894 9022 9062 9091 9218 9298 9358

[91] 9371 9631 9670 9706 9938 9944

#got6/90 active predictors

For the above output, β = (1, 1, ..., 1, 0, ..., 0)T where the constant β1 = 1
and βi = 1 for i = 2, ..., 91. Since k = 90 nontrivial predictors are active with
βi = 1, all of the active predictors are weak.

n<- 10000

p <- 10000

k<-90

q <- p-1

b <- 0 * 1:q

b[1:k] <- 1 #b[1:0] acts like b[1:1] = b[1]

beta <- c(1,b)

x <- matrix(rnorm(n * q), nrow = n, ncol = q)

y <- 1 + x %*% b + rnorm(n)

out<-mmlevs(x,y,nh=100)

out$indices #now the 90 weak active predictors have the

#largest absolute correlations

[1] 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

[16] 16 17 18 19 20 21 22

23 24 25 26 27 28 29 30

[31] 31 32 33 34 35 36 37

38 39 40 41 42 43 44 45

[46] 46 47 48 49 50 51 52
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53 54 55 56 57 58 59 60

[61] 61 62 63 64 65 66 67

68 69 70 71 72 73 74 75

[76] 76 77 78 79 80 81 82

83 84 85 86 87 88 89 90

[91] 737 4828 4899 5935 6151 7483

For the above output, increasing n to 10000 greatly improved MMLE vari-
able selection. It appears that high dimensional variable selection works best
if there are a few strong predictor variables. Spurious correlations are common
if n is near 100. As n increases, the absolute value of the spurious correlations
(sample correlations of nonactive predictors) decreases, and variable selection
can handle more active predictor variables.

2.18 Summary

1) The MLR model is Yi = β1 + xi,2β2 + · · · + xi,pβp + ei = xT
i β + ei for

i = 1, ..., n. This model is also called the full model. In matrix notation,
these n equations become Y = Xβ + e. Note that xi,1 ≡ 1.

2) The ordinary least squares OLS full model estimator β̂OLS minimizes
QOLS(β) =

∑n
i=1 r

2
i (β) = RSS(β) = (Y −Xβ)T (Y −Xβ). In the estimat-

ing equations QOLS(β), the vector β is a dummy variable. The minimizer

β̂OLS estimates the parameter vector β for the MLR model Y = Xβ + e.

Note that β̂OLS ∼ ANp(β,MSE(XT X)−1).
3) Given an estimate b of β, the corresponding vector of predicted values

or fitted values is Ŷ ≡ Ŷ (b) = Xb. Thus the ith fitted value

Ŷi ≡ Ŷi(b) = xT
i b = xi,1b1 + · · ·+ xi,pbp.

The vector of residuals is r ≡ r(b) = Y − Ŷ (b). Thus ith residual ri ≡
ri(b) = Yi − Ŷi(b) = Yi − xi,1b1 − · · · − xi,pbp. A response plot for MLR is a

plot of Ŷi versus Yi. A residual plot is a plot of Ŷi versus ri. If the ei are iid
from a unimodal distribution that is not highly skewed, the plotted points
should scatter about the identity line and the r = 0 line.

4)

Label coef SE shorth 95% CI for βi

Constant=intercept= x1 β̂1 SE(β̂1) [L̂1, Û1]

x2 β̂2 SE(β̂2) [L̂2, Û2]
...

xp β̂p SE(β̂p) [L̂p, Ûp]
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The classical OLS large sample 95% CI for βi is β̂i ±1.96SE(β̂i). Consider
testing H0 : βi = 0 versus HA : βi 6= 0. If 0 ∈ CI for βi, then fail to reject H0,
and conclude xi is not needed in the MLR model given the other predictors
are in the model. If 0 6∈ CI for βi, then reject H0, and conclude xi is needed
in the MLR model.

5) Let xT
i = (1 uT

i ). It is often convenient to use the centered response
Z = Y − Y where Y = Y 1, and the n × (p − 1) matrix of standardized
nontrivial predictors W = (Wij). For j = 1, ..., p− 1, let Wij denote the
(j + 1)th variable standardized so that

∑n
i=1Wij = 0 and

∑n
i=1W

2
ij = n.

Then the sample correlation matrix of the nontrivial predictors ui is

Ru =
W T W

n
.

Then regression through the origin is used for the model Z = Wη + e

where the vector of fitted values Ŷ = Y + Ẑ. Thus the centered response
Zi = Yi − Y and Ŷi = Ẑi + Y . Then η̂ does not depend on the units of
measurement of the predictors. Linear combinations of the ui can be written
as linear combinations of the xi, hence β̂ can be found from η̂.

6) A model for variable selection is xT β = xT
SβS + xT

EβE = xT
SβS where

x = (xT
S ,x

T
E)T , xS is an aS × 1 vector, and xE is a (p − aS) × 1 vector. Let

xI be the vector of a terms from a candidate subset indexed by I, and let xO

be the vector of the remaining predictors (out of the candidate submodel). If
S ⊆ I, then xT β = xT

SβS = xT
SβS + xT

I/Sβ(I/S) + xT
O0 = xT

I βI where xI/S

denotes the predictors in I that are not in S. Since this is true regardless
of the values of the predictors, βO = 0 if S ⊆ I. Note that βE = 0. Let
kS = aS − 1 = the number of population active nontrivial predictors. Then
k = a− 1 is the number of active predictors in the candidate submodel I.

7) Let Q(η) be a real valued function of the k × 1 vector η. The gradient
of Q(η) is the k × 1 vector

5Q = 5Q(η) =
∂Q

∂η
=
∂Q(η)

∂η
=




∂
∂η1

Q(η)
∂

∂η2
Q(η)
...

∂
∂ηk

Q(η)



.

Suppose there is a model with unknown parameter vector η. A set of estimat-
ing equations f(η) is minimized or maximized where η is a dummy variable
vector in the function f : R

k → R
k.

8) As a mnemonic (memory aid) for the following results, note that the

derivative
d

dx
ax =

d

dx
xa = a and

d

dx
ax2 =

d

dx
xax = 2ax.

a) If Q(η) = aT η = ηT a for some k× 1 constant vector a, then 5Q = a.
b) If Q(η) = ηT Aη for some k × k constant matrix A, then 5Q = 2Aη.
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c) If Q(η) =
∑k

i=1 |ηi| = ‖η‖1, then 5Q = s = sη where si = sign(ηi)
where sign(ηi) = 1 if ηi > 0 and sign(ηi) = −1 if ηi < 0. This gradient is only
defined for η where none of the k values of ηi are equal to 0.

9) Forward selection with OLS generates a sequence of M models I1, ..., IM
where Ij uses j predictors x∗1 ≡ 1, x∗2, ..., x

∗
M. Often M = min(dn/Je, p) where

J is a positive integer such as J = 5.
10) For the model Y = Xβ +e, methods such as forward selection, PCR,

PLS, ridge regression, lasso variable selection, and lasso each generate M
fitted models I1, ..., IM, where M depends on the method. For forward selec-
tion the simulation used Cp for n ≥ 10p and EBIC for n < 10p. The other
methods minimized 10-fold CV. For forward selection, the maximum number
of variables used was approximately min(dn/5e, p).

11) Consider choosing η̂ to minimize the criterion

Q(η) =
1

a
(Z − Wη)T (Z − Wη) +

λ1,n

a

p−1∑

i=1

|ηi|j (2.55)

where λ1,n ≥ 0, a > 0, and j > 0 are known constants. Then j = 2
corresponds to ridge regression η̂R, j = 1 corresponds to lasso η̂L, and
a = 1, 2, n, and 2n are common. The residual sum of squares RSSW (η) =
(Z − Wη)T (Z − Wη), and λ1,n = 0 corresponds to the OLS estimator

η̂OLS = (W T W )−1W T Z. Note that for a k × 1 vector η, the squared (Eu-

clidean) L2 norm ‖η‖2
2 = ηT η =

∑k
i=1 η

2
i and the L1 norm ‖η‖1 =

∑k
i=1 |ηi|.

Lasso and ridge regression have a parameter λ. When λ = 0, the OLS
full model is used. Otherwise, the centered response and scaled nontrivial
predictors are used with Z = Wη + e. See 5). These methods also use a
maximum value λM of λ and a grid of M λ values 0 ≤ λ1 < λ2 < · · · <
λM−1 < λM where often λ1 = 0. For lasso, λM is the smallest value of λ such
that η̂λM

= 0. Hence η̂λi
6= 0 for i < M .

12) The elastic net estimator η̂EN minimizes

QEN(η) = RSS(η) + λ1‖η‖2
2 + λ2‖η‖1 (2.56)

where λ1 = (1 − α)λ1,n and λ2 = 2αλ1,n with 0 ≤ α ≤ 1.
13) Use Zn ∼ ANg (µn,Σn) to indicate that a normal approximation is

used: Zn ≈ Ng(µn,Σn). Let a be a constant, let A be a k × g constant

matrix, and let c be a k×1 constant vector. If
√
n(θ̂n−θ)

D→ Ng(0,V ), then
aZn = aIgZn with A = aIg,

aZn ∼ ANg

(
aµn, a

2Σn

)
, and AZn + c ∼ ANk

(
Aµn + c,AΣnAT

)
,

θ̂n ∼ ANg

(
θ,

V

n

)
, and Aθ̂n + c ∼ ANk

(
Aθ + c,

AV AT

n

)
.
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14) Assume η̂OLS = (W T W )−1W T Z. Let sn = (s1n, ..., sp−1,n)T where
sin ∈ [−1, 1] and sin = sign(η̂i) if η̂i 6= 0. Here sign(ηi) = 1 if ηi > 1 and
sign(ηi) = −1 if ηi < 1. Then

i) η̂R = η̂OLS − λ1n

n
n(W T W + λ1,nIp−1)

−1η̂OLS .

ii) η̂L = η̂OLS − λ1,n

2n
n(W T W )−1 sn.

iii) η̂EN = η̂OLS − n(W T W + λ1Ip−1)
−1

[
λ1

n
η̂OLS +

λ2

2n
sn

]
.

15) Assume that the sample correlation matrix Ru =
W T W

n

P→ V −1.

Let H = W (W T W )−1W T = (hij), and assume that maxi=1,...,n hii
P→ 0 as

n→ ∞. Let η̂A be η̂EN , η̂L, or η̂R. Let p be fixed.

i) LS CLT:
√
n(η̂OLS − η)

D→ Np−1(0, σ
2V ).

ii) If λ̂1,n/
√
n

P→ 0, then

√
n(η̂A − η)

D→ Np−1(0, σ
2V ).

iii) If λ̂1,n/
√
n

P→ τ ≥ 0, α̂
P→ ψ ∈ [0, 1], and sn

P→ s = sη, then

√
n(η̂EN − η)

D→ Np−1

(
−V [(1− ψ)τη + ψτs], σ2V

)
.

iv) If λ̂1,n/
√
n

P→ τ ≥ 0, then

√
n(η̂R − η)

D→ Np−1(−τV η, σ2V ).

v) If λ̂1,n/
√
n

P→ τ ≥ 0 and sn
P→ s = sη, then

√
n(η̂L − η)

D→ Np−1

(−τ
2

V s, σ2V

)
.

ii) and v) are the Lasso CLT, ii) and iv) are the RR CLT, and ii) and iii)
are the EN CLT.

16) Under the conditions of 15), lasso variable selection and elastic net
variable selection are

√
n consistent under much milder conditions than lasso

and elastic net, since the variable selection estimators are
√
n consistent when

lasso and elastic net are consistent. Let Imin correspond to the predictors
chosen by lasso, elastic net, or forward selection, including a constant. Let
β̂Imin

be the OLS estimator applied to these predictors, let β̂Imin,0 be the

zero padded estimator. The large sample theory for β̂Imin,0 (from forward
selection, lasso variable selection, and elastic net variable selection) is given

by Theorem 2.4. Note that the large sample theory for the estimators β̂ is
given for p × 1 vectors. The theory for η̂ is given for (p − 1) × 1 vectors In
particular, the theory for lasso and elastic net does not cast away the η̂i = 0.
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17) Under Equation (2.1) with p fixed, if lasso or elastic net are consistent,
then P (S ⊆ Imin) → 1 as n → ∞. Hence when lasso and elastic net do
variable selection, they are often not

√
n consistent.

18) Refer to 6). a) The OLS full model tends to be useful if n ≥ 10p with
large sample theory better than that of lasso, ridge regression, and elastic
net. Testing is easier and the Olive (2007) PI tailored to the OLS full model
will work better for smaller sample sizes than PI (2.14) if n ≥ 10p. If n ≥ 10p
but XT X is singular or ill conditioned, other methods can perform better.

Forward selection, lasso variable selection, and elastic net variable selection
are competitive with the OLS full model even when n ≥ 10p and XT X is
well conditioned. If n ≤ p then OLS interpolates the data and is a poor
method. If n = Jp, then as J decreases from 10 to 1, other methods become
competitive.

b) If n ≥ 10p and kS < p − 1, then forward selection can give more pre-
cise inference than the OLS full model. When n/p is small, the PI (2.14) for
forward selection can perform well if n/kS is large. Forward selection can be
worse than ridge regression or elastic net if kS > min(n/J, p). Forward selec-
tion can be too slow if both n and p are large. Forward selection, lasso variable
selection, and elastic net variable selection tend to be bad if (XT

AXA)−1 is
ill conditioned where A = Imin.

c) If n ≥ 10p, lasso can be better than the OLS full model if XT X is ill
conditioned. Lasso seems to perform best if kS is not much larger than 10
or if the nontrivial predictors are orthogonal or uncorrelated. Lasso can be
outperformed by ridge regression or elastic net if kS > min(n, p− 1).

d) If n ≥ 10p ridge regression and elastic net can be better than the OLS
full model if XT X is ill conditioned. Ridge regression (and likely elastic net)
seems to perform best if kS is not much larger than 10 or if the nontrivial
predictors are orthogonal or uncorrelated. Ridge regression and elastic net
can outperform lasso if kS > min(n, p− 1).

e) The PLS PI (2.14) can perform well if n ≥ 10p if some of the other five
methods used in the simulations start to perform well when n ≥ 5p. PLS may
or may not be inconsistent if n/p is not large. Ridge regression tends to be
inconsistent unless P (d → p) → 1 so that ridge regression is asymptotically
equivalent to the OLS full model.

19) Under strong regularity conditions, lasso and lasso variable selection
with k–fold CV, and forward selection with EBIC can perform well even if
n/p is small. So PI (2.14) can be useful when n/p is small.

20) Using the response variable to build a model is known as data snooping,
and invalidates inference if data snooping is used on the entire data set of n
cases.

21) Suppose xT β = xT
SβS +xT

EβE = xT
SβS where βS is an aS ×1 vector.

A regression model is sparse if aS is small. We want n ≥ 10aS.
22) Assume the cases are independent. To perform data splitting, randomly

divide the data into two half sets H and V where H has nH of the cases and
V has the remaining nV = n−nH cases i1, ..., inV . Build the model, possibly
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with data snooping, or perform variable selection to Find a model I, possibly
with data snooping or model selection, using the data in the training set H .
Use the model I as the full model to perform inference using the data in the
validation set V .

2.19 Complements

Good references for forward selection, PCR, PLS, ridge regression, and lasso
are Hastie et al. (2009, 2015), James et al. (2013), and Pelawa Watagoda
and Olive (2021b). Also see Efron and Hastie (2016). An early reference for
forward selection is Efroymson (1960). Under strong regularity conditions,
Gunst and Mason (1980, ch. 10) covers inference for ridge regression (and a
modified version of PCR) when the iid errors ei ∼ N(0, σ2).

Xu et al. (2011) notes that sparse algorithms are not stable. Belsley (1984)
shows that centering can mask ill conditioning of X .

Classical principal component analysis based on the correlation matrix can
be done using the singular value decomposition (SVD) of the scaled matrix

W S = W g/
√
n− 1 using êi and λ̂i = σ2

i where λ̂i = λ̂i(W
T
SW S) is the ith

eigenvalue of W T
SW S . Here the scaling is using g = 1. For more information

about the SVD, see Datta (1995, pp. 552-556) and Fogel et al. (2013).
Variable Selection and Post-Selection Inference:
There is massive literature on variable selection and a fairly large literature

for inference after variable selection. See, for example, Bertsimas et al. (2016),
Fan and Lv (2010), Ferrari and Yang (2015), Fithian et al. (2014), Hjort and
Claeskins (2003), Knight and Fu (2000), Leeb and Pötscher (2005, 2006),
Lockhart et al. (2014), Qi et al. (2015), and Tibshirani et al. (2016).

For post-selection inference, the methods in the literature are often for
multiple linear regression assuming normality (an assumption that is too
strong), or are asymptotically equivalent to using the full model, or find a
quantity to test that is not Aβ. Typically the methods have not been shown to
perform better than data splitting. See Ewald and Schneider (2018). Leeb et
al. (2015) suggests that the Berk et al. (2013) method does not really work.
Kivaranovic and Leeb (2021) show that E(CI length) tends to be infinity
for a method proposed by Lee et al. (2016). Also see Lu et al. (2017), and
Tibshirani et al. (2016).

Warning: For n < 5p, validate sparse fitted models with response and
residual plots. PIs can also help.

High Dimensional Testing and Confidence Intervals:
As of 2023, testing sparse fitted models with data splitting and the tests

of Olive and Zhang (2023) appear to be backed by theory under reasonable
regularity conditions. Assuming that (Yi,x

T
i )T are iid Np+1(µ,Σ) is not a

reasonable regularity conditions. For data splitting, forward selection with
EBIC, lasso variable selection, and MMLE variable selection can be useful.
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Chetverikov, Liao and Chernozhukov (2022) show that k-fold CV with lasso
often picks an MLR model good for prediction.

Also see Basa et al. (2022), Dezeure et al. (2015), Javanmard and Mon-
tanari (2014), Rinaldo, Wasserman, and G’Sell (2019), van de Geer et al.
(2014), and Zhang and Cheng (2017). Fan and Lv (2010) gave large sample
theory for some methods if p = o(n1/5). The method of Ning and Liu (2017)
needs a log likelihood.

Full OLS Model: A sufficient condition for β̂OLS to be a consistent

estimator of β is Cov(β̂OLS) = σ2(XT X)−1 → 0 as n → ∞. See Lai et
al. (1979). For more OLS large sample theory, see Eicker (1963) and White
(1984).

Forward Selection: See Olive and Hawkins (2005), Pelawa Watagoda
and Olive (2021ab), and Rathnayake and Olive (2023).

The Oracle Property:
The oracle property says P (Imin = S) → 1 as n→ ∞. A necessary condi-

tion for the oracle property is that S is in the search path with probability
going to 1 as n → ∞. For “fast methods” like lasso and forward selection,
this requires the predictors to be nearly orthogonal. Hence the regularity con-
ditions for the oracle property are much too strong if the predictors are mod-
erately or highly correlated. The oracle property may be useful for wavelets
and PCR. See Su (2018), Su, Bogdan, and Candés (2017), and Wieczorek
and Lei (2022).

Principal Components Regression: Principal components are Karhunen
Loeve directions of centered X. See Hastie et al. (2009, p. 66). A useful PCR
paper is Cook and Forzani (2008).

Partial Least Squares: An important PLS paper is Wold (1975). Also see

Wold (1985, 2006). Olive and Zhang (2023) showed β̂OPLS is a
√
n consistent

estimator of βOPLS if the cases (xi, Yi) are iid with a few moments, p is fixed,
and n→ ∞. Olive and Zhang (2023) also suggested that much of the theory
for OPLS and PLS appears to be incorrect, except under regularity conditions
that are much too strong. See, for example, Basa, et al. (2022), Cook et al.
(2013), Cook (2018), Cook and Forzani (2018, 2019), Cook and Su (2016),
and Chun and Keleş (2010). Denham (1997) suggested a PI for PLS that
assumes the number of components is selected in advance.

Much of the PLS literature claims that if the cases are iid, then under
mild conditions, β̂OPLS , β̂kPLS , and β̂MSPLS estimate β = βOLS . See for
example, Basa et al. (2024) and Cook and Forzani (2024). However, they use
a very strong regularity condition:

Y |x = αOPLS + βT
OPLSx + e. (2.57)

When Y |x = α+βT x+e, then under mild regularity conditions, β = βOLS .
Hence regularity condition (2.46) and iid cases forces βOLS = Σ−1

x ΣxY =
λΣxY = βOPLS . Thus regularity condition (2.46) forces ΣxY and βOLS =
λΣxY to be eigenvectors of Σx if λ 6= 0. Hence βT

OLSx is equivalent (up to
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a positive constant multiplier) to the population principal component regres-
sion (PCR) component ηT

j x that is most correlated with Y , where ηj is one
of the eigenvectors of Σx.

Ridge Regression: An important ridge regression paper is Hoerl and
Kennard (1970). Also see Gruber (1998). Ridge regression is known as
Tikhonov regularization in the numerical analysis literature.

Lasso: Lasso was introduced by Tibshirani (1996). Efron et al. (2004)
and Tibshirani et al. (2012) are important papers. Su et al. (2017) note some
problems with lasso. If n/p is large, see Knight and Fu (2000) for the residual
bootstrap with OLS full model residuals. Camponovo (2015) suggested that
the nonparametric bootstrap does not work for lasso. Chatterjee and Lahiri
(2011) stated that the residual bootstrap with lasso does not work. Hall et
al. (2009) stated that the residual bootstrap with OLS full model residuals
does not work, but the m out of n residual bootstrap with OLS full model
residuals does work. Rejchel (2016) gave a good review of lasso theory. Fan
and Lv (2010) reviewed large sample theory for some alternative methods.
See Lockhart et al. (2014) for a partial remedy for hypothesis testing with
lasso. The Ning and Liu (2017) method needs a log likelihood. Knight and
Fu (2000) gave theory for fixed p.

Regularity conditions for testing are strong. Often lasso tests assume that
Y and the nontrivial predictors follow a multivariate normal (MVN) distri-
bution. For the MVN distribution, the MLR model tends to be dense not
sparse if n/p is small.

For fixed p, lasso in glmnet tends to be at best n1/4 consistent for multiple
linear regression, while large sample theory for lasso and elastic net does not
appear to be available for GLMs and Cox regression. See Guan and Tibshirani
(2020).

lasso variable selection:
Applying OLS on a constant and the k nontrivial predictors that have

nonzero lasso η̂i is called lasso variable selection. We want n ≥ 10(k + 1).
If λ1 = 0, a variant of lasso variable selection computes the OLS submodel
for the subset corresponding to λi for i = 1, ...,M . If Cp is used, then this
variant has large sample theory given by Theorem 2.4.

Lasso can also be used for other estimators, such as generalized linear
models (GLMs). Then lasso variable selection is the “classical estimator,”
such as a GLM, applied to the lasso active set. For prediction, lasso variable
selection is often better than lasso, but sometimes lasso is better.

See Meinshausen (2007) for the relaxed lasso method with R package
relaxo for MLR: apply lasso with penalty λ to get a subset of variables
with nonzero coefficients. Then reduce the shrinkage of the nonzero elements
by applying lasso again to the nonzero coefficients but with a smaller penalty
φ. This two stage estimator could be used for other estimators. Lasso variable
selection corresponds to the limit as φ → 0.
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Dense Regression or Abundant Regression: occurs when most of the
predictors contribute to the regression. Hence the regression is not sparse. See
Cook et al. (2013).

Other Methods: Consider the MLR model Z = Wη + e. Let λ ≥ 0 be
a constant and let q ≥ 0. The estimator η̂q minimizes the criterion

Qq(b) = r(b)T r(b) + λ

p−1∑

j=1

|bi|q, (2.58)

over all vectors b ∈ R
p−1 where we take 00 = 0. Then q = 1 corresponds

to lasso and q = 2 corresponds to ridge regression. If q = 0, the penalty
λ
∑p−1

j=1 |bi|0 = λk where k is the number of nonzero components of b. Hence
the q = 0 estimator is often called the “best subset” estimator. See Frank
and Friedman (1993). For fixed p, large sample theory is given by Knight and
Fu (2000). Following Hastie et al. (2009, p. 72), the optimization problem is
convex if q ≥ 1 and λ is fixed.

Suppose model Ik contains k predictors including a constant. For multiple
linear regression, the forward selection algorithm in Chapter 4 adds a pre-
dictor x∗k+1 that minimizes the residual sum of squares, while the Pati et al.
(1993) “orthogonal matching pursuit algorithm” uses predictors (scaled to
have unit norm: xT

i xi = 1 for the nontrivial predictors), and adds the scaled
predictor x∗k+1 that maximizes |x∗T

k+1rk| where the maximization is over vari-
ables not yet selected and the rk are the OLS residuals from regressing Y
on X∗

Ik
. Fan and Li (2001) and Candes and Tao (2007) gave competitors to

lasso. Some fast methods seem similar to the first PLS component.
If n ≤ 400 and p ≤ 3000, Bertsimas et al. (2016) give a fast “all subsets”

variable selection method. Lin et al. (2012) claim to have a very fast method
for variable selection. Lee and Taylor (2014) suggest the marginal screening
algorithm: let W be the matrix of standardized nontrivial predictors. Com-
pute W T Y = (c1, ..., cp−1)

T and select the J variables corresponding to the
J largest |ci|. These are the J standardized variables with the largest absolute
correlations with Y . Then do an OLS regression of Y on these J variables
and a constant. A slower algorithm somewhat similar but much slower than
the Lin et al. (2012) algorithm follows. Let a constant x1 be in the model, and
let W = [a1, ...,ap−1] and r = Y −Y . Compute W T r and let x∗2 correspond
to the variable with the largest absolute entry. Remove the corresponding
aj from W to get W 1. Let r1 be the OLS residuals from regressing Y on

x1 and x∗2. Compute W T r1 and let x∗3 correspond to the variable with the
largest absolute entry. Continue in this manner to get x1, x

∗
2, ..., x

∗
J where

J = min(p, dn/5e). Like forward selection, evaluate the J − 1 models Ij con-
taining the first j predictors x1, x

∗
2, ..., x

∗
J for j = 2, ..., J with a criterion such

as Cp.
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Following Sun and Zhang (2012), let (2.6) hold and let

Q(η) =
1

2n
(Z − Wη)T (Z − Wη) + λ2

p−1∑

i=1

ρ

( |ηi|
λ

)
where ρ is scaled such

that the derivative ρ′(0+) = 1. As for lasso and elastic net, let sj = sgn(η̂j)
where sj ∈ [−1, 1] if η̂j = 0. Let ρ′j = ρ′(|η̂j|/λ) if η̂j 6= 0, and ρ′j = 1 if

η̂j = 0. Then η̂ is a critical point of Q(η) iff wT
j (Z − Wη̂) = nλsjρ

′
j for

j = 1, ..., n. If ρ is convex, then these conditions are the KKT conditions. Let
dj = sjρ

′
j . Then W T Z − W T Wη̂ = nλd, and η̂ = η̂OLS − nλ(W T W )−1d.

If the dj are bounded, then η̂ is consistent if λ → 0 as n → ∞, and η̂ is
asymptotically equivalent to η̂OLS if n1/2λ→ 0. Note that ρ(t) = t for t > 0
gives lasso with λ = λ1,n/(2n).

Gao and Huang (2010) give theory for a LAD–lasso estimator, and Qi et
al. (2015) is an interesting lasso competitor.

Multivariate linear regression has m ≥ 2 response variables. See Olive
(2017ab: ch. 12). PLS also works if m ≥ 1, and methods like ridge regression
and lasso can also be extended to multivariate linear regression. See, for ex-
ample, Haitovsky (1987) and Obozinski et al. (2011). Sparse envelope models
are given in Su et al. (2016).

Model Building:
When the entire data set is used to build a model with the response vari-

able, the inference tends to be invalid, and cross validation should not be used
to check the model. See Hastie et al. (2009, p. 245). In order for the inference
and cross validation to be useful, the response variable and the predictors
for the regression should be chosen before looking at the response variable.
Predictor transformations can be done as long as the response variable is not
used to choose the transformation. You can do model building on the test
set, and then inference for the chosen (built) model as the full model with
the validation set, provided this model follows the regression model used for
inference (e.g. multiple linear regression or a GLM). This process is difficult
to simulate.

AIC and BIC Type Criterion:
Olive and Hawkins (2005) and Burnham and Anderson (2004) are useful

reference when p is fixed. Some interesting theory for AIC appears in Zhang
(1992). Zheng and Loh (1995) show that BICS can work if p = pn = o(log(n))
and there is a consistent estimator of σ2. For the Cp criterion, see Jones (1946)
and Mallows (1973).

AIC and BIC type criterion and variable selection for high dimensional re-
gression are discussed in Chen and Chen (2008), Fan and Lv (2010), Fujikoshi
et al. (2014), and Luo and Chen (2013). Wang (2009) suggests using

WBIC(I) = log[SSE(I)/n] + n−1|I|[log(n) + 2 log(p)].

See Bogdan et al. (2004), Cho and Fryzlewicz (2012), and Kim et al. (2012).
Luo and Chen (2013) state that WBIC(I) needs p/na < 1 for some 0 < a <
1.
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If n/p is large and one of the models being considered is the true model
S (shown to occur with probability going to one only under very strong
assumptions by Wieczorek and Lei (2021)), then BIC tends to outperform
AIC. If none of the models being considered is the true model, then AIC
tends to outperform BIC. See Yang (2003).

Robust Versions: Hastie et al. (2015, pp. 26-27) discuss some modifica-
tions of lasso that are robust to certain types of outliers. Robust methods
for forward selection and LARS are given by Uraibi et al. (2017, 2019) that
need n >> p. If n is not much larger than p, then Hoffman et al. (2015)
have a robust Partial Least Squares–Lasso type estimator that uses a clever
weighting scheme.

A simple method to make an MLR method robust to certain types of
outliers is to find the covmb2 set B of Chapter 1 applied to the quantitative
predictors. Then use the MLR method (such as elastic net, lasso, PLS, PCR,
ridge regression, or forward selection) applied to the cases corresponding to
the xj in B. Make a response and residual plot, based on the robust estimator

β̂B , using all n cases.
Prediction Intervals:
Lei et al. (2018) and Wasserman (2014) suggested prediction intervals for

estimators such as lasso. The method has interesting theory if the (xi, Yi) are
iid from some population. Also see Butler and Rothman (1980) and Stein-
berger and Leeb (2023).

Let p be fixed, d be for PI (2.14), and n → ∞. For elastic net, forward
selection, PCR, PLS, ridge regression, lasso variable selection, and lasso, if
P (d→ p) → 1 as n → ∞ then the seven methods are asymptotically equiv-
alent to the OLS full model, and the PI (2.14) is asymptotically optimal on
a large class of iid unimodal zero mean error distributions. The asymptotic
optimality holds since the sample quantile of the OLS full model residuals are
consistent estimators of the population quantiles of the unimodal error distri-

bution for a large class of distributions. Note that d
P→ p if P (λ̂1n → 0) → 1

for elastic net, lasso, and ridge regression, and d
P→ p if the number d− 1 of

components (γT
j x or γT

j w) used by the method satisfies P (d−1 → p−1) → 1.

Consistent estimators β̂ of β also produce residuals such that the sample
quantiles of the residuals are consistent estimators of quantiles of the error
distribution. See Remark 2.21, Olive and Hawkins (2003), and Rousseeuw
and Leroy (1987, p. 128).

Degrees of Freedom:
A formula for the model degrees of freedom df tend to be given for a model

when there is no model selection or variable selection. For many estimators,
the degrees of freedom is not known if model selection is used. A d for PI
(2.14) is often obtained by plugging in the degrees of freedom formula as if
model selection did not occur. Then the resulting d is rarely an actual degrees
of freedom. As an example, if Ŷ = HλY , then often df = trace(Hλ) if λ is
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selected before examining the data. If model selection is used to pick λ̂, then
d = trace(H λ̂) is not the model degrees of freedom.

Sparse Models:
For multiple linear regression with p > n, results from Hastie et al. (2015,

pp. 20, 296, ch. 6, ch. 11) and Luo and Chen (2013) suggest that lasso,
lasso variable selection, and forward selection with EBIC can perform well
for sparse models. Least angle regression, elastic net, and elastic net variable
selection can also be useful.

Suppose the selected model is Id, and βId
is ad × 1. For multiple linear

regression, forward selection with Cp and AIC often gives useful results if
n ≥ 5p and if the final model I has n ≥ 10ad. For p < n < 5p, forward
selection with Cp and AIC tends to pick the full model (which overfits since
n < 5p) too often, especially if σ̂2 = MSE. The Hurvich and Tsai (1989)
AICC criterion can be useful for MLR if n ≥ max(2p, 10ad). If n ≥ 5p, AIC
and BIC are useful for many regression models, and forward selection with
EBIC can be used for some models if n/p is small. See Chen and Chen (2008).

2.20 Problems

2.1. For ridge regression, suppose V = ρ−1
u . Show that if p/n and λ/n =

λ1,n/n are both small, then

η̂R ≈ η̂OLS − λ

n
V η̂OLS .

2.2. Consider choosing η̂ to minimize the criterion

Q(η) =
1

a
(Z − Wη)T (Z − Wη) +

λ1,n

a

p−1∑

i=1

|ηi|j

where λ1,n ≥ 0, a > 0, and j > 0 are known constants. Consider the regression
methods OLS, forward selection, lasso, PLS, PCR, ridge regression, and lasso
variable selection.
a) Which method corresponds to j = 1?
b) Which method corresponds to j = 2?
c) Which method corresponds to λ1,n = 0?

2.3. a) For ridge regression, let An = (XT X +λ1,nIp)
−1XT X and Bn =

[Ip − λ1,n(XT X + λ1,nIp)−1]. Show An − Bn = 0.

b) For ridge regression, let An = (W T W +λ1,nIp−1)
−1W T W and Bn =

[Ip−1 − λ1,n(W T W + λ1,nIp−1)
−1]. Show An − Bn = 0.
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2.4. Suppose Ŷ = HY where H is an n × n hat matrix. Then the de-
grees of freedom df(Ŷ ) = tr(H) = sum of the diagonal elements of H. An
estimator with low degrees of freedom is inflexible while an estimator with
high degrees of freedom is flexible. If the degrees of freedom is too low, the
estimator tends to underfit while if the degrees of freedom is to high, the
estimator tends to overfit.

a) Find df(Ŷ ) if Ŷ = Y 1 which uses H = (hij) where hij ≡ 1/n for all
i and j. This inflexible estimator uses the sample mean Y of the response
variable as Ŷi for i = 1, ..., n.

b) Find df(Ŷ ) if Ŷ = Y = InY which uses H = In where hii = 1. This
bad flexible estimator interpolates the response variable.

2.5. Suppose Y = Xβ + e, Z = Wη + e, Ẑ = Wη̂, Z = Y − Y , and
Ŷ = Ẑ + Y . Let the n × p matrix W 1 = [1 W ] and the p × 1 vector
η̂1 = (Y η̂T )T where the scalar Y is the sample mean of the response

variable. Show Ŷ = W 1η̂1.

2.6. Let Z = Y − Y where Y = Y 1, and the n× (p− 1) matrix of stan-
dardized nontrivial predictors G = (Gij). For j = 1, ..., p− 1, let Gij denote
the (j + 1)th variable standardized so that

∑n
i=1Gij = 0 and

∑n
i=1G

2
ij = 1.

Note that the sample correlation matrix of the nontrivial predictors ui is
Ru = GT G. Then regression through the origin is used for the model

Z = Gη + e (2.59)

where the vector of fitted values Ŷ = Y +Ẑ . The standardization differs from
that used for earlier regression models since

∑n
i=1G

2
ij = 1 6= n =

∑n
i=1W

2
ij .

Note that

G =
1√
n

W .

Following Zou and Hastie (2005), the naive elastic net η̂N estimator is the
minimizer of

QN(η) = RSS(η) + λ∗2‖η‖2
2 + λ∗1‖η‖1 (2.60)

where λ∗i ≥ 0. The term “naive” is used because the elastic net estimator

is better. Let τ =
λ∗2

λ∗1 + λ∗2
, γ =

λ∗1√
1 + λ∗2

, and ηA =
√

1 + λ∗2 η. Let the

(n+p−1)×(p−1) augmented matrix GA and the (n+p−1)×1 augmented
response vector ZA be defined by

GA =

(
G√

λ∗2 Ip−1

)
, and ZA =

(
Z

0

)
,

where 0 is the (p−1)×1 zero vector. Let η̂A =
√

1 + λ∗2 η̂ be obtained from
the lasso of ZA on GA: that is η̂A minimizes
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QN(ηA) = ‖ZA − GAηA‖2
2 + γ‖ηA‖1 = QN(η).

Prove QN (ηA) = QN(η).
(Then

η̂N =
1√

1 + λ∗2
η̂A and η̂EN =

√
1 + λ∗2 η̂A = (1 + λ∗2)η̂N .

The above elastic net estimator minimizes the criterion

QG(η) =
ηT GT Gη

1 + λ∗2
− 2ZT Gη +

λ∗2
1 + λ∗2

‖η‖2
2 + λ∗1‖η‖1,

and hence is not the elastic net estimator corresponding to Equation (3.22).)

2.7. Let β = (β1,β
T
S )T . Consider choosing β̂ to minimize the criterion

Q(β) = RSS(β) + λ1‖βS‖2
2 + λ2‖βS‖1

where λi ≥ 0 for i = 1, 2.
a) Which values of λ1 and λ2 correspond to ridge regression?
b) Which values of λ1 and λ2 correspond to lasso?
c) Which values of λ1 and λ2 correspond to elastic net?
d) Which values of λ1 and λ2 correspond to the OLS full model?

2.8. For the output below, an asterisk means the variable is in the model.
All models have a constant, so model 1 contains a constant and mmen.

a) List the variables, including a constant, that models 2, 3, and 4 contain.
b) The term out$cp lists the Cp criterion. Which model (1, 2, 3, or 4) is

the minimum Cp model Imin?

c) Suppose β̂Imin
= (241.5445, 1.001)T . What is β̂Imin,0?

Selection Algorithm: forward #output for Problem 3.8

pop mmen mmilmen milwmn

1 ( 1 ) " " "*" " " " "

2 ( 1 ) " " "*" "*" " "

3 ( 1 ) "*" "*" "*" " "

4 ( 1 ) "*" "*" "*" "*"

out$cp

[1] -0.8268967 1.0151462 3.0029429 5.0000000

2.9. Tremearne (1911) presents a data set of about 17 measurements on
112 people of Hausa nationality. We used Y = height. Along with a constant
xi,1 ≡ 1, the five additional predictor variables used were xi,2 = height when
sitting, xi,3 = height when kneeling, xi,4 = head length, xi,5 = nasal breadth,
and xi,6 = span (perhaps from left hand to right hand). The output below is
for the OLS full model.
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Estimate Std.Err 95% shorth CI

Intercept -77.0042 65.2956 [-208.864,55.051]

X2 0.0156 0.0992 [-0.177, 0.217]

X3 1.1553 0.0832 [ 0.983, 1.312]

X4 0.2186 0.3180 [-0.378, 0.805]

X5 0.2660 0.6615 [-1.038, 1.637]

X6 0.1396 0.0385 [0.0575, 0.217]

a) Give the shorth 95% CI for β2 .
b) Compute the standard 95% CI for β2.
c) Which variables, if any, are needed in the MLR model given that the

other variables are in the model?

Now we use forward selection and Imin is the minimum Cp model.

Estimate Std.Err 95% shorth CI

Intercept -42.4846 51.2863 [-192.281, 52.492]

X2 0 [ 0.000, 0.268]

X3 1.1707 0.0598 [ 0.992, 1.289]

X4 0 [ 0.000, 0.840]

X5 0 [ 0.000, 1.916]

X6 0.1467 0.0368 [ 0.0747, 0.215]

(Intercept) a b c d e

1 TRUE FALSE TRUE FALSE FALSE FALSE

2 TRUE FALSE TRUE FALSE FALSE TRUE

3 TRUE FALSE TRUE TRUE FALSE TRUE

4 TRUE FALSE TRUE TRUE TRUE TRUE

5 TRUE TRUE TRUE TRUE TRUE TRUE

> tem2$cp

[1] 14.389492 0.792566 2.189839 4.024738 6.000000

d) What is the value of Cp(Imin) and what is β̂Imin,0?
e) Which variables, if any, are needed in the MLR model given that the

other variables are in the model?
f) List the variables, including a constant, that model 3 contains.

2.10. Table 2.7 below shows simulation results for bootstrapping OLS (reg)
and forward selection (vs) with Cp when β = (1, 1, 0, 0, 0)T . The βi columns
give coverage = the proportion of CIs that contained βi and the average
length of the CI. The test is for H0 : (β3, β4, β5)

T = 0 and H0 is true. The
“coverage” is the proportion of times the prediction region method bootstrap
test failed to reject H0. Since 1000 runs were used, a cov in [0.93,0.97] is
reasonable for a nominal value of 0.95. Output is given for three different
error distributions. If the coverage for both methods ≥ 0.93, the method
with the shorter average CI length was more precise. (If one method had
coverage ≥ 0.93 and the other had coverage < 0.93, we will say the method
with coverage ≥ 0.93 was more precise.)



180 2 Multiple Linear Regression

a) For β3 , β4 , and β5, which method, forward selection or the OLS full
model, was more precise?

Table 2.8 Bootstrapping Forward Selection, n = 100, p = 5, ψ = 0, B = 1000

β1 β2 β3 β4 β5 test
reg cov 0.95 0.93 0.93 0.93 0.94 0.93

len 0.658 0.672 0.673 0.674 0.674 2.861
vs cov 0.95 0.94 0.998 0.998 0.999 0.993

len 0.661 0.679 0.546 0.548 0.544 3.11
reg cov 0.96 0.93 0.94 0.96 0.93 0.94

len 0.229 0.230 0.229 0.231 0.230 2.787
vs cov 0.95 0.94 0.999 0.997 0.999 0.995

len 0.228 0.229 0.185 0.187 0.186 3.056
reg cov 0.94 0.94 0.95 0.94 0.94 0.93

len 0.393 0.398 0.399 0.399 0.398 2.839
vs cov 0.94 0.95 0.997 0.997 0.996 0.990

len 0.392 0.400 0.320 0.322 0.321 3.077

b) The test “length” is the average length of the interval [0, D(UB)] = D(UB)

where the test fails to reject H0 if D0 ≤ D(UB). The OLS full model is
asymptotically normal, and hence for large enough n and B the reg len row

for the test column should be near
√
χ2

3,0.95 = 2.795.

Were the three values in the test column for reg within 0.1 of 2.795?

2.11. Suppose the MLR model Y = Xβ + e, and the regression method
fits Z = Wη + e. Suppose Ẑ = 245.63 and Y = 105.37. What is Ŷ ?

2.12. To get a large sample 90% PI for a future value Yf of the response

variable, find a large sample 90% PI for a future residual and add Ŷf to the
endpoints of the of that PI. Suppose forward selection is used and the large
sample 90% PI for a future residual is [−778.28, 1336.44]. What is the large

sample 90% PI for Yf if β̂Imin
= (241.545, 1.001)T used a constant and the

predictor mmen with corresponding xImin,f = (1, 75000)T?

2.13. Table 2.8 below shows simulation results for bootstrapping OLS
(reg), lasso, and ridge regression (RR) with 10-fold CV when β = (1, 1, 0, 0)T .
The βi columns give coverage = the proportion of CIs that contained βi and
the average length of the CI. The test is for H0 : (β3 , β4)

T = 0 and H0 is
true. The “coverage” is the proportion of times the prediction region method
bootstrap test failed to reject H0. OLS used 1000 runs while 100 runs were
used for lasso and ridge regression. Since 100 runs were used, a cov in [0.89,
1] is reasonable for a nominal value of 0.95. If the coverage for both methods
≥ 0.89, the method with the shorter average CI length was more precise.
(If one method had coverage ≥ 0.89 and the other had coverage < 0.89, we
will say the method with coverage ≥ 0.89 was more precise.) The results
for the lasso test were omitted since sometimes S∗

T was singular. (Lengths



2.20 Problems 181

for the test column are not comparable unless the statistics have the same
asymptotic distribution.)

Table 2.9 Bootstrapping lasso and RR, n = 100, ψ = 0.9, p = 4, B = 250

β1 β2 β3 β4 test
reg cov 0.942 0.951 0.949 0.943 0.943

len 0.658 5.447 5.444 5.438 2.490
RR cov 0.97 0.02 0.11 0.10 0.05

len 0.681 0.329 0.334 0.334 2.546
reg cov 0.947 0.955 0.950 0.951 0.952

len 0.658 5.511 5.497 5.500 2.491
lasso cov 0.93 0.91 0.92 0.99

len 0.698 3.765 3.922 3.803

a) For β3 and β4 which method, ridge regression or the OLS full model,
was better?

b) For β3 and β4 which method, lasso or the OLS full model, was more
precise?

2.14. Suppose n = 15 and 5-fold CV is used. Suppose observations are
measured for the following people. Use the output below to determine which
people are in the first fold.

folds: 4 3 4 2 1 4 3 5 2 2 3 1 5 5 1

1) Athapattu, 2) Azizi, 3) Cralley 4) Gallage, 5) Godbold, 6) Gunawar-
dana, 7) Houmadi, 8) Mahappu, 9) Pathiravasan, 10) Rajapaksha, 11)
Ranaweera, 12) Safari, 13) Senarathna, 14) Thakur, 15) Ziedzor

2.15. Table 2.9 below shows simulation results for a large sample 95% pre-
diction interval. Since 5000 runs were used, a cov in [0.94, 0.96] is reasonable
for a nominal value of 0.95. If the coverage for a method ≥ 0.94, the method
with the shorter average PI length was more precise. Ignore methods with
cov < 0.94. The MLR model had β = (1, 1, ..., 1, 0, ..., 0)T where the first
k+1 coefficients were equal to 1. If ψ = 0 then the nontrivial predictors were
uncorrelated, but highly correlated if ψ = 0.9.

Table 2.10 Simulated Large Sample 95% PI Coverages and Lengths, ei ∼ N(0,1)

n p ψ k FS lasso RL RR PLS PCR
100 40 0 1 cov 0.9654 0.9774 0.9588 0.9274 0.8810 0.9882

len 4.4294 4.8889 4.6226 4.4291 4.0202 7.3393
400 400 0.9 19 cov 0.9348 0.9636 0.9556 0.9632 0.9462 0.9478

len 4.3687 47.361 4.8530 48.021 4.2914 4.4764

a) Which method was most precise, given cov ≥ 0.94, when n = 100?
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b) Which method was most precise, given cov ≥ 0.94, when n = 400?

2.16. When doing a PI or CI simulation for a nominal 100(1− δ)% = 95%
interval, there are m runs. For each run, a data set and interval are generated,
and for the ith run Yi = 1 if µ or Yf is in the interval, and Yi = 0, otherwise.
Hence the Yi are iid Bernoulli(1 − δn) random variables where 1 − δn is
the true probability (true coverage) that the interval will contain µ or Yf .
The observed coverage (= coverage) in the simulation is Y =

∑
i Yi/m. The

variance V (Y ) = σ2/m where σ2 = (1 − δn)δn ≈ (1 − δ)δ ≈ (0.95)0.05 if
δn ≈ δ = 0.05. Hence

SD(Y ) ≈
√

0.95(0.05)

m
.

If the (observed) coverage is within 0.95 ± kSD(Y ) the integer k is near 3,
then there is no reason to doubt that the actual coverage 1− δn differs from
the nominal coverage 1−δ = 0.95 if m ≥ 1000 (and as a crude benchmark, for
m ≥ 100). In the simulation, the length of each interval is computed, and the
average length is computed. For intervals with coverage ≥ 0.95 − kSD(Y ),
intervals with shorter average length are better (have more precision).

a) If m = 5000 what is 3 SD(Y ), using the above approximation? Your
answer should be close to 0.01.

b) If m = 1000 what is 3 SD(Y ), using the above approximation?

R Problem

Use the command source(“G:/slpack.txt”) to download the func-
tions and the command source(“G:/sldata.txt”) to download the data.
See Preface or Section 11.1. Typing the name of the slpack function,
e.g. vsbootsim3, will display the code for the function. Use the args com-
mand, e.g. args(vsbootsim3), to display the needed arguments for the function.
For the following problem, the R command can be copied and pasted from
(http://parker.ad.siu.edu/Olive/slrhw.txt) into R.

2.17. The R program generates data satisfying the MLR model

Y = β1 + β2x2 + β3x3 + β4x4 + e

where β = (β1, β2, β3, β4)
T = (1, 1, 0, 0).

a) Copy and paste the commands for this part into R. The output gives

β̂OLS for the OLS full model. Give β̂OLS . Is β̂OLS close to β = 1, 1, 0, 0)T?
b) The commands for this part bootstrap the OLS full model using the

residual bootstrap. Copy and paste the output into Word. The output shows

T ∗
j = β̂

∗
j for j = 1, ..., 5.

c) B = 1000 T ∗
j were generated. The commands for this part compute the

sample mean T
∗

of the T ∗
j . Copy and paste the output into Word. Is T

∗
close

to β̂OLS found in a)?
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d) The commands for this part bootstrap the forward selection using the
residual bootstrap. Copy and paste the output into Word. The output shows

T ∗
j = β̂

∗
Imin,0,j for j = 1, ..., 5. The last two variables may have a few 0s.

e) B = 1000 T ∗
j were generated. The commands for this part compute the

sample mean T
∗

of the T ∗
j where T ∗

j is as in d). Copy and paste the output

into Word. Is T
∗

close to β = (1, 1, 0, 0)?

2.18. This simulation is similar to that used to form Table 2.2, but 1000
runs are used so coverage in [0.93,0.97] suggests that the actual coverage is
close to the nominal coverage of 0.95.

The model is Y = xT β + e = xT
SβS + e where βS = (β1, β2, ..., βk+1)

T =
(β1, β2)

T and k = 1 is the number of active nontrivial predictors in the popu-
lation model. The output for test tests H0 : (βk+2, ..., βp)

T = (β3 , ..., βp)
T = 0

andH0 is true. The output gives the proportion of times the prediction region
method bootstrap test fails to reject H0. The nominal proportion is 0.95.

After getting your output, make a table similar to Table 2.2 with 4 lines.
If your p = 5 then you need to add a column for β5 . Two lines are for reg
(the OLS full model) and two lines are for vs (forward selection with Imin).
The βi columns give the coverage and lengths of the 95% CIs for βi. If the
coverage ≥ 0.93, then the shorter CI length is more precise. Were the CIs
for forward selection more precise than the CIs for the OLS full model for β3

and β4?
To get the output, copy and paste the source commands from

(http://parker.ad.siu.edu/Olive/slrhw.txt) into R. Copy and past the library
command for this problem into R.

If you are person j then copy and paste the R code for person j for this
problem into R.

2.19. This problem is like Problem 3.19, but ridge regression is used in-
stead of forward selection. This simulation is similar to that used to form
Table 2.2, but 100 runs are used so coverage in [0.89,1.0] suggests that the
actual coverage is close to the nominal coverage of 0.95.

The model is Y = xT β + e = xT
SβS + e where βS = (β1, β2, ..., βk+1)

T =
(β1, β2)

T and k = 1 is the number of active nontrivial predictors in the popu-
lation model. The output for test tests H0 : (βk+2, ..., βp)

T = (β3 , ..., βp)
T = 0

andH0 is true. The output gives the proportion of times the prediction region
method bootstrap test fails to reject H0. The nominal proportion is 0.95.

After getting your output, make a table similar to Table 2.2 with 4 lines.
If your p = 5 then you need to add a column for β5 . Two lines are for reg
(the OLS full model) and two lines are for ridge regression (with 10 fold CV).
The βi columns give the coverage and lengths of the 95% CIs for βi. If the
coverage ≥ 0.89, then the shorter CI length is more precise. Were the CIs for
ridge regression more precise than the CIs for the OLS full model for β3 and
β4?
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To get the output, copy and paste the source commands from
(http://parker.ad.siu.edu/Olive/slrhw.txt) into R. Copy and past the library
command for this problem into R.

If you are person j then copy and paste the R code for person j for this
problem into R.

2.20. This is like Problem 2.19, except lasso is used. If you are person j in
Problem 2.19, then copy and paste the R code for person j for this problem
into R. Make a table with 4 lines: two for OLS and 2 for lasso. Were the CIs
for lasso more precise than the CIs for the OLS full model for β3 and β4?



Chapter 3

MLR with Heterogeneity

A multiple linear regression model with heterogeneity is

Yi = β1 + xi,2β2 + · · ·+ xi,pβp + ei (3.1)

for i = 1, ..., n where the ei are independent with E(ei) = 0 and V (ei) = σ2
i .

In matrix form, this model is

Y = Xβ + e,

where Y is an n × 1 vector of dependent variables, X is an n × p matrix
of predictors, β is a p × 1 vector of unknown coefficients, and e is an n × 1
vector of unknown errors. Also E(e) = 0 and Cov(e) = Σe = diag(σ2

i ) =
diag(σ2

1 , ..., σ
2
n) is an n× n positive definite matrix. In chapters 2 and 3, the

constant variance assumption was used: σ2
i = σ2 for all i. Hence heterogene-

ity means that the constant variance assumption does not hold. A common
assumption is that the ei = σiεi where the εi are independent and identically
distributed (iid) with V (εi) = 1.

Weighted least squares (WLS) would be useful if the σ2
i were known. Since

the σ2
i are not known, ordinary least squares (OLS) is often used, but the

large sample theory differs from that given in Chapter 2.

3.1 OLS Large Sample Theory

The OLS theory for MLR with heterogeneity often assume iid cases. For
the following theorem, see Romano and Wolf (2017), Freedman (1981), and
White (1980).

Theorem 3.1. Assume Yi = xT
i β + ei for i = 1, ..., n where the cases

(Yi,x
T
i )T are iid with “fourth moments,” Y = Xβ + e, the ei = ei(xi)

are independent, E[ei|xi] = 0, V −1 = E[xix
T
i ], E[e2i |xi] = v(xi) = σ2

i ,
Cov[e|X] = diag(v(x1), ..., v(xn)) and Ω = E[v(xi)xix

T
i ] = E[e2i xix

T
i ].
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Then √
n(β̂OLS − β)

D→ Np(0,V ΩV ). (3.2)

Remark 3.1. a) White (1980) showed that the iid cases assumption can
be weakened. Assume the cases are independent,

V n =
1

n

n∑

i=1

E[xix
T
i ]

P→ V −1,

and

Ωn =
1

n

n∑

i=1

E[e2i xix
T
i ]

P→ Ω.

Then √
n(β̂OLS − β)

D→ Np(0,V ΩV ).

b) Under the assumptions of Theorem 3.1,

1

n
XT X =

1

n

n∑

i=1

xix
T
i

P→ V −1.

Let D = diag(σ2
1 , ..., σ

2
n) = Σe and D̂ = diag(r21 , ..., r

2
n) where r2i is the

ith residual from OLS regression of Y on X . Then D̂ is not a consistent
estimator of D. The following theorem, due to White (1980), shows that

D̂ can be used to get a consistent estimator of Ω. This result leads to the
sandwich estimators given in the following section.

Theorem 3.2. Under strong regularity conditions,

1

n
(XT D̂X)

P→ Ω and
1

n
(XTDX)

P→ Ω.

Hence
n(XT X)−1(XT D̂X)(XT X)−1 P→ V ΩV .

3.2 Bootstrap Methods and Sandwich Estimators

Under regularity conditions, the OLS estimator β̂ = β̂OLS = (XT X)−1XT Y

can be shown to be a consistent estimator of β with E(β̂) = β and

Cov(β̂) = (XT X)−1XT ΣeX(XT X)−1. See, for example, White (1980).

Assume nCov(β̂) → V ΩV as n → ∞. Assume XT X/n → V −1 and
XT ΣeX/n → Ω where convergence in probability is used if the xi are
random vectors. See Theorem 3.2. We assume that a constant β1 correspond-
ing to x1 ≡ 1 is in the model so that the OLS residuals sum to 0.
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A sandwich estimator is Ĉov(β̂OLS) = (XT X)−1XT D̂X(XT X)−1. Of-

ten D̂ is not a consistent estimator of D = Σe, but often XT D̂X/n
P→ Ω

under regularity conditions. For the wild bootstrap, we will use D̂W =
n diag(r21 , ..., r

2
n)/(n − p) where the ri are the OLS residuals. Often D̂ =

diag(d2
i r

2
i ), where D̂W uses d2

i = n/(n− p).
The nonparametric bootstrap = pairs bootstrap samples the cases (Yi,xi)

with replacement, and uses

Y ∗ = X∗β̂ + e∗

with e∗ = r∗ where (Yi,xi, ri) are selected with replacement to form Y ∗,X∗,

and r∗. Then β̂
∗

= (X∗T X∗)−1X∗T Y ∗ = β̂ + (X∗T X∗)−1X∗T r∗ = β̂ +

b∗ is obtained from the OLS regression of Y ∗ on X∗. Thus E(β̂
∗
) = β̂ +

E[(X∗T X∗)−1X∗T r∗] = β̂ + b where the expectation is with respect to
the bootstrap distribution and the bias vector b = E(b∗). Freedman (1981)
showed that the nonparametric bootstrap can be useful for model (3.1) with
the ei independent, suggesting that b∗ = op(n

−1/2) or b∗ = Op(n
−1/2). With

respect to the bootstrap distribution, Cov(β̂
∗
) = Cov[(X∗T X∗)−1X∗T r∗] =

E[(X∗T X∗)−1X∗T r∗r∗T X∗(X∗T X∗)−1] − bbT . This result suggests that

Cov(β̂
∗
) is estimating the sandwich estimator

(XT X)−1XT rrT X(XT X)−1,

which replaces diag(r2i ) by rrT . Also, with respect to the bootstrap distri-
bution, the cases (Y ∗

i ,x
∗T
i )T are iid with V (e∗i ) = V (r∗i ) depending on x∗

i .
A version of the wild bootstrap uses

Y ∗ = Xβ̂ + e∗

with e∗i = Wicnri where P (Wi = ±1) = 0.5, E(Wi) = 0, V (Wi) = 1 and cn =√
n/(n− p). Note that Wi = 2Zi−1 where Zi ∼ binomial(m= 1, p = 0.5) ∼

Bernoulli(p = 0.5). See Flachaire (2005). With respect to the bootstrap dis-
tribution, the cnri are constants, and the e∗i are independent with E(e∗i ) =
E(Wi)cnri = 0, and V (e∗i ) = E(e∗2i ) = E(W 2

i )c2nr
2
i = c2nr

2
i . Thus E(e∗) = 0

and Cov(e∗) = D̂W . Then β̂
∗

= (XT X)−1XT Y ∗ with E(β̂
∗
) = β̂ and

Cov(β̂
∗
) = Ĉov(β̂OLS) = (XT X)−1XT D̂W X(XT X)−1, a sandwich esti-

mator. Note that Cov(β̂
∗
) = Cov(β̂)+(XT X)−1XT [D̂W −Σe]X(XT X)−1.

The following method is due to Rajapaksha and Olive (2022). For the OLS
model of chapter 2, V (ei) = V (Yi|xi) = V (Yi|xT

i β) = σ2. Hence Yi = Yi|xi =
Yi|xT

i β = xT
i β + ei with V (ei) = σ2. For model (3.1), Yi = Yi|xi = xT

i β + ei

with V (ei) = σ2
i , while Yi = Yi|xT

i β = xT
i β + εi with V (εi) = τ2

i . The τ2
i

can be estimated as follows. Make the residual plot of Ŷi = xiβ̂ versus ri

on the vertical axis. Divide the ordered xT
i β̂ into ms slices each containing

approximately n/ms cases, and find the variance of the residuals v2
j in the
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jth slice for j = 1, ..., ms. Then τ̂2
i = nv2

j /(n−p) if case i is in the jth slice. If

the xi are bounded, the maximum slice width → 0, if V (Y |xT β) is smooth,
and the number of cases in each slice → ∞ as n → ∞, then τ̂2

i is a consistent
estimator of τ2

i . This method acts as if the variance τ2
j is constant within

each slice j, and replaces D̂W = n diag(r21 , ..., r
2
n)/(n−p) by diag(τ̂2

1 , ..., τ̂
2
n),

a smoothed version of D̂W . Another option would use a scatterplot smoother
in a plot of Ŷi vs. r2i .

The parametric bootstrap does not assume that the ei are normal, but
uses

Y ∗ = Xβ̂ + e∗

where the e∗i ∼ N(0, τ̂2
i ) are independent. Hence β̂

∗
= (XT X)−1XT Y ∗ ∼

Np[β̂, (X
T X)−1XT diag(τ̂2

1 , ..., τ̂
2
n) X(XT X)−1].

3.3 Simulations

Next, we describe a small simulation study that was done using B =
max(200, 50p) and 5000 runs. The simulation is similar to that for the full
OLS model done by Pelawa Watagoda and Olive (2021). The simulation used
p = 4, 6, 7, 8, and 10; n = 25p and 50p; ψ = 0, 1/

√
p, and 0.9; and k = 1 and

p− 2 where k and ψ are defined in the following paragraph.
Let x = (1 uT )T where u is the (p− 1)× 1 vector of nontrivial predictors.

In the simulations, for i = 1, ..., n, we generated wi ∼ Np−1(0, I) where the
m = p − 1 elements of the vector wi are iid N(0,1). Let the m×m matrix
A = (aij) with aii = 1 and aij = ψ where 0 ≤ ψ < 1 for i 6= j. Then the

vector ui = Awi so that Cov(ui) = Σu = AAT = (σij) where the diagonal
entries σii = [1+(m−1)ψ2 ] and the off diagonal entries σij = [2ψ+(m−2)ψ2 ].
Hence the correlations are cor(xi, xj) = ρ = (2ψ + (m − 2)ψ2)/(1 + (m −
1)ψ2) for i 6= j where xi and xj are nontrivial predictors. If ψ = 1/

√
cp,

then ρ → 1/(c + 1) as p → ∞ where c > 0. As ψ gets close to 1, the
predictor vectors cluster about the line in the direction of (1, ..., 1)T . Let
Yi = 1 + 1xi,2 + · · ·+ 1xi,k+1 + ei for i = 1, ..., n. Hence β = (1, .., 1, 0, ..., 0)T

with k + 1 ones and p− k − 1 zeros.
The zero mean iid errors εi were iid from five distributions: i) N(0,1), ii)

t3, iii) EXP(1) - 1, iv) uniform(−1, 1), and v) 0.9 N(0,1) + 0.1 N(0,100).
Only distribution iii) is not symmetric. Then wtype = 1 if ei = εi (the WLS
model is the OLS model), 2 if ei = |xT

i β − 5|εi, 3 if ei =
√

(1 + 0.5x2
i2)εi, 4

if ei = exp[1 + log(|xi2|) + ...+ log(|xip|)]εi, 5 if ei = [1 + log(|xi2|) + ...+
log(|xip|)]εi, 6 if ei = [exp([log(|xi2|) + ...+ log(|xip|)]/(p − 1))]εi, 7 if ei =
[[log(|xi2|) + ...+ log(|xip|)]/(p− 1)]εi, The last four types were special cases
of types suggested by Romano and Wolf (2017). For type 6, the weighting
function is the geometric mean of |xi2|, ..., |xip|.
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When ψ = 0 and wtype = 1, the full model least squares confidence inter-
vals for βi should have length near 2t96,0.975σ/

√
n ≈ 2(1.96)σ/10 = 0.392σ

when n = 100 and the iid zero mean errors have variance σ2. The simula-
tion computed the Frey shorth(c) interval for each βi and used bootstrap
confidence regions to test H0 : βS = 1 (whether first k + 1 βi = 1) and
H0 : βE = 0 (whether the last p − k − 1 βi = 0). The nominal coverage
was 0.95 with δ = 0.05. Observed coverage between 0.94 and 0.96 suggests
coverage is close to the nominal value.

Table 3.1 shows two rows for each model giving the observed confidence
interval coverages and average lengths of the confidence intervals. The terms
“npar”, “wild”, and “par” are for the nonparametric, wild and parametric
bootstrap. The last six columns give results for the tests. The terms pr, hyb,
and br are for the prediction region method, hybrid region, and Bickel and
Ren region. The 0 indicates the test was H0 : βE = 0, while the 1 indicates
that the test was H0 : βS = 1. The length and coverage = P(fail to reject
H0) for the interval [0, D(UB)] or [0, D(UB,T )] where D(UB) or D(UB,T ) is the

cutoff for the confidence region. The cutoff will often be near
√
χ2

g,0.95 if the

statistic T is asymptotically normal. Note that
√
χ2

2,0.95 = 2.448 is close to

2.45 for the full model regression bootstrap tests.

Table 3.1 Bootstrapping WLS, wtype = 1, etype= N(0,1)

ψ β1 β2 βp−1 βp pr0 hyb0 br0 pr1 hyb1 br1
npar,0 0.946 0.950 0.947 0.948 0.940 0.941 0.941 0.937 0.936 0.937

len 0.396 0.399 0.399 0.398 2.451 2.451 2.452 2.450 2.450 2.451
wild,0 0.948 0.950 0.997 0.996 0.991 0.979 0.991 0.938 0.939 0.940

len 0.395 0.398 0.323 0.323 2.699 2.699 3.002 2.450 2.450 2.457
par,0 0.946 0.944 0.946 0.945 0.938 0.938 0.938 0.934 0.936 0.936
len 0.396 0.661 0.661 0.661 2.451 2.451 2.452 2.451 2.451 2.452

npar,0.5 0.947 0.968 0.997 0.998 0.993 0.984 0.993 0.955 0.955 0.963
len 0.395 0.658 0.537 0.539 2.703 2.703 2.994 2.461 2.461 2.577

wild,0.9 0.946 0.941 0.944 0.950 0.940 0.940 0.940 0.935 0.935 0.935
len 0.396 3.257 3.253 3.259 2.451 2.451 2.452 2.451 2.451 2.452

par,0.9 0.947 0.968 0.994 0.996 0.992 0.981 0.992 0.962 0.959 0.970
len 0.395 2.751 2.725 2.735 2.716 2.716 2.971 2.497 2.497 2.599

Simulations in Rajapaksha (2021) suggest that the nonparametric boot-
strap works better than the other methods used in Section 3.3.
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3.4 OPLS in Low and High Dimensions

Under iid cases, OPLS theory does not depend on whether the error variance
is constant or not. Hence the Olive and Zhang (2024) OPLS theory still
applies. See Olive et al. (2024).

3.5 Summary

3.6 Complements

There is a large literature on regression with heterogeneity and sandwich
estimators. See, for example, Buja et al. (2019), Eicker (1963, 1967), Hinkley
(1977), Huber (1967), Long and Ervin (2000), MacKinnon and White (1985),
Pötscher and Preinerstorfer (2022), White (1980), and Wu (1986). For more
on the wild bootstrap, see Mammen (1992, 1993) and Wu (1986). Flachaire
(2005) compares the wild and nonparametric bootstrap. Feasible weighted
least squares estimates σ2

i or v(xi), and is a competitor for OLS. See Romano
and Wolf (2017).

Wagener and Dette (2012) give large sample theory for lasso under het-
eroscedasticity (heterogeneity). Also see Das and Lahiri (2019).

3.7 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

3.1.



Chapter 4

Binary Regression

4.1 Introduction

This section reviews binary regression models, including variable selection
and data splitting. Consider a binary regression model with binary response
variable Y ∈ {0, 1} and predictors x = (x1, ..., xp). Then there are n cases
(Yi,x

T
i )T , and the sufficient predictor SP = α + xT β. For the binary re-

gression models, the conditioning and subscripts, such as i, will often be
suppressed. A binary regression model is Y = Y |SP ∼ binomial(1, ρ(SP))
where ρ(SP ) = P (Y = 1|SP ). There are many binary regression models,
including binary logistic regression, binary probit regression, and support
vector machines (with Zi = 2Yi − 1). See Hosmer and Lemeshow (2000) and
James et al. (2021). The binary logistic regression model has

ρ(SP ) =
eSP

1 + eSP
.

Variable selection estimators include forward selection or backward elim-
ination when n ≥ 10p. When n/p is not large, sparse regression methods
such as forward selection, lasso, and the elastic net can be useful: the binary
logistic regression submodel uses the predictors that had nonzero sparse re-
gression estimated coefficients. See Friedman et al. (2007), Friedman, Hastie,
and Tibshirani (2010), and Zou and Hastie (2005).

The marginal maximum likelihood estimator (MMLE) is due to Fan and
Lv (2008) and Fan and Song (2010). This estimator computes the marginal
regression, such as the binary logistic regression, of Y on xi resulting in the
estimator (α̂i,M , β̂i,M) for i = 1, ..., p. Then β̂MMLE = (β̂1,M , ..., β̂p,M)T .

Another binary regression model is the discriminant function model. See
Hosmer and Lemeshow (2000, pp. 43–44). Assume that πj = P (Y = j)
and that x|Y = j ∼ Np(µj ,Σpool) for j = 0, 1. That is, the conditional
distribution of x given Y = j follows a multivariate normal distribution with
mean vector µj and covariance matrix Σpool which does not depend on j.

191
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Notice that Σpool = Cov(x|Y ) 6= Cov(x). Then as for the binary logistic
regression model,

P (Y = 1|x) = ρ(x) =
exp(α+ βT x)

1 + exp(α+ βT x)
.

Under the conditions above, the discriminant function parameters are given
by

β = βDF = Σ−1
pool(µ1 − µ0) (4.1)

and α = log

(
π1

π0

)
− 0.5(µ1 − µ0)

T Σ−1
pool(µ1 + µ0).

Under the above conditions (multivariate normality with the same covariance
matrix but possibly different means), the population quantity estimated by
the discriminant function model is the same as that estimated by logistic
regression: β = βDF = βLR. In general, the above conditions fail to hold,
and β = βDF 6= βLR.

To compare the OLS estimator with binary regression estimators such
as binary logistic regression, Olive (2017a, pp. 396-397) gave the following
derivation. Let πj = P (Y = j) for j = 0, 1. Let µj = E(x|Y = j) for j = 0, 1.
Let Ni be the number of Ys that are equal to i for i = 0, 1. Then

µ̂i =
1

Ni

∑

j:Yj=i

xj

for i = 0, 1 while π̂i = Ni/n and π̂1 = 1 − π̂0. Hence µ̂i = xi is the sample
mean of the xk corresponding to Yk = j for j = 0, 1. Then

Σ̃xY =
1

n

n∑

i=1

xiYi − x Y .

Thus Σ̃xY =
1

n


 ∑

j:Yj=1

xj(1) +
∑

j:Yj=0

xj(0)


− x π̂1 =

1

n
(N1µ̂1) −

1

n
(N1µ̂1 +N0µ̂0)π̂1 = π̂1µ̂1 − π̂2

1µ̂1 − π̂1π̂0µ̂0 =

π̂1(1 − π̂1)µ̂1 − π̂1π̂0µ̂0 = π̂1π̂0(µ̂1 − µ̂0).

This result means

η = Σx,Y = π1π0(µ1 − µ0), (4.2)

and φ = µ1 − µ0 are quantities of interest for binary regression. Note that
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βDF =
1

π1π0
Σ−1

poolΣx,Y =
1

π1π0
Σ−1

poolΣxΣ−1
x Σx,Y =

1

π1π0
Σ−1

poolΣxβOLS .

Let β = λη = γφ. To compute λ̂ or φ̂, plug in η̂T x or φ̂
T
x into a binary re-

gression program such as logistic regression, probit regression, support vector
machines (with Zi = 2Yi − 1), et cetera. Then β̂ = λ̂η̂ or β̂ = γ̂φ̂ This pro-
cedure is very similar to the one component partial least squares estimator
for multiple linear regression. See Olive and Zhang (2024).

4.2 Testing

See Olive (2023f).

4.3 The Multitude of Models

The following theorem is from Olive and Zhang (2024).
Theorem 4.1. Suppose the cases (Yi,x

T
i )T are iid from some distribution.

If the response Y is binary, then Y |(αO + βT
Ox) ∼ binomial(m = 1, ρ(αO +

βT
Ox)) where E[Y |(αO + βT

Ox)] = ρ(αO + βT
Ox) = P [Y = 1|(αO + βT

Ox)].
Hence every linear combination of the predictors satisfies a binary regression
model.

Proof. E[Y |(αO + βT
Ox)] =

0P [Y = 0|(αO + βT
Ox)] + 1P [Y = 1|(αO + βT

Ox)] = P [Y = 1|(αO + βT
Ox)] =

ρ(αO + βT
Ox). �

4.4 Summary

4.5 Complements

Binary regression is closely related to two sample tests. Note that η̂ = µ̂1−µ̂2

can use other multivariate location estimators than sample means. For exam-
ple, sample coordinatewise medians, sample coordinatewise trimmed means,
and the Olive (2017b) TRMV N estimator have large sample theory given by
Rupasinghe Arachchige Don and Olive (2019) and Rupasinghe Arachchige
Don and Pelawa Watagoda (2018).

Some papers on binary regression include Cai, Guo, and Ma (2021), Candès
and Sur (2020), Mukherjee, Pillai, and Lin (2015), Sur and Candès (2019),
Sur, Chen, and Candès (2019), and Tang and Ye (2020). Empirically, often
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βLR ≈ d βOLS . Haggstrom (1983) suggests that d is not far from 1/MSE for
logistic regression.

4.6 Problems



Chapter 5

Poisson Regression

5.1 Two Set Inference

5.2 Summary

5.3 Complements

5.4 Problems
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Chapter 6

Other Regression Models

6.1 Two Set Inference

6.2 Summary

6.3 Complements

6.4 Problems
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Chapter 7

One and Two Sample Tests

7.1 Two Set Inference

7.2 Summary

7.3 Complements

7.4 Problems
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Chapter 8

Classification

This chapter considers discriminant analysis: given p measurements w, we
want to correctly classify w into one of G groups or populations. The max-
imum likelihood, Bayesian, and Fisher’s discriminant rules are used to show
why methods like linear and quadratic discriminant analysis can work well
for a wide variety of group distributions.

8.1 Introduction

Definition 5.1. In supervised classification, there are G known groups and
m test cases to be classified. Each test case is assigned to exactly one group
based on its measurements wi.

Suppose there are G populations or groups or classes where G ≥ 2. Assume
that for each population there is a probability density function (pdf) fj(z)
where z is a p×1 vector and j = 1, ..., G.Hence if the random vector x comes
from population j, then x has pdf fj(z). Assume that there is a random sam-
ple of nj cases x1,j, ...,xnj,j for each group. Let (xj ,Sj) denote the sample
mean and covariance matrix for each group. Let wi be a new p×1 (observed)
random vector from one of the G groups, but the group is unknown. Usually
there are many wi, and discriminant analysis (DA) or classification attempts
to allocate the wi to the correct groups. The w1, ...,wm are known as the
test data. Let πk = the (prior) probability that a randomly selected case wi

belongs to the kth group. If x1,1...,xnG,G are a random sample of cases from

the collection of G populations, then π̂k = nk/n where n =
∑G

i=1 ni. Often
the training data x1,1, ...,xnG,G is not collected in this manner. Often the nk

are fixed numbers such that nk/n does not estimate πk. For example, sup-
pose G = 2 where n1 = 100 and n2 = 100 where patients in group 1 have a
deadly disease and patients in group 2 are healthy, but an attempt has been
made to match the sick patients with healthy patients on p variables such as

201
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age, weight, height, an indicator for smoker or nonsmoker, and gender. Then
using π̂j = 0.5 does not make sense because π1 is much smaller than π2. Here
the indicator variable is qualitative, so the p variables do not have a pdf.

Let W i be the random vector and wi be the observed random vector. Let
Y = j if wi comes from the jth group for j = 1, ..., G. Then πj = P (Y = j)
and the posterior probability that Y = k or that wi belongs to group k is

pk(wi) = P (Y = k|W i = wi) =
πkfk(wi)∑G
j=1 πjfj(wi)

. (8.1)

Definition 5.2. a) The maximum likelihood discriminant rule allocates

case wi to group a if f̂a(wi) maximizes f̂j(wi) for j = 1, ..., G.
b) The Bayesian discriminant rule allocates case wi to group a if p̂a(wi)

maximizes

p̂k(wi) =
π̂kf̂k(wi)∑G
j=1 π̂j f̂j(wi)

for k = 1, ..., G.
c) The (population) Bayes classifier allocates case wi to group a if pa(wi)

maximizes pk(wi) for k = 1, ..., G.

Note that the above rules are robust to nonnormality of the G groups. Fol-
lowing James et al. (2013, pp. 38-39, 139), the Bayes classifier has the lowest
possible expected test error rate out of all classifiers using the same p predic-
tor variables w. Of course typically the πj and fj are unknown. Note that
the maximum likelihood rule and the Bayesian discriminant rule are equiva-
lent if π̂j ≡ 1/G for j = 1, ..., G. If p is large, or if there is multicollinearity
among the predictors, or if some of the predictor variables are noise variables
(useless for prediction), then there is likely a subset z of d of the p variables
w such that the Bayes classifier using z has lower error rate than the Bayes
classifier using w.

Several of the discriminant rules in this chapter can be modified to in-
corporate πj and costs of correct and incorrect allocation. See Johnson and
Wichern (1988, ch. 11). We will assume that costs of correct allocation are
unknown or equal to 0, and that costs of incorrect allocation are unknown
or equal. Unless stated otherwise, assume that the probabilities πj that wi is
in group j are unknown or equal: πj = 1/G for j = 1, ..., G. Some rules can
handle discrete predictors.
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8.2 LDA and QDA

Often it is assumed that the G groups have the same covariance matrix Σx.
Then the pooled covariance matrix estimator is

Spool =
1

n−G

G∑

j=1

(nj − 1)Sj (8.2)

where n =
∑G

j=1 nj. The pooled estimator Spool can also be useful if some

of the ni are small so that the Sj are not good estimators. Let (µ̂j , Σ̂j) be
the estimator of multivariate location and dispersion for the jth group, e.g.
the sample mean and sample covariance matrix (µ̂j , Σ̂j) = (xj,Sj). Then a
pooled estimator of dispersion is

Σ̂pool =
1

k −G

G∑

j=1

(kj − 1)Σ̂j (8.3)

where often k =
∑G

j=1 kj and often kj is the number of cases used to compute

Σ̂j.

LDA is especially useful if the population dispersion matrices are equal:
Σj ≡ Σ for j = 1, ..., G. Then Σ̂pool is an estimator of cΣ for some constant

c > 0 if each Σ̂j is a consistent estimator of cjΣ where cj > 0 for j = 1, ..., G.
If LDA does not work well with predictors x = (X1, ..., Xp), try adding
squared terms X2

i and possibly two way interaction termsXiXj . If all squared
terms and two way interactions are added, LDA will often perform like QDA.

Definition 5.3. Let Σ̂pool be a pooled estimator of dispersion. Then the
linear discriminant rule is allocate w to the group with the largest value of

dj(w) = µ̂T
j Σ̂

−1

poolw − 1

2
µ̂T

j Σ̂
−1

poolµ̂j = α̂j + β̂
T

j w

where j = 1, ..., G. Linear discriminant analysis (LDA) uses (µ̂j , Σ̂pool) =
(xj ,Spool).

Definition 5.4. The quadratic discriminant rule is allocate w to the group
with the largest value of

Qj(w) =
−1

2
log(|Σ̂j|) −

1

2
(w − µ̂j)

T Σ̂
−1

j (w − µ̂j)

where j = 1, ..., G. Quadratic discriminant analysis (QDA) uses (µ̂j, Σ̂j) =
(xj ,Sj).
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Definition 5.5. The distance discriminant rule allocates w to the group

with the smallest squared distance D2
w(µ̂j, Σ̂j) = (w − µ̂j)

T Σ̂
−1

j (w − µ̂j)
where j = 1, ..., G.

Examining some of the rules for G = 2 and one predictor w is informative.
First, assume group 2 has a uniform(−10,10) distribution and group 1 has
a uniform(a − 1, a + 1) distribution. If a = 0 is known, then the maximum
likelihood discriminant rule assigns w to group 1 if −1 < w < 1 and assigns
w to group 2, otherwise. This occurs since f2(w) = 1/20 for −10 < w < 10
and f2(w) = 0, otherwise, while f1(w) = 1/2 for −1 < w < 1 and f1(w) = 0,
otherwise. For the distance rule, the distances are basically the absolute value
of the z-score. Hence D1(w) ≈ 1.732|w− a| and D2(w) ≈ 0.1732|w|. If w is
from group 1, then w will not be classified very well unless |a| ≥ 10 or if w is
very close to a. In particular, if a = 0 then expect nearly all w to be classified
to group 2 if w is used to classify the groups. On the other hand, if a = 0,
then D1(w) is small for w in group 1 but large for w in group 2. Hence using
z = D1(w) in the distance rule would result in classification with low error
rates.

Similarly if group 2 comes from a Np(0, 10Ip) distribution and group 1
comes from a Np(µ, Ip) distribution, the maximum likelihood rule will tend
to classify w in group 1 if w is close to µ and to classify w in group 2
otherwise. The two misclassification error rates should both be low. For the
distance rule, the distances Di have an approximate χ2

p distribution if w is
from group i. If covering ellipsoids from the two groups have little overlap,
then the distance rule does well. If µ = 0, then expect nearly all of the w to be
classified to group 2 with the distance rule, butD1(w) will be small for w from
group 1 and large for w from group 2, so using the single predictor z = D1(w)
in the distance rule would result in classification with low error rates. More
generally, if group 1 has a covering hyperellipsoid that has little overlap with
the observations from group 2, using the single predictor z = D1(w) in the
distance rule should result in classification with low error rates even if the
observations from group 2 do not fall in an hyperellipsoidal region.

Now suppose the G groups come from the same family of elliptically con-
toured EC(µj,Σj, g) distributions where g is a continuous decreasing func-
tion that does not depend on j for j = 1, ..., G. For example, the jth distri-
bution could have w ∼ Np(µj ,Σj). Using Equation (1.16), log(fj(w)) =

log(kp) −
1

2
log(|Σj)|) + log(g[(w − µj)

T Σ−1
j (w − µj)]) =

log(kp) −
1

2
log(|Σj)|) + log(g[D2

w(µj ,Σj)]).

Hence the maximum likelihood rule leads to the quadratic rule if the k groups
have Np(µj,Σj) distributions where g(z) = exp(−z/2), and the maximum
likelihood rule leads to the distance rule if the groups have dispersion matrices
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that have the same determinant: det(Σj) = |Σj | ≡ |Σ| for j = 1, ..., k.
This result is true since then maximizing fj(w) is equivalent to minimizing
D2

w(µj ,Σj). Plugging in estimators leads to the distance rule. The same
determinant assumption is a much weaker assumption than that of equal
dispersion matrices. For example, let cXΣj be the covariance matrix of x,
and let Γ j be an orthogonal matrix. Then y = Γ jx corresponds to rotating

x, and cXΓ jΣjΓ
T
j is the covariance matrix of y with |Cov(x)| = |Cov(y)|.

Note that if the G groups come from the same family of elliptically
contoured EC(µj,Σj, g) distributions with nonsingular covariance matrices
cXΣj , then D2

w(xj,Sj) is a consistent estimator of D2
w(µj ,Σj)/cX . Hence

the distance rule using (xj ,Sj) is a maximum likelihood rule if the Σj have
the same determinant. The constant cX is given below Equation (1.19).

Now D2
w(µj ,Σj) = wT Σ−1

j w − wT Σ−1
j µj − µT

j Σ−1
j w + µT

j Σ−1
j µj =

wT Σ−1
j w−2µT

j Σ−1
j w+µT

j Σ−1
j µj = wT Σ−1

j w+µT
j Σ−1

j (−2w+µj). Hence

if Σj ≡ Σ for j = 1, ..., G, then we want to minimize µT
j Σ−1(−2w + µj)

or maximize µT
j Σ−1(2w − µj). Plugging in estimators leads to the linear

discriminant rule.
The maximum likelihood rule is robust to nonnormality, but it is difficult

to estimate f̂j(w) if p > 2. The linear discriminant rule and distance rule
are robust to nonnormality, as is the logistic regression discriminant rule if
G = 2. The distance rule tends to work well when the ellipsoidal covering
regions of the G groups have little overlap. The distance rule can be very
poor if the groups overlap and have very different variability.

Rule of thumb 5.1. It is often useful to use predictor transformations
from Section 1.2 to remove nonlinearities from the predictors. The log rule is
especially useful for highly skewed predictors. After making transformations,
assume that there are 1 ≤ k ≤ p continuous predictors X1, ..., Xk where no
terms like X2 = X2

1 or X3 = X1X2 are included. If nj ≥ 10k for j = 1, ..., G,
then make the G DD plots using the k predictors from each group to check
for outliers, which could be cases that were incorrectly classified. Then use
p predictors which could include squared terms, interactions, and categorical
predictors. Try several discriminant rules. For a given rule, the error rates
computed using the training data xi,j with known groups give a lower bound
on the error rates for the test data wi. That is, the error rates computed on
the training data xi,j are optimistic. When the discriminant rule is applied
to the m wi where the groups for the test data wi are unknown, the error
rates will be higher. If equal covariance matrices are assumed, plotDi(xj,Sj)
versus Di(xj ,Σpool) for each of the G groups, where the xi,j are used for i =
1, ..., nj. If all of the nj are large, say nj ≥ 30p, then the plotted points should
cluster tightly about the identity line in each of the G plots if the assumption
of equal covariance matrices is reasonable. The linear discriminant rule has
some robustness against the assumption of equal covariance matrices. See
Remark 5.3.
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8.2.1 Regularized Estimators

A regularized estimator reduces the degrees of freedom d of the estimator.
We want n ≥ 10d, say. Often regularization is done by reducing the number
of parameters in the model. For MLR, lasso and ridge regression were regu-
larized if λ > 0. A covariance matrix of a p × 1 vector x is symmetric with
p+ (p − 1) + · · ·+ 2 + 1 = p(p + 1)/2 parameters. A correlation matrix has
p(p− 1)/2 parameters. We want n ≥ 10p for the sample covariance and cor-
relation matrices S and R. If n < 5p, then these matrices are being overfit:
the degrees of freedom is too large for the sample size n.

Hence QDA needs ni ≥ 10p for i = 1, ..., G. LDA need n ≥ 10p where∑G
i=1 ni = n. Hence the pooled covariance matrix can be regarded as a

regularized estimator of the Σi. Hence LDA can be regarded as a regularized
version of QDA. See Friedman (1989, p. 167). Adding squared terms and
interactions to LDA can make LDA perform more like QDA if the ni ≥ 10p,
but increases the LDA degrees of freedom.

For QDA, Friedman (1989) suggested using Σ̂(λ) = Sk(λ)/nk(λ) where
Sk(λ) = (1 − λ)Sk + λSpool , 0 ≤ λ ≤ 1, and nk(λ) = (1 − λ)nk + λn. Then
λ = 0 gives QDA, while λ = 1 gives LDA if the covariance matrices are
computed using slightly different divisors such as nk instead of nk − 1. This
regularized QDA method needs n large enough so LDA is useful with Spool .
If further regularization is needed and 0 ≤ γ ≤ 1, then use

Sk(λ, γ) = (1 − λ)Sk(λ) +
γ

p
tr[Sk(λ)]Ip.

If n < 5p, the LDA should not be used with Spool , and more regularization
is needed. An extreme amount of regularization would replace Spool by the
identity matrix Ip. Hopefully better estimators are discussed in Chapter 6.

8.3 LR

Definition 5.6. Assume that G = 2 and that there is a group 0 and a group
1. Let ρ(w) = P (w ∈ group 1). Let ρ̂(w) be the logistic regression (LR)
estimate of ρ(w). The logistic regression discriminant rule allocates w to
group 1 if ρ̂(w) ≥ 0.5 and allocates w to group 0 if ρ̂(w) < 0.5. The training
data for logistic regression are cases (xi, Yi) where Yi = j if the ith case is in
group j for j = 0, 1 and i = 1, ..., n. Logistic regression produces an estimated

sufficient predictor ESP = α̂+ β̂
T
x. Then

ρ̂(x) =
eESP

1 + eESP
=

exp(α̂ + β̂
T
x)

1 + exp(α̂+ β̂
T
x)
.
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See Section 4.3 for more on logistic regression. The response plot is an
important tool for visualizing the logistic regression.

An extension of the above binary logistic regression model uses

ρ̂(w) =
eĥ(w)

1 + eĥ(w)
,

and will be discussed below after some notation. Note that ĥ(w) > 0 corre-

sponds to ρ̂(w) > 0.5 while ĥ(w) < 0 corresponds to ρ̂(w) < 0.5. LR uses

ĥ(w) = ESP and the binary logistic GAM defined in Definition 5.7 uses

ĥ(w) = ESP = EAP . These two methods are robust to nonnormality and
are special cases of 1D regression. See Definition 1.2.

Definition 5.7. Let ρ(w) = exp(w)/[1 + exp(w)].
a) For the binary logistic GLM, Y1, ..., Yn are independent with Y |SP ∼

binomial(1, ρ(SP )) where ρ(SP ) = P (Y = 1|SP ). This model has E(Y |SP )
= ρ(SP ) and V (Y |SP ) = ρ(SP )(1 − ρ(SP )).

b) For the binary logistic GAM, Y1, ..., Yn are independent with Y |AP ∼
binomial(1, ρ(AP)) where ρ(AP ) = P (Y = 1|AP ). This model has E(Y |AP )
= ρ(AP ) and V (Y |AP ) = ρ(AP )(1−ρ(AP )). The response plot and discrim-
inant rule are similar to those of Definition 5.6, and the EAP–response plot
adds the estimated mean function ρ(EAP ) and a step function to the plot.
The logistic GAM discriminant rule allocates w to group 1 if ρ̂(w) ≥ 0.5 and
allocates w to group 0 if ρ̂(w) < 0.5 where

ρ̂(w) =
eEAP

1 + eEAP

and EAP = α̂+
∑p

j=1 Ŝj(wj).

Lasso for binomial logistic regression can be used as in Section 4.6.2.
Changing the 10-fold CV criterion to classification error might be useful.
For this data from Section 4.6.2, the default deviance criterion had moderate
overfit and gave a better response plot than the classification error crite-
rion, which has severe underfit. Compare the following R code to the code in
Section 4.6.2.

set.seed(1976) #Binary regression

library(glmnet)

n<-100

m<-1 #binary regression

q <- 100 #100 nontrivial predictors, 95 inactive

k <- 5 #k_S = 5 population active predictors

y <- 1:n

mv <- m + 0 * y
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vars <- 1:q

beta <- 0 * 1:q

beta[1:k] <- beta[1:k] + 1

beta

alpha <- 0

x <- matrix(rnorm(n * q), nrow = n, ncol = q)

SP <- alpha + x[,1:k] %*% beta[1:k]

pv <- exp(SP)/(1 + exp(SP))

y <- rbinom(n,size=m,prob=pv)

y

out<-cv.glmnet(x,y,family="binomial",type.measure="class")

lam <- out$lambda.min

bhat <- as.vector(predict(out,type="coefficients",s=lam))

ahat <- bhat[1] #alphahat

bhat<-bhat[-1]

vin <- vars[bhat!=0]

vin #underfit compared to the default in Section 4.6.2

[1] 2 4

ind <- as.data.frame(cbind(y,x[,vin])) #relaxed lasso GLM

tem <- glm(y˜.,family="binomial",data=ind)

tem$coef

lrplot3(tem=tem,x=x[,vin]) #binary response plot

8.4 KNN

The K-nearest neighbors (KNN) method identifies the K cases in the train-
ing data that are closest to w. Suppose mj of the K cases are from group
j. Then the KNN estimate of pj(w) = P (Y = j|W = w) = P (w is
from the jth group) is p̂j(w) = mj/K. (Actually mj/K ≈ cpj(w) so
mj/mk ≈ pj(w)/pk(w). See the end of this section.) Applying the Bayesian
discriminant rule to the p̂j(w) gives the KNN discriminant rule.

Definition 5.8. The K-nearest neighbors (KNN) discriminant rule allo-
cates w to group a if ma maximizes mj for j = 1, ..., G.

A couple of examples will be useful. When K = 1, find the case in the
training data closest to w. If that training data case is from group j then
allocate w to group j. Suppose nj is the largest nk for k = 1, ..., G. Hence
group j is the group with the most training data cases. Then if K = n, w

is always allocated to group j. The K = n rule is bad. The K = 1 rule is
surprisingly good, but tends to have low bias and high variability. Generally
values of K > 1 will have smaller test error rates.

For KNN and other discriminant analysis rules, it is often useful to stan-
dardize the data so that all variables have a sample mean of 0 and sample



8.4 KNN 209

standard deviation of 1. The scale function in R can be used to standardize
data. The test data is standardized using means and SDs from the training
data. The jth variable from xi uses (xij − xj)/Sj . Hence the jth variable
from a text case w would use (wj − xj)/Sj . Here xj and Sj are the sample
mean and standard deviation of the jth variable using all of the training data
(so group is ignored).

To see why KNN might be reasonable, let Dε be a hypersphere of radius
ε centered at w. Since the pdf fj(x) is continuous, there exists ε > 0 small
enough such that fj(x) ≈ fj(w) for all x ∈ Dε and for each j = 1, ..., G. If z

is a random vector from a distribution with pdf fj(x), then Pj(z ∈ Dε) =

∫

Dε

fj(x)dx ≈ fj(w)

∫

Dε

1dx = fj(w)V ol(Dε) = fj(w)
2πp/2

pΓ (p/2)
εp.

Here Pj denotes the probability when the distribution has pdf fj(x).
If for i = 1, ..., n, the zi are iid from a distribution with pdf fj(x), ε is

fixed, and if fj(w) > 0, then the number of zi in Dε is proportional to n.
Hence if the number of zi in Dε is proportional to nδ with 0 < δ < 1, then
ε→ 0. So if K/n→ 0 in KNN, then the hypersphere containing the K cases
has radius ε → 0 as n → ∞. Hence the above approximations will be valid
for large n. Note that if p = 1, then Dε is the line segment (w− ε, w+ ε) and
V ol(Dε) = 2ε = length of the line segment. If p = 2, then Dε is the circle of
radius ε centered at w and V ol(Dε) = πε2 = the area of the circle. If p = 3,
then Dε is the sphere of radius ε centered at w and V ol(Dε) = 4πε3/3 = the
volume of the sphere.

Now suppose that the training data x1,1, ...,xnG,G is a random sample

from the G populations so that nj/n
P→ πj as n → ∞ for j = 1, ..., G. Then

for ε small and K large, mj/K ≈

P (W ∈ Dε, Y = j) = P (W ∈ Dε|Y = j)P (Y = j) ≈ πjfj(w)V ol(Dε).

Now P (W ∈ Dε) =
∑G

j=1 P (W ∈ Dε, Y = j) =∑G
j=1 P (W ∈ Dε|Y = j)P (Y = j) since the sets {Y = j} form a disjoint

partition. Hence

P (Y = k|W ∈ Dε) =
P (Y = k,W ∈ Dε)

P (W ∈ Dε)
=
P (W ∈ Dε)|Y = k)P (Y = k)

P (W ∈ Dε)

≈ πkfk(w)V ol(Dε)∑G
j=1 πjfj(w)V ol(Dε)

,

which is the quantity used by the Bayes classifier since the constant V ol(Dε)
cancels. This argument can also be used to justify Equation (5.1). Since the
denominator is a constant, allocating w to group a with the largest ma/K,
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or equivalently with the largest ma, approximates the Bayes classifier if n is
very large, K is large, and ε is very small.

This approximation likely needs unrealistically large n, especially if p is
large and w is in a region where there is a lot of group overlap. However,
KNN often works well in practice. Silverman (1986, pp. 96-100) also discusses

using KNN to find an estimator f̂(w) of f(w).
As claimed above Definition 5.8, note, for large K and small ε, that

mj/K ≈ P (W ∈ Dε, Y = j) = P (Y = j|W ∈ Dε)P (W ∈ Dε) ≈

cP (Y = j|W = w) = cpk(w)

where c = P (W ∈ Dε).

8.5 Some Matrix Optimization Results

The following results will be useful for multivariate analysis including Fisher’s
discriminant analysis. Let B > 0 denote that B is a positive definite matrix.
The generalized eigenvalue problem finds eigenvalue eigenvector pairs (λ, g)
such that C−1Ag = λg which are also solutions to the equation Ag =
λCg. Then the pairs are used to maximize or minimize the Rayleigh quotient
aT Aa

aT Ca
. Results from linear algebra show that if C > 0 and A are both

symmetric, then the p eigenvalues of C−1A are real, and the number of
nonzero eigenvalues of C−1A is equal to rank(C−1A) = rank(A). Note that
if a1 = c1g1 is the maximizer and ap = cpgp is the minimizer of the Rayleigh
quotient for any nonzero constants c1 and cp, then there is a vector β that
is the maximizer or minimizer such that ‖β‖ = 1.

Theorem 5.1. Let B > 0 be a p × p symmetric matrix with eigenvalue
eigenvector pairs (λ1, e1), ..., (λp, ep) where λ1 ≥ λ2 · · · ≥ λp > 0 and the
orthonormal eigenvectors satisfy eT

i ei = 1 while eT
i ej = 0 for i 6= j. Let d

be a given p × 1 vector and let a be an arbitrary nonzero p × 1 vector. See
Johnson and Wichern (1988, pp. 64-65, 184).

a) max
a6=0

aT ddT a

aT Ba
= dT B−1d where the max is attained for a = cB−1d

for any constant c 6= 0. Note that the numerator = (aT d)2.

b) max
a6=0

aT Ba

aT a
= max

‖a‖=1
aT Ba = λ1 where the max is attained for a = e1.

c) min
a6=0

aT Ba

aT a
= min

‖a‖=1
aT Ba = λp where the min is attained for a = ep.
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d) max
a⊥e1,...,ek

aT Ba

aT a
= max

‖a‖=1,a⊥e1,...,ek

aT Ba = λk+1 where the max is

attained for a = ek+1 for k = 1, 2, ..., p− 1.
e) Let (x,S) be the observed sample mean and sample covariance matrix

where S > 0.Then max
a6=0

naT (x − µ)(x − µ)T a

aT Sa
= n(x−µ)T S−1(x−µ) = T 2

where the max is attained for a = cS−1(x − µ) for any constant c 6= 0.
f) Let A be a p × p symmetric matrix. Let C > 0 be a p × p symmetric

matrix. Then max
a6=0

aT Aa

aT Ca
= λ1(C

−1A), the largest eigenvalue of C−1A. The

value of a that achieves the max is the eigenvector g1 of C−1A corresponding

to λ1(C
−1A). Similarly min

a 6=0

aT Aa

aT Ca
= λp(C

−1A), the smallest eigenvalue of

C−1A. The value of a that achieves the min is the eigenvector gp of C−1A

corresponding to λp(C
−1A).

Proof Sketch. For a), note that rank(C−1A) = 1, where C = B and
A = ddT , since rank(C−1A) = rank(A) = rank(d) = 1. Hence C−1A has
one nonzero eigenvalue eigenvector pair (λ1, g1). Since

(λ1 = dT B−1d, g1 = B−1d)

is a nonzero eigenvalue eigenvector pair for C−1A, and λ1 > 0, the result
follows by f).

Note that b) and c) are special cases of f) with A = B and C = I .
Note that e) is a special case of a) with d = (x− µ) and B = S.
(Also note that (λ1 = (x−µ)T S−1(x−µ), g1 = S−1(x−µ)) is a nonzero

eigenvalue eigenvector pair for the rank 1 matrix C−1A where C = S and
A = (x − µ)(x− µ)T .)

For f), see Mardia et al. (1979, p. 480). �

Suppose A > 0 and C > 0 are p×p symmetric matrices, and let C−1Aa =

λa. Then Aa = λCa, or A−1Ca =
1

λ
a. Hence if (λi(C

−1A),a) are eigen-

value eigenvector pairs of C−1A, then

(
λi(A

−1C) =
1

λi(C
−1A)

,a

)
are

eigenvalue eigenvector pairs of A−1C. Thus we can maximize
aT Aa

aT Ca
with the

eigenvector a corresponding to the smallest eigenvalue of A−1C, and mini-

mize
aT Aa

aT Ca
with the eigenvector a corresponding to the largest eigenvalue

of A−1C.

Remark 5.1. Suppose A and C are symmetric p × p matrices, A >

0, C is singular, and it is desired to make
aT Aa

aT Ca
large but finite. Hence
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aT Ca

aT Aa
should be made small but nonzero. The above result suggests that

the eigenvector a corresponding to the smallest nonzero eigenvalue of A−1C

may be useful. Similarly, suppose it is desired to make
aT Aa

aT Ca
small but

nonzero. Hence
aT Ca

aT Aa
should be made large but finite. Then the eigenvector

a corresponding to the largest eigenvalue of A−1C may be useful.

8.6 FDA

The FDA method of discriminant analysis, a special case of the generalized
eigenvalue problem, finds eigenvalue eigenvector pairs so that the êT

1 xij have

low variability in each group, but the variability of the êT
1 xij between groups

is large. More precisely, let Ŵ be a p× p dispersion matrix used to measure
variability within groups and let B̂ be a p × p symmetric matrix used to
measure variability between classes. Let the eigenvalue eigenvector pairs of a

matrix Ŵ
−1

B̂ be (λ̂1, ê1), ..., (λ̂p, êp) where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p. Then from

Theorem 5.1 f), max
a 6=0

aT B̂a

aT Ŵa
= λ̂1, the largest eigenvalue of Ŵ

−1
B̂. The

value of a that achieves the max is the eigenvector ê1. Then ê2 will achieve
the max among all unit vectors orthogonal to ê1. Similarly, ê3 will achieve
the max among all unit vectors orthogonal to ê1 and ê2, et cetera.

Many choices of Ŵ have been suggested. Typically assume rank(Ŵ ) = p

and rank(B̂) = min(p, G − 1). Let q ≤ min(p, G − 1) be the number of

nonzero eigenvalues λ̂i of Ŵ
−1

B̂. Let (Ti,Ci) be an estimator of multivariate

location and dispersion for the ith group. Let T =
1

G

G∑

i=1

Ti. Let B̂T =

∑G
i=1(Ti−T )(Ti−T )T . Note that B̂T /(G−1) is the sample covariance matrix

of the T1, ..., TG. Let Ŵ T =
∑G

i=1 Ci. Typically (Ti,Ci) = (xi,Si) is used

where the notation T = x is used. Let B̂B =
∑G

i=1 π̂i(Ti − T )(Ti − T )T , and

Ŵ B =
∑G

i=1 π̂iCi. Let Ŵ L = GΣ̂pool . See Equation (5.3). Let A = (aij) be
a p × p matrix, and let diag(A) = diag(a11, ..., app) be the diagonal matrix

with the aii along the diagonal. Let Ŵ D = diag(Ŵ A) for any previously

defined Ŵ A, e.g. A = T . Then Ŵ D is nonsingular if all wii > 0 even if
Ŵ A = (wij) is singular. Sometimes TB =

∑
i=1 π̂iTi is used instead of T .

The rule may also use B̂ = c1B̂A and Ŵ = c2Ŵ A for positive constants c1
and c2, e.g. c1 = 1/(G− 1) and c2 = 1/(n−G).

The FDA rule finds ê1 and summarizes the group by the linear combination
êT

1 Ti. Then FDA allocates w to the group a for which êT
1 w is closest to

êT
1 Ta. (We can view êT

1 Ti as a summary of the ni linear combinations of
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the predictors êT
1 xij in the ith group where j = 1, ..., ni.) The FDA method

should work well if the within group variability is small and the between
group variability is large.

Definition 5.9. For Fisher’s discriminant analysis (FDA), the FDA dis-
criminant rule allocates w to group a that minimizes |êT

1 w − êT
1 Ti| for

i = 1, ..., G.

Remark 5.2. a) Often it is suggested to use PCA for DA: findD such that
the first D principal components explain at least 95% of the variance. Then
use the D ≤ min(n, p) principal components as the variables. The problem
with this idea is that principal components are used to explain the structure
of the dispersion matrix of the data, not to be linear combinations of the
data that are good for DA. Using the J linear combinations from FDA such
that

J∑

i=1

λ̂i/

p∑

i=1

λ̂i ≥ 0.95

might be a better choice for DA, especially if the number of nonzero eigen-
values q is not too small.

b) Often DA rules from the other FDA eigenvectors simply replace ê1

with êj . It might be better to consider J rules such that (êT
1 w, ..., êT

k w)T is

closest to (êT
1 Ta, ..., ê

T
k Ta)T for k = 1, ..., J where a ∈ {1, ..., G} and J is as

in Remark 5.2 a). Or let V̂ = [ê1 ê2 · · · êq]. Then allocate w to group a

that minimizes D2
j (w) where D2

j (w) = (w− Tj)
T V̂ V̂

T
(w−Tj)

T − 2 log(π̂j)

where Ŵ B and B̂B are used. See Filzmoser et al. (2006).

c) If Ŵ is singular and B̂ is nonsingular, then the eigenvalue eigenvector

pair(s) corresponding to the smallest nonzero eigenvalue(s) of B̂
−1

Ŵ may
be of interest, as argued below Theorem 5.1.

Following Koch (2014, pp. 120-124) closely, consider the population version
of FDA where the ith group has mean and covariance matrix (µi,Σxi) for
i = 1, ..., G where xi is a random vector from the population corresponding
to the ith group. Let µ = 1

G

∑G
i=1 µi, B =

∑G
i=1(µi − µ)(µi − µ)T , and

W =
∑G

i=1 Σxi
. Then the between group variability

b(a) = aT Ba =
G∑

i=1

|aT (µi − µ)|, (8.4)

and the within group variability =

w(a) = aT Wa =

G∑

i=1

aT Σxia =

G∑

i=1

Var(aTxi) (8.5)
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since Var(aT xi) = E[(aT xi−E(aT xi))
2] = E[aT (xi−E(xi))(xi−E(xi))

T a]
= aT Σxia. Then

max
a 6=0

b(a)

w(a)
= max

a 6=0

aT Ba

aT Wa

is achieved by a = e1, the eigenvector corresponding to the largest eigenvalue
λ1(W

−1B) of W−1B. Hence b(e1) is large while w(e1) is small in that the
ratio is a max.

FDA approximates Equations (5.4) and (5.5) by using B̂T and Ŵ T with
(Ti,Ci) = (xi,Si). Note that W /G tends not to be a good estimator of
dispersion unless the G groups have the same covariance matrix Σxi = Σx
for i = 1, ..., G, but w(a) is a good measure of within group variability even if

the Σxi are not equal. Also, if Ŵ A is such that aT Ŵ Aa can be made small,
then FDA will likely work well with B̂T and Ŵ A if there are no outliers.

Remark 5.3. If G = 2, (Ti,Ci) = (xi,Si), B̂ = B̂T , and Ŵ = 2Spool ,
then LDA and FDA are equivalent. See Koch (2014, p. 129). This result helps
explain why LDA works well on so many data sets.

Two special cases are illustrative. First, let Ŵ = Ip and use B̂T . Then

FDA attempts to find a vector ê1 such that the ê
T
1 Ti are far from ê

T
1 T .

Then find group a such that êT
1 w is closer to êT

1 Ta than to êT
1 Ti for i 6= a.

Second, consider G = 2. Then B̂T = (T1 − T2)(T1 − T2)
T /2. Using Theorem

5.1a) with d = (T1 − T2)/
√

2 shows that ê1 =
Ŵ

−1
(T1 − T2)

‖Ŵ−1
(T1 − T2)‖

. If the

Ŵ
−1

xij are “standardized data,” and the Ŵ
−1
Ti are standardized centers

for i = 1, 2, then FDA projects w on the line between the standardized
centers and allocates w to the group with the standardized center closest to
êT

1 w.

library(MASS) ##Use ?lda. Output for Ex. 5.1.

out <- lda(as.matrix(iris[, 1:4]), iris$Species)

names(out); out; plot(out) #plots LD1 versus LD2

Prior probabilities of groups:

setosa versicolor virginica

0.3333333 0.3333333 0.3333333

Group means:

Sep.Len Sep.Wid Pet.Len Pet.Wid

setosa 5.006 3.428 1.462 0.246

versicolor 5.936 2.770 4.260 1.326

virginica 6.588 2.974 5.552 2.026

Coefficients of linear discriminants:

LD1 LD2

Sepal.Length 0.8293776 0.02410215

Sepal.Width 1.5344731 2.16452123
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Petal.Length -2.2012117 -0.93192121

Petal.Width -2.8104603 2.83918785

Proportion of trace:

LD1 LD2

0.9912 0.0088

gp <- as.integer(iris$Species)

x <- as.matrix(iris[,1:4]) #AER 0.02

out<- lda(x,gp); 1-mean(predict(out,x)$class==gp)

plot(out) #Get numbers in Figure 5.1.

Example 5.1. The library MASS has a function lda that does FDA. The
famous iris data set has variables x1 = sepal length, x2 = sepal width, x3 =
petal length, and x4 = petal width. There are three groups corresponding
to types of iris: setosa, versicolor, and virginica. The above R code performs
FDA. Figure 5.1 shows the plot of LD1 = ê1 versus LD2 = ê2. Since the
proportion of trace for LD2 is small, LD2 is not needed. Note that LD1
separates setosa from the other two types of iris, and versicolor and virginica
are nearly separated.

Let β̂ = ê1 = LD1 be the first eigenvector from FDA. The func-
tion FDAboot bootstraps β̂ and gives the nominal 95% shorth CIs. Also

shown below is the sample mean vector of the bootstrapped β̂
∗
i where

i = 1, ..., B = 1000. The bootstrap is performed by taking samples of size
ni with replacement from each group for i = 1, ..., G. Perform FDA on the

combined sample to get β̂
∗
j . Since β̂ is an eigenvector, the bootstrapped eigen-

vector could estimate β̂ or −β̂. Pick a β̂j that is large in magnitude, and see

how many times the β̂∗
j have the same sign as β̂j . Multiply the bootstrap vec-

tor by −1 if it has opposite sign. In the output below, all B = 1000 bootstrap
vectors had β̂∗

4 < 0.

#Sample sizes may not be large enough for the

#shorth CI coverage to be close to the nominal 95%.

out<-FDAboot(x,gp)

apply(out$betas,2,mean)

[1] 0.8468 1.5807 -2.2558 -2.9180

sum(out$betas[,4]<0) #all betahatˆ*
[1] 1000 #estimate betahat, not -betahat

ddplot4(out$betas) #right click Stop

#covers the identity line

out$shorci[[1]]$shorth

[1] 0.3148 1.4634

out$shorci[[2]]$shorth

[1] 0.7745 2.3096

out$shorci[[3]]$shorth

[1] -2.9276 -1.6260



216 8 Classification

out$shorci[[4]]$shorth

[1] -3.8609 -1.8875

Next, R code is given for robust FDA. The function getUbig gets the
RMVN set Ui for each group for i = 1, ..., G and combines the sets into one
large data set. RMVN is useful when n/p is large. Then RFDA is the classical
FDA applied to this cleaned data set. See the output below. Figure 5.2 only
uses the cleaned cases since outliers could obscure the plot, and this technique
can distort the amount of group overlap.
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Fig. 8.1 Plot of LD1 versus LD2 for the iris data.

tem<-getubig(x,gp) ##Robust FDA

outr<-lda(tem$Ubig,tem$grp)

1-mean(predict(outr,x)$class==gp) #AER 0.03

plot(outr)

outr

Prior probabilities of groups:

1 2 3

0.3206107 0.3282443 0.3511450

Group means:

Sepal.Length Sepal.Width Petal.Length Petal.Width

1 5.026190 3.438095 1.464286 0.2309524

2 5.923256 2.813953 4.234884 1.3093023

3 6.486957 2.950000 5.454348 2.0173913
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Fig. 8.2 RFDA Plot of LD1 versus LD2 for the iris data.

Coefficients of linear discriminants:

LD1 LD2

Sepal.Length 0.4281837 -0.06899442

Sepal.Width 2.5221645 2.01270912

Petal.Length -2.3230167 -1.11944258

Petal.Width -3.2947263 3.25076179

Proportion of trace:

LD1 LD2

0.9942 0.0058

The covmb2 subset B can be found when p < n or p ≥ n. See Section
1.3. The function getBbig gets the set Bi for each group for i = 1, ..., G and
combines the sets into one large data set. Then a robust FDA is the classical
FDA applied to this cleaned data set. For the iris data, using covmb2 did
not discard any cases, so the robust FDA and classical FDA had identical
output. See the R code below.

#Robust FDA with covmb2 set B from each group.

#This subset of cases can be found when p > n.

tem<-getBbig(x,gp)

outr<-lda(tem$Bbig,tem$grp) #AER 0.02

plot(outr); 1-mean(predict(outr,x)$class==gp)

outr #Output is same as that for classical FDA.



218 8 Classification

8.7 Estimating the Test Error

Definition 5.10. The test error rate Ln is the population proportion of
misclassification errors made by the DA method on test data.

The Bayes classifier has the smallest expected test error, but the Bayes
classifier generally can’t be computed used since the πk and fk are unknown.
If it was known that π1 = 0.9, a simple DA rule would be to always allocate
w to group 1. Then the test error of this rule would be Ln = 0.1.

Generally the test error Ln needs to be estimated by L̂n. A simple method
for estimating the test error is to apply the DA method to the training data
and find the proportion of classification errors made. To help see why this
method is poor, consider KNN withK = 1. Then the training data is perfectly
classified with a training error rate of 0, although the test error rate may be
quite high.

Definition 5.11. The training error rate or apparent error rate (AER) is

AER = L̂n =
1

n

nj∑

i=1

G∑

j=1

I[Ŷij 6= Yij ]

where Ŷij is the DA estimate of Yij using all n training cases x1,1, ...,xG,nG .
Note that Yij = j since xij comes from the jth group. If mj of the nj group
j cases are correctly classified, then the apparent error rate for group j is

1 − mj/nj. If mA =
G∑

j=1

mj of the n =
G∑

j=1

nj training cases are correctly

classified, then AER = 1 −mA/n.

DA methods fit the training data better than test data, so the AER tends
to underestimate the error rate for test data. We want to use a DA method
with a low test error rate. Cross validation (CV) divides the training data
into a big part and a small part, perhaps J times. For each of the J divisions,
the DA rule is computed for the big part and applied to the small part. Hence
the small part is used as a validation set. The proportion of errors made for
the small part is recorded.

For leave one out or delete one cross validation, J = n, the big part uses
n − 1 cases from the training data while the small part uses the 1 case left
out of the big part. This case will either be correctly or incorrectly classified.
The leave one out CV rule can sometimes be rapidly computed, but usually
requires the DA method to be fit n times.

Definition 5.12. An estimator of the test error rate is the leave one out
cross validation error rate
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L̂n =
1

n

nj∑

i=1

G∑

j=1

I(Ŷij 6= Yij)

where Ŷij is the estimate of Yij when xij is deleted from the n training

cases x1,1, ...,xG,nG. Note that L̂n is the proportion of training cases that
are misclassified by the n leave one out rules. If mC is the number of cases
correctly classified by leave one out classification, then L̂n = 1 −mC/n.

For KNN , find the K cases in the training data closest to xi,j not in-
cluding xi,j. Then compute the leave one out cross validation error rate as
in Definition 5.12.

Assume that the training data x1,1, ...,xnG,G is a random sample from the

G populations so that nj/n
P→ πj as n → ∞ for j = 1, ..., G. Hence nj/n

is a consistent estimator of πj. Following Devroye and Wagner (1982), when
K = 1 the test error rate Ln of KNN method converges in probability to L
where LB ≤ L ≤ 2LB and LB is the test error rate of the Bayes classifier. If
Kn → ∞ and Kn/n→ 0 as n → ∞, then the KNN method converges to the

Bayes classifier in that the KNN test error rate Ln
P→ LB . Then the leave one

out cross validation error rate L̂n is a good estimator of Ln in that 2e−2nε2

was usually an upper bound on P [|L̂n − Ln| ≥ ε] for small ε > 0.

For the method below, J = 1 and the validation set or hold-out set is the
small part of the data. Typically 10% or 20% of the data is randomly selected
to be in the validation set. Note that the DA method is only computed once
to compute the error rate.

Definition 5.13. The validation set approach has J = 1. Let the valida-
tion set contain nv cases (x1, Y1), ..., (xnv , Ynv), say. Then the validation set
error rate is

L̂n =
1

nv

nv∑

i=1

I(Ŷi 6= Yi)

where Ŷi is the estimate of Yi computed from the DA method applied to the
n − nv cases not in the validation set. If mL is the number of the nv cases
from the validation set correctly classified, then L̂n = 1 −mL/nv.

The k-fold CV has J = k partitions of the data into big and small sets, and
the DA method is computed k times. The values k = 5 and 10 are common
because they have been shown empirically to work well.

Definition 5.14. For k-fold cross validation (k-fold CV), randomly divide
the training data into k groups or folds of approximately equal size nj ≈ n/k
for j = 1, ..., k. Leave out the first fold, fit the DA method to the k − 1
remaining folds, and then find the proportion of errors for the first fold.
Repeat for folds 2, ..., k. The k-fold CV error rate is
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L̂n =
1

n

nj∑

i=1

G∑

j=1

I(Ŷij 6= Yij)

where Ŷij is the estimate of Yij when xij is in the deleted fold. If mk is the

number of the n training cases correctly classified, then L̂n = 1 −mk/n.

Definition 5.15. A truth table or confusion matrix for a G category
classifier is a G × G table with G labels on the top for the “truth” (true
classes) and G labels on the left side for the predicted classes. The cells give
classification counts. The diagonal cells are counts for correctly classified
cases, while the off diagonals are counts for incorrectly classified cases. The
error rate = (sum of off diagonal cells)/(sum of all cells) =
1 - (sum of diagonal cells)/(sum of all cells).

For a binary classifier, consider the following truth table where the counts
TN = true negative, FN = false negative, FP = false positive, and TP = true
positive.

truth total
−1 1

predict −1 TN FN N∗

1 FP TP P ∗

total N P

The true positive rate = TP/P = sensitivity = power = recall = 1−
type II error. The false positive rate = FP/N = 1− specifity ≈ type I
error. The positive predicted value = TP/P ∗ ≈ precison = 1− false dis-
covery proportion. The negative predicted value = TN/N . The error rate
= (FP + FN)/(FP + FN + TN + TP ).

For a binary classifier, sometimes one error is much more important than
the other. For example consider a loan with categories “default” and “does
not default.” Misclassifying “default” should be small compared to misclas-
sifying “does not default.”

A ROC curve is used to evaluate a binary classifier. The horizontal axis is
the false positive rate while the vertical axis is the true positive rate. Both
axes go from 0 to 1, so the total area of the square plot is 1. The overall
performance of the binary classifier is summarized by the area under the
curve (AUC). An ideal ROC curve is close to the top left corner of the plot,
so the larger the AUC, the better the classifier. Note that 0 ≤ AUC ≤ 1. A
classifier with AUC = 0.5 does no better than chance. A ROC from test data
or validation data is better than a ROC from training data.
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8.8 Some Examples

Example 5.2. The following output illustrates crude variable selection using
the LDA function. See Problems 5.6 and 5.7. The code deletes predictors as
long as the AER does not increase if the predictor is deleted. Using all of the
data, the AER = 0.0357. Eventually the AER = 0.

library(MASS) #Output for Example 5.2.

group <- pottery[pottery[,1]!=5,1]

group <- (as.integer(group!=1)) + 1

x <- pottery[pottery[,1]!=5,-1]

out<-lda(x,group)

1-mean(predict(out,x)$class==group)

[1] 0.03571429 #AER using all of the predictors.

out<-lda(x[,-c(1)],group)

1-mean(predict(out,x[,-c(1)])$class==group)

out<-lda(x[,-c(1,2)],group)

1-mean(predict(out,x[,-c(1,2)])$class==group)

out<-lda(x[,-c(1,2,3)],group)

1-mean(predict(out,x[,-c(1,2,3)])$class==group)

out<-lda(x[,-c(1,2,3,4)],group)

1-mean(predict(out,x[,-c(1,2,3,4)])$class==group)

out<-lda(x[,-c(1,2,3,4,5)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5)])$class==group)

[1] 0.03571429 #Can delete predictors 1-5.

out<-lda(x[,-c(1,2,3,4,5,6)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,6)])$class==group)

[1] 0.07142857 #Predictor x6 is important.

out<-lda(x[,-c(1,2,3,4,5,7)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7)])$class==group)

out<-lda(x[,-c(1,2,3,4,5,7,8)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8)])

$class==group)

out<-lda(x[,-c(1,2,3,4,5,7,8,9)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9)])

$class==group)

out<-lda(x[,-c(1,2,3,4,5,7,8,9,10)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10)])

$class==group)

out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,11)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,11)])

$class==group)

[1] 0.07142857 #Predictor x11 is important.

out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,12)],group)
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1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,12)])

$class==group)

out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,12,13)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,12,13)])

$class==group)

out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,12,13,14)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,12,13,

14)])$class==group)

[1] 0.07142857 #Predictor x14 is important.

out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,12,13,15)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,12,13,

15)])$class==group)

out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,12,13,15,16)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,12,13,

15,16)])$class==group)

out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,12,13,15,16,17)],

group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,12,13,

15,16,17)])$class==group)

[1] 0.03571429

out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,12,13,15,16,17,

18)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,12,13,

15,16,17,18)])$class==group)

[1] 0.07142857 #Predictor x18 is important.

out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,12,13,15,16,17,

19)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,12,13,

15,16,17,19)])$class==group)

[1] 0.03571429

out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,12,13,15,16,17,

19,20)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,12,13,

15,16,17,19,20)])$class==group)

[1] 0

#Predictors x6, x11, x14, x18 seem good for LDA.

Example 5.3. This example illustrates that the AER tends to under-
estimate the test error rate compared to the validation set approach. The
validation test error estimates can change greatly when the random number
generator seed is changed. See Definitions 5.11 and 5.13. The men’s basket-
ball data set mbb1415 is described in Problem 7.4, which tells how to get the
data set into R. The KNN method AER is especially poor when K is small
(K < 10, say). The KNN method also depends on a random number seed,
perhaps to handle ties. (If there are three groups and K = 3, it is possible
that the 3 nearest neighbors to w come from groups 1, 2, and 3. How does
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KNN decide which group to allocate w?) The R commands below standard-
ize the variables to have mean 0 and variance 1, puts guards into group 1,
small forwards into group 2, centers and power forwards into group 3, and
individuals with unknown position into group 0. Then individuals who do
not play much (are in the bottom quartile in playing time) are deleted. Next,
players in group 0 are deleted, leaving a data set z with 86 cases, 3 groups,
and 35 predictor variables. The data set z is also divided into a validation
test set ztest of 20 cases and a training set ztrain of 66 cases.

set.seed(1)

z <- mbb1415[,-1]

z <- scale(z) #standardize the variables

grp <- mbb1415[,1]

grp[grp==2]<-1

grp[grp==3]<-2

grp[grp==4]<-3

grp[grp==5]<-3

#Put guards in group 1, small forwards in group 2,

#centers and power forwards in group 3,

#unknowns in group 0.

#Get rid of players who did not play much.

z <- z[mbb1415[,3]>182,]

grp <- grp[mbb1415[,3]>182]

#Get rid of group 0, 86 cases left.

z <- z[grp>0,]

grp<-grp[grp>0]

indx<-sample(1:86,replace=F)

train <- indx[21:86]

test <- indx[1:20]

ztest <- z[test,] #20 test cases

grptest <- grp[test]

ztrain <- z[train,]

grptrain <- grp[train]

Since x1 is used as group, zi = xi+1. Below we use z7 = turnovers, z10 =
stl.pos (stolen possessions, a ball handling rating), z12 = rebounds, z13 =
offensive rebounds, z28 = three point field goal percentage, and z32 = free
throw percentage. With 2 nearest neighbors, the AER is 0.151, but (the
validation error rate) VER = 0.45. With 1 nearest neighbor, the AER = 0
since each training case is its own nearest neighbor. Hence the training cases
are perfectly classified.

#see what the variables are

z[1,c(7,10,12,13,28,32)]

library(class)
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out <- knn(z[,c(7,10,12,13,28,32)],

z[,c(7,10,12,13,28,32)],grp,k=2)

mean(grp!=out) #0.151 AER

out<-knn(ztrain[,c(7,10,12,13,28,32)],

ztest[,c(7,10,12,13,28,32)],grptrain,k=2)

mean(grptest!=out) #0.45 validation ER

out <- knn(z[,c(7,10,12,13,28,32)],

z[,c(7,10,12,13,28,32)],grp,k=1)

mean(grp!=out) #0.0 AER

out<-knn(ztrain[,c(7,10,12,13,28,32)],

ztest[,c(7,10,12,13,28,32)],grptrain,k=1)

mean(grptest!=out) #0.45 validation ER

The output below shows that VER = 0.5 and AER = 0.22 with FDA
(LDA), and VER = 0.45 and AER = 0.13 with QDA.

library(MASS) #three ways to get VER = 0.5

out <- lda(z[,c(7,10,12,13,28,32)],grp, subset=train)

1-mean(predict(out,z[-train,c(7,10,12,13,28,32)])

$class==grp[-train])

1-mean(predict(out,z[test,c(7,10,12,13,28,32)])

$class==grptest)

1-mean(predict(out,ztest[,c(7,10,12,13,28,32)])

$class==grptest)

out<-lda(z[,c(7,10,12,13,28,32)],grp)

1-mean(predict(out,z[,c(7,10,12,13,28,32)])

$class==grp) #AER =0.22

out <- qda(z[,c(7,10,12,13,28,32)],grp, subset=train)

#VER = 0.45

1-mean(predict(out,ztest[,c(7,10,12,13,28,32)])

$class==grptest)

out<-qda(z[,c(7,10,12,13,28,32)],grp)

1-mean(predict(out,z[,c(7,10,12,13,28,32)])

$class==grp) #AER =0.13

8.9 Classification Trees, Bagging, and Random Forests

A classification tree is a flexible method for classification that is very similar
to the regression tree of Section 4.10. The method produces a graph called a
tree. Each branch has a label like xi > 7.56 if xi is quantitative, or xj ∈ {a, c}
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(written xj = ac) where xj is a factor taking on values a, b, c, d, e, f, say.
Unless told otherwise, go to the left branch if the condition is true, go to
the right branch if the condition is false. (Some software switches this. Check
the story problem.) The bottom of the tree has leaves that give a label for a
group such as Ŷ = j for some j = 1, ..., G. The root is the top node, a leaf is
a terminal node, and a split is a rule for creating new branches. Each node
has a left and right branch.

|
Mg < 2.695

Na < 13.785

Al < 1.38 Ba < 0.2

Al < 1.42

RI < −0.93

K < 0.29

Mg < 3.75

Mg < 3.455

WinNF Con

Tabl Head

Veh

WinF

WinF WinNF

WinNF WinNF

Fig. 8.3 Classification Tree for Example 5.4.

Example 5.4.
The Venables and Ripley (2010) fgl data set has fragments of glass clas-

sified by five chemicals x1 = Al, x2 = Ba, x3 = K, x4 = Mg, x5 = Na, and
x6 = RI = refractive index. The categories which occur are window float
glass (WinF), window non-float glass (WinNF), vehicle window glass (Veh),
containers (Con), tableware (Tabl), and vehicle headlamps (Head). In the
second node to the left, the split is NA < 13.785, but the 13.785 is hard to
read.

a) Predict the class Y if Mg = 2, Na = 14 and Ba = 0.35.
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Solution: Go left, right, right to predict class Head.
b) Predict the class Y if Mg = 3.1 and Al = 1.6.
Solution: Go right right left to predict class WinNF.
Note that the tree in Figure 5.3 can be simplified: predict WinNF if Mg ≥

2.65 and i) Al ≥ 1.42 or ii) Al < 1.42 and RI ≥ −0.93.

Classification trees have some advantages. Trees can be easier to interpret
than competing methods when some predictors are numerical and some are
categorical. Trees are invariant to monotone (increasing or decreasing) trans-
formations of the predictor variable xi. Trees can handle complex unknown
interactions. Classification and regression trees i) give prediction rules that
can be rapidly and repeatedly evaluated, ii) are useful for screening predic-
tors (interactions, variable selection), iii) can be used to assess the adequacy
of linear models, and iv) can summarize large multivariate data sets.

Trees that use recursive partitioning for classification and regression trees
use the CART algorithm. In growing a tree, the binary partitioning algorithm
recursively splits the data in each node until either the node is homogeneous
(roughly 0 training data misclassifications for a classification tree) or the
node contains too few observations (default ≤ 5). The deviance is a measure
of node homogeneity, and deviance = 0 for a perfectly homogeneous node.
For a classification tree, Ŷ is often the mode of the node labels (Ŷ is the class
that occurs the most).

Trees divide the predictor space (set of possible values of the training
data xi) into J distinct and nonoverlapping regions R1, ..., RJ that are high
dimensional boxes. Then for every observation that falls in Rj, make the

same prediction. Hence ŶRj = modal class modej of training data Yi in Rj.

Choose Rj so RSS =
∑J

j=1

∑
i∈Rj

I(Yi 6= ŶRj ) is small. Let {x|xj < s} be

the region in the predictor space such that xj < s where x = (x1, ..., xp)
T .

Define 2 regions R1(j, s) = {x|xj < s} and R2(j, s) = {x|xj ≥ s}. Then seek
cutpoint s and variable xj to minimize

∑

i:xi∈R1(j,s)

I(Yi 6= ŶR1
) +

∑

i:xi∈R2(j,s)

I(Yi 6= ŶR2
).

This can be done “quickly” if p is small (could use order statistics). Then
repeat the process looking for the best predictor and the best cutpoint in
order to split the data further so as to minimize the RSS within each of the
resulting regions. Only split one of the regions, R1, R2, and R3. Continue this
process until a stopping criterion is reached such as no region contains more
than 5 observations (and stop if the region is homogeneous). If J is too large,
the tree overfits.

The null classifier hat Ŷ = d where d is the modal (dominant) class. So if
k% of the test observations belong to the dominant class, then the test error
=

100− k

100
≤ 1 − 1

G
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where there are G groups since k ≥ 100/G. Classifiers that do not beat the
null classifier are very bad.

Classification trees are often beat by one of the earlier techniques from this
chapter. Bagging, pruning, and random forests makes trees more competitive.
The following subsections follow James et al. (2013) closely.

8.9.1 Pruning

Trees use regions R1, ..., RJ, and if J is too large, the tree overfits. One
strategy is to grow a large tree T0 with J0 regions, then prune it to get a
subtree Tα with Jα regions.

Next, we describe cost complexity pruning = weakest link pruning. Let T ⊆
T0, α ≥ 0, and |T | = number of terminal nodes of tree T . Each terminal node
corresponds to a hyperbox region Ri. Let Rm be the region corresponding to
the mth terminal node and ŶRm be the predicted response for Rm. For each
value of α > 0, there corresponds a subtree T ⊆ T0 such that

|T |∑

m=1

∑

i:xi∈Rm

I(Yi 6= ŶRm) + α|T | (8.6)

is as small as possible. (Replace I(Yi 6= ŶRm) by (yi − ŷRm)2 for a regression
tree.) Note that α = 0 has T = T0 and (5.16) = RSS(T0) = training data
RSS for T0. Much like lasso, there is a sequence of nested subtrees

Tαm ⊆ · · · ⊆ Tα2
⊆ Tα1

⊆ T0. (8.7)

Branches get “pruned” from T0 in a nested and predictable fashion.
The pruning algorithm is a) build tree T0, stopping when each (region

corresponding to a terminal node has ≤ 5 observations. b) Use (5.6) to obtain
(5.7). c) Use k-fold CV to choose α = αd: for each i ∈ 1, ..., k, i) repeat steps
a) and b) on all but the ith fold. ii) Evaluate the mean squared prediction
error

MSEi =
1

ni

ni∑

j=1

I(Yji 6= Ŷj(i))

on the data Yji in the left out fold i as a function of α. Note that MSEi =
proportion misclassified in the ith fold. Average the results for each value of
α am pick αd to minimize the average error

CV (k) =
1

k

k∑

i=1

MSEi.

d) Use tree Tαd from (5.7). Note that if ni = n/k, then
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CV (k) =
1

n

n∑

j=1

I(Yji 6= Ŷj(i)) =

proportion of misclassified observations. (For a regression tree, use

MSEi =
1

ni

ni∑

j=1

(Yji − Ŷj(i))
2.)

8.9.2 Bagging

Bagging was used before: compute T ∗
1 , ..., T

∗
B with the bootstrap, and the

sample mean

T
∗

=
1

B

B∑

i=1

Ti

is the baggin estimator. For a regression tree, draw a sample of size n with
replacement from the training data x1, ...,xn. Fit the tree and find f̂1(x).

Repeat B times to get T ∗
i = f̂i(x). The trees are not pruned, so terminate

when each terminal node has 5 or fewer observations.
Bagging a classification tree draws a sample of size nj from each group

with replacement. For the ith bootstrap estimator (i = 1, ..., B), fit the clas-

sification tree, and let f̂∗i (x) = ji(x) ∈ {1, ..., G} where Y takes on levels
1, ..., G. That is, determine how the classification tree classifies x. Compute
f̂∗1 (x), ..., f̂∗B(x), and let mk = the number of ji(x) = k for k = 1, ..., G. Take

f̂bag(x) = d where md = max{m1, ..., mG}.
For each bootstrap sample b, let xi1 , ...,xikb

be the kb observations not in
the bootstrap sample. These a the “out of bag” (OOB) observations. Predict
Ŷ for each OOB observation. Doing this for all B bootstraps produces about
e−1b ≈ B/3 predictors for each xi. Let Ŷio = mode level for a classification
tree. Then the OOB MSE =

1

n

n∑

i=1

I(Yi 6= Ŷi0)

is “virtually equivalent” to the leave one out CV estimator for large enoughB.
(For a regression tree, let Ŷio = the average of the Ŷi, and replace I(Yi 6= Ŷi0)
by (Yi − Ŷi0)

2 to get the OOB MSE.)
For classification trees, let ρ̂mk = proportion of training observations in

Rm from the kth class. Then Gini’s index =

G∑

k=1

ρ̂mk(1 − ρ̂mk)
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is small if all ρ̂mk are close to 0 or 1.
For bagging with B trees, a measure of variable importance can be com-

puted for each variable using the number of splits for each variable. This
measure can be summarized with a variable importance plot.

For a binary classifier whith Y = 0 or 1, for a fixed test value x, the
bootstrap produces B estimators of P (Y = 1|x). Two common ways to get
Ŷ |x are a) Ŷ |x = mode class of 0 or 1, and b) average the B estimates of
P (Y = 1|x) and set Ŷ |x = 0 if ave. P̂ (Y = 1|x) ≤ 0.5, with Ŷ |x = 1,
otherwise.

8.9.3 Random Forests

For random forests, the bootstrap is used, but each time a split is consid-
ered, a random sample of m = d√pe predictors is chosen as split candidates.
Random forest tend to produce bootstrap trees that are less correlated than
bagged trees (that use m = p), and the random forests estimator tends to
have better test error and OOB error than the bagging estimator. Also, B
around a few hundred seems to work.

If there is a single strong predictor, bagged trees tend to use that predictor
in the first split. For random forests, the strong predictor is not considered
for (p−m)/p splits, on average.

8.10 Support Vector Machines

This section follow James et al. (2013, ch. 9) closely. Logistic regression is used
a lot in biostatistics and epidemiology where the focus is statistical inference.
Support vector machines (SVMs) are used in machine learning where the goal
is classification accuracy.

8.10.1 Two Groups

When p >> n, there is often a hyperplane that perfectly separates two groups
(even if the two groups are iid from the same population: severe overfitting).
The launching point for SVMs was finding the optimal separating hyperplane.
Wide data has p >> n. If n ≤ p + 1, then there is a separating hyperplane
unless there are “exact predictor ties across the class barrier.”

For 2 groups, let SP = β0 + βT x. Classify x in group 1 if ESP > 0 and
in group −1 if ESP < 0. So the classifier Ĉ(x) = sign(ESP ). Note that the
second group now has label −1 instead of 0.
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Suppose two groups of training data can be separated by a hyperplane.
Then there are two parallel separating hyperplanes where the first separating
hyperplane passes through some cases in group 1 and the second hyperplane
passes through some cases in group 2. The distance between the two sepa-
rating hyperplanes is called the margin between classes. The cases that just
touch the two separating hyperplanes are called the support set. Then the
“optimal separating hyperplane” ESP has the largest margin on the training
data, and the optimal separating hyperplane is parallel and equidistant from
the two separating hyperplanes that determine the support set.

As a visual aid, use “0” for cases from group −1 and “+” for cases from
group 1. Draw a plot on a piece of paper where the two groups can be
separated by a line. A separating line that touches one case from each group
has margin 0. Draw two parallel lines such that one line touches at least one
0 and one line touches at least one +. Make the distance between the two
parallel lines as far as possible (biggest margin). Then the parallel line in
the middle of these two parallel lines is the optimal sepparating hyperplane
(line).

Think of the hyperplane β0 +βT xi = β0 +β1xi1+ · · ·+βpxip as separating
R

p into two halves.

Definition 5.16. A separating hyperplane has SP > 0 if x ∈ group 1 and
SP < 0 if x ∈ group −1. So Yi SPi = Yi(β0 + βT xi) > 0 for i = 1, ..., n.

Now let Z = 1 iff Y = 1 and Z = 0 iff Y = −1. Then think of the binary
classifier that uses ESP as a binary regression Z|x ∼ bin(m = 1, ρ(x)) where
ρ(x) = ρ(SP ) = P (Z = 1|x) = P (Y = 1|x) is unknown. Make a response
plot of ESP versus Z with lowess and possibly a step function added as
visual aids. The bootstrap is likely useful if ni ≥ 10p for both groups. a) Use
the bootstrap with with ni cases selected with replacements from each group.
b) Use the bootstrap with Z∗

i = 1 with probability ρ̂(xi) and Z∗
i = 0 with

probability 1 − ρ̂(xi). Fit the SVM using Y ∗
j and X for j = 1, ..., B.

Classification and regression trees (CART) splits Rp with regions Rm ∈
Rp while a SVM splits Rp into two regions using ESP ∈ R so there is
dimension reduction. The SVM split tries to make the 2 “halves” or partitions
as homogeneous as possible.

The hyperplanes parallel to the ESP hyperplane that form the boundaries
of the margin are called fences. The fence pass through at least two training
data cases. These cases form the support set S of support vectors. It turns
out that if a separating hyperplane exists, then the optimal margin classifier
β̂M =

∑
i∈S α̂ixi.

Let M be the margin. The optimal margin classifier (β̂0M , β̂M ) maximizes
M subject to

Yi SPi = Yi(β0 + β1xi1 + · · ·+ βpxip) ≥M (8.8)
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for all i = 1, ..., n. This is called a hard margin classifier since no cases from
either group can pass the fences of the classifier. The maximization is over
β0 ∈ R and β ∈ Rp. The maximization is equivalent to minimizing ‖β‖2

subject to (5.8).
A soft margin classifier allows cases from either group to pass the fences or

to be misclassified. This classifier minimizes ‖β‖2 subject to Yi(β0 +βT xi) ≥
1 − εi for i = 1, ..., n where the slack variables εi ≥ 0 and

∑n
i=1 εi ≤ D.

Hastie et al. (2001, p. 380) showed that this minimization is equivalent to
minimizing

n∑

i=1

[1− Yi(β0 + βT xi)]+ + λ‖β‖2
2 (8.9)

where [w]+ = w if w ≥ 0 and [w]+ = 0 if w < 0. The hinge loss
[1−Yi(β0 +βT xi)]+ = 0 if xi is on the correct side of the margin. Otherwise,
the hinge loss is the cost of xi being on the wrong side of the margin. The
minimization is over β0 ∈ R and β ∈ Rp, and the criterion (5.9) is similar to
the ridge regression criterion.

A support vector machine (SVM) that uses xi minimizes the above cri-

terion. For separable data, (β̂0,SV M , β̂SV M) → (β̂0,M , β̂M ) as λ → 0. A
lasso-SVM minimizes

n∑

i=1

[1 − Yi(β0 + βT xi)]+ + λ‖β‖1, (8.10)

and does variable selection. A “ridged logistic regression” with Yi ∈ {−1, 1}
minimizes

n∑

i=1

log[1 + exp(−Yi(β0 + βT xi))] + λ‖β‖2
2. (8.11)

The criterion (5.9) and (5.11) are similar. It can be shown that the SVM
maximizes M = width of margin subject to

∑p
j=1 β

2
j = 1 such that εi ≥ 0,∑p

i=1 εi ≤ D, and Yi(β0 + βT xi) ≥ M(1 − εi). Compare (5.8). The maxi-
mization is over β0 ∈ R, β ∈ R

p, and ε1, ..., εn.

A slack variable εi = 0 if xi is on the correct side of the margin. If εi > 0,
then xi is on the wrong side of the hyperplane. Yi(β0 + βT xi) ≥ M has
εi = 0 and is necessary for xi to be on the correct side of the margin. If
Yi(β0 + βT xi) ≥ M(1 − εi) with εi > (but not if εi = 0), then xi is on the
wrong side of the hyperplane. See Definition 5.15.

It can be shown that β̂SV M =
∑

i∈S γ̂ixi, and ESP = β̂0,SV M +

xT β̂SV M = β̂0,SV M +
∑

i∈S γ̂ix
T xi. This quantity can ge computed using

the n× n Gram matrix XXT with O(n2p) complexity, or using XT X with
O(np2) complexity. Ridge regression could also be computed this way.

Sometimes one or a few cases shift the maximal margin hyperplane. The
SVM classifier is a soft margin classifier and can do better.
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The SVM that uses xi is like LDA and logistic regression for two groups.
An SVM that uses a kernel function is similar to QDA. Let the kernel function
be k(xi,xj). A linear kernel is k(xi,xj) = xT

i xj. A polynomial kernel of
degree d is k(xi,xj) = (1 + xT

i xj)
d. A radial kernel is k(xi,xj) =

exp

[
−γ

p∑

k=1

(xik − xjk)2

]
= exp[−γ‖xi − xj‖2].

If x is far from xi, then ‖x−xi‖2
2 is large so k(xi,xj) = exp[−γ‖xi − xj‖2]

is tiny, and xi has almost no contribution to SP = SP (x) =
β0 +

∑n
i=1 αik(x,xi). Compare KNN.

A support vector machine (SVM) uses

SP = SP (x) = β0 +

n∑

i=1

αik(x,xi) = β0 +
∑

i∈S

αik(x,xi)

where S is the index of support vectors. The support vectors determine the
hyperplane and the margin: if the support vectors are moved, then the hy-
perplane moves.

Using k(x,xi) leads o nonlinear decision boundaries if the kernel k is
nonlinear. The kernel is a bivariate transformation. There are

(
n
2

)
= n(n −

1)/2 istinct pairs (xi,xj) that are needed to estimate β0 and the αi. The

SVM with ESP = ESP (x) = β̂0 +
∑n

i=1 α̂ik(x,xi) is a competitor for QDA

while the SVM with ESP = ESP (x) = β̂0 + β̂
T
x is a competitor for LDA.

8.10.2 SVM With More Than Two Groups

There are two common ways to extend binary classifies, such as SVMs and
binary logistic regression, to G > 2 classes. First, the one versus one or all
pairs classifier constructs

(
G
2

)
binary classifiers, one for each pair of groups.

Classify x with fij(x) = ESPij(x), and let mi = number of times x is

predicted to be in class i. Then Ŷ (x) = d where md = max(m1, ..., mG).
Second, the one versus all classifier fitsG binary classifiers (such as SVMs):

group i = 1 versus the G−1 other classes coded as −1 with ESPi(x) = fi(x).

Then Ŷ (x) = d where f̂d(x) = max(f̂1(x), ..., f̂G(x)). (These are ESPs.)

8.11 Summary

1) In supervised classification, there are G known groups or populations and
m test cases. Each case is assigned to exactly one group based on its mea-
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surements wi. Assume that for each population there is a probability density
function (pdf) fj(z) where z is a p × 1 vector and j = 1, ..., G. Hence if the
random vector x comes from population j, then x has pdf fj(z). Assume
that there is a random sample of nj cases x1,j, ...,xnj,j for each group. The

n =
∑G

j=1 nj cases make up the training data. Let (xj ,Sj) denote the sample
mean and covariance matrix for each group. Let the ith test case wi be a new
p × 1 random vector from one of the G groups, but the group is unknown.
Discriminant analysis attempts to allocate the wi to the correct groups for
i = 1, ..., m.

2) The maximum likelihood discriminant rule allocates case w to group a

if f̂a(w) maximizes f̂j(w) for j = 1, ..., G. This rule is robust to nonnormality
and the assumption of equal population dispersion matrices, but fj is hard
to estimate for p > 2.

3) Given the f̂j(w) or a plot of the f̂j(w), determine the maximum likeli-
hood discriminant rule.

For the following rules, assume that costs of correct and incorrect alloca-
tion are unknown or equal, and assume that the probabilities πj = ρj(wi)
that wi is in group j are unknown or equal: πj = 1/G for j = 1, ..., G. Often
it is assumed that the G groups have the same covariance matrix Σx. Then
the pooled covariance matrix estimator is

Spool =
1

n−G

G∑

j=1

(nj − 1)Sj

where n =
∑G

j=1 nj . Let (µ̂j , Σ̂j) be the estimator of multivariate location
and dispersion for the jth group, e.g. the sample mean and sample covariance
matrix (µ̂j , Σ̂j) = (xj ,Sj).

4) Assume the population dispersion matrices are equal: Σj ≡ Σ for

j = 1, ..., G. Let Σ̂pool be an estimator of Σ. Then the linear discriminant
rule is allocate w to the group with the largest value of

dj(w) = µ̂T
j Σ̂

−1

poolw − 1

2
µ̂T

j Σ̂
−1

poolµ̂j = α̂j + β̂
T

j w

where j = 1, ..., G. Linear discriminant analysis (LDA) uses (µ̂j , Σ̂pool) =
(xj ,Spool). LDA is robust to nonnormality and somewhat robust to the as-
sumption of equal population covariance matrices.

5) The quadratic discriminant rule is allocate w to the group with the
largest value of

Qj(w) =
−1

2
log(|Σ̂j|) −

1

2
(w − µ̂j)

T Σ̂
−1

j (w − µ̂j)

where j = 1, ..., G. Quadratic discriminant analysis (QDA) uses (µ̂j, Σ̂j) =
(xj ,Sj). QDA has some robustness to nonnormality.
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6) The distance discriminant rule allocates w to the group with the small-

est squared distance D2
w(µ̂j , Σ̂j) = (w−µ̂j)

T Σ̂
−1

j (w−µ̂j) where j = 1, ..., k.
This rule is robust to nonnormality and the assumption of equal Σj, but
needs nj ≥ 10p for j = 1, ..., G.

7) Assume that G = 2 and that there is a group 0 and a group 1. Let
ρ(w) = P (w ∈ group 1). Let ρ̂(w) be the logistic regression (LR) estimate of
ρ(w). Logistic regression produces an estimated sufficient predictor ESP =

α̂+ β̂
T
w. Then

ρ̂(w) =
eESP

1 + eESP
=

exp(α̂ + β̂
T
w)

1 + exp(α̂+ β̂
T
w)

.

The logistic regression discriminant rule allocates w to group 1 if ρ̂(w) ≥ 0.5
and allocates w to group 0 if ρ̂(w) < 0.5. Equivalently, the LR rule allocates
w to group 1 if ESP ≥ 0 and allocates w to group 0 if ESP < 0.

8) Let Yi = j if case i is in group j for j = 0, 1. Then a response plot is
a plot of ESP versus Yi (on the vertical axis) with ρ̂(x) ≡ ρ̂(ESP ) added
as a visual aid where xi is the vector of predictors for case i. Also divide the
ESP into J slices with approximately the same number of cases in each slice.
Then compute the sample mean = sample proportion in slice s: ρ̂s = Y s =∑

s Yi/ms where ms is the number of cases in slice s. Then plot the resulting
step function as a visual aid. If n0 and n1 are the sample sizes of both groups
and ni ≥ 5p, then the logistic regression model was useful if the step function
of observed slice proportions scatter fairly closely about the logistic curve
ρ̂(ESP ). If the LR response plot is good, n0 ≥ 5p and n1 ≥ 5p, then the
LR rule is robust to nonnormality and the assumption of equal population
dispersion matrices. Know how to tell a good LR response plot from a bad
one.

9) Given LR output, as shown below in symbols and for a real data set,
and given x to classify, be able to a) compute ESP, b) classify x in group 0
or group 1, c) compute ρ̂(x).

Label Estimate Std. Error Est/SE p-value

Constant α̂ se(α̂) zo,0 for Ho: α = 0

x1 β̂1 se(β̂1) zo,1 = β̂1/se(β̂1) for Ho: β1 = 0
...

...
...

...
...

xp β̂p se(β̂p) zo,p = β̂p/se(β̂p) for Ho: βp = 0

Binomial Regression Kernel mean function = Logistic

Response = Status,Terms = (Bottom Left),Trials = Ones

Coefficient Estimates

Label Estimate Std. Error Est/SE p-value

Constant -389.806 104.224 -3.740 0.0002

Bottom 2.26423 0.333233 6.795 0.0000
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Left 2.83356 0.795601 3.562 0.0004

10) Suppose there is training data xij for i = 1, ..., nj for group j. Hence it
is known that xij came from group j where there are G ≥ 2 groups. Use the
discriminant analysis method to classify the training data. If mj of the nj

group j cases are correctly classified, then the apparent error rate for group
j is 1 −mj/nj. If mA =

∑G
j=1mj of the n =

∑G
j=1 nj cases were correctly

classified, then the apparent error rate AER = 1 −mA/n.
11) Get apparent error rates for LDA, and QDA with the following com-

mands.

out2 <- lda(x,group)

1-mean(predict(out2,x)$class==group)

out3 <- qda(x,group)

1-mean(predict(out3,x)$class==group)

Get the AERs for the methods that use variables x1, x3, and x7 with the
following commands.

out <- lda(x[,c(1,3,7)],group)

1-mean(predict(out,x[,c(1,3,7)])$class==group)

out <- qda(x[,c(1,3,7)],group)

1-mean(predict(out,x[,c(1,3,7)])$class==group)

Get the AERs for the methods that leave out variables x1, x4, and x5 with
the following commands.

out <- lda(x[,-c(1,4,5)],group)

1-mean(predict(out,x[,-c(1,4,5)])$class==group)

out <- qda(x[,-c(1,4,5)],group)

1-mean(predict(out,x[,-c(1,4,5)])$class==group)

12) Expect the apparent error rate to be too low: the method works better
on the training data than on the new test data to be classified.

13) Cross validation (CV): for i = 1, ..., n where the training data has n
cases, compute the discriminant rule with case i left out and see if the rule
correctly classifies case i. Let mC be the number of cases correctly classified.
Then the CV error rate is 1 −mC/n.

14) Suppose the training data has n cases. Randomly select a subset L of
nv cases to be left out when computing the discriminant rule. Hence n− nv

cases are used to compute the discriminant rule. Let mL be the number of
cases from subset L that are correctly classified. Then the “leave a subset
out” error rate is 1 −mL/nv. Here nv should be large enough to get a good
rate. Often use nv between 0.1n and 0.5n.
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15) Variable selection is the search for a subset of variables that does a
good job of classification.

16) Crude forward selection: suppose X1, ..., Xp are variables.
Step 1) Choose variable W1 = X1 that minimizes the AER.
Step 2) Keep W1 in the model, and add variable W2 that minimizes the

AER. So W1 and W2 are in the model at the end of Step 2).
Step k) Have W1, ...,Wk−1 in the model. Add variable Wk that minimizes

the AER. So W1, ...,Wk are in the model at the end of Step k).
Step p) W1, ...,Wp = X1, ..., Xp, so all p variables are in the model.
17) Crude backward elimination: suppose X1, ..., Xp are variables.
Step 1) W1, ...,Wp = X1, ..., Xp, so all p variables are in the model.
Step 2) Delete variable Wp = Xj such that the model with p− 1 variables

W1, ...,Wp−1 minimizes the AER.
Step 3) Delete variableWp−1 = Xj such that the model with p−2 variables

W1, ...,Wp−2 minimizes the AER.
Step k) W1, ...,Wp−k+2 are in the model. Delete variable Wp−k+2 = Xj

such that the model with p − k + 1 variables W1, ...,Wp−k+1 minimizes the
AER.

Step p) Have W1 and W2 in the model. Delete variable W2 such that the
model with 1 variable W1 minimizes the AER.

18) Other criterion can be used and proc stepdisc in SAS does variable
selection.

19) In R, using LDA, leave one variable out at a time as long as the AER
does not increase much, to find a good subset quickly.

8.12 Complements

This chapter followed Olive (2017c: ch. 8) closely. Discriminant analysis has
a massive literature. James et al. (2013) and Hastie et al. (2009) discuss
many other important methods such as trees, random forests, boosting, and
support vector machines. Koch (2014, pp. 120-124) shows that Fisher’s dis-
criminant analysis is a generalized eigenvalue problem. James et al. (2013)
has useful R code for fitting KNN. Cook and Zhang (2015) show that enve-
lope methods have the potential to significantly improve standard methods
of linear discriminant analysis.

Huberty and Olejnik (2006) and McLachlan (2004) are useful references
for discriminant analysis. Silverman (1986,

∮
6.1) is a good reference for

nonparametric discriminant analysis. Discrimination when p > n is interest-
ing. See Cai and Liu (2011) and Mai et al. (2012). See Friedman (1989) for
regularized discriminant analysis.

A DA method for two groups can be extended to G groups by performing
the DA method G times where Yij = 1 if xij is in the jth group and Yij = 0
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if xij is not in the jth group for j = 1, ..., G. Then compute ρ̂j = P̂ (w is in
the jth) group, and assign w to group a where ρ̂a is a max.

There are variable selection methods for DA, and some implementations
are needed in R, especially forward selection for when p > n. Witten and
Tibshirani (2011) give a LASSO type FDA method useful for p > n. See
the R package penalizedLDA. An outlier resistant version can be made using
getBbig to find Bbig. See Section 1.3 and Example 5.1.

Olive and Hawkins (2005) suggest that fast variable selection methods orig-
inally meant for multiple linear regression are also often effective for logistic
regression when the Cp criterion is used. See Olive (2010: ch. 10, 2013b, 2017a:
ch. 13) for more information about variable selection and response plots for
logistic regression.

Hand (2006) notes that supervised classification is a research area in statis-
tics, machine learning, pattern recognition, computational learning theory,
and data mining. Hand (2006) argues that simple classification methods,
such as linear discriminant analysis, are almost as good as more sophisti-
cated methods such as neural networks and support vector machines.

8.13 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

5.1∗. Assume the cases in each of the G groups are iid from a population
with covariance matrix Σx(j) Find E(Spool) assuming that the k groups
have the same covariance matrix Σx(j) ≡ Σx for j = 1, ..., G.

Logistic Regression Output for Problem 5.2

Response = nodal involvement, Terms = (acid size xray)

Label Estimate Std. Error Est/SE p-value

Constant -3.57564 1.18002 -3.030 0.0024

acid 2.06294 1.26441 1.632 0.1028

size 1.75556 0.738348 2.378 0.0174

xray 2.06178 0.777103 2.653 0.0080

Number of cases: 53, Degrees of freedom: 49,

Deviance: 50.660

5.2. Following Collett (1999, p. 11), treatment for prostate cancer de-
pends on whether the cancer has spread to the surrounding lymph nodes.
Let the response variable = group y = nodal involvement (0 for absence, 1
for presence). Let x1 = acid (serum acid phosphatase level), x2 = size (=
tumor size: 0 for small, 1 for large) and x3 = xray (xray result: 0 for negative,
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1 for positive). Assume the case to be classified has x with x1 = acid = 0.65,
x2 = 0, and x3 = 0. Refer to the above output.

a) Find ESP for x.
b) Is x classified in group 0 or group 1?
c) Find ρ̂(x).

5.3. Recall that X comes from a uniform(a,b) distribution, written x ∼
U(a, b), if the pdf of x is f(x) =

1

b− a
for a < x < b and f(x) = 0, otherwise.

Suppose group 1 has X ∼ U(−3, 3), group 2 has X ∼ U(−5, 5), and group
3 has X ∼ U(−1, 1). Find the maximum likelihood discriminant rule for
classifying a new observation x.

#Problem 5.4

out <- lda(state[,1:4],state[,5])

1-mean(predict(out,state[,1:4])$class==state[,5])

[1] 0.3

5.4. The above LDA output is for the Minor (2012) state data where gdp
= GDP per capita, povrt = poverty rate, unins = 3 year average uninsured
rate 2007-9, and lifexp = life expectancy for the 50 states. The fifth variable
was a 1 if the state was not worker friendly and a 2 if the state was worker
friendly. With these two groups, what was the apparent error rate (AER) for
LDA?

> out <- lda(x,group) #Problem 5.5

> 1-mean(predict(out,x)$class==group)

[1] 0.02

>

> out<-lda(x[,-c(1)],group)

> 1-mean(predict(out,x[,-c(1)])$class==group)

[1] 0.02

> out<-lda(x[,-c(1,2)],group)

> 1-mean(predict(out,x[,-c(1,2)])$class==group)

[1] 0.04

> out<-lda(x[,-c(1,3)],group)

> 1-mean(predict(out,x[,-c(1,3)])$class==group)

[1] 0.03333333

> out<-lda(x[,-c(1,4)],group)

> 1-mean(predict(out,x[,-c(1,4)])$class==group)

[1] 0.04666667

>

> out<-lda(x[,c(2,3,4)],group)

> 1-mean(predict(out,x[,c(2,3,4)])$class==group)

[1] 0.02

5.5. The above output is for LDA on the famous iris data set. The variables
are x1 = sepal length, x2 = sepal width, x3 = petal length, and x4 = petal
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width. These four predictors are in the x data matrix. There are three groups
corresponding to types of iris: setosa, versicolor, and virginica.

a) What is the AER using all 4 predictors?
b) Which variables, if any, can be deleted without increasing the AER in

a)?

5.6.

Logistic Regression Output

Response = survival, Terms = (Age Vel)

Coefficient Estimates

Label Estimate Std. Error Est/SE p-value

Constant -16.9845 5.14715 -3.300 0.0010

Age 0.162501 0.0414345 3.922 0.0001

Vel 0.233906 0.0862480 2.712 0.0067

The survival outcomes of 58 side-impact collisions using crash dummies
was examined. x1 = age is the “age” of the crash dummy while x2 = vel
was the velocity of the automobile at impact. The group = response variable
survival was coded as a 1 if the accident would have been fatal, 0 otherwise.
Assume the case to be classified has x with age = x1 = 60.0 and velocity
= x2 = 50.0.

a) Find ESP for x.
b) Is x classified in group 0 or group 1?
c) Find ρ̂(x).

5.7.

out <- lda(state[,1:4],state[,5])

1-mean(predict(out,state[,1:4])$class==state[,5])

[1] 0.3

The LDA output above is for the Minor (2012) state data where gdp =
GDP per capita, povrt = poverty rate, unins = 3 year average uninsured rate
2007-9, and lifexp = life expectancy for the 50 states. The fifth variable Y
was a 1 if the state was not worker friendly and a 2 if the state was worker
friendly. With these two groups, what was the apparent error rate (AER) for
LDA?

5.8.

> out <- lda(x,group)

> 1-mean(predict(out,x)$class==group)

[1] 0.02

>

> out<-lda(x[,-c(1)],group)

> 1-mean(predict(out,x[,-c(1)])$class==group)

[1] 0.02

> out<-lda(x[,-c(1,2)],group)

> 1-mean(predict(out,x[,-c(1,2)])$class==group)
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[1] 0.04

> out<-lda(x[,-c(1,3)],group)

> 1-mean(predict(out,x[,-c(1,3)])$class==group)

[1] 0.03333333

> out<-lda(x[,-c(1,4)],group)

> 1-mean(predict(out,x[,-c(1,4)])$class==group)

[1] 0.04666667

>

> out<-lda(x[,c(2,3,4)],group)

> 1-mean(predict(out,x[,c(2,3,4)])$class==group)

[1] 0.02

The above output is for LDA on the famous iris data set. the variables
are x1 = sepal length, x2 = sepal width, x3 = petal length and x4 = petal
width. These four predictors are in the x data matrix. There are three groups
corresponding to types of iris: setosa versicolor virginica.

a) What is the AER using all 4 predictors?
b) Which variables, if any, can be deleted without increasing the AER in

a)?

5.9. The James et al. (2013) ISLR Default data set is simulated data for
predicting which customers will default on their credit card debt. Let Y = 1 if
the customer defaulted and Y = −1 otherwise. The predictors were x1 = Y es
if the customer is a student and X1 = No, otherwise, x2 = balance = the
average monthly balance after the monthly payment, and x3 = income of the
customer.

i) For SVM

truth

predict -1 1 AER =

-1 9667 333

1 0 0

ii) For bagging

truth

predict -1 1 AER =

-1 9566 227

1 101 106

iii) For random forests

truth

predict -1 1 AER =

-1 9625 245

1 42 88

a) Compute the error rate AER for each table.
b) Which method was worst for predicting a default?
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5.10. This problem uses the Gladstone (1905) brain weight data and clas-
sifies gender (F for y = −1 or z = 0, M for y = 1 = z) using various predictors
including head measurements, brain weight, and height. Some outliers were
removed and the data set was divided into a training set with n = 200 cases
and a test set with m = 61 cases. Compute the VER for each table.

truth

predict -1 1

-1 16 12 bagging VER =

1 3 30

truth

predict -1 1

-1 15 13 random forest VER =

1 4 29

truth

predict -1 1 (10-fold CV) SVM VER =

-1 12 13

1 7 29

truth

predict -1 1

-1 12 18 LDA VER =

1 7 24

truth

predict -1 1

-1 17 21 QDA VER =

1 2 21

truth

predict -1 1

-1 14 14 (K = 7) KNN VER =

1 5 28

R Problems

Warning: Use the command source(“G:/slpack.txt”) to download
the programs. See Preface or Section 8.1. Typing the name of the
slpack function, e.g. ddplot, will display the code for the function. Use the
args command, e.g. args(ddplot), to display the needed arguments for the
function. For some of the following problems, the R commands can be copied
and pasted from (http://parker.ad.siu.edu/Olive/slrhw.txt) into R.

5.11. The Wisseman et al. (1987) pottery data has 36 pottery shards
of Roman earthware produced between second century B.C. and fourth cen-
tury A.D. Often the pottery was stamped by the manufacturer. A chemical
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analysis was done for 20 chemicals (variables), and 28 cases were classified as
Arrentine (group 1) or nonArrentine (group 2), while 8 cases were of ques-
tionable origin. So the training data has n = 28 and p = 20.

a) Copy and paste the R commands for this part into R to make the data
set.

b) Because of the small sample size, LDA should be used instead of QDA.
Nonetheless, variable selection using QDA will be done. Copy and paste the
R commands for this part into R. The first 9 variables result in no misclas-
sification errors.

c) Now use commands like those shown in Example 5.2 to delete variables
whose deletion does not result in a classification error. You should get four
variables are needed for perfect classification. What are they (e.g. X1, X2,
X3, and X4)?

5.12. Variable selection for LDA used the pottery data described in Prob-
lem 5.11, and suggested that variables X6, X11, X14, and X18 are good. Use
the R commands for this problem to get the apparent error rate AER.

5.13. This problem uses KNN on the same data set as in Problem 5.11.
a) Copy and paste the commands for this part into R to show AER = 0

for KNN if K = 1.
b) Copy and paste the commands for this part into R to get the validation

error rate for KNN if K = 1. Give the rate. The validation set has 12 cases
and KNN is computed from the remaining 16 cases.

c) Use these commands to give the AER if K = 2.
d) Use these commands to give the validation ER if K = 2.
e) Use these commands to give the AER for 2NN using variablesX6, X11, X14,

and X18 that were good for LDA in Problem 5.11.
f) Use these commands to give the validation ER for 2NN using variables

X6, X11, X14, and X18 that were good for LDA.

5.14. For the Gladstone (1905) data, the response variable Y = gender,
gives the group (0-F, 1-M). The predictors are x1 = age, x2 = log(age), x3 =
breadth of head, x4 and x5 are indicators for cause of death coded as a factor,
x6 = cephalic index (a head measurement), x7 = circumference of head, x8 =
height of the head, x9 = height of the person, x10 = length of head, x11 =
size of the head, and x12 = log(size) of head. The sample size is n = 267.

a) The R code for this part does backward elimination for logistic regres-
sion. Backward elimination should only be used if n ≥ Jp with J ≥ 5 and
preferably J ≥ 10.

Include the coefficients for the selected model (given by the summary(back)
command) in Word. (You may need to do some editing to make the table
readable.)

b) The R code for this part gives the response plot for the backward
elimination submodel IB . Does the response plot look ok?

c) Use the R code for this part to give the AER for IB .
d) Use the R code for this part to give a validation ER for IB .
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(Another validation ER would apply backward elimination on the cases not
in the validation set. We just used the variables from the backward elimina-
tion model selected using the full data set. The first method is likely superior,
but the second method is easier to code.)

e) These R commands will use lasso with a classification criterion. We got
rid of the factor (two indicator variables) since cv.glmnet uses a matrix
of predictors. Lasso can handle indicators like gender as a response variable,
but will not keep or delete groups two or more indicators that are needed
for a quantitative variable with 3 or more levels. These commands give the
k-fold CV error rate for the lasso logistic regression. What is it?

f) Use the commands for this part to get the relaxed lasso response plot
where relaxed lasso uses the lasso from part e). Include the plot in Word.

g) Use the commands from this plot to make the EE plot of the ESP from
relaxed lasso (ESPRL) versus the ESP from lasso (ESPlasso).

5.15. This problem creates a classification tree. The vignette Therneau
and Atkinson (2017) and book MathSoft (1999b) were useful. The dataset has
n = 81 children who have had corrective spinal surgery. The variables are Y =
Kyphosis: postoperative deformity is present/absent, and predictors x1 =
Age of child in months, xn = Number vertebrae involved in the operation,
and Start = beginning of the range of vertebrae involved.

a) Use the R code for this part to print the classification tree. Then predict
whether Y = absent or Y = present if Start = 13 and Age = 25.

b) Then predict whether Y = absent or Y = present if Start = 10 and
Age = 120. Note that you go to the left of the tree branch if the label
condition is true, and to the right of the tree branch if the label condition is
not true.

5.16. This is the pottery data of Problem 5.11, but the 28 cases were
classified as Arrentine for y = −1 and nonArrentine for y = 1.

a) Copy and paste the commands for this part into R. These commands
make the data and do bagging. Copy and paste the truth table into Word.
What is the AER?

b) Copy and paste the commands for this part into R. These commands
do random forests. Copy and paste the truth table into Word. What is the
AER?

c) Copy and paste the commands for this part into R. These commands
do SVM with a fixed cost. Copy and paste the truth table into Word. What
is the AER?

d) Copy and paste the commands for this part into R. These commands
do SVM with a cost chosen by 10-fold CV. Copy and paste the truth table
into Word. What is the AER?

5.17. This problem uses the Gladstone (1905) brain weight data and clas-
sifies gender (F for y = −1, M for y = 1) using various predictors including
head measurements, brain weight, and height. Some outliers were removed
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and the data set was divided into a training set with n = 200 cases and a
test set with m = 61 cases.

a) Copy and paste the commands for this part into R. These commands
make the data and do bagging. Copy and paste the truth table into Word.
What is the AER?

b) Copy and paste the commands for this part into R. These use bagging
on the training data and validation set. Copy and paste the truth table into
Word. What is the bagging validation error rate?

c) Copy and paste the commands for this part into R. These commands
do random forests. Copy and paste the truth table into Word. What is the
AER?

d) Copy and paste the commands for this part into R. These use random
forests on the training data and validation set. Copy and paste the truth
table into Word. What is the random forests validation error rate?

e) Copy and paste the commands for this part into R. These commands
do SVM with a cost chosen by 10-fold CV. Copy and paste the truth table
into Word. What is the AER?

f) Copy and paste the commands for this part into R. These commands do
SVM with a cost chosen by 10-fold CV on the training data and validation
set. Copy and paste the truth table into Word. What is the SVM validation
error rate?



Chapter 9

Multivariate Linear Regression

This chapter will show that multivariate linear regression with m ≥ 2 re-
sponse variables is nearly as easy to use, at least if m is small, as multiple
linear regression which has 1 response variable. For multivariate linear re-
gression, at least one predictor variable is quantitative. Plots for checking
the model, including outlier detection, are given. Prediction regions that are
robust to nonnormality are developed. For hypothesis testing, it is shown
that the Wilks’ lambda statistic, Hotelling Lawley trace statistic, and Pillai’s
trace statistic are robust to nonnormality.

9.1 Introduction

Definition 10.1. The response variables are the variables that you want
to predict. The predictor variables are the variables used to predict the
response variables.

Definition 10.2. The multivariate linear regression model

yi = BT xi + εi

for i = 1, ..., n has m ≥ 2 response variables Y1, ..., Ym and p predictor
variables x1, x2, ..., xp where x1 ≡ 1 is the trivial predictor. The ith case
is (xT

i , y
T
i ) = (1, xi2, ..., xip, Yi1, ..., Yim) where the 1 could be omitted. The

model is written in matrix form as Z = XB + E where the matrices are
defined below. The model has E(εk) = 0 and Cov(εk) = Σε = (σij) for
k = 1, ..., n. Then the p × m coefficient matrix B =

[
β1 β2 . . . βm

]
and

the m × m covariance matrix Σε are to be estimated, and E(Z) = XB

while E(Yij) = xT
i βj . The εi are assumed to be iid. Multiple linear regres-

sion corresponds to m = 1 response variable, and is written in matrix form
as Y = Xβ + e. Subscripts are needed for the m multiple linear regression

245
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models Y j = Xβj +ej for j = 1, ..., mwhere E(ej) = 0. For the multivariate
linear regression model, Cov(ei, ej) = σij In for i, j = 1, ..., m where In is
the n× n identity matrix.

Notation. The multiple linear regression model uses m = 1. See Def-
inition 1.9. The multivariate linear model yi = BT xi + εi for i = 1, ..., n
has m ≥ 2, and multivariate linear regression and MANOVA models are
special cases. See Definition 9.2. This chapter will use x1 ≡ 1 for the multi-
variate linear regression model. The multivariate location and dispersion
model is the special case where X = 1 and p = 1.

The data matrix W = [X Z] except usually the first column 1 of X is
omitted for software. The n×m matrix

Z =




Y1,1 Y1,2 . . . Y1,m

Y2,1 Y2,2 . . . Y2,m

...
...

. . .
...

Yn,1 Yn,2 . . . Yn,m


 =

[
Y 1 Y 2 . . . Y m

]
=




yT
1
...

yT
n


 .

The n× p design matrix of predictor variables is

X =




x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p

...
...

. . .
...

xn,1 xn,2 . . . xn,p


 =

[
v1 v2 . . . vp

]
=




xT
1
...

xT
n




where v1 = 1.
The p×m matrix

B =




β1,1 β1,2 . . . β1,m

β2,1 β2,2 . . . β2,m

...
...

. . .
...

βp,1 βp,2 . . . βp,m


 =

[
β1 β2 . . . βm

]
.

The n×m matrix

E =




ε1,1 ε1,2 . . . ε1,m

ε2,1 ε2,2 . . . ε2,m

...
...

. . .
...

εn,1 εn,2 . . . εn,m


 =

[
e1 e2 . . . em

]
=




εT
1
...

εT
n


 .

Considering the ith row of Z,X, and E shows that yT
i = xT

i B + εT
i .

Each response variable in a multivariate linear regression model follows a
multiple linear regression model Y j = Xβj + ej for j = 1, ..., m where it
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is assumed that E(ej) = 0 and Cov(ej) = σjjIn. Hence the errors corre-
sponding to the jth response are uncorrelated with variance σ2

j = σjj. Notice
that the same design matrix X of predictors is used for each of the m
models, but the jth response variable vector Y j, coefficient vector βj , and
error vector ej change and thus depend on j.

Now consider the ith case (xT
i , y

T
i ) which corresponds to the ith row of Z

and the ith row of X . Then



Yi1 = β11xi1 + · · ·+ βp1xip + εi1 = xT
i β1 + εi1

Yi2 = β12xi1 + · · ·+ βp2xip + εi2 = xT
i β2 + εi2

...
Yim = β1mxi1 + · · ·+ βpmxip + εim = xT

i βm + εim




or yi = µxi
+ εi = E(yi) + εi where

E(yi) = µxi
= BT xi =




xT
i β1

xT
i β2
...

xT
i βm


 .

The notation yi|xi and E(yi|xi) is more accurate, but usually the condi-
tioning is suppressed. Taking µxi

to be a constant (or condition on xi if the
predictor variables are random variables), yi and εi have the same covariance
matrix. In the multivariate regression model, this covariance matrix Σε does
not depend on i. Observations from different cases are uncorrelated (often
independent), but the m errors for the m different response variables for the
same case are correlated. If X is a random matrix, then assume X and E

are independent and that expectations are conditional on X .

Example 10.1. Suppose it is desired to predict the response variables
Y1 = height and Y2 = height at shoulder of a person from partial skeletal
remains. A model for prediction can be built from nearly complete skeletons
or from living humans, depending on the population of interest (e.g. ancient
Egyptians or modern US citizens). The predictor variables might be x1 ≡ 1,
x2 = femur length, and x3 = ulna length. The two heights of individuals with
x2 = 200mm and x3 = 140mm should be shorter on average than the two
heights of individuals with x2 = 500mm and x3 = 350mm. In this example
Y1, Y2, x2, and x3 are quantitative variables. If x4 = gender is a predictor
variable, then gender (coded as male = 1 and female = 0) is qualitative.

Definition 10.3. Least squares is the classical method for fitting multi-
variate linear regression. The least squares estimators are

B̂ = (XT X)−1XT Z =
[
β̂1 β̂2 . . . β̂m

]
.

The predicted values or fitted values
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Ẑ = XB̂ =
[
Ŷ 1 Ŷ 2 . . . Ŷ m

]
=




Ŷ1,1 Ŷ1,2 . . . Ŷ1,m

Ŷ2,1 Ŷ2,2 . . . Ŷ2,m

...
...

. . .
...

Ŷn,1 Ŷn,2 . . . Ŷn,m


 .

The residuals Ê = Z − Ẑ = Z − XB̂ =




ε̂T
1

ε̂T
2
...

ε̂T
n


 =

[
r1 r2 . . . rm

]
=




ε̂1,1 ε̂1,2 . . . ε̂1,m

ε̂2,1 ε̂2,2 . . . ε̂2,m

...
...

. . .
...

ε̂n,1 ε̂n,2 . . . ε̂n,m


 .

These quantities can be found from the m multiple linear regressions of Y j

on the predictors: β̂j = (XT X)−1XT Y j, Ŷ j = Xβ̂j, and rj = Y j − Ŷ j

for j = 1, ..., m. Hence ε̂i,j = Yi,j − Ŷi,j where Ŷ j = (Ŷ1,j, ..., Ŷn,j)
T . Finally,

Σ̂ε,d =

(Z − Ẑ)T (Z − Ẑ)

n− d
=

(Z − XB̂)T (Z − XB̂)

n− d
=

Ê
T
Ê

n − d
=

1

n− d

n∑

i=1

ε̂iε̂
T
i .

The choices d = 0 and d = p are common. If d = 1, then Σ̂ε,d=1 = Sr, the
sample covariance matrix of the residual vectors ε̂i, since the sample mean
of the ε̂i is 0. Let Σ̂ε = Σ̂ε,p be the unbiased estimator of Σε. Also,

Σ̂ε,d = (n− d)−1ZT [I − X(XT X)−1X ]Z,

and
Ê = [I − X(XT X)−1X ]Z.

The following two theorems show that the least squares estimators are
fairly good. Also see Theorem 10.7 in Section 10.4. Theorem 10.2 can also be

used for Σ̂ε,d =
n− 1

n − d
Sr.

Theorem 10.1, Johnson and Wichern (1988, p. 304): Suppose X

has full rank p < n and the covariance structure of Definition 10.2 holds. Then
E(B̂) = B so E(β̂j) = βj , Cov(β̂j, β̂k) = σjk(X

T X)−1 for j, k = 1, ..., p.

Also Ê and B̂ are uncorrelated, E(Ê) = 0, and

E(Σ̂ε) = E

(
Ê

T
Ê

n− p

)
= Σε.
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Theorem 10.2. Sr = Σε + OP (n−1/2) and 1
n

∑n
i=1 εiε

T
i = Σε +

OP (n−1/2) if the following three conditions hold: B − B̂ = OP (n−1/2),
1
n

∑n
i=1 εix

T
i = OP (1), and 1

n

∑n
i=1 xix

T
i = OP (n1/2).

Proof. Note that yi = BT xi+εi = B̂
T
xi+ε̂i. Hence ε̂i = (B−B̂)T xi+εi.

Thus

n∑

i=1

ε̂iε̂
T
i =

n∑

i=1

(εi−εi+ε̂i)(εi−εi+ε̂i)
T =

n∑

i=1

[εiε
T
i +εi(ε̂i−εi)

T +(ε̂i−εi)ε̂
T
i ]

=

n∑

i=1

εiε
T
i + (

n∑

i=1

εix
T
i )(B − B̂) + (B − B̂)T (

n∑

i=1

xiε
T
i )+

(B − B̂)T (
n∑

i=1

xix
T
i )(B − B̂).

Thus 1
n

∑n
i=1 ε̂iε̂

T
i = 1

n

∑n
i=1 εiε

T
i +

OP (1)OP (n−1/2) + OP (n−1/2)OP (1) +OP (n−1/2)OP (n1/2)OP (n−1/2),

and the result follows since 1
n

∑n
i=1 εiε

T
i = Σε + OP (n−1/2) and

Sr =
n

n − 1

1

n

n∑

i=1

ε̂iε̂
T
i . �

Sr and Σ̂ε are also
√
n consistent estimators of Σε by Su and Cook (2012,

p. 692). See Theorem 10.7.

9.2 Plots for the Multivariate Linear Regression Model

This section suggests using residual plots, response plots, and the DD plot to
examine the multivariate linear model. The DD plot is used to examine the
distribution of the iid error vectors. The residual plots are often used to check
for lack of fit of the multivariate linear model. The response plots are used
to check linearity and to detect influential cases for the linearity assumption.
The response and residual plots are used exactly as in the m = 1 case corre-
sponding to multiple linear regression and experimental design models. See
Olive (2010, 2017a), Olive et al. (2015), Olive and Hawkins (2005), and Cook
and Weisberg (1999, p. 432).

Notation. Plots will be used to simplify the regression analysis, and in
this text a plot of W versus Z uses W on the horizontal axis and Z on the
vertical axis.
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Definition 10.4. A response plot for the jth response variable is a plot
of the fitted values Ŷij versus the response Yij. The identity line with slope
one and zero intercept is added to the plot as a visual aid. A residual plot
corresponding to the jth response variable is a plot of Ŷij versus rij.

Remark 10.1. Make the m response and residual plots for any multi-
variate linear regression. In a response plot, the vertical deviations from the
identity line are the residuals rij = Yij − Ŷij. Suppose the model is good,
the jth error distribution is unimodal and not highly skewed for j = 1, ..., m,
and n ≥ 10p. Then the plotted points should cluster about the identity line
in each of the m response plots. If outliers are present or if the plot is not
linear, then the current model or data need to be transformed or corrected.
If the model is good, then each of the m residual plots should be ellipsoidal
with no trend and should be centered about the r = 0 line. There should not
be any pattern in the residual plot: as a narrow vertical strip is moved from
left to right, the behavior of the residuals within the strip should show little
change. Outliers and patterns such as curvature or a fan shaped plot are bad.

Rule of thumb 10.1. Use multivariate linear regression if

n ≥ max((m+ p)2, mp+ 30, 10p))

provided that the m response and residual plots all look good. Make the DD
plot of the ε̂i. If a residual plot would look good after several points have
been deleted, and if these deleted points were not gross outliers (points far
from the point cloud formed by the bulk of the data), then the residual plot
is probably good. Beginners often find too many things wrong with a good
model. For practice, use the computer to generate several multivariate linear
regression data sets, and make the m response and residual plots for these
data sets. This exercise will help show that the plots can have considerable
variability even when the multivariate linear regression model is good. The
linmodpack function MLRsim simulates response and residual plots for various
distributions when m = 1.

Rule of thumb 10.2. If the plotted points in the residual plot look like
a left or right opening megaphone, the first model violation to check is the
assumption of nonconstant variance. (This is a rule of thumb because it is
possible that such a residual plot results from another model violation such
as nonlinearity, but nonconstant variance is much more common.)

Remark 10.2. Residual plots magnify departures from the model while
the response plots emphasize how well the multivariate linear regression model
fits the data.

Definition 10.5. An RR plot is a scatterplot matrix of the m sets of
residuals r1, ..., rm.
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Definition 10.6. An FF plot is a scatterplot matrix of the m sets of fitted
values of response variables Ŷ 1, ..., Ŷ m. The m response variables Y 1, ...,Y m

can be added to the plot.

Remark 10.3. Some applications for multivariate linear regression need
the m error vectors to be linearly related, and larger sample sizes may be
needed if the error vectors are not linearly related. For example, the asymp-
totic optimality of the prediction regions of Section 10.3 needs the error
vectors to be iid from an elliptically contoured distribution. Make the RR
plot and a DD plot of the residual vectors ε̂i to check that the error vectors
are linearly related. Make a DD plot of the continuous predictor variables to
check for x-outliers. Make a DD plot of Y1, ...., Ym to check for outliers, es-
pecially if it is assumed that the response variables come from an elliptically
contoured distribution.

The RMVN DD plot of the residual vectors ε̂i is used to check the error
vector distribution, to detect outliers, and to display the nonparametric pre-
diction region developed in Section 10.3. The DD plot suggests that the error
vector distribution is elliptically contoured if the plotted points cluster tightly
about a line through the origin as n → ∞. The plot suggests that the error
vector distribution is multivariate normal if the line is the identity line. If n
is large and the plotted points do not cluster tightly about a line through the
origin, then the error vector distribution may not be elliptically contoured.
These applications of the DD plot for iid multivariate data are discussed in
Olive (2002, 2008, 2013a, 2017b) and Chapter 7. The RMVN estimator has
not yet been proven to be a consistent estimator when computed from resid-
ual vectors, but simulations suggest that the RMVN DD plot of the residual
vectors is a useful diagnostic plot. The linmodpack function mregddsim can
be used to simulate the DD plots for various distributions.

Predictor transformations for the continuous predictors can be made ex-
actly as in Section 1.2.

Warning: The log rule and other transformations do not always work. For
example, the log rule may fail. If the relationships in the scatterplot matrix are
already linear or if taking the transformation does not increase the linearity,
then no transformation may be better than taking a transformation. For
the Cook and Weisberg (1999) data set evaporat.lsp with m = 1, the log
rule suggests transforming the response variable Evap, but no transformation
works better.

Response transformations can also be made as in Section 1.2, but also
make the response plot of Ŷ j versus Y j , and use the rules of Section 1.2
on Yj to linearize the response plot for each of the m response variables
Y1, ..., Ym.
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9.3 Asymptotically Optimal Prediction Regions

In this section, we will consider a more general multivariate regression model,
and then consider the multivariate linear model as a special case. Given n
cases of training or past data (x1, y1), ..., (xn, yn) and a vector of predictors
xf , suppose it is desired to predict a future test vector yf .

Definition 10.7. A large sample 100(1−δ)% prediction region is a set An

such that P (yf ∈ An) → 1−δ as n→ ∞, and is asymptotically optimal if the
volume of the region converges in probability to the volume of the population
minimum volume covering region.

The classical large sample 100(1− δ)% prediction region for a future value
xf given iid data x1, ..., ,xn is {x : D2

x(x,S) ≤ χ2
p,1−δ}, while for multi-

variate linear regression, the classical large sample 100(1 − δ)% prediction
region for a future value yf given xf and past data (x1, yi), ..., (xn, yn) is

{y : D2
y(ŷf , Σ̂ε) ≤ χ2

m,1−δ}. See Johnson and Wichern (1988, pp. 134, 151,
312). By Equation (1.36), these regions may work for multivariate normal xi

or εi, but otherwise tend to have undercoverage. Section 4.4 and Olive (2013a)
replaced χ2

p,1−δ by the order statistic D2
(Un) where Un decreases to dn(1−δ)e.

This section will use a similar technique from Olive (2018) to develop possibly
the first practical large sample prediction region for the multivariate linear
model with unknown error distribution. The following technical theorem will
be needed to prove Theorem 10.4.

Theorem 10.3. Let a > 0 and assume that (µ̂n, Σ̂n) is a consistent
estimator of (µ, aΣ).

a) D2
x(µ̂n, Σ̂n) − 1

a
D2

x(µ,Σ) = oP (1).

b) Let 0 < δ ≤ 0.5. If (µ̂n, Σ̂n)− (µ, aΣ) = Op(n
−δ) and aΣ̂

−1

n −Σ−1 =
OP (n−δ), then

D2
x(µ̂n, Σ̂n) − 1

a
D2

x(µ,Σ) = OP (n−δ).

Proof. Let Bn denote the subset of the sample space on which Σ̂n has an
inverse. Then P (Bn) → 1 as n→ ∞. Now

D2
x(µ̂n, Σ̂n) = (x − µ̂n)T Σ̂

−1

n (x − µ̂n) =

(x− µ̂n)T

(
Σ−1

a
− Σ−1

a
+ Σ̂

−1

n

)
(x − µ̂n) =

(x− µ̂n)T

(−Σ−1

a
+ Σ̂

−1

n

)
(x − µ̂n) + (x − µ̂n)T

(
Σ−1

a

)
(x − µ̂n) =
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1

a
(x − µ̂n)T (−Σ−1 + a Σ̂

−1

n )(x − µ̂n) +

(x− µ + µ − µ̂n)T

(
Σ−1

a

)
(x − µ + µ − µ̂n)

=
1

a
(x − µ)T Σ−1(x − µ) +

2

a
(x − µ)T Σ−1(µ− µ̂n)+

1

a
(µ − µ̂n)T Σ−1(µ − µ̂n) +

1

a
(x − µ̂n)T [aΣ̂

−1

n − Σ−1](x− µ̂n)

on Bn, and the last three terms are oP (1) under a) and OP (n−δ) under b).
�

Now suppose a prediction region for an m× 1 random vector yf given a
vector of predictors xf is desired for the multivariate linear model. If we had

many cases zi = BT xf + εi, then we could use the multivariate prediction
region for m variables from Section 2.2. Instead, Theorem 10.4 will use the

prediction region from Section 4.4 on the pseudodata ẑi = B̂
T
xf + ε̂i =

ŷf + ε̂i for i = 1, ..., n. This takes the data cloud of the n residual vectors ε̂i

and centers the cloud at ŷf . Note that ẑi = (B−B +B̂)T xf +(εi−εi+ε̂i) =

zi+(B̂−B)T xf +ε̂i−εi = zi+(B̂−B)T xf −(B̂−B)T xi = zi+OP (n−1/2).
Hence the distances based on the zi and the distances based on the ẑi have
the same quantiles, asymptotically (for quantiles that are continuity points
of the distribution of zi).

If the εi are iid from an ECm(0,Σ, g) distribution with continuous de-
creasing g and nonsingular covariance matrix Σε = cΣ for some con-
stant c > 0, then the population asymptotically optimal prediction region
is {y : Dy(BT xf ,Σε) ≤ D1−δ} where P (Dy(BT xf ,Σε) ≤ D1−δ) = 1 − δ.

For example, if the iid εi ∼ Nm(0,Σε), then D1−δ =
√
χ2

m,1−δ. If the er-

ror distribution is not elliptically contoured, then the above region still has
100(1− δ)% coverage, but prediction regions with smaller volume may exist.

A natural way to make a large sample prediction region is to estimate the
target population minimum volume covering region, but for moderate sam-
ples and many error distributions, the natural estimator that covers dn(1−δ)e
of the cases tends to have undercoverage as high as min(0.05, δ/2). This em-
pirical result is not too surprising since it is well known that the performance
of a prediction region on the training data is superior to the performance on
future test data, due in part to the unknown variability of the estimator. To
compensate for the undercoverage, let qn be as in Theorem 10.4.

Theorem 10.4. Suppose yi = E(yi|xi) + εi = ŷi + ε̂i where Cov(εi) =
Σε > 0, and where the zero mean εf and the εi are iid for i = 1, ..., n.

Given xf , suppose the fitted model produces ŷf and nonsingular Σ̂ε. Let
ẑi = ŷf + ε̂i and
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D2
i ≡ D2

i (ŷf , Σ̂ε) = (ẑi − ŷf )T Σ̂
−1

ε (ẑi − ŷf )

for i = 1, ..., n. Let qn = min(1 − δ + 0.05, 1− δ +m/n) for δ > 0.1 and

qn = min(1 − δ/2, 1− δ + 10δm/n), otherwise.

If qn < 1 − δ + 0.001, set qn = 1 − δ. Let 0 < δ < 1 and h = D(Un) where
D(Un) is the 100 qnth sample quantile of the Mahalanobis distances Di. Let
the nominal 100(1 − δ)% prediction region for yf be given by

{z : (z − ŷf )T Σ̂
−1

ε (z − ŷf ) ≤ D2
(Un)} =

{z : D2
z(ŷf , Σ̂ε) ≤ D2

(Un)} = {z : Dz(ŷf , Σ̂ε) ≤ D(Un)}. (9.1)

a) Consider the n prediction regions for the data where (yf,i,xf,i) =
(yi,xi) for i = 1, ..., n. If the order statistic D(Un) is unique, then Un of the
n prediction regions contain yi where Un/n→ 1 − δ as n → ∞.

b) If (ŷf , Σ̂ε) is a consistent estimator of (E(yf),Σε), then (10.1) is a
large sample 100(1− δ)% prediction region for yf .

c) If (ŷf , Σ̂ε) is a consistent estimator of (E(yf ),Σε), and the εi come
from an elliptically contoured distribution such that the unique highest den-
sity region is {z : Dz(0,Σε) ≤ D1−δ}, then the prediction region (10.1) is
asymptotically optimal.

Proof. a) Suppose (xf , yf ) = (xi, yi). Then

D2
yi

(ŷi, Σ̂ε) = (yi − ŷi)
T Σ̂

−1

ε (yi − ŷi) = ε̂T
i Σ̂

−1

ε ε̂i = D2
ε̂i

(0, Σ̂ε).

Hence yi is in the ith prediction region {z : Dz(ŷi, Σ̂ε) ≤ D(Un)(ŷi, Σ̂ε)}
iff ε̂i is in prediction region {z : Dz(0, Σ̂ε) ≤ D(Un)(0, Σ̂ε)}, but exactly Un

of the ε̂i are in the latter region by construction, if D(Un) is unique. Since
D(Un) is the 100(1− δ)th percentile of the Di asymptotically, Un/n→ 1− δ.

b) Let P [Dz(E(yf ),Σε) ≤ D1−δ(E(yf),Σε)] = 1 − δ. Since Σε > 0,

Theorem 10.3 shows that if (ŷf , Σ̂ε)
P→ (E(yf ),Σε) then D(ŷf , Σ̂ε)

D→
Dz(E(yf ),Σε). Hence the percentiles of the distances converge in distribu-

tion, and the probability that yf is in {z : Dz (ŷf , Σ̂ε) ≤ D1−δ(ŷf , Σ̂ε)}
converges to 1 − δ = the probability that yf is in {z : Dz(E(yf ),Σε) ≤
D1−δ(E(yf),Σε)} at continuity points D1−δ of the distribution ofD(E(yf ),
Σε).

c) The asymptotically optimal prediction region is the region with the
smallest volume (hence highest density) such that the coverage is 1 − δ, as
n → ∞. This region is {z : Dz(E(yf),Σε) ≤ D1−δ(E(yf ),Σε)} if the
asymptotically optimal region for the εi is {z : Dz(0,Σε) ≤ D1−δ(0,Σε)}.
Hence the result follows by b). �
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Notice that if Σ̂
−1

ε exists, then 100qn% of the n training data yi are in their
corresponding prediction region with xf = xi, and qn → 1−δ even if (ŷi, Σ̂ε)
is not a good estimator or if the regression model is misspecified. Hence the
coverage qn of the training data is robust to model assumptions. Of course the
volume of the prediction region could be large if a poor estimator (ŷi, Σ̂ε) is
used or if the εi do not come from an elliptically contoured distribution. The
response, residual, and DD plots can be used to check model assumptions.
If the plotted points in the RMVN DD plot cluster tightly about some line
through the origin and if n ≥ max[3(m+p)2, mp+30], we expect the volume
of the prediction region may be fairly low for the least squares estimators.

If n is too small, then multivariate data is sparse and the covering ellipsoid
for the training data may be far too small for future data, resulting in severe
undercoverage. Also notice that qn = 1−δ/2 or qn = 1−δ+0.05 for n ≤ 20p.
At the training data, the coverage qn ≥ 1 − δ, and qn converges to the
nominal coverage 1− δ as n → ∞. Suppose n ≤ 20p. Then the nominal 95%
prediction region uses qn = 0.975 while the nominal 50% prediction region
uses qn = 0.55.Prediction distributions depend both on the error distribution
and on the variability of the estimator (ŷf , Σ̂ε). This variability is typically
unknown but converges to 0 as n→ ∞. Also, residuals tend to underestimate
errors for small n. For moderate n, ignoring estimator variability and using
qn = 1 − δ resulted in undercoverage as high as min(0.05, δ/2). Letting the
“coverage” qn decrease to the nominal coverage 1 − δ inflates the volume of
the prediction region for small n, compensating for the unknown variability
of (ŷf , Σ̂ε).

Consider the multivariate linear regression model. Let Σ̂ε = Σ̂ε,d=p, ẑi =
ŷf + ε̂i, and D2

i (ŷf ,Sr) = (ẑi − ŷf )T S−1
r (ẑi − ŷf ) for i = 1, ..., n. Then the

large sample nonparametric 100(1− δ)% prediction region is

{z : D2
z(ŷf ,Sr) ≤ D2

(Un)} = {z : Dz(ŷf ,Sr) ≤ D(Un)}. (9.2)

Theorem 10.5 will show that this prediction region (10.2) can also be found
by applying the nonparametric prediction region (2.24) on the ẑi. Recall that
Sr defined in Definition 10.3 is the sample covariance matrix of the residual
vectors ε̂i. For the multivariate linear regression model, ifD1−δ is a continuity
point of the distribution of D, Assumption D1 above Theorem 10.7 holds,
and the εi have a nonsingular covariance matrix, then (10.2) is a large sample
100(1− δ)% prediction region for yf .

Theorem 10.5. For multivariate linear regression, when least squares is
used to compute ŷf , Sr , and the pseudodata ẑi, prediction region (10.2) is
the nonparametric prediction region (4.24) applied to the ẑi.

Proof. Multivariate linear regression with least squares satisfies Theorem
10.4 by Su and Cook (2012). (See Theorem 10.7.) Let (T,C) be the sample
mean and sample covariance matrix (see Definition 2.7) applied to the ẑi.
The sample mean and sample covariance matrix of the residual vectors is
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(0,Sr) since least squares was used. Hence the ẑi = ŷf + ε̂i have sample
covariance matrix Sr, and sample mean ŷf . Hence (T,C) = (ŷf ,Sr), and
the Di(ŷf ,Sr) are used to compute D(Un). �

The RMVN DD plot of the residual vectors will be used to display the
prediction regions for multivariate linear regression. See Example 10.3. The
nonparametric prediction region for multivariate linear regression of Theorem
10.5 uses (T,C) = (ŷf ,Sr) in (10.1), and has simple geometry. Let Rr be
the nonparametric prediction region (10.2) applied to the residuals ε̂i with
ŷf = 0. Then Rr is a hyperellipsoid with center 0, and the nonparametric
prediction region is the hyperellipsoid Rr translated to have center ŷf . Hence
in a DD plot, all points to the left of the line MD = D(Un) correspond to yi

that are in their prediction region, while points to the right of the line are
not in their prediction region.

The nonparametric prediction region has some interesting properties. This
prediction region is asymptotically optimal if the εi are iid for a large class
of elliptically contoured ECm(0,Σ, g) distributions. Also, if there are 100
different values (xjf , yjf) to be predicted, we only need to update ŷjf for
j = 1, ..., 100, we do not need to update the covariance matrix Sr .

It is common practice to examine how well the prediction regions work on
the training data. That is, for i = 1, ..., n, set xf = xi and see if yi is in
the region with probability near to 1 − δ with a simulation study. Note that
ŷf = ŷi if xf = xi. Simulation is not needed for the nonparametric prediction
region (10.2) for the data since the prediction region (10.2) centered at ŷi

contains yi iff Rr, the prediction region centered at 0, contains ε̂i since ε̂i =
yi− ŷi. Thus 100qn% of prediction regions corresponding to the data (yi,xi)
contain yi, and 100qn% → 100(1 − δ)%. Hence the prediction regions work
well on the training data and should work well on (xf , yf ) similar to the
training data. Of course simulation should be done for test data (xf , yf)
that are not equal to training data cases. See Problem 10.11.

This training data result holds provided that the multivariate linear regres-
sion using least squares is such that the sample covariance matrix Sr of the
residual vectors is nonsingular, the multivariate regression model need
not be correct. Hence the coverage at the n training data cases (xi, yi)
is robust to model misspecification. Of course, the prediction regions may
be very large if the model is severely misspecified, but severity of misspec-
ification can be checked with the response and residual plots. Coverage for
a future value yf can also be arbitrarily bad if there is extrapolation or if
(xf , yf ) comes from a different population than that of the data.
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9.4 Testing Hypotheses

This section considers testing a linear hypothesis H0 : LB = 0 versus
H1 : LB 6= 0 where L is a full rank r × p matrix.

Definition 10.8. Assume rank(X) = p. The total corrected (for the mean)
sum of squares and cross products matrix is

T = R + W e = ZT

(
In − 1

n
11T

)
Z.

Note that T /(n− 1) is the usual sample covariance matrix Σ̂y if all n of the
yi are iid, e.g. if B = 0. The regression sum of squares and cross products
matrix is

R = ZT

[
X(XT X)−1XT − 1

n
11T

]
Z = ZT XB̂ − 1

n
ZT11T Z.

Let H = B̂
T
LT [L(XT X)−1LT ]−1LB̂. The error or residual sum of squares

and cross products matrix is

W e = (Z − Ẑ)T (Z − Ẑ) = ZT Z − ZT XB̂ = ZT [In − X(XT X)−1XT ]Z.

Note that W e = Ê
T
Ê and W e/(n− p) = Σ̂ε.

Warning: SAS output uses E instead of W e.

The MANOVA table is shown below.

Summary MANOVA Table

Source matrix df

Regression or Treatment R p− 1
Error or Residual W e n− p

Total (corrected) T n− 1

Definition 10.9. Let λ1 ≥ λ2 ≥ · · · ≥ λm be the ordered eigenvalues of
W−1

e H. Then there are four commonly used test statistics.
The Roy’s maximum root statistic is λmax(L) = λ1.
The Wilks’ Λ statistic is Λ(L) = |(H + W e)

−1W e| = |W−1
e H + I|−1 =

m∏

i=1

(1 + λi)
−1.

The Pillai’s trace statistic is V (L) = tr[(H + W e)
−1H] =

m∑

i=1

λi

1 + λi
.



258 9 Multivariate Linear Regression

The Hotelling-Lawley trace statistic is U(L) = tr[W−1
e H ] =

m∑

i=1

λi.

Typically some function of one of the four above statistics is used to get
pval, the estimated pvalue. Output often gives the pvals for all four test
statistics. Be cautious about inference if the last three test statistics do not
lead to the same conclusions (Roy’s test may not be trustworthy for r > 1).
Theory and simulations developed below for the four statistics will provide
more information about the sample sizes needed to use the four test statistics.
See the paragraphs after the following theorem for the notation used in that
theorem.

Theorem 10.6. The Hotelling-Lawley trace statistic

U(L) =
1

n − p
[vec(LB̂)]T [Σ̂

−1

ε ⊗ (L(XT X)−1LT )−1][vec(LB̂)]. (9.3)

Proof. Using the Searle (1982, p. 333) identity
tr(AGT DGC) = [vec(G)]T [CA ⊗ DT ][vec(G)], it follows that

(n− p)U(L) = tr[Σ̂
−1

ε B̂
T
LT [L(XT X)−1LT ]−1LB̂]

= [vec(LB̂)]T [Σ̂
−1

ε ⊗ (L(XT X)−1LT )−1][vec(LB̂)] = T where A = Σ̂
−1

ε ,

G = LB̂,D = [L(XT X)−1LT ]−1, and C = I. Hence (10.3) holds. �

Some notation is useful to show (10.3) and to show that (n−p)U(L)
D→ χ2

rm

under mild conditions if H0 is true. Following Henderson and Searle (1979),
let matrix A = [a1 a2 . . . ap]. Then the vec operator stacks the columns
of A on top of one another so

vec(A) =




a1

a2

...
ap


 .

Let A = (aij) be an m × n matrix and B a p × q matrix. Then the
Kronecker product of A and B is the mp× nq matrix

A ⊗ B =




a11B a12B · · · a1nB

a21B a22B · · · a2nB
...

... · · ·
...

am1B am2B · · · amnB


 .

An important fact is that if A and B are nonsingular square matrices, then
[A⊗ B]−1 = A−1 ⊗ B−1. The following assumption is important.
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Assumption D1: Let hi be the ith diagonal element of X(XT X)−1XT .

Assume max1≤i≤n hi
P→ 0 as n → ∞, assume that the zero mean iid error

vectors have finite fourth moments, and assume that
1

n
XT X

P→ W−1.

Su and Cook (2012) proved a central limit type theorem for Σ̂ε and B̂ for
the partial envelopes estimator, and the least squares estimator is a special
case. These results prove the following theorem. Their theorem also shows
that for multiple linear regression (m = 1), σ̂2 = MSE is a

√
n consistent

estimator of σ2.

Theorem 10.7: Multivariate Least Squares Central Limit Theo-
rem (MLS CLT). For the least squares estimator, if assumption D1 holds,

then Σ̂ε is a
√
n consistent estimator of Σε and

√
n vec(B̂ − B)

D→ Npm(0,Σε ⊗ W ).

Theorem 10.8. If assumption D1 holds and if H0 is true, then

(n− p)U(L)
D→ χ2

rm.

Proof. By Theorem 10.7,
√
n vec(B̂−B)

D→ Npm(0,Σε⊗W ). Then un-

der H0,
√
n vec(LB̂)

D→ Nrm(0,Σε ⊗LWLT ), and n [vec(LB̂)]T [Σ−1
ε ⊗

(LWLT )−1][vec(LB̂)]
D→ χ2

rm. This result also holds if W and Σε are re-

placed by Ŵ = n(XT X)−1 and Σ̂ε. Hence under H0 and using the proof of
Theorem 10.6,

T = (n−p)U(L) = [vec(LB̂)]T [Σ̂
−1

ε ⊗(L(XT X)−1LT )−1][vec(LB̂)]
D→ χ2

rm.

�

Some more details on the above results may be useful. Consider testing a
linear hypothesis H0 : LB = 0 versus H1 : LB 6= 0 where L is a full rank
r × p matrix. For now assume the error distribution is multivariate normal
Nm(0,Σε). Then

vec(B̂ − B) =




β̂1 − β1

β̂2 − β2
...

β̂m − βm


 ∼ Npm(0,Σε ⊗ (XT X)−1)

where
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C = Σε⊗(XT X)−1 =




σ11(X
T X)−1 σ12(X

T X)−1 · · · σ1m(XT X)−1

σ21(X
T X)−1 σ22(X

T X)−1 · · · σ2m(XT X)−1

...
... · · ·

...

σm1(X
T X)−1 σm2(X

T X)−1 · · · σmm(XT X)−1


 .

Now let A be an rm×pm block diagonal matrix: A = diag(L, ...,L). Then

A vec(B̂ − B) = vec(L(B̂ − B)) =




L(β̂1 − β1)

L(β̂2 − β2)
...

L(β̂m − βm)


 ∼ Nrm(0,Σε ⊗ L(XT X)−1LT )

where D = Σε ⊗ L(XT X)−1LT = ACAT =




σ11L(XT X)−1LT σ12L(XT X)−1LT · · · σ1mL(XT X)−1LT

σ21L(XT X)−1LT σ22L(XT X)−1LT · · · σ2mL(XT X)−1LT

...
... · · ·

...

σm1L(XT X)−1LT σm2L(XT X)−1LT · · · σmmL(XT X)−1LT


 .

Under H0, vec(LB) = A vec(B) = 0, and

vec(LB̂) =




Lβ̂1

Lβ̂2
...

Lβ̂m


 ∼ Nrm(0,Σε ⊗ L(XT X)−1LT ).

Hence under H0,

[vec(LB̂)]T [Σ−1
ε ⊗ (L(XT X)−1LT )−1][vec(LB̂)] ∼ χ2

rm,

and

T = [vec(LB̂)]T [Σ̂
−1

ε ⊗ (L(XT X)−1LT )−1][vec(LB̂)]
D→ χ2

rm. (9.4)

A large sample level δ test will reject H0 if pval ≤ δ where

pval = P

(
T

rm
< Frm,n−mp

)
. (9.5)

Since least squares estimators are asymptotically normal, if the εi are iid
for a large class of distributions,
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√
n vec(B̂ − B) =

√
n




β̂1 − β1

β̂2 − β2
...

β̂m − βm




D→ Npm(0,Σε ⊗ W )

where
XT X

n

P→ W−1.

Then under H0,

√
n vec(LB̂) =

√
n




Lβ̂1

Lβ̂2
...

Lβ̂m




D→ Nrm(0,Σε ⊗ LWLT ),

and
n [vec(LB̂)]T [Σ−1

ε ⊗ (LWLT )−1][vec(LB̂)]
D→ χ2

rm.

Hence (10.4) holds, and (10.5) gives a large sample level δ test if the least
squares estimators are asymptotically normal.

Kakizawa (2009) showed, under stronger assumptions than Theorem 10.8,
that for a large class of iid error distributions, the following test statistics
have the same χ2

rm limiting distribution when H0 is true, and the same non-
central χ2

rm(ω2) limiting distribution with noncentrality parameter ω2 when
H0 is false under a local alternative. Hence the three tests are robust to the
assumption of normality. The limiting null distribution is well known when
the zero mean errors are iid from a multivariate normal distribution. See
Khattree and Naik (1999, p. 68): (n− p)U(L)

D→ χ2
rm, (n− p)V (L)

D→ χ2
rm,

and −[n − p − 0.5(m − r + 3)] log(Λ(L))
D→ χ2

rm. Results from Kshirsagar
(1972, p. 301) suggest that the third chi-square approximation is very good
if n ≥ 3(m+ p)2 for multivariate normal error vectors.

Theorems 10.6 and 10.8 are useful for relating multivariate tests with
the partial F test for multiple linear regression that tests whether a reduced
model that omits some of the predictors can be used instead of the full model
that uses all p predictors. The partial F test statistic is

FR =

[
SSE(R) − SSE(F )

dfR − dfF

]
/MSE(F )

where the residual sums of squares SSE(F ) and SSE(R) and degrees of
freedom dfF and dfr are for the full and reduced model while the mean
square error MSE(F ) is for the full model. Let the null hypothesis for the
partial F test be H0 : Lβ = 0 where L sets the coefficients of the predictors
in the full model but not in the reduced model to 0. Seber and Lee (2003, p.
100) shows that
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FR =
[Lβ̂]T (L(XT X)−1LT )−1[Lβ̂]

rσ̂2

is distributed as Fr,n−p if H0 is true and the errors are iid N(0, σ2). Note
that for multiple linear regression with m = 1, FR = (n − p)U(L)/r since

Σ̂
−1

ε = 1/σ̂2. Hence the scaled Hotelling Lawley test statistic is the partial
F test statistic extended to m > 1 predictor variables by Theorem 10.6.

By Theorem 10.8, for example, rFR
D→ χ2

r for a large class of nonnormal

error distributions. If Zn ∼ Fk,dn , then Zn
D→ χ2

k/k as dn → ∞. Hence using
the Fr,n−p approximation gives a large sample test with correct asymptotic
level, and the partial F test is robust to nonnormality.

Similarly, using an Frm,n−pm approximation for the following test statistics
gives large sample tests with correct asymptotic level by Kakizawa (2009) and
similar power for large n. The large sample test will have correct asymptotic
level as long as the denominator degrees of freedom dn → ∞ as n→ ∞, and
dn = n− pm reduces to the partial F test if m = 1 and U(L) is used. Then
the three test statistics are

−[n− p− 0.5(m− r + 3)]

rm
log(Λ(L)),

n− p

rm
V (L), and

n − p

rm
U(L).

By Berndt and Savin (1977) and Anderson (1984, pp. 333, 371),

V (L) ≤ − log(Λ(L)) ≤ U(L).

Hence the Hotelling Lawley test will have the most power and Pillai’s test
will have the least power.

Following Khattree and Naik (1999, pp. 67-68), there are several ap-
proximations used by the SAS software. For the Roy’s largest root test, if
h = max(r,m), use

n− p− h+ r

h
λmax(L) ≈ F (h, n− p− h+ r).

The simulations in Section 10.5 suggest that this approximation is good for
r = 1 but poor for r > 1. Anderson (1984, p. 333) stated that Roy’s largest
root test has the greatest power if r = 1 but is an inferior test for r > 1. Let
g = n−p−(m−r+1)/2, u = (rm−2)/4 and t =

√
r2m2 − 4/

√
m2 + r2 − 5 for

m2+r2−5 > 0 and t = 1, otherwise. Assume H0 is true. Thus U
P→ 0, V

P→ 0,

and Λ
P→ 1 as n → ∞. Then

gt− 2u

rm

1 − Λ1/t

Λ1/t
≈ F (rm, gt− 2u) or (n − p)t

1 − Λ1/t

Λ1/t
≈ χ2

rm.

For large n and t > 0, − log(Λ) = −t log(Λ1/t) = −t log(1 + Λ1/t − 1) ≈
t(1 − Λ1/t) ≈ t(1 − Λ1/t)/Λ1/t. If it can not be shown that
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(n− p)[− log(Λ) − t(1 − Λ1/t)/Λ1/t]
P→ 0 as n → ∞,

then it is possible that the approximate χ2
rm distribution may be the limiting

distribution for only a small class of iid error distributions. When the εi are
iid Nm(0,Σε), there are some exact results. For r = 1,

n− p−m+ 1

m

1 − Λ

Λ
∼ F (m, n− p−m+ 1).

For r = 2,

2(n− p−m+ 1)

2m

1 − Λ1/2

Λ1/2
∼ F (2m, 2(n− p−m+ 1)).

For m = 2,
2(n− p)

2r

1 − Λ1/2

Λ1/2
∼ F (2r, 2(n− p)).

Let s = min(r,m), m1 = (|r −m| − 1)/2 and m2 = (n− p−m− 1)/2. Note
that s(|r −m| + s) = min(r,m)max(r,m) = rm. Then

n − p

rm

V

1 − V/s
=

n− p

s(|r −m| + s)

V

1 − V/s
≈ 2m2 + s+ 1

2m1 + s+ 1

V

s− V
≈

F (s(2m1+s+1), s(2m2+s+1)) ≈ F (s(|r−m|+s), s(n−p)) = F (rm, s(n−p)).
This approximation is asymptotically correct by Slutsky’s theorem since

1− V/s
P→ 1. Finally,

n− p

rm
U =

n− p

s(|r −m| + s)
U ≈ 2(sm2 + 1)

s2(2m1 + s+ 1)
U ≈ F (s(2m1 + s+ 1), 2(sm2 + 1))

≈ F (s(|r −m| + s), s(n − p)) = F (rm, s(n− p)).

This approximation is asymptotically correct for a wide range of iid error
distributions.

Multivariate analogs of tests for multiple linear regression can be derived
with appropriate choice of L. Assume a constant x1 = 1 is in the model. As
a textbook convention, use δ = 0.05 if δ is not given.

The four step MANOVA test of linear hypotheses is useful.
i) State the hypotheses H0 : LB = 0 and H1 : LB 6= 0.
ii) Get test statistic from output.
iii) Get pval from output.
iv) State whether you reject H0 or fail to reject H0. If pval ≤ δ, reject H0

and conclude that LB 6= 0. If pval > δ, fail to reject H0 and conclude that
LB = 0 or that there is not enough evidence to conclude that LB 6= 0.
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The MANOVA test of H0 : B = 0 versus H1 : B 6= 0 is the special case

corresponding to L = I and H = B̂
T
XT XB̂ = Ẑ

T
Ẑ, but is usually not a

test of interest.

The analog of the ANOVA F test for multiple linear regression is the
MANOVA F test that uses L = [0 Ip−1] to test whether the nontrivial
predictors are needed in the model. This test should reject H0 if the response
and residual plots look good, n is large enough, and at least one response
plot does not look like the corresponding residual plot. A response plot for
Yj will look like a residual plot if the identity line appears almost horizontal,

hence the range of Ŷj is small. Response and residual plots are often useful
for n ≥ 10p.

The 4 step MANOVA F test of hypotheses uses L = [0 Ip−1].
i) State the hypotheses H0: the nontrivial predictors are not needed in the
mreg model H1: at least one of the nontrivial predictors is needed.
ii) Find the test statistic F0 from output.
iii) Find the pval from output.
iv) If pval ≤ δ, reject H0. If pval > δ, fail to reject H0. If H0 is rejected,
conclude that there is a mreg relationship between the response variables
Y1, ..., Ym and the predictors x2, ..., xp. If you fail to reject H0, conclude
that there is a not a mreg relationship between Y1, ..., Ym and the predictors
x2, ..., xp. (Or there is not enough evidence to conclude that there is a
mreg relationship between the response variables and the predictors. Get the
variable names from the story problem.)

The Fj test of hypotheses uses Lj = [0, ..., 0, 1, 0, ..., 0], where the 1 is in
the jth position, to test whether the jth predictor xj is needed in the model
given that the other p− 1 predictors are in the model. This test is an analog
of the t tests for multiple linear regression. Note that xj is not needed in the
model corresponds to H0 : Bj = 0 while xj needed in the model corresponds

to H1 : Bj 6= 0 where BT
j is the jth row of B.

The 4 step Fj test of hypotheses uses Lj = [0, ..., 0, 1, 0, ..., 0] where the 1
is in the jth position.
i) State the hypotheses H0 : xj is not needed in the model
H1 : xj is needed.
ii) Find the test statistic Fj from output.
iii) Find pval from output.
iv) If pval ≤ δ, reject H0. If pval > δ, fail to reject H0. Give a nontechnical
sentence restating your conclusion in terms of the story problem. If H0 is
rejected, then conclude that xj is needed in the mreg model for Y1, ..., Ym

given that the other predictors are in the model. If you fail to reject H0, then
conclude that xj is not needed in the mreg model for Y1, ..., Ym given that
the other predictors are in the model. (Or there is not enough evidence to
conclude that xj is needed in the model. Get the variable names from the
story problem.)
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The Hotelling Lawley statistic

Fj =
1

dj
B̂

T

j Σ̂
−1

ε B̂j =
1

dj
(β̂j1, β̂j2, ..., β̂jm)Σ̂

−1

ε




β̂j1

β̂j2

...

β̂jm




where B̂
T

j is the jth row of B̂ and dj = (XT X)−1
jj , the jth diagonal entry of

(XT X)−1. The statistic Fj could be used for forward selection and backward
elimination in variable selection.

The 4 step MANOVA partial F test of hypotheses has a full model
using all of the variables and a reduced model where r of the variables are
deleted. The ith row of L has a 1 in the position corresponding to the ith
variable to be deleted. Omitting the jth variable corresponds to the Fj test
while omitting variables x2, ..., xp corresponds to the MANOVA F test. Using
L = [0 Ik] tests whether the last k predictors are needed in the multivariate
linear regression model given that the remaining predictors are in the model.
i) State the hypotheses H0: the reduced model is good H1: use the full
model.
ii) Find the test statistic FR from output.
iii) Find the pval from output.
iv) If pval ≤ δ, reject H0 and conclude that the full model should be used.
If pval > δ, fail to reject H0 and conclude that the reduced model is good.

The linmodpack function mltreg produces the m response and residual
plots, gives B̂, Σ̂ε, the MANOVA partial F test statistic and pval corre-
sponding to the reduced model that leaves out the variables given by indices
(so x2 and x4 in the output below with F = 0.77 and pval = 0.614), Fj and
the pval for the Fj test for variables 1, 2, ..., p (where p = 4 in the output
below so F2 = 1.51 with pval = 0.284), and F0 and pval for the MANOVA
F test (in the output below F0 = 3.15 and pval= 0.06). Right click Stop

on the plots m times to advance the plots and to get the cursor back on the
command line in R.

The command out <- mltreg(x,y,indices=c(2)) would produce
a MANOVA partial F test corresponding to the F2 test while the command
out <- mltreg(x,y,indices=c(2,3,4)) would produce a MANOVA
partial F test corresponding to the MANOVA F test for a data set with
p = 4 predictor variables. The Hotelling Lawley trace statistic is used in the
tests.

out <- mltreg(x,y,indices=c(2,4))

$Bhat

[,1] [,2] [,3]

[1,] 47.96841291 623.2817463 179.8867890
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[2,] 0.07884384 0.7276600 -0.5378649

[3,] -1.45584256 -17.3872206 0.2337900

[4,] -0.01895002 0.1393189 -0.3885967

$Covhat

[,1] [,2] [,3]

[1,] 21.91591 123.2557 132.339

[2,] 123.25566 2619.4996 2145.780

[3,] 132.33902 2145.7797 2954.082

$partial

partialF Pval

[1,] 0.7703294 0.6141573

$Ftable

Fj pvals

[1,] 6.30355375 0.01677169

[2,] 1.51013090 0.28449166

[3,] 5.61329324 0.02279833

[4,] 0.06482555 0.97701447

$MANOVA

MANOVAF pval

[1,] 3.150118 0.06038742

#Output for Example 10.2

y<-marry[,c(2,3)]; x<-marry[,-c(2,3)];

mltreg(x,y,indices=c(3,4))

$partial

partialF Pval

[1,] 0.2001622 0.9349877

$Ftable

Fj pvals

[1,] 4.35326807 0.02870083

[2,] 600.57002201 0.00000000

[3,] 0.08819810 0.91597268

[4,] 0.06531531 0.93699302

$MANOVA

MANOVAF pval

[1,] 295.071 1.110223e-16

Example 10.2. The above output is for the Hebbler (1847) data from
the 1843 Prussia census. Sometimes if the wife or husband was not at the
household, then s/he would not be counted. Y1 = number of married civilian
men in the district, Y2 = number of women married to civilians in the district,
x2 = population of the district in 1843, x3 = number of married military men
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in the district, and x4 = number of women married to military men in the
district. The reduced model deletes x3 and x4. The constant uses x1 = 1.

a) Do the MANOVA F test.
b) Do the F2 test.
c) Do the F4 test.
d) Do an appropriate 4 step test for the reduced model that deletes x3

and x4.
e) The output for the reduced model that deletes x1 and x2 is shown below.

Do an appropriate 4 step test.

$partial

partialF Pval

[1,] 569.6429 0

Solution:
a) i) H0: the nontrivial predictors are not needed in the mreg model

H1: at least one of the nontrivial predictors is needed
ii) F0 = 295.071
iii) pval = 0
iv) Reject H0, the nontrivial predictors are needed in the mreg model.

b) i) H0: x2 is not needed in the model H1: x2 is needed
ii) F2 = 600.57
iii) pval = 0
iv) Reject H0, population of the district is needed in the model.

c) i) H0: x4 is not needed in the model H1: x4 is needed
ii) F4 = 0.065
iii) pval = 0.937
iv) Fail to reject H0, number of women married to military men is not

needed in the model given that the other predictors are in the model.

d) i) H0: the reduced model is good H1: use the full model.
ii) FR = 0.200
iii) pval = 0.935
iv) Fail to reject H0, so the reduced model is good.
e) i) H0: the reduced model is good H1: use the full model.
ii) FR = 569.6
iii) pval = 0.00
iv) Reject H0, so use the full model.

9.5 An Example and Simulations

In the DD plot, cases to the left of the vertical line are in their nonparametric
prediction region. The long horizontal line corresponds to a similar cutoff
based on the RD. The shorter horizontal line that ends at the identity line
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is the parametric MVN prediction region from Section 4.4 applied to the
ẑi. Points below these two lines are only conjectured to be large sample
prediction regions, but are added to the DD plot as visual aids. Note that
ẑi = ŷf + ε̂i, and adding a constant ŷf to all of the residual vectors does not
change the Mahalanobis distances, so the DD plot of the residual vectors can
be used to display the prediction regions.
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Fig. 9.1 Plots for Y1 = log(S).

Example 10.3. Cook and Weisberg (1999, pp. 351, 433, 447) gave a data
set on 82 mussels sampled off the coast of New Zealand. Let Y1 = log(S)
and Y2 = log(M) where S is the shell mass and M is the muscle mass.
The predictors are X2 = L, X3 = log(W ), and X4 = H : the shell length,
log(width), and height. To check linearity of the multivariate linear regression
model, Figures 10.1 and 10.2 give the response and residual plots for Y1 and
Y2. The response plots show strong linear relationships. For Y1, case 79 sticks
out while for Y2, cases 8, 25, and 48 are not fit well. Highlighted cases had
Cook’s distance > min(0.5, 2p/n). See Cook (1977).

To check the error vector distribution, the DD plot should be used instead
of univariate residual plots, which do not take into account the correlations
of the random variables ε1, ..., εm in the error vector ε. A residual vector
ε̂ = (ε̂ − ε) + ε is a combination of ε and a discrepancy ε̂ − ε that tends
to have an approximate multivariate normal distribution. The ε̂ − ε term
can dominate for small to moderate n when ε is not multivariate normal,



9.5 An Example and Simulations 269

1.5 2.0 2.5 3.0 3.5 4.0

0
1

2
3

4

FIT
Y

Response Plot

8
25

48

1.5 2.0 2.5 3.0 3.5 4.0

−
1

.0
−

0
.5

0
.0

0
.5

FIT

R
E

S

Residual Plot

8

25

48

Fig. 9.2 Plots for Y2 = log(M).
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Fig. 9.3 DD Plot of the Residual Vectors for the Mussels Data.
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incorrectly suggesting that the distribution of the error vector ε is closer to a
multivariate normal distribution than is actually the case. Figure 10.3 shows
the DD plot of the residual vectors. The plotted points are highly correlated
but do not cover the identity line, suggesting an elliptically contoured error
distribution that is not multivariate normal. The nonparametric 90% predic-
tion region for the residuals consists of the points to the left of the vertical
line MD = 2.60. Cases 8, 48, and 79 have especially large distances.

The four Hotelling Lawley Fj statistics were greater than 5.77 with pvalues
less than 0.005, and the MANOVA F statistic was 337.8 with pvalue ≈ 0.

The response, residual, and DD plots are effective for finding influential
cases, for checking linearity, for checking whether the error distribution is
multivariate normal or some other elliptically contoured distribution, and
for displaying the nonparametric prediction region. Note that cases to the
right of the vertical line correspond to cases with yi that are not in their
prediction region. These are the cases corresponding to residual vectors with
large Mahalanobis distances. Adding a constant does not change the distance,
so the DD plot for the residual vectors is the same as the DD plot for the ẑi.
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Fig. 9.4 Plots for Y2 = M .

c) Now suppose the same model is used except Y2 = M . Then the response
and residual plots for Y1 remain the same, but the plots shown in Figure 10.4
show curvature about the identity and r = 0 lines. Hence the linearity condi-
tion is violated. Figure 10.5 shows that the plotted points in the DD plot have
correlation well less than one, suggesting that the error vector distribution
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Fig. 9.5 DD Plot When Y2 = M .

is no longer elliptically contoured. The nonparametric 90% prediction region
for the residual vectors consists of the points to the left of the vertical line
MD = 2.52, and contains 95% of the training data. Note that the plots can
be used to quickly assess whether power transformations have resulted in a
linear model, and whether influential cases are present. R code for producing
the five figures is shown below.

y <- log(mussels)[,4:5]

x <- mussels[,1:3]

x[,2] <- log(x[,2])

z<-cbind(x,y) #scatterplot matrix

pairs(z, labels=c("L","log(W)","H","log(S)","log(M)"))

ddplot4(z) #right click Stop, DD plot of MLD model

out <- mltreg(x,y) #right click Stop 4 times, Fig. 10.1, 10.2

ddplot4(out$res) #right click Stop, Fig. 10.3

y[,2] <- mussels[,5]

tem <- mltreg(x,y) #right click Stop 4 times, Fig. 10.4

ddplot4(tem$res) #right click Stop, Fig. 10.5
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9.5.1 Simulations for Testing

A small simulation was used to study the Wilks’ Λ test, the Pillai’s trace
test, the Hotelling Lawley trace test, and the Roy’s largest root test for the
Fj tests and the MANOVA F test for multivariate linear regression. The first
row of B was always 1T and the last row of B was always 0T . When the null
hypothesis for the MANOVA F test is true, all but the first row corresponding
to the constant are equal to 0T . When p ≥ 3 and the null hypothesis for the
MANOVA F test is false, then the second to last row of B is (1, 0, ..., 0),
the third to last row is (1, 1, 0, ..., 0) et cetera as long as the first row is
not changed from 1T . First m× 1 error vectors wi were generated such that
the m random variables in the vector wi are iid with variance σ2. Let the
m×m matrix A = (aij) with aii = 1 and aij = ψ where 0 ≤ ψ < 1 for i 6= j.

Then εi = Awi so that Σε = σ2AAT = (σij) where the diagonal entries
σii = σ2[1+(m−1)ψ2 ] and the off diagonal entries σij = σ2[2ψ+(m−2)ψ2 ]
where ψ = 0.10. Hence the correlations are (2ψ+(m−2)ψ2)/(1+(m−1)ψ2 ).
As ψ gets close to 1, the error vectors cluster about the line in the direction
of (1, ..., 1)T. We used wi ∼ Nm(0, I),wi ∼ (1 − τ )Nm(0, I) + τNm(0, 25I)
with 0 < τ < 1 and τ = 0.25 in the simulation, wi ∼ multivariate td with
d = 7 degrees of freedom, or wi ∼ lognormal - E(lognormal): where the m
components of wi were iid with distribution ez − E(ez) where z ∼ N(0, 1).
Only the lognormal distribution is not elliptically contoured.

Table 9.1 Test Coverages: MANOVA F H0 is True.

w dist n test F1 F2 Fp−1 Fp FM

MVN 300 W 1 0.043 0.042 0.041 0.018
MVN 300 P 1 0.040 0.038 0.038 0.007
MVN 300 HL 1 0.059 0.058 0.057 0.045
MVN 300 R 1 0.051 0.049 0.048 0.993
MVN 600 W 1 0.048 0.043 0.043 0.034
MVN 600 P 1 0.046 0.042 0.041 0.026
MVN 600 HL 1 0.055 0.052 0.050 0.052
MVN 600 R 1 0.052 0.048 0.047 0.994
MIX 300 W 1 0.042 0.043 0.044 0.017
MIX 300 P 1 0.039 0.040 0.042 0.008
MIX 300 HL 1 0.057 0.059 0.058 0.039
MIX 300 R 1 0.050 0.050 0.051 0.993

MVT(7) 300 W 1 0.048 0.036 0.045 0.020
MVT(7) 300 P 1 0.046 0.032 0.042 0.011
MVT(7) 300 HL 1 0.064 0.049 0.058 0.045
MVT(7) 300 R 1 0.055 0.043 0.051 0.993

LN 300 W 1 0.043 0.047 0.040 0.020
LN 300 P 1 0.039 0.045 0.037 0.009
LN 300 HL 1 0.057 0.061 0.058 0.041
LN 300 R 1 0.049 0.055 0.050 0.994
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Table 9.2 Test Coverages: MANOVA F H0 is False.

n m = p test F1 F2 Fp−1 Fp FM

30 5 W 0.012 0.222 0.058 0.000 0.006
30 5 P 0.000 0.000 0.000 0.000 0.000
30 5 HL 0.382 0.694 0.322 0.007 0.579
30 5 R 0.799 0.871 0.549 0.047 0.997
50 5 W 0.984 0.955 0.644 0.017 0.963
50 5 P 0.971 0.940 0.598 0.012 0.871
50 5 HL 0.997 0.979 0.756 0.053 0.991
50 5 R 0.996 0.978 0.744 0.049 1

105 10 W 0.650 0.970 0.191 0.000 0.633
105 10 P 0.109 0.812 0.050 0.000 0.000
105 10 HL 0.964 0.997 0.428 0.000 1
105 10 R 1 1 0.892 0.052 1
150 10 W 1 1 0.948 0.032 1
150 10 P 1 1 0.941 0.025 1
150 10 HL 1 1 0.966 0.060 1
150 10 R 1 1 0.965 0.057 1
450 20 W 1 1 0.999 0.020 1
450 20 P 1 1 0.999 0.016 1
450 20 HL 1 1 0.999 0.035 1
450 20 R 1 1 0.999 0.056 1

The simulation used 5000 runs, and H0 was rejected if the F statistic
was greater than Fd1,d2

(0.95) where P (Fd1,d2
< Fd1,d2

(0.95)) = 0.95 with
d1 = rm and d2 = n−mp for the test statistics

−[n− p− 0.5(m− r + 3)]

rm
log(Λ(L)),

n− p

rm
V (L), and

n − p

rm
U(L),

while d1 = h = max(r,m) and d2 = n− p− h+ r for the test statistic

n− p− h+ r

h
λmax(L).

Denote these statistics by W , P , HL, and R. Let the coverage be the propor-
tion of times that H0 is rejected. We want coverage near 0.05 when H0 is true
and coverage close to 1 for good power when H0 is false. With 5000 runs,
coverage outside of (0.04,0.06) suggests that the true coverage is not 0.05.
Coverages are tabled for the F1, F2, Fp−1, and Fp test and for the MANOVA
F test denoted by FM . The null hypothesis H0 was always true for the Fp

test and always false for the F1 test. When the MANOVA F test was true,
H0 was true for the Fj tests with j 6= 1. When the MANOVA F test was
false, H0 was false for the Fj tests with j 6= p, but the Fp−1 test should be
hardest to reject for j 6= p by construction of B and the error vectors.

When the null hypothesisH0 was true, simulated values started to get close
to nominal levels for n ≥ 0.8(m+p)2, and were fairly good for n ≥ 1.5(m+p)2.
The exception was Roy’s test which rejects H0 far too often if r > 1. See
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Table 10.1 where we want values for the F1 test to be close to 1 since H0

is false for the F1 test, and we want values close to 0.05, otherwise. Roy’s
test was very good for the Fj tests but very poor for the MANOVA F test.
Results are shown for m = p = 10. As expected from Berndt and Savin
(1977), Pillai’s test rejected H0 less often than Wilks’ test which rejected H0

less often than the Hotelling Lawley test. Based on a much larger simulation
study, using the four types of error vector distributions and m = p, the tests
had approximately correct level if n ≥ 0.83(m+ p)2 for the Hotelling Lawley
test, if n ≥ 2.80(m+ p)2 for the Wilks’ test (agreeing with Kshirsagar (1972)
n ≥ 3(m + p)2 for multivariate normal data), and if n ≥ 4.2(m + p)2 for
Pillai’s test.

In Table 10.2, H0 is only true for the Fp test where p = m, and we want
values in the Fp column near 0.05. We want values near 1 for high power
otherwise. If H0 is false, often H0 will be rejected for small n. For example,
if n ≥ 10p, then the m residual plots should start to look good, and the
MANOVA F test should be rejected. For the simulated data, the test had
fair power for n not much larger thanmp. Results are shown for the lognormal
distribution.

Some R output for reproducing the simulation is shown below. The linmod-
pack function is mregsim and etype = 1 uses data from a MVN distribution.
The fcov line computed the Hotelling Lawley statistic using Equation (10.3)
while the hotlawcov line used Definition 10.9. The mnull=T part of the com-
mand means we want the first value near 1 for high power and the next three
numbers near the nominal level 0.05 except for mancv where we want all
of the MANOVA F test statistics to be near the nominal level of 0.05. The
mnull=F part of the command means want all values near 1 for high power
except for the last column (for the terms other than mancv) corresponding to
the Fp test where H0 is true so we want values near the nominal level of 0.05.
The “coverage” is the proportion of times that H0 is rejected, so “coverage”
is short for “power” and “level”: we want the coverage near 1 for high power
when H0 is false and we want the coverage near the nominal level 0.05 when
H0 is true. Also see Problem 10.10.

mregsim(nruns=5000,etype=1,mnull=T)

$wilkcov

[1] 1.0000 0.0450 0.0462 0.0430

$pilcov

[1] 1.0000 0.0414 0.0432 0.0400

$hotlawcov

[1] 1.0000 0.0522 0.0516 0.0490

$roycov

[1] 1.0000 0.0512 0.0500 0.0480

$fcov

[1] 1.0000 0.0522 0.0516 0.0490

$mancv

wcv pcv hlcv rcv fcv
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[1,] 0.0406 0.0332 0.049 0.1526 0.049

mregsim(nruns=5000,etype=2,mnull=F)

$wilkcov

[1] 0.9834 0.9814 0.9104 0.0408

$pilcov

[1] 0.9824 0.9804 0.9064 0.0372

$hotlawcov

[1] 0.9856 0.9838 0.9162 0.0480

$roycov

[1] 0.9848 0.9834 0.9156 0.0462

$fcov

[1] 0.9856 0.9838 0.9162 0.0480

$mancv

wcv pcv hlcv rcv fcv

[1,] 0.993 0.9918 0.9942 0.9978 0.9942

See Olive (2017b,
∮

12.5.2) for simulations for the prediction region. Also
see Problem 10.11.

9.6 The Robust rmreg2 Estimator

The robust multivariate linear regression estimator rmreg2 is the classi-
cal multivariate linear regression estimator applied to the RMVN set when
RMVN is computed from the vectors ui = (xi2, ..., xip, Yi1, ..., Yim)T for
i = 1, ..., n. Hence ui is the ith case with xi1 = 1 deleted. This regression
estimator has considerable outlier resistance, and is one of the most outlier
resistant practical robust regression estimator for the m = 1 multiple linear
regression case. See Chapter 7. The rmreg2 estimator has been shown to be
consistent if the ui are iid from a large class of elliptically contoured distri-
butions, which is a much stronger assumption than having iid error vectors
εi.

Theorem 2.20 gave a second way to compute β̂, and there is a similar result
for multivariate linear regression. Let x = (1,uT )T and let β = (β1,β

T
2 )T =

(α,ηT )T . Now for multivariate linear regression, β̂j = (α̂j, η̂
T
j )T where α̂j =

Y j−η̂T
j u and η̂j = Σ̂

−1

u Σ̂uYj by Theorem 2.20. Let Σ̂uy = 1
n−1

∑n
i=1(wi−

w)(yi − y)T which has jth column Σ̂wYj for j = 1, ..., m. Let

v =

(
u

y

)
, E(v) = µv =

(
E(u)
E(y)

)
=

(
µu
µy

)
, and Cov(v) = Σv =



276 9 Multivariate Linear Regression

(
Σuu Σuy
Σyu Σyy

)
.

Let the vector of constants be αT = (α1, ..., αm) and the matrix of slope
vectors BS =

[
η1 η2 . . . ηm

]
. Then the population least squares coefficient

matrix is

B =

(
αT

BS

)

where α = µy − BT
Sµu and BS = Σ−1

u Σuy where Σu = Σuu.
If the ui are iid with nonsingular covariance matrix Cov(u), the least

squares estimator

B̂ =

(
α̂T

B̂S

)

where α̂ = y − B̂
T

Su and B̂S = Σ̂
−1

u Σ̂uy . The least squares multivariate
linear regression estimator can be calculated by computing the classical esti-
mator (v,Sv) = (v, Σ̂v) of multivariate location and dispersion on the vi,

and then plug in the results into the formulas for α̂ and B̂S .
Let (T,C) = (µ̃v , Σ̃v) be a robust estimator of multivariate location and

dispersion. If µ̃v is a consistent estimator of µv and Σ̃v is a consistent
estimator of c Σv for some constant c > 0, then a robust estimator of mul-

tivariate linear regression is the plug in estimator α̃ = µ̃y − B̃
T

S µ̃u and

B̃S = Σ̃
−1

u Σ̃uy .
For the rmreg2 estimator, (T,C) is the classical estimator applied to

the RMVN set when RMVN is applied to vectors vi for i = 1, ..., n (could
use (T,C) = RMVN estimator since the scaling does not matter for this
application). Then (T,C) is a

√
n consistent estimator of (µv , cΣv) if the vi

are iid from a large class of ECd(µv ,Σv , g) distributions where d = m+p−1.
Thus the classical and robust estimators of multivariate linear regression are
both

√
n consistent estimators of B if the vi are iid from a large class of

elliptically contoured distributions. This assumption is quite strong, but the
robust estimator is useful for detecting outliers. When there are categorical
predictors or the joint distribution of v is not elliptically contoured, it is
possible that the robust estimator is bad and very different from the good
classical least squares estimator. The linmodpack function rmreg2 computes
the rmreg2 estimator and produces the response and residual plots.

Example 10.4. Buxton (1920) gave various measurements of 88 men. Let
Y1 = nasal height and Y2 = height with x2 = head length, x3 = bigonal breadth,
and x4 = cephalic index. Five individuals, numbers 62–66, were reported to
be about 0.75 inches tall with head lengths well over five feet! Thus Y2 and
x2 have massive outliers. Figures 10.6 and 10.7 show that the response and
residual plots corresponding to rmreg2 do not have fits that pass through
the outliers.

These figures can be made with the following R commands.
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Fig. 9.6 Plots for Y1 = nasal height using rmreg2.
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Fig. 9.7 Plots for Y2 = height using rmreg2.
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ht <- buxy; z <- cbind(buxx,ht);

y <- z[,c(2,5)]; x <- z[,c(1,3,4)]

# compare mltreg(x,y) #right click Stop 4 times

out <- rmreg2(x,y) #right click Stop 4 times

# try ddplot4(out$res) #right click Stop

The residual bootstrap for the test H0 : LB = 0 may be useful. Take a
sample of size n with replacement from the residual vectors to form Z∗

1 with
ith row y∗T

i where y∗
i = ŷi + ε∗i . The function rmreg3 gets the rmreg2

estimator without the plots. Using rmreg3, regress Z on X to get vec(LB̂
∗
1).

Repeat B times to get a bootstrap sample w1, ...,wB where wi = vec(LB̂
∗
i ).

The nonparametric bootstrap uses n cases drawn with replacement, and may
also be useful. Apply the nonparametric prediction region to the wi and see
if 0 is in the region. If L is r × p, then w is rp × 1, and we likely need
n ≥ max[50rp, 3(m+ p)2].

9.7 Bootstrap

9.7.1 Parametric Bootstrap

The parametric bootstrap for the multivariate linear regression model uses

y∗
i ∼ Nm(B̂

T
xi, Σ̂ε) for i = 1, ..., n where we are not assuming that the

εi ∼ Nm(0,Σε). Let Z∗
j have ith row y∗T

i and regress Z∗
j on X to obtain

B̂
∗
j for j = 1, ..., B. Let S ⊆ I, let B̂I = (XT

I XI)
−1XT

I Z∗, and assume

n(XT
I XI)

−1 P→ W I for any I such that S ⊆ I. Then with calculations
similar to those for the multiple linear regression model parametric bootstrap

of Section 4.6.1, E(B̂
∗
I) = B̂I ,

√
n vec(B̂I − BI)

D→ NaIm(0,Σε ⊗ W I),

and
√

n vec(B̂
∗
I − B̂I) ∼ NaIm(0, Σ̂ε ⊗ n(XT

I X I)
−1)

D→ NaIm(0,Σε ⊗W I)

as n, B → ∞ if S ⊆ I. Let B̂
∗
I,0 be formed from B̂

∗
I by adding rows of zeros

corresponding to omitted variables.

9.7.2 Residual Bootstrap

The residual bootstrap uses the multivariate linear regression model

Z∗ = XB̂ + Ê
W
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where the rows of Ê
W

are sampled with replacement from the rows of Ê
W

.

Regress Z∗ of X and repeat to get the bootstrap sample B̂
∗
1, ..., B̂

∗
B .

9.7.3 Nonparametric Bootstrap

The nonparametric bootstrap samples cases (yT
i ,x

T
i )T with replacement to

form (Z∗
j ,X

∗
j ), and regresses Z∗

j on X∗
j to get B̂

∗
j for j = 1, ..., B. The

nonparametric bootstrap can be useful even if heteroscedasticity or overdis-
persion is present, if the cases are an iid sample from some population, a
very strong assumption. See Eck (2018) for using the residual bootstrap and
nonparametric bootstrap to bootstrap multivariate linear regression.

9.8 Data Splitting

The theory for multivariate linear regression assumes that the model is known
before gathering data. If variable selection and response transformations are
performed to build a model, then the estimators are biased and results for
inference fail to hold in that pvalues and coverage of confidence and prediction
regions will be wrong.

Data splitting can be used in a manner similar to how data splitting is
used for MLR and other regression models. A pilot study is an alternative to
data splitting.

9.9 Ridge Regression, PCR, and Other High

Dimensional Methods

Consider models Z = XB + E and Z = α + XB + E where the second
model separates out the constants.

There are many things that can be done for multivariate linear regression.
a) Fit a global estimator such as forward selection, lasso, lasso variable selec-

tion, etc. For example, a ridge estimator is B̂R = (XT X + λ1,nI)−1XT Z,

which uses one value of λ̂.
b) Fit a Chapter 3 method for each Yi, i = 1, ..., m to find β̂i and B̂ =

(β̂1, ..., β̂m). Hence the corresponding ridge estimator would use λ̂i for
i = 1, ..., m. Note that

B̂MMLE = [diag(Σ̂x)]−1Σ̂x,y .
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c) Find k linear combinations ŵi = η̂T
i x, i = 1, ..., k and fit a model using

the ŵi instead of the xj. For example, use ŵi = η̂T
i x with η̂i = Σ̂x,Yi

for i = 1, ..., k = m. If k and m are small enough, an option is to fit the
multivariate linear regression of y on the ŵi with OLS. Taking η̂i = β̂i

where β̂i is from b) is an option.
See Olive (2024b) for more on high dimensional testing.

9.10 Summary

1) The multivariate linear regression model is a special case of the multi-
variate linear model where at least one predictor variable xj is continuous.
The MANOVA model in Chapter 9 is a multivariate linear model where all
of the predictors are categorical variables so the xj are coded and are often
indicator variables.

2) The multivariate linear regression model yi = BT xi + εi for
i = 1, ..., n has m ≥ 2 response variables Y1, ..., Ym and p predictor variables
x1, x2, ..., xp. The ith case is (xT

i , y
T
i ) = (xi1, xi2, ..., xip, Yi1, ..., Yim). The

constant xi1 = 1 is in the model, and is often omitted from the case and
the data matrix. The model is written in matrix form as Z = XB + E.
The model has E(εk) = 0 and Cov(εk) = Σε = (σij) for k = 1, ..., n. Also
E(ei) = 0 while Cov(ei, ej) = σijIn for i, j = 1, ..., m. Then B and Σε are
unknown matrices of parameters to be estimated, and E(Z) = XB while
E(Yij) = xT

i βj.
3) Each response variable in a multivariate linear regression model follows

a multiple linear regression model Y j = Xβj + ej for j = 1, ..., m where it
is assumed that E(ej) = 0 and Cov(ej) = σjjIn.

4) For each variable Yk make a response plot of Ŷik versus Yik and a residual
plot of Ŷik versus rik = Yik − Ŷik. If the multivariate linear regression model
is appropriate, then the plotted points should cluster about the identity line
in each of the m response plots. If outliers are present or if the plot is not
linear, then the current model or data need to be transformed or corrected.
If the model is good, then each of the m residual plots should be ellipsoidal
with no trend and should be centered about the r = 0 line. There should not
be any pattern in the residual plot: as a narrow vertical strip is moved from
left to right, the behavior of the residuals within the strip should show little
change. Outliers and patterns such as curvature or a fan shaped plot are bad.

5) Make a scatterplot matrix of Y1, ..., Ym and of the continuous predictors.
Use power transformations to remove strong nonlinearities.

6) Consider testing LB = 0 where L is an r × p full rank matrix. Let

W e = Ê
T
Ê and W e/(n−p) = Σ̂ε. Let H = B̂

T
LT [L(XT X)−1LT ]−1LB̂.

Let λ1 ≥ λ2 ≥ · · · ≥ λm be the ordered eigenvalues of W−1
e H. Then there

are four commonly used test statistics.
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The Wilks’ Λ statistic is Λ(L) = |(H + W e)
−1W e| = |W−1

e H + I|−1 =
m∏

i=1

(1 + λi)
−1.

The Pillai’s trace statistic is V (L) = tr[(H + W e)
−1H] =

m∑

i=1

λi

1 + λi
.

The Hotelling-Lawley trace statistic is U(L) = tr[W−1
e H ] =

m∑

i=1

λi.

The Roy’s maximum root statistic is λmax(L) = λ1.
7) Theorem: The Hotelling-Lawley trace statistic

U(L) =
1

n− p
[vec(LB̂)]T [Σ̂

−1

ε ⊗ (L(XT X)−1LT )−1][vec(LB̂)].

8) Assumption D1: Let hi be the ith diagonal element of X(XT X)−1XT .

Assume max(h1, ..., hn)
P→ 0 as n→ ∞, assume that the zero mean iid error

vectors have finite fourth moments, and assume that
1

n
XT X

P→ W−1.

9) Multivariate Least Squares Central Limit Theorem (MLS

CLT): For the least squares estimator, if assumption D1 holds, then Σ̂ε is

a
√
n consistent estimator of Σε, and

√
n vec(B̂ −B)

D→ Npm(0,Σε ⊗W ).
10) Theorem: If assumption D1 holds and if H0 is true, then

(n− p)U(L)
D→ χ2

rm.

11) Under regularity conditions, −[n−p+1−0.5(m− r+3)] log(Λ(L))
D→

χ2
rm, (n − p)V (L)

D→ χ2
rm, and (n − p)U(L)

D→ χ2
rm.

These statistics are robust against nonnormality.
12) For the Wilks’ Lambda test,

pval = P

(−[n− p+ 1 − 0.5(m− r + 3)]

rm
log(Λ(L)) < Frm,n−rm

)
.

For the Pillai’s trace test, pval = P

(
n − p

rm
V (L) < Frm,n−rm

)
.

For the Hotelling Lawley trace test, pval = P

(
n− p

rm
U(L) < Frm,n−rm

)
.

The above three tests are large sample tests, P(reject H0|H0 is true) → δ
as n → ∞, under regularity conditions.

13) The 4 step MANOVA F test of hypotheses uses L = [0 Ip−1].
i) State the hypotheses H0: the nontrivial predictors are not needed in the
mreg model H1: at least one of the nontrivial predictors is needed.
ii) Find the test statistic Fo from output.
iii) Find the pval from output.
iv) If pval ≤ δ, reject H0. If pval > δ, fail to reject H0. If H0 is rejected,
conclude that there is a mreg relationship between the response variables
Y1, ..., Ym and the predictors x2, ..., xp. If you fail to reject H0, conclude that
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there is a not a mreg relationship between Y1, ..., Ym and the predictors x2,
..., xp. (Get the variable names from the story problem.)

14) The 4 step Fj test of hypotheses uses Lj = [0, ..., 0, 1, 0, ..., 0] where

the 1 is in the jth position. Let BT
j be the jth row of B. The hypotheses are

equivalent to H0 : BT
j = 0 H1 : BT

j 6= 0. i) State the hypotheses
H0: xj is not needed in the model H1: xj is needed in the model.
ii) Find the test statistic Fj from output.
iii) Find pval from output.
iv) If pval ≤ δ, reject H0. If pval > δ, fail to reject H0. Give a nontechnical
sentence restating your conclusion in terms of the story problem. If H0 is
rejected, then conclude that xj is needed in the mreg model for Y1, ..., Ym. If
you fail to reject H0, then conclude that xj is not needed in the mreg model
for Y1, ..., Ym given that the other predictors are in the model.

15) The 4 step MANOVA partial F test of hypotheses has a full model
using all of the variables and a reduced model where r of the variables are
deleted. The ith row of L has a 1 in the position corresponding to the ith
variable to be deleted. Omitting the jth variable corresponds to the Fj test
while omitting variables x2, ..., xp corresponds to the MANOVA F test.
i) State the hypotheses H0: the reduced model is good
H1: use the full model.
ii) Find the test statistic FR from output.
iii) Find the pval from output.
iv) If pval ≤ δ, reject H0 and conclude that the full model should be used.
If pval > δ, fail to reject H0 and conclude that the reduced model is good.

16) The 4 step MANOVA F test should reject H0 if the response and
residual plots look good, n is large enough, and at least one response plot
does not look like the corresponding residual plot. A response plot for Yj will
look like a residual plot if the identity line appears almost horizontal, hence
the range of Ŷj is small.

17) The linmodpack function mltreg produces the m response and resid-

ual plots, gives B̂, Σ̂ε, the MANOVA partial F test statistic and pval cor-
responding to the reduced model that leaves out the variables given by in-
dices (so x2 and x4 in the output below with F = 0.77 and pval = 0.614),
Fj and the pval for the Fj test for variables 1, 2, ..., p (where p = 4 in
the output below so F2 = 1.51 with pval = 0.284), and F0 and pval for
the MANOVA F test (in the output below F0 = 3.15 and pval= 0.06).
The command out <- mltreg(x,y,indices=c(2)) would produce a
MANOVA partial F test corresponding to the F2 test while the command
out <- mltreg(x,y,indices=c(2,3,4)) would produce a MANOVA
partial F test corresponding to the MANOVA F test for a data set with
p = 4 predictor variables. The Hotelling Lawley trace statistic is used in the
tests.

out <- mltreg(x,y,indices=c(2,4))

$Bhat [,1] [,2] [,3]
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[1,] 47.96841291 623.2817463 179.8867890

[2,] 0.07884384 0.7276600 -0.5378649

[3,] -1.45584256 -17.3872206 0.2337900

[4,] -0.01895002 0.1393189 -0.3885967

$Covhat

[,1] [,2] [,3]

[1,] 21.91591 123.2557 132.339

[2,] 123.25566 2619.4996 2145.780

[3,] 132.33902 2145.7797 2954.082

$partial

partialF Pval

[1,] 0.7703294 0.6141573

$Ftable

Fj pvals

[1,] 6.30355375 0.01677169

[2,] 1.51013090 0.28449166

[3,] 5.61329324 0.02279833

[4,] 0.06482555 0.97701447

$MANOVA

MANOVAF pval

[1,] 3.150118 0.06038742

18) Given B̂ = [β̂1 β̂2 · · · β̂m] and xf , find ŷf = (ŷ1, ..., ŷm)T where

ŷi = β̂
T

i xf .

19) Σ̂ε =
Ê

T
Ê

n− p
=

1

n− p

n∑

i=1

ε̂iε̂
T
i while the sample covariance matrix of

the residuals is Sr =
n − p

n − 1
Σ̂ε =

Ê
T
Ê

n− 1
. Both Σ̂ε and Sr are

√
n consistent

estimators of Σε for a large class of distributions for the error vectors εi.
20) The 100(1 − δ)% nonparametric prediction region for yf given xf is

the nonparametric prediction region from
∮

2.2 applied to ẑi = ŷf + ε̂i =

B̂
T
xf + ε̂i for i = 1, ..., n. This takes the data cloud of the n residual vectors

ε̂i and centers the cloud at ŷf . Let

D2
i (ŷf ,Sr) = (ẑi − ŷf)T S−1

r (ẑi − ŷf )

for i = 1, ..., n. Let qn = min(1 − δ + 0.05, 1− δ +m/n) for δ > 0.1 and

qn = min(1 − δ/2, 1− δ + 10δm/n), otherwise.

If qn < 1 − δ + 0.001, set qn = 1 − δ. Let 0 < δ < 1 and h = D(Un) where
D(Un) is the qnth sample quantile of the Di. The 100(1− δ)% nonparametric
prediction region for yf is



284 9 Multivariate Linear Regression

{y : (y − ŷf)T S−1
r (y − ŷf ) ≤ D2

(Un)} = {y : Dy(ŷf ,Sr) ≤ D(Un)}.

a) Consider the n prediction regions for the data where (yf,i,xf,i) =
(yi,xi) for i = 1, ..., n. If the order statistic D(Un) is unique, then Un of the
n prediction regions contain yi where Un/n→ 1 − δ as n → ∞.

b) If (ŷf ,Sr) is a consistent estimator of (E(yf ),Σε) then the nonpara-
metric prediction region is a large sample 100(1 − δ)% prediction region for
yf .

c) If (ŷf ,Sr) is a consistent estimator of (E(yf ),Σε), and the εi come
from an elliptically contoured distribution such that the unique highest den-
sity region is {y : Dy(0,Σε) ≤ D1−δ}, then the nonparametric prediction
region is asymptotically optimal.

21) On the DD plot for the residual vectors, the cases to the left of the
vertical line correspond to cases that would have yf = yi in the nonpara-
metric prediction region if xf = xi, while the cases to the right of the line
would not have yf = yi in the nonparametric prediction region.

22) The DD plot for the residual vectors is interpreted almost exactly as
a DD plot for iid multivariate data is interpreted. Plotted points clustering
about the identity line suggests that the εi may be iid from a multivariate
normal distribution, while plotted points that cluster about a line through
the origin with slope greater than 1 suggests that the εi may be iid from an
elliptically contoured distribution that is not MVN. Points to the left of the
vertical line corresponds to the cases that are in their nonparamtric prediction
region. Robust distances have not been shown to be consistent estimators of
the population distances, but are useful for a graphical diagnostic.
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23) Multiple Linear Regression Multivariate Linear Regression
Y = Xβ + e Z = XB + E

1) E(Y ) = Xβ E[Z] = XB

2) Yi = xT
i β + ei yi = BT xi + εi

3) E(e) = 0 E[E] = 0

4) H = P = X(XT X)−1XT H = P = X(XT X)−1XT

5) β̂ = (XT X)−1XT Y B̂ = (XT X)−1XT Z

6) Ŷ = P Y Ẑ = P Z

7) r = ê = (I − P )Y Ê = (I − P )Z

8) E[β̂] = β E[B̂] = B

9) E(Ŷ ) = E(Y ) = Xβ E[Ẑ] = XB

10) σ̂2 = rT r
n−p Σ̂ε =

Ê
T
Ê

n− p

11) V (ei) = σ2 Cov(εi) = Σε

12) E(Yi) = βT xi E[yi] = BT xi

H0 : Lβ = 0 H0 : LB = 0

13) rFR
D→ χ2

r (n− p)U(L)
D→ χ2

rm

14) LS CLT MLS CLT
√
n(β̂ − β)

D→ Np(0, σ2W )
√
n vec(B̂ − B)

D→ Npm(0,Σε ⊗ W ).



286 9 Multivariate Linear Regression

23) The table on the previous page compares MLR and MREG.
24) The robust multivariate linear regression method rmreg2 computes

the classical estimator on the RMVN set where RMVN is computed from
the n cases vi = (xi2, ..., xpi, Yi1, ..., Yim)T . This estimator has considerable
outlier resistance but theory currently needs very strong assumptions. The
response and residual plots and DD plot of the residuals from this estimator
are useful for outlier detection. The rmreg2 estimator is superior to the
rmreg estimator for outlier detection.

9.11 Complements

This chapter followed Olive (2017b, ch. 12) closely. Multivariate linear re-
gression is a semiparametric method that is nearly as easy to use as multiple
linear regression if m is small. Section 10.3 followed Olive (2018) closely. The
material on plots and testing followed Olive et al. (2015) closely. The m re-
sponse and residual plots should be made as well as the DD plot, and the
response and residual plots are very useful for the m = 1 case of multiple
linear regression and experimental design. These plots speed up the model
building process for multivariate linear models since the success of power
transformations achieving linearity can be quickly assessed, and influential
cases can be quickly detected. See Cook and Olive (2001).

Work is needed on variable selection and on determining the sample sizes
for when the tests and prediction regions start to work well. Response and
residual plots can look good for n ≥ 10p, but for testing and prediction
regions, we may need n ≥ a(m+p)2 where 0.8 ≤ a ≤ 5 even for well behaved
elliptically contoured error distributions. Variable selection for multivariate
linear regression is discussed in Fujikoshi et al. (2014). R programs are needed
to make variable selection easy. Forward selection would be especially useful.

Often observations (Y1, ..., Ym, x2, ..., xp) are collected on the same person
or thing and hence are correlated. If transformations can be found such that
the DD plot and the m response plots and residual plots look good, and
n is large (n ≥ max[(m + p)2, mp + 30)] starts to give good results), then
multivariate linear regression can be used to efficiently analyze the data.
Examiningm multiple linear regressions is an incorrect method for analyzing
the data.

In addition to robust estimators and seemingly unrelated regressions, en-
velope estimators and partial least squares (PLS) are competing methods for
multivariate linear regression. See recent work by Cook such as Cook (2018),
Cook and Su (2013), Cook et al. (2013), and Su and Cook (2012). Methods
like ridge regression and lasso can also be extended to multivariate linear re-
gression. See, for example, Obozinski et al. (2011). Relaxed lasso extensions
are likely useful. Prediction regions for alternative methods with n >> p
could be made following Section 10.3.
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Plugging in robust dispersion estimators in place of the covariance matri-
ces, as done in Section 10.6, is not a new idea. Maronna and Morgenthaler
(1986) used M–estimators when m = 1. Problems can occur if the error
distribution is not elliptically contoured. See Nordhausen and Tyler (2015).

Khattree and Naik (1999, pp. 91-98) discussed testing H0 : LBM = 0
versus H1 : LBM 6= 0 where M = I gives a linear test of hypotheses.
Johnstone and Nadler (2017) gave useful approximations for Roy’s largest
root test when the error vector distribution is multivariate normal.

9.12 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

10.1∗. Consider the Hotelling Lawley test statistic. Let

T (W ) = n [vec(LB̂)]T [Σ̂
−1

ε ⊗ (LWLT )−1][vec(LB̂)].

Let
XT X

n
= Ŵ

−1
.

Show T (Ŵ ) = [vec(LB̂)]T [Σ̂
−1

ε ⊗ (L(XT X)−1LT )−1][vec(LB̂)].

10.2. Consider the Hotelling Lawley test statistic. Let T =

[vec(LB̂)]T [Σ̂
−1

ε ⊗ (L(XT X)−1LT )−1][vec(LB̂)].

Let L = Lj = [0, ..., 0, 1, 0, ..., 0] have a 1 in the jth position. Let b̂
T

j = LB̂ be

the jth row of B̂. Let dj = Lj(X
T X)−1LT

j = (XT X)−1
jj , the jth diagonal

entry of (XT X)−1. Then Tj = 1
dj

b̂
T

j Σ̂
−1

ε b̂j. The Hotelling Lawley statistic

U = tr([(n− p)Σ̂ε]−1B̂
T
LT [L(XT X)−1LT ]−1LB̂]).

Hence if L = Lj , then Uj = 1
dj(n−p) tr(Σ̂

−1

ε b̂j b̂
T

j ).

Using tr(ABC) = tr(CAB) and tr(a) = a for scalar a, show that
(n− p)Uj = Tj.

10.3. Consider the Hotelling Lawley test statistic. Using the Searle (1982,
p. 333) identity

tr(AGT DGC) = [vec(G)]T [CA ⊗ DT ][vec(G)],
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show (n − p)U(L) = tr[Σ̂
−1

ε B̂
T
LT[L(XTX)−1LT]−1LB̂]

= [vec(LB̂)]T [Σ̂
−1

ε ⊗ (L(XT X)−1LT )−1][vec(LB̂)] by identifying A,G,D,
and C.

$Ftable Fj pvals #Output for problem 10.4.

[1,] 82.147221 0.000000e+00

[2,] 58.448961 0.000000e+00

[3,] 15.700326 4.258563e-09

[4,] 9.072358 1.281220e-05

[5,] 45.364862 0.000000e+00

$MANOVA

MANOVAF pval

[1,] 67.80145 0

10.4. The output above is for the R Seatbelts data set where Y1 =
drivers = number of drivers killed or seriously injured, Y2 = front = number
of front seat passengers killed or seriously injured, and Y3 = back = num-
ber of back seat passengers killed or seriously injured. The predictors were
x2 = kms = distance driven, x3 = price = petrol price, x4 = van = number
of van drivers killed, and x5 = law = 0 if the law was in effect that month
and 1 otherwise. The data consists of 192 monthly totals in Great Britain
from January 1969 to December 1984, and the compulsory wearing of seat
belts law was introduced in February 1983.

a) Do the MANOVA F test.

b) Do the F4 test.

10.5. a) Sketch a DD plot of the residual vectors ε̂i for the multivariate
linear regression model if the error vectors εi are iid from a multivariate
normal distribution. b) Does the DD plot change if the one way MANOVA
model is used instead of the multivariate linear regression model?

10.6. The output below is for the R judge ratings data set consisting of
lawyer ratings for n = 43 judges. Y1 = oral = sound oral rulings, Y2 = writ =
sound written rulings, and Y3 = rten = worthy of retention. The predictors
were x2 = cont = number of contacts of lawyer with judge, x3 = intg =
judicial integrity, x4 = dmnr = demeanor, x5 = dilg = diligence, x6 =
cfmg = case flow managing, x7 = deci = prompt decisions, x8 = prep =
preparation for trial, x9 = fami = familiarity with law, and x10 = phys =
physical ability.

a) Do the MANOVA F test.

b) Do the MANOVA partial F test for the reduced model that deletes
x2, x5, x6, x7, and x8.

y<-USJudgeRatings[,c(9,10,12)] #See problem 8.6.
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x<-USJudgeRatings[,-c(9,10,12)]

mltreg(x,y,indices=c(2,5,6,7,8))

$partial

partialF Pval

[1,] 1.649415 0.1855314

$MANOVA

MANOVAF pval

[1,] 340.1018 1.121325e-14

10.7. Let βi be p× 1 and suppose

(
β̂1 − β1

β̂2 − β2

)
∼ N2p

((
0
0

)
,

[
σ11(X

T X)−1 σ12(X
T X)−1

σ21(X
T X)−1 σ22(X

T X)−1

])
.

Find the distribution of

[L 0]

(
β̂1 − β1

β̂2 − β2

)
= Lβ̂1

where Lβ1 = 0 and L is r × p with r ≤ p. Simplify.

10.8. Let y = BT x + ε. Suppose x = (1, x2, ..., xp)
T = (1 wT )T where

w = (x2, ..., xp)
T . Let

B =

(
αT

BS

)
.

Suppose (
y

w

)
∼ Nm+p−1

[(
µy
µw

)
,

(
Σyy Σyw
Σwy Σww

)]
.

Then y|w ∼ Nm(µy + ΣywΣ−1
ww(w−µw),Σyy −ΣywΣ−1

wwΣww),

and ε ∼ Nm(0,Σyy − ΣywΣ−1
wwΣww) = Nm(0,Σε).

Now

y|x = y|
(

1
w

)
= BT x + ε,

and

y|w = BT x+ε =

(
αT

BS

)T (
1
w

)
+ε = (α BT

S )

(
1
w

)
+ε = α+BT

Sw +ε.

Hence E(y|w) = µy + ΣywΣ−1
ww(w − µw) = α + BT

Sw.

a) Show α = µy − BT
Sµw .

b) Show BS = Σ−1
w Σwy where Σw = Σww .

(Hence BT
S = ΣywΣ−1

w .)

R Problems
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Warning: Use the command source(“G:/linmodpack.txt”) to down-
load the programs. See Preface or Section 11.1. Typing the name of
the mpack function, e.g. ddplot, will display the code for the function. Use
the args command, e.g. args(ddplot), to display the needed arguments for
the function. For some of the following problems, the R commands can be
copied and pasted from (http://parker.ad.siu.edu/Olive/linmodrhw.txt) into
R.

10.9. This problem examines multivariate linear regression on the Cook
and Weisberg (1999) mussels data with Y1 = log(S) and Y2 = log(M) where
S is the shell mass and M is the muscle mass. The predictors are X2 = L,
X3 = log(W ), and X4 = H : the shell length, log(width), and height.

a) The R command for this part makes the response and residual plots
for each of the two response variables. Click the rightmost mouse button and
highlight Stop to advance the plot. When you have the response and residual
plots for one variable on the screen, copy and paste the two plots into Word.
Do this two times, once for each response variable. The plotted points fall in
roughly evenly populated bands about the identity or r = 0 line.

b) Copy and paste the output produced from the R command for this part
from $partial on. This gives the output needed to do the MANOVA F test,
MANOVA partial F test, and the Fj tests.

c) The R command for this part makes a DD plot of the residual vectors
and adds the lines corresponding to those in Figure 10.3. Place the plot
in Word. Do the residual vectors appear to follow a multivariate normal
distribution? (Right click Stop once.)

d) Do the MANOVA partial F test where the reduced model deletes X3

and X4.
e) Do the F2 test.
f) Do the MANOVA F test.

10.10. This problem examines multivariate linear regression on the SAS
Institute (1985, p. 146) Fitness Club Data with Y1 = chinups, Y2 = situps,
and Y3 = jumps. The predictors are X2 = weight, X3 = waist, and X4 =
pulse.

a) The R command for this part makes the response and residual plots for
each of the three variables. Click the rightmost mouse button and highlight
Stop to advance the plot. When you have the response and residual plots for
one variable on the screen, copy and paste the three plots into Word. Do this
three times, once for each response variable. Are there any outliers?

b) The R command for this part makes a DD plot of the residual vectors
and adds the lines corresponding to those in Figure 10.3. Place the plot in
Word. Are there any outliers? (Right click Stop once.)

10.11. This problem uses the linmodpack function mregsim to simulate
the Wilks’ Λ test, Pillai’s trace test, Hotelling Lawley trace test, and Roy’s
largest root test for the Fj tests and the MANOVA F test for multivariate
linear regression. When mnull = T the first row of B is 1T while the re-
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maining rows are equal to 0T . Hence the null hypothesis for the MANOVA
F test is true. When mnull = F the null hypothesis is true for p = 2, but
false for p > 2. Now the first row of B is 1T and the last row of B is 0T . If
p > 2, then the second to last row of B is (1, 0, ..., 0), the third to last row is
(1, 1, 0, ..., 0) et cetera as long as the first row is not changed from 1T . First
m iid errors zi are generated such that the m errors are iid with variance
σ2. Then εi = Azi so that Σ̂ε = σ2AAT = (σij) where the diagonal entries
σii = σ2[1+(m−1)ψ2 ] and the off diagonal entries σij = σ2[2ψ+(m−2)ψ2 ]
where ψ = 0.10. Terms like Wilkcov give the percentage of times the Wilks’
test rejected the F1, F2, ..., Fp tests. The $mancv wcv pcv hlcv rcv fcv output
gives the percentage of times the 4 test statistics reject the MANOVA F test.
Here hlcov and fcov both correspond to the Hotelling Lawley test using the
formulas in Problem 10.3.

5000 runs will be used so the simulation may take several minutes. Sample
sizes n = (m + p)2, n = 3(m + p)2, and n = 4(m+ p)2 were interesting. We
want coverage near 0.05 when H0 is true and coverage close to 1 for good
power when H0 is false. Multivariate normal errors were used in a) and b)
below.

a) Copy the coverage parts of the output produced by the R commands
for this part where n = 20, m = 2, and p = 4. Here H0 is true except for
the F1 test. Wilks’ and Pillai’s tests had low coverage < 0.05 when H0 was
false. Roy’s test was good for the Fj tests, but why was Roy’s test bad for
the MANOVA F test?

b) Copy the coverage parts of the output produced by the R commands
for this part where n = 20, m= 2, and p = 4. Here H0 is false except for the
F4 test. Which two tests seem to be the best for this part?

10.12. This problem uses the linmodpack function mpredsim to simulate
the prediction regions for yf given xf for multivariate regression. With 5000
runs this simulation may take several minutes. The R command for this
problem generates iid lognormal errors then subtracts the mean, producing
zi. Then the εi = Azi are generated as in Problem 10.11 with n=100, m=2,
and p=4. The nominal coverage of the prediction region is 90%, and 92%
of the training data is covered. The ncvr output gives the coverage of the
nonparametric region. What was ncvr?





Chapter 10

Multivariate Analysis

10.1 Two Set Inference

10.2 Summary

10.3 Complements

10.4 Problems

293





Chapter 11

Stuff for Students

11.1 R

R is available from the CRAN website (https://cran.r-project.org/). As of
January 2020, the author’s personal computer has Version 3.3.1 (June 21,
2016) of R. R is similar to Splus, but is free. R is very versatile since many
people have contributed useful code, often as packages.

Downloading the book’s files into R
Many of the homework problems use R functions contained in the book’s

website (http://parker.ad.siu.edu/Olive/slearnbk.htm) under the file name
slpack.txt. The following two R commands can be copied and pasted into R
from near the top of the file (http://parker.ad.siu.edu/Olive/slrhw.txt).

Downloading the book’s R functions slpack.txt and data files sl-
data.txt into R: the commands

source("http://parker.ad.siu.edu/Olive/slpack.txt")

source("http://parker.ad.siu.edu/Olive/sldata.txt")

can be used to download the R functions and data sets into R. Type ls().
Nearly 70 R functions from slpack.txt should appear. In R, enter the com-
mand q(). A window asking “Save workspace image?” will appear. Click on
No to remove the functions from the computer (clicking on Yes saves the func-
tions in R, but the functions and data are easily obtained with the source
commands).

Citing packages
We will use R packages often in this book. The following R command is

useful for citing the Mevik et al. (2015) pls package.

citation("pls")

Other packages cited in this book include MASS and class: both from Ven-
ables and Ripley (2010), glmnet: Friedman et al. (2015), and leaps: Lumley
(2009).

295
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This section gives tips on using R, but is no replacement for books such
as Becker et al. (1988), Crawley (2005, 2013), Fox and Weisberg (2010), or
Venables and Ripley (2010). Also see Mathsoft (1999ab) and use the website
(www.google.com) to search for useful websites. For example enter the search
words R documentation.

The command q() gets you out of R.
Least squares regression can be done with the function lsfit or lm.
The commands help(fn) and args(fn) give information about the function

fn, e.g. if fn = lsfit.
Type the following commands.

x <- matrix(rnorm(300),nrow=100,ncol=3)

y <- x%*%1:3 + rnorm(100)

out<- lsfit(x,y)

out$coef

ls.print(out)

The first line makes a 100 by 3 matrix x with N(0,1) entries. The second
line makes y[i] = 0+1∗x[i, 1]+2∗x[i, 2]+3∗x[i, 2]+ewhere e is N(0,1). The
term 1:3 creates the vector (1, 2, 3)T and the matrix multiplication operator is
%∗%. The function lsfit will automatically add the constant to the model.
Typing “out” will give you a lot of irrelevant information, but out$coef and
out$resid give the OLS coefficients and residuals respectively.

To make a residual plot, type the following commands.

fit <- y - out$resid

plot(fit,out$resid)

title("residual plot")

The first term in the plot command is always the horizontal axis while the
second is on the vertical axis.

To put a graph in Word, hold down the Ctrl and c buttons simulta-
neously. Then select “Paste” from the Word menu, or hit Ctrl and v at the
same time.

To enter data, open a data set in Notepad or Word. You need to know
the number of rows and the number of columns. Assume that each case is
entered in a row. For example, assuming that the file cyp.lsp has been saved
on your flash drive from the webpage for this book, open cyp.lsp in Word. It
has 76 rows and 8 columns. In R , write the following command.

cyp <- matrix(scan(),nrow=76,ncol=8,byrow=T)

A data frame is a two-dimensional array in which the values of different
variables are stored in different named columns.
Then copy the data lines from Word and paste them in R. If a cursor does
not appear, hit enter. The command dim(cyp) will show if you have entered
the data correctly.
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Enter the following commands

cypy <- cyp[,2]

cypx<- cyp[,-c(1,2)]

lsfit(cypx,cypy)$coef

to produce the output below.

Intercept X1 X2 X3

205.40825985 0.94653718 0.17514405 0.23415181

X4 X5 X6

0.75927197 -0.05318671 -0.30944144

Making functions in R is easy.

For example, type the following commands.

mysquare <- function(x){

# this function squares x

r <- xˆ2

r }

The second line in the function shows how to put comments into functions.

Modifying your function is easy.

Store a function as text file, modify the function in Notepad, and copy and
paste the function into R.

To save data or a function in R, when you exit, click on Yes when the
“Save worksheet image?” window appears. When you reenter R, type ls().
This will show you what is saved. You should rarely need to save anything
for this book. To remove unwanted items from the worksheet, e.g. x, type
rm(x),
pairs(x) makes a scatterplot matrix of the columns of x,
hist(y) makes a histogram of y,
boxplot(y) makes a boxplot of y,
stem(y) makes a stem and leaf plot of y,
scan(), source(), and sink() can be are useful.
To type a simple list, use y <− c(1,2,3.5).
The commands mean(y), median(y), var(y) are self explanatory.

The following commands are useful for a scatterplot created by the com-
mand plot(x,y).
lines(x,y), lines(lowess(x,y,f=.2))
identify(x,y)
abline(out$coef), abline(0,1)

The usual arithmetic operators are 2 + 4, 3 − 7, 8 ∗ 4, 8/4, and
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2ˆ{10}.

The ith element of vector y is y[i] while the ij element of matrix x is x[i, j].
The second row of x is x[2, ] while the 4th column of x is x[, 4]. The transpose
of x is t(x).

The command apply(x,1,fn) will compute the row means if fn = mean.
The command apply(x,2,fn) will compute the column variances if fn = var.
The commands cbind and rbind combine column vectors or row vectors with
an existing matrix or vector of the appropriate dimension.

Getting information about a library in R
In R, a library is an add–on package of R code. The command library()

lists all available libraries, and information about a specific library, such as
leaps for variable selection, can be found, e.g., with the command
library(help=leaps).

Downloading a library into R
Many researchers have contributed a library or package of R code that can

be downloaded for use. To see what is available, go to the website
(http://cran.us.r-project.org/) and click on the Packages icon.

Following Crawley (2013, p. 8), you may need to “Run as administrator”
before you can install packages (right click on the R icon to find this). Then
use the following command to install the glmnet package.

install.packages("glmnet")

Open R and type the following command.
library(glmnet)

Next type help(glmnet) to make sure that the library is available for use.

Warning: R is free but not fool proof. If you have an old version of R
and want to download a library, you may need to update your version of
R. The libraries for robust statistics may be useful for outlier detection, but
the methods have not been shown to be consistent or high breakdown. All
software has some bugs. For example, Version 1.1.1 (August 15, 2000) of R
had a random generator for the Poisson distribution that produced variates
with too small of a mean θ for θ ≥ 10. Hence simulated 95% confidence
intervals might contain θ 0% of the time. This bug seems to have been fixed
in Versions 2.4.1 and later. Also, some functions in lregpack may no longer
work in new versions of R.

11.2 Hints for Selected Problems

1.9. See Example 1.7.
3.7 Note that ZT

AZA = ZT Z,
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GA ηA =

(
Gη√
λ∗2 η

)
,

and ZT
AGAηA = ZT Gη. Then

RSS(ηA) = ‖ZA − GAηA‖2
2 = (ZA − GAηA)T (ZA − GAηA) =

ZT
AZA − ZT

AGAηA − ηT
AGT

AZA + ηT
AGT

AGAηA =

ZT Z − ZT Gη − ηT GT Z +
(
ηT GT

√
λ2 ηT

)( Gη√
λ∗2 η

)
.

Thus

QN (ηA) = ZT Z − ZT Gη − ηT GT Z + ηT GT Gη + λ∗2η
T η + γ‖ηA‖1 =

‖Z − Gη‖2
2 + λ∗2‖η‖2

2 +
λ∗1√

1 + λ∗2
‖ηA‖1 =

RSS(η) + λ∗2‖η‖2
2 + λ∗1‖η‖1 = Q(η). �

11.3 Projects

Straightforward Projects
1) Bootstrap OLS and forward selection with Cp as in Table 2.2, but use

more values of n, p, k, ψ, and error distributions. See some R code for Problem
3.12.

2) Bootstrap OLS and forward selection with BIC in a maaner similar
to bootstrapping OLS and forward selection with Cp as in Table 2.2, but
use more values of n, p, k, ψ, and error distributions. The slpack functions
bicboot and bicbootsim are useful.

3) For a support vector machine (SVM), Y = 1 or Y = −1. Let Z = 1 if

Y = 1 and Z = 0 if Y = −1. Let f(x) = β̂0 +
∑n

i=1 α̂iK(x,xi) = ESP . Plot
ESP versus Z and add lowess as a visual aid. This treats Z‖x as a binary
regression where ρ(ESP ) is not specified. Use the prediction region method
to bootstrap β.

4) Analyze a data set with one or more statistical learning methods. The
UC Irvine Machine Learning Repository website has interesting data sets. See
(http://archive.ics.uci.edu/ml/index.php) and (http://mlearn.ics.uci.edu/
MLRepository.html).

Harder Projects
1) Compare the Bickel and Ren (2001) bootstrap confidence region (2.21)

with the prediction region method bootstrap confidence region (2.22) on a
problem. For example for OLS or forward selection testing H0 : β0 = 0.
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2) A regression tree can be made for the model Y = m(x) + e. Develop a
prediction interval for Yf using (2.7) with d = number of terminal nodes.

3) For multiple linear regression, shrinkage estimators often shrink β̂ and
the ESP too much. See Figure 1.9b for ridge regression. Suppose Y = β1 +
β2x2 + · · ·+ β101x101 + e = x2 + e with n = 100 and p = 101. This model is
sparse and lasso performs well, similar to Figure 1.9a. Ridge regression shrinks
too much, but Ŷ is highly correlated with Y . This suggests regressing Y on
Ŷ to get Y = a + bŶ + ε. Then Ŷ = Xβ̂2 where β̂i2 = b̂β̂iM for i = 2, ..., p

and β̂i1 = â+ b̂β̂iM and M is the shrinkage method such as ridge regression.
If b̂ ≈ 1 or if the response plot using shrinkage method M looks good (the
plotted points are linear and cover the identity line), then the improvement
is not needed.

This technique greatly improves the appearance of the response plot and
the prediction intervals on the training data. Investigate whether the tech-
nique improves the prediction intervals on test data. Consider automating
the procedure by using the improvement if H0 : b = 1 versus H1 : b 6= 1 is
rejected, e.g. if 1 is not in the CI b̂± 2SE(b̂). Some R code is shown below.

(It may be possible to improve shrinkage estimators for regression models
such as Poisson regression. For Poisson regression, we would want

exp(â+ b̂β̂
T

Mx) to track Y well.)

#Possible way to correct shrinkage estimator

#underfitting.

#The response plot looks much better, but is the idea

#useful for prediction? Usually x1 was x2 in

#the formula Y = 0 + x1 + e.

#The corrected version has ‘‘x1" coef approx 0.48.

library(glmnet)

set.seed(13)

par(mfrow=c(2,1))

x <- matrix(rnorm(10000),nrow=100,ncol=100)

Y <- x[,1] + rnorm(100,sd=0.1)

#sparse model, iid predictors

out <- cv.glmnet(x,Y,alpha=1) #lasso

lam <- out$lambda.min

fit <- predict(out,s=lam,newx=x)

res<- Y-fit

#PI bands used d = 1

AERplot2(yhat=fit,y=Y,res=res)

title("lasso")

cor(fit,Y) #about 0.997

tem <- lsfit(fit,Y)

tem$coef #changes even if set.seed is used

# Intercept 1
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#0.0009741988 1.0132965955

out <- cv.glmnet(x,Y,alpha=0) #ridge regression

lam <- out$lambda.min

fit <- predict(out,s=lam,newx=x)

res<- Y-fit

#PI bands used d = 1

AERplot2(yhat=fit,y=Y,res=res)

#$respi

#[1] -1.276461 1.693856 #PI length about 2.97

title("ridge regression")

par(mfrow=c(1,1))

#ridge regression shrank betahat and ESP too much

cor(fit,Y) #about 0.91

tem <- lsfit(fit,Y)

tem$coef

# Intercept 1

#0.3523725 5.8094443 #Fig. 1.9 has -0.7008187 5.7954084

fit2 <- Y-tem$resid

#Y = yhat + r, fit2 = yhat for scaled RR estimator

plot(fit2,Y) #response plot is much better

abline(0,1)

rrcoef <- predict(out,type="coefficients",s=lam)

plot(rrcoef)

bhat <- tem$coef[2]*rrcoef

bhat[1] <- bhat[1] + tem$coef[1]

#bhat is the betahat for the new ESP fit2

fit3 <- x%*%bhat[-1] + bhat[1]

plot(fit2,fit3)

max(abs(fit2-fit3))

#[1] 1.110223e-15

plot(rrcoef)

plot(bhat)

res2 <- Y - fit2

AERplot2(yhat=fit2,y=Y,res=res2)

$respi

[1] -0.7857706 0.6794579 #PI length about 1.47

title("Response Plot for Scaled Ridge Regression Estimator")

Research Ideas That Have Confounded the Author
1) We want clearer and weaker sufficient conditions for when the bootstrap

methods work. In particular, we want to weaken sufficient conditions for
when the shorth CI and prediction region method confidence region work. See
Remark 2.9, Section 2.3.4, Equation (2.2), and the Warning before Example
2.8. Some heuristics for why these bootstrap methods may work for MLR
forward selection are given in Sections 2.3.5 and 3.11.
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11.4 Tables

Tabled values are F(k,d, 0.95) where P (F < F (k, d, 0.95)) = 0.95.
00 stands for ∞. Entries were produced with the qf(.95,k,d) command
in R. The numerator degrees of freedom are k while the denominator degrees
of freedom are d.

k 1 2 3 4 5 6 7 8 9 00

d

1 161 200 216 225 230 234 237 239 241 254

2 18.5 19.0 19.2 19.3 19.3 19.3 19.4 19.4 19.4 19.5

3 10.1 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.53

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.63

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.37

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 3.67

7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.23

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 2.93

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 2.71

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.54

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.41

12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.30

13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.21

14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.13

15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.07

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.01

17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 1.96

18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 1.92

19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 1.88

20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 1.84

25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 1.71

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 1.62

00 3.84 3.00 2.61 2.37 2.21 2.10 2.01 1.94 1.88 1.00
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Tabled values are tα,d where P (t < tα,d) = α where t has a t distribution
with d degrees of freedom. If d > 29 use the N(0, 1) cutoffs d = Z = ∞.

alpha pvalue

d 0.005 0.01 0.025 0.05 0.5 0.95 0.975 0.99 0.995 left tail

1 -63.66 -31.82 -12.71 -6.314 0 6.314 12.71 31.82 63.66

2 -9.925 -6.965 -4.303 -2.920 0 2.920 4.303 6.965 9.925

3 -5.841 -4.541 -3.182 -2.353 0 2.353 3.182 4.541 5.841

4 -4.604 -3.747 -2.776 -2.132 0 2.132 2.776 3.747 4.604

5 -4.032 -3.365 -2.571 -2.015 0 2.015 2.571 3.365 4.032

6 -3.707 -3.143 -2.447 -1.943 0 1.943 2.447 3.143 3.707

7 -3.499 -2.998 -2.365 -1.895 0 1.895 2.365 2.998 3.499

8 -3.355 -2.896 -2.306 -1.860 0 1.860 2.306 2.896 3.355

9 -3.250 -2.821 -2.262 -1.833 0 1.833 2.262 2.821 3.250

10 -3.169 -2.764 -2.228 -1.812 0 1.812 2.228 2.764 3.169

11 -3.106 -2.718 -2.201 -1.796 0 1.796 2.201 2.718 3.106

12 -3.055 -2.681 -2.179 -1.782 0 1.782 2.179 2.681 3.055

13 -3.012 -2.650 -2.160 -1.771 0 1.771 2.160 2.650 3.012

14 -2.977 -2.624 -2.145 -1.761 0 1.761 2.145 2.624 2.977

15 -2.947 -2.602 -2.131 -1.753 0 1.753 2.131 2.602 2.947

16 -2.921 -2.583 -2.120 -1.746 0 1.746 2.120 2.583 2.921

17 -2.898 -2.567 -2.110 -1.740 0 1.740 2.110 2.567 2.898

18 -2.878 -2.552 -2.101 -1.734 0 1.734 2.101 2.552 2.878

19 -2.861 -2.539 -2.093 -1.729 0 1.729 2.093 2.539 2.861

20 -2.845 -2.528 -2.086 -1.725 0 1.725 2.086 2.528 2.845

21 -2.831 -2.518 -2.080 -1.721 0 1.721 2.080 2.518 2.831

22 -2.819 -2.508 -2.074 -1.717 0 1.717 2.074 2.508 2.819

23 -2.807 -2.500 -2.069 -1.714 0 1.714 2.069 2.500 2.807

24 -2.797 -2.492 -2.064 -1.711 0 1.711 2.064 2.492 2.797

25 -2.787 -2.485 -2.060 -1.708 0 1.708 2.060 2.485 2.787

26 -2.779 -2.479 -2.056 -1.706 0 1.706 2.056 2.479 2.779

27 -2.771 -2.473 -2.052 -1.703 0 1.703 2.052 2.473 2.771

28 -2.763 -2.467 -2.048 -1.701 0 1.701 2.048 2.467 2.763

29 -2.756 -2.462 -2.045 -1.699 0 1.699 2.045 2.462 2.756

Z -2.576 -2.326 -1.960 -1.645 0 1.645 1.960 2.326 2.576

CI 90% 95% 99%

0.995 0.99 0.975 0.95 0.5 0.05 0.025 0.01 0.005 right tail

0.01 0.02 0.05 0.10 1 0.10 0.05 0.02 0.01 two tail
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