Chapter 2
Multiple Linear Regression

This chapter considers several estimators for the multiple linear regression
model. Large sample theory is give for p fixed, but the prediction intervals
can have p > n. Some testing for the OPLS and MMLE estimators can also
have p > n.

Definition 2.1. For an important class of regression models, regression
is the study of the conditional distribution Y| Az of the response variable Y’
given Az, where the vector of predictors & = (21, ...,2p)7 and Aisa k x p
constant matrix of full rank k£ with 1 < k < p.

Remark 2.1. If A = I, then Y|Az = Y|x. If B is a p x 1 coefficient
vector and A = 37, then Y|Az =Y|8Tz = Y |27 3.

Definition 2.2. A quantitative variable takes on numerical values while
a qualitative variable takes on categorical values.

Remark 2.2. The literature often claims that Y|x = Y|3” . This claim
is often much too strong.

Notation. Often the conditioning and the index ¢ will be suppressed. For
example, the multiple linear regression model

Y, =z B+e (2.1)

fori =1,...,n where 3 is a p x 1 unknown vector of parameters, and e; is a
random error. This model could be written Y = 73 + e. More accurately,
Y|,8T:c = 2”3 + ¢, but the conditioning on BT x will often be suppressed.
Often the errors ey, ..., e, are iid (independent and identically distributed).
Often the distribution of the errors is unknown, but often it is assumed that
the iid e;’s come from a distribution that is known except for a scale parame-
ter. For example, the e;’s might be iid from a normal (Gaussian) distribution
with mean 0 and unknown standard deviation o. For this Gaussian model,
estimation of B and ¢ is important for inference and for predicting a new
future value of the response variable Y given a new vector of predictors xy.
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80 2 Multiple Linear Regression

2.1 The MLR Model

For multiple linear regression (MLR), it is usually useful to have a
constant in the model. Sometimes it is convenient to use Y| BLx where 8 =
(Bry s ﬂp)T and the constant is ;. Sometimes it is convenient to separate
the constant from the nontrivial predictors and use Y|(a + 87 x) where « is
the constant. We could also use 37 = (ﬁl,ﬁg) where (; is the intercept and
the slopes vector B, = (B2, ..., Bp)T, and & = (1,ul’) where the nontrivial
predictors u; = (z;2, ..., xl-p)T. Hence we get the following two MLR, models.
The first model is often used in the theory of linear models, while the second
model is often useful for Statistical Learning, MLR with heterogeneity, and
high dimensional statistics.

Definition 2.3. Suppose that the response variable Y and at least one

predictor variable x; are quantitative.
a) Let the MLR model 1 be

Vi=PB1+miofe++aiphh+e=x B+e (2.2)

for i =1, ...,n. Here n is the sample size and the random variable e; is the ith
error. Assume that the e; are iid with expected value E(e;) = 0 and variance
V(e;) = o2%. In matrix notation, these n equations become Y = X3 + e
where Y is an n x 1 vector of dependent variables, X is an n X p matrix
of predictors, B is a p x 1 vector of unknown coefficients, and e is an n x 1
vector of unknown errors.

b) Let the MLR model 2 be
Vi=a+zifi+ - +aipbte=at+z B+e (2.3)
for i =1, ..., n. For this model, we may use ¢ = (o, 87)7 with Y = X p+e.
In matrix notation, suppose the n equations are
Y =X3+e, (2.4)

where Y is an n x 1 vector of dependent variables, X = [v1,v2,...,vp] is
an n X p matrix of predictors with ith column v; corresponding to the ith
predictor, 3 is a p x 1 vector of unknown coefficients, and e is an n x 1 vector
of unknown errors. Equivalently,

{Yl] |7x171x172...x17p-| [51] {el

Y, T2 T22 ... Tap B2 €2

Y, Tn,1 Tn,2 -+ Tn,p 6;0 €n
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For MLR model 1, the first column of X is v; = 1, the n x 1 vector of ones.
The ith case (z,Y;))T = (wi1, 7i0, cey Tip, Y;)? corresponds to the ith row
I of X and the ith element of Y (if z;; = 1, then x;; could be omitted).
In the MLR model Y = 73 + e, the Y and e are random variables, but we
only have observed values Y; and «;. MLR is used to estimate the unknown
parameters 3 and o2.

Definition 2.4. The constant variance MLR model uses the assump-
tion that the errors ey, ...,e, are iid with mean E(e;) = 0 and variance
VAR(e;) = 02 < 0o. Also assume that the errors are independent of the pre-
dictor variables ;. The predictor variables x; are assumed to be fixed and
measured without error. The cases (z!,Y;)? are independent for i =1, ..., n.

If the predictor variables are random variables, then the above MLR model
is conditional on the observed values of the x;. That is, observe the x; and
then act as if the observed x; are fixed.

Definition 2.5. The unimodal MLR model has the same assumptions
as the constant variance MLR model, as well as the assumption that the zero
mean constant variance errors ey, ..., e, are iid from a unimodal distribution
that is not highly skewed. Note that E(e;) = 0 and V (e;) = 0% < 0.

Definition 2.6. The normal MLR model or Gaussian MLR model has
the same assumptions as the unimodal MLR model but adds the assumption
that the errors ey, ..., e, are iid N (0, 0?) random variables. That is, the e; are

iid normal random variables with zero mean and variance 2.

The unknown coefficients for the above 3 models are usually estimated
using (ordinary) least squares (OLS).

Notation. The symbol A = B = f(c¢) means that A and B are equivalent
and equal, and that f(c) is the formula used to compute A and B.

Definition 2.7. Given an estimate b of 3, the corresponding vector of
predicted values or fitted valuesis Y =Y (b) = Xb. Thus the ith fitted value

}A/l. = }A/l(b) = mlTb =211+ + xi,pbp-

The vector of residuals is r = r(b) = Y — Y (b). Thus ith residual r; =
Tl(b) = }/1 — K(b) = }/1 — $i71b1 — e — xi,pbp-
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2.1.1 OLS Theory

Ordinary least squares (OLS) large sample theory will be useful. Let X =
(1 X1). For model (2.2), the ith row of X is (1, z; 2, ..., Z; p) while for model
(2.3), the ith row of X is (1, z;1,...,%ip), and Y = al+ X 8+e = Xop+e.

Definition 2.8. Using the above notation for MLR model 2 given by
Equation (2.3), let I = (21, ..., Zp), let a be the intercept, and let the
slopes vector 8 = (531, ..., B,)T. Let the population covariance matrices

Cov(z) = E[(x — E(x))(x — E(z))"] = ¥, and

Cov(a,Y) = E[(z — E(z))(Y — E(Y))] = Sy

If the cases (x;,Y;) are iid from some population where X'gy exists and X'g
is nonsingular, then the population coefficients from an OLS regression of Y
on x (even if a linear model does not hold) are

a=aors=E(Y)-BTE(x) and 8= 805 =Xz Zwy.
Definition 2.9. Let the sample covariance matrices be

1

n—1

S -

Z(Ccz —z)(x; —E)T and Ygy = 1 Z(ml —Z)(Y; - Y).

n

< 1
Let the method of moments estimators be X = — E (x; —%)(z; — )T and
n
i=1

< 1 _ — 1< —

Yy = EZ(%—C‘C)(K -Y)= Ezmim_m Y.
i=1 =1

The method of moment estimators are often called the maximum likelihood

estimators, but are the MLE if the (V;,z1)7 are iid from a multivariate

normal distribution, a very strong assumption. In Theorem 2.1, note that

D=XTX, - nzad =(n-1)5,.
Theorem 2.1: Seber and Lee (2003, p. 106). Let X = (1 X;). Then
Ty ny . nY Ty n nxE’

X v= (X{Y) - (Z?_lmiYi)’ X X= (nf XlTX1>’

li+z2"D'z —ETD1>

and (XTX)™! = ( Dl Dl

where the p x p matrix D' = [(n— 1) X! = Z‘;l/(n —-1).



2.1 The MLR Model 83
Under model (2.3), ¢ = o5 = (XTX) 1 XTY.

Theorem 2.2: Second way to compute (25:
~—1 — AT
a) If ¥, exists, then @ =Y — 3 T and

b) Suppose that (Y;, z7)” are iid random vectors such that o2, X', and

Y yy exist. Then & £ o and

P
B— 0B as n— o

where a and 3 are given by Definition 2.8.
Proof. Note that

T
Ty n
Y'Xi=(W--Ya) | 1 | =) Yia]
T i=1
and
Y n
XTy =[x, x,] : :ZmiYi.
Yn =1
So

_[#+2'D'z =D [1" ], _
| -D'm D! x| = -
Lyz'D'z —=z'D! nY

-D 'z D! XTIy |-

;

Thus 3= -nD'ZY + DXy = D YXTY —nz Y) =

-1

n . 2 R o
D! lz wY; —nz Y| = = flnzmy = %zmlzmy. Then
1=1

64=Y+nE'D'ZY -Z'D'XTY =Y+ nYE'D'-Y X, D '|Z
— T
=Y — B x. The convergence in probability results hold since sample means

and sample covariance matrices are consistent estimators of the population
means and population covariance matrices. [

Remark 2.3. It is important to note that the convergence in probability
results are for iid (V;, 27)T with second moments and nonsingular Xz: a
linear model Y = X3 + e does not need to hold. When the linear model
does hold, the second method for computing B is still valid even if X is a
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constant matrix, and B it B by Theorem 2.3 b). From Theorem 2.3,

IR Vi Vi) p VLV
XTX 1_ _ v 11 v 12 _ 11 12 )
TL( ) v (V21 V22 -V V21 V22

Thus 55 5 Vs and g & V3. Note that for Theorem 2.3 b) with iid
cases and pg = E(x),

_ 1+ pl X e —pix!
n(xTx 1£>V—[ -z Hx T |
( ) _Zmlﬂm Z:cl

Definition 2.10. For OLS and MLR model 1 from Definition 2.3, B =
Bors = (XTX)1XTY . Let the hat matrizc H = X(XTX)"* X", Then
Y = Yors = HY = X[. The ith leverage h; = H;; = the ith diagonal
element of H.

There are many large sample theory results for ordinary least squares. For
Theorem 2.3, see, for example, Sen and Singer (1993, p. 280). Theorem 2.3
is analogous to the central limit theorem and the theory for the t-interval
for ;1 based on Y and the sample standard deviation (SD) Sy. If the data
Y1,...,Y, are iid with mean 0 and variance o2, then Y is asymptotically
normal and the t—interval will perform well if the sample size is large enough.
The results below suggests that the OLS estimators Y; and B are good if
the sample size is large enough. The condition maxh; — 0 in probability
usually holds if the researcher picked the design matrix X or if the x; are
iid random vectors from a well behaved population. Outliers can cause the
condition to fail. Theorem 2.3 a) implies that 3 ~ N,[B,0%(XTX)~1]. For
Theorem 2.3 a), rank(X) = p since X X is nonsingular. For Theorem 2.3
b), rank(X) =p+ 1.

Theorem 2.3, OLS CLTSs. Consider the MLR model and assume that
the zero mean errors are iid with E(e;) = 0 and VAR(e;) = o2. If the x; are
random vectors, assume that the cases (x;,Y;) are independent, and that the
e; and x; are independent. Also assume that max;(hq, ..., h,) — 0 and

XTx

n

N Vant

as n — oo where the convergence is in probability if the x; are random vectors
(instead of nonstochastic constant vectors).
a) For Equation (2.2), the OLS estimator 3 satisfies

V(B - B) 2 N,(0,0% V). (2.6)

Equivalently,
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(XTX)2(8 - B) 2 N,(0,0% I,,). (2.7)

b) For Equation (2.3), the OLS estimator ¢ satisfies

V(e — @) 2 Nyii(0,0% V). (2.8)

¢) Suppose the cases (x;, Y;) are iid from some population and the Equa-
tion (2.3) MLR model Y; = a4 ! B+ ¢; holds. Assume that X' and Xg v
exist. Then Equation (2.8) holds and

V(B = B) 2 Ny(0,0% $z) (2.9)
where 8= Bors = Xgp Sy

Remark 2.4. I) Consider Theorem 2.3. For a) and b), the theory acts as
if the x; are constant even if the x; are random vectors. The literature says
the x; can be constants, or condition on x; if the x; are random vectors.
The main assumptions for a) and b) are that the errors are iid with second
moments and that n(X” X)~! is well behaved. The strong assumptions for
¢) are much stronger than those for a) and b), but the assumption of iid cases
is often reasonable if the cases come from some population. .

II) Suppose Vi = a + B + e; where the e; are iid. Then Bg.g ~
N,(B, MSE 2;1/71) even if the cases are not iid, and Sz 5 V5, where
V55 is not necessarily equal to Xg, by Remark 2.3. Thus

Bors — BT Ez(Bors — B)/MSE 2 Xp as n — oco. This result is useful
since no matrix inversion is required.

Remark 2.5. Consider MLR model (2.3). Let w; = Apx; for i =1,...,n
where A, is a full rank k x p matrix with 1 <k < p.

a) Let X* be 3 or X. Then X, = A, X5 AL and X5,y = A, Xy

b) If A,, is a constant matrix, then Xqpy = AanAg and
Ywy = AnXgy.

c¢) Let B(u,Y) and B(u,Y) be the estimator and parameter from the OLS
regression of Y on u. The constant parameter vector should not depend on
n. Suppose the cases are iid and A is a constant matrix that does not depend
on n. By Theorem 2.2, B(w,Y) = 2;]1211])/ = [A 32 A, TA Sy =
[4,524,] 7 A, Z2B(,Y). Tt A, & A, Bz & Ty, and B(x,Y) -
B(x,Y), then Bw,Y) & B(w,Y) = [AZz A| ' ATz B, ).

A problem with OLS, is that V' generally can’t be estimated if p > n since
typically (X7 X)~! does not exist. If p > n, using ¢ = (X7 X)"XTY is a
poor estimator that interpolates the data, where A™ is a generalized inverse
of A. Often the software will not compute ¢ if p > n.
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2.2 Statistical Learning Methods for MLR

There are many MLR methods, including OLS for the full model, forward se-
lection with OLS, the marginal maximum likelihood estimator (MMLE), elas-
tic net, principal components regression (PCR), partial least squares (PLS),
lasso, lasso variable selection, and ridge regression (RR). For the last six
methods, it is often convenient to use centered or scaled data. Suppose U
has observed values Uy, ..., U,. For example, if U; = Y; then U corresponds
to the response variable Y. The observed values of a random variable V' are
centered if their sample mean is 0. The centered values of U are V; = U; — U
fori =1,...,n. Let g be an integer near 0. If the sample variance of the U; is

R _
~2 2
= U, —U)*,
A= YD
then the sample standard deviation of U; is 64. If the values of U; are not all
the same, then 4, > 0, and the standardized values of the U; are
Ui —-U
W, = — .

Og

Typically g = 1 or ¢ = 0 are used: g = 1 gives an unbiased estimator
of 02 while g = 0 gives the method of moments estimator. Note that the

standardized values are centered, W = 0, and the sample variance of the
standardized values

1 n
> wi=1 (2.10)
9

Remark 2.6. Let Y = a+zT 3 +e. Let w! = (w; 1, ..., w; ) be the stan-
dardized vector of nontrivial predictors for the ith case. Since the standard-
ized predictors are also centered, w = 0. Let the n X p matrix of standardized
nontrivial predictors W, = (W;;) when the predictors are standardized using
&4- Then the ith row of W is wy . Thus, 27" | Wi; = 0and Y7, W2 =n—yg
for j =1, ..., p. Hence

— n
Tii— Tj . 1 _
Wij = # where J2 = E (Xiyj — Xj)2

(o n—
J &1

is 04 for the jth variable x;. Then the sample covariance matrix of the w; is
the sample correlation matrix of the x;:

R wiw
Py = Ra = (ry) = ——— gg
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where 7; is the sample correlation of z; and z;. Thus the sample correlation
matrix Rg does not depend on g. Let Z =Y —Y where Y = Y'1. Since the
R software tends to use g = 0, let W = W . Note that n x p matrix W does
not include a vector 1 of ones. Then regression through the origin is used for
the model

Z=Wn+e (2.11)

where Z = (Z1,..., Z,)T and n = (n1,...,mp)T. The vector of fitted values
Y=Y +2Z.

Remark 2.7. i) Interest is in model (2.3): estimate Y} and B. For many
regression estimators, a method is needed so that everyone who uses the
same units of measurements for the predictors and Y gets the same (Y, B)
Equation (2.11) is a commonly used method for achieving this goal. Suppose

g = 0. The method of moments estimator of the variance o2 is

When data z; are standardized to have w = 0 and S3; = 1, the standardized
data w; has no units. ii) Hence the estimators Z and 7) do not depend on
the units of measurement of the z; if standardized data and Equation (2.11)
are used. Linear combinations of the w; are linear combinations of the x;.
Thus the estimators Y and B are obtained using VA ., 7, and Y. The linear
transformation to obtain (Y, 8) from (Z, #) is unique for a given set of units
of measurements for the z; and Y. Hence everyone using the same units of
measurements gets the same (Y, 3). iii) Also, since W; =0and 5%, A =1, the
standardized predictor variables have similar spread, and the magmtude of
7); is a measure of the importance of the predictor variable W; for predicting
Y.

Definition 2.11. Consider model (2.2): Y = 278 +e. If Z = Wn + e,
where the n X ¢ matrix W has full rank ¢ = p — 1, then the OLS estimator

flors = (W W) 'w'Zz

minimizes the OLS criterion Qors(n) = r(n)Tr(n) over all vectors n €
RP~L. The vector of predicted or fitted values Zors = Wors = HZ where
H-= W(WTW) W7, The vector of residuals r = 7(Z, W)= Z — Z =
I-H)Z.

For model (2.2): Y = 278 + ¢, let z = (1 w)T, and let Z = Wn + €.
Assume that the sample correlation matrix

T
WWeEya (2.12)

Ry =

n
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Note that V™1 = P, the population correlation matrix of the nontrivial
predictors w;, if the u; are a random sample from a population. Let H =
W(WTW)AWT = (hsj), and assume that max;—1,__, hi; £ 0asn— .
Olive (2024) examines whether the OLS estimator satisfies

w, = Vi(fops — 1) 2 Np-1(0,0%V). (2.13)

Remark 2.8. Variable selection is the search for a subset of predictor
variables that can be deleted without important loss of information if n/p
is large (and the search for a useful subset of predictors if n/p is not large).
Refer to Chapter 1: Remark 1.1 for variable selection and Equation (1.1)
where

x'B=xiBs + xpBy = x5Ps (2.14)

Let p be the number of predictors in the full model, including a constant.
Let ¢ = p — 1 be the number of nontrivial predictors in the full model. Let
a = ay be the number of predictors in the submodel I, including a constant.
Let k = k;y = a; — 1 be the number of nontrivial predictors in the submodel.
For submodel I, think of I as indexing the predictors in the model, including
the constant. Let A index the nontrivial predictors in the model. Hence [
adds the constant (trivial predictor) to the collection of nontrivial predictors
in A. In Equation (2.14), there is a “true submodel” Y = X s8¢ + e where
all of the elements of B4 are nonzero but all of the elements of 3 that are
not elements of Bg are zero. Then a = ag is the number of predictors in
that submodel, including a constant, and k = kg is the number of active
predictors = number of nonnoise variables = number of nontrivial predictors
in the true model S = Is. Then there are p — a noise variables (z; that have
coefficient ; = 0) in the full model. The true model is generally only known
in simulations. For Equation (2.14), we also assume that if 273 = =73,
then S C I. Hence S is the unique smallest subset of predictors such that

ccTB = mg,ﬁs.

Model selection generates M models. Then a hopefully good model is
selected from these M models. Variable selection is a special case of model
selection. Many methods for variable and model selection have been suggested
for the MLR model. We will consider several R functions including i) forward
selection computed with the regsubsets function from the leaps library,
ii) principal components regression (PCR) with the pcr function from the
pls library, iii) partial least squares (PLS) with the plsr function from the
pls library, iv) ridge regression with the cv.glmnet or glmnet function
from the glmnet library, v) lasso with the cv.glmnet or glmnet function
from the glmnet library, and vi) lasso variable selection which is OLS applied
to the lasso active set (nontrivial predictors with nonzero coefficients) and a
constant. See Sections 2.3-2.12 and James et al. (2013, ch. 6).

These six methods produce M models and use a criterion to select the
final model (e.g. Cp, or 10-fold cross validation (CV)). See Section 2.14. The
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number of models M depends on the method. Often one of the models is the
full model (2.3) that uses all p — 1 nontrivial predictors. The full model is
(approximately) fit with (ordinary) least squares. For one of the M models,
some of the methods use ) = 0 and fit the model Y; = 51 + ¢; with Yl =Y
that uses none of the nontrivial predictors. Forward selection, PCR, and PLS
use variables v; =1 (the constant or trivial predictor) and v; = 'yJT:c that are
linear combinations of the predictors for 7 = 2, ..., p. Model I; uses variables
V1, V2, ..., v; for i =1, ..., M where M < p and often M < min(p,n/10). Then
M models I; are used. (For forward selection and PCR, OLS is used to regress
Y (or Z) on vy,...,v;.) Then a criterion chooses the final submodel I from
candidates I, ..., Ips.

Overfitting or “fitting noise” occurs when there is not enough data to
estimate the p x 1 vector 3 well with the estimation method, such as OLS.
The OLS model is overfitting if n < 5p. When n < p, XTX is usually not
invertible, but if n = p, then ¥ = HY = X(X7X)'XTY =LY = Y
regardless of how bad the predictors are. If n < p, then the OLS program fails
or Y =Y the fitted regression plane interpolates the training data response
variables Y71, ..., ;. The following rule of thumb is useful for many regression
methods. Note that d = p for the full OLS model.

Rule of thumb 2.1. We want n > 10d to avoid overfitting. Occasionally
n as low as 5d is used, but models with n < 5d are overfitting.

Remark 2.9. Use Z,, ~ AN, (i,,, ¥,,) to indicate that a normal approx-
imation is used: Z, ~ N,(u,,X,). Let a be a constant, let A be a k x r
constant matrix (often with full rank & < r), and let ¢ be a k x 1 constant

vector. If \/n(6, — 8) 2 N,(0,V), then aZ,, = al,Z, with A = al,,

aZ, ~ AN, (ap,,a%,), and AZ,+c~ ANy (A,un fe AZ‘HAT) ,

T
0, ~ AN, ( ,K> . and A0, +c~ AN, <A0+c, AvA ) .
n
 Theorem 2.3 gives the large sample theory for the OLS full model. Then
B Ny(B,0*(XT X)) or B~ ANy(B, MSE(XTX)™1)).

When minimizing or maximizing a real valued function Q(n) of the k x 1
vector 7, the solution 7 is found by setting the gradient of Q(n) equal to
0. The following definition and lemma follow Graybill (1983, pp. 351-352)
closely. Maximum likelihood estimators are examples of estimating equations.
There is a vector of parameters m, and the gradient of the log likelihood
function log L(n) is set to zero. The solution 7 is the MLE, an estimator
of the parameter vector 7, but in the log likelihood, 1 is a dummy variable
vector, not the fixed unknown parameter vector.
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Definition 2.12. Let Q(n) be a real valued function of the k x 1 vector
7. The gradient of Q(n) is the k x 1 vector

Suppose there is a model with unknown parameter vector 1. A set of esti-
mating equations f(n) is used to maximize or minimize @Q(n) where n is a
dummy variable vector.

Often f(n) = v@, and we solve f(n) = vQ %' 0 for the solution ), and
f: R — R*. Note that 7 is an estimator of the unknown parameter vector
7 in the model, but 1 is a dummy variable in Q (7). Hence we could use Q(b)
instead of Q(n), but the solution of the estimating equations would still be

b=n.
As a mnemonic (memory aid) for the following theorem, note that the

derivative —azx = —xa = a and —az? = —zazr = 2ax.
dx T dx T

Theorem 2.4. a) If Q(n) = a’n = nTa for some k x 1 constant vector
a, then Q@ = a.

b) Let A be a symmetric matrix. If Q(n) = nT An for some k x k constant
matrix A, then 7@ = 2An.

O T Q) = S, Inil = Inll, then $Q = s = s where s = sign(s;)
where sign(n;) = 1 if n; > 0 and sign(n;) = —1 if n; < 0. This gradient is only
defined for n where none of the k values of n; are equal to 0.

Example 2.1. If Z = Wn+e, then the OLS estimator minimizes Q(n) =
1Z - Wnll§ = (Z - Wn)"(Z — Wn) = 27 Z — 22" Wn + 0" (W W)n.
Using Theorem 2.4 with a” = Z'W and A = W'W shows that vQ =
—2WTZ4+2(WTW)n. Let vQ(%) denote the gradient evaluated at 7). Then
the OLS estimator satisfies the normal equations (W' W)7j = W' Z.

Example 2.2. The Hebbler (1847) data was collected from n = 26 dis-
tricts in Prussia in 1843. We will study the relationship between Y = the
number of women married to civilians in the district with the predictors z;
= constant, xo = pop = the population of the district in 1843, x3 = mmen
= the number of married civilian men in the district, x4 = mmilmen = the
number of married men in the military in the district, and x5 = milwumn =
the number of women married to husbands in the military in the district.
Sometimes the person conducting the survey would not count a spouse if
the spouse was not at home. Hence Y is highly correlated but not equal to
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xg. Similarly, 4 and x5 are highly correlated but not equal. We expect that
Y = x5+ e is a good model, but n/p = 5.2 is small. See the following output.

source ("http://parker.ad.siu.edu/0Olive/hdpack.txt")
source ("http://parker.ad.siu.edu/0Olive/hddata.txt")
x <- marryl[,-3]1; Y <- marry[,3]; out<-lsfit (x,Y)
ls.print (out)

Residual Standard Error=392.8709

R-Square=0.9999, p-value=0

F-statistic (df=4, 21)=67863.03

Estimate Std.Err t-value Pr(>|t])
Intercept 242.3910 263.7263 0.9191 0.3685
Pop 0.0004 0.0031 0.1130 0.9111
mmen 0.9995 0.0173 57.6490 0.0000
mmilmen -0.2328 2.6928 -0.0864 0.9319
milwmn 0.1531 2.8231 0.0542 0.9572

res<-out$res

yvhat<-Y-res #d = 5 predictors used including x_1
AERplot2 (yhat, Y, res=res, d=5)

#fresponse plot with 90% pointwise PIs

Srespi #90% PI for a future residual

[1] -950.4811 1445.2584 #90% PI length = 2395.74

2.3 Forward Selection

Forward selection is a variable selection method where model I; uses j pre-
dictors z7, ..., z7 including the constant 27 = 1. If n /p is not large, instead of
forming p submodels I, ..., I,, form the sequence of M submodels I, ..., Iy
where M = min([n/J], p) for some positive integer J such as J = 5, 10, or 20.
Here [z] is the smallest integer > x, e.g., [7.7] = 8. Then for each submodel
I;, OLS is used to regress Y on 1, x3, ..., x}. Then a criterion chooses which
model I; from candidates Iy, ..., I is to be used as the final submodel.

Let criteria Cg(I) have the form
Cs(I) = SSE(I) + aK,6°.

These criteria need a good estimator of 0% and n/p large. See Shibata (1984).
The criterion Cp(I) = AICs(I) uses K,, = 2 while the BICg(I) criterion uses
K,, =log(n). See Jones (1946) and Mallows (1973) for Cp. It can be shown
that Cp(I) = AICg(I) is equivalent to the Cp(I) criterion of Definition 2.27.
Typically 62 is the OLS full model M SE when n/p is large.

The following criteria also need n/p large. AIC is due to Akaike (1973),
AIC¢ is due to Hurvich and Tsai (1989), and BIC to Schwarz (1978) and
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Akaike (1977, 1978). Also see Burnham and Anderson (2004).

AIC(I) = nlog (SSS(D ) + 2a,

ALCH(T) = nlog (SSZ;(I)) | 20(a+1)

n—a—1
and BIC(I) = nlog (SSL(I)> + alog(n).
n

Suppose the selected model is Iy, and B, is aq x 1. Forward selection
with Cp, and AIC often gives useful results if n > 5p and if n > 10aq. For
p < n < bp, forward selection with C}, and AIC tends to pick the full model
(which overfits since n < 5p) too often, especially if 62 = M SE. The Hurvich
and Tsai (1989, 1991) AIC¢ criterion can be useful if n > max(2p, 10a4).

The EBIC criterion given in Luo and Chen (2013) may be useful when
n/p is not large. Let 0 < v < 1 and |I| = a < min(n, p) if B; is a x 1. We
may use a < min(n/5,p). Then EBIC(I) =

nlog (SS#(IU + alog(n) + 2vlog [(Z)] = BIC(I) + 2vlog KS)] .

This criterion can give good results if p = p, = O(n*) and v > 1 — 1/(2k).
Hence we will use v = 1. Then minimizing EBIC(I) is equivalent to mini-
mizing BIC(I) — 2log[(p — a)!] — 21log(a!) since log(p!) is a constant.

The above criteria can be applied to forward selection and lasso variable
selection. The C), criterion can also be applied to lasso. See Efron and Hastie
(2016, pp. 221, 231).

Remark 2.10. Suppose n/J is an integer. If p < n/J, then forward
selection fits (p— 1)+ (p—2)+---+2+1 = p(p—1)/2 ~ p?/2 models, where
p — @ models are fit at step i for i = 1,...,(p—1). If n/J < p, then forward
selection uses (n/J)—1 steps and fits =~ (p—1)+(p—2)+- - -+(p—(n/J)+1) =
p((n)J) = 1) — (1+ 2+ + ((n/J) — 1)) =

BE-1) _n -3

1) -2 ~
»( ) 5 7 5

n
J
models. Thus forward selection can be slow if n and p are both large, al-
though the R package leaps uses a branch and bound algorithm that likely
eliminates many of the possible fits. Note that after step ¢, the model has
i + 1 predictors, including the constant.

The R function regsubsets can be used for forward selection if p < n,
and if p > n if the maximum number of variables is less than n. Then warning
messages are common. Some R code is shown below.

#regsubsets works if p < n, e.g. p = n-1, and works
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#if p > n with warnings if nvmax is small enough
set.seed (13)

n<-100

p<-200

k<-19 #the first 19 nontrivial predictors are active
J<-5

q <= p-1

b <=0 x 1:g

b[l:k] <- 1 #beta = (1, 1, ..., 1, 0, 0, ..., 0)°T
X <- matrix(rnorm(n * ), nrow = n, ncol = q)

y <- 1 + x %*% b + rnorm(n)

nc <- ceiling(n/J)-1 #the constant will also be used
nc <- min (nc,q)

nc <- max (nc,1l) #nc is the maximum number of
#nontrivial predictors used by forward selection
pp <- nc+l #d = pp is used for PI (2.14)

vars <— as.vector(l:(p-1))
temp<-regsubsets (x, y, nvmax=nc,method="forward")
out<-summary (temp)

num <- length (out$cp)

mod <— out$which[num,] #use the last model

#do not need the constant in vin

vin <- vars[mod[-1]]

out$rss
[1] 1496.49625 1342.95915 1214.93174 1068.56668
973.36395 855.15436 745.35007 690.03901
638.40677 590.97644 542.89273 503.68666
467.69423 420.94132 391.41961 328.62016
242 .66311 178.77573 79.91771
outs$bic
[1] -9.4032 -15.6232 -21.0367 -29.2685
-33.9949 -42.3374 -51.4750 -54.5804
-57.7525 -60.8673 -64.7485 -67.6391
-70.4479 -76.3748 -79.0410 -91.9236
-117.6413 -143.5903 -219.498595
tem <- 1sfit(x[,1:19],y) #last model used the

sum(tem$resid”2) #first 19 predictors
[1] 79.91771 #SSE (I) = RSS(I)
n*xlog(out$rss[19]/n) + 20xlog(n)

[1] 69.68613 #BIC (I)

for(i in 1:19) #a formula for BIC(I)

print ( nxlog(out$Srss[i]/n) + (i+1l)+*log(n) )

bic <= ¢(279.7815, 273.5616, 268.1480, 259.9162,
255.1898, 246.8474, 237.7097, 234.6043, 231.4322,
228.3175, 224.4362, 221.5456, 218.7368, 212.8099,
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210.1437, 197.2611, 171.5435, 145.5944, 69.6861)
tem<-1lsfit (bic, out$Sbic)

tem$coef
Intercept X
-289.1846831 0.9999998 #bic - 289.1847 = outS$bic

xx <— l:min (length (out$bic),p-1)+1
ebic <- outS$bic+2+log(dbinom (x=xx,size=p,prob=0.5))
#actually EBIC(I) - 2 p log(2).

Example 2.2, continued. The output below shows results from forward
selection for the marry data. The minimum C}, model I,,;, uses a constant
and mmem. The forward selection PIs are shorter than the OLS full model
Pls.

library(leaps);¥Y <- marryl[,3]; X <- marryl[,-3]
temp<-regsubsets (X, Y, method="forward")
out<-summary (temp)
Selection Algorithm: forward

pop mmen mmilmen milwmn

1 (1) momomgm o mom
2 (1 ) "™ " omxn T "

3 (1 ) "x" o Mx" Wy "won

4 (1) "xm omgno onyn L

out$cp

[1] -0.8268967 1.0151462 3.0029429 5.0000000
#mmen and a constant = Imin

mincp <- out$which[out$cp==min (outS$Scp), ]
#do not need the constant in vin
vin <- vars[mincp[-1]]
sub <- 1lsfit (X[,vin],Y)
ls.print (sub)
Residual Standard Error=369.0087
R-Square=0.9999
F-statistic (df=1, 24)=307694.4

Estimate Std.Err t-value Pr(>|t])
Intercept 241.5445 190.7426 1.2663 0.2175
X 1.0010 0.0018 554.7021 0.0000
res<-subSres
yvhat<-Y-res #d = 2 predictors used including x_1
AERplot2 (yhat, Y, res=res, d=2)
#fresponse plot with 90% pointwise PIs
Srespi #90% PI for a future residual
[1] -778.2763 1336.4416 #length 2114.72

Consider forward selection where x; is a x 1. Underfitting occurs if S
is not a subset of I so x; is missing important predictors. A special case
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of underfitting is d = a < ag. Overfitting for forward selection occurs if i)
n < 5a so there is not enough data to estimate the a parameters in 3; well,
orii) S C I but S # I. Overfitting is serious if n < 5a, but “not much of a
problem” if n > Jp where J = 10 or 20 for many data sets. Underfitting is a
serious problem for estimating the full model 3. Let Y; = m?iﬁ r+er;. Then
V(er;) may not be a constant 0?: V(er;) could depend on case i, and the
model may no longer be linear. Check model I with response and residual
plots.

Forward selection is a shrinkage method: p models are produced and except
for the full model, some | Bl| are shrunk to 0. Lasso and ridge regression are
also shrinkage methods. Ridge regression is a shrinkage method, but | 6Al| is
not shrunk to 0. Shrinkage methods that shrink Bl to 0 are also variable
selection methods. See Sections 2.6, 2.7, and 2.8.

Definition 2.13. A fitted or population regression model is sparse if a of
the predictors are active (have nonzero Bl or f3;) where n > Ja with J > 10.
Otherwise the model is nonsparse. A high dimensional population regression
model is abundant or dense if the regression information is spread out among
the p predictors (nearly all of the predictors are active). Hence an abundant
model is a nonsparse model.

Suppose the population model has B35 an ag x 1 vector, including a con-
stant. Then a = ag — 1 for the population model. Note that a = ag if the
model does not include a constant. See Equation (2.14).

2.4 Principal Components Regression

Some notation for eigenvalues, eigenvectors, orthonormal eigenvectors, posi-
tive definite matrices, and positive semidefinite matrices will be useful before
defining principal components regression, which is also called principal com-
ponent regression.

Notation: Recall that a square symmetric p X p matrix A has an eigen-
value A with corresponding eigenvector & # 0 if

Az = x. (2.15)

The eigenvalues of A are real since A is symmetric. Note that if constant
¢ # 0 and x is an eigenvector of A, then ¢ x is an eigenvector of A. Let
e be an eigenvector of A with unit length |le|]ls = V'eTe = 1. Then e and
—e are eigenvectors with unit length, and A has p eigenvalue eigenvector
pairs (A1, e1), (A2, €2), ..., (Ap, €p). Since A is symmetric, the eigenvectors are
chosen such that the e; are orthonormal: ef'e; = 1 and ele; = 0 for i #
j. The symmetric matrix A is positive definite iff all of its eigenvalues are
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positive, and positive semidefinite iff all of its eigenvalues are nonnegative.
If A is positive semidefinite, let Ay > Ao > -+ > A\, > 0. If A is positive
definite, then A, > 0.

Theorem 2.5. Let A be a p x p symmetric matrix with eigenvector eigen-
value pairs (A1, e1), (A2, €2), ..., (\p, €,) where el'e; = 1 and el'e; = 0if i # j

for i = 1,...,p. Then the spectral decomposition of A is
P
A= Z )\ieieiT = AlelelT + -4 )\pepeg.
i=1

Using the same notation as Johnson and Wichern (1988, pp. 50-51),
let P = [e1 e2 --- ep] be the p x p orthogonal matrix with ith column
e;. Then PPT = PTP = I. Let A = diag(\y, ..., \,) and let AY/? =
diag(v/A1, ..., \/m . If A is a positive definite p x p symmetric matrix with
spectral decomposition A =7 \;e;el | then A = PAPT and

p
Al =pAPT = Z %eieT.

4
; 4
1=1

Theorem 2.6. Let A be a positive definite p X p symmetric matrix with
spectral decomposition A = Y-7_, \;e;el. The square root matriz A2 =
PAY2PT s a positive definite symmetric matrix such that Al2AV2 = A,

Let Y = a + 273 + e. Consider the correlation matrix Rg of the p
nontrivial predictors 1, ..., z,. Suppose Ry has eigenvalue eigenvector pairs
(5\1,&1), - (S\K,éK) where A\; > Ao > -+ > A > 0 where K = min(n, p).
Then Rpe; = S\ié}- fori =1, ..., K. Since Ry is a symmetric positive semidef-
inite matrix, the A; are real and nonnegative.

The eigenvectors &; are orthonormal: él-Tél- =1 and él-Téj = 0 for i # j.
If the eigenvalues are unique, then é; and —é; are the only orthonormal
eigenvectors corresponding to Ai. For example, the eigenvalue eigenvector
pairs can be found using the singular value decomposition of the matrix
W, /\/n— g where W is the data matrix of standardized cases: the ith row
of W is w?' the sample covariance matrix

. wiw i i
Zw = 9 g = 1 Z(’U]l—ﬁ)(wl—_)T = ! Z’U]{U];T :Rm,
1=1

n—g n—g— n—g <

1=

and usually g =0 or g = 1. If n > K = p, then the spectral decomposition of
Rm is

p

S o 2T _ X o AT {4 AT

Ry = E Ai€;i€; = Xié1e] + -+ \epe
i=1
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and > 7, i =p

Let wy, ..., w, denote the n standardized cases of nontrivial predictors.
See Remark 2.6. Then the K principal components corresponding to the jth
case wj are Pj; = élij, vy Pig = é?(wj. Let the transformed case, that
uses K principal components, corresponding to w; be v; = (Pj1, ..., Pix)T.
Following Hastie et al. (2009, p. 66), the ith eigenvector &; is known as the
ith principal component direction or Karhunen Loeve direction of W .

Principal components have a nice geometric interpretation if n > K = p.
If n > K and Rg is nonsingular, then the hyperellipsoid

{w|D%,(0, Rg) < h?} = {w : w' Rz'w < h?}
is centered at 0. The volume of the hyperellipsoid is

2K/ 1/2pK
KI(K/2) [Rae|"/*h
Then points at squared distance wTRilw = h? from the origin lie on the
hyperellipsoid centered at the origin whose axes are given by the eigenvectors
é; where the half length in the direction of &; is h\/)A\_l-. Let j =1,...,n. Then
the first principal component Pj; is obtained by projecting the w; on the
(longest) major axis of the hyperellipsoid, the second principal component Pjo
is obtained by projecting the w; on the next longest axis of the hyperellipsoid,
., and the (p)th principal component P; , is obtained by projecting the w;
on the (shortest) minor axis of the hyperellipsoid. Examine Figure 2.3 for
two ellipsoids with 2 nontrivial predictors. The axes of the hyperellipsoid are
a rotation of the usual axes about the origin.
Let the random variable V; correspond to the ¢th principal component, and
let the ith principal component vector ¢; = (Pyj, ..., Pui)T = (Vii, ..o, Vii) ¥
be the observed data for V;. Let g = 1. Then the sample mean

zn: zn: w=el0=0,

k=1 k=1

3|'—‘
3|'—‘

and the sample covariance of V; and V; is Cov(V;, V;) =

L Z Vii = Vi) (Vi = V) ==& = é; Rgé,

k=1

3
3|'—‘

= j\jéiTéj = 0 for i # j since the sample covariance matrix of the standard-
ized data is

1 n
— Zwkwg = Rm
n

k=1

and Ryeé; = j\jéj. Hence V; and V; are uncorrelated.
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In the following definition, note that cl-ch = Al-TWTWéj =ne;Rge; =
n)\jéiTéj = 0 for i # j. Thus ¢; and c¢; are orthogonal: ¢; Le; for ¢ # j. Also,
cl'1 = O or_ wr)e; = 07e; = 0 since the standardized predictor variables
sum to 0. The ¢th principle component vector ¢; corresponds to the derived
predictor V;, fori=1,...,p— 1.

Definition 2.14. Consider the standardized model Z = Wn + € where
Y =a+zTB +e. Let

T AT, T
w; e e w; €]
v; = A pw; = : = : where Ay, =
T AT T T
w; €k e, w; e
Let
’U]{ei

be the ith principle component vector for ¢ = 1, ..., p. Principal components
regression (PCR) uses OLS regression on the principal component vectors
of the correlation matrix Rg. Hence PCR uses linear combinations of the
standardized data as predictors. Let

=N

Vi=(cl,..,ce) = | : | =WA,,

v

3

for k =1, ...,p. Let the working OLS model
Z = Vk7k + €= WIBkPCR+€

where € depends on the model. Then Bk pcr is the k-component PCR es-
timator for K = 1,...,p. The model selection estimator chooses one of the
k-component estimators, e.g. using a holdout sample or cross validation, and
will be denoted by Bspcr-

Remark 2.11. a) The set of p x 1 vectors {(1,0,...,0)T,(0,1,0,...,0)T,
(0,...0,1)T} is the standard basis for RP. The set of vectors {é1, ..., &,} is also
a basis for RP.

b) Let 45 = (%1, ..., %) T . Since the columns of V', are orthogonal, ¢; Lc;
for i # j,

'z vy

Yi = T =T
C; C c;

Ci'
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A~ . ~T . A~ A~
C) Since Z = Vk'7k +T = WAk,nvk +T = WIBkPCR+T’ Where IBkPCR =
A, 44 By Remark 2.5,

. c—1. W e AT i e
e =Xy Yoz = [ApaPwA; | ArnYwz =

“ . ~T “ A oA
[Akﬂlz'wAk,n]71Ak7nZ’UJIBOLS(wa Z).
Thus

A AT AT o~ A AT oA PO
Brpcr = Ak,n’)’k = Ak,n[Ak,nZwAk,n] lAleZ’w/BOLS(wa Z).

Note that 8,pc g = Bors(w, Z).
d) Let e; = €;(P,) be the ith eigenvector of the population correlation
matrix pcc of the x, and let
el
Ay = :
el
It is possible that é;, is arbitrarily close to e; for some values of n and
arbitrarily close to —e; for other values of n so that e; = é; ,, oscillates and
does not converge in probability to either e; or —e;. Hence we can not say
that the ith eigenvector &; = é; A e; or that Ay, A A If RIS >
for some constant ¢ > 0, and if the eigenvalues Ay > --- > X\, > 0 of X are
unique, then the absolute value of the correlation of e; with e; converges to
1 in probability: |corr(é;, e;)| £ 1. See Olive (2017b, p. 190). Let ~,, be
the population vector from the OLS regression on the principal component
vectors of the population correlation matrix @,,. Then v, and A} are not
unique since columns of Aj and elements of «, can be multiplied by —1
(an orthonormal eigenvector can be e; or —e;), but if a column e; of Ay is
multiplied by —1 then the jth element of v ; is multiplied by —1 so Afﬁyk

~T R
is unique. Thus A,y il A~y Let Sy il P, Then

Bipor = AL by = AL [ArPL AL ArPrBors(w, Z).

See Helland and Almgy (1994).

¢) In general, B) pop estimates By por # Bons(w, Z) unless k = p. Using
standardized predictors and estimated eigenvectors likely causes problems for
finding a CLT, as in Remark 2.6.

f) Generally there is no reason why the “predictors” should be ranked from
best to worst by Vi, Va, ..., Vi. For example, the last few principal component
vectors (and a constant) could be much better for prediction than the other
principal component vectors. See Jolliffe (1983) and Cook and Forzani (2008).
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g) Suppose 25:1 i > q(p) where 0.5 < ¢ < 1, e.g. ¢ = 0.8 where J is a lot
smaller than p. Then the J predictors Vi, ..., V; capture much of the infor-
mation of the standardized nontrivial predictors wy, ..., wp. Then regressing
Y on 1, Vi, ..., Vy may be competitive with regressing ¥ on wy, ..., w,. PCR
is equivalent to OLS on the full model when Y is regressed on a constant
and all K = p of the principal components. PCR can also be useful if X is
singular or nearly singular (ill conditioned).

Example 2.2, continued. The PCR output below shows results for the
marry data where 10-fold CV was used. The OLS full model was selected.

library(pls); y <- marry[,3]; x <- marry[,-3]
z <- as.data.frame (cbind(y, x))
out<-pcr(y~.,data=z, scale=T,validation="CV")
tem<-MSEP (out)

tem

(Int) 1 comps 2 comps 3 comps 4 comps
CV 1.743e+09 449479706 8181251 371775 197132
cvmse<-tem$vall,,l: (outSncomp+1l)][1,]

nc <-max (which.min (cvmse)-1,1)

res <- outS$Sresiduals|[,,nc]

vhat<-y-res #d = 5 predictors used including constant
AERplot2 (yhat,y, res=res,d=5)

#fresponse plot with 90% pointwise PIs

Srespi #90% PI same as OLS full model

-950.4811 1445.2584 #PI length = 2395.74

Several statistical methods can be computed using an n x n matrix or a
p X p matrix, depending on whether n or p is smaller. The remainder of this
section shows the computations for principle components analysis (PCA),
which is used for principle components regression.

Suppose W is the standardized n x p data matrix and T = W, /\/n —g.
If n < p, then the correlation matrix R = T" T = W;Wg/(n — g) does not
have full rank. By singular value decomposition (SVD) theory, the SVD of T
is T = UAVT where the positive singular values ¢; are square roots of the
positive eigenvalues of both T7T and of TT7 . (The singular values are not
standard deviations.) Also V = (é; é; --- &,), and T Te, = o?e;. Hence
classical principal component analysis on the standardized data can be done
using &; and \; = 02. The SVD of T" is T? = VATU”, and

wiw; wlw, ... wlw,

TTT =
— : :

T T T
w, W1 W, Wy ... W, Wy

which is the matrix of scalar products divided by n. Similarly, if W is the
centered data matrix (subtract the means), then T, = W./\/n — g, and the
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covariance matrix § = T2 T, = WX W /(n—g). For more information about
the SVD, see Datta (1995, pp. 552-556) and Fogel et al. (2013).

The following output shows how to do classical PCA with S on a data set
using the SVD and g = 1. The eigenvectors agree up to sign.

x<-cbind (buxx,buxy) # data matrix

mn <- apply(x,2,mean) #sample mean

J <= 0%1:87 + 1 # vector of n ones, n = 87

J <— J%*%t (J) /87 #J%*%x has rows = mn

zc <- x-J%$*x%$x f#fcentered x

yc <- zc/sqrt(87-1) #t(yc) $x% yc = cov(x)

svd (yc) Sv #right eigenvectors of Yc
[,1] [,2] [,3] [,4] [,5]

1,7 0.653883 0.75596 -0.01173 0.00988 0.0268

2,] -0.001366 0.03980 0.06800 -0.42534 -0.9016

3,17 -0.000489 -0.01276 -0.99161 -0.12775 -0.0151

4,17 -0.000714 0.00251 -0.10890 0.89588 -0.4308

5,1 -0.756594 0.65327 -0.00952 0.00854 0.0252

svd (t (yc)) Su #left eigenvectors of Yc'T
[,1] [,2] [,3] [,4] [,5]

[1,] -0.653883 -0.75596 .01173 -0.00988 -0.0268

[2,] 0.001366 -0.03980 -0.06800 0.42534 0.9016

[3,]17 0.000489 0.01276 .99161 0.12775 0.0151

[4,]1] 0.000714 -0.00251 .10890 -0.89588 0.4308

[5,]1 0.756594 -0.65327 .00952 -0.00854 -0.0252

> prcomp (x)

Standard deviations:

[1] 523.70760 42.50435 6.06073 4.39067 3.80398

Rotation:

O O O o o

PC1 pPC2 PC3 pPC4 PC5
len 0.653883 0.75596 -0.01173 0.00988 0.0268
nasal -0.001366 0.03980 0.06800 -0.42534 -0.9016

bigonal -0.000489 -0.01276 -0.99161 -0.12775 -0.0151
cephalic -0.000714 0.00251 -0.10890 0.89588 -0.4308

buxy -0.756594 0.65327 -0.00952 0.00854 0.0252
svd (yc) $d #singular values = sqgrt (eigenvalues)
[1] 523.70760 42.50435 6.06073 4.39067 3.80398
svd (t (yc)) sd #singular values = sqgrt (eigenvalues)

[1] 523.70760 42.50435 6.06073 4.39067 3.80398

Although PCA can be done if p > n, in general need p fixed for the sample
eigenvector to be a good estimator of a population eigenvector.
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2.5 Partial Least Squares

Consider the MLR model Y; = a + ccl-TB +ei=a+x 18+ -+ xiyp,Bp +e;
for i = 1,...,n. Principal components regression (PCR) and partial least
squares (PLS) models use p linear combinations n{ z, ...,ngcc. Then there
are p conditional distributions

Yimiz,njx,...,n ).

Estimating the 1; and performing the ordinary least squares (OLS) regression
of Y on (ff @, iy, ..., 7 x) and a constant gives the k-component, estima-
tor, e.g. the k-component PLS estimator Bk prg or the k-component PCR
estimator, for k = 1,...,J where J < p and the p-component estimator is
the OLS estimator 3, g. Denote the one component PLS (OPLS) estimator
by BO prg- The model selection estimator chooses one of the k-component
estimators, e.g. using a holdout sample or cross validation, and will be de-
noted by ,BMSPLS For the OPLS estimator, n; = Xgy and 7); = Sy See
Sections 2.10 and 2.11 for more on the OPLS estimator.

Remark 2.12. Olive and Zhang (2024) showed that B8, p¢ estimates
Brprs, and in general, B;.prs # Borg for k < p. In particular, Bpprg #
Bors except under very strong regularity conditions. The PLS literature
incorrectly suggests that 3, pr9 = Borg, under mild regularity conditions,
for 1 <k < pif pis fixed. Also see Chun and Keleg (2010), Cook (2018),
Cook et al. (2013), and Cook and Forzani (2018, 2019, 2024).

There are several ways to compute k-component partial least squares
(PLS) estimators for multiple linear regression. A simple way is to do the
OLS regress10n on (a constant and) Wiy,..., Wy where W; = f;JT:c and

7 = Z Zmy, and k < mm(n — 2,p). Then the one component PLS

eStlmatOr IS OPLS /BOPLS = IBIPLS Wlth k = 1 a,nd /BOLS = IBPPLS
with £ = p if n > p 4+ 1. The 3-component PLS estimator regresses Y on

(a constant and) W; = ﬁchc = Z‘;Y:c, Wy = ﬁQT:c = [2m2my]Tm, and

Wi =isx = [ifci‘my]T:c Let Y = a+ xTB,p.g + € be a working model.
From Naik and Tsai (2000), Helland and Almgy (1994), and Helland (1990),

let Ay, = [Sav, SaSay, SuSay, . Sy Sayv] Let w = Ay @ with
Y = a + wT,, + ¢ the working model so B pr¢ = Aznﬁ/k Then B p;g =

AT A A AT A AT A A AT A
Ak,n[Ak,anAk,n]71Ak,anY = Ak,n[AkﬂlzmAk,n]71Ak7nZ$IBOLS(ma Y).
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Example 2.2, continued. The PLS output below shows results for the
marry data where 10-fold CV was used. The OLS full model was selected.
The Mevik et al. (2015) pls library is useful for computing PLS and PCR.

library(pls); y <- marryl[,3]; x <- marryl[,-3]
z <- as.data.frame (cbind(y, x))
out<-plsr(y~.,data=z,scale=T,validation="CV")
tem<-MSEP (out)

tem

(Int) 1 comps 2 comps 3 comps 4 comps
CV 1.743e+09 256433719 6301482 249366 206508
cvmse<-tem$vall,,l: (outSncomp+1l)][1,]

nc <-max (which.min (cvmse)-1,1)

res <- out$residuals](,,nc]

vhat<-y-res #d = 5 predictors used including constant
AERplot2 (yhat,y, res=res,d=5)

Srespi #90% PI same as OLS full model

-950.4811 1445.2584 #PI length = 2395.74

There are some other equivalent ways to formulate PLS. The follow-
ing formulation shows that PLS seeks PLS directions that are correlated
with Y. Note that PCR components are formed without using Y. Let
Y = a+ 2T8,prs + € be a working model. Let X = (1 X;). An
equivalent way to formulate PLS is to form b; iteratively where b, =
arg maxy {[corr(Y, X1b)]2V (X 1b)} subject to b'b = 1 and b" Tgb; = 0
forj=1,...,k— 1. Let the I;j be the estimates of b;, and perform the OLS
regression of Y on Xlékyn and a constant where ék,n = [131, - i)k] to find
Vi Then By prs = Cr Yy

Here is another way to formulate PLS. Let X. be the matrix of cen-
tered predictors (subtract the sample mean from each predictor) so that
D= XTX, = (n—1)Xg and let Z be the vector of centered response
variables. Let d = X! Z = (n — 1) Xgy. An equivalent way to compute the
k-component PLS estimator is to find unit vectors 7),,...,7, and perform
the OLS regression of Y on a constant and the U; = f;lT:c fori =1,...,k.
Following Brown (1993, pp. 71-72), first maximize (¢? d)? subject to the con-
straint ¢'c = |c/|? = 1. The maximum occurs at ¢; = 7; = d/||d|| =
Yy /I Xyl = Noprs/lIMoprsll- Then ¢z = 75 is found by maximizing
(cT'd)? subject to both ||c[| = 1 and ¢! De; = 0 (called D-norm orthogonal-
ization) to get ¢z = 7),. Continue in this way to get the remaining vectors
C3,...,Ck.
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2.6 Ridge Regression

Consider the MLR model Y = X3 + e. Ridge regression often uses the
centered response Z; = Y; — Y and standardized nontrivial predictors in the
model Z = Wn + €. Then Y Z +Y. Note that in Definition 2. 16, A1, is

a tuning parameter, not an eigenvalue. The residuals r = r(,@ R =Y -Y.
Refer to Definition 2.11 for the OLS estimator 7)o, = (W' W) 'W7'Z

Definition 2.15. Consider the MLR model Z = Wn + €. Let b be a
(p — 1) x 1 vector. Then the fitted value Z;(b) = wZb and the residual
r4(b) = Z; — Zi(b). The vector of fitted values Z(b) = Wb and the vector of
residuals 7(b) = Z — Z(b).

Definition 2.16. a) Consider fitting the MLR model Y = X3 + e us-
ing Z = Wn + €. The ridge regression estimator 1)y minimizes the ridge
regression criterion

Qnln) = Lz Wz w2 @)

over all vectors n € RP~! where Al,n 2> 0 and a > 0 are known constants
with a = 1,2, n, and 2n common. Then

’f’R = (WTW + Al,nIpfl)ileZ- (217)

The residual sum of squares RSS(n) = (Z —Wn)T(Z - Wn),and A1, =0
corresponds to the OLS estimator 7)1 g. The ridge regression vector of fitted
values is Z = Zp = Wg, and the ridge regression vector of residuals
TR = r(nR) Z — ZR The estimator is said to be regularized if A, > 0.

Obtain Y and ,BR using Ny, Z and Y.
b) Consider fitting the MLR model Y = XB+e. Let A\ > 0 be a constant.

One ridge regression estimator BR minimizes the ridge regression criterion
1 )\1 N 2
Q(B) = 2(Y — XB)T (¥ - Xp) + 2oz Zﬁ (215)

over all vectors 3 € RP. Then
Br=(X"X+M,L,)"'X"Y. (2.19)

The residual sum of squares RSS(,@) (Y - XB)T(Y —XB),and \;,, =0
corresponds to the OLS estimator ,BO rs- The ridge regression vector of fitted
values is Y = Y = X ,8 R, and the ridge regression vector of residuals
rr=r(Bp) =Y - Yr.
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¢) Another ridge regression estimator 3rpr minimizes the ridge regression

criterion
P

1 Al
Qrr(B) = (Y — XB)'(Y - XB) + =" > 5
i=2
over all vectors 3 € RP.

The estimators b) and c) agree when a) is used. Using a vector of param-
eters n and a dummy vector 1 in Qg is common for minimizing a criterion
Q(7n), often with estimating equations. See the paragraphs above and below
Definition 2.12. We could also write

fl T )‘l_m T
Qr(b) = ar(b) r(b) + " b'b

where the minimization is over all vectors b € RP~1. Note that Zf;ll n =
nT'n = ||n||3. The literature often uses A\, = A = A1 ,,/a.

Note that )‘Lanb =AM Zf;ll b?. Each coefficient b; is penalized equally
by A1,,. Hence using standardized nontrivial predictors makes sense so that
if ; is large in magnitude, then the standardized variable w; is important.

Remark 2.13. i) If A\; ,, = 0, the ridge regression estimator becomes the
OLS full model estimator: Np = Norg-

ii) If Ay, > 0, then wiw + A1,ndp—1 is nonsingular. Hence 7 exists
even if X and W are singular or ill conditioned, or if p > n.

iii) Following Hastie et al. (2009, p. 96), let the augmented matrix W 4
and the augmented response vector Z 4 be defined by

w Z
Wa= (i 1) 2= (1),

where 0 is the (p — 1) x 1 zero vector. For A, > 0, the OLS estimator from
regressing Z 4 on W4 is

fa=(WAWA)'WHZ 4 =g

since W4Z 4 = W' Z and

T _ T / W _ T
WAWA - (W )\l,n Ipfl) (\/m Ip1> =W W+)\17n Ipfl.

iv) A simple way to regularize a regression estimator, such as the L; esti-
mator, is to compute that estimator from regressing Z4 on W 4.

Remark 2.13 iii) is interesting. Note that for A; , > 0, the (n+p—1)x(p—1)
matrix W 4 has full rank p—1. The augmented OLS model consists of adding
p— 1 pseudo-cases (w}, 1, Znt1)", ..., (Wh, 1, Znyp—1)" where Z; = 0 and
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wj = (0,...,\/A1,n,0,...,0)T for j = n+1,...,n+p—1where the nonzero entry
is in the kth position if j = n 4 k. For centered response and standardized
nontrivial predictors, the population OLS regression fit runs through the
origin (w”, Z)"T = (07,0)T. Hence for A, = 0, the augmented OLS model
adds p — 1 typical cases at the origin. If A; ,, is not large, then the pseudo-
data can still be regarded as typical cases. If A1, is large, the pseudo-data
act as w—outliers (outliers in the standardized predictor variables), and the
OLS slopes go to zero as Aq , gets large, making Z~0s0Y RY.

To prove Remark 2.13 ii), let (¢, g) be an eigenvalue eigenvector pair of
WIW = nRy,. Then [W'W + X\ oI, 1]g = (¥ + A1.n)g, and (¢ + A1, g)
is an eigenvalue eigenvector pair of WTW—l-)\LnIp,l > 0 provided A; ,, > 0.

The degrees of freedom for a ridge regression with known A;, is also
interesting and will be found in the next paragraph. The sample correlation
matrix of the nontrivial predictors

1
n—g

Ry =

wWiw,

where we will use g = 0 and W = W. Then W7 W = nRy,. By singular
value decomposition (SVD) theory, the SVD of W is W = UAV” where
the positive singular values o; are square roots of the positive eigenvalues of
both WIW and of WW7'. Also V = (&) &3 --- &), and W We; = o2é;.
Hence \; = o? where = Xl(WTW) is the ith eigenvalue of WITW . and é;
is the ith orthonormal eigenvector of Ry, and of W W . The SVD of W7 is
WT =vATUT, and the Gram matriz

wiw; wiw; ... wiw,
ww’ = : :
wlw; wlw, ... wlw,
which is the matrix of scalar products. Warning: Note that o; is the ith
singular value of W, not the standard deviation of w;.

Following Hastie et al. (2009, p. 68), if \; = A\;(W T W) is the ith eigenvalue
of WIW where \; > Ay > -+ > Ap—1, then the (effective) degrees of freedom
for the ridge regression of Z on W with known Ay, is df (A1) =

= o2 = A

trWWITW £ I, ) Wi =S "%+ N " (29
r[W( 1ndp-1) ] ;U%AM 2 (2.20)

where the trace of a square (p — 1) x (p — 1) matrix A = (a;;) is tr(A) =
S ai = P2 Mi(A). Note that the trace of A is the sum of the diagonal
elements of A = the sum of the eigenvalues of A.
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Note that 0 < df(A1,) < p—1 where df(A1,) =p—11if Ay, =0 and
df(AMn) — 0 as A1, — o0. The R code below illustrates how to compute
ridge regression degrees of freedom.

set.seed(13)
n<-100; g<-3 #gq = p-1
b <=0 1l:g+ 1

u <- matrix(rnorm(n * ), nrow = n, ncol = q)
y <— 1 + u %*% b + rnorm(n) #make MLR model
wl <—- scale(u) #t(wl) %+x% wl = (n-1) R = (n-1)=*cor (u)
w <— sgrt(n/(n-1))x*wl #t(w) %$*% w = n R = n cor(u)
t(w) %$*x% w/n

[,1] [,2] [,3]

[1,] 1.00000000 -0.04826094 -0.06726636

[2,] -0.04826094 1.00000000 -0.12426268

[3,] -0.06726636 -0.12426268 1.00000000

cor (u) #same as above

rs <- t(w)%*%w #scaled correlation matrix n R
svs <-svd(w)$d #singular values of w

lambda <- 0

d <= sum(svs”"2/(svs"2+lambda))

#effective df for ridge regression using w

d

(1] 3 #= g = p-1

112.60792 103.88089 83.51119

svs”2 #as above

uu<-scale (u, scale=F) #centered but not scaled
svs <-svd(uu) $d #singular values of uu

svs~2

[1] 135.78205 108.85903 85.83395

d <- sum(svs”"2/(svs"2+lambda))

#feffective df for ridge regression using uu
#d is again 3 if lambda = 0

In general, if Z = H\Z, then df(Z) = tr(H) where H is a (p — 1) x
(p—1) “hat matrix.” For computing Y, df(Y') = df(Z) + 1 since a constant
Bl also needs to be estimated. These formulas for degrees of freedom assume
that X is known before fitting the model. The formulas do not give the model
degrees of freedom if ) is selected from M values A1, ..., Ay using a criterion
such as k-fold cross validation.

Suppose the ridge regression criterion is written, using a = 2n, as

Qrn(b) = %r(b)Tr(b) + A2nb’'b, (2.21)

as in Hastie et al. (2015, p. 10). Then A2, = A1 ,/(2n) using the A, from
(2.16).
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The following remark is interesting if A; ,, and p are fixed. However, 5\1771 is
usually used, for example, after 10-fold cross validation. The fact that B R =
An,ABOLS appears in Efron and Hastie (2016, p. 98), and Marquardt and
Snee (1975). See Theorem 2.7 for the ridge regression central limit theorem.

Remark 2.14. Ridge regression has a simple relationship with OLS if
n>pand (XTX)! exists. Then B = (XTX + A\, 0,) ' XTY =
(XX + ML) M XTX)(XTX)'XTY = A, 2BoLs where A, =
A, = (XTX 4+ M\ I,)'XTX. By the OLS CLT Equation (2.6) with
V/n = (XTX)"', a normal approximation for OLS is

Bors ~ AN, (B, MSE (X" X)™).
Hence a normal approximation for ridge regression is
Br ~ AN, (A8, MSE A, (X"X) ' AL) ~
AN [AnB, MSE (X" X + A pd,) HXTX)(XTX + M)
If Equation (2.6) holds and Ay ,/n — 0 as n — oo, then A, il I,.

Remark 2.15. The ridge regression criterion from Definition 2.16 can also
be defined by
Qr(n) = 1Z = Wnll3 + A.un” n. (2.22)

Then by Theorem 2.4, the gradient VQgr = —2W?* Z+2(WITW)n+2\1 0.
Cancelling constants and evaluating the gradient at ), gives the score equa-
tions

—WT(Z - Wig) + Mg =0. (2.23)

Following Efron and Hastie (2016, pp. 381-382, 392), this means 7 = wla
for some n x 1 vector a. Hence ~ W% (Z - WW7'a)+ )\ ,W'a =0, or

wrww? £\ . 1)]a=W"'Z
which has solution @ = (WW?T 4+ X\, ,I,,)"'Z. Hence
Nr=Wla=WI'(WW”* 4\, 1,)'Z=(W'W 4+ )\ I, ) 'W'Z.
Using the n x n matrix WW7 is computationally efficient if p > n while
using the p x p matrix W2 W is computationally efficient if n > p. If A is
k x k, then computing A~* has O(k®) complexity.

The following identity from Gunst and Mason (1980, p. 342) is useful for
ridge regression inference: fjp =(X7 X 4+ A\ ,I,) ' XTY

= (XTX + 0, 0) ' XTX(XTX) ' XTY
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=(XTx + )\l,nI;D)ilXTXBOLS = AHBOLS =
1, — M (XTX + MnT) " YBors = BuBors =
Bors — )\%”(XTX +Mndp)  Bors

since A,, — B, = 0, where A,, = (X" X + X\, ,I,)""(X"X)=B,
=TI, M\ (XTX 4+ X\ ,I,)"". See Problem 2.3. Assume

XTx

n

Svi
asn — 00. If Ay ,/n — 0 then

XX + M1, p
_ -

n

V! and n(XTX +\oI) " S V.

Note that

Lvvi=r,

n n

T R
An:An,)\: <X X+)\17nIp> X X

if A1 n/n — 0 since matrix inversion is a continuous function of a positive
definite matrix. See, for example, Bhatia et al. (1990), Stewart (1969), and
Severini (2005, pp. 348-349).

For model selection, the M values of A = \; ,, are denoted by A1, A2, ..., Ay
where A; = A1 s depends onn fori = 1,..., M.If A, corresponds to the model

selected, then 5\1771 = Xs. The following theorem shows that ridge regression
and the OLS full model are asymptotically equivalent if A; , = op(n'/?) so

Ao/ v 5o

Theorem 2.7, RR CLT (Ridge Regression Central Limit Theo-
rem. Assume p is fixed and that the conditions of the OLS CLT Theorem
Equation (2.6) hold for the model Y = X3 + e.

a) If Ai../y/n 2 0, then
Vil(Br —B) = Ny(0,0°V).
b) If Apn/v/A = 7 > 0 then
V(B —B) % Ny(~TVB.0*V).
Proof: If 5\1n/\/ﬁ Er> 0, then by the above Gunst and Mason (1980)

identity, A A A A
Br =y = Man(XTX + Aiady) MBovs.



110 2 Multiple Linear Regression

Hence

\/E(BR -B) = \/E(BR - BOLS + BOLS -B) =

) Mo . .
Vn(Bors —B) — \/ﬁ%”(XTX + Arndp) ' Bors

B N,(0,0°V) =7V B ~ N,(—7VB,0°V). O

For p fixed, Knight and Fu (2000) note i) that B is a consistent estimator
of Bif A\, = 0o(n) so A1 n/n — 0 as n — oo, ii) OLS and ridge regression
are asymptotically equivalent if A; ,,/v/n — 0 as n — oo, iii) ridge regression
is a y/n consistent estimator of 8 if A , = O(y/n) (so A1,,/+/n is bounded),
and iv) if A1 ,/y/n — 7 > 0, then

VaBr —B) 2 N,(—7VB,0%V).

Hence the bias can be considerable if 7 # 0. If 7 = 0, then OLS and ridge
regression have the same limiting distribution.

Even if p is fixed, there are several problems with ridge regression infer-
ence if 5\1771 is selected, e.g. after 10-fold cross validation. For OLS forward
selection, the probability that the model I,,;, underfits goes to zero, and
each model with S C I produced a +/n consistent estimator B 1.0 of B. Ridge

regression with 10-fold CV often shrinks 3 r too much if both i) the number
of population active predictors kg = ag — 1 in Equation (2.14) and Remark
2.5 is greater than about 20, and ii) the predictors are highly correlated. If
p is fixed and A1, = op(y/n), then the OLS full model and ridge regression
are asymptotically equivalent, but much larger sample sizes may be needed
for the normal approximation to be good for ridge regression since the ridge
regression estimator can have large bias for moderate n. Ten fold CV does
not appear to guarantee that 5\1n/\/ﬁ L oor Xln/n £o.

Ridge regression can be a lot better than the OLS full model if i) X TX is
singular or ill conditioned or ii) n/p is small. Ridge regression can be much
faster than forward selection if M = 100 and n and p are large.

Roughly speaking, the biased estimation of the ridge regression estimator
can make the MSE of BR or f)p less than that of BOLS or f)org, but the
large sample inference may need larger n for ridge regression than for OLS.
However, the large sample theory has n >> p. We will try to use prediction
intervals to compare OLS, forward selection, ridge regression, and lasso for
data sets where p > n. See Sections 2.1, 2.3, 2.6, 2.7, and 2.13.

Warning. The R functions glmnet and cv.glmnet do ridge regression
using Definition 2.16 c).

Example 2.2, continued. The ridge regression output below shows results
for the marry data where 10-fold CV was used. A grid of 100 A values was
used, and A\g > 0 was selected. A problem with getting the false degrees of
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freedom d for ridge regression is that it is not clear that A = Ay ,,/(2n). We
need to know the relationship between A and A; ,, in order to compute d. It
seems unlikely that d ~ 1 if \¢ is selected.

library(glmnet); v <- marryl[,3]; x <- marryl[,—3]
out<-cv.glmnet (x,y,alpha=0)

lam <- out$lambda.min #value of lambda that minimizes
#the 10-fold CV criterion

vhat <- predict (out, s=lam, newx=x)

res <- y - vhat

n <- length(y)

wl <- scale (x)

w <—- sgrt(n/(n-1))*wl #t(w) %$*% w = n R_u, u = x
diag (t (w)$*x%w)
pop mmen mmilmen milwmn
26 26 26 26

#sum w_1"2 = n = 26 for 1 =1, 2, 3, and 4

svs <- svd(w)$d #singular values of w,

pp <— 1 + sum(svs"2/(svs"2+2+n*lam)) #approx 1
# d for ridge regression if lam = lam_{1,n}/(2n)
AERplot2 (yhat, y, res=res, d=pp)

Srespi #90% PI for a future residual

[1] -5482.316 14854.268 #length = 20336.584
#try to reproduce the fitted values

z <— y — mean (y)

g<-dim (w) [2]

I <- diag(q)

M<—- w%x%solve (t (w)%+%w + lam*I/(2*n))$+%t (w)

fit <- M%*x%z + mean(y)

plot (fit, yhat) #they are not the same

max (abs (fit-yhat))

[1] 46789.11

M<— w%*%solve (t (w)%+%w + lamxI/ (1547.1741)) %%t (w)
fit <- M%*x%z + mean(y)

max (abs (fit-yhat)) #close

[1] 8.484979

2.7 Lasso

Consider the MLR model Y = X 3+e. Lasso often uses the centered response
Z; = Y;—Y and standardized nontrivial predictors in the model Z = Wn+e
as described in Section 2.2. Then Y; = Z; + Y. The residuals r = 7(8,) =
Y — Y. Recall that Y = Y1.
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Definition 2.17. a) Consider fitting the MLR model Y = X3 + e using
Z = Wn + €. The lasso estimator 1, minimizes the lasso criterion

Quln) = Sz W)z W+ S 2y

over all vectors n € RP~! where Al,n 2> 0 and a > 0 are known constants
with @ = 1,2, n, and 2n are common. The residual sum of squares RSS(n) =
(Z - Wn)T(Z — Wn), and A1, = 0 corresponds to the OLS estimator
Nors = (WITW)='WT Z if W has full rank p — 1. The lasso vector of fitted
values is Z = Zj, = W), and the lasso vector of residuals 7(),) = Z—Z .
The estimator is said to be regularized if Ay ,, > 0. Obtain Y and BL using
77, VA ,and Y.

b) The lasso estimator BL minimizes the lasso criterion
1 )\1 N
Qu(B) = —(Y = XB)T(Y - XB) + == Z 6] (2.25)

over all vectors 3 € RP. The residual sum of squares RSS(8) = (Y —
XB)T(Y — XB), and A1, = 0 corresponds to the OLS estimator BOLS =
(XTX )7'XTY if X has full rank p. The lasso vector of fitted values is
Y =Y, = X/3,, and the lasso vector of residuals 7(3,) =Y — Y.

Using a vector of parameters n and a dummy vector 7 in @1, is common
for minimizing a criterion Q(n), often with estimating equations. See the
paragraphs above and below Definition 2.12. We could also write

Qub) = Lrf r(b) + 2 T | (2.26)

where the minimization is over all vectors b € RP~1. The literature often uses
Aa = A= Ain/a.

For fixed Aq , the lasso optimization problem is convex. Hence fast algo-
rithms exist. As A, increases, some of the 7; = 0. If Ay ,, is large enough,
then 1;, = 0 and Y; =Y fori=1,...,n. If none of the elements 7n; of 7, are
zero, then 7); can be found, in principle, by setting the partial derivatives of
Q1 (n) to 0. Potential minimizers also occur at values of 7 where not all of the
partial derivatives exist. An analogy is finding the minimizer of a real valued
function of one variable h(x). Possible values for the minimizer include values
of x. satisfying h/(x.) = 0, and values z. where the derivative does not exist.
Typically some of the elements 7); of 77, that minimizes Qr(n) are zero, and
differentiating does not work.
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The following identity from Efron and Hastie (2016, p. 308), for example,
is useful for inference for the lasso estimator 7);

A
2ln sn =0

_—1XT(Y - XB;)+ Al—v"sn =0 or —X"Y-X3)+ 5
n

2n
where s;, € [—1,1] and s;, = sign(Bl-yL) if Bz‘,L # 0. Here sign(3;) = 1 if

B; > 0 and sign(8;) = —1 if §; < 0. Note that s, = s depends on BL.

"wBL
ThuS IBL
=(XTX)'xTy — Azl—n" n(XTX)™ s, =Bors — A;—n" n(X'X)™ s,

If none of the elements of 3 are zero, and if B 1, s a consistent estimator of 3,

then s, £s= 53 If Ay ,/+/n — 0, then OLS and lasso are asymptotically
equivalent even if s,, does not converge to a vector s as n — oo since s, is
bounded. For model selection, the M values of A\ are denoted by 0 < A\ <
A2 < --- < Ay where A; = Ay ,,; depends on n for ¢ = 1,..., M. Also, Ay
is the smallest value of A such that 3 Ay = 0. Hence BM #0fori< M. If

As corresponds to the model selected, then 5\1771 = As. The following theorem
shows that lasso and the OLS full model are asymptotically equivalent if

Mo = 0p(n'/2) 50 Ay /v/n 5 0: thus V(B — Bors) = 0p(1).

Theorem 2.8, Lasso CLT. Assume p is fixed and that the conditions of
the OLS CLT Theorem Equation (2.6) hold for the model Y = X3 + e.

a) If Ao/ £0, then
V(B — B) & Ny(0,02V).

b) If 5\1n/\/ﬁ £ >0 and s, £os= 53 then
VaB, - B8) 2N, (%Tvs, a2v> :

Proof. If 5\1n/\/ﬁ £ >0 and s, £ os= 58 then

V(B - B) =vn(B, - BOLS + BOLS -B) =

. A o B -
Vn(Bors —B) — \/ﬁg—n”(XTX) ls, B N,(0,0%V) — iVs

~ N, (_TTVS,O'2V>
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since under the OLS CLT, n(X7X)* & V.

P . .
Part a) does not need s,, — s as n — oo, since s, is bounded. O

Suppose p is fixed. Knight and Fu (2000) note i) that B 1, 1s a consistent
estimator of i if Ay , = o(n) s0 A1n/n — 0 as n — oo, ii) OLS and lasso are
asymptotically equivalent if A; , — o0 too slowly as n — oo (e.g. if A1, = A
is fixed), iii) lasso is a /n consistent estimator of 8 if A1, = O(y/n) (so
A1.n/+/1 is bounded). Note that Theorem 2.8 shows that OLS and lasso are
asymptotically equivalent if A1 ,,/v/n — 0 as n — 0.

In the literature, the criterion often uses Ay = A1 n/a:

p—1
Qr.alb) = ~r(B) () + a3 [t
j=1

The values a = 1, 2, and 2n are common. Following Hastie et al. (2015, pp.
9, 17, 19) for the next two paragraphs, it is convenient to use a = 2n:

Qu2a(6) = -r(6)71(6) + 20 3 b, .27

2nr

where the Z; are centered and the w; are standardized using g = 0 sow; =0
and n&?— =3, wa = n. Then A = A3, = A1 ,,/(2n) in Equation (2.25).
For model selection, the M values of A are denoted by 0 < Aaj, 1 < Aop2 <

-+ < Agp, i where 1, = 0 iff A > Ay, pr and

1
—sTZ’

)\2n,maac = )\2n,M = max j
n

J
and s; is the jth column of W corresponding to the jth standardized non-
trivial predictor Wj. In terms of the 0 < Ay < A2 < -+ < Ay, used above
Theorem 2.8, we have \; = A1 ;i = 2nAay, ; and

AM = 2ndon, M = 2max’sJTZ’ .
J

For model selection we let I denote the index set of the predictors in the
fitted model including the constant. The set A defined below is the index set
without the constant.

Definition 2.18. The active set A is the index set of the nontrivial pre-
dictors in the fitted model: the predictors with nonzero 7;.

Suppose that there are k active nontrivial predictors. Then for lasso, k < n.
Let the n x k& matrix W 4 correspond to the standardized active predictors.
If the columns of W 4 are in general position, then the lasso vector of fitted



2.7 Lasso 115

values
Zr=WaWIiW)TWEZ — ndo, WA(WEW 4)7Ls s

where s4 is the vector of signs of the active lasso coefficients. Here we are
using the Agj,, of (2.27), and nAa, = A1 /2. We could replace n Az, by Ag if
we used a = 2 in the criterion

p—1

Qra(b) = 5r(b)r(B) + X0 3 [ty (2.28)

j=1

See, for example, Tibshirani (2015). Note that W 4 (W4 W 4)"'W? Z is the
vector of OLS fitted values from regressing Z on W 4 without an intercept.

Example 2.2, continued. The lasso output below shows results for the
marry data where 10-fold CV was used. A grid of 38 A values was used, and
Ao > 0 was selected.

library(glmnet); v <- marryl[,3]; x <- marryl[,—3]
out<-cv.glmnet (x,vy)

lam <- out$lambda.min #value of lambda that minimizes
#the 10-fold CV criterion

vhat <- predict (out, s=lam, newx=x)

res <- y - vhat

pp <- out$nzero[out$lambda==lam] + 1 #d for lasso
AERplot2 (yhat, y, res=res, d=pp)

Srespi #90% PI for a future residual

-4102.672 4379.951 #length = 8482.62

There are some problems with lasso. i) Lasso large sample theory is worse
or as good as that of the OLS full model if n/p is large. ii) Ten fold CV does
not appear to guarantee that i ,,//n Zoor AM.on/n Zo. iii) Lasso often
shrinks B too much if ag > 20 and the predictors are highly correlated. iv)
Ridge regression can be better than lasso if ag > n.

Lasso can be a lot better than the OLS full model if i) X X is singular
or ill conditioned or ii) n/p is small. iii) For lasso, M = M (lasso) is often
near 100. Let J > 5. If n/J and p are both a lot larger than M (lasso), then
lasso can be considerably faster than forward selection, PLS, and PCR if
M = M(lasso) = 100 and M = M(F) = min([n/J],p) where F stands for
forward selection, PLS, or PCR. iv) The number of nonzero coefficients in
717, < n even if p > n. This property of lasso can be useful if p >> n and the
population model is sparse.



116 2 Multiple Linear Regression

2.8 Lasso Variable Selection

Lasso variable selection applies OLS on a constant and the k& active predictors
that have nonzero lasso 7); (model I = I,,,;,,). Lasso variable selection is called
relaxed lasso by Hastie et al. (2015, p. 12), and the relaxed lasso estimator
with ¢ = 0 by Meinshausen (2007). The method is also called OLS-post lasso
and post model selection OLS.

Theory for lasso variable selection was given in Pelawa Watagoda and
Olive (2021b) and Rathnayake and Olive (2023). Lasso variable selection will
often be better than lasso when the model is sparse or if n > 10(k +1). Lasso
can be better than lasso variable selection if (X7 X ;) is ill conditioned or
if n/(k + 1) < 10. Lasso variable selection used a grid of K \; values for
i =1,..., K where A\ < \g < -+ < Ag. If K = 100, then lasso variable
selection can be much faster than forward selection if p is large. If n/p is
not large, using K > 100 is likely a good idea due to the multitude of MLR
models result. See Section 2.16. When p is fixed, 5\1n/ vn £ 7 does not
do variable selection well. For variable selection, want 5\1771 /v/n — o0, but
An/n — 0. See Fan and Li (2001). Let A\; = 2n). Guan and Tibshirani
(2020) (and likely glmnet) use A < Cn~'/4 for some large constant C.
Hence A1, = A1 n3/ 4 and the consistency rate of the lasso algorithm is
as best n'/4, but variable selection lasso has the y/n rate (if Ay is selected by
lasso, make A = min(\g, n/log(n) so that \/n — 0 as n — cc.)

Suppose the n x ¢ matrix x has the ¢ = p — 1 nontrivial predictors. The
following R code gives some output for a lasso estimator and then the corre-
sponding lasso variable selection estimator.

library (glmnet)

y <- marryl[, 3]

X <- marryl[,-3]

out<-glmnet (x,y,dfmax=2) #Use 2 for illustration:
#often dfmax approx min(n/J,p) for some J >= 5.
lam<-out$lambda[length (out$lambda) ]

vhat <- predict (out, s=lam, newx=x)

#lasso with smallest lambda in grid such that df = 2
lcoef <- predict (out,type="coefficients",s=1lam)
as.vector (lcoef) #first term is the intercept
#3.000397e+03 1.800342e-03 9.618035e-01 0.0 0.0

res <- y - vhat

AERplot (yhat,y,res,d=3,alph=1) #lasso response plot
##lasso variable selection =

#OLS on lasso active predictors and a constant

vars <- l:dim(x) [2]

lcoef<-as.vector (lcoef) [-1] #don’t need an intercept
vin <- vars[lcoef>0] #the lasso active set

vin
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#1 2 since predictors 1 and 2 are active
sub <- 1lsfit(x[,vin],y) #lasso variable selection
subS$coef

# 1Intercept pop mmen
#2.380912e+02 6.556895e-05 1.000603e+00
# 238.091 6.556895e-05 1.0006

res <- subS$resid
vhat <- y - res
AERplot (yhat,y, res,d=3,alph=1) #response plot

Example 2.2, continued. The lasso variable selection output below shows
results for the marry data where 10-fold CV was used to choose the lasso
estimator. Then lasso variable selection is OLS applied to the active variables
with nonzero lasso coefficients and a constant. A grid of 38 A values was used,
and A\; > 0 was selected. The OLS SE, t statistic and pvalue are generally
not valid for lasso variable selection by Remark 2.5 and Theorem 2.4.

library(glmnet); v <- marryl[,3]; x <- marryl[,—3]
out<-cv.glmnet (x,vy)
lam <- out$lambda.min #value of lambda that minimizes
#the 10-fold CV criterion
pp <- out$nzero[out$lambda==lam] + 1
#d for lasso variable selection
#get lasso variable selection
lcoef <- predict (out,type="coefficients",s=1lam)
lcoef<—-as.vector(lcoef) [-1]
vin <- vars[lcoef!=0]
sub <- lsfit(x[,vin],y)
ls.print (sub)
Residual Standard Error=376.9412
R-Square=0.9999
F-statistic (df=2, 23)=147440.1

Estimate Std.Err t-value Pr(>|t])58
Intercept 238.0912 248.8616 0.9567 0.3487
pop 0.0001 0.0029 0.0223 0.9824
mmen 1.0006 0.0164 60.9878 0.0000
res <- subS$resid
vhat <- y - res
AERplot2 (yhat, vy, res=res, d=pp)
Srespi #90% PI for a future residual
-822.759 1403.771 #length = 2226.53

To summarize Example 2.2, forward selection selected the model with
the minimum C),, while the other methods used 10-fold CV. PLS and PCR
used the OLS full model with PI length 2395.74, forward selection used a
constant and mmen with PI length 2114.72, ridge regression had PI length
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a) Forward Selection b) Ridge Regression
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Fig. 2.1 Marry Data Response Plots

20336.58, lasso and lasso variable selection used a constant, mmen, and pop
with lasso PI length 8482.62 and lasso variable selection PI length 2226.53.
A PI from Section 2.13 was used. Figure 2.1 shows the response plots for
forward selection, ridge regression, lasso, and lasso variable selection (labeled
relaxed lasso). The plots for PLS=PCR=OLS full model were similar to those
of forward selection and lasso variable selection. The plots suggest that the
MLR model is appropriate since the plotted points scatter about the identity
line. The 90% pointwise prediction bands are also shown, and consist of two
lines parallel to the identity line. These bands are very narrow in Figure 2.1
a) and d).
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2.9 The Elastic Net

Following Hastie et al. (2015, p. 57), let 3 = (ﬁl,ﬁg)T, let A1, >0, and let
a € [0,1]. Let

RSS(B) = (Y - XB)" (Y - XB) =Y - X3.

For a kx 1 vector n, the squared (Euclidean) L norm ||n||3 = n'n = Zle n?
and the L; norm |||y = S5 [n;].

Definition 2.19. The elastic net estimator BEN minimizes the criterion
1 1 9
Qun(8) = 3RSS(B) + A | 51— )1Bsl3 +allBslly |, or  (229)

Q2(8) = RSS(B) + Ml|Bsll5 + A2l1Bslx (2.30)
where 0 < oo <1, Ay = (1 — @)A1, and A2 = 2aA; .

Note that a = 1 corresponds to lasso (using A\,—0.5), and « = 0 corresponds
to ridge regression estimator of Definition 2.16 c), which is not the usual ridge
regression estimator. For v < 1 and Ay, > 0, the optimization problem is
strictly convex with a unique solution. The elastic net is due to Zou and
Hastie (2005). It has been observed that the elastic net can have much better
prediction accuracy than lasso when the predictors are highly correlated.

As with lasso, it is often convenient to use the centered response Z = Y -Y
where Y = Y1, and the nx (p—1) matrix of standardized nontrivial predictors
W. Then regression through the origin is used for the model

Z=Wn+e (2.31)

where the vector of fitted values Y =Y + Z.

Ridge regression can be computed using OLS on augmented matrices.
Similarly, the elastic net can be computed using lasso on augmented matrices.
Let the elastic net estimator 7y, minimize

Qe (n) = RSSw (n) + Ad|nll3 + Azllnllx (2.32)

where A\ = (1 — @)A1, and Ay = 201 ,. Let the (n +p—1) x (p — 1)
augmented matrix W4 and the (n 4+ p — 1) x 1 augmented response vector
Z 4 be defined by

w Z
Wi (¥ ) w2 (2),

where 0 is the (p — 1) x 1 zero vector. Let RSSa(n) = ||Z 4 — W an||3. Then
f)pn can be obtained from the lasso of Z4 on W 4: that is, 95y minimizes



120 2 Multiple Linear Regression

Qr(m) = RSSaA(n) + A2lnlli = Qen(n). (2.33)

Proof: We need to show that Qr(n) = Qg (n). Note that ZLZ 4 = Z* Z,

_( Wn
WAn_(\/H n)’

and ZEXW 4 n = Z"Wn. Then
RSSa(n) =|1Za—Wanlls = (Za—Wan)" (Za - Wan) =
ZhZA—Z\Wan—n"WhZa+n"WiWan =
z'72 - Z"Wn-n"w?z + (nTWT \/x nT) (\/‘:_jn77> .
Thus
Qun)=Z"Z-Z"Wn—g" W' Z+ "W Wn+ in"n+ X|nll =

RSS(n) + M3 + X2|nlli = Qen(n). O

Remark 2.16. i) You could compute the elastic net estimator using a
grid of 100 Ay, values and a grid of J > 10 a values, which would take
about J > 10 times as long to compute as lasso. The above equivalent lasso
problem (2.30) still needs a grid of A\; = (1 — @)A1, and Ag = 2a); ,, values.
Often J = 11, 21, 51, or 101. The elastic net estimator tends to be com-
puted with fast methods for optimizing convex problems, such as coordinate
descent. ii) Like lasso and ridge regression, the elastic net estimator is asymp-
totically equivalent to the OLS full model if p is fixed and Ay, = op(y/n),
but behaves worse than the OLS full model otherwise. See Theorem 2.9. iii)
For prediction intervals, let d be the number of nonzero coefficients from
the equivalent augmented lasso problem (2.33). Alternatively, use ds with
d~dy = tr[WAs(W£SWA5 + /\Q,HIp,l)*WﬁS] where W 45 corresponds
to the active set (not the augmented matrix). See Tibshirani and Taylor
(2012, p. 1214). Again Ay, may not be the A2 given by the software. iv)
The number of nonzero lasso components (not including the constant) is at
most min(n, p—1). Elastic net tends to do variable selection, but the number
of nonzero components can equal p — 1 (make the elastic net equal to ridge
regression). Note that the number of nonzero components in the augmented
lasso problem (2.33) is at most min(n +p —1,p — 1) = p — 1. vi) The elastic
net can be computed with glmnet, and there is an R package elasticnet.
vii) For fixed a > 0, we could get \ps for elastic net from the equivalent lasso
problem. For ridge regression, we could use the Aps for an « near 0.

Since lasso uses at most min(n, p— 1) nontrivial predictors, elastic net and
ridge regression can perform better than lasso if the true number of active
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nontrivial predictors ag > min(n,p — 1). For example, suppose n = 1000,
p = 5000, and ag = 1500.

The following theorem is probably for the elastic net estimator that uses
the usual ridge regression estimator of Definition 2.16 b), rather that the
ridge regression estimator of Definition 2.16 ¢). Hence Equation (2.30) would
need to be modified. Following Jia and Yu (2010), by standard Karush-Kuhn-
Tucker (KKT) conditions for convex optimality for the “modified Equation
(2.30),” By is optimal if

OXTXBon —2XTY 42085y + A28, =0, or

(XTX +MI,)Bpy = XTY — %sn, or
Bry =Br—n(XTX + Ale)*lg—an. (2.34)
n
Hence
2 2 A1 T “1 A2 T 1
EN —FPoLs — 14p OLS = o5~ 14p n
B B (XX + D)7 B 5 X X + T, s
> T 1A A2
=Bors — (X X +MIp) [;BOLS + %sn]-

Note that if A1 /vt = 7 and & > 9, then Ay /v/n 2 (1—1)7 and As/ /i 2
2¢7. The following theorem shows elastic net is asymptotically equivalent to

the OLS full model if A ,,/\/n £ 0. Note that we get the RR CLT if ¢ = 0
and the lasso CLT (using 2A1,,/v/n il 27) if ¢ = 1. Under these conditions,

: : TR Vi Ao
Vi(Bey —B) = Vi(Bors — B) — (XX +MI,)"! [%BOLS + msn]
The following theorem is due to Slawski et al. (2010), and summarized in
Pelawa Watagoda and Olive (2021b).

Theorem 2.9, Elastic Net CLT. Assume p is fixed and that the condi-
tions of the OLS CLT Equation (2.6) hold for the model Y = X3 + e.

a) If Ao/ £0, then
5 D
V(Bey — B) = Np(0,0°V).
: P . P P
b) If A\ /v —=72>0,&— ¢ €][0,1], and 8,, > s = s, then

ViBey —B) 2 N, (V1 - )78 + ¢rs],0*V) .

Proof. By the above remarks and the RR CLT Theorem 2.7,
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ViBen —B) = Vi(Bex — Br+Br—B) = Vi(Br - B)+ Vn(Bey — Br)

LN, (~(1=9)rVB,6%V) — MTTVS

~ N, (=V[(1 —¢)rB + ¢18],0°V).

The mean of the normal distribution is 0 under a) since & and s, are bounded.
O

Example 2.2, continued. The slpack function enet does elastic net
using 10-fold CV and a grid of « values {0, 1/am, 2/am, ...,am/am = 1}. The
default uses am = 10. The default chose lasso with alph = 1. The function
also makes a response plot, but does not add the lines for the pointwise
prediction intervals since the false degrees of freedom d is not computed.

library(glmnet); vy <- marry[,3]; x <- marryl[, 3]

tem <- enet (x,y)

tem$alph

[1] 1 +#elastic net was lasso

tem<-enet (x,y,am=100)

tem$alph

[1] 0.97 #elastic net was not lasso with a finer grid

The elastic net variable selection estimator applies OLS to a constant and
the active predictors that have nonzero elastic net 7);. Hence elastic net is used
as a variable selection method. Let X 4 denote the matrix with a column of
ones and the unstandardized active nontrivial predictors. Hence the elastic
net variable selection estimator is 35y = (X 43X 4) ' X %Y, and elastic net
variable selection is an alternative to forward selection. Let k& be the number
of active (nontrivial) predictors so By is (k+1) x 1. Let Iy, correspond to
the elastic net variable selection estimator and B NV,0 = B I,..m.0 to the zero

padded elastic net variable selection estimator. When p is fixed, B ENV,0 18
ﬁ consistent when elastic net is consistent, with the limiting distribution for
Brnv,o given by Rathnayake and Olive (2023). Elastic net variable selection
will often be better than elastic net when the model is sparse or if n >
10(k + 1). The elastic net can be better than elastic net variable selection if
(XL X 4) is ill conditioned or if n/(k + 1) < 10.

2.10 OPLS

Cook, Helland, and Su (2013) showed that the OPLS estimator Bpprg
estimates Bpprg, and that the OPLS estimator can be computed from

the OLS simple linear regression (SLR) of ¥ on W = Z;Y:c, giving
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. . T
Y = doprs + A\W = éoprs + Boprs®. Also see Basa et al. (2024) and
Wold (1975).

Definition 2.20. The one component partial least squares (OPLS) esti-
mator Boprs = A gy estimates AXgpy = Bpprg Where

A= and \ =

~T ~

v ey Q Yoy Xy
B ~T - -

Yy Xz Xxy YovZe ey

(2.35)

The following Olive and Zhang (2024) theorem gives some large sample
theory for n = Cov(x,Y). This theory needs 1 = ngoprg = Xzy to exist for

= Yy to be a consistent estimator of n. Let «; = (x4, ..., xl-p)T and let
w; and z; be defined below where

Cov(w;) = T = El(x; — pg) (@i — pg)” (Vi — py)?)] — Zay gy

Then the low order moments are needed for 3 ~ to be a consistent estimator
of Y. The theory uses milder regularity conditions than the theory in the
previous literature. The theory can be used for testing, including some high
dimensional tests for low dimensional quantities such as Hp : §; = 0 or
Hy : 3;—03; = 0. These tests depended on iid cases, but not on linearity or the
constant variance assumption. Data splitting uses model selection (variable
selection is a special case) to reduce the high dimensional problem to a low
dimensional problem. Olive et al. (2024) gave alternative proofs, and showed
that the results hold for multiple linear regression with heterogeneity.

Theorem 2.10. Assume the cases (z7,Y;)T are iid. Assume E(fo Y™
exist for j = 1,...,pand k,m = 0,1,2. Let pp = E(x) and py = E(Y). Let
w; = (x; — pgp) (Vi — py) with sample mean w,,. Let n = X zy. Then a)

V@, —n) 2 N0, Zw), Vali, —n) 2 Ny(0, Zw), (2.36)

and v/n(7, — 1) 2 Np(0, Zap).
b) Let z; = x;(Y; — Y,,) and v; = (x; — %,)(Y; — Y,,). Then Yw=3s+
Op(n71/2) =Y+ Op(n71/2). Hence X'y = X2 + Op(n71/2) =Y+
Op(n71/2).
c) Let A be a k x p full rank constant matrix with & < p, assume Hj :
ABoprs = 0 is true, and assume A Za # 0. Then

ViABorrs — Boprs) = Ne(0,\2 A% AT). (2.37)

Proof. a) Note that v/n(w, —n) 5 Np(0, Xqp) by the multivariate cen-
tral limit theorem since the w; are iid with F(w;) = n = Cov(z,Y’) and
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Cov(w) = Xq. Now nn,, =
S (@i — g + g — B Vi — iy 4y — V) = S (@ — 1) (Vi — py)

=1 i

+3 (@i — )y = T) + (g — ) S (Vi — pry) + gy — )y —7)

= Zwi —na, — na, +na, = Zwi —n(pg —Z)(py —Y).

Thus Vi, = Vit Y - YT “w\}f@‘ ) w4 on(1).

Hence (7, —n) = va(@, — ) + op(1).
Thus \/ﬁ(f’n - 77) 2) NP(Oa Z’LU)
by Slutsky’s theorem. Now

n

\/ﬁ(ﬁ—n)—x/ﬁ(n_lﬁ—n>—x/ﬁ(nﬁlﬁ— o E— n—n)

n—1

Vi ().

Thus v/a(#, — 1) = Np(0, Zu).

b) See Olive et al. (2024).
¢) If Hy is true, then An = 0, and

\/EA(BOPLS - /BOPLS) = \/EA()AWAI - 5\77 =+ 5\77 - /BOPLS) =

AV = 1) + AVR(A = N1 = Zy + by 2 Ni(0,\2AZwAT)
since b, = 0 when Hj is true. [
In Theorems 2.10 and 2.11, the scalars A and \ are given by Equation
(2.35), m = (11, ...,mp)", and Xy = 4. Results from Su and Cook (2012)
and Olive et al. (2024), for example, show that elements of a sample covari-

ance matrix can be stacked to get large sample theory. Then A and 7) can be
stacked as in Theorem 2.11 by the multivariate delta method. Theorem 2.10
¢) and Theorem 2.11 ¢) are equivalent with different notation. Currently X
from Theorem 2.11 is difficult to estimate.

Theorem 2.11. Assume

A((3)- () 25 ((5)- (5. 37)) ~ w3



2.10 OPLS 125

. D
a) v/n(f —n) = Np(0, Xn).
S P D .
b) vn(Af) —An) = Vn(Boprs — Boprs) = Np (0, DZDT) with D =
[n M,] where I, is the p X p identity matrix.
c) Let A be a k x p full rank constant matrix with k¥ <p and ABy,p; g =
0 = An. Then

Va(ABopLs — 0) 2 N, (o, X"AZnAT) .

Proof. a) Follows by Equation (2.36) or since joint convergence in distri-
bution implies marginal convergence in distribution.
b) Follows by the Multivariate Delta Method with

/(2)n-

)T, and the Jacobian matrix of partial derivatives D = Dy.

()\7’]1, ...,)\?’]p
¢) By b), va(ABoprs — AB) = Ny (0, ADZDTAT) ;

but AD = [0 AA]. Hence ADYD" A" = \2A¥pA". O

Some additional useful OPLS and OLS formulas are derived next if the
cases are iid. Let 8 = Bpg. Then ¥z y = Cov(z,Y) = Cov(z)B8 = Xz0.
Since Zmyy = ZmIBOLS’

Borrs = Azy = A¥zBors: Borrs = ACov(z)Bors, and
1 _
Bors = 3 [Cov(z)] 'BorLs-
Chun and Keles (2010) suggested that B, p; ¢ only estimates 3, g under

very strong regularity conditions. For iid cases, Cook and Forzani (2018, 2019)
showed that the regularity condition is Z%l Yxy = AXgy, in which case

Va(Boprs—Bors) 5 N, (0, C). Cook and Forzani (2018, 2019) also showed
that under very strong regularity conditions for high dimensions, BO pLg 18
a consistent estimator of By g. Also see Basa et al. (2024).

In the literature, there is a tendency (perhaps a common Statistical
paradigm) to assume that if the estimated model fits the data well, then the
model corresponding to the estimator is the model for Y |x. For example, in
much of the OPLS literature, an assumption is Y'|& = aoprs +IBSPLS‘E +e.
Then Boprs = Bors by the OLS CLT, and the results in Table 2.1 hold.

The above tendency leads to problems that have perhaps not often been
observed in the literature. To see some problems, consider multiple linear
regression with Cov(z) = diag(1,2, ...,p). First consider OPLS with B85, ¢ =
Boprs- Then at most one element of Cov(x,Y) = Yz y is nonzero since
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Table 2.1 OPLS Results

-1
General Bors =Yg Yy =X¥zy =BopLs
I
Bors =Xz ey = ~[Cov(x) 'Boprs Bors is an eigenvector of X
Boprs = XXx,y = XCov(x)Bs 1 g Boprs is an eigenvector of X
Yz, v =Cov(x)Borg Y e,y is an eigenvector of g
Brprg estimates B, pr g Brprg estimates B51 g

Xz.y is an eigenvector of Cov(x). Hence at most one predictor is correlated
with Y, regardless of the value of p. This restriction is too strong.

If the cases are iid from a multivariate normal distribution, then Y|z =
aors + Borst + e and Y|B5prsx = aoprs + Boprs® + ¢ are both lin-
ear models by Section 2.16 where e depends on the model. Since Boprg =
Bors forces Bors to be an eigenvector of Xy, if By is not an eigen-
vector of Xg, then Bpprg # Bors- For a computational example, let
x ~ N,(0,diag(1,2,3,4)) with ¥z = diag(1,2,3,4), and let the popula-
tion generating model be Y; = z;1 + x;2 + ¢; for ¢ = 1,...,n where the ¢e;
are iid N(0, 1) and independent of the x;. Then a = 0 and 8 = (1,1,0,0).
Hence Bprs =08 =(1,1,0,0)7, Xy = XxBors = (1,2,0,0)T, and

T
ch,YZC&Y

)\ - T—
YeyZzXay

=5/9.

Thus Boprs = Axy = AZxBors = (5/9,10/9,0,0)" # BoLs-

Thus OLS and OPLS usually give different valid population multiple linear
regression models with B,p;s # BoLg- However, the model Y |85, s =
aopLs + BopLsx + e is often a useful multiple linear regression model with
large sample theory given by Theorem 2.11. The claims in the OPLS literature
that 8o = Boprg = an eigenvector of X'y under mild regularity conditions
are incorrect. See, for example, Basa et al. (2024), Cook and Forzani (2018,
2019, 2024), and Cook, Helland and Su (2013). The regularity conditions for
Bors = Boprs are very strong. In the OLS literature 85,5 can be any
vector in RP. If B5rq, Xy, and Boprg were restricted to be eigenvectors
of ¥z, then the OLS and OPLS estimators would often not fit the data well.

2.11 The MMLE

The marginal maximum likelihood estimator (MMLE or marginal least
squares estimator) is due to Fan and Lv (2008) and Fan and Song (2010).

This estimator computes the marginal regression of Y on z; resulting in the

estimator (@LM,BLM) for i = 1,...,p. Then Byyrp = (ﬁlyM,...,prM)T.
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For multiple linear regression, the marginal estimators are the simple linear
regression (SLR) estimators, and (&; ar, i m) = (&, sLr, Bi,sLr)- Hence

Brnine = [diag(Zg)] ' Xy

If the t; are the predictors are scaled or standardized to have unit sample
variances, then

BMMLE = BMMLE(ta Y) = 21ty = Iﬁlﬁty = ﬁOPLS(ta Y) (2-38)

where (¢,Y) denotes that Y was regressed on ¢, and I is the p x p identity
matrix. Olive et al. (2024) gave some large sample theory for the MMLE.

The MMLE is also used for variable selection. For example, standardize
the predictors and take the K — 1 variables corresponding to the largest
|3i] where Byre = (B, ...,Bp)T. Then perform the regression on these
variables (perhaps not standardized) and a constant. This variable selection
method is useful for very large p since the method is fast, but the selected
predictors are often highly correlated. Hence it may be useful to perform lasso
variable selection or forward selection using the variables selected by MMLE
variable selection. Choosing K near min(n/J,p) for J = 1,5 or 10 may be
useful.

MMLE variable selection can also be useful when the predictors are or-
thogonal. See Goh and Dey (2019) for references. This result may be useful
for PCR, PLS, and wavelets.

2.12 k-Component Regression Estimators

Consider the MLR model Y = a + 78 + e. The k-component regression
estimators, such as PCR and PLS, use p linear combinations nf'z, ..., ng:c.
Then there are p conditional distributions

Yinia
Y|(ni®,n; )
Yiniz,nlx, .., ngcc).

Estimating the 1; and performing the ordinary least squares (OLS) regression
of Y on (nl @, nlx, ..., )i x) gives the k-component estimator, e.g. the k-
component PLS estimator Bk prg or the k-component PCR estimator, for
k=1,...,J where J < p and the p-component estimator is the OLS estimator
Bors:

Definition 2.21. Consider the MLR model Y = a + 273 +e. Let X =
(1 Xl) Let
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Tz ~ nl

;1M N1 T m
v, = App®; = : = : where Ay, = :

T T - T

;N N T Ny
Let r
Ty,
C; = Xl’fh =
T A~

be the ith component vector for i =1, ..., p. Let

vf
. T
Vi=(c,,a)=| 1 | =X14;,
vy

for k =1,...,p. Let the working OLS model

Y:ak1+vk7k+€
. o T
where € depends on the model. Then 8,p = Ay ¥, is the k-component
estimator for k = 1,...,p. The model selection estimator chooses one of the

k-component estimators, e.g. using a holdout sample or cross validation, and
will be denoted by B,/¢ g-

The OLS regression of Y on w = Akyn:c gives
R A —1 4 - o AT 4~ -
Y= YwXwy = (Apn X Ay,) ArnXay.
Thus

. AT AT A N A - A

Bre = Ak,n’)’k = Ak,n(Ak,nZwAk,n) 1Ak,n2m,Y =AYy

~T ~ ~ AT N A~ A oA

= Ak,n(Ak,nZwAk,n) A nXxBors(®,Y) = A XxBors(x,Y).

If ,f”L E) ;5 and

then
BkE = Bre = Ag(AkZmAg)flAkZmBOLs(ma Y)= A XxBors(x,Y).

This convergence can also occur if 7); = &; are orthonormal eigenvectors such
AT
that A, vy il Agﬁyk, which happened for PCR.
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The regularity conditions for 8,5 = Borg(x,Y) tend to be very strong,
at least for k near 1. Note that 8,5 = Bors(®,Y) if the inverse matrices
exist (and if p = 1), and BLg = Bors(®,Y) if Bors(x,Y) = 0. Suppose
Bors = ZT:l ci;n;, for some m where 1 < m < p and the ¢;; # 0. If k is
large enough to include the m n; , then 8,5 = Bog(,Y). This regularity
condition becomes weaker as m increases, and B, can become very highly
correlated with Bor¢(x,Y) as k increases.

In the high dimensional setting, the regularity conditions for 7, it 7, tend
to be very strong.

2.13 Prediction Intervals

This section will use the prediction intervals applied to the MLR model with
Y = :cITB 1 and I corresponds to the predictors used by the MLR method. We
will use the six methods forward selection with OLS, PCR, PLS, lasso, lasso
variable selection, and ridge regression. The number of components for PLS
and PCR will be selected using cross validation, hence the model selction
versions of PLS and PCR are used. When p > n, results from Hastie et al.
(2015, pp. 20, 296, ch. 6, ch. 11) and Luo and Chen (2013) suggest that lasso,
lasso variable selection, and forward selection with EBIC can perform well
for sparse models: the subset S in Equation (2.14) and Remark 2.8 has ag
small.

Notation: P(A4,) is “eventually bounded below” by 1 — ¢ if P(A,) gets
arbitrarily close to or higher than 1 —§ as n — oo. Hence P(A,) >1—0—¢
for any € > 0 if n is large enough. If P(A4,) — 1 —0 as n — oo, then P(A,) is
eventually bounded below by 1 — . The actual coverage is 1 — v, = P(Y} €
[Lyn, Uy]), the nominal coverage is 1 — § where 0 < 6 < 1. The 90% and 95%
large sample prediction intervals and prediction regions are common.

Definition 2.22. Consider predicting a future test value Yy given a p x 1
vector of predictors « ¢ and training data (Y1, 1), ..., (Y, ,). A large sam-
ple 100(1 — )% prediction interval (PT) for Y} has the form [L,, U,] where
P(f)n <Yy < Un) is eventually bounded below by 1 — ¢ as the sample size
n — o0o. A large sample 100(1 — )% PI is asymptotically optimal if it has the
shortest asymptotic length: the length of [Ly,U,] converges to Us — L, as
n — oo where [Lg, U] is the population shorth: the shortest interval covering
at least 100(1 — 0)% of the mass.

If Y¢|xy has a pdf, we often want P(f)n <Yy < Un) —1—06 as n — oo.
The interpretation of a 100 (1 — ¢§)% PI for a random variable Y} is similar
to that of a confidence interval (CI). Collect data, then form the PI, and
repeat for a total of k£ times where the k trials are independent from the
same population. If Yy; is the ith random variable and PI; is the ith PI,
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then the probability that Y;; € PI; for j of the PIs approximately follows a
binomial(k, p =1 — ¢) distribution. Hence if 100 95% PIs are made, p = 0.95
and Yy; € PI; happens about 95 times.

There are two big differences between Cls and Pls. First, the length of the
CI goes to 0 as the sample size n goes to co while the length of the PI con-
verges to some nonzero number J, say. Secondly, many confidence intervals
work well for large classes of distributions while many prediction intervals
assume that the distribution of the data is known up to some unknown pa-
rameters. Usually the N (u,o?) distribution is assumed, and the parametric
PI may not perform well if the normality assumption is violated. This sec-
tion will describe three nonparametric PIs for the multiple linear regression
model, Y = x7 3 + e, that work well for a large class of unknown zero mean
error distributions.

Consider the location model, Y; = p + e;, where Y1, ..., Y,, Y} are iid, and
there are no vectors of predictors x; and xy. Let Y{1) < Y(g) < -+ < Yy,
be the order statistics of the iid training data Y7, ...,Y,,. Then the unknown
future value Yy is the test data.

Remark 2.17. Confidence intervals, prediction intervals, confidence re-
gions, and prediction regions should used closed sets not open sets. The closed
sets have the same volume as the open sets, but have coverage at least as high
as the open sets with weaker regularity conditions. In particular, confidence
and prediction intervals should be closed intervals, not open intervals.

In the following theorem, if the open interval (Y(x,), Y(x,)) was used, we
would need to add the regularity condition that Y;/, and Y; _5/9 are continuity
points of Fy (y).

Theorem 2.12. Let Y1, ..., Y,, Yy be iid. Let Y(1) < Yoy < --- < Yy, be
the order statistics of the training data. Let k1 = [nd/2] and k2 = [n(1-06/2)]
where 0 < § < 1. The large sample 100(1 — §)% percentile prediction interval
for Yy is

D/(kl)a }/(kz)]' (239)

The shorth(c) estimator of the population shorth is useful for making
asymptotically optimal prediction intervals. For the uniform distribution,
the population shorth is not unique. Of course the length of the population
shorth is unique. For a large sample 100(1 — §)% PI, the nominal coverage is
100(1 — 6)%. Undercoverage occurs if the actual coverage is below the nom-
inal coverage. For example, if the actual coverage is 0.93 for a large sample
95% PI, than the undercoverage is 0.02.

Definition 2.23. Let the shortest closed interval containing at least ¢ of
the Y7,..., Y, be
shorth(c) = [Y(S),Y(SJrc,l)]. (2.40)

Theorem 2.13, Frey (2013). Let Y7, ...,Y,, be iid. Let
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kn = [n(1 — 0)]. (2.41)

For large nd and iid data, the large sample 100(1 —§)% shorth(k,,) prediction
interval has maximum undercoverage ~~ 1.12,/§/n. The maximum undercov-
erage occurs for the family of uniform U (6, 62) distributions.

Theorem 2.14, Frey (2013). Let Y1,...,Y,,, Y} be iid. Let Y(;) < Y9y <
- < Y(n) be the order statistics of the training data. The large sample
100(1 — 6)% shorth(c) prediction interval for Y7 is

[Yis)s Ys+e—1)] where ¢ =min(n, [n[l —4&+1.12,/5/n]7). (2.42)

A problem with the prediction intervals that cover ~ 100(1 — §)% of the
training data cases Y; (such as (2.40) using ¢ = k,, given by (2.41)), is that
they have coverage lower than the nominal coverage of 1 — ¢ for moderate
n. This result is not surprising since empirically statistical methods perform
worse on test data. For iid data, Frey (2013) used (2.42) to correct for un-
dercoverage.

Remark 2.18. a) The shorth PT (2.42) often has good coverage for n > 50
and 0.05 < ¢ < 0.1, but the convergence of U,, — L,, to the population shorth
length Us — L can be quite slow. Under regularity conditions, Griibel (1982)
showed that for iid data, the length and center the shorth(k, ) interval are \/n
consistent and n'/3 consistent estimators of the length and center of the pop-
ulation shorth interval, respectively. The correction factor also increases the
length. For a unimodal and symmetric error distribution, the nonparametric
percentile PI (2.39) and the shorth PI (2.42) are asymptotically equivalent,
but PI (2.39) can be the shorter. b) The percentile PI (2.39) can be much
longer than the shorth PT (2.42) if the data distribution is skewed.

Example 2.3. Given below were votes for preseason 1A basketball poll
from Nov. 22, 2011 WSIL News where the 778 was a typo: the actual value
was 78. As shown below, finding shorth(3) from the ordered data is simple.
If the outlier was corrected, shorth(3) = [76,78].

111 89 778 78 76
order data: 76 78 89 111 778
13 = 89 - 76
33 = 111 - 78

689 = 778 - 89
shorth(3) = [76,89]
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Many things can go wrong with prediction. It is assumed that the test
data follows the same MLR model as the training data. Population drift is a
common reason why the above assumption, which assumes that the various
distributions involved do not change over time, is violated. Population drift
occurs when the population distribution does change over time.

A second thing that can go wrong is that the training or test data set is
distorted away from the population distribution. This could occur if outliers
are present or if the training data set and test data set are drawn from
different populations. For example, the training data set could be drawn
from three hospitals, and the test data set could be drawn from two more
hospitals. These two populations of three and two hospitals may differ.

A third thing that can go wrong is extrapolation: if x; is added to
T1,..., Tpn, then there is extrapolation if x is not like the x;, e.g. s is an
outlier. Predictions based on extrapolation are not reliable. Check whether
the Euclidean distance of «; from the coordinatewise median MED (X)) of
the x1,..., @, satisfies Dg,(MED(X), I,) < maxj=1,.._,D;(MED(X), I},).
Alternatively, use the ddplot5 function, described in Chapter 1, applied to
T1,...,Tn, s to check whether x; is an outlier.

When n > 10p, let the hat matrix H = X (X7 X)"'X”. Let h; = hy
be the ith diagonal element of H for ¢ = 1,...,n. Then h; is called the
ith leverage and h; = &7 (X* X) 'a;. Then the leverage of xs is hy =
:c?(XTX)*lccf. Then a rule of thumb is that extrapolation occurs if hy >
max(hi, ..., hy). This rule works best if the predictors are linearly related in
that a plot of x; versus x; should not have any strong nonlinearities. If there
are strong nonlinearities among the predictors, then xy could be far from the
x; but still have hy < max(hi, ..., hy,). If the regression method, such as lasso
or forward selection, uses a set I of a predictors, including a constant, where
n > 10a, the above rule of thumb could be used for extrapolation where xy,
x;, and X are replaced by xr f, 1, and X .

Prediction intervals based on the shorth of the residuals need a correction
factor for good coverage since the residuals tend to underestimate the errors
in magnitude. With the exception of ridge regression, let d be the number of
“variables” used by the method. For MLR, forward selection, lasso, and lasso
variable selection use variables z7, ..., z}; while PCR and PLS use variables
that are linear combinations of the predictors V; = 'yJT:c forj=1,...,d. We
want n > 10d so that the model does not overfit. (We could let d = j if j
is the degrees of freedom of the selected model if that model was chosen in
advance without model or variable selection. Hence d = j is not the model
degrees of freedom if model selection was used.) See Hong et al. (2018) for
why classical prediction intervals after variable selection fail to work.

Pelawa Watagoda and Olive (2021b) gave two prediction intervals that
can be useful even if n/p is not large. These PIs will be defined below. If the
OLS model I has d predictors, and S C I, then



2.13 Prediction Intervals 133

E(MSE(I)) =FE (zn: nf d) =0?=F (zn: %)

=1 =1

and M SE(I) is a \/n consistent estimator of o2 for many error distributions
by Su and Cook (2012). Also see Freedman (1981). For a wide range of regres-
sion models, extrapolation occurs if the leverage hy = cc? (X X)) ter ;>
2d/n: if g 5 is too far from the data @1, ..., @5 », then the model may not
hold and prediction can be arbitrarily bad. These results suggests that

n n+ 2d

In simulations for prediction intervals and prediction regions with n = 20d,
the maximum simulated undercoverage was near 5% if ¢,, in (2.43) is changed
tog, =1—90.

Next we give the correction factor and the first prediction interval. Let
¢n =min(l —§+0.05,1 -9 +d/n) for § > 0.1 and

gn =min(l — /2,1 — 0+ 100d/n), otherwise. (2.43)

If1-6<0.999 and ¢, <1— 6+ 0.001, set g, =1 — 4. Let

¢ = [naa], (2.44)
and let
15 n+2d
bp=(14+— 2.4
( * n) n—d (2.45)

if d < 8n/9, and

bn—5<1+E>,
n

otherwise. As d gets close to n, the model overfits and the coverage will be
less than the nominal. The piecewise formula for b,, allows the prediction
interval to be computed even if d > n.

Definition 2.24. Compute the shorth(c) of the residuals = [r (), 7(s4c—1)] =
[€5,,€1_s,]. Then a 100 (1 — §)% large sample PT for Y7 is

[}Aff + bngﬁ;la }A/j + bnglfég]- (246)
The second PI randomly divides the data into two half sets H and V' where

H has ng = [n/2] of the cases and V has the remaining ny = n —ngy cases

AT
i1y e iny - The estimator mpy (x) = By is computed using the training data
set H. Then the validation residuals v; = Y;, =g (x;,) are computed for the
Jj =1,...,ny cases in the validation set V. Find the Frey PI [v(s), V(s4c—1)]
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of the validation residuals (replacing n in (2.42) by ny = n — ng). Let
. . T
Yin =y (@) = Bruty.

Definition 2.25. Then a 100(1 — §)% large sample PI for Y7 is

[}A/jH + U(s), }A/jH + ’U(s+c71)]- (247)

Remark 2.19. Note that correction factors b, — 1 are used in large sam-
ple confidence intervals and tests if the limiting distribution is N(0,1) or Xﬁ,
but a tg, or pF) 4, cutoff is used: ¢4, 1-/21-5 — 1 and prydml,J/X;PJ —
1 if d, — oo as n — oo. Using correction factors for large sample confi-
dence intervals, tests, prediction intervals, prediction regions, and bootstrap
confidence regions improves the performance for moderate sample size n.

Remark 2.20. For a good fitting model, residuals r; tend to be smaller in
magnitude than the errors e;, while validation residuals v; tend to be larger
in magnitude than the e;. Thus the Frey correction factor can be used for PI
(2.47) while PI (2.46) needs a stronger correction factor.

A sufficient condition for (2.46) and (2.47) to be large sample PIs, is that
the residuals need to be consistent estimators of the iid errors e; and 8 1 needs
to be a consistent estimator 3; where Y; = I 3, + e, is a valid MLR model
and the iid e; depend on I. This regularity condition tends to roughly hold
when n >> p, but the regularity condition is often much too strong if p > n.

Another regularity condition for PI (2.47) is that the cases are iid. This
assumption is strong but sometimes holds. Then we can motivate PI (2.47) by
modifying the justification for the Lei et al. (2018) split conformal prediction
interval

[m () — aq, mu(eg) + ag) (2.48)

where a4 is the 100(1 — §)th quantile of the absolute validation residuals.
PI (2.47) is a modification of the split conformal PI that is asymptotically
optimal. Suppose (Y;, ;) are iid for ¢ = 1,...,n,n + 1 where (Y;,xy) =
(Y41, ®n+1). Compute mpy(x) from the cases in H. For example, get BH
from the cases in H. Consider the validation residuals v; for ¢ = 1, ..., ny and
the validation residual vy, 41 for case (Y}, xy). Since these ny + 1 cases are
iid, the probability that v; has rank j for j =1,...,ny + 1is 1/(ny + 1) for
each t, i.e., the ranks follow the discrete uniform distribution. Let ¢t = ny +1
and let the v(;) be the ordered residuals using j = 1,...,ny. That is, get the
order statistics without using the unknown validation residual vy, 4+1. Then

v(;) has rank 7 if v(;) < v,y 41 but rank i + 1 if vy > vy, 1. Thus
P(Yy € [mp (@) +vm), mu (@) +vk-1)]) = P0g) < vnys1 < Vto-1)) =

P(vp,, +1 has rank between k + 1 and k + b — 1 and there are no tied ranks)
>b-1)/(nyv+1)=1-0ifb=[(ny +1)(1—0)|+1land k+b—1 < ny.
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This probability statement holds for a fixed k such as k = [ny §/2]. The
statement is not true when the shorth(b) estimator is used since the shortest
interval using £ = s can have s change with the data set. That is, s is not
fixed. Hence if PI’s were made from J independent data sets, the PI’s with
fixed k would contain Yy about J(1—4) times, but this value would be smaller
for the shorth(b) prediction intervals where s can change with the data set.
The above argument works if the estimator (x) is “symmetric in the data,”
which is satisfied for multiple linear regression estimators.

Prediction intervals (2.46), (2.47), and (2.48) can be used to compare dif-
ferent MLR methods such as PLS and lasso variable selection. In the simula-
tions, none of these three prediction intervals dominates the other two. Recall
that B¢ is an ag x 1 vector in (2.14). If a good fitting method, such as lasso
or forward selection with EBIC, is used, and 1.5a5 < n < 5ag, then PI (2.46)
can be much shorter than PIs (2.47) and (2.48). For n/d large, PIs (2.46) and
(2.47) can be shorter than PI (2.48) if the error distribution is not unimodal
and symmetric; however, PI (2.48) is often shorter if n/d is not large since
the sample shorth converges to the population shorth rather slowly. Griibel
(1982) shows that for iid data, the length and center the shorth(k,,) interval
are \/n consistent and n'/3 consistent estimators of the length and center of
the population shorth interval. For a unimodal and symmetric error distribu-
tion, the three Pls are asymptotically equivalent (with p fixed and n — o0),
but PI (2.48) can be the shortest PI due to different correction factors.

If the estimator is poor, the split conformal PI (2.48) and PI (2.47) can
have coverage closer to the nominal coverage than PI (2.46). For example, if
m interpolates the data and my interpolates the training data from H, then
the validation residuals will be huge. Hence PI (2.48) will be long compared
to PI (2.46).

Asymptotically optimal PIs estimate the population shorth of the zero
mean error distribution. Hence PIs that use the shorth of the residuals, such
as PIs (2.46) and (2.47), may be the only easily computed asymptotically
optimal Pls for a wide range of consistent estimators B of B for the multiple
linear regression model. If the error distribution is e ~ EXP(1) —1, then the
asymptotic length of the 95% PI (2.46) or (2.47) is 2.966 while that of the
split conformal PI is 2(1.966) = 3.992. For more about these PIs applied to
MLR models, Pelawa Watagoda and Olive (2021D).

For the simulation from Pelawa Watagoda and Olive (2021b), we used
several R functions including forward selection (FS) as computed with the
regsubsets function from the leaps library, (model selection) principal
components regression (PCR) with the pcr function and (model selection)
partial least squares (PLS) with the plsr function from the pls library, and
ridge regression (RR, see Definition 2.16 ¢)) and lasso with the cv.glmnet
function from the glmnet library. Lasso variable selection (LVS) was applied
to the selected lasso model.

Let z = (1 u”)T where w is the (p — 1) x 1 vector of nontrivial predictors.
In the simulations, for ¢ = 1, ..., n, we generated w; ~ N,_1(0, I) where the
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Table 2.2 Simulated Large Sample 95% PI Coverages and Lengths, e; ~ N(0,1)

n p v k FS lasso LVS RR PLS PCR
100 20 0 1 cov 0.9644 0.9750 0.9666 0.9560 0.9438 0.9772
len 4.4490 4.8245 4.6873 4.5723 4.4149 5.5647

100 40 0 1 cov 0.9654 0.9774 0.9588 0.9274 0.8810 0.9882
len 4.4294 4.8889 4.6226 4.4291 4.0202 7.3393

100200 0 1 cov 0.9648 0.9764 0.9268 0.9584 0.6616 0.9922
len 4.4268 4.9762 4.2748 6.1612 2.7695 12.412

100 50 0 49 cov 0.8996 0.9719 0.9736 0.9820 0.8448 1.0000
len 22.067 6.8345 6.8092 7.7234 4.2141 38.904

200 20 0 19 cov 0.9788 0.9766 0.9788 0.9792 0.9550 0.9786
len 4.9613 4.9636 4.9613 5.0458 4.3211 4.9610

200 40 0 19 cov 0.9742 0.9762 0.9740 0.9738 0.9324 0.9792
len 4.9285 5.2205 5.1146 5.2103 4.2152 5.3616

200200 0 19 cov 0.9728 0.9778 0.9098 0.9956 0.3500 1.0000
len 4.8835 5.7714 4.5465 22.351 2.1451 51.896

400 20 0.9 19 cov 0.9664 0.9748 0.9604 0.9726 0.9554 0.9536
len 4.5121 10.609 4.5619 10.663 4.0017 3.9771

400 40 0.9 19 cov 0.9674 0.9608 0.9518 0.9578 0.9482 0.9646
len 4.5682 14.670 4.8656 14.481 4.0070 4.3797

400 400 0.9 19 cov 0.9348 0.9636 0.9556 0.9632 0.9462 0.9478
len 4.3687 47.361 4.8530 48.021 4.2914 4.4764

400 400 0 399 cov 0.9486 0.8508 0.5704 1.0000 0.0948 1.0000
len 78.411 37.541 20.408 244.28 1.1749 305.93

400 800 0.9 19 cov 0.9268 0.9652 0.9542 0.9672 0.9438 0.9554
len 4.3427 67.294 4.7803 66.577 4.2965 4.6533

m = p — 1 elements of the vector w; are iid N(0,1). Let the m x m matrix
A = (a;;) with a;; = 1 and a;; = ¢ where 0 < ¢ < 1 for i # j. Then the
vector u; = Aw; so that Cov(u,;) = Xy = AAT = (0i5) where the diagonal
entries 0;; = [1+(m—1)1?] and the off diagonal entries o;; = [2¢+(m—2)¢?].
Hence the correlations are cor(z;, x;) = p = (2 +(m—2)?)/(1+(m—1)2)?)
for i # j where x; and x; are nontrivial predictors. If ¢ = 1/,/cp, then
p— 1/(c+ 1) as p — oo where ¢ > 0. As ¢ gets close to 1, the predictor
vectors cluster about the line in the direction of (1, ...,1)T. Let Y; = 1+1z; 2+
o+ 1x; gy +e; fori=1,..,n. Hence B = (1,..,1,0,...,0)T with k + 1 ones
and p — k — 1 zeros. The zero mean errors e; were iid from five distributions:
i) N(0,1), ii) ts, iii) EXP(1) - 1, iv) uniform(—1,1), and v) 0.9 N(0,1) +
0.1 N(0,100). Normal distributions usually appear in simulations, and the
uniform distribution is the distribution where the shorth undercoverage is
maximized by Frey (2013). Distributions ii) and v) have heavy tails, and
distribution iii) is not symmetric.

The population shorth 95% PI lengths estimated by the asymptotically
optimal 95% PIs are i) 3.92 = 2(1.96), ii) 6.365, iii) 2.996, iv) 1.90 = 2(0.95),
and v) 13.490. The split conformal PI (2.48) is not asymptotically optimal
for iii), and for iii) PI (2.48) has asymptotic length 2(1.966) = 3.992. The
simulation used 5000 runs, so an observed coverage in [0.94, 0.96] gives no
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reason to doubt that the PI has the nominal coverage of 0.95. The simulation
used p = 20,40, 50, n, or 2n; ¢ = 0,1/,/p, or 0.9; and k = 1,19, or p—1. The
OLS full model fails when p = n and p = 2n, where regularity conditions
for consistent estimators are strong. The values k = 1 and k = 19 are sparse
models where lasso, lasso variable selection, and forward selection with EBIC
can perform well when n/p is not large. If k = p—1 and p > n, then the model
is dense. When ¢ = 0, the predictors are uncorrelated, when ¢ = 1/,/p,
the correlation goes to 0.5 as p increases and the predictors are moderately
correlated. For 1) = 0.9, the predictors are highly correlated with 1 dominant
principal component, a setting favorable for PLS and PCR. The simulated
data sets are rather small since the some of the R estimators are rather slow.

The simulations were done in R. See R Core Team (2020). The results
were similar for all five error distributions, and we show some results for
the normal and shifted exponential distributions. Tables 2.2 and 2.3 show
some simulation results for PI (2.46) where forward selection used C, for
n > 10p and EBIC for n < 10p. The other methods minimized 10-fold CV. For
forward selection, the maximum number of variables used was approximately
min([n/5],p). Ridge regression used the same d that was used for lasso.

For n > bp, coverages tended to be near or higher than the nominal value
of 0.95. The average PI length was often near 1.3 times the asymptotically
optimal length for n = 10p and close to the optimal length for n = 100p. C,,
and EBIC produced good PIs for forward selection, and 10-fold CV produced
good PIs for PCR and PLS. For lasso and ridge regression, 10-fold CV pro-
duced good PlIs if ©» = 0 or if £ was small, but if both £ > 19 and ¥ > 0.5,
then 10-fold CV tended to shrink too much and the PI lengths were often
too long. Lasso variable selection was good for n/p > 5. (For MLR, the lasso
estimator BLO is a consistent estimator of 3 if p is fixed, 5\171/71 — 0, and
n — 00, which requires P(S CI) — 1 as n — o0.)

For n/p not large, good performance needed stronger regularity conditions,
and all six methods can have problems. PLS tended to have severe undercov-
erage with small average length, but sometimes performed well for ¢ = 0.9.
The PCR length was often too long for v» = 0. If there was k = 1 active pop-
ulation predictor, then forward selection with EBIC, lasso, and lasso variable
selection often performed well. For k£ = 19, forward selection with EBIC of-
ten performed well, as did lasso and lasso variable selection for ¢ = 0. (Good
performance can occur if B ; is a good estimator of B; and Y = T3, + e
where the errors e depend on I.) For dense models with k = p — 1 and n/p
not large, there was often undercoverage. Here forward selection would use
about n/5 variables. Let d — 1 be the number of active nontrivial predictors
in the selected model. For N(0, 1) errors, ¢ = 0, and d < k, an asymptotic
population 95% PI has length 3.92v/k — d + 1. Note that when the (V;, ul)?
follow a multivariate normal distribution, every subset follows a multiple lin-
ear regression model. EBIC occasionally had undercoverage, especially for
k=19 or p — 1, which was usually more severe for ¢» = 0.9 or 1/,/p.
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Table 2.3 Simulated Large Sample 95% PI Coverages and Lengths, e; ~ EXP(1)—1

n p Y k FS lasso LVS RR PLS PCR

100 20 0 1 cov 0.9622 0.9728 0.9648 0.9544 0.9460 0.9724
len 3.7909 4.4344 4.3865 4.4375 4.2818 5.5065

2000 20 0 1 cov 0.9506 0.9502 0.9500 0.9488 0.9486 0.9542
len 3.1631 3.1199 3.1444 3.2380 3.1960 3.3220

200 20 0.9 1 cov 0.9588 0.9666 0.9664 0.9666 0.9556 0.9612
len 3.7985 3.6785 3.7002 3.7491 3.5049 3.7844

200 20 0.9 19 cov 0.9704 0.9760 0.9706 0.9784 0.9578 0.9592
len 4.6128 12.1188 4.8732 12.0363 3.3929 3.7374

200 200 0.9 19 cov 0.9338 0.9750 0.9564 0.9740 0.9440 0.9596
len 4.6271 37.3888 5.1167 56.2609 4.0550 4.6994

400 40 0.9 19 cov 0.9678 0.9654 0.9492 0.9624 0.9426 0.9574
len 4.3433 14.7390 4.7625 14.6602 3.6229 4.1045

Table 2.4 Validation Residuals: Simulated Large Sample 95% PI Coverages and
Lengths, e; ~ N(0,1)

n,p, 0.k FS CFS LVS CLVS Lasso CL __ RR _CRR
200,20, 0,19 cov 0.9574 0.9446 0.9522 0.9420 0.9538 0.9382 0.9542 0.9430
len 4.6519 4.3003 4.6375 4.2888 4.6547 4.2964 4.7215 4.3569

200,40,0,19 cov 0.9564 0.9412 0.9524 0.9440 0.9550 0.9406 0.9548 0.9404
len 4.9188 4.5426 5.2665 4.8637 5.1073 4.7193 5.3481 4.9348

200,200, 0,19 cov 0.9488 0.9320 0.9548 0.9392 0.9480 0.9380 0.9536 0.9394
len 7.0096 6.4739 5.1671 4.7698 31.1417 28.7921 47.9315 44.3321

400,20,0.9,19 cov 0.9498 0.9406 0.9488 0.9438 0.9524 0.9426 0.9550 0.9426
len 4.4153 4.1981 4.5849 4.3591 9.4405 8.9728 9.2546 8.8054

400,40,0.9,19 cov 0.9504 0.9404 0.9476 0.9388 0.9496 0.9400 0.9470 0.9410
len 4.7796 4.5423 4.9704 4.7292 13.3756 12.7209 12.9560 12.3118

400,400,0.9,19 cov 0.9480 0.9398 0.9554 0.9444 0.9506 0.9422 0.9506 0.9408
len 5.2736 5.0131 4.9764 4.7296 43.5032 41.3620 42.6686 40.5578

400,800,0.9,19 cov 0.9550 0.9474 0.9522 0.9412 0.9550 0.9450 0.9550 0.9446
len 5.3626 5.0943 4.9382 4.6904 60.9247 57.8783 60.3589 57.3323

Tables 2.4 and 2.5 show some results for PIs (2.47) and (2.48). Here forward
selection using the minimum C), model if ng > 10p and EBIC otherwise. The
coverage was very good. Labels such as CFS and CLVS used PI (2.48). For
lasso variable selection, the program sometimes failed to run for 5000 runs,
e.g., if the number of variables selected d = ny. In Table 2.4, PIs (2.47) and
(2.48) are asymptotically equivalent if p is fixed, but PI (2.48) had shorter
lengths for moderate n. In Table 2.5, PI (2.47) is shorter than PI (2.48)
asymptotically, but for moderate n, PI (2.48) was often shorter.

Table 2.6 shows some results for PIs (2.46) and (2.47) for lasso and ridge
regression. The header lasso indicates PI (2.46) was used while vlasso indi-
cates that PI (2.47) was used. PI (2.47) tended to work better when the fit
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Table 2.5 Validation Residuals: Simulated Large Sample 95% PI Coverages and
Lengths, e; ~ EXP(1) — 1

n,p, 0.k FS CFS LVS CLVS Lasso COL __ RR __ CRR
200,20,0,1 cov 0.9596 0.9504 0.9588 0.9374 0.9604 0.9432 0.9574 0.9438
len 4.6055 4.2617 4.5984 4.2302 4.5809 4.2301 4.6807 4.2863

2000,20,0,1 cov 0.9560 0.9508 0.9530 0.9464 0.9544 0.9462 0.9530 0.9462
len 3.3469 3.9899 3.3240 3.9849 3.2709 3.9786 3.4307 3.9943

200,20,0.9,1 cov 0.9564 0.9402 0.9584 0.9362 0.9634 0.9412 0.9638 0.9418
len 3.9184 3.8957 3.8765 3.8660 3.8406 3.8483 3.8467 3.8509

200,20,0.9,19 cov 0.9630 0.9448 0.9510 0.9368 0.9554 0.9430 0.9572 0.9420
len 5.0543 4.6022 4.8139 4.3841 9.8640 9.0748 9.5218 8.7366
200,200,0.9,19 cov 0.9570 0.9434 0.9588 0.9418 0.9552 0.9392 0.9544 0.9394
len 5.8095 5.2561 5.2366 4.7292 31.1920 28.8602 47.9229 44.3251

400,40,0.9,19 cov 0.9476 0.9402 0.9494 0.9416 0.9584 0.9496 0.9562 0.9466
len 4.6992 4.4750 4.9314 4.6703 13.4070 12.7442 13.0579 12.4015

was poor while PI (2.46) was better for n = 2p and k = p — 1. The PIs are
asymptotically equivalent for consistent estimators.

Table 2.6 PIs (2.46) and (2.47): Simulated Large Sample 95% PI Coverages and
Lengths

n p Y k dist lasso  vlasso RR vRR
100 20 0 1 cov N(0,1) 0.9750 0.9632 0.9564 0.9606
len 4.8245 4.7831 4.5741 5.3277
100 20 0 1 cov EXP(1)—1 0.9728 0.9582 0.9546 0.9612
len 4.4345 5.0089 4.4384 5.6692
100 50 0 49 cov N(0,1) 0.9714 0.9606 0.9822 0.9618
len 6.8345 22.3265 7.7229 27.7275
100 50 0 49 cov EXP(1)—1 0.9716 0.9618 0.9814 0.9608
len 6.9460 22.4097 7.8316 27.8306
400 400 0 399 cov N(0,1) 0.8508 0.9518 1.0000 0.9548
len 37.5418 78.0652 244.1004 69.5812
400 400 0 399 cov EXP(1)—1 0.8446 0.9586 1.0000 0.9558
len 37.5185 78.0564 243.7929 69.5474

2.14 Cross Validation

For MLR variable selection there are many methods for choosing the final
submodel, including AIC, BIC, C),, and EBIC. Variable selection is a special
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case of model selection where there are M models and a final model needs to
be chosen. Cross validation is a common criterion for model selection.

Definition 2.26. For k-fold cross validation (k-fold CV), randomly divide
the training data into k groups or folds of approximately equal size n; ~ n/k
for j = 1,..., k. Leave out the first fold, fit the statistical method to the k —1
remaining folds, and then compute some criterion for the first fold. Repeat
for folds 2, ..., k.

Following James et al. (2013, p. 181), if the statistical method is an MLR
method, we often compute Y;(j) for each Y; in the fold j left out. Then

Note that if each n; = n/k, then

n

Vi = = (%~ Vi)

=1

Then CV3,y = CV(i,)(1;) is computed for i = 1,..., M, and the model I. with
the smallest C'V{)(1;) is selected.

Assume that model (2.1) holds: Y = 278+ e = 2L 3¢ + e where B¢ is an
ags % 1 vector. Suppose p is fixed and n — oo. If 51 is a x 1, form the p x 1
vector ,8 10 from ,8 ; by adding 0Os corresponding to the omitted variables.

If P(S C Iin) — 1 as n — oo, then Section 2.17 shows that 51 Lolisa
\/n consistent estimator of 3 under mild regularity conditions. Note that if
as = p, then ,8 I,..n.0 18 asymptotically equivalent to the OLS full model ,8
(since S is equal to the full model).

Choosing folds for k-fold cross validation is similar to randomly allocating
cases to treatment groups. The following code is useful for a simulation. It
makes copies of 1 to k in a vector of length n called tfolds. The sample
command makes a permutation of tfolds to get the folds. The lengths of the
k folds differ by at most 1.

n<-26

k<=5

J<-as.integer (n/k)+1

tfolds<-rep(l:k,J)

tfolds<-tfolds[l:n] #can pass tfolds to a loop



2.14 Cross Validation 141

folds<-sample (tfolds)
folds
4 235331522512134215514114143

Example 2.2, continued. The slpack function pifold uses k-fold CV to
get the coverage and average PI lengths. We used 5-fold CV with coverage
and average 95% PI length to compare the forward selection models. All
4 models had coverage 1, but the average 95% PI lengths were 2591.243,
2741.154, 2902.628, and 2972.963 for the models with 2 to 5 predictors. See
the following R code.

y <- marryl[,3]; x <- marryl[,-3]
x1l <= x[,2]

x2 <— x[,c(2,3)]

x3 <= x[,c(1,2,3)]

pifold(xl,y) #nominal 95% PI
Scov

[11 1

Salen

[1] 2591.243

pifold(x2,y)

Scov

[11 1

Salen

[1] 2741.154

pifold(x3,y)

Scov

[11 1

Salen

[1] 2902.628

pifold(x,y)

Scov

[11 1

Salen

[1] 2972.963

#Validation PIs for submodels: the sample size is
#likely too small and the validation PI is formed
#from the validation set.
n<-dim(x) [1]

nH <- ceiling(n/2)

indx<-1:n

perm <- sample (indx,n)

H <- perm[l:nH]

vpilen(xl,y,H) #13/13 were in the validation PI
Scov

[1] 1.0
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Slen

[1] 116675.4
vpilen (x2,y,H)
Scov

[1] 1.0

Slen

[1] 116679.8
vpilen (x3,y,H)
Scov

[1] 1.0

Slen

[1] 116312.5
vpilen(x,y,H)
Scov

[1] 1.0

$len #shortest length
[1] 116270.7

Some more code is below.

n <- 100

p <-4

k <=1

g <- p-1

X <- matrix(rnorm(n * ), nrow = n, ncol = q)
b <=0 x 1:g

b[l:k] <=1

y <- 1 + x %*% b + rnorm(n)

x1l <- x[,1]

x2 <—= x[,c(1,2)]

x3 <= x[,c(1,2,3)]
pifold(x1l,y)
Scov

[1] 0.96
Salen

[1] 4.2884
pifold (x2,v)
Scov

[1] 0.98
Salen

[1] 4.625284
pifold (x3,v)
Scov

[1] 0.98
Salen

[1] 4.783187
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pifold(x,vy)
Scov

[1] 0.98
Salen

[1] 4.713151

n <- 10000

p <-4

k <=1

g <- p-1

X <- matrix(rnorm(n * ), nrow = n, ncol = q)
b <=0 x 1:g

bll:k] <- 1

y <- 1 + x %*% b + rnorm(n)
x1l <- x[,1]

x2 <—= x[,c(1,2)]
x3 <= x[,c(1,2,3)]
pifold(x1,y)
Scov

[1] 0.9491
Salen

[1] 3.96021
pifold (x2,v)
Scov

[1] 0.9501
Salen

[1] 3.962338
pifold (x3,v)
Scov

[1] 0.9492
Salen

[1] 3.963305
pifold(x,vy)

Scov

[1] 0.94098
Salen

[1] 3.96203

2.15 Data Splitting

Remark 2.21. a) When p > n, the fitted model should do better than
i) interpolating the data or ii) discarding all of the predictors and using the
location model of Section 1.4.1 for inference. If p > n, forward selection, lasso,
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lasso variable selection, elastic net, and elastic net variable selection can be
useful for several regression models. Ridge regression, partial least squares,
and principal components regression can also be computed for multiple linear
regression. Section 2.13 gives prediction intervals.

b) One of the biggest errors in regression is to use the response variable
to build the regression model using all n cases, and then do inference as if
the built model was selected without using the response, e.g., selected before
gathering data. Using the response variable to build the model is called data
snooping, then inference is generally no longer valid, and the model built from
data snooping tends to fit the data too well. In particular, do not use data
snooping and then use variable selection or cross validation. See Hastie et al
(2009, p. 245) and Olive (2017a, pp. 85-89).

¢) Building a regression model from data is one of the most challeng-
ing regression problems. The “final full model” will have response variable
Y =t(Z), a constant z1, and predictor variables zo = t2(wo, ..., w;), ..., xp =
tp(wa, ..., wr) where the initial data consists of Z, wy, ..., w,. Choosing t, to, ..., t,
so that the final full model is a useful regression approximation to the data
can be difficult.

d) As arule of thumb, if strong nonlinearities are apparent in the predictors
Wy, ..., Wp, it is often useful to remove the nonlinearities by transforming the
predictors using power transformations. When p is large, a scatterplot matrix
of wy, ..., wp can not be made, but the log rule of Section 1.2 can be useful.
Plots from Chapter 1, such as the DD plot, can also be useful. A scatterplot
matrix of the w; is an array of scatterplots of w; versus w;. A scatterplot is
a plot of w; versus w;.

Data splitting divides the data into two parts. The first part can use the
response variable to build the model, then the second part can be used for
inference. This avoids the Remark 2.21 b) error since the model is not built
using all n cases.

A common method for data splitting randomly divides the data set into
two half sets: the training set H and the validation set V. For the data in H,
fit the model selection method, e.g. forward selection or lasso, to get model
I with a predictors. Use this model as the full model for the set V: use the
standard OLS inference from regressing the response on the predictors found
from the set H. This method can be inefficient if n > 10p, but is useful for
a sparse model if n < 5p, if the probability that the model underfits goes
to zero, and if n > 20a. A model is sparse if the number of predictors with
nonzero coefficients is small.

For lasso, the active set I of a predictors from the data in training set H
is found, and data splitting estimator is the OLS estimator B 1.p computed
from the validation data in set V. This estimator is not the lasso variable
selection estimator. The estimator 3 1.p has the same large sample theory as
if I was chosen before obtaining the data.
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If n/p is not large, data splitting is useful for many regression models when
the n cases are independent, including multiple linear regression, multivariate
linear regression where there are m > 2 response variables, generalized linear
models (GLMs), the Cox (1972) proportional hazards regression model, and
parametric survival regression models.

Consider a regression model with response variable Y and a p x 1 vector of
predictors . This model is the full model. Suppose the n cases are indepen-
dent. To perform data splitting, randomly divide the data into two sets H and
V where H has ng of the cases and V has the remaining ny = n — ng cases
1y ..y in, . Find a model I, possibly with data snooping or model selection,
using the data in the training set H. Use the model I as the full model to
perform inference using the data in the validation set V. That is, regress Yy
on Xy, and perform the usual inference for the model using the j =1, ..., ny
cases in the validation set V. If B} uses a predictors, we want ny > 10a and
we want (Y, Xv.7) to follow a regression model, e.g. Y = ¥ 3, + e where e
depends on I.

In the literature, often ny ~ [n/2]. For model selection, use the training
set data to fit the model selection method, e.g. forward selection or lasso, to
get the a predictors. On the validation set, use the standard regression infer-
ence from regressing the response on the predictors found from the training
set data. This method can be inefficient if n > 10p, but is useful for a sparse
model if n < 5p, if the probability that the model underfits goes to zero, and
if n > 20a.

The method is simple, use one half set to get the predictors, then fit
the regression model, such as a GLM or OLS, to the validation half set
(Yv,Xv.1). The regression model needs to hold for (Y, Xy 1) and we want
ny > 10a if I uses a predictors. The regression model can hold if S C T
and the model is sparse. Let * = (x1,...,x,)T where 1 is a constant. If
(Y, s, ...,x,)T follows a multivariate normal distribution, then (Y, z;) follows
a multiple linear regression model for every I. Hence the full model need not
be sparse, although the selected model may be suboptimal.

Of course other sample sizes than half sets could be used. For example if
n = 1000p, use n = 10p for the training set and n = 990p for the validation
set.

Remark 2.22. i) One use of data splitting is to try to transform the
p > n problem into an n > 10k problem. Thus this method needs the fitted
model I to be sparse. For MLR, check that Y = chTB 1 + er with response
and residual plots. If 8; is k x 1, we want n > 10k and V(es;) = 0% to be
small. Note that data splitting does not need a sparse population model with
S C I and ag < k. For multiple linear regression, data splitting can work
if Y ~ N, (X3,0%I), since then all subsets I satisfy an MLR model: Y; =
xl.B;+ers ;. See Section 2.16. The above multivariate normal assumption for
MLR rarely hold, but if several predictors satisfy a simple linear regression
model with Y, then those predictors often satisfy an MLR with Y.
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ii) Data splitting can be tricky for lasso, ridge regression, and elastic net
if the sample sizes of the training and validation sets differ. Roughly set
Aln./(2n1) = A2.n,/(2n2). Data splitting is much easier for variable selection
methods such as forward selection, lasso variable selection, and elastic net
variable selection. Find the variables z7, ..., ) indexed by I from the training
set, and use model I as the full model for the validation set.

iii) Another use of data splitting is that data snooping can be used on
the training set H: use the model I found from H as the full model for the
validation set V.

2.16 The Multitude of MLR Models

There are often a multitude of population regression models that are estimat-
ing different population parameters. Note that when j predictors each satisfy
a marginal regression model with the response Y (such as simple linear re-
gression), then subsets of those j predictors will often satisfy a regression
model with the response Y (such as multiple linear regression).

This chapter showed that OPLS and OLS typically estimate different
quantities. There are often a multitude of valid MLR models. For example,
if the cases (V; 7)T are iid from a nonsingular multivariate normal distri-
bution, then Y |n”x satisfies a MLR model for any linear combination n” z.
See Olive and Zhang (2023). Under multivariate normality, it is known that
Y|z follows a multiple linear regression model where x; = (21, ..., 2i1)7 is
a vector corresponding to a subset of the predictors. Theorem 2.15 b) gives
a similar result for every linear combination of the predictors n” z, including
sparse and nonsparse models. Much of Theorem 2.15 b) can also be shown
by performing the population SLR of Y on n”z, but linearity may fail to
hold if multivariate normality does not hold. Note that data sets where the
cases are iid from a multivariate normal distribution are rather uncommon.
Let Ey =0 %/

Theorem 2.15. Suppose the cases (V;,z1)7 are iid from a multivariate
normal distribution:

Y Hy Xy Yvz
(2) = () (52 %2))
a) Then Y|z ~ Y|(aors + B5.5x) ~ N(aors + B4 s, 0?) follows a
multiple linear regression model.
b) So does Y|nTx ~ N(ao+Bbx, 02) where ap = py — B g, Bo = M,
0% =Yy — B5 X xy, and
N = Zgy?? '
' Xzn
¢) So does Y|Ax where A is a full rank &k X p constant matrix with k& < p.
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Proof. a) is a special case of ¢) with A = I,,, and see Remark 1.5.
b)

10"\ (Y\ (Y

0n’ x) \nlzx

NN2(( #Y) ( Xy ZgY’?))_
N pg ) \n" Zey n" Zgn

Hence W = Y|n"x ~ N(uw, 0%,) where

Zgy?? T T T T
= Bt A LS - =y — A A
Hw “Y+nTZ:cn(n T —n py)=py — AN py + AN @,
and
T oot Xy (XL, m)?
T =0 =Y~ e TV gy OV A S

107"\ /Y\ (Y
0A x ) \Ax
~ Ky Xy ZgYAT
"\ \Apg ) \AZzy AZzA" ) )
Let w = Az. Then E(Y|w) = py + Syw g (w — fiqy)

= py —Bors(w, Y)Tﬂw‘i‘BOLs(wa V) 'w = aors(w, Y)+BoLs(w, V)" Az
where (w,Y) indicates a population OLS regression of Y on w. Thus

Bors(w,Y) = Xy By = Ty Swy = (AXz AT) 1 AZgy,
and

aors(wY) = py — Bors(w, Y)Tﬂw = py — Bors(w, Y)TAN:C-
O

Note that 0% < 0% = Xy unless nT Xgy = 0. If n = ByLg, then A =1
and 02 = 0% — Xy Xz Zxy . The population quantity estimated by the one
component partial least squares estimator corresponds to n = Cov(z,Y) =
Xzy. Note that b) is a special case of ¢) with A = n?.

Since the Weibull regression model is a proportional hazards regression
model for Y and a multiple linear regression model for log(Y), there can be
many linear combinations that result in a proportional hazards model. For
Poisson regression, log(Y + 1) often has a weighted least squares relation-
ship with the predictors used for minimum chi-square estimators. See Agresti
(2002, pp. 611-612) and Olive (2013). Hence often many linear combinations
will result in a Poisson regression model.
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2.17 Variable Selection Theory

From Section 1.1, a model for variable selection can be described by

'8 = mgﬁs + mgﬁE = mg,ﬁs (2.49)

where z = (zL,z%)T, zg is an ag x 1 vector, and zg is a (p—ag) x 1 vector.
Given that g is in the model, 35 = 0 and E denotes the subset of terms
that can be eliminated given that the subset S is in the model. Let 1 be the
vector of a terms from a candidate subset indexed by I, and let o be the
vector of the remaining predictors (out of the candidate submodel). Suppose
that S is a subset of I and that model (2.49) holds. Then

'8 = ccSBS =x 51 + :cgo = chT,BI.

Thus By = 0 if S C I. The model using 7 3 is the full model. The full model
uses all of the predictors with B, = 8.

For multiple linear regression, if the candidate model of x; has k terms
(including the constant), then the partial F statistic for testing whether the
p — k predictor variables in o can be deleted is

Fr= / - SSE

SSE(I) — SSE , SSE n—p[SSE(I)_l]
(n—k)—(n—p)'n—-p p—k

where SSE is the error sum of squares from the full model, and SSE(I) is the
error sum of squares from the candidate submodel. An important criterion
for variable selection is the C}, criterion.

Definition 2.27.

+2k—n=@p-k)(Fr—1)+k
where MSE is the error mean square for the full model.

Note that when Hy : 85 = 0 is true, (p — k)(Fr — 1)+ k 5 X%—k +2k—p
for a large class of iid error distributions. Minimizing C)(I) is equivalent to
minimizing MSE [C,(I)] = SSE(I) + (2k — n)MSE = vT(I)r(I) + (2k —
n)M SE. The following theorem helps explain why C,, is a useful criterion and
suggests that for subsets I with k terms, submodels with C,,(I) < min(2k, p)
are especially interesting. Denote the residuals and fitted values from the full
model by r; = Y; — ccTB =Y -V, and V; = ccTB respectively. Similarly,
let 3 1 be the estimate of 3; obtained from the regression of ¥ on ; and
denote the corresponding residuals and fitted values by r;; = Y; — o 1B b

and Y7 ; = m?iﬁl where i =1,...,n
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Theorem 2.16. Suppose that a numerical variable selection method
suggests several submodels with %k predictors, including a constant, where
2<k<np.

a) The model I that minimizes Cp(I) maximizes corr(r, ry).

b) Cp(I) < 2k implies that corr(r,rr) > /1 — P
n

¢) As corr(r,ry) — 1,
corr(x" 3, 21 B;) = corr(ESP, ESP(I)) = corr(Y, Y1) — 1.
Proof. These results are a corollary of Theorem 2.17 below. O

Consider plotting w on the horizontal axis versus z on the vertical axis.
The response plot is the plot of Y versus Y, and an important residual plot
is the plot of Y versus r.

Theorem 2.17. Suppose that every submodel contains a constant and
that X is a full rank matrix.
Response Plot: i) If w = Y; and z = Y then the OLS line is the identity
line.
i) If w = Y and z = Y7 then the OLS line has slope b = [corr(Y, Y7)]2 = R%(I)
and intercept a = Y (1 — R?(I)) where Y = Y1 | V;/n and R%*(I) is the
coefficient of multiple determination from the candidate model.
FF or EE Plot: iii) If w = Y7 and z = ¥ then the OLS line is the identity
line. Note that ESP(I) = Y; and ESP =Y.
iv) If w = ¥ and z = V7 then the OLS line has slope b = [corr(Y, ¥7)]2 =
SSR(I)/SSR and intercept a = Y[l — (SSR(I)/SSR)] where SSR is the
regression sum of squares.
RR Plot: v) If w = r and z = ry then the OLS line is the identity line.
vi) If w = r; and 2z = r then a = 0 and the OLS slope b = [corr(r, r7)]? and

corr( )= SSE n—op B n—op
T =N SSEM N\ ) +n—2k N -k F +n—p

Proof: Recall that H and H; are symmetric idempotent matrices and
that HH; = H;. The mean of OLS fitted values is equal to Y and the
mean of OLS residuals is equal to 0. If the OLS line from regressing z on w
is Z = a + bw, then a = Z — bw and

p_ 2w —W)(z —2) _ SD(z)
> (w; —w)? SD(w)

corr(z, w).

Also recall that the OLS line passes through the means of the two variables
(w,z).
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(*) Notice that the OLS slope from regressing z on w is equal to one if

and only if the OLS slope from regressing w on z is equal to [corr(z, w)]?.

i) The slope b= 1if 3 ¥7,¥; = >_ Y7,. This equality holds since YITY =
YTH,Y =Y H,H;Y =Y,V Sinceb=1,a =Y — Y = 0.

ii) By (*), the slope

b= [corr(Y, Y7)]? = R*(I) = %(};7__%); = SSR(I)/SSTO.

The result follows since a =Y — bY.

iii) The slope b = 1 if > V;,¥; = Y. Y7, This equality holds since
V'Y, =YTHH,Y =YTH,Y =Y, ¥V, Sinceb=1,a =Y — Y = 0.

iv) From iii),

1= SDQ/) [corr (Y, Y7)].
SD(Y7)
Hence y
corr(Y, Y1) = SD(}?)
SD(Y)
and the slope N
b= SD(}?)corr(Y, Y1) = [eorr (Y, V1)]%.
SD(Y)
Also the slope
V1, - TP
p— 20 =YV gopiy/ssn.

The result follows since a =Y — bY.

v) The OLS line passes through the origin. Hence a = 0. The slope b =
rTrr/rTr. Since vTr; = Y (I — H)(I — H;)Y and (I — H)(I — H;) =
I — H, the numerator 77r; = r7r and b= 1.

vi) Again a = 0 since the OLS line passes through the origin. From v),

|SSE(I)
1= <SE [corr(r, 71)].

SSE
SSE(I)

Hence

corr(r,ry) =
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and the slope

SSE
SSE(I)

[corr(r,77)] = [corr(r,r1)]*.

Algebra shows that

corr(r,ry) =

Cp(I) +n—2k \/p kFI—i-n—

Remark 2.23. a) Let I,,;, be the model than minimizes C,(I) among
the models I generated from the variable selection method such as forward
selection. Assuming the full model I, is one of the models generated, then
Cp(Imin) < Cp(I,) = p, and corr(r,ry,,,,) — 1 as n — oo by Theorem 2.17
vi). Referring to Equation (2.49), if P(S C I, ) does not go to 1 as n — oo,
then the above correlation would not go to one. Hence P(S C I,;,) — 1 as
n — oo. This result is due to Rathnayake and Olive (2023).

b) If none of the 8; = 0, then S = F, the full model. An assumption that
some of the ; are exactly equal to zero may be very strong, but ¢) and d)
suggest that variable selection criterion still select models I that may be as
good or better than the full model when n > Jp with J > 10. Also note
that Equation (2.49) does not assume that 85 = 0 if S = F, since then F
is the empty set, and € = g = xr with 3 = B = Bp. For more on the
assumption Hy : 3; = 0, see, for example, Gelman and Carlin (2017), Nester
(1996), and Tukey (1991).

¢) If some of the nonzero f; are very small, then n may need to be very large
before P(S C Ipn;n) is close to 1. However, by Theorem 2.16, the C,, criterion
often picks model I = I,,;, such that the residuals and fitted values from
model I are highly correlated with those of the full model F.If n > 10p, then

Cp(Imin) < Cp(F) = p, and thus corr(r,rr) > (/1 — @ >+v0.9 = 0.948.

d) By Section 2.16, there is often a multitude of good MLR models, and
variable selection criterion such as Cp, AIC, and BIC tend to produce a model
I = I,;;n such that the residuals and fitted values from model I are highly
correlated with those of the full model F'.

2.17.1 Variable Selection Theory in Low Dimensions

Large sample theory is often tractable if the optimization problem is convex.
The optimization problem for variable selection is not convex, so new tools
are needed. Tibshirani et al. (2018) and Leeb and Pdtscher (2006, 2008) note
that we can not find the limiting distribution of Z,, = /nA(B; = — B;)

min
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after variable selection. One reason is that with positive probability, B Toin
does not have the same dimension as 3; if AIC or C), is used. Hence Z,, is
not defined with positive probability.

2.17.2 Some Variable Selection Estimators

Consider 1D regression models that study the conditional distribution Y |2 3
of the response variable Y given &7 3 where z is the p x 1 vector of predictors.
Many important regression models are special cases, including multiple lin-
ear regression, the Nelder and Wedderburn (1972) generalized linear models
(GLMs), and the Cox (1972) proportional hazards regression model. For-
ward selection or backward elimination with the Akaike (1973) AIC criterion
or Schwarz (1978) BIC criterion are often used for variable selection.

Sparse regression methods can also be used for variable selection even if
n/p is not large: the regression submodel, such as a Nelder and Wedderburn
(1972) generalized linear model (GLM), uses the predictors that had nonzero
sparse regression estimated coeflicients. These methods include least angle re-
gression, lasso, relaxed lasso, elastic net, and sparse regression by projection.
Least angle regression variable selection is the LARS-OLS hybrid estimator
of Efron et al. (2004, p. 421). Lasso variable selection is called relaxed lasso
by Hastie, Tibshirani, and Wainwright (2015, p. 12), and the relaxed lasso
estimator with ¢ = 0 by Meinshausen (2007, p. 376). Also see Fan and Li
(2001), Friedman et al. (2007), Friedman, Hastie, and Tibshirani (2010), Qi et
al. (2015), Simon et al. (2011), Tibshirani (1996), and Zou and Hastie (2005).
The Meinshausen (2007) relaxed lasso estimator fits lasso with penalty A, to
get a subset of variables with nonzero coeflicients, and then fits lasso with a
smaller penalty ¢, to this subset of variables where n is the sample size.

Let I,,,in correspond to the set of predictors selected by a variable selection
method such as forward selection or lasso variable selection. If B risax1, use
zero padding to form the px1 vector B 1,0 from B 1 by adding 0Os corresponding
= (61,53)T, then
the observed variable selection estimator BV s=Br,..0= (Bl, 0, Bg, 0)7. As
astatistic, By g = By, o with probabilities my, = P(Inin = I) fork = 1,..., J
where there are J subsets, e.g. J = 2P — 1.

The large sample theory for B wi1x, defined below, is useful for explaining

to the omitted variables. For example, if p = 4 and B I

min

the large sample theory of B3y 5. Review Section 1.6 for mixture distributions.

Definition 2.28. The wvariable selection estimator BVS = B[ and

min,07
Bys = B, o with probabilities 7y, = P(Iynin = Ix) for k = 1,..., J where
there are .J subsets.
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Definition 2.29. Let 3 Mmi1x be arandom vector with a mixture distribu-
tion of the BI,“O with probabilities equal to my,. Hence BMIX = BI,“O with
same probabilities 7y, of the variable selection estimator BV g, but the I are
randomly selected.

2.17.3 Large Sample Theory for Variable Selection
Estimators

Theorems 2.18 and 2.19 in this subsection are due to Rathnayake and Olive
(2023), and generalize the Pelawa Watagoda and Olive (2021b) theory for
multiple linear regression to many other models. The theory assumes that
there is a “true model” S and that at least one subset I is considered such
that S C I. For example, with forward selection and backward elimination,
the theory assumes that the full model contains S. The theory does not hold
if the true model S is not a subset of any of the considered models. For
example, S could contain some interactions that were not included in the
“full” model. Checking that the full model is good is important.

Assume p is fixed. Suppose model (2.49) holds, and that if S C I; where
the dimension of I; is a;, then \/E(BI], -Br) 5 Ng, (0, V) where V; is the
covariance matrix of the asymptotic multivariate normal distribution. Then

Vi(By, 0 — B) B Ny(0,V o) (2.50)

where V' ;¢ adds columns and rows of zeros corresponding to the x; not in
I;, and V is singular unless I; corresponds to the full model. This large
sample theory holds for many models, including multiple linear regression fit
by least squares (OLS), GLMs fit by maximum likelihood, and Cox regression
fit by maximum partial likelihood. See, for example, Sen and Singer (1993,
pp- 280, 309).

The first assumption in Theorem 2.18 is P(S C In) — 1 as n — oo.
Then the variable selection estimator corresponding to I,,;, underfits with
probability going to zero, and the assumption holds under regularity condi-
tions if BIC or AIC is used for many parametric regression models such as
GLMs. See Charkhi and Claeskens (2018) and Claeskens and Hjort (2008, pp.
70, 101, 102, 114, 232). This assumption is a necessary condition for a vari-
able selection estimator to be a consistent estimator. See Zhao and Yu (2006).
Thus if a sparse estimator that does variable selection is a consistent estima-
tor of 3, then P(S C I,in) — 1 as n — oo. Hence Theorem 2.18c¢) proves
that the lasso variable selection and elastic net variable selection estimators
are y/n consistent estimators of 3 if lasso and elastic net are consistent. Also
see Theorem 2.19. The assumption on u;, in Theorem 2.18 is reasonable by

(2.50) since S C I; for each 7;, and since 3,;;x uses random selection.
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Consider the assumption P(S C I,;,) — 1 as n — oo for multiple linear
regression. Charkhi and Claeskens (2018) proved the assumption holds for
AIC for a wide variety of error distributions. Shao (1993) gave similar re-
sults for AIC, BIC, and Cp. Also see Remark 2.23 a). The assumption holds
for lasso variable selection and elastic net variable selection provided that
5\n /n — 0 as n — oo so lasso and elastic net are consistent estimators. Here
An is the shrinkage penalty parameter selected after k-fold cross validation.
See Theorems 2.8, 2.9, Pelawa Watogoda and Olive (2021b) and Knight and
Fu (2000).

Theorem 2.18 a) proves that w is a mixture distribution of the w; with
probabilities 7;, E(u) = 0, and Cov(u) = Xy = >, m;V ;0. Some of the
submodels Iy will have 7 = 0. For example, since the probability of underfit-
ting goes to zero, every submodel I}, that underfits has m, = 0. Hence S C I;
corresponding to the m; > 0. If mg = 1, then submodel I is picked with
probability going to 1 as n — oo, and I; is the only submodel with a positive
. Often 74 = 7g in the literature. For T}, = A3, with 8 = AB, we have

V(T — 68) B v by (2.52) where E(v) =0, and Xy = Y, m,AV ;0 AT

Theorem 2.18. Assume P(S C L) — 1 as n — oo, and let B, =
B 4.0 with probabilities 7y, where 7, — 7 as n — oo. Denote the positive

7 by 7j. Assume uj, = \/ﬁ(/élj,o -B) 5 u; ~ N,(0,V,0). a) Then

w, = vi(Byrx — B) B u (2.51)

where the cdf of wis Fy(t) = >, m; Fu, (t). Thus u has a mixture distribution
of the u; with probabilities 7;, E(u) = 0, and Cov(u) = Xy = . m;V 0.

b) Let A be a g x p full rank matrix with 1 < g < p. Then !
vn = Au, = Vi(AByx — AB) 2 Au = (2.52)

where v has a mixture distribution of the v; = Au; ~ N, (0, AV ; cAT) with
probabilities ;.

¢) The estimator By g is a \/n consistent estimator of 3: /n(By s —B) =
Op(1).

d) If 74 = 1, then /n(Bspy — B) 2 u ~ N,(0,Vap) where SEL is VS
or MIX.

Proof. a) Since u,, has a mixture distribution of the uy,, with probabilities
Tkn, the cdf of w, is Fuy, (t) = >, TknFu,, (t) — Fu(t) = Zj 7 Fu,(t) at
continuity points of the Fy, (t) as n — oo.

b) Since w,, A u, then Au, L Au.

¢) The result follows since selecting from a finite number J of v/n consistent
estimators (even on a set that goes to one in probability) results in a /n
consistent estimator by Pratt (1959).
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d) If w4 = 1, there is no selection bias, asymptotically. The result also follows
by Potscher (1991, Lemma 1). O

The following subscript notation is useful. Subscripts before the MIX
are used for subsets of B,y = (b1, .. ,Bp) Let ,81 svix = Bi. Similarly, if
I ={i1,...,%q}, then BLMIX = (Bi,, ..., 3:,)T. Subscripts after MIX denote
the ith vector from a sample BMIXJ, e ,ABMIXB. Similar notation is used for
other estimatf)rs spch as BV g- The subscript 0 is still used for zero padding.
We may use 8 = Bpyr to denote the full model.

Typically the mixture distribution is not asymptotically normal unless
a mg = 1 (eg. if S is the full model F), or if for each m;, Au; ~

Ny(0,AV;,AT) = N,(0,AXAT). Then /n(AB,,x — AB) 2 Au ~
N, (0, AX AT). This special case occurs for BS)MIX if vn(B3—03) 5 Ny(0,V)
where the asymptotic covariance matrix V' is diagonal and nonsingular. Then
Bsmrx and Bg gy have the same multivariate normal limiting distribu-

tion. For several criteria, this result should hold for BV g since asymptotically,
V(ABy s — AB) is selecting from the Au; which have the same distribu-
tion. In the simulations when V' is diagonal, the confidence regions applied
to AB*SEL = BB*S)SEL had similar volume and cutoffs where SEL is MIX,
VS, or FULL.

Theorem 2.18 can be used to justify prediction intervals after variable
selection. See Pelawa Watagoda and Olive (2021b) and Olive, Rathnayake,
and Haile (2022). Theorem 2.18 d) is useful for variable selection consistency
and the oracle property where g = 7g = 1 if P(Ijpin = S) — 1 as n —
oo. See Claeskens and Hjort (2008, pp. 101-114) and Fan and Li (2001) for
references. A necessary condition for P(I,;, = S) — 1 is that S is one of the
models considered with probability going to one. This condition holds under
very strong regularity conditions for fast methods if S # F. See Wieczorek
and Lei (2022) for forward selection and Hastie, Tibshirani, and Wainwright
(2015, pp. 295-302) for lasso, where the predictors need a “near orthogonality”
condition.

Remark 2.24. If Ay, A, ..., Ay are pairwise disjoint and if UF_j A; = S,
then the collection of sets Aj, Ao, ..., Ay is a partition of S. Then the Law of
Total Probability states that if Ay, Ao, ..., Ay form a partition of S such that
P(A;) >0fori=1,..., k, then

k k
P(B)=> P(BNAj)=Y_ P(B|Aj)P(A)).

Let sets Agt1, ..., A satisfy P(A;) = 0 fori = k+1, ..., m. Define P(B|A;) =
0if P(A;) = 0. Then a Generalized Law of Total Probability is
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m m

P(B)=) P(BNAj) =7 P(B|Aj)P(4;),

j=1 j=1
and will be used in the proof of the result in the following paragraph.

Pétscher (1991) used the conditional distribution of By g|(By g = Blk,o)

to find the distribution of w, = v/n(By g — B). Let BZO be a random vector

from the conditional distribution B1k70|(,3v5 = Blk,O)' Let wg, = \/ﬁ(/élk,o—
5 5 ~C

Bl(Bvs = Br, o) ~ Vn(By, o — B). Denote Fz(t) = P(z1 < t1,..., 2p < 1)

by P(z < t). Then Potscher (1991) and Pelawa Watagoda and Olive (2021b)

show

Fuw, (t) = P[n"*(Bys = B) <t] =) Fuw,, (t)n.

Hence BVS has a mixture distribution of the BZO with probabilities 7y,
and w, has a mixture distribution of the wy, with probabilities 7.

Proof: Let W = Wyg = k if BVS = BI,“O where P(Wys = k) = Tgn
for k =1,...,.J. Then (Byg.,, Wysm) = (Byg, Wys) has a joint distribution
where the sample size n is usually suppressed. Note that BV g = B Iw,0- Then
by Remark 2.24,

Fuw,(t) = P[n'/*(Bys - B) < t] =

J
> Pn*(Bys —B) < tl(Bvs = B, 0)lP(Bys = Br,.0) =
k=1

J
3" PIn'?(By, o~ B) < tl(Bvs = Br, o)l min
k=1

J J
=" P38y~ B) < thrin = Y Fu,., ()Tkn. O
k=1 k=1

Charkhi and Claeskens (2018) showed that w;, = \/E(Bio -0B) 5 wj

it § C I; for the maximum likelihood estimator (MLE) with AIC, and gave
a forward selection example. They claim that w; is a multivariate truncated
normal distribution (where no truncation is possible) that is symmetric about
0. Hence E(w;) =0, and Cov(w,) = X; exits. Note that both Vi(Basrx—B)

and /n(By g — B) are selecting from the wuy, = \/ﬁ(,@%o — ) and asymp-
totically from the u;. The random selection for B mi1x does not change the
distribution of w;,, but selection bias does change the distribution of the

selected u;, and u; to that of w;, and w;. The assumption that w;, A w;
may not be mild. The proof for Equation (2.53) is the same as that for (2.51).



2.17 Variable Selection Theory 157

Theorem 2.19 proves that w is a mixture distribution of the w; with proba-
bilities ;.

Theorem 2.19. Assume P(S C I,,in) — 1 as n — oo, and let BVS =

B 16,0 with probabilities 7y, where 7, — 7 as n — oo. Denote the positive

Ne]
T by ;5. Assume wj, = /n(By, 0 — B) 5 w;. Then

w,, = Vi(Bys — B) > w (2.53)
where the cdf of w is Fa(t) =3, 7 Fw, (t).

Proof. Since w,, has a mixture distribution of the wy, with probabilities
Tkn, the cdf of wy, is Fw, (£) = 32 menFaw,., (1) — Fw(t) = >, 7 Fw, (t) at
continuity points of the Fiy, (t) as n — oo. O

Remark 2.25. a) If P(S C I,,,) — 1 as n — oo, then BVS isa/n
consistent estimator of 3 since selecting from a finite number J of \/n con-
sistent estimators (even on a set that goes to one in probability) results in a
v/n consistent estimator by Pratt (1959). By both this result and Theorems
2.18 and 2.19, the lasso variable selection and elastic net variable selection
estimators are \/n consistent if lasso and elastic net are consistent.

b) If the data is not simulated, then having some (; = 0 may not be
reasonable. Then S = F' and Theorem 2.19 proves that BV g and B = B F are
asymptotically equivalent. Also see Remark 2.23.

Remark 2.26. Another variable selection model is 73 = :cgﬂsi for
i =1,..., K. Then submodel I underfits if no S; C I. A necessary condition
for an estimator to be consistent is P(no S; C In) — 0 as n — oo. By
Remark 2.23, the above probability holds if €} is used. Then in Theorem
2.19, we can replace P(S C Lyin) — 1 by P(no S; C Iyin) — 0 as n — oc.

Example 2.4. This is an example where the 7, — 7 as n — 0o. Assume
S C I where I has a predictors, including a constant. Then for a wide variety

of iid error distributions, F 2 x /(p—a) where X ~ x2_ . Let F' denote the
full model, and let S = I = I; be the model that deletes predictor z; with

a = p—1. Then from Definition 2.27, C,(I) 2 X +p—2 where X ~ x2. Let F/
denote the full model and consider all subsets variable selection with C,,. Since
only S and F do not underfit, only 7g and mp are positive. Since Cy,(F') = p,
I = S is selected if Cp(I) < p. Hence mg = P(x1+p—2 < p) = P(x} <
2) = 0.8427, and mp = 1 — mg = 0.1573. This result also holds for backward
elimination since the probability that x; will be the first predictor deleted
goes to 1 as n — oo because Cp(I;) = Cp(S) is bounded in probability while
Cp(I;) diverges as n — oo for j # i. For forward selection with correlated
predictors, expect that 7s < P(x3 < 2), and hence mp > 1 — P(x3 < 2).
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For the R code below, 8 = (1,...,1,0,...,0)T is a px 1 vector with k+1 ones
and p — k4 1 zeroes. Hence k = p — 2 deletes the predictor x,. The function
belimsim generates 1000 data sets, performs backward elimination, and

finds the proportion of time the full model was selected, which was 0.158 ~
0.1573.

belimsim (n=100, p=5,%k=3,nruns=1000)
$fullprop
[1] 0.158

2.17.4 Variable Selection Theory in High Dimensions

Remark 2.27. a) When /n consistent estimators are used,

n

1B =8I = 1Br = Brll? = >_(8: = 5)” o - (2.54)

=1

In low dimensions where p is fixed, p/n — 0 as n — oo and B is a consistent
estimator. In high dimensions, ||3 — B||2 tends to not be close to 0. For
example, if p = p, = n™!, then p,/n = n” which tends to be large if n
is large and 7 > 1. Hence in high dimensions, it is difficult to get a good
estimator B of B = B for the full model that uses all p predictors z1, ..., zp.

b) When n/p — 0 as n — oo, consistent estimators of B generally cannot
be found unless the model has a simplifying structure. A sparse population
model is one such structure. Let model I be the model selected by a procedure
such as lasso. For Equation (2.49), assume that Bg is ag x 1, By is k x 1,
S C I, n>Jk with J > 1 and preferably J > 10, and 8, = 8 = Bp. If a
v/n consistent estimator is used, then

k

1Br.0 = Brl* = 18; = B:1> = Y _(Bir = Bir)? < k/n

=1

which can be small. This “bet on sparsity principle” requires that a large
percentage of the 3; = 0 and that the method selects I such that S C I with
high probability where k/n is small. The assumptions S C I and B;( = Bp
may be very strong. There is a large literature on “sparsity bounds.” See
Giraud (2022) and Wainwright (2019) for references.

We can also consider sparse fitted models B ; that use k predictors with
n > Jk with J > 5. With the sparse fitted model, we are not necessarily
assuming that i) S C I, that ii) S # F, or that iii) B; ; = Br. We can also
use data splitting with ng > Jk with J > 5. Check that the selected model
is reasonable, using response plots if possible.
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2.17.5 Sparse Models

For multiple linear regression with p > n, results from Hastie et al. (2015,
pp. 20, 296, ch. 6, ch. 11) and Luo and Chen (2013) suggest that lasso,
lasso variable selection, and forward selection with EBIC can perform well
for sparse models. Least angle regression, elastic net, and elastic net variable
selection can also be useful.

Suppose the selected model is Iz, and B, is aqg x 1. For multiple linear
regression, forward selection with Cp, and AIC often gives useful results if
n > bp and if the final model I has n > 10aq. For p < n < 5p, forward
selection with C}, and AIC tends to pick the full model (which overfits since
n < 5p) too often, especially if 62 = MSE. The Hurvich and Tsai (1989)
AIC¢ criterion can be useful for MLR and time series if n > max(2p, 10ay).
If n > 5p, AIC and BIC are useful for many regression models, and forward
selection with EBIC can be used for some models if n/p is small. See Section
2.1 and Chen and Chen (2008).

2.18 Summary

1) The MLR model is Y; = 81 + ;202 + -+ Tipfp + € = xI'B + e; for
i = 1,...,n. This model is also called the full model. In matrix notation,
these n equations become Y = X3 + e. Note that z; ; = 1.

2) The ordinary least squares OLS full model estimator BO 1§ minimizes
Qors(B) =X, r2(B) = RSS(B) = (Y — XB)T(Y — X 3). In the estimat-
ing equations Qors(3), the vector B is a dummy variable. The minimizer
BO g estimates the parameter vector B for the MLR model Y = X3 + e.
Note that Bpg ~ AN, (8, MSE(XTX)™1).

3) Given an estimate b of 3, the corresponding vector of predicted values
or fitted values is Y = Y (b) = Xb. Thus the ith fitted value

Y, = }A/l(b) = mlTb =211+ + xi,pbp-

The vector of residuals is r = r(b) =Y — }/}(b) Thus ith residual r; =
ri(b) =Y; — Yl(b) =Y, —xi1bi — - — zipby. A response plot for MLR is a
plot of }A/l versus Y;. A residual plot is a plot of }A/l versus r;. If the e; are iid
from a unimodal distribution that is not highly skewed, the plotted points
should scatter about the identity line and the r» = 0 line.
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Label coef SE  shorth 95% CI for §;
4) Constant=intercept= z 61 SE(B ) (L1, U]
) B SE(fB) [La, Us]
Tp Bp SE(B;D) [f/pa Up]

The classical OLS large sample 95% CI for j; is B; + 1.965’E(6Ai). Consider
testing Hy : B; = 0 versus Hy : 3; # 0. If 0 € CI for f3;, then fail to reject Hy,
and conclude z; is not needed in the MLR model given the other predictors
are in the model. If 0 ¢ CI for f3;, then reject Hy, and conclude x; is needed
in the MLR model.

5) Let &} = (1 w]). It is often convenient to use the centered response
Z =Y — Y where Y = Y1, and the n x (p — 1) matrix of standardized
nontrivial predictors W = (W;;). For j = 1,...,p — 1, let W;; denote the

(4 4+ 1)th variable standardized so that Y, W” =0and Y0, W7 = n.
Then the sample correlation matrix of the nontrivial predictors w; is

wiw

n

Ry =

Then regression through the origin is used for the model Z = Wn + e
where the vector of fitted values Y =Y + Z. Thus the centered response
Zi=Y,—Y and Y; = Z; + Y. Then 7) does not depend on the units of
measurement of the predictors. Linear combinations of the u; can be written
as linear combinations of the x;, hence B can be found from 7).

6) A model for variable selection is x73 = mg,ﬁs +zLB, = mg,ﬁs where
z = (zL,zE)T, x5 is an ag x 1 vector, and zp is a (p — ag) x 1 vector. Let
a1 be the vector of a terms from a candidate subset indexed by I, and let o
be the vector of the remaining predictors (out of the candidate submodel). If
S C I, then 273 = mg,ﬁs = mgﬁs + chT/S,B(I/S) + :cgo = :cITBI where x7,g
denotes the predictors in I that are not in S. Since this is true regardless
of the values of the predictors, B, = 0 if S C I. Note that B = 0. Let
ks = ag — 1 = the number of population active nontrivial predictors. Then
k = a — 1 is the number of active predictors in the candidate submodel I.

7) Let Q(n) be a real valued function of the k x 1 vector n. The gradient
of Q(n) is the k x 1 vector

9Q 9 o0
VQ:vQ(m:%: %f?)— o
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Suppose there is a model with unknown parameter vector 1. A set of estimat-
ing equations f(n) is minimized or maximized where 7 is a dummy variable
vector in the function f : R — R¥.

8) As a mnemonic (memory aid) for the following results, note that the

derivative —az = —za = a and —azx? = —zazx = 2azx.
dxr T dxr T

a) If Q(n) = a¥n = nTa for some k x 1 constant vector a, then vQ = a.

b) If Q(n) = n” An for some k x k constant matrix A, then vQ = 2An.

o) I Q(n) = Y0y [mil = [nll1, then vQ = s = sy where s; = sign(n;)
where sign(n;) = 1 if n; > 0 and sign(n;) = —1 if n; < 0. This gradient is only
defined for  where none of the k values of n; are equal to 0.

9) Forward selection with OLS generates a sequence of M models I, ..., [y
where I; uses j predictors z} =1, z3, ..., 2%, Often M = min([n/J], p) where
J is a positive integer such as J = 5.

10) For the model Y = X 3+ e, methods such as forward selection, PCR,
PLS, ridge regression, lasso variable selection, and lasso each generate M
fitted models I, ..., Ips, where M depends on the method. For forward selec-
tion the simulation used C), for n > 10p and EBIC for n < 10p. The other
methods minimized 10-fold CV. For forward selection, the maximum number
of variables used was approximately min([n/5], p).

11) Cousider choosing 7) to minimize the criterion

Mo &=
Q) = ~(Z - W) (Z - Wn) + L2l (259)
1=1

where Ay, > 0, a > 0, and j > 0 are known constants. Then j = 2
corresponds to ridge regression Ny, j = 1 corresponds to lasso 7);, and
a =1,2,n, and 2n are common. The residual sum of squares RSSw (n) =
(Z —Wn)T(Z — Wn), and A\, = 0 corresponds to the OLS estimator
Nors = (WIW)"'WT Z. Note that for a k x 1 vector n, the squared (Eu-
clidean) Ly norm ||n)|2 = n™n = Y%, n? and the L; norm ||n||; = 325 ;.

Lasso and ridge regression have a parameter A. When A = 0, the OLS
full model is used. Otherwise, the centered response and scaled nontrivial
predictors are used with Z = Wn + e. See 5). These methods also use a
maximum value Aps of A and a grid of M X values 0 < A\; < Ao < -+ <
Av—1 < Ay where often Ay = 0. For lasso, A\js is the smallest value of A such
that 7, ,, = 0. Hence 7, # 0 for i < M.

12) The elastic net estimator )5y minimizes

Qen(n) = RSS(n) + Mlnl3 + Xz|nll (2.56)

where A\; = (1 — @)A1, and A2 = 2a); , with 0 < a < 1.
13) Use Z,, ~ ANy (p,,, X»,) to indicate that a normal approximation is
used: Z, ~ Ny(p,, X5). Let a be a constant, let A be a k x g constant
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matrix, and let ¢ be a k x 1 constant vector. If \/n(6,, — ) 5 Ny(0,V), then
aZ, =aly,Z, with A =al,,

0Z, ~ AN, (as,,a2,), and AZ, +c~ AN; (A,un fe AZnAT) ,

R A% . AV AT
0, ~ AN, (0,—), and A0, +c ~ ANy <A0+c, )
n

14) Assume 7prs = (W W) "W Z. Let s,, = (510, .., 5p_1.n)7 where
sin € [—1,1] and s;,, = sign(7;) if 79); # 0. Here sign(n;) = 1 if n; > 1 and
sign(n;) = —1 if n; < 1. Then

A ; Aln 1.

i) Ir =Nors — %”(WTW +Mndp 1) Mors-

e\ A ~ )\1,71 —
i) N, =Nors — on ”(WTW) s

PN ~ _ )\ . )\
i) Ay = Aors — (W' W + AT, )" ZIWOLS + ﬁsn
wTw

15) Assume that the sample correlation matrix Rq = Zvt

Let H=W (W W) 'W7 = (h;;), and assume that max,— ___, h £ 0as

n — oo. Let 14 be Ny, Ny, or M. Let p be fixed.
. . D
i) LS CLT: Va(ijoLs — 1) = Np—1(0,0°V).
i) If Ao/ v/ 2 0, then

.....

Villia =) 5 N1 (0,0°V).
iii) Ifj\ln/\/ﬁ Zr> 0, & Lt Y €10,1], and s, £s= sq, then
Villiigy =) % Nyt (<VI(1 = ¥)rn +vrs).o*V).
iv) Ifj\ln/\/ﬁ g >0, then
Vitliig = 1) 2 Nyoa(~7Vn,o*V).
V) Ifj\lyn/\/ﬁ £ >0 and s, £os= sy, then
Vi, —n) 2 N,y (%Tvs, 02v> .
ii) and v) are the Lasso CLT, ii) and iv) are the RR CLT, and ii) and iii)
are the EN CLT.

16) Under the conditions of 15), lasso variable selection and elastic net
variable selection are /n consistent under much milder conditions than lasso
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and elastic net, since the variable selection estimators are /n consistent when
lasso and elastic net are consistent. Let I,,;, correspond to the predictors
chosen by lasso, elastic net, or forward selection, including a constant. Let
B 1,... be the OLS estimator applied to these predictors, let B I.m.0 D€ the

zero padded estimator. The large sample theory for B Iin.0 (from forward
selection, lasso variable selection, and elastic net variable selection) is given
by Theorem 2.4. Note that the large sample theory for the estimators B is
given for p x 1 vectors. The theory for 7 is given for (p — 1) x 1 vectors In
particular, the theory for lasso and elastic net does not cast away the 7; = 0.

17) Under Equation (2.1) with p fixed, if lasso or elastic net are consistent,
then P(S C Inin) — 1 as n — oo. Hence when lasso and elastic net do
variable selection, they are often not \/n consistent.

18) Refer to 6). a) The OLS full model tends to be useful if n > 10p with
large sample theory better than that of lasso, ridge regression, and elastic
net. Testing is easier and the Olive (2007) PI tailored to the OLS full model
will work better for smaller sample sizes than PI (2.14) if n > 10p. If n > 10p
but X7 X is singular or ill conditioned, other methods can perform better.

Forward selection, lasso variable selection, and elastic net variable selection
are competitive with the OLS full model even when n > 10p and X7 X is
well conditioned. If n < p then OLS interpolates the data and is a poor
method. If n = Jp, then as J decreases from 10 to 1, other methods become
competitive.

b) If n > 10p and kg < p — 1, then forward selection can give more pre-
cise inference than the OLS full model. When n/p is small, the PI (2.14) for
forward selection can perform well if n/kg is large. Forward selection can be
worse than ridge regression or elastic net if kg > min(n/J, p). Forward selec-
tion can be too slow if both n and p are large. Forward selection, lasso variable
selection, and elastic net variable selection tend to be bad if (XX 4)~" is
ill conditioned where A = I,,,iy,.

¢) If n > 10p, lasso can be better than the OLS full model if XTX isill
conditioned. Lasso seems to perform best if kg is not much larger than 10
or if the nontrivial predictors are orthogonal or uncorrelated. Lasso can be
outperformed by ridge regression or elastic net if kg > min(n,p — 1).

d) If n > 10p ridge regression and elastic net can be better than the OLS
full model if X7 X is ill conditioned. Ridge regression (and likely elastic net)
seems to perform best if kg is not much larger than 10 or if the nontrivial
predictors are orthogonal or uncorrelated. Ridge regression and elastic net
can outperform lasso if kg > min(n,p — 1).

e) The PLS PI (2.14) can perform well if n > 10p if some of the other five
methods used in the simulations start to perform well when n > 5p. PLS may
or may not be inconsistent if n/p is not large. Ridge regression tends to be
inconsistent unless P(d — p) — 1 so that ridge regression is asymptotically
equivalent to the OLS full model.
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19) Under strong regularity conditions, lasso and lasso variable selection
with k—fold CV, and forward selection with EBIC can perform well even if
n/p is small. So PI (2.14) can be useful when n/p is small.

20) Using the response variable to build a model is known as data snooping,
and invalidates inference if data snooping is used on the entire data set of n
cases.

21) Suppose 73 = mg,ﬁs—l-ccgﬁE = mgﬁs where Bg is an ag x 1 vector.
A regression model is sparse if ag is small. We want n > 10ags.

22) Assume the cases are independent. To perform data splitting, randomly
divide the data into two half sets H and V where H has ng of the cases and
V has the remaining ny = n —ng cases i1, ..., in, . Build the model, possibly
with data snooping, or perform variable selection to Find a model I, possibly
with data snooping or model selection, using the data in the training set H.
Use the model I as the full model to perform inference using the data in the
validation set V.

2.19 Complements

Good references for forward selection, PCR, PLS, ridge regression, and lasso
are Hastie et al. (2009, 2015), James et al. (2013), and Pelawa Watagoda
and Olive (2021b). Also see Efron and Hastie (2016). An early reference for
forward selection is Efroymson (1960). Under strong regularity conditions,
Gunst and Mason (1980, ch. 10) covers inference for ridge regression (and a
modified version of PCR) when the iid errors e¢; ~ N(0, 0?).

Xu et al. (2011) notes that sparse algorithms are not stable. Belsley (1984)
shows that centering can mask ill conditioning of X.

Classical principal component analysis based on the correlation matrix can
be done using the singular value decomposition (SVD) of the scaled matrix
Ws=W,/vn—1 using & and \; = 02 where \; = \i(WEW ) is the ith
eigenvalue of WEWS. Here the scaling is using g = 1. For more information
about the SVD, see Datta (1995, pp. 552-556) and Fogel et al. (2013).

Variable Selection and Post-Selection Inference:

There is massive literature on variable selection and a fairly large literature
for inference after variable selection. See, for example, Bertsimas et al. (2016),
Fan and Lv (2010), Ferrari and Yang (2015), Fithian et al. (2014), Hjort and
Claeskins (2003), Knight and Fu (2000), Leeb and Potscher (2005, 2006),
Lockhart et al. (2014), Qi et al. (2015), and Tibshirani et al. (2016).

For post-selection inference, the methods in the literature are often for
multiple linear regression assuming normality (an assumption that is too
strong), or are asymptotically equivalent to using the full model, or find a
quantity to test that is not A3. Typically the methods have not been shown to
perform better than data splitting. See Ewald and Schneider (2018). Leeb et
al. (2015) suggests that the Berk et al. (2013) method does not really work.
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Kivaranovic and Leeb (2021) show that E(CI length) tends to be infinity
for a method proposed by Lee et al. (2016). Also see Lu et al. (2017), and
Tibshirani et al. (2016).

Warning: For n < 5p, validate sparse fitted models with response and
residual plots. PIs can also help.

High Dimensional Testing and Confidence Intervals:

As of 2023, testing sparse fitted models with data splitting and the tests
of Olive and Zhang (2023) appear to be backed by theory under reasonable
regularity conditions. Assuming that (Y;, 27)7 are iid Npi1(p, X) is not a
reasonable regularity conditions. For data splitting, forward selection with
EBIC, lasso variable selection, and MMLE variable selection can be useful.
Chetverikov, Liao and Chernozhukov (2022) show that k-fold CV with lasso
often picks an MLR model good for prediction.

Also see Basa et al. (2022), Dezeure et al. (2015), Javanmard and Mon-
tanari (2014), Rinaldo, Wasserman, and G’Sell (2019), van de Geer et al.
(2014), and Zhang and Cheng (2017). Fan and Lv (2010) gave large sample
theory for some methods if p = o(n'/?). The method of Ning and Liu (2017)
needs a log likelihood.

Full OLS Model: A sufficient condition for BO s to be a consistent
estimator of B8 is Cov(Bprg) = 02(XTX)™1 — 0 as n — oo. See Lai et
al. (1979). For more OLS large sample theory, see Eicker (1963) and White
(1984).

Forward Selection: See Olive and Hawkins (2005), Pelawa Watagoda
and Olive (2021ab), and Rathnayake and Olive (2023).

The Oracle Property:

The oracle property says P(Iin =S) — 1 as n — oco. A necessary condi-
tion for the oracle property is that S is in the search path with probability
going to 1 as n — oco. For “fast methods” like lasso and forward selection,
this requires the predictors to be nearly orthogonal. Hence the regularity con-
ditions for the oracle property are much too strong if the predictors are mod-
erately or highly correlated. The oracle property may be useful for wavelets
and PCR. See Su (2018), Su, Bogdan, and Candés (2017), and Wieczorek
and Lei (2022).

Principal Components Regression: Principal components are Karhunen
Loeve directions of centered X. See Hastie et al. (2009, p. 66). A useful PCR
paper is Cook and Forzani (2008).

Partial Least Squares: An important PLS paper is Wold (1975). Also see
Wold (1985, 2006). Olive and Zhang (2023) showed B p; g is a /i consistent
estimator of By py g if the cases (x;,Y;) are iid with a few moments, p is fixed,
and n — co. Olive and Zhang (2023) also suggested that much of the theory
for OPLS and PLS appears to be incorrect, except under regularity conditions
that are much too strong. See, for example, Basa, et al. (2022), Cook et al.
(2013), Cook (2018), Cook and Forzani (2018, 2019), Cook and Su (2016),
and Chun and Keleg (2010). Denham (1997) suggested a PI for PLS that
assumes the number of components is selected in advance.
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Much of the PLS literature claims that if the cases are iid, then under
mild conditions, Bpprg, Biprs, and By sprg estimate B8 = Bprg. See for
example, Basa et al. (2024) and Cook and Forzani (2024). However, they use
a very strong regularity condition:

Y|m:aopL5+ngLS:c+e. (2.57)

When Y|z =« + BT x +e, then under mild regularity conditions, 3 = Byr5-
Hence regularity condition (2.46) and iid cases forces Bpr g = Xgp' Zay =
A¥zxy = Boprg- Thus regularity condition (2.46) forces Xy and Bprg =
AXzy to be eigenvectors of Xz if A # 0. Hence ,Bg s is equivalent (up to
a positive constant multiplier) to the population principal component regres-
sion (PCR) component nJT:c that is most correlated with Y, where n; is one
of the eigenvectors of Yg.

Ridge Regression: An important ridge regression paper is Hoerl and
Kennard (1970). Also see Gruber (1998). Ridge regression is known as
Tikhonov regularization in the numerical analysis literature.

Lasso: Lasso was introduced by Tibshirani (1996). Efron et al. (2004)
and Tibshirani et al. (2012) are important papers. Su et al. (2017) note some
problems with lasso. If n/p is large, see Knight and Fu (2000) for the residual
bootstrap with OLS full model residuals. Camponovo (2015) suggested that
the nonparametric bootstrap does not work for lasso. Chatterjee and Lahiri
(2011) stated that the residual bootstrap with lasso does not work. Hall et
al. (2009) stated that the residual bootstrap with OLS full model residuals
does not work, but the m out of n residual bootstrap with OLS full model
residuals does work. Rejchel (2016) gave a good review of lasso theory. Fan
and Lv (2010) reviewed large sample theory for some alternative methods.
See Lockhart et al. (2014) for a partial remedy for hypothesis testing with
lasso. The Ning and Liu (2017) method needs a log likelihood. Knight and
Fu (2000) gave theory for fixed p.

Regularity conditions for testing are strong. Often lasso tests assume that
Y and the nontrivial predictors follow a multivariate normal (MVN) distri-
bution. For the MVN distribution, the MLR model tends to be dense not
sparse if n/p is small.

lasso variable selection:

Applying OLS on a constant and the k nontrivial predictors that have
nonzero lasso 7); is called lasso variable selection. We want n > 10(k + 1).
If A\; = 0, a variant of lasso variable selection computes the OLS submodel
for the subset corresponding to A; for i = 1,..., M. If C} is used, then this
variant has large sample theory given by Theorem 2.4.

Lasso can also be used for other estimators, such as generalized linear
models (GLMs). Then lasso variable selection is the “classical estimator,”
such as a GLM, applied to the lasso active set. For prediction, lasso variable
selection is often better than lasso, but sometimes lasso is better.
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See Meinshausen (2007) for the relaxed lasso method with R package
relaxo for MLR: apply lasso with penalty A to get a subset of variables
with nonzero coeflicients. Then reduce the shrinkage of the nonzero elements
by applying lasso again to the nonzero coefficients but with a smaller penalty
¢. This two stage estimator could be used for other estimators. Lasso variable
selection corresponds to the limit as ¢ — 0.

Dense Regression or Abundant Regression: occurs when most of the
predictors contribute to the regression. Hence the regression is not sparse. See
Cook et al. (2013).

Other Methods: Consider the MLR model Z = Wn +e. Let A > 0 be

a constant and let ¢ > 0. The estimator 1), minimizes the criterion
p—1
Qq(b) =7(b)"r(b) + XD [b]?, (2.58)
j=1

over all vectors b € RP~! where we take 0° = 0. Then ¢ = 1 corresponds
to lasso and ¢ = 2 corresponds to ridge regression. If ¢ = 0, the penalty
A Zf;i |b;]® = Ak where k is the number of nonzero components of b. Hence
the ¢ = 0 estimator is often called the “best subset” estimator. See Frank
and Friedman (1993). For fixed p, large sample theory is given by Knight and
Fu (2000). Following Hastie et al. (2009, p. 72), the optimization problem is
convex if ¢ > 1 and A is fixed.

Suppose model I}, contains k predictors including a constant. For multiple
linear regression, the forward selection algorithm in Chapter 4 adds a pre-
dictor 2, that minimizes the residual sum of squares, while the Pati et al.
(1993) “orthogonal matching pursuit algorithm” uses predictors (scaled to
have unit norm: ! x; = 1 for the nontrivial predictors), and adds the scaled
predictor x} ,; that maximizes |z}, 7| where the maximization is over vari-
ables not yet selected and the rj are the OLS residuals from regressing Y
on X7, . Fan and Li (2001) and Candes and Tao (2007) gave competitors to
lasso. Some fast methods seem similar to the first PLS component.

If n < 400 and p < 3000, Bertsimas et al. (2016) give a fast “all subsets”
variable selection method. Lin et al. (2012) claim to have a very fast method
for variable selection. Lee and Taylor (2014) suggest the marginal screening
algorithm: let W be the matrix of standardized nontrivial predictors. Com-
pute WY = (cy, ..., cp—1)T and select the J variables corresponding to the
J largest |¢;|. These are the J standardized variables with the largest absolute
correlations with Y. Then do an OLS regression of Y on these J variables
and a constant. A slower algorithm somewhat similar but much slower than
the Lin et al. (2012) algorithm follows. Let a constant 21 be in the model, and
let W = [a4,...,ap—1] and r = Y — Y. Compute W7y and let x% correspond
to the variable with the largest absolute entry. Remove the corresponding
a; from W to get W. Let 71 be the OLS residuals from regressing Y on
x1 and x5. Compute WTr, and let x5 correspond to the variable with the
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largest absolute entry. Continue in this manner to get 1,23, ..., 2", where
J = min(p, [n/5]). Like forward selection, evaluate the J — 1 models I; con-
taining the first j predictors x, z3, ..., z% for j = 2, ..., J with a criterion such

as Cp.
Following Sun and Zhang (2012), let (2.6) hold and let
~1
_ 1 T 2;0 |7l .
Q) = 2n(Z —Wn)' (Z —Wn)+ A\ Zp ( 3 where p is scaled such

i=1
that the derivative p’(0+) = 1. As for lasso and elastic net, let s; = sgn(7;)
where s; € [=1,1] if 7); = 0. Let p} = p/(|7;[/A) if 7j; # 0, and p} = 1 if
f; = 0. Then 7 is a critical point of Q(n) iff wJT(Z — W) = nhs;pj for
7 =1,...,n.If pis convex, then these conditions are the KKT conditions. Let
dj = s;p};. Then W' Z - W W = nid, and f) = flo 5 — nA(W' W)~ 1d.
If the d; are bounded, then 7) is consistent if A — 0 as n — oo, and 7} is
asymptotically equivalent to 7o g if n'/2\ — 0. Note that p(t) =t for t > 0
gives lasso with A = Ay ,/(2n).

Gao and Huang (2010) give theory for a LAD-lasso estimator, and Qi et
al. (2015) is an interesting lasso competitor.

Multivariate linear regression has m > 2 response variables. See Olive
(2017ab: ch. 12). PLS also works if m > 1, and methods like ridge regression
and lasso can also be extended to multivariate linear regression. See, for ex-
ample, Haitovsky (1987) and Obozinski et al. (2011). Sparse envelope models
are given in Su et al. (2016).

Model Building;:

When the entire data set is used to build a model with the response vari-
able, the inference tends to be invalid, and cross validation should not be used
to check the model. See Hastie et al. (2009, p. 245). In order for the inference
and cross validation to be useful, the response variable and the predictors
for the regression should be chosen before looking at the response variable.
Predictor transformations can be done as long as the response variable is not
used to choose the transformation. You can do model building on the test
set, and then inference for the chosen (built) model as the full model with
the validation set, provided this model follows the regression model used for
inference (e.g. multiple linear regression or a GLM). This process is difficult
to simulate.

AIC and BIC Type Criterion:

Olive and Hawkins (2005) and Burnham and Anderson (2004) are useful
reference when p is fixed. Some interesting theory for AIC appears in Zhang
(1992). Zheng and Loh (1995) show that BICg can work if p = p,, = o(log(n))
and there is a consistent estimator of o2. For the C,, criterion, see Jones (1946)
and Mallows (1973).

AIC and BIC type criterion and variable selection for high dimensional re-
gression are discussed in Chen and Chen (2008), Fan and Lv (2010), Fujikoshi
et al. (2014), and Luo and Chen (2013). Wang (2009) suggests using
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WBIC(I) = log[SSE(I)/n] + n~*|I|[log(n) + 21og(p)].

See Bogdan et al. (2004), Cho and Fryzlewicz (2012), and Kim et al. (2012).
Luo and Chen (2013) state that WBIC/(I) needs p/n® < 1 for some 0 < a <
1.

If n/p is large and one of the models being considered is the true model
S (shown to occur with probability going to one only under very strong
assumptions by Wieczorek and Lei (2021)), then BIC tends to outperform
AIC. If none of the models being considered is the true model, then AIC
tends to outperform BIC. See Yang (2003).

Robust Versions: Hastie et al. (2015, pp. 26-27) discuss some modifica-
tions of lasso that are robust to certain types of outliers. Robust methods
for forward selection and LARS are given by Uraibi et al. (2017, 2019) that
need n >> p. If n is not much larger than p, then Hoffman et al. (2015)
have a robust Partial Least Squares—Lasso type estimator that uses a clever
weighting scheme.

A simple method to make an MLR method robust to certain types of
outliers is to find the covmb2 set B of Chapter 1 applied to the quantitative
predictors. Then use the MLR method (such as elastic net, lasso, PLS, PCR,
ridge regression, or forward selection) applied to the cases corresponding to
the z; in B. Make a response and residual plot, based on the robust estimator
B 5, using all n cases.

Prediction Intervals:

Lei et al. (2018) and Wasserman (2014) suggested prediction intervals for
estimators such as lasso. The method has interesting theory if the (z;,Y;) are
iid from some population. Also see Butler and Rothman (1980) and Stein-
berger and Leeb (2023).

Let p be fixed, d be for PI (2.14), and n — oo. For elastic net, forward
selection, PCR, PLS, ridge regression, lasso variable selection, and lasso, if
P(d — p) — 1 as n — oo then the seven methods are asymptotically equiv-
alent to the OLS full model, and the PI (2.14) is asymptotically optimal on
a large class of iid unimodal zero mean error distributions. The asymptotic
optimality holds since the sample quantile of the OLS full model residuals are
consistent estimators of the population quantiles of the unimodal error distri-

bution for a large class of distributions. Note that d Zopif P(Ay, — 0) — 1

for elastic net, lasso, and ridge regression, and d it p if the number d — 1 of
components ('yJch or 'yJTw) used by the method satisfies P(d—1 — p—1) — 1.

Consistent estimators 3 of 3 also produce residuals such that the sample
quantiles of the residuals are consistent estimators of quantiles of the error
distribution. See Remark 2.21, Olive and Hawkins (2003), and Rousseeuw
and Leroy (1987, p. 128).

Degrees of Freedom:
A formula for the model degrees of freedom df tend to be given for a model
when there is no model selection or variable selection. For many estimators,
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the degrees of freedom is not known if model selection is used. A d for PI
(2.14) is often obtained by plugging in the degrees of freedom formula as if
model selection did not occur. Then the resulting d is rarely an actual degrees
of freedom. As an example, if Y = H,Y, then often df = trace(H ) if X is

selected before examining the data. If model selection is used to pick A, then
d = trace(H ) is not the model degrees of freedom.

2.20 Problems

2.1. For ridge regression, suppose V' = P,'. Show that if p/n and A\/n =
A1.n/n are both small, then

Nr =~ NorLs — EVﬁOLS'

2.2. Consider choosing 7 to minimize the criterion

1 A o
Q) = ~(Z - Wn)"(Z~Wan)+ == il
1=1

where Ay ,, > 0,a > 0, and j > 0 are known constants. Consider the regression
methods OLS, forward selection, lasso, PLS, PCR, ridge regression, and lasso
variable selection.

a) Which method corresponds to j = 17

b) Which method corresponds to j = 27

¢) Which method corresponds to Ay, = 07

2.3. a) For ridge regression, let A, = (XX + X1 ,I,) ' X* X and B,, =
I, — Mo (XTX + A\ I,)" Y. Show A, — B, = 0.

b) For ridge regression, let A,, = (WTW—l-)\l,nIp,l)*lWTW and B,, =
Iy 1 — MWW 0,1, 1)7"]. Show A,, — B,, = 0.

2.4. Suppose Y = HY where H is an n x n hat matrix. Then the de-
grees of freedom df(Y') = tr(H) = sum of the diagonal elements of H. An
estimator with low degrees of freedom is inflexible while an estimator with
high degrees of freedom is flexible. If the degrees of freedom is too low, the
estimator tends to underfit while if the degrees of freedom is to high, the
estimator tends to overfit.

a) Find df(Y) if Y = Y1 which uses H = (h;;) where h;; = 1/n for all
i and j. This inflexible estimator uses the sample mean Y of the response
variable as Y; for i = 1,...,n.
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b) Find df(Y) if Y =Y = I,,Y which uses H = I,, where hj; = 1. This
bad flexible estimator interpolates the response variable.

2.5. Suppose Y = XB+e, Z=Wn+e, Z=WhH, Z=Y -7, and
Y = Z+Y. Let the n x p matrix W; = [1 W] and the p x 1 vector
7, = (Y #7)T where the scalar Y is the sample mean of the response
variable. Show Y = W7),.

2.6.Let Z=Y —Y where Y = Y1, and the n x (p — 1) matrix of stan-
dardized nontrivial predictors G = (Gj;). For j =1,...,p— 1, let G;; denote
the (j 4 1)th variable standardized so that Y ;" ; Gi; =0 and 1", G3; = 1.
Note that the sample correlation matrix of the nontrivial predictors wu; is
Ry, = GTG. Then regression through the origin is used for the model

Z=Gn+e (2.59)

where the vector of fitted values Y = Y +Z. The standardization differs from
that used for earlier regression models since Y ;' GF; =1 #n =Y 1", W7
Note that 1
NG
Following Zou and Hastie (2005), the naive elastic net 1, estimator is the
minimizer of

G = w.

Qn(n) = RSS(n) + As|mll3 + Ailnll (2.60)
where A7 > 0. The term “naive” is used because the elastic net estimator
is better. Let 7 = A2 A and n4 = /1 + A5 7. Let the

* ) Y= A %’
(n+p—1)x(p—1) augmented matrix G 4 and the (n+p—1) x 1 augmented
response vector Z 4 be defined by

G z
o (yn ) 2= (7)

where 0 is the (p—1) x 1 zero vector. Let 4 = /1 + A} 7 be obtained from
the lasso of Z 4 on G 4: that is 1), minimizes

Qn(ma) = 1Za— Ganallz + 704l = Qu(n).

Prove Qn(n4) = Qn(n).
(Then

L 1
W TN

The above elastic net estimator minimizes the criterion

Naand Ny = 1+ X504 = (1+23)0N.
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TGTG X
Qa(m) = L= 277Gy + 2

2 *
A
T g I+ Xl

and hence is not the elastic net estimator corresponding to Equation (3.22).)

2.7. Let 8= (64, Bg)T. Consider choosing 3 to minimize the criterion

Q(B) = RSS(B) + Mi|Bsl3 + A2llBsla

where \; > 0 fori =1, 2.

a) Which values of A\; and Ay correspond to ridge regression?

b) Which values of A\; and A2 correspond to lasso?

¢) Which values of A; and A2 correspond to elastic net?

d) Which values of A\; and A2 correspond to the OLS full model?

2.8. For the output below, an asterisk means the variable is in the model.
All models have a constant, so model 1 contains a constant and mmen.

a) List the variables, including a constant, that models 2, 3, and 4 contain.

b) The term out$cp lists the C) criterion. Which model (1, 2, 3, or 4) is
the minimum C), model ;5,7

c) Suppose 3; = (241.5445,1.001)". What is 8, = o?

Selection Algorithm: forward #output for Problem 3.8

pop mmen mmilmen milwmn
n n "*" n n n n

n n n * n n * n n n

IOV SR
e

"*" "*" "*" "*"

( )
( )
( ) n * n n * n n * n n n
( )

out$cp
[1] -0.8268967 1.0151462 3.0029429 5.0000000

2.9. Tremearne (1911) presents a data set of about 17 measurements on
112 people of Hausa nationality. We used Y = height. Along with a constant
x;,1 = 1, the five additional predictor variables used were x; 2 = height when
sitting, x; 3 = height when kneeling, x; 4 = head length, x; 5 = nasal breadth,
and x; ¢ = span (perhaps from left hand to right hand). The output below is
for the OLS full model.

Estimate Std.Err 95% shorth CI
Intercept -77.0042 65.2956 [-208.864,55.051]

[
X2 0.0156 0.0992 [-0.177, 0.217]
X3 1.1553 0.0832 [ 0.983, 1.312]
X4 0.2186 0.3180 [-0.378, 0.805]
X5 0.2660 0.6615 [-1.038, 1.637]
X6 0.1396 0.0385 [0.0575, 0.217]

a) Give the shorth 95% CI for (5.



2.20 Problems 173

b) Compute the standard 95% CI for f3s.
¢) Which variables, if any, are needed in the MLR model given that the
other variables are in the model?

Now we use forward selection and Iy, is the minimum C}, model.

Estimate Std.Err 95% shorth CI
Intercept -42.4846 51.2863 [-192.281, 52.492

[ ]

X2 0 [ 0.000, 0.268]
X3 1.1707 0.0598 [ 0.992, 1.289]
X4 0 [ 0.000, 0.840]
X5 0 [ 0.000, 1.916]
X6 0.1467 0.0368 [ 0.0747, 0.215]

(Intercept) a b c d e
1 TRUE FALSE TRUE FALSE FALSE FALSE
2 TRUE FALSE TRUE FALSE FALSE TRUE
3 TRUE FALSE TRUE TRUE FALSE TRUE
4 TRUE FALSE TRUE TRUE TRUE TRUE
5 TRUE TRUE TRUE TRUE TRUE TRUE
> tem2S$cp
[1] 14.389492 0.792566 2.189839 4.024738 6.000000

1
d) What is the value of Cp(Imin) and what is Blmm,o?
e) Which variables, if any, are needed in the MLR model given that the
other variables are in the model?
f) List the variables, including a constant, that model 3 contains.

2.10. Table 2.7 below shows simulation results for bootstrapping OLS (reg)
and forward selection (vs) with C}, when 8 = (1,1,0,0,0)7. The 3; columns
give coverage = the proportion of Cls that contained (; and the average
length of the CI. The test is for Hy : (33, 34, 35)7 = 0 and Hj is true. The
“coverage” is the proportion of times the prediction region method bootstrap
test failed to reject Hy. Since 1000 runs were used, a cov in [0.93,0.97] is
reasonable for a nominal value of 0.95. Output is given for three different
error distributions. If the coverage for both methods > 0.93, the method
with the shorter average CI length was more precise. (If one method had
coverage > 0.93 and the other had coverage < 0.93, we will say the method
with coverage > 0.93 was more precise.)

a) For (3, B4, and G5, which method, forward selection or the OLS full
model, was more precise?

b) The test “length” is the average length of the interval [0, D(y,)] = D)
where the test fails to reject Hg if Dg < D(yy). The OLS full model is
asymptotically normal, and hence for large enough n and B the reg len row

for the test column should be near y/x3 .95 = 2.795.
Were the three values in the test column for reg within 0.1 of 2.7957

2.11. Suppose the MLR model Y = X3 + e, and the regression method
fits Z = Wn + e. Suppose Z = 245.63 and Y = 105.37. What is Y7
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Table 2.7 Bootstrapping Forward Selection, n = 100,p = 5,% = 0, B = 1000

Br B2 Bs  Ba  Bs test
reg cov[0.95 0.93 0.93 0.93 0.94 0.93
len [0.658 0.672 0.673 0.674 0.674 2.861
vs cov|0.95 0.94 0.998 0.998 0.999 0.993
len [0.661 0.679 0.546 0.548 0.544 3.11
reg cov[0.96 0.93 0.94 0.96 0.93 0.94
len [0.229 0.230 0.229 0.231 0.230 2.787
vs cov|0.95 0.94 0.999 0.997 0.999 0.995
len [0.228 0.229 0.185 0.187 0.186 3.056
reg cov|0.94 0.94 0.95 0.94 0.94 0.93
len|0.393 0.398 0.399 0.399 0.398 2.839
vs cov|0.94 0.95 0.997 0.997 0.996 0.990
len [0.392 0.400 0.320 0.322 0.321 3.077

2.12. To get a large sample 90% PI for a future value Y of the response
variable, find a large sample 90% PI for a future residual and add Yj to the
endpoints of the of that PI. Suppose forward selection is used and the large
sample 90% PI for a future residual is [—778.28, 1336.44]. What is the large
sample 90% PI for Y; if Blmm = (241.545,1.001)T used a constant and the
predictor mmen with corresponding .., r = (1,75000)7?

2.13. Table 2.8 below shows simulation results for bootstrapping OLS
(reg), lasso, and ridge regression (RR) with 10-fold CV when 3 = (1,1,0,0)7.
The (; columns give coverage = the proportion of Cls that contained §; and
the average length of the CI. The test is for Hy : (f3,04)7 = 0 and Hy is
true. The “coverage” is the proportion of times the prediction region method
bootstrap test failed to reject Hy. OLS used 1000 runs while 100 runs were
used for lasso and ridge regression. Since 100 runs were used, a cov in [0.89,
1] is reasonable for a nominal value of 0.95. If the coverage for both methods
> 0.89, the method with the shorter average CI length was more precise.
(If one method had coverage > 0.89 and the other had coverage < 0.89, we
will say the method with coverage > 0.89 was more precise.) The results
for the lasso test were omitted since sometimes S7. was singular. (Lengths
for the test column are not comparable unless the statistics have the same
asymptotic distribution.)

a) For 85 and (4 which method, ridge regression or the OLS full model,
was better?

b) For 85 and 4 which method, lasso or the OLS full model, was more
precise?

2.14. Suppose n = 15 and 5-fold CV is used. Suppose observations are
measured for the following people. Use the output below to determine which
people are in the first fold.

folds: 4 3 4 2 1 4 3 5 2 2 3 1 5 5 1
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Table 2.8 Bootstrapping lasso and RR, n = 100,% = 0.9,p =4, B = 250

Br B2 Bs  Pa test
reg cov|0.942 0.951 0.949 0.943 0.943
len|0.658 5.447 5.444 5.438 2.490
RR cov|0.97 0.02 0.11 0.10 0.05
len|0.681 0.329 0.334 0.334 2.546
reg cov|0.947 0.955 0.950 0.951 0.952
len|0.658 5.511 5.497 5.500 2.491
lasso cov[0.93 0.91 0.92 0.99
len |0.698 3.765 3.922 3.803

1) Athapattu, 2) Azizi, 3) Cralley 4) Gallage, 5) Godbold, 6) Gunawar-
dana, 7) Houmadi, 8) Mahappu, 9) Pathiravasan, 10) Rajapaksha, 11)
Ranaweera, 12) Safari, 13) Senarathna, 14) Thakur, 15) Ziedzor

2.15. Table 2.9 below shows simulation results for a large sample 95% pre-
diction interval. Since 5000 runs were used, a cov in [0.94, 0.96] is reasonable
for a nominal value of 0.95. If the coverage for a method > 0.94, the method
with the shorter average PI length was more precise. Ignore methods with
cov < 0.94. The MLR model had 8 = (1,1,...,1,0,...,0)T where the first
k +1 coefficients were equal to 1. If ) = 0 then the nontrivial predictors were
uncorrelated, but highly correlated if 1 = 0.9.

Table 2.9 Simulated Large Sample 95% PI Coverages and Lengths, e; ~ N(0,1)

n p ¥ k FS lasso RL RR PLS PCR
100 40 0 1 cov 0.9654 0.9774 0.9588 0.9274 0.8810 0.9882
len 4.4294 4.8889 4.6226 4.4291 4.0202 7.3393

400 400 0.9 19 cov 0.9348 0.9636 0.9556 0.9632 0.9462 0.9478
len 4.3687 47.361 4.8530 48.021 4.2914 4.4764

a) Which method was most precise, given cov > 0.94, when n = 1007
b) Which method was most precise, given cov > 0.94, when n = 4007

2.16. When doing a PI or CI simulation for a nominal 100(1 —6)% = 95%
interval, there are m runs. For each run, a data set and interval are generated,
and for the ith run Y; = 1 if p or Yy is in the interval, and Y; = 0, otherwise.
Hence the Y; are iid Bernoulli(1 — ¢,) random variables where 1 — §,, is
the true probability (true coverage) that the interval will contain p or Y.
The observed coverage (= coverage) in the simulation is Y = Y, Y;/m. The
variance V(Y) = o2/m where 02 = (1 — §,)6, ~ (1 — §)J ~ (0.95)0.05 if
On ~ 6 = 0.05. Hence
0.95(0.05)

m

SD(Y) ~
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If the (observed) coverage is within 0.95 & kSD(Y") the integer k is near 3,
then there is no reason to doubt that the actual coverage 1 — 9,, differs from
the nominal coverage 1 —¢ = 0.95 if m > 1000 (and as a crude benchmark, for
m > 100). In the simulation, the length of each interval is computed, and the
average length is computed. For intervals with coverage > 0.95 — kSD(Y),
intervals with shorter average length are better (have more precision).

a) If m = 5000 what is 3 SD(Y), using the above approximation? Your
answer should be close to 0.01.

b) If m = 1000 what is 3 SD(Y'), using the above approximation?

R Problem

Use the command source( “G:/slpack.tzt”) to download the func-
tions and the command source(“G:/sldata.tzt”) to download the data.
See Preface or Section 11.1. Typing the name of the slpack function,
e.g. vshootsim3, will display the code for the function. Use the args com-
mand, e.g. args(vsbootsim3), to display the needed arguments for the function.
For the following problem, the R command can be copied and pasted from
(http://parker.ad.siu.edu/Olive/slrhw.txt) into R.

2.17. The R program generates data satisfying the MLR model
Y = 1+ Bozo + B3zs + Paza te

where /6 = (615 625 635 64)T = (15 15 Oa O)

a) Copy and paste the commands for this part into R. The output gives
Borg for the OLS full model. Give B, g. Is B¢ close to 8 =1,1,0, 0)7?

b) The commands for this part bootstrap the OLS full model using the
residual bootstrap. Copy and paste the output into Word. The output shows
T; =B, forj=1,..,5.

¢) B =1000 T'; were generated. The commands for this part compute the
sample mean T" of the T;. Copy and paste the output into Word. Is T" close
to BOLS found in a)?

d) The commands for this part bootstrap the forward selection using the
residual bootstrap. Copy and paste the output into Word. The output shows
T7 = PBy,,..0, for j=1,...,5. The last two variables may have a few 0s.

e) B =1000 T'; were generated. The commands for this part compute the
sample mean T" of the T where T} is as in d). Copy and paste the output
into Word. Is T~ close to B8=(1,1,0,0)?

2.18. This simulation is similar to that used to form Table 2.2, but 1000
runs are used so coverage in [0.93,0.97] suggests that the actual coverage is
close to the nominal coverage of 0.95.

The model is Y = 278 + e = 2L B4 + e where Bg = (81, B2, .., Bry1)T =
(B1,82)T and k = 1 is the number of active nontrivial predictors in the popu-
lation model. The output for test tests Ho : (Bk+2, -, Bp)T = (B3, .., Bp)T =0
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and Hj is true. The output gives the proportion of times the prediction region
method bootstrap test fails to reject Hy. The nominal proportion is 0.95.

After getting your output, make a table similar to Table 2.2 with 4 lines.
If your p = 5 then you need to add a column for (5. Two lines are for reg
(the OLS full model) and two lines are for vs (forward selection with Ipy).
The f; columns give the coverage and lengths of the 95% ClIs for g;. If the
coverage > 0.93, then the shorter CI length is more precise. Were the Cls
for forward selection more precise than the CIs for the OLS full model for 33
and (47

To get the output, copy and paste the source commands from
(http://parker.ad.siu.edu/Olive/slrhw.txt) into R. Copy and past the library
command for this problem into R.

If you are person j then copy and paste the R code for person j for this
problem into R.

2.19. This problem is like Problem 3.19, but ridge regression is used in-
stead of forward selection. This simulation is similar to that used to form
Table 2.2, but 100 runs are used so coverage in [0.89,1.0] suggests that the
actual coverage is close to the nominal coverage of 0.95.

The model is Y = 278 + e = L B4 + e where Bg = (81, B2, .., Bry1)T =
(B1,82)T and k = 1 is the number of active nontrivial predictors in the popu-
lation model. The output for test tests Ho : (Bk+2, -, Bp)T = (B3, .., Bp)T =0
and Hj is true. The output gives the proportion of times the prediction region
method bootstrap test fails to reject Hyg. The nominal proportion is 0.95.

After getting your output, make a table similar to Table 2.2 with 4 lines.
If your p = 5 then you need to add a column for (5. Two lines are for reg
(the OLS full model) and two lines are for ridge regression (with 10 fold CV).
The f; columns give the coverage and lengths of the 95% ClIs for §;. If the
coverage > 0.89, then the shorter CI length is more precise. Were the Cls for
ridge regression more precise than the Cls for the OLS full model for 83 and
B4?

To get the output, copy and paste the source commands from
(http://parker.ad.siu.edu/Olive/slrhw.txt) into R. Copy and past the library
command for this problem into R.

If you are person j then copy and paste the R code for person j for this
problem into R.

2.20. This is like Problem 2.19, except lasso is used. If you are person j in
Problem 2.19, then copy and paste the R code for person j for this problem
into R. Make a table with 4 lines: two for OLS and 2 for lasso. Were the Cls
for lasso more precise than the Cls for the OLS full model for 83 and (47



