
Chapter 1

Introduction

This chapter provides a preview of the book, and some techniques useful
for visualizing data in the background of the data are given in Section 1.2.
Sections 1.3 and 1.7 review the multivariate normal distribution and multiple
linear regression. Section 1.4 suggests methods for outlier detection. Some
large sample theory is presented in Section 1.5, and Section 1.6 covers mixture
distributions.

1.1 Overview

For low dimensional statistics, the number of variables p is much less than
the sample size n. For high dimensional statistics, p is not much less than
n. Let z = (z1, ..., zk)

T where z1, ..., zk are k random variables. Often z =
(Y,xT )T where xT = (x1, ..., xp) is the vector of predictors and Y is the
variable of interest, called a response variable. Predictor variables are also
called independent variables, covariates, or features. The response variable
is also called the dependent variable. Usually context will be used to decide
whether z is a random vector or the observed random vector.

Definition 1.1. A case or observation consists of k random variables
measured for one person or thing. The ith case zi = (zi1, ..., zik)

T . The
training data consists of z1, ..., zn. A statistical model or method is fit
(trained) on the training data. The test data consists of zn+1, ..., zn+m, and
the test data is often used to evaluate the quality of the fitted model.

For low dimensional statistics, assume n ≥ Jk where J ≥ 5 is large enough
for the statistical method to be useful. For example, the model may be used
to a) visualize the data, b) perform inference with large sample theory, or c)
prediction. For regression models with one response variable, often k = p or
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2 1 Introduction

k = p+1. For multivariate regression models with q response variables, often
k = q+ p. In the following definition, often J much larger than 5 is needed.

Definition 1.2. For low dimensional statistics, n ≥ Jk with J ≥ 5.

For classical statistical methods, high dimensional statistics refers to data
sets where n is not large enough for the classical statistical method to be
useful. For example, typically there are too many predictors, compared to the
sample size, to do classical inference. In particular, often n is not large enough
for large sample theory inference. For some researchers, high dimensional
statistics means that k or p are quite large. Sometimes p > Kn with K ≥ 10
is called ultrahigh dimensional statistics or ultra high dimensional statistics.
The following definition is much more general. For example, there could be
p = 2 predictors and one response variable Y , but n = 7.

Definition 1.3. For high dimensional statistics, n < 5k.

Statistical Learning methods are often useful for high dimensional statis-
tics. Following James et al. (2013, p. 30), the previously unseen test data is not
used to train the Statistical Learning method, but interest is in how well the
method performs on the test data. If the training data is (x1, Y1), ..., (xn, Yn),
and the previously unseen test data is (xf , Yf), then particular interest is in

the accuracy of the estimator Ŷf of Yf obtained when the Statistical Learning

method is applied to the predictor xf . The estimator Ŷf is a prediction if the
response variable Yf is continuous, as occurs in regression models. If Yf is

categorical, then Ŷf is a classification. For example, if Yf can be 0 or 1, then

xf is classified to belong to group i if Ŷf = i for i = 0 or 1. The multiple
linear regression (MLR) model is Yi = β1 +x2β2 + · · ·+xpβp + e = xT β + e,
is an important regression model.

Notation: Typically lower case boldface letters such as x denote column
vectors, while upper case boldface letters such as S or Y are used for ma-
trices or column vectors. If context is not enough to determine whether y

is a random vector or an observed random vector, then Y = (Y1, ..., Yp)
T

may be used for the random vector, and y = (y1 , ..., yp)
T for the observed

value of the random vector. An upper case letter such as Y will usually be a
random variable. A lower case letter such as x1 will also often be a random
variable. An exception to this notation is the generic multivariate location
and dispersion estimator (T,C) where the location estimator T is a p × 1
vector such as T = x. C is a p× p dispersion estimator and conforms to the
above notation.

The main focus of the first three chapters is developing tools to analyze
the multiple linear regression (MLR) model Yi = xT

i β + ei for i = 1, ..., n.
Classical regression techniques use (ordinary) least squares (OLS) and assume
n >> p, but Statistical Learning methods often give useful results if p >> n.
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OLS forward selection, lasso, ridge regression, marginal maximum likelihood
(MMLE), one component partial least squares (OPLS), the elastic net, partial
least squares (PLS), and principal component regression (PCR) will be some
of the techniques examined. See Chapter 2.

Acronyms are widely used in statistics, and some of the more important
acronyms appear in Table 1.1. Also see the text’s index.

For classical regression and multivariate analysis, we often want n ≥ 10p.
Note a high dimensional regression model has n < 5p by Definition 1.3 with
k = p.

Definition 1.4. A model with n < 5p is overfitting: the model does not
have enough data to estimate p parameters accurately. A high dimensional
regression model has n < 5p. A fitted or population regression model is sparse
if a of the predictors are active (have nonzero β̂i or βi) where n ≥ Ja with
J ≥ 10. Otherwise the model is nonsparse. A high dimensional population
regression model is abundant or dense if the regression information is spread
out among the p predictors (nearly all of the predictors are active). Hence an
abundant model is a nonsparse model.

Remark 1.1. There are several important techniques for high dimensional
statistics.

Technique 1. One important technique is variable selection: select pre-
dictors I = {i1, ..., ik} such that n ≥ Jk with J ≥ 5. This technique turns the
high dimensional statistics problem into a low dimensional statistics problem.
Hence results from classical statistics are still useful.

Following Olive and Hawkins (2005), a model for variable selection can be
described by

xT β = xT
SβS + xT

EβE = xT
SβS (1.1)

where x = (xT
S ,x

T
E)T , xS is an aS ×1 vector, and xE is a (p−aS)×1 vector.

Given that xS is in the model, βE = 0 and E denotes the subset of terms
that can be eliminated given that the subset S is in the model. Let xI be the
vector of a terms from a candidate subset indexed by I, and let xO be the
vector of the remaining predictors (out of the candidate submodel). Suppose
that S is a subset of I and that model (1.1) holds. Then

xT β = xT
SβS = xT

I βI + xT
O0 = xT

I βI .

Thus βO = 0 if S ⊆ I. The model using xT β is the full model. The full model
uses all of the predictors with βF = β.

To clarify notation, suppose p = 4, a constant x1 = 1 corresponding to β1 is
always in the model, and β = (β1, β2, 0, 0)T . Then the J = 2p−1 = 8 possible
subsets of {1, 2, ..., p} that always contain 1 are I1 = {1}, S = I2 = {1, 2},
I3 = {1, 3}, I4 = {1, 4}, I5 = {1, 2, 3}, I6 = {1, 2, 4}, I7 = {1, 3, 4}, and
I8 = {1, 2, 3, 4}. There are 2p−aS = 4 subsets I2, I5, I6, and I8 such that

S ⊆ Ij. Let β̂I7
= (β̂1 , β̂3, β̂4)

T and xI7
= (x1, x3, x4)

T .
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Table 1.1 Acronyms

Acronym Description
AER additive error regression
AP additive predictor = SP for a GAM
cdf cumulative distribution function
cf characteristic function
CI confidence interval

CLT central limit theorem
CV cross validation
DA discriminant analysis
EC elliptically contoured

EAP estimated additive predictor = ESP for a GAM
ESP estimated sufficient predictor
ESSP estimated sufficient summary plot = response plot
FDA Fisher’s discriminant analysis
GAM generalized additive model
GLM generalized linear model
iid independent and identically distributed

KNN K–nearest neighbors discriminant analysis
lasso an MLR method
LDA linear discriminant analysis
LR logistic regression

MAD the median absolute deviation
MCLT multivariate central limit theorem
MED the median
mgf moment generating function
MLD multivariate location and dispersion
MLR multiple linear regression

MMLE marginal maximum likelihood estimator
MVN multivariate normal
OLS ordinary least squares

OPLS one component partial least squares
PCA principal component analysis
PCR principal component(s) regression
PLS partial least squares
pdf probability density function
PI prediction interval
pmf probability mass function
QDA quadratic discriminant analysis
SE standard error
SP sufficient predictor
SSP sufficient summary plot
SVM support vector machine
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Let Imin correspond to the set of predictors selected by a variable selection
method such as forward selection or lasso variable selection. See Chapter 2
for more on these methods. If β̂I is a× 1, use zero padding to form the p× 1

vector β̂I,0 from β̂I by adding 0s corresponding to the omitted variables. For

example, if p = 4 and β̂Imin
= (β̂1, β̂3)

T , then the observed variable selection

estimator β̂V S = β̂Imin,0 = (β̂1 , 0, β̂3, 0)T . As a statistic, β̂V S = β̂Ik,0 with
probabilities πkn = P (Imin = Ik) for k = 1, ..., J where there are J subsets,
e.g. J = 2p − 1.

Often the estimator β̂ is
√
n consistent with β̂i−βi ∝ 1/n and the squared

Euclidean distance ‖β̂F − βF ‖2 ∝ p/n where the symbol ∝ means “propor-
tional to.” For low dimensional regression, p is fixed and p/n→ 0 as n→ ∞.

Hence β̂F is a consistent estimator of βF . For a high dimensional regression

data set, suppose p = pn = nτ+1 . Then ‖β̂F − βF ‖2 ∝ nτ can be quite large

and β̂F is generally not a good estimator of βF .
There is a rather large literature in high dimensional statistics that gives

regularity conditions where ‖β̂F −βF ‖2 ≤ dn/n with high probability where
dn/n is rather small. Let I be the subset selected by some method. For
variable selection, I = Imin is common. The oracle property holds if P (Imin =

S) → 1 as n → ∞. Then ‖β̂F −βF ‖2 ≈ ‖β̂S −βS‖2 which can be small for a
sparse population regression model where βS is an aS×1 vector an n ≥ 10aS .
The oracle property can sometimes be shown to hold if the predictors are
approximately orthogonal. Another common assumption is that there is a
sparse population regression model, S ⊆ I, n ≥ 10aI , and βI,0 = βF . This
assumption is roughly the “bet on sparsity principle.”

Even if the population model is not sparse, sparse fitted models are often
useful for high dimensional data sets. This fact gives a second reason for why
sparse regression models such as lasso can be useful. For the sparse fitted
model, n ≥ 10aI, and often βI,0 6= βF . Hence β̂I can be a good estimator of
βI even if the population full model is not sparse. Turn the high dimensional
problem into a low dimensional problem and check that model using βI is
good.

Data splitting divides the training data set of n cases into two sets: H and
the validation set V where H has nH of the cases and V has the remaining
nV = n − nH cases i1, ..., inV . An application of data splitting is to use a
variable selection method, such as forward selection or lasso, on H to get
submodel Imin with a predictors, then fit the selected model to the cases in
the validation set V using standard inference.

Technique 2. A second important technique for high dimensional statis-
tics is useful for hypothesis testing. This technique is useful for sample

means, sample proportions, and sample covariances. Suppose
√
n(θ̂ − θ)

D→
Np(0,ΣF ) for fixed p as n → ∞. When n < 5p often a good nonsingular

estimator Σ̂F of ΣF is not available. Often Σ̂F = C−1
F where the inverse

matrix can not be computed if p > n.
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Sometimes θ̂ = (θ̂1, ..., θ̂P )T where θ̂i is a componentwise estimator: take

the estimators θ̂i of the components θi and stack them into a vector. For
example, the sample mean x of E(x) = (µ1, ..., µp)

T is a componentwise esti-
mator of θ = µ. Similarly, x1 −x2 is a componentwise estimator of µ1 −µ2.

Vectors of covariances, such as Σ̂xY = (Ĉov(x1, Y ), ..., Ĉov(xp, Y ))T , are
another example. The one component partial least squares (OPLS) estima-
tor and marginal maximum likelihood estimator (MMLE) for multiple linear

regression both use Σ̂xY .
Suppose AIθ = (θi1 , ..., θik)

T with i1, i2, ..., ik distinct and n ≥ Jk with

J ≥ 10. Suppose Σ̂F = (σ̂ij) and

AIΣ̂F AT
I = Σ̂I = (σ̂ij,id) =




σ̂i1,i1 σ̂i1,i2 · · · σ̂i1,ik

σ̂i2,i1 σ̂i2,i2 · · · σ̂i2,ik

...
...

...
...

σ̂ik,i1 σ̂ik,i2 · · · σ̂ik,ik


 .

If
√
n(θ̂I − θI)

D→ Nk(0,ΣI) as n → ∞, then we can get large sample tests
for H0 : BθI = 0. In particular, we can do tests such as H0 : θi = 0 and
H0 : θi −θj = 0. Hence for high dimensional data, we can do low dimensional
tests.

Technique 3. Consider testing H0 : µ = 0 where µ is a p × 1 vector
with p > n. Typically µ̂ is not a good estimator of µ since ‖µ̂−µ‖2 will not
be small, but we often can get a good estimator of ‖µ‖2 = µT µ, and test
H0 : µT µ = 0. �

Remark 1.2. Techniques 1-3 all involve some form of dimension reduction.
Technique 1 replaces the p× 1 vector βF by the aI × 1 vector βI . Technique
2 replaces test H0 : θ = 0 by low dimensional tests such as H0 : θi = 0, and
technique 3 replaces H0 : µ = 0 by the equivalent test H0 : µT µ = 0.

1.2 Response Plots and Response Transformations

This section will consider tools for visualizing the regression model in the
background of the data. The definitions in this section tend not to depend
on whether n/p is large or small, but the estimator ĥ tends to be better if
n/p is large. In regression, the response variable is the variable of interest:
the variable you want to predict. The predictors or features x1, ..., xp are
variables used to predict Y .

Definition 1.5. In a 1D regression model, regression is the study of
the conditional distribution of Y given the sufficient predictor SP = h(x),
written

Y |SP or Y|h(x), (1.2)
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where the real valued function h : R
p → R. The estimated sufficient pre-

dictor ESP = ĥ(x). An important special case is a model with a linear

predictor h(x) = α+βT x where ESP = α̂+ β̂
T
x and often α = 0. This class

of models includes the generalized linear model (GLM). Another important
special case is a generalized additive model (GAM), given the additive predic-
tor AP = SP = α+

∑p
j=1 Sj(xj) for some (usually unknown) functions Sj .

The estimated additive predictor EAP = ESP = α̂+
∑p

j=1 Ŝj(xj).

Remark 1.3. The literature often claims that Y is conditionally indepen-
dent of x given the sufficient predictor SP = h(x), written

Y x|SP or Y x|h(x). (1.3)

Hence the response variable depends on the vector of predictors x only
through the sufficient predictor SP = h(x). The literature also often claims
that Y |x = Y |SP or Y |x = Y |βT x. This claim is often much too strong.

Notation. Often the index i will be suppressed. For example, the multiple
linear regression model

Yi = xT
i β + ei (1.4)

for i = 1, ..., n where β is a p× 1 unknown vector of parameters, and ei is a
random error. This model could be written Y = xT β + e. More accurately,
Y |xT β = xT β + e, but the conditioning on xT β will often be suppressed.
Often the errors e1, ..., en are iid (independent and identically distributed)
from a distribution that is known except for a scale parameter. For example,
the ei’s might be iid from a normal (Gaussian) distribution with mean 0
and unknown standard deviation σ. For this Gaussian model, estimation of
β and σ is important for inference and for predicting a new future value of
the response variable Yf given a new vector of predictors xf .

1.2.1 Response and Residual Plots

Definition 1.6. An estimated sufficient summary plot (ESSP) or response
plot is a plot of the ESP versus Y . A residual plot is a plot of the ESP versus
the residuals.

Notation: In this text, a plot of x versus Y will have x on the horizontal
axis, and Y on the vertical axis. For the additive error regression model
Y = m(x)+e, the ith residual is ri = Yi −m̂(xi) = Yi− Ŷi where Ŷi = m̂(xi)
is the ith fitted value. The additive error regression model is a 1D regression
model with sufficient predictor SP = h(x) = m(x).
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For the additive error regression model, the response plot is a plot of Ŷ
versus Y where the identity line with unit slope and zero intercept is added as
a visual aid. The residual plot is a plot of Ŷ versus r. Assume the errors ei are
iid from a unimodal distribution that is not highly skewed. Then the plotted
points should scatter about the identity line and the r = 0 line (the horizontal
axis) with no other pattern if the fitted model (that produces m̂(x)) is good.
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Fig. 1.1 Residual and Response Plots for the Tremearne Data

Example 1.1. Tremearne (1911) presents a data set of about 17 mea-
surements on 115 people of Hausa nationality. We deleted 3 cases because
of missing values and used height as the response variable Y . Along with a
constant xi,1 ≡ 1, the five additional predictor variables used were height
when sitting, height when kneeling, head length, nasal breadth, and span (per-
haps from left hand to right hand). Figure 1.1 presents the (ordinary) least
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squares (OLS) response and residual plots for this data set. These plots show
that an MLR model Y = xT β + e should be a useful model for the data
since the plotted points in the response plot are linear and follow the identity
line while the plotted points in the residual plot follow the r = 0 line with
no other pattern (except for a possible outlier marked 44). Note that many
important acronyms, such as OLS and MLR, appear in Table 1.1.

To use the response plot to visualize the conditional distribution of Y |xT β,

use the fact that the fitted values Ŷ = xT β̂. For example, suppose the height
given fit = 1700 is of interest. Mentally examine the plot about a narrow
vertical strip about fit = 1700, perhaps from 1685 to 1715. The cases in the
narrow strip have a mean close to 1700 since they fall close to the identity
line. Similarly, when the fit = w for w between 1500 and 1850, the cases have
heights near w, on average.

Cases 3, 44, and 63 are highlighted. The 3rd person was very tall while
the 44th person was rather short. Beginners often label too many points as
outliers: cases that lie far away from the bulk of the data. Mentally draw a
box about the bulk of the data ignoring any outliers. Double the width of the
box (about the identity line for the response plot and about the horizontal
line for the residual plot). Cases outside of this imaginary doubled box are
potential outliers. Alternatively, visually estimate the standard deviation of
the residuals in both plots. In the residual plot look for residuals that are
more than 5 standard deviations from the r = 0 line. In Figure 1.1, the
standard deviation of the residuals appears to be around 10. Hence cases 3
and 44 are certainly worth examining.

The identity line can also pass through or near an outlier or a cluster
of outliers. Then the outliers will be in the upper right or lower left of the
response plot, and there will be a large gap between the cluster of outliers and
the bulk of the data. Figure 1.1 was made with the following R commands,
using hdpack function MLRplot and the major.lsp data set from the text’s
webpage.

major <- matrix(scan(),nrow=112,ncol=7,byrow=T)

#copy and paste the data set, then press enter

major <- major[,-1]

X<-major[,-6]

Y <- major[,6]

MLRplot(X,Y) #left click the 3 highlighted cases,

#then right click Stop for each of the two plots

A problem with response and residual plots is that there can be a lot of
black in the plot if the sample size n is large (more than a few thousand).
A variant of the response plot for the additive error regression model would
plot the identity line, the two lines parallel to the identity line corresponding
to large sample 100(1 − δ)% prediction intervals for Yf that depends on Ŷf .
Then plot points corresponding to training data cases that do not lie in their
100(1− δ)% PI. Use δ = 0.01 or 0.05. Try the following commands that used
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δ = 0.2 since n is small. The commands use the hdpack function AERplot.
See Problem 1.10.

out<-lsfit(X,Y)

res<-out$res

yhat<-Y-res

AERplot(yhat,Y,res=res,d=2,alph=1) #usual response plot

AERplot(yhat,Y,res=res,d=2,alph=0.2)

#plots data outside the 80% pointwise PIs

n<-100000; q<-7

b <- 0 * 1:q + 1

x <- matrix(rnorm(n * q), nrow = n, ncol = q)

y <- 1 + x %*% b + rnorm(n)

out<-lsfit(x,y)

res<-out$res

yhat<-y-res

dd<-length(out$coef)

AERplot(yhat,y,res=res,d=dd,alph=1) #usual response plot

AERplot(yhat,y,res=res,d=dd,alph=0.01)

#plots data outside the 99% pointwise PIs

AERplot2(yhat,y,res=res,d=2)

#response plot with 90% pointwise prediction bands

1.2.2 Response Transformations

A response transformation Y = tλ(Z) can make the MLR model or additive
error regression model hold if the variable of interest Z is measured on the
wrong scale. For MLR, Y = tλ(Z) = xT β +e, while for additive error regres-
sion, Y = tλ(Z) = m(x) + e. Predictor transformations are used to remove
gross nonlinearities in the predictors, and this technique is often very useful.
However, if there are hundreds or more predictors, graphical methods for
predictor transformations take too long. Olive (2017a, Section 3.1) describes
graphical methods for predictor transformations.

Power transformations are particularly effective, and a power transforma-
tion has the form x = tλ(w) = wλ for λ 6= 0 and x = t0(w) = log(w) for
λ = 0. Often λ ∈ ΛL where

ΛL = {−1,−1/2,−1/3, 0, 1/3, 1/2, 1} (1.5)

is called the ladder of powers. Often when a power transformation is needed,
a transformation that goes “down the ladder,” e.g. from λ = 1 to λ = 0 will
be useful. If the transformation goes too far down the ladder, e.g. if λ = 0
is selected when λ = 1/2 is needed, then it will be necessary to go back “up
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the ladder.” Additional powers such as ±2 and ±3 can always be added. The
following rules are useful for both response transformations and predictor
transformations.

a) The log rule states that a positive variable that has the ratio between
the largest and smallest values greater than ten should be transformed to
logs. So W > 0 and max(W )/min(W ) > 10 suggests using log(W ).

b) The ladder rule appears in Cook and Weisberg (1999a, p. 86), and is
used for a plot of two variables, such as ESP versus Y for response transfor-
mations or x1 versus x2 for predictor transformations.
Ladder rule: To spread small values of a variable, make λ smaller.
To spread large values of a variable, make λ larger.

Consider the ladder of powers. Often no transformation (λ = 1) is best,
then the log transformation, then the square root transformation, then the
reciprocal transformation.
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Fig. 1.2 Plots to Illustrate the Ladder Rule

Example 1.2. Examine Figure 1.2. Since w is on the horizontal axis,
mentally add a narrow vertical slice to the plot. If a large amount of data falls
in the slice at the left of the plot, then small values need spreading. Similarly,
if a large amount of data falls in the slice at the right of the plot (compared
to the middle and left of the plot), then large values need spreading. For
the variable on the vertical axis, make a narrow horizontal slice. If the plot
looks roughly like the northwest corner of a square then small values of the
horizontal and large values of the vertical variable need spreading. Hence in
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Figure 1.2a, small values of w need spreading. If the plot looks roughly like
the northeast corner of a square, then large values of both variables need
spreading. Hence in Figure 1.2b, large values of x need spreading. If the plot
looks roughly like the southwest corner of a square, as in Figure 1.2c, then
small values of both variables need spreading. If the plot looks roughly like
the southeast corner of a square, then large values of the horizontal and
small values of the vertical variable need spreading. Hence in Figure 1.2d,
small values of x need spreading.

Consider the additive error regression model Y = m(x) + e. Then the
response transformation model is Y = tλ(Z) = mλ(x)+ e, and the graphical
method for selecting the response transformation is to plot m̂λi(x) versus
tλi(Z) for several values of λi, choosing the value of λ = λ0 where the plotted
points follow the identity line with unit slope and zero intercept. For the
multiple linear regression model, m̂λi (x) = xT β̂λi

where β̂λi
can be found

using the desired fitting method, e.g. OLS or lasso.

Definition 1.7. Assume that all of the values of the “response” Zi are
positive. A power transformation has the form Y = tλ(Z) = Zλ for λ 6= 0
and Y = t0(Z) = log(Z) for λ = 0 where

λ ∈ ΛL = {−1,−1/2,−1/3, 0, 1/3, 1/2, 1}.

Definition 1.8. Assume that all of the values of the “response” Zi are
positive. Then the modified power transformation family

tλ(Zi) ≡ Z
(λ)
i =

Zλ
i − 1

λ
(1.6)

for λ 6= 0 and Z
(0)
i = log(Zi). Generally λ ∈ Λ where Λ is some interval such

as [−1, 1] or a coarse subset such as ΛL. This family is a special case of the
response transformations considered by Tukey (1957).

A graphical method for response transformations refits the model using
the same fitting method: changing only the “response” from Z to tλ(Z).
Compute the “fitted values” Ŵi using Wi = tλ(Zi) as the “response.” Then
a transformation plot of Ŵi versus Wi is made for each of the seven values of
λ ∈ ΛL with the identity line added as a visual aid. Vertical deviations from
the identity line are the “residuals” ri = Wi−Ŵi. Then a candidate response
transformation Y = tλ∗(Z) is reasonable if the plotted points follow the
identity line in a roughly evenly populated band if the MLR or additive error
regression model is reasonable for Y = W and x. Curvature from the identity
line suggests that the candidate response transformation is inappropriate.

Notice that the graphical method is equivalent to making “response plots”
for the seven values of W = tλ(Z), and choosing the “best response plot”
where the MLR model seems “most reasonable.” The seven “response plots”
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are called transformation plots below. Our convention is that a plot of X
versus Y means that X is on the horizontal axis and Y is on the vertical
axis.

Definition 1.9. A transformation plot is a plot of Ŵ versus W with the
identity line added as a visual aid.
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Fig. 1.3 Four Transformation Plots for the Textile Data

There are several reasons to use a coarse grid of powers. First, several of the
powers correspond to simple transformations such as the log, square root, and
cube root. These powers are easier to interpret than λ = 0.28, for example.
According to Mosteller and Tukey (1977, p. 91), the most commonly used
power transformations are the λ = 0 (log), λ = 1/2, λ = −1, and λ = 1/3

transformations in decreasing frequency of use. Secondly, if the estimator λ̂n



14 1 Introduction

can only take values in ΛL, then sometimes λ̂n will converge (e.g. in prob-
ability) to λ∗ ∈ ΛL. Thirdly, Tukey (1957) showed that neighboring power
transformations are often very similar, so restricting the possible powers to
a coarse grid is reasonable. Note that powers can always be added to the
grid ΛL. Useful powers are ±1/4,±2/3,±2, and ±3. Powers from numerical
methods can also be added.

Application 1.1. This graphical method for selecting a response trans-
formation is very simple. Let Wi = tλ(Zi). Then for each of the seven values
of λ ∈ ΛL, perform the regression fitting method, such as OLS or lasso, on
(Wi,xi) and make the transformation plot of Ŵi versus Wi. If the plotted

points follow the identity line for λ∗, then take λ̂o = λ∗, that is, Y = tλ∗(Z)
is the response transformation.

If more than one value of λ ∈ ΛL gives a linear plot, take the simplest or
most reasonable transformation or the transformation that makes the most
sense to subject matter experts. Also check that the corresponding “residual
plots” of Ŵ versus W−Ŵ look reasonable. The values of λ in decreasing order
of importance are 1, 0, 1/2,−1, and 1/3. So the log transformation would be
chosen over the cube root transformation if both transformation plots look
equally good.

After selecting the transformation, the usual checks should be made. In
particular, the transformation plot for the selected transformation is the re-
sponse plot, and a residual plot should also be made. The following example
illustrates the procedure, and the plots show W = tλ(Z) on the vertical axis.
The label “TZHAT” of the horizontal axis are the “fitted values” Ŵ that
result from using W = tλ(Z) as the “response” in the OLS software.

Example 1.3: Textile Data. In their pioneering paper on response trans-
formations, Box and Cox (1964) analyze data from a 33 experiment on the
behavior of worsted yarn under cycles of repeated loadings. The “response”
Z is the number of cycles to failure and a constant is used along with the
three predictors length, amplitude, and load. Using the normal profile log
likelihood for λo, Box and Cox determine λ̂o = −0.06 with approximate 95
percent confidence interval −0.18 to 0.06. These results give a strong indi-
cation that the log transformation may result in a relatively simple model,
as argued by Box and Cox. Nevertheless, the numerical Box–Cox transfor-
mation method provides no direct way of judging the transformation against
the data.

Shown in Figure 1.3 are transformation plots of Ŵ versus W = Zλ for
four values of λ except log(Z) is used if λ = 0. The plots show how the trans-
formations bend the data to achieve a homoscedastic linear trend. Perhaps
more importantly, they indicate that the information on the transformation
is spread throughout the data in the plot since changing λ causes all points
along the curvilinear scatter in Figure 1.3a to form along a linear scatter in
Figure 1.3c. Dynamic plotting using λ as a control seems quite effective for
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judging transformations against the data and the log response transformation
does indeed seem reasonable.

Note the simplicity of the method: Figure 1.3a shows that a response trans-
formation is needed since the plotted points follow a nonlinear curve while
Figure 1.3c suggests that Y = log(Z) is the appropriate response transforma-
tion since the plotted points follow the identity line. If all 7 plots were made
for λ ∈ ΛL, then λ = 0 would be selected since this plot is linear. Also, Figure
1.3a suggests that the log rule is reasonable since max(Z)/min(Z) > 10.

1.3 The Multivariate Normal Distribution

For much of this book, X is an n×p design matrix, but this section will usu-
ally use the notation X = (X1, ..., Xp)

T and Y for the random vectors, and
x = (x1, ..., xp)

T for the observed value of the random vector. This notation
will be useful to avoid confusion when studying conditional distributions such
as Y |X = x. It can be shown that Σ is positive semidefinite and symmetric.

Definition 1.10: Rao (1965, p. 437). A p × 1 random vector X has
a p−dimensional multivariate normal distribution Np(µ,Σ) iff tT X has a
univariate normal distribution for any p× 1 vector t.

If Σ is positive definite, then X has a pdf

f(z) =
1

(2π)p/2|Σ|1/2
e−(1/2)(z−µ)T Σ−1

(z−µ) (1.7)

where |Σ|1/2 is the square root of the determinant of Σ. Note that if p = 1,
then the quadratic form in the exponent is (z − µ)(σ2)−1(z − µ) and X has
the univariate N(µ, σ2) pdf. If Σ is positive semidefinite but not positive
definite, then X has a degenerate distribution. For example, the univariate
N(0, 02) distribution is degenerate (the point mass at 0).

Definition 1.11. The population mean of a random p × 1 vector X =
(X1, ..., Xp)

T is
E(X) = (E(X1), ..., E(Xp))

T

and the p× p population covariance matrix

Cov(X) = E(X − E(X))(X −E(X))T = (σij).

That is, the ij entry of Cov(X) is Cov(Xi, Xj) = σij.

The covariance matrix is also called the variance–covariance matrix and
variance matrix. Sometimes the notation Var(X) is used. Note that Cov(X)
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is a symmetric positive semidefinite matrix. If X and Y are p × 1 random
vectors, a a conformable constant vector, and A and B are conformable
constant matrices, then

E(a + X) = a + E(X) and E(X + Y ) = E(X) +E(Y ) (1.8)

and
E(AX) = AE(X) and E(AXB) = AE(X)B. (1.9)

Thus
Cov(a + AX) = Cov(AX) = ACov(X)AT . (1.10)

Some important properties of multivariate normal (MVN) distributions are
given in the following three theorems. These theorems can be proved using
results from Johnson and Wichern (1988, pp. 127-132) or Severini (2005, ch.
8).

Theorem 1.1. a) If X ∼ Np(µ,Σ), then E(X) = µ and

Cov(X) = Σ.

b) If X ∼ Np(µ,Σ), then any linear combination tT X = t1X1 + · · · +
tpXp ∼ N1(t

T µ, tT Σt). Conversely, if tT X ∼ N1(t
T µ, tT Σt) for every p×1

vector t, then X ∼ Np(µ,Σ).

c) The joint distribution of independent normal random variables
is MVN. If X1, ..., Xp are independent univariate normal N(µi, σ

2
i ) random

vectors, then X = (X1 , ..., Xp)
T is Np(µ,Σ) where µ = (µ1, ..., µp)

T and
Σ = diag(σ2

1 , ..., σ
2
p) (so the off diagonal entries σij = 0 while the diagonal

entries of Σ are σii = σ2
i ).

d) If X ∼ Np(µ,Σ) and if A is a q×pmatrix, then AX ∼ Nq(Aµ,AΣAT ).
If a is a p × 1 vector of constants and b is a constant, then a + bX ∼
Np(a + bµ, b2Σ). (Note that bX = bIpX with A = bIp.)

It will be useful to partition X, µ, and Σ. Let X1 and µ1 be q×1 vectors,
let X2 and µ2 be (p − q) × 1 vectors, let Σ11 be a q × q matrix, let Σ12

be a q × (p − q) matrix, let Σ21 be a (p − q) × q matrix, and let Σ22 be a
(p− q) × (p− q) matrix. Then

X =

(
X1

X2

)
, µ =

(
µ1

µ2

)
, and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

Theorem 1.2. a) All subsets of a MVN are MVN: (Xk1
, ..., Xkq)

T

∼ Nq(µ̃, Σ̃) where µ̃i = E(Xki) and Σ̃ij = Cov(Xki , Xkj). In particular,
X1 ∼ Nq(µ1,Σ11) and X2 ∼ Np−q(µ2,Σ22).

b) If X1 and X2 are independent, then Cov(X1,X2) = Σ12 =
E[(X1 −E(X1))(X2 − E(X2))

T ] = 0, a q × (p− q) matrix of zeroes.
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c) If X ∼ Np(µ,Σ), then X1 and X2 are independent iff Σ12 = 0.

d) If X1 ∼ Nq(µ1,Σ11) and X2 ∼ Np−q(µ2,Σ22) are independent, then

(
X1

X2

)
∼ Np

((
µ1

µ2

)
,

(
Σ11 0
0 Σ22

))
.

Theorem 1.3. The conditional distribution of a MVN is MVN. If
X ∼ Np(µ,Σ), then the conditional distribution of X1 given that X2 = x2

is multivariate normal with mean µ1 + Σ12Σ
−1
22 (x2 − µ2) and covariance

matrix Σ11 − Σ12Σ
−1
22 Σ21. That is,

X1|X2 = x2 ∼ Nq(µ1 + Σ12Σ
−1
22 (x2 − µ2),Σ11 − Σ12Σ

−1
22 Σ21).

Example 1.4. Let p = 2 and let (Y,X)T have a bivariate normal distri-
bution. That is,

(
Y
X

)
∼ N2

((
µY

µX

)
,

(
σ2

Y Cov(Y,X)
Cov(X, Y ) σ2

X

))
.

Also, recall that the population correlation between X and Y is given by

ρ(X, Y ) =
Cov(X, Y )√

VAR(X)
√

VAR(Y )
=

σX,Y

σXσY

if σX > 0 and σY > 0. Then Y |X = x ∼ N(E(Y |X = x),VAR(Y |X = x))
where the conditional mean

E(Y |X = x) = µY + Cov(Y,X)
1

σ2
X

(x− µX) = µY + ρ(X, Y )

√
σ2

Y

σ2
X

(x− µX)

and the conditional variance

VAR(Y |X = x) = σ2
Y − Cov(X, Y )

1

σ2
X

Cov(X, Y )

= σ2
Y − ρ(X, Y )

√
σ2

Y

σ2
X

ρ(X, Y )
√
σ2

X

√
σ2

Y

= σ2
Y − ρ2(X, Y )σ2

Y = σ2
Y [1 − ρ2(X, Y )].

Also aX + bY is univariate normal with mean aµX + bµY and variance

a2σ2
X + b2σ2

Y + 2ab Cov(X, Y ).

Remark 1.4. There are several common misconceptions. First, it is not
true that every linear combination tT X of normal random variables
is a normal random variable, and it is not true that all uncorrelated
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normal random variables are independent. The key condition in The-
orem 1.1b and Theorem 1.2c is that the joint distribution of X is MVN. It
is possible that X1, X2, ..., Xp each has a marginal distribution that is uni-
variate normal, but the joint distribution of X is not MVN. See Seber and
Lee (2003, p. 23), and examine the following example from Rohatgi (1976,
p. 229). Suppose that the joint pdf of X and Y is a mixture of two bivariate
normal distributions both with EX = EY = 0 and VAR(X) = VAR(Y ) = 1,
but Cov(X, Y ) = ±ρ. Hence f(x, y) =

1

2

1

2π
√

1 − ρ2
exp(

−1

2(1 − ρ2)
(x2 − 2ρxy + y2)) +

1

2

1

2π
√

1 − ρ2
exp(

−1

2(1 − ρ2)
(x2 + 2ρxy + y2)) ≡ 1

2
f1(x, y) +

1

2
f2(x, y)

where x and y are real and 0 < ρ < 1. Since both marginal distributions of
fi(x, y) are N(0,1) for i = 1 and 2 by Theorem 1.2 a), the marginal distribu-
tions of X and Y are N(0,1). Since

∫ ∫
xyfi(x, y)dxdy = ρ for i = 1 and −ρ

for i = 2, X and Y are uncorrelated, but X and Y are not independent since
f(x, y) 6= fX(x)fY (y).

Remark 1.5. In Theorem 1.3, suppose that X = (Y,X2, ..., Xp)
T . Let

X1 = Y and X2 = (X2, ..., Xp)
T . Then E[Y |X2] = β1 + β2X2 + · · ·+ βpXp

and VAR[Y |X2] is a constant that does not depend on X2. Hence Y |X2 =
β1 + β2X2 + · · ·+ βpXp + e follows the multiple linear regression model.

1.4 Outlier Detection

Outliers are cases that lie far away from the bulk of the data, and outliers can
ruin a statistical analysis. For multiple linear regression, the response plot is
often useful for outlier detection. Look for gaps in the response plot and for
cases far from the identity line. There are no gaps in Figure 1.1, but case 44
is rather far from the identity line. Figure 1.4 has a gap in the response plot.

Next, this section discusses a technique for outlier detection that works
well for certain outlier configurations provided bulk of the data consists of
more than n/2 cases. The technique could fail if there are g > 2 groups of
about n/g cases per group. First we need to define Mahalanobis distances
and the coordinatewise median. Some univariate estimators will be defined
first.
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1.4.1 The Location Model

The location model is

Yi = µ+ ei, i = 1, . . . , n (1.11)

where e1, ..., en are error random variables, often independent and identically
distributed (iid) with zero mean. The location model is used when there is
one variable Y , such as height, of interest. The location model is a special
case of the multiple linear regression model and of the multivariate location
and dispersion model, where there are p variables x1, ..., xp of interest, such as
height and weight if p = 2. Statistical Learning is the analysis of multivariate
data, and the location model is an example of univariate data, not an example
of multivariate data.

The location model is often summarized by obtaining point estimates and
confidence intervals for a location parameter and a scale parameter. Assume
that there is a sample Y1, . . . , Yn of size n where the Yi are iid from a distri-
bution with median MED(Y ), mean E(Y ), and variance V (Y ) if they exist.
Also assume that the Yi have a cumulative distribution function (cdf) F that
is known up to a few parameters. For example, Yi could be normal, exponen-
tial, or double exponential. The location parameter µ is often the population
mean or median while the scale parameter is often the population standard
deviation

√
V (Y ). The ith case is Yi.

Point estimation is one of the oldest problems in statistics and four impor-
tant statistics for the location model are the sample mean, median, variance,
and the median absolute deviation (MAD). Let Y1, . . . , Yn be the random
sample; i.e., assume that Y1, ..., Yn are iid. The sample mean is a measure of
location and estimates the population mean (expected value) µ = E(Y ).

Definition 1.12. The sample mean

Y =

∑n
i=1 Yi

n
. (1.12)

If the data set Y1, ..., Yn is arranged in ascending order from smallest to
largest and written as Y(1) ≤ · · · ≤ Y(n), then Y(i) is the ith order statistic
and the Y(i)’s are called the order statistics. If the data Y1 = 1, Y2 = 4, Y3 =

2, Y4 = 5, and Y5 = 3, then Y = 3, Y(i) = i for i = 1, ..., 5 and MED(n) = 3
where the sample size n = 5. The sample median is a measure of location
while the sample standard deviation is a measure of spread. The sample mean
and standard deviation are vulnerable to outliers, while the sample median
and MAD, defined below, are outlier resistant.

Definition 1.13. The sample median

MED(n) = Y((n+1)/2) if n is odd, (1.13)
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MED(n) =
Y(n/2) + Y((n/2)+1)

2
if n is even.

The notation MED(n) = MED(n, Yi) = MED(Y1, ..., Yn) will also be used.

Definition 1.14. The sample variance

S2
n =

∑n
i=1(Yi − Y )2

n− 1
=

∑n
i=1 Y

2
i − n(Y )2

n− 1
, (1.14)

and the sample standard deviation Sn =
√
S2

n.

Definition 1.15. The sample median absolute deviation is

MAD(n) = MED(|Yi − MED(n)|, i = 1, . . . , n). (1.15)

Since MAD(n) = MAD(n, Yi) is the median of n distances, at least half of
the observations are within a distance MAD(n) of MED(n) and at least half
of the observations are a distance of MAD(n) or more away from MED(n).
Like the standard deviation, MAD(n) is a measure of spread.

Example 1.5. Let the data be 1, 2, 3, 4, 5, 6, 7, 8, 9. Then MED(n) = 5
and MAD(n) = 2 = MED{0, 1, 1, 2, 2, 3, 3, 4, 4}.

1.4.2 Outlier Detection with Mahalanobis Distances

Now suppose the multivariate data has been collected into an n× p matrix

W = X =




xT
1
...

xT
n


 =




x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p

...
...

. . .
...

xn,1 xn,2 . . . xn,p


 =

[
v1 v2 . . . vp

]

where the ith row of W is the ith case xT
i and the jth column vj of W

corresponds to n measurements of the jth random variableXj for j = 1, ..., p.
Hence the n rows of the data matrix W correspond to the n cases, while the
p columns correspond to measurements on the p random variables X1, ..., Xp.
For example, the data may consist of n visitors to a hospital where the p = 2
variables height and weight of each individual were measured.

Definition 1.16. The coordinatewise median MED(W ) = (MED(X1), ...,
MED(Xp))

T where MED(Xi) is the sample median of the data in column i
corresponding to variable Xi and vi.

Example 1.6. Let the data forX1 be 1, 2, 3, 4, 5, 6, 7, 8, 9while the data for
X2 is 7, 17, 3, 8, 6, 13, 4, 2, 1. Then MED(W ) = (MED(X1),MED(X2))

T =
(5, 6)T .
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For multivariate data, sample Mahalanobis distances play a role similar to
that of residuals in multiple linear regression. Let the observed training data
be collected in an n× p matrix W . Let the p× 1 column vector T = T (W )
be a multivariate location estimator, and let the p × p symmetric positive
definite matrix C = C(W ) be a dispersion estimator.

Definition 1.17. Let x1j, ..., xnj be measurements on the jth random
variable Xj corresponding to the jth column of the data matrix W . The

jth sample mean is xj =
1

n

n∑

k=1

xkj. The sample covariance Sij estimates

Cov(Xi, Xj) = σij = E[(Xi −E(Xi))(Xj − E(Xj))], and

Sij =
1

n− 1

n∑

k=1

(xki − xi)(xkj − xj).

Sii = S2
i is the sample variance that estimates the population variance

σii = σ2
i . The sample correlation rij estimates the population correlation

Cor(Xi, Xj) = ρij =
σij

σiσj
, and

rij =
Sij

SiSj
=

Sij√
SiiSjj

=

∑n
k=1(xki − xi)(xkj − xj)√∑n

k=1(xki − xi)2
√∑n

k=1(xkj − xj)2
.

Definition 1.18. Let x1, ...,xn be the data where xi is a p × 1 vector.
The sample mean or sample mean vector

x =
1

n

n∑

i=1

xi = (x1, ..., xp)T =
1

n
W T1

where 1 is the n × 1 vector of ones. The sample covariance matrix

S =
1

n − 1

n∑

i=1

(xi − x)(xi − x)T = (Sij).

That is, the ij entry of S is the sample covariance Sij . The classical estimator
of multivariate location and dispersion is (T,C) = (x,S).

It can be shown that (n− 1)S =
∑n

i=1 xix
T
i − x xT =

W T W − 1

n
W T11T W .

Hence if the centering matrix H = I − 1

n
11T , then (n− 1)S = W T HW .
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Definition 1.19. The sample correlation matrix

R = (rij).

That is, the ij entry of R is the sample correlation rij.

Let the standardized random variables

Zj =
xj − xj√

Sjj

for j = 1, ..., p.Then the sample correlation matrix R is the sample covariance
matrix of the zi = (Zi1, ..., Zip)

T where i = 1, ..., n.
Often it is useful to standardize variables with a robust location estimator

and a robust scale estimator. The R function scale is useful. The R code
below shows how to standardize using

Zj =
xj − MED(xj)

MAD(xj)

for j = 1, ..., p. Here MED(xj) = MED(x1j, ..., xnj) and MAD(xj) =
MAD(x1j, ..., xnj) are the sample median and sample median absolute de-
viation of the data for the jth variable: x1j, ..., xnj. See Definitions 1.13 and
1.15. Some of these results are illustrated with the following R code.

x <- buxx[,1:3]; cov(x)

len nasal bigonal

len 118299.9257 -191.084603 -104.718925

nasal -191.0846 18.793905 -1.967121

bigonal -104.7189 -1.967121 36.796311

cor(x)

len nasal bigonal

len 1.00000000 -0.12815187 -0.05019157

nasal -0.12815187 1.00000000 -0.07480324

bigonal -0.05019157 -0.07480324 1.00000000

z <- scale(x)

cov(z)

len nasal bigonal

len 1.00000000 -0.12815187 -0.05019157

nasal -0.12815187 1.00000000 -0.07480324

bigonal -0.05019157 -0.07480324 1.00000000

medd <- apply(x,2,median)

madd <- apply(x,2,mad)/1.4826

z <- scale(x,center=medd,scale=madd)

ddplot4(z)#scaled data still has 5 outliers
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cov(z) #in the length variable

len nasal bigonal

len 4731.997028 -12.738974 -6.981262

nasal -12.738974 2.088212 -0.218569

bigonal -6.981262 -0.218569 4.088479

cor(z)

len nasal bigonal

len 1.00000000 -0.12815187 -0.05019157

nasal -0.12815187 1.00000000 -0.07480324

bigonal -0.05019157 -0.07480324 1.00000000

apply(z,2,median)

len nasal bigonal

0 0 0

#scaled data has coord. median = (0,0,0)ˆT

apply(z,2,mad)/1.4826

len nasal bigonal

1 1 1 #scaled data has unit MAD

Notation. A rule of thumb is a rule that often but not always works well
in practice.

Rule of Thumb 1.1. Multivariate procedures in low dimensions often
start to give good results for n ≥ 10p, especially if the distribution is close to
multivariate normal. In particular, we want n ≥ 10p for the sample covariance
and correlation matrices. For procedures with large sample theory on a large
class of distributions, for any value of n, there are always distributions where
the results will be poor, but will eventually be good for larger sample sizes.
Hence sometimes smaller n can be used, and sometimes much larger n is
needed. This rule of thumb is called the One in Ten Rule by Wikepedia.
Also see Austin and Steyerberg (2015), Green (1991), Harrell (2015, p. 72),
Harrell, Lee, and Mark (1996), Hair et al. (2009, pp. 573-574), Norman and
Streiner (1986, pp. 122, 130, 157), and Vittinghoff and McCulloch (2006).
This rule of thumb is much like the rule of thumb that says the central limit
theorem normal approximation for Y starts to be good for many distributions
for n ≥ 30. For high dimensional statistics, this rule of thumb can be useful
after variable selection results in k predictors if n ≥ 10k.

Definition 1.20. The ith Mahalanobis distance Di =
√
D2

i where the ith
squared Mahalanobis distance is

D2
i = D2

i (T (W ),C(W )) = (xi − T (W ))T C−1(W )(xi − T (W )) (1.16)

for each point xi. Notice that D2
i is a random variable (scalar valued). Let

(T,C) = (T (W ),C(W )). Then
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D2
x(T,C) = (x− T )T C−1(x− T ).

Hence D2
i uses x = xi.

Let the p × 1 location vector be µ, often the population mean, and let
the p × p dispersion matrix be Σ, often the population covariance matrix.
See Definition 1.11. Notice that if x is a random vector, then the population
squared Mahalanobis distance is

D2
x(µ,Σ) = (x − µ)T Σ−1(x − µ) (1.17)

and that the term Σ−1/2(x− µ) is the p−dimensional analog to the z-score
used to transform a univariate N(µ, σ2) random variable into a N(0, 1) ran-
dom variable. Hence the sample Mahalanobis distance Di =

√
D2

i is an ana-
log of the absolute value |Zi| of the sample Z-score Zi = (Xi −X)/σ̂. Also
notice that the Euclidean distance of xi from the estimate of center T (W )
is Di(T (W ), Ip) where Ip is the p× p identity matrix.

1.4.3 Outlier Detection if p > n

Most outlier detection methods work best if n ≥ 20p, but often data sets have
p > n, and outliers are a major problem. One of the simplest outlier detection
methods uses the Euclidean distances of the xi from the coordinatewise me-
dianDi = Di(MED(W ), Ip). Concentration type steps compute the weighted
median MEDj : the coordinatewise median computed from the “half set” of
cases xi with D2

i ≤ MED(D2
i (MEDj−1, Ip)) where MED0 = MED(W ).

We often used j = 0 (no concentration type steps) or j = 9. Let Di =
Di(MEDj, Ip). Let Wi = 1 if Di ≤ MED(D1, ..., Dn) + kMAD(D1, ..., Dn)
where k ≥ 0 and k = 5 is the default choice. Let Wi = 0, otherwise. Using
k ≥ 0 insures that at least half of the cases get weight 1. This weighting
corresponds to the weighting that would be used in a one sided metrically
trimmed mean (Huber type skipped mean) of the distances.

Application 1.2. This outlier resistant regression method uses terms from
the following definition. Let the ith case wi = (Yi,x

T
i )T where the continuous

predictors from xi are denoted by ui for i = 1, ..., n. Apply the covmb2

estimator to the ui, and then run the regression method on the m cases wi

corresponding to the covmb2 set B indices i1, ..., im, where m ≥ n/2.

Definition 1.21. Let the covmb2 set B of at least n/2 cases correspond
to the cases with weight Wi = 1. Then the covmb2 estimator (T,C) is the
sample mean and sample covariance matrix applied to the cases in set B.
Hence
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T =

∑n
i=1Wixi∑n

i=1Wi
and C =

∑n
i=1Wi(xi − T )(xi − T )T

∑n
i=1Wi − 1

.

Example 1.7. Let the clean data (nonoutliers) be i 1 for i = 1, 2, 3, 4, and
5 while the outliers are j 1 for j = 16, 17, 18, and 19. Here n = 9 and 1 is p×1.
Making a plot of the data for p = 2 may be useful. Then the coordinatewise
median MED0 = MED(W ) = 5 1. The median Euclidean distance of the data
is the Euclidean distance of 5 1 from 1 1 = the Euclidean distance of 5 1 from
9 1. The median ball is the hypersphere centered at the coordinatewise median
with radius r = MED(Di(MED(W ), Ip), i = 1, ..., n) that tends to contain
(n+1)/2 of the cases if n is odd. Hence the clean data are in the median ball
and the outliers are outside of the median ball. The coordinatewise median
of the cases with the 5 smallest distances is the coordinatewise median of
the clean data: MED1 = 3 1. Then the median Euclidean distance of the
data from MED1 is the Euclidean distance of 3 1 from 1 1 = the Euclidean
distance of 3 1 from 5 1. Again the clean cases are the cases with the 5 smallest
Euclidean distances. Hence MEDj = 3 1 for j ≥ 1. For j ≥ 1, if xi = j 1, then
Di = |j − 3|√p. Thus D(1) = 0, D(2) = D(3) =

√
p, and D(4) = D(5) = 2

√
p.

Hence MED(D1, ..., Dn) = D(5) = 2
√
p = MAD(D1, ..., Dn) since the median

distance of the Di from D(5) is 2
√
p − 0 = 2

√
p. Note that the 5 smallest

absolute distances |Di − D(5)| are 0, 0,
√
p,
√
p, and 2

√
p. Hence Wi = 1 if

Di ≤ 2
√
p + 10

√
p = 12

√
p. The clean data get weight 1 while the outliers

get weight 0 since the smallest distance Di for the outliers is the Euclidean
distance of 3 1 from 16 1 with a Di = ‖16 1 − 3 1‖ = 13

√
p. Hence the

covmb2 estimator (T,C) is the sample mean and sample covariance matrix
of the clean data. Note that the distance for the outliers to get zero
weight is proportional to the square root of the dimension

√
p.

The covmb2 estimator attempts to give a robust dispersion estimator
that reduces the bias by using a big ball about MEDj instead of a ball that
contains half of the cases. The weighting is the default method, but you can
also plot the squared Euclidean distances and estimate the number m ≥ n/2
of cases with the smallest distances to be used. The hdpack function medout

makes the plot, and the hdpack function getB gives the set B of cases that
got weight 1 along with the index indx of the case numbers that got weight
1. The function vecw stacks the columns of the dispersion matrix C into a
vector. Then the elements of the matrix can be plotted.

The function ddplot5 plots the Euclidean distances from the coordi-
natewise median versus the Euclidean distances from the covmb2 location
estimator. Typically the plotted points in this DD plot cluster about the
identity line, and outliers appear in the upper right corner of the plot with
a gap between the bulk of the data and the outliers. An alternative for out-
lier detection is to replace C by Cd = diag(σ̂11, ..., σ̂pp). For example, use
σ̂ii = Cii. See Ro et al. (2015) and Tarr et al. (2016) for references.
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Example 1.8. For the Buxton (1920) data with multiple linear regression,
height was the response variable while an intercept, head length, nasal height,
bigonal breadth, and cephalic index were used as predictors in the multiple
linear regression model. Observation 9 was deleted since it had missing values.
Five individuals, cases 61–65, were reported to be about 0.75 inches tall with
head lengths well over five feet! See Problem 1.13 to reproduce the following
plots.
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b) lasso using covmb set B

Fig. 1.4 Response plot for lasso and lasso applied to the covmb2 set B.

Figure 1.4a) shows the response plot for lasso. The identity line passes
right through the outliers which are obvious because of the large gap. Figure
1.4b) shows the response plot from lasso for the cases in the covmb2 set
B applied to the predictors, and the set B included all of the clean cases
and omitted the 5 outliers. The response plot was made for all of the data,
including the outliers. Prediction interval (PI) bands are also included for
both plots. Both plots are useful for outlier detection, but the method for
plot 1.4b) is better for data analysis: impossible outliers should be deleted or
given 0 weight, we do not want to predict that some people are about 0.75
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Fig. 1.5 DD plot.

inches tall, and we do want to predict that the people were about 1.6 to 1.8
meters tall. Figure 1.5 shows the DD plot made using ddplot5. The five
outliers are in the upper right corner.

Also see Problem 1.14 where the covmb2 set B deleted the 8 cases with
the largest Di, including 5 outliers and 3 clean cases.

Example 1.9. This example helps illustrate the effect of outliers on clas-
sical methods. The artificial data set had n = 50, p = 100, and the clean
data was iid Np(0, Ip). Hence the diagonal elements of the population co-
variance matrix are 0 and the diagonal elements are 1. Plots of the elements
of the sample covariance matrix S and the covmb2 estimator C are not
shown, but were similar to Figure 1.6. Then the first ten cases were contam-
inated: xi ∼ Np(µ, 100Ip) where µ = (10, 0, ..., 0)T. Figure 1.6 shows that
the covmb2 dispersion matrix C was not much effected by the outliers. The
diagonal elements are near 1 and the off diagonal elements are near 0. Figure
1.7 shows that the sample covariance matrix S was greatly effected by the
outliers. Several sample covariances are less than −20 and several sample
variances are over 40.

R code to used to produce Figures 1.6 and 1.7 is shown below.

#n = 50, p = 100

x<-matrix(rnorm(5000),nrow=50,ncol=100)

out<-medout(x) #no outliers, try ddplot5(x)

out <- covmb2(x,msteps=0)
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Fig. 1.6 Elements of C for outlier data.
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Fig. 1.7 Elements of the classical covariance matrix S for outlier data.
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z<-out$cov

plot(diag(z)) #plot the diagonal elements of C

plot(out$center) #plot the elements of T

vecz <- vecw(z)$vecz

plot(vecz)

out<-covmb2(x,m=45)

plot(out$center)

plot(diag(out$cov))

#outliers

x[1:10,] <- 10*x[1:10,]

x[1:10,1] <- x[1:10]+10

medout(x) #The 10 outliers are easily detected in

#the plot of the distances from the MED(X).

ddplot5(x) #two widely separated clusters of data

tem <- getB(x,msteps=0)

tem$indx #all 40 clean cases were used

dim(tem$B) #40 by 100

out<-covmb2(x,msteps=0)

z<-out$cov

plot(diag(z))

plot(out$center)

vecz <- vecw(z)$vecz

plot(vecz) #plot the elements of C

#Figure 1.6

#examine the sample covariance matrix and mean

plot(diag(var(x)))

plot(apply(x,2,mean)) #plot elements of xbar

zc <- var(x)

vecz <- vecw(zc)$vecz

plot(vecz) #plot the elements of S

#Figure 1.7

out<-medout(x) #10 outliers

out<-covmb2(x,m=40)

plot(out$center)

plot(diag(out$cov))

The covmb2 estimator can also be used for n > p. The hdpack function
mldsim6 suggests that for 40% outliers, the outliers need to be further away
from the bulk of the data (covmb2(k=5) needs a larger value of pm) than for
the other six estimators if n ≥ 20p. With some outlier types, covmb2(k=5)
was often near best. Try the following commands. The other estimators need
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n > 2p, and as n gets close to 2p, covmb2 may outperform the other esti-
mators. Also see Problem 1.15.

#near point mass on major axis

mldsim6(n=100,p=10,outliers=1,gam=0.25,pm=25)

mldsim6(n=100,p=10,outliers=1,gam=0.4,pm=25) #bad

mldsim6(n=100,p=40,outliers=1,gam=0.1,pm=100)

mldsim6(n=200,p=60,outliers=1,gam=0.1,pm=100)

#mean shift outliers

mldsim6(n=100,p=40,outliers=3,gam=0.1,pm=10)

mldsim6(n=100,p=40,outliers=3,gam=0.25,pm=20)

mldsim6(n=200,p=60,outliers=3,gam=0.1,pm=10)

#concentration steps can help

mldsim6(n=100,p=10,outliers=3,gam=0.4,pm=10,osteps=0)

mldsim6(n=100,p=10,outliers=3,gam=0.4,pm=10,osteps=9)

Elliptically contoured distributions, defined below, are an important class
of distributions for multivariate data. The multivariate normal distribution
is also an elliptically contoured distribution. This distributions is useful for
discriminant analysis in Chapter 8 and for multivariate analysis in Chapter
10.

Definition 1.22: Johnson (1987, pp. 107-108). A p×1 random vector
X has an elliptically contoured distribution, also called an elliptically sym-
metric distribution, if X has joint pdf

f(z) = kp|Σ|−1/2g[(z − µ)T Σ−1(z − µ)], (1.18)

and we say X has an elliptically contoured ECp(µ,Σ, g) distribution.

If X has an elliptically contoured (EC) distribution, then the characteristic
function of X is

φX(t) = exp(itT µ)ψ(tT Σt) (1.19)

for some function ψ. If the second moments exist, then

E(X) = µ (1.20)

and
Cov(X) = cXΣ (1.21)

where
cX = −2ψ′(0).
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1.5 Large Sample Theory

The first three subsections will review large sample theory for the univariate
case, then multivariate theory will be given.

1.5.1 The CLT and the Delta Method

Large sample theory, also called asymptotic theory, is used to approximate
the distribution of an estimator when the sample size n is large. This the-
ory is extremely useful if the exact sampling distribution of the estimator is
complicated or unknown. To use this theory, one must determine what the
estimator is estimating, the rate of convergence, the asymptotic distribution,
and how large n must be for the approximation to be useful. Moreover, the
(asymptotic) standard error (SE), an estimator of the asymptotic standard
deviation, must be computable if the estimator is to be useful for inference.
Often the bootstrap can be used to compute the SE.

Theorem 1.4: the Central Limit Theorem (CLT). Let Y1, ..., Yn be
iid with E(Y ) = µ and VAR(Y ) = σ2. Let the sample mean Y n = 1

n

∑n
i=1 Yi.

Then √
n(Y n − µ)

D→ N(0, σ2).

Hence
√
n

(
Y n − µ

σ

)
=

√
n

(∑n
i=1 Yi − nµ

nσ

)
D→ N(0, 1).

Note that the sample mean is estimating the population mean µ with a
√
n

convergence rate, the asymptotic distribution is normal, and the SE = S/
√
n

where S is the sample standard deviation. For distributions “close” to the
normal distribution, the central limit theorem provides a good approximation
if the sample size n ≥ 30. Hesterberg (2014, pp. 41, 66) suggests n ≥ 5000 is
needed for moderately skewed distributions, but the n ≥ 30 rule works fairly
well for the exponential distribution. A special case of the CLT is proven
after Theorem 1.17.

Notation. The notation X ∼ Y and X
D
= Y both mean that the random

variables X and Y have the same distribution. Hence FX(x) = FY (y) for all

real y. The notation Yn
D→ X means that for large n we can approximate the

cdf of Yn by the cdf of X. The distribution of X is the limiting distribution
or asymptotic distribution of Yn. For the CLT, notice that

Zn =
√
n

(
Y n − µ

σ

)
=

(
Y n − µ

σ/
√
n

)
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is the z–score of Y . If Zn
D→ N(0, 1), then the notation Zn ≈ N(0, 1), also

written as Zn ∼ AN(0, 1), means approximate the cdf of Zn by the standard
normal cdf. See Definition 1.23. Similarly, the notation

Y n ≈ N(µ, σ2/n),

also written as Y n ∼ AN(µ, σ2/n), means approximate the cdf of Y n as
if Y n ∼ N(µ, σ2/n). The distribution of X does not depend on n, but the
approximate distribution Y n ≈ N(µ, σ2/n) does depend on n.

The two main applications of the CLT are to give the limiting distribution
of

√
n(Y n −µ) and the limiting distribution of

√
n(Yn/n−µX) for a random

variable Yn such that Yn =
∑n

i=1Xi where the Xi are iid with E(X) = µX

and VAR(X) = σ2
X .

Example 1.10. a) Let Y1, ..., Yn be iid Ber(ρ). Then E(Y ) = ρ and
VAR(Y ) = ρ(1 − ρ). (The Bernoulli (ρ) distribution is the binomial (1,ρ)
distribution.) Hence

√
n(Y n − ρ)

D→ N(0, ρ(1− ρ))

by the CLT.

b) Now suppose that Yn ∼ BIN(n, ρ). Then Yn
D
=

∑n
i=1Xi where

X1, ..., Xn are iid Ber(ρ). Hence

√
n

(
Yn

n
− ρ

)
D→ N(0, ρ(1 − ρ))

since
√
n

(
Yn

n
− ρ

)
D
=

√
n(Xn − ρ)

D→ N(0, ρ(1 − ρ))

by a).
c) Now suppose that Yn ∼ BIN(kn , ρ) where kn → ∞ as n→ ∞. Then

√
kn

(
Yn

kn
− ρ

)
≈ N(0, ρ(1 − ρ))

or
Yn

kn
≈ N

(
ρ,
ρ(1 − ρ)

kn

)
or Yn ≈ N(knρ, knρ(1 − ρ)) .

Theorem 1.5: the Delta Method. If g does not depend on n, g′(θ) 6= 0,
and √

n(Tn − θ)
D→ N(0, σ2),

then √
n(g(Tn) − g(θ))

D→ N(0, σ2[g′(θ)]2).
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Example 1.11. Let Y1, ..., Yn be iid with E(Y ) = µ and VAR(Y ) = σ2.
Then by the CLT, √

n(Y n − µ)
D→ N(0, σ2).

Let g(µ) = µ2. Then g′(µ) = 2µ 6= 0 for µ 6= 0. Hence

√
n((Y n)2 − µ2)

D→ N(0, 4σ2µ2)

for µ 6= 0 by the delta method.

Example 1.12. Let X ∼ Binomial(n, p) where the positive integer n is

large and 0 < p < 1. Find the limiting distribution of
√
n

[ (
X

n

)2

− p2

]
.

Solution. Example 1.10b gives the limiting distribution of
√
n(X

n − p). Let
g(p) = p2. Then g′(p) = 2p and by the delta method,

√
n

[ (
X

n

)2

− p2

]
=

√
n

(
g

(
X

n

)
− g(p)

)
D→

N(0, p(1− p)(g′(p))2) = N(0, p(1− p)4p2) = N(0, 4p3(1 − p)).

Example 1.13. Let Xn ∼ Poisson(nλ) where the positive integer n is
large and λ > 0.

a) Find the limiting distribution of
√
n

(
Xn

n
− λ

)
.

b) Find the limiting distribution of
√
n

[ √
Xn

n
−

√
λ

]
.

Solution. a) Xn
D
=

∑n
i=1 Yi where the Yi are iid Poisson(λ). Hence E(Y ) =

λ = V ar(Y ). Thus by the CLT,

√
n

(
Xn

n
− λ

)
D
=

√
n

( ∑n
i=1 Yi

n
− λ

)
D→ N(0, λ).

b) Let g(λ) =
√
λ. Then g′(λ) = 1

2
√

λ
and by the delta method,

√
n

[ √
Xn

n
−

√
λ

]
=

√
n

(
g

(
Xn

n

)
− g(λ)

)
D→

N(0, λ (g′(λ))2) = N

(
0, λ

1

4λ

)
= N

(
0,

1

4

)
.

Example 1.14. Let Y1, ..., Yn be independent and identically distributed
(iid) from a Gamma(α, β) distribution.
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a) Find the limiting distribution of
√
n

(
Y − αβ

)
.

b) Find the limiting distribution of
√
n

(
(Y )2 − c

)
for appropriate con-

stant c.

Solution: a) Since E(Y ) = αβ and V (Y ) = αβ2, by the CLT√
n

(
Y − αβ

) D→ N(0, αβ2).
b) Let µ = αβ and σ2 = αβ2. Let g(µ) = µ2 so g′(µ) = 2µ and

[g′(µ)]2 = 4µ2 = 4α2β2. Then by the delta method,
√
n

(
(Y )2 − c

) D→
N(0, σ2[g′(µ)]2) = N(0, 4α3β4) where c = µ2 = α2β2 .

1.5.2 Modes of Convergence and Consistency

Definition 1.23. Let {Zn, n = 1, 2, ...} be a sequence of random variables
with cdfs Fn, and letX be a random variable with cdf F . Then Zn converges
in distribution to X, written

Zn
D→ X,

or Zn converges in law to X, written Zn
L→ X, if

lim
n→∞

Fn(t) = F (t)

at each continuity point t of F . The distribution of X is called the limiting
distribution or the asymptotic distribution of Zn.

An important fact is that the limiting distribution does not depend
on the sample size n. Notice that the CLT and delta method give the
limiting distributions of Zn =

√
n(Y n − µ) and Zn =

√
n(g(Tn) − g(θ)),

respectively.
Convergence in distribution is useful if the distribution of Xn is unknown

or complicated and the distribution of X is easy to use. Then for large n we
can approximate the probability that Xn is in an interval by the probability

that X is in the interval. To see this, notice that if Xn
D→ X, then P (a <

Xn ≤ b) = Fn(b) − Fn(a) → F (b) − F (a) = P (a < X ≤ b) if F is continuous
at a and b.

Warning: convergence in distribution says that the cdf Fn(t) of Xn gets
close to the cdf of F (t) of X as n → ∞ provided that t is a continuity
point of F . Hence for any ε > 0 there exists Nt such that if n > Nt, then
|Fn(t) −F (t)| < ε. Notice that Nt depends on the value of t. Convergence in
distribution does not imply that the random variables Xn ≡ Xn(ω) converge
to the random variable X ≡ X(ω) for all ω.
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Example 1.15. Suppose that Xn ∼ U(−1/n, 1/n). Then the cdf Fn(x) of
Xn is

Fn(x) =





0, x ≤ −1
n

nx
2

+ 1
2
, −1

n
≤ x ≤ 1

n
1, x ≥ 1

n
.

Sketching Fn(x) shows that it has a line segment rising from 0 at x = −1/n
to 1 at x = 1/n and that Fn(0) = 0.5 for all n ≥ 1. Examining the cases
x < 0, x = 0, and x > 0 shows that as n → ∞,

Fn(x) →





0, x < 0
1
2 x = 0
1, x > 0.

Notice that the right hand side is not a cdf since right continuity does not
hold at x = 0. Notice that if X is a random variable such that P (X = 0) = 1,
then X has cdf

FX(x) =

{
0, x < 0
1, x ≥ 0.

Since x = 0 is the only discontinuity point of FX(x) and since Fn(x) → FX(x)
for all continuity points of FX(x) (i.e. for x 6= 0),

Xn
D→ X.

Example 1.16. Suppose Yn ∼ U(0, n). Then Fn(t) = t/n for 0 < t ≤ n
and Fn(t) = 0 for t ≤ 0. Hence limn→∞ Fn(t) = 0 for t ≤ 0. If t > 0 and
n > t, then Fn(t) = t/n → 0 as n → ∞. Thus limn→∞ Fn(t) = 0 for all
t, and Yn does not converge in distribution to any random variable Y since
H(t) ≡ 0 is not a cdf.

Definition 1.24. A sequence of random variables Xn converges in distri-
bution to a constant τ (θ), written

Xn
D→ τ (θ), if Xn

D→ X

where P (X = τ (θ)) = 1. The distribution of the random variable X is said
to be degenerate at τ (θ) or to be a point mass at τ (θ).

Definition 1.25. A sequence of random variables Xn converges in prob-
ability to a constant τ (θ), written

Xn
P→ τ (θ),

if for every ε > 0,

lim
n→∞

P (|Xn − τ (θ)| < ε) = 1 or, equivalently, lim
n→∞

P(|Xn − τ (θ)| ≥ ε) = 0.
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The sequence Xn converges in probability to X, written

Xn
P→ X,

if Xn −X
P→ 0.

Notice that Xn
P→ X if for every ε > 0,

lim
n→∞

P (|Xn −X| < ε) = 1, or, equivalently, lim
n→∞

P(|Xn − X| ≥ ε) = 0.

Definition 1.26. Let the parameter space Θ be the set of possible values
of θ. A sequence of estimators Tn of τ (θ) is consistent for τ (θ) if

Tn
P→ τ (θ)

for every θ ∈ Θ. If Tn is consistent for τ (θ), then Tn is a consistent esti-
mator of τ (θ).

Consistency is a weak property that is usually satisfied by good estimators.
Tn is a consistent estimator for τ (θ) if the probability that Tn falls in any
neighborhood of τ (θ) goes to one, regardless of the value of θ ∈ Θ.

Definition 1.27. For a real number r > 0, Yn converges in rth mean to a
random variable Y , written

Yn
r→ Y,

if
E(|Yn − Y |r) → 0

as n→ ∞. In particular, if r = 2, Yn converges in quadratic mean to Y ,
written

Yn
2→ Y or Yn

qm→ Y,

if
E[(Yn − Y )2] → 0

as n → ∞.

Theorem 1.6: Generalized Chebyshev’s Inequality. Let u : R →
[0,∞) be a nonnegative function. If E[u(Y )] exists then for any c > 0,

P [u(Y ) ≥ c] ≤ E[u(Y )]

c
.

If µ = E(Y ) exists, then taking u(y) = |y− µ|r and c̃ = cr gives
Markov’s Inequality: for r > 0 and any c > 0,

P [|Y − µ| ≥ c] = P [|Y − µ|r ≥ cr] ≤ E[|Y − µ|r]
cr

.
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If r = 2 and σ2 = VAR(Y ) exists, then we obtain
Chebyshev’s Inequality:

P [|Y − µ| ≥ c] ≤ VAR(Y )

c2
.

Proof. The proof is given for pdfs. For pmfs, replace the integrals by sums.
Now

E[u(Y )] =

∫

R

u(y)f(y)dy =

∫

{y:u(y)≥c}
u(y)f(y)dy +

∫

{y:u(y)<c}
u(y)f(y)dy

≥
∫

{y:u(y)≥c}
u(y)f(y)dy

since the integrand u(y)f(y) ≥ 0. Hence

E[u(Y )] ≥ c

∫

{y:u(y)≥c}
f(y)dy = cP [u(Y ) ≥ c]. �

The following theorem gives sufficient conditions for Tn to be a consistent
estimator of τ (θ). Notice that Eθ[(Tn − τ (θ))2] = MSEτ(θ)(Tn) → 0 for all

θ ∈ Θ is equivalent to Tn
qm→ τ (θ) for all θ ∈ Θ.

Theorem 1.7. a) If

lim
n→∞

MSEτ(θ)(Tn) = 0

for all θ ∈ Θ, then Tn is a consistent estimator of τ (θ).

b) If
lim

n→∞
VARθ(Tn) = 0 and lim

n→∞
Eθ(Tn) = τ (θ)

for all θ ∈ Θ, then Tn is a consistent estimator of τ (θ).

Proof. a) Using Theorem 1.6 with Y = Tn, u(Tn) = (Tn − τ (θ))2 and
c = ε2 shows that for any ε > 0,

Pθ(|Tn − τ (θ)| ≥ ε) = Pθ[(Tn − τ (θ))2 ≥ ε2] ≤ Eθ[(Tn − τ (θ))2 ]

ε2
.

Hence
lim

n→∞
Eθ[(Tn − τ (θ))2] = lim

n→∞
MSEτ(θ)(Tn) → 0

is a sufficient condition for Tn to be a consistent estimator of τ (θ).
b) Recall that

MSEτ(θ)(Tn) = VARθ(Tn) + [Biasτ(θ)(Tn)]
2
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where Biasτ(θ)(Tn) = Eθ(Tn) − τ (θ). Since MSEτ(θ)(Tn) → 0 if both
VARθ(Tn) → 0 and Biasτ(θ)(Tn) = Eθ(Tn) − τ (θ) → 0, the result follows
from a). �

The following result shows estimators that converge at a
√
n rate are con-

sistent. Use this result and the delta method to show that g(Tn) is a consistent
estimator of g(θ). Note that b) follows from a) with Xθ ∼ N(0, v(θ)). The
WLLN shows that Y is a consistent estimator of E(Y ) = µ if E(Y ) exists.

Theorem 1.8. a) Let Xθ be a random variable with distribution depend-
ing on θ, and 0 < δ ≤ 1. If

nδ(Tn − τ (θ))
D→ Xθ

then Tn
P→ τ (θ).

b) If √
n(Tn − τ (θ))

D→ N(0, v(θ))

for all θ ∈ Θ, then Tn is a consistent estimator of τ (θ).

Definition 1.28. A sequence of random variables Xn converges almost
everywhere (or almost surely, or with probability 1) to X if

P ( lim
n→∞

Xn = X) = 1.

This type of convergence will be denoted by

Xn
ae→ X.

Notation such as “Xn converges to X ae” will also be used. Sometimes “ae”
will be replaced with “as” or “wp1.” We say that Xn converges almost ev-
erywhere to τ (θ), written

Xn
ae→ τ (θ),

if P (limn→∞Xn = τ (θ)) = 1.

Theorem 1.9. Let Yn be a sequence of iid random variables with E(Yi) =
µ. Then

a) Strong Law of Large Numbers (SLLN): Y n
ae→ µ, and

b) Weak Law of Large Numbers (WLLN): Y n
P→ µ.

Proof of WLLN when V (Yi) = σ2: By Chebyshev’s inequality, for every
ε > 0,

P (|Y n − µ| ≥ ε) ≤ V (Y n)

ε2
=

σ2

nε2
→ 0

as n → ∞. �
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In proving consistency results, there is an infinite sequence of estimators
that depend on the sample size n. Hence the subscript n will be added to the
estimators.

Definition 1.29. Lehmann (1999, pp. 53-54): a) A sequence of random
variables Wn is tight or bounded in probability, written Wn = OP (1), if for
every ε > 0 there exist positive constants Dε and Nε such that

P (|Wn| ≤ Dε) ≥ 1 − ε

for all n ≥ Nε. Also Wn = OP (Xn) if |Wn/Xn| = OP (1). Similarly, Wn =
OP (n−1/2) if |√n Wn| = OP (1).

b) The sequence Wn = oP (n−δ) if nδWn = oP (1) which means that

nδWn
P→ 0.

c) Wn has the same order as Xn in probability, written Wn �P Xn, if for
every ε > 0 there exist positive constants Nε and 0 < dε < Dε such that

P

(
dε ≤

∣∣∣∣
Wn

Xn

∣∣∣∣ ≤ Dε

)
= P

(
1

Dε
≤

∣∣∣∣
Xn

Wn

∣∣∣∣ ≤
1

d ε

)
≥ 1 − ε

for all n ≥ Nε.
d) Similar notation is used for a k × r matrix An = A = [ai,j(n)] if each

element ai,j(n) has the desired property. For example, A = OP (n−1/2) if
each ai,j(n) = OP (n−1/2).

Definition 1.30. Let Wn = ‖µ̂n − µ‖.
a) If Wn �P n−δ for some δ > 0, then both Wn and µ̂n have (tightness)

rate nδ.
b) If there exists a constant κ such that

nδ(Wn − κ)
D→ X

for some nondegenerate random variable X, then both Wn and µ̂n have
convergence rate nδ .

Theorem 1.10. Suppose there exists a constant κ such that

nδ(Wn − κ)
D→ X.

a) Then Wn = OP (n−δ).
b) If X is not degenerate, then Wn �P n−δ .

The above result implies that if Wn has convergence rate nδ, then Wn has
tightness rate nδ, and the term “tightness” will often be omitted. Part a) is
proved, for example, in Lehmann (1999, p. 67).
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The following result shows that if Wn �P Xn, then Xn �P Wn, Wn =
OP (Xn), and Xn = OP (Wn). Notice that if Wn = OP (n−δ), then nδ is
a lower bound on the rate of Wn. As an example, if the CLT holds then
Y n = OP (n−1/3), but Y n �P n−1/2.

Theorem 1.11. a) If Wn �P Xn, then Xn �P Wn.
b) If Wn �P Xn, then Wn = OP (Xn).
c) If Wn �P Xn, then Xn = OP (Wn).
d) Wn �P Xn iff Wn = OP (Xn) and Xn = OP (Wn).

Proof. a) Since Wn �P Xn,

P

(
dε ≤

∣∣∣∣
Wn

Xn

∣∣∣∣ ≤ Dε

)
= P

(
1

Dε
≤

∣∣∣∣
Xn

Wn

∣∣∣∣ ≤
1

d ε

)
≥ 1 − ε

for all n ≥ Nε. Hence Xn �P Wn.
b) Since Wn �P Xn,

P (|Wn| ≤ |XnDε|) ≥ P

(
dε ≤

∣∣∣∣
Wn

Xn

∣∣∣∣ ≤ Dε

)
≥ 1 − ε

for all n ≥ Nε. Hence Wn = OP (Xn).
c) Follows by a) and b).
d) If Wn �P Xn, then Wn = OP (Xn) and Xn = OP (Wn) by b) and c).

Now suppose Wn = OP (Xn) and Xn = OP (Wn). Then

P (|Wn| ≤ |Xn|Dε/2) ≥ 1 − ε/2

for all n ≥ N1, and

P (|Xn| ≤ |Wn|1/dε/2) ≥ 1 − ε/2

for all n ≥ N2. Hence

P (A) ≡ P

(∣∣∣∣
Wn

Xn

∣∣∣∣ ≤ Dε/2

)
≥ 1 − ε/2

and

P (B) ≡ P

(
dε/2 ≤

∣∣∣∣
Wn

Xn

∣∣∣∣
)

≥ 1 − ε/2

for all n ≥ N = max(N1, N2). Since P (A∩B) = P (A)+P (B)−P (A∪B) ≥
P (A) + P (B) − 1,

P (A ∩B) = P (dε/2 ≤
∣∣∣∣
Wn

Xn

∣∣∣∣ ≤ Dε/2) ≥ 1 − ε/2 + 1 − ε/2− 1 = 1 − ε

for all n ≥ N. Hence Wn �P Xn. �
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The following result is used to prove the following Theorem 1.13 which says
that if there are K estimators Tj,n of a parameter β, such that ‖Tj,n −β‖ =
OP (n−δ) where 0 < δ ≤ 1, and if T ∗

n picks one of these estimators, then
‖T ∗

n − β‖ = OP (n−δ).

Theorem 1.12: Pratt (1959). Let X1,n, ..., XK,n each be OP (1) where
K is fixed. Suppose Wn = Xin,n for some in ∈ {1, ..., K}. Then

Wn = OP (1). (1.22)

Proof.

P (max{X1,n, ..., XK,n} ≤ x) = P (X1,n ≤ x, ..., XK,n ≤ x) ≤

FWn(x) ≤ P (min{X1,n, ..., XK,n} ≤ x) = 1 − P (X1,n > x, ..., XK,n > x).

SinceK is finite, there exists B > 0 andN such that P (Xi,n ≤ B) > 1−ε/2K
and P (Xi,n > −B) > 1 − ε/2K for all n > N and i = 1, ..., K. Bonferroni’s

inequality states that P (∩K
i=1Ai) ≥

∑K
i=1 P (Ai) − (K − 1). Thus

FWn(B) ≥ P (X1,n ≤ B, ..., XK,n ≤ B) ≥

K(1 − ε/2K)− (K − 1) = K − ε/2 −K + 1 = 1 − ε/2

and
−FWn(−B) ≥ −1 + P (X1,n > −B, ..., XK,n > −B) ≥

−1 +K(1 − ε/2K) − (K − 1) = −1 +K − ε/2−K + 1 = −ε/2.
Hence

FWn(B) − FWn(−B) ≥ 1 − ε for n > N. �

Theorem 1.13. Suppose ‖Tj,n − β‖ = OP (n−δ) for j = 1, ..., K where
0 < δ ≤ 1. Let T ∗

n = Tin,n for some in ∈ {1, ..., K} where, for example, Tin,n

is the Tj,n that minimized some criterion function. Then

‖T ∗
n − β‖ = OP (n−δ). (1.23)

Proof. Let Xj,n = nδ‖Tj,n−β‖. Then Xj,n = OP (1) so by Theorem 1.12,
nδ‖T ∗

n − β‖ = OP (1). Hence ‖T ∗
n − β‖ = OP (n−δ). �

1.5.3 Slutsky’s Theorem and Related Results

Theorem 1.14: Slutsky’s Theorem. Suppose Yn
D→ Y and Wn

P→ w for
some constant w. Then

a) Yn +Wn
D→ Y + w,

b) YnWn
D→ wY, and
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c) Yn/Wn
D→ Y/w if w 6= 0.

Theorem 1.15. a) If Xn
P→ X, then Xn

D→ X.

b) If Xn
ae→ X, then Xn

P→ X and Xn
D→ X.

c) If Xn
r→ X, then Xn

P→ X and Xn
D→ X.

d) Xn
P→ τ (θ) iff Xn

D→ τ (θ).

e) If Xn
P→ θ and τ is continuous at θ, then τ (Xn)

P→ τ (θ).

f) If Xn
D→ θ and τ is continuous at θ, then τ (Xn)

D→ τ (θ).

Suppose that for all θ ∈ Θ, Tn
D→ τ (θ), Tn

r→ τ (θ), or Tn
ae→ τ (θ). Then

Tn is a consistent estimator of τ (θ) by Theorem 1.15. We are assuming that
the function τ does not depend on n.

Example 1.17. Let Y1, ..., Yn be iid with mean E(Yi) = µ and variance
V (Yi) = σ2. Then the sample mean Y n is a consistent estimator of µ since i)
the SLLN holds (use Theorems 1.9 and 1.15), ii) the WLLN holds, and iii)
the CLT holds (use Theorem 1.8). Since

lim
n→∞

VARµ(Y n) = lim
n→∞

σ2/n = 0 and lim
n→∞

Eµ(Y n) = µ,

Y n is also a consistent estimator of µ by Theorem 1.7b. By the delta method
and Theorem 1.8b, Tn = g(Y n) is a consistent estimator of g(µ) if g′(µ) 6= 0
for all µ ∈ Θ. By Theorem 1.15e, g(Y n) is a consistent estimator of g(µ) if g
is continuous at µ for all µ ∈ Θ.

Theorem 1.16. Assume that the function g does not depend on n.

a) Generalized Continuous Mapping Theorem: If Xn
D→ X and the

function g is such that P [X ∈ C(g)] = 1 where C(g) is the set of points

where g is continuous, then g(Xn)
D→ g(X).

b) Continuous Mapping Theorem: If Xn
D→ X and the function g is

continuous, then g(Xn)
D→ g(X).

Remark 1.6. For Theorem 1.15, a) follows from Slutsky’s Theorem by

taking Yn ≡ X = Y and Wn = Xn − X. Then Yn
D→ Y = X and Wn

P→ 0.

Hence Xn = Yn +Wn
D→ Y +0 = X. The convergence in distribution parts of

b) and c) follow from a). Part f) follows from d) and e). Part e) implies that
if Tn is a consistent estimator of θ and τ is a continuous function, then τ (Tn)
is a consistent estimator of τ (θ). Theorem 1.16 says that convergence in dis-
tribution is preserved by continuous functions, and even some discontinuities
are allowed as long as the set of continuity points is assigned probability 1
by the asymptotic distribution. Equivalently, the set of discontinuity points
is assigned probability 0.
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Example 1.18. (Ferguson 1996, p. 40): If Xn
D→ X, then 1/Xn

D→ 1/X
if X is a continuous random variable since P (X = 0) = 0 and x = 0 is the
only discontinuity point of g(x) = 1/x.

Example 1.19. Show that if Yn ∼ tn, a t distribution with n degrees of

freedom, then Yn
D→ Z where Z ∼ N(0, 1).

Solution: Yn
D
= Z/

√
Vn/n where Z Vn ∼ χ2

n. If Wn =
√
Vn/n

P→ 1,

then the result follows by Slutsky’s Theorem. But Vn
D
=

∑n
i=1Xi where the

iid Xi ∼ χ2
1. Hence Vn/n

P→ 1 by the WLLN and
√
Vn/n

P→ 1 by Theorem
1.15e.

Theorem 1.17: Continuity Theorem. Let Yn be sequence of random
variables with characteristic functions φn(t). Let Y be a random variable
with characteristic function (cf) φ(t).

a)

Yn
D→ Y iff φn(t) → φ(t) ∀t ∈ R.

b) Also assume that Yn has moment generating function (mgf) mn and Y
has mgf m. Assume that all of the mgfs mn and m are defined on |t| ≤ d for
some d > 0. Then if mn(t) → m(t) as n→ ∞ for all |t| < c where 0 < c < d,

then Yn
D→ Y .

Application: Proof of a Special Case of the CLT. Following
Rohatgi (1984, pp. 569-9), let Y1, ..., Yn be iid with mean µ, variance σ2, and
mgf mY (t) for |t| < to. Then

Zi =
Yi − µ

σ

has mean 0, variance 1, and mgf mZ(t) = exp(−tµ/σ)mY (t/σ) for |t| < σto.
We want to show that

Wn =
√
n

(
Y n − µ

σ

)
D→ N(0, 1).

Notice that Wn =

n−1/2
n∑

i=1

Zi = n−1/2
n∑

i=1

(
Yi − µ

σ

)
= n−1/2

∑n
i=1 Yi − nµ

σ
=
n−1/2

1
n

Y n − µ

σ
.

Thus

mWn(t) = E(etWn) = E[exp(tn−1/2
n∑

i=1

Zi)] = E[exp(
n∑

i=1

tZi/
√
n)]
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=

n∏

i=1

E[etZi/
√

n] =

n∏

i=1

mZ(t/
√
n) = [mZ(t/

√
n)]n.

Set ψ(x) = log(mZ (x)). Then

log[mWn(t)] = n log[mZ(t/
√
n)] = nψ(t/

√
n) =

ψ(t/
√
n)

1
n

.

Now ψ(0) = log[mZ(0)] = log(1) = 0. Thus by L’Hôpital’s rule (where the
derivative is with respect to n), limn→∞ log[mWn(t)] =

lim
n→∞

ψ(t/
√
n )

1
n

= lim
n→∞

ψ′(t/
√
n )[−t/2

n3/2 ]

(−1
n2 )

=
t

2
lim

n→∞
ψ′(t/

√
n )

1√
n

.

Now

ψ′(0) =
m′

Z(0)

mZ(0)
= E(Zi)/1 = 0,

so L’Hôpital’s rule can be applied again, giving limn→∞ log[mWn(t)] =

t

2
lim

n→∞

ψ′′(t/
√
n )[ −t

2n3/2 ]

( −1
2n3/2 )

=
t2

2
lim

n→∞
ψ′′(t/

√
n ) =

t2

2
ψ′′(0).

Now

ψ′′(t) =
d

dt

m′
Z(t)

mZ(t)
=
m′′

Z(t)mZ(t) − (m′
Z (t))2

[mZ(t)]2
.

So
ψ′′(0) = m′′

Z(0) − [m′
Z(0)]2 = E(Z2

i ) − [E(Zi)]
2 = 1.

Hence limn→∞ log[mWn(t)] = t2/2 and

lim
n→∞

mWn(t) = exp(t2/2)

which is the N(0,1) mgf. Thus by the continuity theorem,

Wn =
√
n

(
Y n − µ

σ

)
D→ N(0, 1). �

1.5.4 Multivariate Limit Theorems

Many of the univariate results of the previous 3 subsections can be extended
to random vectors. For the limit theorems, the vector X is typically a k × 1
column vector and XT is a row vector. Let ‖x‖ =

√
x2

1 + · · ·+ x2
k be the

Euclidean norm of x.
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Definition 1.31. Let Xn be a sequence of random vectors with joint cdfs
Fn(x) and let X be a random vector with joint cdf F (x).

a) Xn converges in distribution to X, written Xn
D→ X , if Fn(x) →

F (x) as n → ∞ for all points x at which F (x) is continuous. The distribution
of X is the limiting distribution or asymptotic distribution of Xn.

b) Xn converges in probability to X, written Xn
P→ X, if for every

ε > 0, P (‖Xn − X‖ > ε) → 0 as n→ ∞.
c) Let r > 0 be a real number. Then Xn converges in rth mean to X ,

written Xn
r→ X, if E(‖Xn − X‖r) → 0 as n → ∞.

d) Xn converges almost everywhere to X , written Xn
ae→ X, if

P (limn→∞ Xn = X) = 1.

Theorems 1.18 and 1.19 below are the multivariate extensions of the
limit theorems in subsection 1.5.1. When the limiting distribution of Zn =√
n(g(T n) − g(θ)) is multivariate normal Nk(0,Σ), approximate the joint

cdf of Zn with the joint cdf of the Nk(0,Σ) distribution. Thus to find proba-
bilities, manipulate Zn as if Zn ≈ Nk(0,Σ). To see that the CLT is a special
case of the MCLT below, let k = 1, E(X) = µ, and V (X) = Σx = σ2.

Theorem 1.18: the Multivariate Central Limit Theorem (MCLT).
If X1, ...,Xn are iid k × 1 random vectors with E(X) = µ and Cov(X) =
Σx, then √

n(Xn − µ)
D→ Nk(0,Σx)

where the sample mean

Xn =
1

n

n∑

i=1

X i.

To see that the delta method is a special case of the multivariate delta
method, note that if Tn and parameter θ are real valued, then Dg(θ)

= g′(θ).

Theorem 1.19: the Multivariate Delta Method. If g does not depend
on n and √

n(T n − θ)
D→ Nk(0,Σ),

then √
n(g(T n) − g(θ))

D→ Nd(0,Dg(θ)ΣDT
g(θ)

)

where the d× k Jacobian matrix of partial derivatives

Dg(θ)
=




∂
∂θ1

g1(θ) . . . ∂
∂θk

g1(θ)
...

...
∂

∂θ1
gd(θ) . . . ∂

∂θk
gd(θ)


 .
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Here the mapping g : R
k → R

d needs to be differentiable in a neighborhood
of θ ∈ R

k.

Definition 1.32. If the estimator g(T n)
P→ g(θ) for all θ ∈ Θ, then g(T n)

is a consistent estimator of g(θ).

Theorem 1.20. If 0 < δ ≤ 1, X is a random vector, and

nδ(g(T n) − g(θ))
D→ X ,

then g(T n)
P→ g(θ).

Theorem 1.21. If X1, ...,Xn are iid, E(‖X‖) <∞, and E(X) = µ, then

a) WLLN: Xn
P→ µ, and

b) SLLN: Xn
ae→ µ.

Theorem 1.22: Continuity Theorem. Let Xn be a sequence of k × 1
random vectors with characteristic functions φn(t), and let X be a k × 1
random vector with cf φ(t). Then

Xn
D→ X iff φn(t) → φ(t)

for all t ∈ R
k.

Theorem 1.23: Cramér Wold Device. Let Xn be a sequence of k× 1
random vectors, and let X be a k × 1 random vector. Then

Xn
D→ X iff tTXn

D→ tTX

for all t ∈ R
k.

Application: Proof of the MCLT Theorem 1.18. Note that for fixed
t, the tT X i are iid random variables with mean tT µ and variance tT Σt.

Hence by the CLT, tT√n(Xn − µ)
D→ N(0, tT Σt). The right hand side has

distribution tT X where X ∼ Nk(0,Σ). Hence by the Cramér Wold Device,
√
n(Xn − µ)

D→ Nk(0,Σ). �

Theorem 1.24. a) If Xn
P→ X , then Xn

D→ X .
b)

Xn
P→ g(θ) iff Xn

D→ g(θ).

Let g(n) ≥ 1 be an increasing function of the sample size n: g(n) ↑ ∞, e.g.
g(n) =

√
n. See White (1984, p. 15). If a k×1 random vector T n−µ converges

to a nondegenerate multivariate normal distribution with convergence rate√
n, then T n has (tightness) rate

√
n.
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Definition 1.33. Let An = [ai,j(n)] be an r × c random matrix.
a) An = OP (Xn) if ai,j(n) = OP (Xn) for 1 ≤ i ≤ r and 1 ≤ j ≤ c.
b) An = op(Xn) if ai,j(n) = op(Xn) for 1 ≤ i ≤ r and 1 ≤ j ≤ c.
c) An �P (1/(g(n)) if ai,j(n) �P (1/(g(n)) for 1 ≤ i ≤ r and 1 ≤ j ≤ c.
d) Let A1,n = T n − µ and A2,n = Cn − cΣ for some constant c > 0. If
A1,n �P (1/(g(n)) and A2,n �P (1/(g(n)), then (T n,Cn) has (tightness)
rate g(n).

Theorem 1.25: Continuous Mapping Theorem. Let Xn ∈ R
k. If

Xn
D→ X and if the function g : R

k → R
j is continuous, then

g(Xn)
D→ g(X).

The following two theorems are taken from Severini (2005, pp. 345-349,
354).

Theorem 1.26. Let Xn = (X1n, ..., Xkn)T be a sequence of k × 1
random vectors, let Y n be a sequence of k × 1 random vectors, and let
X = (X1 , ..., Xk)

T be a k× 1 random vector. Let W n be a sequence of k× k
nonsingular random matrices, and let C be a k × k constant nonsingular
matrix.

a) Xn
P→ X iff Xin

P→ Xi for i = 1, ..., k.

b) Slutsky’s Theorem: If Xn
D→ X and Y n

P→ c for some constant k×1

vector c, then i) Xn + Y n
D→ X + c and

ii) Y T
nXn

D→ cT X .

c) If Xn
D→ X and W n

P→ C, then W nXn
D→ CX, XT

nW n
D→ XT C,

W−1
n Xn

D→ C−1X , and XT
n W−1

n
D→ XT C−1.

Theorem 1.27. LetWn, Xn, Yn, and Zn be sequences of random variables
such that Yn > 0 and Zn > 0. (Often Yn and Zn are deterministic, e.g.
Yn = n−1/2.)

a) If Wn = OP (1) and Xn = OP (1), then Wn +Xn = OP (1) and WnXn =
OP (1), thus OP (1) + OP (1) = OP (1) and OP (1)OP (1) = OP (1).

b) If Wn = OP (1) and Xn = oP (1), then Wn +Xn = OP (1) and WnXn =
oP (1), thus OP (1) + oP (1) = OP (1) and OP (1)oP (1) = oP (1).

c) If Wn = OP (Yn) and Xn = OP (Zn), then Wn +Xn = OP (max(Yn, Zn))
and WnXn = OP (YnZn), thus OP (Yn) + OP (Zn) = OP (max(Yn, Zn)) and
OP (Yn)OP (Zn) = OP (YnZn).

Theorem 1.28. i) Suppose
√
n(Tn − µ)

D→ Np(θ,Σ). Let A be a q × p

constant matrix. Then A
√
n(Tn−µ) =

√
n(ATn −Aµ)

D→ Nq(Aθ,AΣAT ).
ii) Let Σ > 0. Assume n is large enough so that C > 0. If (T,C)

is a consistent estimator of (µ, s Σ) where s > 0 is some constant, then
D2

x(T,C) = (x − T )T C−1(x − T ) = s−1D2
x(µ,Σ) + oP (1), so D2

x(T,C) is
a consistent estimator of s−1D2

x(µ,Σ).
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iii) Let Σ > 0. Assume n is large enough so that C > 0. If
√
n(T − µ)

D→
Np(0,Σ) and if C is a consistent estimator of Σ, then n(T − µ)T C−1(T −
µ)

D→ χ2
p. In particular,

n(x− µ)T S−1(x − µ)
D→ χ2

p.

Proof: ii) D2
x(T,C) = (x − T )T C−1(x− T ) =

(x− µ + µ− T )T [C−1 − s−1Σ−1 + s−1Σ−1](x− µ + µ− T )
= (x − µ)T [s−1Σ−1](x − µ) + (x − T )T [C−1 − s−1Σ−1](x− T )
+(x − µ)T [s−1Σ−1](µ− T ) + (µ− T )T [s−1Σ−1](x − µ)
+(µ − T )T [s−1Σ−1](µ− T ) = s−1D2

x(µ,Σ) + OP (1).
(Note that D2

x(T,C) = s−1D2
x(µ,Σ) +OP (n−δ) if (T,C) is a consistent

estimator of (µ, s Σ) with rate nδ where 0 < δ ≤ 0.5 if [C−1 − s−1Σ−1] =
OP (n−δ).)

Alternatively, D2
x(T,C) is a continuous function of (T,C) if C > 0 for

n > 10p. Hence D2
x(T,C)

P→ D2
x(µ, sΣ).

iii) Note that Zn =
√
n Σ−1/2(T − µ)

D→ Np(0, Ip). Thus ZT
nZn =

n(T − µ)T Σ−1(T − µ)
D→ χ2

p. Now n(T − µ)T C−1(T − µ) =

n(T − µ)T [C−1 − Σ−1 + Σ−1](T − µ) = n(T − µ)T Σ−1(T − µ) +

n(T −µ)T [C−1 −Σ−1](T −µ) = n(T −µ)T Σ−1(T −µ)+ oP (1)
D→ χ2

p since√
n(T − µ)T [C−1 − Σ−1]

√
n(T − µ) = OP (1)oP (1)OP (1) = oP (1). �

Example 1.20. Suppose that xn yn for n = 1, 2, .... Suppose xn
D→ x,

and yn
D→ y where x y. Then

[
xn

yn

]
D→

[
x

y

]

by Theorem 1.22. To see this, let t = (tT
1 , t

T
2 )T , zn = (xT

n , y
T
n )T , and z =

(xT , yT )T . Since xn yn and x y, the characteristic function

φzn(t) = φxn(t1)φyn
(t2) → φx(t1)φy(t2) = φz(t).

Hence g(zn)
D→ g(z) by Theorem 1.25.

Remark 1.7. In the above example, we can show x y instead of assum-
ing x y. See Ferguson (1996, p. 42).

Remark 1.8. The behavior of convergence in distribution to a MVN
distribution in B) is much like the behavior of the MVN distributions in
A). The results in B) can be proven using the multivariate delta method. Let
A be a q× k constant matrix, b a constant, a a k× 1 constant vector, and d

a q × 1 constant vector. Note that a + bXn = a+ AXn with A = bI . Thus
i) and ii) follow from iii).

A) Suppose X ∼ Nk(µ,Σ), then
i) AX ∼ Nq(Aµ,AΣAT ).
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ii) a + bX ∼ Nk(a + bµ, b2Σ).
iii) AX + d ∼ Nq(Aµ + d,AΣAT ).
(Find the mean and covariance matrix of the left hand side and plug in those
values for the right hand side. Be careful with the dimension k or q.)

B) Suppose Xn
D→ Nk(µ,Σ). Then

i) AXn
D→ Nq(Aµ,AΣAT ).

ii) a + bXn
D→ Nk(a + bµ, b2Σ).

iii) AXn + d
D→ Nq(Aµ + d,AΣAT ).

1.6 Mixture Distributions

Mixture distributions are useful for model and variable selection since β̂Imin,0

is a mixture distribution of β̂Ij,0, and the lasso estimator β̂L is a mixture

distribution of β̂L,λi
for i = 1, ...,M . See Chapter 2. A random vector u has

a mixture distribution if u equals a random vector uj with probability πj

for j = 1, ..., J . See Definition 1.11 for the population mean and population
covariance matrix of a random vector.

Definition 1.34. The distribution of a g×1 random vector u is a mixture
distribution if the cumulative distribution function (cdf) of u is

Fu(t) =
J∑

j=1

πjFuj
(t) (1.24)

where the probabilities πj satisfy 0 ≤ πj ≤ 1 and
∑J

j=1 πj = 1, J ≥ 2,
and Fuj

(t) is the cdf of a g × 1 random vector uj . Then u has a mixture
distribution of the uj with probabilities πj.

Theorem 1.29. Suppose E(h(u)) and the E(h(uj)) exist. Then

E(h(u)) =

J∑

j=1

πjE[h(uj)]. (1.25)

Hence

E(u) =

J∑

j=1

πjE[uj ], (1.26)

and Cov(u) = E(uuT ) −E(u)E(uT ) = E(uuT ) − E(u)[E(u)]T =∑J
j=1 πjE[uju

T
j ]− E(u)[E(u)]T =
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J∑

j=1

πjCov(uj) +

J∑

j=1

πjE(uj)[E(uj)]
T −E(u)[E(u)]T . (1.27)

If E(uj) = θ for j = 1, ..., J , then E(u) = θ and

Cov(u) =

J∑

j=1

πjCov(uj).

This theorem is easy to prove if the uj are continuous random vectors with
(joint) probability density functions (pdfs) fuj (t). Then u is a continuous
random vector with pdf

fu(t) =

J∑

j=1

πjfuj (t), and E(h(u)) =

∫ ∞

−∞
· · ·

∫ ∞

−∞
h(t)fu(t)dt

=
J∑

j=1

πj

∫ ∞

−∞
· · ·

∫ ∞

−∞
h(t)fuj

(t)dt =
J∑

j=1

πjE[h(uj)]

where E[h(uj)] is the expectation with respect to the random vector uj . Note
that

E(u)[E(u)]T =

J∑

j=1

J∑

k=1

πjπkE(uj)[E(uk)]T . (1.28)

Alternatively, with respect to a Riemann Stieltjes integral, E[h(u)] =∫
h(t)dF (t) provided the expected value exists, and the integral is a lin-

ear operator with respect to both h and F . Hence for a mixture distribution,
E[h(u)] =

∫
h(t)dF (t) =

∫
h(t) d




J∑

j=1

πjFuj (t)


 =

J∑

j=1

πj

∫
h(t)dFuj(t) =

J∑

j=1

πjE[h(uj)].

1.7 A Review of Multiple Linear Regression

The following review follows Olive (2017a: ch. 2) closely. Several of the results
in this section will be covered in more detail or proven in Chapter 2.

Definition 1.35. For an important class of regression models, regression
is the study of the conditional distribution Y |xT β of the response variable
Y given xT β where the vector of predictors x = (x1, ..., xp)

T .

Definition 1.36. A quantitative variable takes on numerical values
while a qualitative variable takes on categorical values.
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Definition 1.37. Suppose that the response variable Y and at least one
predictor variable xi are quantitative. Then the multiple linear regression
(MLR) model is

Yi = xi,1β1 + xi,2β2 + · · ·+ xi,pβp + ei = xT
i β + ei (1.29)

for i = 1, . . . , n. Here n is the sample size and the random variable ei is the
ith error. Suppressing the subscript i, the model is Y = xT β + e.

In matrix notation, these n equations become

Y = Xβ + e, (1.30)

where Y is an n × 1 vector of dependent variables, X is an n × p matrix
of predictors, β is a p × 1 vector of unknown coefficients, and e is an n × 1
vector of unknown errors. Equivalently,




Y1

Y2

...
Yn


 =




x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p

...
...

. . .
...

xn,1 xn,2 . . . xn,p







β1

β2

...
βp


 +




e1
e2
...
en


 . (1.31)

Often the first column of X is X1 = 1, the n × 1 vector of ones. The ith
case (xT

i , Yi) = (xi1, xi2, ..., xip, Yi) corresponds to the ith row xT
i of X and

the ith element of Y (if xi1 ≡ 1, then xi1 could be omitted). In the MLR
model Y = xT β + e, the Y and e are random variables, but we only have
observed values Yi and xi. If the ei are iid (independent and identically
distributed) with zero mean E(ei) = 0 and variance VAR(ei) = V (ei) = σ2,
then regression is used to estimate the unknown parameters β and σ2.

Definition 1.38. The constant variance MLR model uses the as-
sumption that the errors e1, ..., en are iid with mean E(ei) = 0 and variance
VAR(ei) = σ2 <∞. Also assume that the errors are independent of the pre-
dictor variables xi. The predictor variables xi are assumed to be fixed and
measured without error. The cases (xT

i , Yi) are independent for i = 1, ..., n.

If the predictor variables are random variables, then the above MLR model
is conditional on the observed values of the xi. That is, observe the xi and
then act as if the observed xi are fixed.

Definition 1.39. The unimodal MLR model has the same assumptions
as the constant variance MLR model, as well as the assumption that the zero
mean constant variance errors e1, ..., en are iid from a unimodal distribution
that is not highly skewed. Note that E(ei) = 0 and V (ei) = σ2 <∞.

Definition 1.40. The normal MLR model or Gaussian MLR model has
the same assumptions as the unimodal MLR model but adds the assumption
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that the errors e1, ..., en are iidN(0, σ2) random variables. That is, the ei are
iid normal random variables with zero mean and variance σ2.

The unknown coefficients for the above 3 models are usually estimated
using (ordinary) least squares (OLS).

Notation. The symbol A ≡ B = f(c) means that A and B are equivalent
and equal, and that f(c) is the formula used to compute A and B.

Definition 1.41. Given an estimate b of β, the corresponding vector of
predicted values or fitted values is Ŷ ≡ Ŷ (b) = Xb. Thus the ith fitted value

Ŷi ≡ Ŷi(b) = xT
i b = xi,1b1 + · · ·+ xi,pbp.

The vector of residuals is r ≡ r(b) = Y − Ŷ (b). Thus ith residual ri ≡
ri(b) = Yi − Ŷi(b) = Yi − xi,1b1 − · · · − xi,pbp.

Most regression methods attempt to find an estimate β̂ of β which mini-
mizes some criterion function Q(b) of the residuals.

Definition 1.42. The ordinary least squares (OLS) estimator β̂OLS min-
imizes

QOLS(b) =

n∑

i=1

r2i (b), (1.32)

and β̂OLS = (XT X)−1XT Y .

The vector of predicted or fitted values Ŷ OLS = Xβ̂OLS = HY where the
hat matrix H = X(XT X)−1XT provided the inverse exists. Typically the
subscript OLS is omitted, and the least squares regression equation is
Ŷ = β̂1x1 + β̂2x2 + · · ·+ β̂pxp where x1 ≡ 1 if the model contains a constant.

Definition 1.43. For MLR, the response plot is a plot of the ESP = fitted
values = Ŷi versus the response Yi, while the residual plot is a plot of the
ESP = Ŷi versus the residuals ri.

Theorem 1.30. Suppose that the regression estimator b of β is used to
find the residuals ri ≡ ri(b) and the fitted values Ŷi ≡ Ŷi(b) = xT

i b. Then

in the response plot of Ŷi versus Yi, the vertical deviations from the identity
line (that has unit slope and zero intercept) are the residuals ri(b).

Proof. The identity line in the response plot is Y = xT b. Hence the
vertical deviation is Yi − xT

i b = ri(b). �

The results in the following theorem are properties of least squares (OLS),
not of the underlying MLR model. Definitions 1.41 and 1.42 define the hat
matrix H , vector of fitted values Ŷ , and vector of residuals r. Parts f) and
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g) make residual plots useful. If the plotted points are linear with roughly
constant variance and the correlation is zero, then the plotted points scatter
about the r = 0 line with no other pattern. If the plotted points in a residual
plot of w versus r do show a pattern such as a curve or a right opening
megaphone, zero correlation will usually force symmetry about either the
r = 0 line or the w = median(w) line. Hence departures from the ideal plot
of random scatter about the r = 0 line are often easy to detect.

Let the n× p design matrix of predictor variables be

X =




x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p

...
...

. . .
...

xn,1 xn,2 . . . xn,p


 =

[
v1 v2 . . . vp

]
=




xT
1
...

xT
n




where v1 = 1.
Warning: If n > p, as is usually the case for the full rank linear model,

X is not square, so (XT X)−1 6= X−1(XT )−1 since X−1 does not exist.

Theorem 1.31. Suppose that X is an n× p matrix of full rank p. Then
a) H is symmetric: H = HT .
b) H is idempotent: HH = H .
c) XT r = 0 so that vT

j r = 0.
d) If there is a constant v1 = 1 in the model, then the sum of the residuals

is zero:
∑n

i=1 ri = 0.

e) rT Ŷ = 0.
f) If there is a constant in the model, then the sample correlation of the

fitted values and the residuals is 0: corr(r, Ŷ ) = 0.
g) If there is a constant in the model, then the sample correlation of the

jth predictor with the residuals is 0: corr(r, vj) = 0 for j = 1, ..., p.

Proof. a) XT X is symmetric since (XT X)T = XT (XT )T = XT X .
Hence (XT X)−1 is symmetric since the inverse of a symmetric matrix is
symmetric. (Recall that if A has an inverse then (AT )−1 = (A−1)T .) Thus
using (AT )T = A and (ABC)T = CT BT AT shows that

HT = XT [(XT X)−1]T (XT )T = H.

b) HH = X(XT X)−1XT X(XT X)−1XT = H since (XT X)−1XT X =
Ip, the p× p identity matrix.

c) XT r = XT (Ip − H)Y = [XT − XT X(XT X)−1XT ]Y =

[XT −XT ]Y = 0. Since vj is the jth column of X , vT
j is the jth row of XT

and vT
j r = 0 for j = 1, ..., p.

d) Since v1 = 1, vT
1 r =

∑n
i=1 ri = 0 by c).

e) rT Ŷ = [(In −H)Y ]THY = Y T (In −H)HY = Y T (H −H)Y = 0.
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f) The sample correlation between W and Z is corr(W,Z) =

∑n
i=1(wi − w)(zi − z)

(n− 1)swsz
=

∑n
i=1(wi −w)(zi − z)√∑n

i=1(wi −w)2
∑n

i=1(zi − z)2

where sm is the sample standard deviation of m for m = w, z. So the result

follows if A =
∑n

i=1(Ŷi − Ŷ )(ri − r) = 0. Now r = 0 by d), and thus

A =

n∑

i=1

Ŷiri − Ŷ

n∑

i=1

ri =

n∑

i=1

Ŷiri

by d) again. But
∑n

i=1 Ŷiri = rT Ŷ = 0 by e).

g) Following the argument in f), the result follows if A =∑n
i=1(xi,j − xj)(ri − r) = 0 where xj =

∑n
i=1 xi,j/n is the sample mean of

the jth predictor. Now r =
∑n

i=1 ri/n = 0 by d), and thus

A =

n∑

i=1

xi,jri − xj

n∑

i=1

ri =

n∑

i=1

xi,jri

by d) again. But
∑n

i=1 xi,jri = vT
j r = 0 by c). �

1.7.1 The ANOVA F Test

After fitting least squares and checking the response and residual plots to see
that an MLR model is reasonable, the next step is to check whether there is
an MLR relationship between Y and the nontrivial predictors x2, ..., xp. If

at least one of these predictors is useful, then the OLS fitted values Ŷi should
be used. If none of the nontrivial predictors is useful, then Y will give as
good predictions as Ŷi. Here the sample mean Y is given by Definition 1.12.
In the definition below, SSE is the sum of squared residuals and a residual
ri = êi = “errorhat.” In the literature “errorhat” is often rather misleadingly
abbreviated as “error.”

Definition 1.44. Assume that a constant is in the MLR model.
a) The total sum of squares

SSTO =
n∑

i=1

(Yi − Y )2. (1.33)

b) The regression sum of squares
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SSR =

n∑

i=1

(Ŷi − Y )2. (1.34)

c) The residual sum of squares or error sum of squares is

SSE =

n∑

i=1

(Yi − Ŷi)
2 =

n∑

i=1

r2i . (1.35)

The result in the following theorem is a property of least squares (OLS),
not of the underlying MLR model. An obvious application is that given any
two of SSTO, SSE, and SSR, the 3rd sum of squares can be found using the
formula SSTO = SSE + SSR.

Theorem 1.32. Assume that a constant is in the MLR model. Then
SSTO = SSE + SSR.

Proof.

SSTO =
n∑

i=1

(Yi − Ŷi + Ŷi − Y )2 = SSE + SSR + 2
n∑

i=1

(Yi − Ŷi)(Ŷi − Y ).

Hence the result follows if

A ≡
n∑

i=1

ri(Ŷi − Y ) = 0.

But

A =

n∑

i=1

riŶi − Y

n∑

i=1

ri = 0

by Theorem 1.31 d) and e). �

Definition 1.45. Assume that a constant is in the MLR model and that
SSTO 6= 0. The coefficient of multiple determination

R2 = [corr(Yi, Ŷi)]
2 =

SSR

SSTO
= 1 − SSE

SSTO

where corr(Yi, Ŷi) is the sample correlation of Yi and Ŷi.

Warnings: i) 0 ≤ R2 ≤ 1, but small R2 does not imply that the MLR
model is bad.

ii) If the MLR model contains a constant, then there are several equivalent
formulas for R2. If the model does not contain a constant, then R2 depends
on the software package.

iii) R2 does not have much meaning unless the response plot and residual
plot both look good.

iv) R2 tends to be too high if n is small.
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v) R2 tends to be too high if there are two or more separated clusters of
data in the response plot.

vi) R2 is too high if the number of predictors p is close to n.
vii) In large samples R2 will be large (close to one) if σ2 is small compared

to the sample variance S2
Y of the response variable Y . R2 is also large if the

sample variance of Ŷ is close to S2
Y . Thus R2 is sometimes interpreted as

the proportion of the variability of Y explained by conditioning on x, but
warnings i) - v) suggest that R2 may not have much meaning.

The following 2 theorems suggest that R2 does not behave well when many
predictors that are not needed in the model are included in the model. Such
a variable is sometimes called a noise variable and the MLR model is “fitting
noise.” Theorem 1.34 appears, for example, in Cramér (1946, pp. 414-415),
and suggests that R2 should be considerably larger than p/n if the predictors
are useful. Note that if n = 10p and p ≥ 2, then under the conditions of
Theorem 1.34, E(R2) ≤ 0.1.

Theorem 1.33. Assume that a constant is in the MLR model. Adding a
variable to the MLR model does not decrease (and usually increases) R2.

Theorem 1.34. Assume that a constant β1 is in the MLR model, that
β2 = · · · = βp = 0 and that the ei are iid N(0, σ2). Hence the Yi are iid
N(β1, σ

2). Then

a) R2 follows a beta distribution: R2 ∼ beta(p−1
2 , n−p

2 ).

b)

E(R2) =
p− 1

n− 1
.

c)

VAR(R2) =
2(p− 1)(n− p)

(n− 1)2(n+ 1)
.

Notice that each SS/n estimates the variability of some quantity. SSTO/n
≈ S2

Y , SSE/n ≈ S2
e = σ2, and SSR/n ≈ S2

Ŷ
.

Definition 1.46. Assume that a constant is in the MLR model. Associated
with each SS in Definition 1.44 is a degrees of freedom (df) and a mean
square = SS/df . For SSTO, df = n − 1 and MSTO = SSTO/(n − 1).
For SSR, df = p − 1 and MSR = SSR/(p − 1). For SSE, df = n − p and
MSE = SSE/(n − p).

Under mild conditions, if the MLR model is appropriate, then MSE is a√
n consistent estimator of σ2 by Su and Cook (2012).

The ANOVA F test tests whether any of the nontrivial predictors x2, ..., xp

are needed in the OLS MLR model, that is, whether Yi should be predicted
by the OLS fit Ŷi = β̂1 + xi,2β̂2 + · · · + xi,pβ̂p or with the sample mean Y .
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ANOVA stands for analysis of variance, and the computer output needed
to perform the test is contained in the ANOVA table. Below is an ANOVA
table given in symbols. Sometimes “Regression” is replaced by “Model” and
“Residual” by “Error.”

Summary Analysis of Variance Table

Source df SS MS F p-value

Regression p− 1 SSR MSR F0=MSR/MSE for H0:
Residual n− p SSE MSE β2 = · · · = βp = 0

Remark 1.9. Recall that for a 4 step test of hypotheses, the p–value is the
probability of getting a test statistic as extreme as the test statistic actually
observed and that H0 is rejected if the p–value < δ. As a benchmark for this
textbook, use δ = 0.05 if δ is not given. The 4th step is the nontechnical
conclusion which is crucial for presenting your results to people who are not
familiar with MLR. Replace Y and x2, ..., xp by the actual variables used in
the MLR model.

Notation. The p–value ≡ pvalue given by output tends to only be cor-
rect for the normal MLR model. Hence the output is usually only giving an
estimate of the pvalue, which will often be denoted by pval. So reject H0 if
pval ≤ δ. Often

pval− pvalue
P→ 0

(converges to 0 in probability, so pval is a consistent estimator of pvalue) as
the sample size n→ ∞. See Section 1.5. Then the computer output pval is a
good estimator of the unknown pvalue. We will use Fo ≡ F0, Ho ≡ H0, and
Ha ≡ HA ≡ H1.

The 4 step ANOVA F test of hypotheses is below.
i) State the hypotheses H0 : β2 = · · · = βp = 0 HA: not H0.
ii) Find the test statistic F0 = MSR/MSE or obtain it from output.
iii) Find the pval from output or use the F –table: pval =

P (Fp−1,n−p > F0).

iv) State whether you reject H0 or fail to reject H0. If H0 is rejected, conclude
that there is an MLR relationship between Y and the predictors x2, ..., xp. If
you fail to reject H0, conclude that there is not an MLR relationship between
Y and the predictors x2, ..., xp. (Or there is not enough evidence to conclude
that there is an MLR relationship between Y and the predictors.)

Some assumptions are needed on the ANOVA F test. Assume that both
the response and residual plots look good. It is crucial that there are no
outliers. Then a rule of thumb is that if n − p is large, then the ANOVA
F test p–value is approximately correct. An analogy can be made with the
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central limit theorem, Y is a good estimator for µ if the Yi are iid N(µ, σ2)
and also a good estimator for µ if the data are iid with mean µ and variance
σ2 if n is large enough.

If all of the xi are different (no replication) and if the number of predictors
p = n, then the OLS fit Ŷi = Yi and R2 = 1. Notice that H0 is rejected if the
statistic F0 is large. More precisely, reject H0 if

F0 > Fp−1,n−p,1−δ

where
P (F ≤ Fp−1,n−p,1−δ) = 1 − δ

when F ∼ Fp−1,n−p. Since R2 increases to 1 while (n− p)/(p− 1) decreases
to 0 as p increases to n, Theorem 1.35a below implies that if p is large then
the F0 statistic may be small even if some of the predictors are very good. It
is a good idea to use n ≥ 10p or at least n ≥ 5p if possible.

Theorem 1.35. Assume that the MLR model has a constant β1.
a)

F0 =
MSR

MSE
=

R2

1 − R2

n− p

p− 1
.

b) If the errors ei are iid N(0, σ2), and if H0 : β2 = · · · = βp = 0 is true,
then F0 has an F distribution with p− 1 numerator and n − p denominator
degrees of freedom: F0 ∼ Fp−1,n−p.

c) If the errors are iid with mean 0 and variance σ2, if the error distribution
is close to normal, and if n − p is large enough, and if H0 is true, then
F0 ≈ Fp−1,n−p in that the p-value from the software (pval) is approximately
correct.

Remark 1.10. When a constant is not contained in the model (i.e. xi,1 is
not equal to 1 for all i), then the computer output still produces an ANOVA
table with the test statistic and p–value, and nearly the same 4 step test of
hypotheses can be used. The hypotheses are now H0 : β1 = · · · = βp = 0
HA: not H0, and you are testing whether or not there is an MLR relationship
between Y and x1, ..., xp. An MLR model without a constant (no intercept)
is sometimes called a “regression through the origin.” See Section 1.7.5.

1.7.2 The Partial F Test

Suppose that there is data on variables Z, w1, ..., wr and that a useful MLR
model has been made using Y = t(Z), x1 ≡ 1, x2, ..., xp where each xi is
some function of w1, ..., wr. This useful model will be called the full model. It
is important to realize that the full model does not need to use every variable
wj that was collected. For example, variables with outliers or missing values
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may not be used. Forming a useful full model is often very difficult, and it is
often not reasonable to assume that the candidate full model is good based
on a single data set, especially if the model is to be used for prediction.

Even if the full model is useful, the investigator will often be interested in
checking whether a model that uses fewer predictors will work just as well.
For example, perhaps xp is a very expensive predictor but is not needed given
that x1, ..., xp−1 are in the model. Also a model with fewer predictors tends
to be easier to understand.

Definition 1.47. Let the full model use Y , x1 ≡ 1, x2, ..., xp and let the
reduced model use Y , x1, xi2 , ..., xiq where {i2, ..., iq} ⊂ {2, ..., p}.

The partial F test is used to test whether the reduced model is good in
that it can be used instead of the full model. It is crucial that the reduced
and full models be selected before looking at the data. If the reduced model
is selected after looking at the full model output and discarding the worst
variables, then the p–value for the partial F test will be too high. If the
data needs to be looked at to build the full model, as is often the case, data
splitting is useful.

For (ordinary) least squares, usually a constant is used, and we are assum-
ing that both the full model and the reduced model contain a constant. The
partial F test has null hypothesis H0 : βiq+1

= · · · = βip = 0, and alternative
hypothesis HA : at least one of the βij 6= 0 for j > q. The null hypothesis is
equivalent to H0: “the reduced model is good.” Since only the full model and
reduced model are being compared, the alternative hypothesis is equivalent
to HA: “the reduced model is not as good as the full model, so use the full
model,” or more simply, HA : “use the full model.”

To perform the partial F test, fit the full model and the reduced model
and obtain the ANOVA table for each model. The quantities dfF , SSE(F)
and MSE(F) are for the full model and the corresponding quantities from
the reduced model use an R instead of an F . Hence SSE(F) and SSE(R) are
the residual sums of squares for the full and reduced models, respectively.
Shown below is output only using symbols.
Full model

Source df SS MS F0 and p-value
Regression p − 1 SSR MSR F0=MSR/MSE

Residual dfF = n− p SSE(F) MSE(F) for H0 : β2 = · · · = βp = 0

Reduced model

Source df SS MS F0 and p-value

Regression q − 1 SSR MSR F0=MSR/MSE
Residual dfR = n− q SSE(R) MSE(R) for H0 : β2 = · · · = βq = 0
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The 4 step partial F test of hypotheses is below. i) State the hy-
potheses. H0: the reduced model is good HA: use the full model
ii) Find the test statistic. FR =

[
SSE(R) − SSE(F )

dfR − dfF

]
/MSE(F )

iii) Find the pval = P(FdfR−dfF ,dfF > FR). ( Here dfR−dfF = p−q = number
of parameters set to 0, and dfF = n−p, while pval is the estimated p–value.)
iv) State whether you reject H0 or fail to reject H0. Reject H0 if the pval ≤ δ
and conclude that the full model should be used. Otherwise, fail to reject H0

and conclude that the reduced model is good.

Sometimes software has a shortcut. In particular, the R software uses the
anova command. As an example, assume that the full model uses x2 and
x3 while the reduced model uses x2. Both models contain a constant. Then
the following commands will perform the partial F test. (On the computer
screen the second command looks more like
red < − lm(y∼x2).)

full <- lm(y˜x2+x3)

red <- lm(y˜x2)

anova(red,full)

For an n × 1 vector a, let

‖a‖ =
√
a2
1 + · · ·+ a2

n =
√

aT a

be the Euclidean norm of a. If r and rR are the vector of residuals from
the full and reduced models, respectively, notice that SSE(F ) = ‖r‖2 and
SSE(R) = ‖rR‖2.

The following theorem suggests that H0 is rejected in the partial F test if
the change in residual sum of squares SSE(R) − SSE(F ) is large compared
to SSE(F ). If the change is small, then FR is small and the test suggests
that the reduced model can be used.

Theorem 1.36. Let R2 and R2
R be the multiple coefficients of determi-

nation for the full and reduced models, respectively. Let Ŷ and Ŷ R be the
vectors of fitted values for the full and reduced models, respectively. Then
the test statistic in the partial F test is

FR =

[
SSE(R) − SSE(F )

dfR − dfF

]
/MSE(F ) =

[
‖Ŷ ‖2 − ‖Ŷ R‖2

dfR − dfF

]
/MSE(F ) =
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SSE(R) − SSE(F )

SSE(F )

n− p

p − q
=
R2 −R2

R

1 −R2

n− p

p− q
.

Definition 1.48. An FF plot is a plot of fitted values from 2 different
models or fitting methods. An RR plot is a plot of residuals from 2 different
models or fitting methods.

Six plots are useful diagnostics for the partial F test: the RR plot with
the full model residuals on the vertical axis and the reduced model residuals
on the horizontal axis, the FF plot with the full model fitted values on the
vertical axis, and always make the response and residual plots for the full
and reduced models. Suppose that the full model is a useful MLR model. If
the reduced model is good, then the response plots from the full and reduced
models should be very similar, visually. Similarly, the residual plots from
the full and reduced models should be very similar, visually. Finally, the
correlation of the plotted points in the RR and FF plots should be high,
≥ 0.95, say, and the plotted points in the RR and FF plots should cluster
tightly about the identity line. Add the identity line to both the RR and
FF plots as a visual aid. Also add the OLS line from regressing r on rR to
the RR plot (the OLS line is the identity line in the FF plot). If the reduced
model is good, then the OLS line should nearly coincide with the identity line
in that it should be difficult to see that the two lines intersect at the origin.
If the FF plot looks good but the RR plot does not, the reduced model may
be good if the main goal of the analysis is to predict Y. These plots are also
useful for other methods such as lasso.

1.7.3 The Wald t Test

Often investigators hope to examine βk in order to determine the importance
of the predictor xk in the model; however, βk is the coefficient for xk given
that the other predictors are in the model. Hence βk depends strongly on
the other predictors in the model. Suppose that the model has an intercept:
x1 ≡ 1. The predictor xk is highly correlated with the other predictors if
the OLS regression of xk on x1, ..., xk−1, xk+1, ..., xp has a high coefficient of
determination R2

k. If this is the case, then often xk is not needed in the model
given that the other predictors are in the model. If at least one R2

k is high
for k ≥ 2, then there is multicollinearity among the predictors.

As an example, suppose that Y = height, x1 ≡ 1, x2 = left leg length, and
x3 = right leg length. Then x2 should not be needed given x3 is in the model
and β2 = 0 is reasonable. Similarly β3 = 0 is reasonable. On the other hand,
if the model only contains x1 and x2, then x2 is extremely important with β2

near 2. If the model contains x1, x2, x3, x4 = height at shoulder, x5 = right
arm length, x6 = head length, and x7 = length of back, then R2

i may be high
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for each i ≥ 2. Hence xi is not needed in the MLR model for Y given that
the other predictors are in the model.

Definition 1.49. The 100 (1 − δ) % CI for βk is β̂k ± tn−p,1−δ/2 se(β̂k).
If the degrees of freedom d = n − p ≥ 30, the N(0,1) cutoff z1−δ/2 may be
used.

Know how to do the 4 step Wald t–test of hypotheses.
i) State the hypotheses H0 : βk = 0 HA : βk 6= 0.

ii) Find the test statistic to,k = β̂k/se(β̂k) or obtain it from output.
iii) Find pval from output or use the t–table: pval =

2P (tn−p < −|to,k|) = 2P (tn−p > |to,k|).

Use the normal table or the d = Z line in the t–table if the degrees of freedom
d = n − p ≥ 30. Again pval is the estimated p–value.
iv) State whether you reject H0 or fail to reject H0 and give a nontechnical
sentence restating your conclusion in terms of the story problem.

Recall thatH0 is rejected if the pval≤ δ. As a benchmark for this textbook,
use δ = 0.05 if δ is not given. If H0 is rejected, then conclude that xk is needed
in the MLR model for Y given that the other predictors are in the model.
If you fail to reject H0, then conclude that xk is not needed in the MLR
model for Y given that the other predictors are in the model. (Or there is
not enough evidence to conclude that xk is needed in the MLR model given
that the other predictors are in the model.) Note that xk could be a very
useful individual predictor, but may not be needed if other predictors are
added to the model.

1.7.4 The OLS Criterion

The OLS estimator β̂ minimizes the OLS criterion

QOLS(η) =

n∑

i=1

r2i (η)

where the residual ri(η) = Yi−xT
i η. In other words, let ri = ri(β̂) be the OLS

residuals. Then
∑n

i=1 r
2
i ≤ ∑n

i=1 r
2
i (η) for any p×1 vector η, and the equality

holds (if and only if) iff η = β̂ if the n×p design matrix X is of full rank p ≤ n.
In particular, if X has full rank p, then

∑n
i=1 r

2
i <

∑n
i=1 r

2
i (β) =

∑n
i=1 e

2
i

even if the MLR model Y = Xβ + e is a good approximation to the data.
Warning: Often η is replaced by β: QOLS(β) =

∑n
i=1 r

2
i (β). This no-

tation is often used in Statistics when there are estimating equations. For
example, maximum likelihood estimation uses the log likelihood log(L(θ))
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Fig. 1.8 The OLS Fit Minimizes the Sum of Squared Residuals

where θ is the vector of unknown parameters and the dummy variable in the
log likelihood.

Example 1.21. When a model depends on the predictors x only through
the linear combination xT β, then xT β is called a sufficient predictor and
xT β̂ is called an estimated sufficient predictor (ESP). For OLS the model is
Y = xT β + e, and the fitted value Ŷ = ESP . To illustrate the OLS criterion
graphically, consider the Gladstone (1905) data where we used brain weight as
the response. A constant, x2 = age, x3 = sex, and x4 = (size)1/3 were used
as predictors after deleting five “infants” from the data set. In Figure 1.8a, the
OLS response plot of the OLS ESP = Ŷ versus Y is shown. The vertical devi-
ations from the identity line are the residuals, and OLS minimizes the sum of



64 1 Introduction

squared residuals. If any other ESP xT η is plotted versus Y , then the vertical
deviations from the identity line are the residuals ri(η). For this data, the OLS

estimator β̂ = (498.726,−1.597, 30.462, 0.696)T. Figure 1.8b shows the re-
sponse plot using the ESP xT η where η = (498.726,−1.597, 30.462, 0.796)T.
Hence only the coefficient for x4 was changed; however, the residuals ri(η) in
the resulting plot are much larger in magnitude on average than the residuals
in the OLS response plot. With slightly larger changes in the OLS ESP, the
resulting η will be such that the squared residuals are massive.

Theorem 1.37. The OLS estimator β̂ is the unique minimizer of the OLS
criterion if X has full rank p ≤ n.

Proof: Seber and Lee (2003, pp. 36-37). Recall that the hat matrix
H = X(XT X)−1XT and notice that (I−H)T = I−H, that (I−H)H = 0
and that HX = X . Let η be any p× 1 vector. Then

(Y − Xβ̂)T (Xβ̂ − Xη) = (Y − HY )T (HY − HXη) =

Y T (I − H)H(Y − Xη) = 0.

Thus QOLS(η) = ‖Y − Xη‖2 = ‖Y − Xβ̂ + Xβ̂ − Xη‖2 =

‖Y − Xβ̂‖2 + ‖Xβ̂ − Xη‖2 + 2(Y − Xβ̂)T (Xβ̂ − Xη).

Hence
‖Y − Xη‖2 = ‖Y − Xβ̂‖2 + ‖Xβ̂ − Xη‖2. (1.36)

So
‖Y − Xη‖2 ≥ ‖Y − Xβ̂‖2

with equality iff
X(β̂ − η) = 0

iff β̂ = η since X is full rank. �

Alternatively calculus can be used. Notice that ri(η) = Yi−xi,1η1−xi,2η2−
· · · − xi,pηp. Recall that xT

i is the ith row of X while vj is the jth column.
Since QOLS(η) =

n∑

i=1

(Yi − xi,1η1 − xi,2η2 − · · · − xi,pηp)
2,

the jth partial derivative

∂QOLS(η)

∂ηj
= −2

n∑

i=1

xi,j(Yi−xi,1η1−xi,2η2−· · ·−xi,pηp) = −2(vj)
T (Y −Xη)

for j = 1, ..., p. Combining these equations into matrix form, setting the
derivative to zero and calling the solution β̂ gives
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XT Y − XT Xβ̂ = 0,

or
XT Xβ̂ = XT Y . (1.37)

Equation (1.37) is known as the normal equations. If X has full rank then

β̂ = (XT X)−1XT Y . To show that β̂ is the global minimizer of the OLS
criterion, use the argument following Equation (1.36).

1.7.5 The No Intercept MLR Model

The no intercept MLR model, also known as regression through the origin, is
still Y = Xβ+e, but there is no intercept in the model, so X does not contain
a column of ones 1. Hence the intercept term β1 = β1(1) is replaced by β1xi1.
Software gives output for this model if the “no intercept” or “intercept = F”
option is selected. For the no intercept model, the assumption E(e) = 0 is
important, and this assumption is rather strong.

Many of the usual MLR results still hold: β̂OLS = (XT X)−1XT Y , the

vector of predicted fitted values Ŷ = Xβ̂OLS = HY where the hat matrix
H = X(XT X)−1XT provided the inverse exists, and the vector of residuals

is r = Y − Ŷ . The response plot and residual plot are made in the same way
and should be made before performing inference.

The main difference in the output is the ANOVA table. The ANOVA F
test in Section 1.7.1 tests H0 : β2 = · · · = βp = 0. The test in this subsection
tests H0 : β1 = · · · = βp = 0 ≡ H0 : β = 0. The following definition and test
follows Guttman (1982, p. 147) closely.

Definition 1.50. Assume that Y = Xβ +e where the ei are iid. Assume
that it is desired to test H0 : β = 0 versus HA : β 6= 0.

a) The uncorrected total sum of squares

SST =

n∑

i=1

Y 2
i . (1.38)

b) The model sum of squares

SSM =

n∑

i=1

Ŷ 2
i . (1.39)

c) The residual sum of squares or error sum of squares is

SSE =

n∑

i=1

(Yi − Ŷi)
2 =

n∑

i=1

r2i . (1.40)
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d) The degrees of freedom (df) for SSM is p, the df for SSE is n − p and
the df for SST is n. The mean squares are MSE = SSE/(n− p) and MSM =
SSM/p.

The ANOVA table given for the “no intercept” or “intercept = F” option
is below.

Summary Analysis of Variance Table

Source df SS MS F p-value

Model p SSM MSM F0=MSM/MSE for H0:
Residual n− p SSE MSE β = 0

The 4 step no intercept ANOVA F test for β = 0 is below.
i) State the hypotheses H0 : β = 0, HA : β 6= 0.
ii) Find the test statistic F0 = MSM/MSE or obtain it from output.
iii) Find the pval from output or use the F –table: pval = P (Fp,n−p > F0).
iv) State whether you reject H0 or fail to reject H0. If H0 is rejected, conclude
that there is an MLR relationship between Y and the predictors x1, ..., xp. If
you fail to reject H0, conclude that there is not an MLR relationship between
Y and the predictors x1, ..., xp. (Or there is not enough evidence to conclude
that there is an MLR relationship between Y and the predictors.)

1.8 Summary

1) Statistical Learning techniques extract information from multivariate data.
A case or observation consists of k random variables measured for one
person or thing. The ith case zi = (zi1, ..., zik)

T . The training data consists
of z1, ..., zn. A statistical model or method is fit (trained) on the training
data. The test data consists of zn+1, ..., zn+m, and the test data is often
used to evaluate the quality of the fitted model.

2) Suppose a case has k random variables. For low dimensional statistics,
n ≥ Jk with J ≥ 5. For high dimensional statistics, n < 5k.

3) Suppose a regression model studies Y |xT β where x is a p × 1 vector
of predictors. A model with n < 5p is overfitting: the model does not have
enough data to estimate p parameters accurately. A high dimensional regres-
sion model has n < 5p. A fitted or population regression model is sparse if
a of the predictors are active (have nonzero β̂i or βi) where n ≥ Ja with
J ≥ 10. Otherwise the model is nonsparse. A high dimensional population
regression model is abundant or dense if the regression information is spread
out among the p predictors (nearly all of the predictors are active). Hence an
abundant model is a nonsparse model.

4) An important class of regression models investigates how the response
variable Y changes with the value of xT β where x is a p × 1 vector of pre-
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dictors. In a 1D regression model, regression is the study of the condi-
tional distribution of Y given the sufficient predictor SP = h(x), written
Y |SP or Y|h(x), where the real valued function h : R

p → R. The esti-

mated sufficient predictor ESP = ĥ(x). An important special case is a

model with a linear predictor h(x) = α + βT x where ESP = α̂ + β̂
T
x and

often α = 0. A response plot is a plot of the ESP versus the response Y .
Often SP = xT β and ESP = xT β̂. A residual plot is a plot of the ESP ver-
sus the residuals. Tip: if the model for Y (more accurately Y |h(x)) depends
on x only through the real valued function h(x), then SP = h(x).

5) a) The log rule states that a positive variable that has the ratio between
the largest and smallest values greater than ten should be transformed to logs.
So W > 0 and max(W )/min(W ) > 10 suggests using log(W ).

b) The ladder rule: to spread small values of a variable, make λ smaller,
to spread large values of a variable, make λ larger.

6) Let the ladder of powers ΛL = {−1,−1/2,−1/3, 0, 1/3, 1/2, 1}. Let
tλ(Z) = Zλ for λ 6= 0 and Y = t0(Z) = log(Z) for λ = 0. Consider the addi-
tive error regression model Y = m(x)+ e. Then the response transformation
model is Y = tλ(Z) = mλ(x) + e. Compute the “fitted values” Ŵi using
Wi = tλ(Zi) as the “response.” Then a transformation plot of Ŵi versus Wi

is made for each of the seven values of λ ∈ ΛL with the identity line added
as a visual aid. Make the transformations for λ ∈ ΛL, and choose the trans-
formation with the best transformation plot where the plotted points scatter
about the identity line.

7) For the location model, the sample mean Y =

∑n
i=1 Yi

n
, the sample

variance S2
n =

∑n
i=1(Yi − Y )2

n− 1
, and the sample standard deviation Sn =

√
S2

n. If the data Y1, ..., Yn is arranged in ascending order from smallest to
largest and written as Y(1) ≤ · · · ≤ Y(n), then Y(i) is the ith order statistic
and the Y(i)’s are called the order statistics. The sample median

MED(n) = Y((n+1)/2) if n is odd,

MED(n) =
Y(n/2) + Y((n/2)+1)

2
if n is even.

The notation MED(n) = MED(Y1, ..., Yn) will also be used. The sample me-
dian absolute deviation is MAD(n) = MED(|Yi − MED(n)|, i = 1, . . . , n).

8) Suppose the multivariate data has been collected into an n × p matrix

W = X =




xT
1
...

xT
n


 .



68 1 Introduction

The coordinatewise median MED(W ) = (MED(X1), ...,MED(Xp))T where
MED(Xi) is the sample median of the data in column i corresponding to

variable Xi. The sample mean x =
1

n

n∑

i=1

xi = (X1, ..., Xp)
T where Xi is

the sample mean of the data in column i corresponding to variable Xi. The
sample covariance matrix

S =
1

n − 1

n∑

i=1

(xi − x)(xi − x)T = (Sij).

That is, the ij entry of S is the sample covariance Sij . The classical estimator
of multivariate location and dispersion is (T,C) = (x,S).

9) Let (T,C) = (T (W ),C(W )) be an estimator of multivariate location
and dispersion. The ith Mahalanobis distance Di =

√
D2

i where the ith
squared Mahalanobis distance is D2

i = D2
i (T (W ),C(W )) =

(xi − T (W ))T C−1(W )(xi − T (W )).
10) The squared Euclidean distances of the xi from the coordinatewise

median is D2
i = D2

i (MED(W ), Ip). Concentration type steps compute the
weighted median MEDj: the coordinatewise median computed from the cases
xi withD2

i ≤ MED(D2
i (MEDj−1, Ip)) where MED0 = MED(W ). Often used

j = 0 (no concentration type steps) or j = 9. Let Di = Di(MEDj , Ip). Let
Wi = 1 if Di ≤ MED(D1, ..., Dn)+kMAD(D1, ..., Dn) where k ≥ 0 and k = 5
is the default choice. Let Wi = 0, otherwise.

11) Let the covmb2 set B of at least n/2 cases correspond to the cases
with weight Wi = 1. Then the covmb2 estimator (T,C) is the sample mean
and sample covariance matrix applied to the cases in set B. Hence

T =

∑n
i=1Wixi∑n

i=1Wi
and C =

∑n
i=1Wi(xi − T )(xi − T )T

∑n
i=1Wi − 1

.

The function ddplot5 plots the Euclidean distances from the coordinatewise
median versus the Euclidean distances from the covmb2 location estimator.
Typically the plotted points in this DD plot cluster about the identity line,
and outliers appear in the upper right corner of the plot with a gap between
the bulk of the data and the outliers.

12) If X and Y are p×1 random vectors, a a conformable constant vector,
and A and B are conformable constant matrices, then

E(X+Y ) = E(X)+E(Y ), E(a+Y ) = a+E(Y ), & E(AXB) = AE(X)B.

Also
Cov(a + AX) = Cov(AX) = ACov(X)AT .

Note that E(AY ) = AE(Y ) and Cov(AY ) = ACov(Y )AT .
13) If X ∼ Np(µ,Σ), then E(X) = µ and Cov(X) = Σ.
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14) If X ∼ Np(µ,Σ) and if A is a q×pmatrix, then AX ∼ Nq(Aµ,AΣAT ).
If a is a p × 1 vector of constants, then X + a ∼ Np(µ + a,Σ).

15) Let Xn be a sequence of random vectors with joint cdfs Fn(x) and let
X be a random vector with joint cdf F (x).

a) Xn converges in distribution to X, written Xn
D→ X , if Fn(x) →

F (x) as n → ∞ for all points x at which F (x) is continuous. The distribution
of X is the limiting distribution or asymptotic distribution of Xn. Note
that X does not depend on n.

b) Xn converges in probability to X, written Xn
P→ X, if for every

ε > 0, P (‖Xn − X‖ > ε) → 0 as n→ ∞.
16) Multivariate Central Limit Theorem (MCLT): If X1, ...,Xn are iid

k × 1 random vectors with E(X) = µ and Cov(X) = Σx, then

√
n(Xn − µ)

D→ Nk(0,Σx)

where the sample mean

Xn =
1

n

n∑

i=1

X i.

17) Suppose
√
n(Tn − µ)

D→ Np(θ,Σ). Let A be a q × p constant matrix.

Then A
√
n(Tn − µ) =

√
n(ATn − Aµ)

D→ Nq(Aθ,AΣAT ).

18) Suppose A is a conformable constant matrix and Xn
D→ X . Then

AXn
D→ AX .

19) A g × 1 random vector u has a mixture distribution of the uj

with probabilities πj if u is equal to uj with probability πj. The cdf of

u is Fu(t) =
J∑

j=1

πjFuj
(t) where the probabilities πj satisfy 0 ≤ πj ≤

1 and
∑J

j=1 πj = 1, J ≥ 2, and Fuj (t) is the cdf of a g × 1 ran-

dom vector uj . Then E(u) =
∑J

j=1 πjE[uj ] and Cov(u) = E(uuT ) −
E(u)E(uT ) = E(uuT )−E(u)[E(u)]T =

∑J
j=1 πjE[uju

T
j ]−E(u)[E(u)]T =∑J

j=1 πjCov(uj) +
∑J

j=1 πjE(uj)[E(uj)]
T −E(u)[E(u)]T . If E(uj) = θ for

j = 1, ..., J , then E(u) = θ and Cov(u) =
∑J

j=1 πjCov(uj). Note that

E(u)[E(u)]T =
∑J

j=1

∑J
k=1 πjπkE(uj)[E(uk)]T .

1.9 Complements

Graphical response transformation methods similar to those in Section 1.2
include Cook and Olive (2001) and Olive (2004, 2017a: section 3.2). A nu-
merical method is given by Zhang and Yang (2017).
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Section 1.5 followed Olive (2014, ch. 8) closely, which is a good Master’s
level treatment of large sample theory. Olive (2023d) is an online text. There
are several PhD level texts on large sample theory including, in roughly in-
creasing order of difficulty, Lehmann (1999), Ferguson (1996), Sen and Singer
(1993), and Serfling (1980). White (1984) considers asymptotic theory for
econometric applications.

For a nonsingular matrix, the inverse of the matrix, the determinant of
the matrix, and the eigenvalues of the matrix are continuous functions of
the matrix. Hence if Σ̂ is a consistent estimator of Σ, then the inverse,
determinant, and eigenvalues of Σ̂ are consistent estimators of the inverse,
determinant, and eigenvalues of Σ > 0. See, for example, Bhatia et al. (1990),
Stewart (1969), and Severini (2005, pp. 348-349).

Outliers
The outlier detection methods of Section 1.4 are due to Olive (2017b, sec-

tion 4.7). For competing outlier detection methods, see Boudt et al. (2017).
Also, google “novelty detection,” “anomaly detection,” and “artefact identi-
fication.”

Big Data Sets
Sometimes n is huge and p is small. Then importance sampling and se-

quential analysis with sample size less than 1000 can be useful for inference
for regression and time series models. Sometimes n is much smaller than p,
for example with microarrays. Sometimes both n and p are large.

1.10 Problems

crancap hdlen hdht Data for 1.1

1485 175 132

1450 191 117

1460 186 122

1425 191 125

1430 178 120

1290 180 117

90 75 51

1.1∗. The table (W ) above represents 3 head measurements on 6 people
and one ape. Let X1 = cranial capacity, X2 = head length, and X3 = head
height. Let x = (X1, X2, X3)

T . Several multivariate location estimators, in-
cluding the coordinatewise median and sample mean, are found by applying
a univariate location estimator to each random variable and then collecting
the results into a vector. a) Find the coordinatewise median MED(W ).

b) Find the sample mean x.

1.2. The table W shown below represents 4 measurements on 5 people.
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age breadth cephalic size

39.00 149.5 81.9 3738

35.00 152.5 75.9 4261

35.00 145.5 75.4 3777

19.00 146.0 78.1 3904

0.06 88.5 77.6 933

a) Find the sample mean x.
b) Find the coordinatewise median MED(W ).

1.3. Suppose x1, ...,xn are iid p × 1 random vectors from a multivariate
t-distribution with parameters µ and Σ with d degrees of freedom. Then

E(xi) = µ and Cov(x) =
d

d− 2
Σ for d > 2. Assuming d > 2, find the

limiting distribution of
√
n(x − c) for appropriate vector c.

1.4. Suppose x1, ...,xn are iid p× 1 random vectors where E(xi) = e0.51
and Cov(xi) = (e2 − e)Ip. Find the limiting distribution of

√
n(x − c) for

appropriate vector c.

1.5. Suppose x1, ...,xn are iid 2 × 1 random vectors from a multivariate
lognormal LN(µ, Σ) distribution. Let xi = (Xi1, Xi2)

T . Following Press
(2005, pp. 149-150), E(Xij) = exp(µj + σ2

j /2),

V (Xij) = exp(σ2
j )[exp(σ2

j ) − 1] exp(2µj) for j = 1, 2, and

Cov(Xi1, Xi2) = exp[µ1 + µ2 + 0.5(σ2
1 + σ2

2) + σ12][exp(σ12) − 1]. Find the
limiting distribution of

√
n(x − c) for appropriate vector c.

1.6. The most used Poisson regression model is Y |x ∼ Poisson(exp(xT β)).
What is the sufficient predictor SP = h(x)?

1.7. Let Z be the variable of interest and let Y = t(z) be the response
variable for the multiple linear regression model Y = xT β + e. For the four
transformation plots shown in Figure 1.9, n = 1000, and p = 4. The fitting
method was the elastic net. What response transformation should be used?

1.8. The data set follows the multiple linear regression model Y = xT β+e
with n = 100 and p = 101. The response plots for two methods are shown
in Figure 1.10. Which method fits the data better, lasso or ridge regression?
For ridge regression, is anything wrong with yhat = Ŷ .

1.9. For the Buxton (1920) data with multiple linear regression, height was
the response variable while an intercept, head length, nasal height, bigonal
breadth, and cephalic index were used as predictors in the multiple linear
regression model. Observation 9 was deleted since it had missing values. Five
individuals, cases 61–65, were reported to be about 0.75 inches tall with head
lengths well over five feet! The response plot shown in Figure 1.4a) is for lasso.
The response plot in Figure 1.4b) did lasso for the cases in the covmb2 set B
applied to the predictors and set B included all of the clean cases and omitted
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Fig. 1.9 Elastic Net Transformation Plots for Problem 1.7.

the 5 outliers. The response plot was made for all of the data, including the
outliers. Both plots include the identity line and prediction interval bands.

Which method is better: Fig. 1.4 a) or Fig. 1.4 b) for data analysis?

R Problem

Use the command source(“G:/hdpack.txt”) to download the func-
tions and the command source(“G:/sldata.txt”) to download the data.
See Preface or Section 8.1. Typing the name of the hdpack func-
tion, e.g. tplot2, will display the code for the function. Use the args com-
mand, e.g. args(tplot2), to display the needed arguments for the function.
For the following problem, the R command can be copied and pasted from
(http://parker.ad.siu.edu/Olive/slrhw.txt) into R.

1.10. This problem uses some of the R commands at the end of Section
1.2.1. A problem with response and residual plots is that there can be a lot
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Fig. 1.10 Response Plots for Problem 1.8.

of black in the plot if the sample size n is large (more than a few thousand).
A variant of the response plot for the additive error regression model Y =
m(x) + e would plot the identity line, the two lines parallel to the identity
line corresponding to large sample 100(1 − δ)% prediction intervals for Yf

that depends on Ŷf . Then plot points corresponding to training data cases
that do not lie in their 100(1 − δ)% PI. We will use δ = 0.01, n = 100000,
and p = 8.

a) Copy and paste the commands for this part into R. They make the
usual response plot with a lot of black. Do not include the plot in Word.

b) Copy and paste the commands for this part into R. They make the
response plot with the points within the pointwise 99% prediction interval
bands omitted. Include this plot in Word. For example, left click on the plot
and hit the Ctrl and c keys at the same time to make a copy. Then paste the
plot into Word, e.g., get into Word and hit the Ctrl and v keys at the same
time.
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c) The additive error regression model is a 1D regression model. What is
the sufficient predictor = h(x)?

1.11. The hdpack function tplot2 makes transformation plots for the
multiple linear regression model Y = t(Z) = xT β + e. Type = 1 for full
model OLS and should not be used if n < 5p, type = 2 for elastic net, 3 for
lasso, 4 for ridge regression, 5 for PLS, 6 for PCR, and 7 for forward selection
with Cp if n ≥ 10p and EBIC if n < 10p. These methods are discussed in
Chapter 3.

Copy and paste the three library commands near the top of slrhw into R.
For parts a) and b), n = 100, p = 4 and Y = log(Z) = 0x1 + x2 + 0x3 +

0x4 + e = x2 + e. (Y and Z are swapped in the R code.)
a) Copy and paste the commands for this part into R. This makes the

response plot for the elastic net using Y = Z and x when the linear model
needs Y = log(Z). Do not include the plot in Word, but explain why the plot
suggests that something is wrong with the model Z = xT β + e.

b) Copy and paste the command for this part into R. Right click Stop 3
times until the horizontal axis has log(z). This is the response plot for the
true model Y = log(Z) = xT β + e = x2 + e. Include the plot in Word. Right
click Stop 3 more times so that the cursor returns in the command window.

c) Is the response plot linear?
For the remaining parts, n = p − 1 = 100 and Y = log(Z) = 0x1 + x2 +

0x3 + · · ·+ 0x101 + e = x2 + e. Hence the model is sparse.
d) Copy and paste the commands for this part into R. Right click Stop 3

times until the horizontal axis has log(z). This is the response plot for the
true model Y = log(Z) = xT β + e = x2 + e. Include the plot in Word. Right
click Stop 3 more times so that the cursor returns in the command window.

e) Is the plot linear?
f) Copy and paste the commands for this part into R. Right click Stop 3

times until the horizontal axis has log(z). This is the response plot for the true
model Y = log(Z) = xT β + e = x2 + e. Include the plot in Word. Right click
Stop 3 more times so that the cursor returns in the command window. PLS
is probably overfitting since the identity line nearly interpolates the fitted
points.

1.12. Get the R commands for this problem. The data is such that Y =
2 + x2 + x3 + x4 + e where the zero mean errors are iid [exponential(2) -
2]. Hence the residual and response plots should show high skew. Note that
β = (2, 1, 1, 1)T. The R code uses 3 nontrivial predictors and a constant, and
the sample size n = 1000.

a) Copy and paste the commands for part a) of this problem into R. Include
the response plot in Word. Is the lowess curve fairly close to the identity line?

b) Copy and paste the commands for part b) of this problem into R.
Include the residual plot in Word: press the Ctrl and c keys as the same time.
Then use the menu command “Paste” in Word. Is the lowess curve fairly
close to the r = 0 line? The lowess curve is a flexible scatterplot smoother.
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c) The output out$coef gives β̂. Write down β̂ or copy and paste β̂ into

Word. Is β̂ close to β?

1.13. For the Buxton (1920) data with multiple linear regression, height
was the response variable while an intercept, head length, nasal height, bigonal
breadth, and cephalic index were used as predictors in the multiple linear
regression model. Observation 9 was deleted since it had missing values. Five
individuals, cases 61–65, were reported to be about 0.75 inches tall with head
lengths well over five feet!

a) Copy and paste the commands for this problem into R. Include the lasso
response plot in Word. The identity line passes right through the outliers
which are obvious because of the large gap. Prediction interval (PI) bands
are also included in the plot.

b) Copy and paste the commands for this problem into R. Include the
lasso response plot in Word. This did lasso for the cases in the covmb2 set
B applied to the predictors which included all of the clean cases and omitted
the 5 outliers. The response plot was made for all of the data, including the
outliers.

c) Copy and paste the commands for this problem into R. Include the DD
plot in Word. The outliers are in the upper right corner of the plot.

1.14. Consider the Gladstone (1905) data set that has 12 variables on
267 persons after death. There are 5 infants in the data set. The response
variable was brain weight. Head measurements were breadth, circumference,
head height, length, and size as well as cephalic index and brain weight. Age,
height, and three categorical variables cause, ageclass (0: under 20, 1: 20-45,
2: over 45) and sex were also given. The constant x1 was the first variable.
The variables cause and ageclass were not coded as factors. Coding as factors
might improve the fit.

a) Copy and paste the commands for this problem into R. Include the
lasso response plot in Word. The identity line passes right through the infants
which are obvious because of the large gap. Prediction interval (PI) bands
are also included in the plot.

b) Copy and paste the commands for this problem into R. Include the
lasso response plot in Word. This did lasso for the cases in the covmb2 set
B applied to the nontrivial predictors which are not categorical (omit the
constant, cause, ageclass and sex) which omitted 8 cases, including the 5
infants. The response plot was made for all of the data.

c) Copy and paste the commands for this problem into R. Include the DD
plot in Word. The infants are in the upper right corner of the plot.

1.15. The hdpack function mldsim6 compares 7 estimators: FCH, RFCH,
CMVE, RCMVE, RMVN, covmb2, and MB described in Olive (2017b, ch.
4). Most of these estimators need n > 2p, need a nonsingular dispersion
matrix, and work best with n > 10p. The function generates data sets and
counts how many times the minimum Mahalanobis distance Di(T,C) of the
outliers is larger than the maximum distance of the clean data. The value
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pm controls how far the outliers need to be from the bulk of the data, and
pm roughly needs to increase with

√
p.

For data sets with p > n possible, the function mldsim7 used the Eu-
clidean distances Di(T, Ip) and the Mahalanobis distances Di(T,Cd) where
Cd is the diagonal matrix with the same diagonal entries as C where (T,C)
is the covmb2 estimator using j concentration type steps. Dispersion ma-
trices are effected more by outliers than good robust location estimators,
so when the outlier proportion is high, it is expected that the Euclidean
distances Di(T, Ip) will outperform the Mahalanobis distance Di(T,Cd) for
many outlier configurations. Again the function counts the number of times
the minimum outlier distance is larger than the maximum distance of the
clean data.

Both functions used several outlier types. The simulations generated 100
data sets. The clean data had xi ∼ Np(0, diag(1, ..., p)). Type 1 had outliers
in a tight cluster (near point mass) at the major axis (0, ..., 0, pm)T . Type 2
had outliers in a tight cluster at the minor axis (pm, 0, ..., 0)T. Type 3 had
mean shift outliers xi ∼ Np((pm, ..., pm)T , diag(1, ..., p)). Type 4 changed
the pth coordinate of the outliers to pm. Type 5 changed the 1st coordinate
of the outliers to pm. (If the outlier xi = (x1i, ..., xpi)

T , then xi1 = pm.)

Table 1.2 Number of Times All Outlier Distances > Clean Distances, otype=1

n p γ osteps pm FCH RFCH CMVE RCMVE RMVN covmb2 MB
100 10 0.25 0 20 85 85 85 85 86 67 89

a) Table 1.2 suggests with osteps = 0, covmb2 had the worst count. When
pm is increased to 25, all counts become 100. Copy and paste the commands
for this part into R and make a table similar to Table 1.2, but now osteps=9
and p = 45 is close to n/2 for the second line where pm = 60. Your table
should have 2 lines from output.

Table 1.3 Number of Times All Outlier Distances > Clean Distances, otype=1

n p γ osteps pm covmb2 diag
100 1000 0.4 0 1000 100 41
100 1000 0.4 9 600 100 42

b) Copy and paste the commands for this part into R and make a table
similar to Table 1.3, but type 2 outliers are used. Now γ = 0.4, the default
value.

c) When you have two reasonable outlier detectors, there are outlier con-
figurations where one will beat the other. Simulations by Wang (2018) sug-
gest that “covmb2” using Di(T, Ip) outperforms “diag” using Di(T,Cd) for
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many outlier configurations, but there are some exceptions. Copy and paste
the commands for this part into R and make a table similar to Table 1.3, but
type 3 outliers are used.


