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Preface

Many statistics departments offer a one semester graduate course in high
dimensional statistics using texts such as Biilmann and van de Geer (2011),
Giraud (2022), Lederer (2022), or Wainwright (2019). Statistical learning
texts are also used. See Hastie et al. (2009), Hastie et al. (2015), and James
et al. (2021). Also see Fujikoshi, Ulyanov, and Shimizu (2010), Koch (2014),
Olive (2023¢), and Rish and Grabarnik (2015).

High dimensional statistics are used when n < 5p where n is the sample size
and p is the number of predictors p. Consider the multiple linear regression
model Y; = a—i—:cl-T,B—l-el- =a+zab+ -+ TipBy +e; fori=1,...,n. Let
the full model use all p predictors with 8 = Bp. In low dimensions where
n > 10p, often /n(B — B) 2 N, (0, %) where X is estimated by 3 = 520"
where the errors e; have variance V(E;) = 02 and where the inverse matrix

C ! does not exist if p > n. Much of the high dimensional literature seeks
bounds on the Euclidean norm ||3 — B||. However, if 3 is a \/n consistent
estimator of By, then B; — 3; is proportional to 1/y/n. Hence |3 — 8|2 is
proportional to p/n which tends to be large when p >> n. Similar results
hold for estimators 6 of 8 for statistical models that depend on a p x 1 vector
of parameters 6. Often the high dimensional literature imposes regularity
conditions, that are much too strong, to force HBF — Br| to be small as
both n and p — co.

This text uses large sample theory = asymptotic theory to justify many
of the methods used in the test. Several dimension reduction techniques are
used. One technique is to use data splitting and variable selection to choose
a model I with k£ predictors where n > 10k, and then apply the standard
low dimensional inference on the resulting model. This changes the high di-
mensional problem into a low dimensional problem. Sometimes we use the
strong assumption that the cases (z;,Y;)” are independent and identically
distributed (iid). Then variable selection methods often work because the con-
ditional distribution Y|z¥ 3; has much more information than the marginal
distribution for Y.
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A second technique is to use large sample theory such that /n(6 — 6) 5
1

N,(0, X)) where X is estimated by 3 = C where the inverse matrix C
is not used. Then tests and confidence intervals for quantities that only use
a few of the parameters, such as 6; or 6; — 6, can be derived. Hence low
dimensional quantities are tested.

A third technique is to replace 8 by the norm ||@|| or 8; — 03 by the norm
|61 — 03], reducing the p-dimensional problem of testing Hy : & = 0 or
Hy : 6; = 62 to the one-dimensional problem of testing Hy : ||@]] = 0 or
HO . H01 - 02” =0.

The prerequisite for this text is a calculus based course in statistics at
the level of Chihara and Hesterberg (2011), Hogg, Tanis, and Zimmerman
(2020), Larsen and Marx (2011), Wackerly, Mendenhall and Scheaffer (2008)
or Walpole, Myers, Myers and Ye (2016). Linear algebra and one computer
programming class are essential. Knowledge of regression would be useful.
See Olive (2017a) and Cook and Weisberg (1999). Knowledge of multivariate
analysis would be useful. See Olive (2017b) and Johnson and Wichern (2007).

Some highlights of this text follow.

e Prediction intervals are given that can be useful even if n < p.

e The response plot is useful for checking the model.

e The large sample theory for the elastic net, lasso, and ridge regression is
greatly simplified.

e The large sample theory for some data splitting estimators, variable selec-
tion estimators, marginal maximum likelihood estimators, and one com-
ponent partial least squares will be given. See Olive and Zhang (2023),
Olive et al. (2024), and Rathnayake and Olive (2023).

Downloading the book’s R functions slpack.txt and data files si-
data.txt into R: The commands

source ("http://parker.ad.siu.edu/Olive/hdpack.txt")
source ("http://parker.ad.siu.edu/Olive/hddata.txt")

The R software is used in this text. See R Core Team (2020). Some packages
used in the text include glmnet Friedman et al. (2015), leaps Lumley
(2009), MASS Venables and Ripley (2010), and pls Mevik et al. (2015).
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Chapter 1
Introduction

This chapter provides a preview of the book, and some techniques useful
for visualizing data in the background of the data are given in Section 1.2.
Sections 1.3 and 1.7 review the multivariate normal distribution and multiple
linear regression. Section 1.4 suggests methods for outlier detection. Some
large sample theory is presented in Section 1.5, and Section 1.6 covers mixture
distributions.

1.1 Overview

Statistical Learning could be defined as the statistical analysis of multivari-
ate data. Machine learning, data mining, analytics, business analytics, data
analytics, and predictive analytics are synonymous terms. The techniques are
useful for Data Science and Statistics, the science of extracting information
from data. The R software will be used. See R Core Team (2020).

Let 2z = (21,..., z)7 where 2, ..., z; are k random variables. Often z =
(Y, 2T)T where &7 = (z1,...,x,) is the vector of predictors and Y is the
variable of interest, called a response variable. Predictor variables are also
called independent variables, covariates, or features. The response variable
is also called the dependent variable. Usually context will be used to decide
whether z is a random vector or the observed random vector.

Definition 1.1. A case or observation consists of £ random variables

measured for one person or thing. The ith case z; = (21,..., zir). The
training data consists of zi,...,2z,. A statistical model or method is fit
(trained) on the training data. The test data consists of 2,11, ..., Zn4+m, and

the test data is often used to evaluate the quality of the fitted model.

Following James et al. (2013, p. 30), the previously unseen test data is not
used to train the Statistical Learning method, but interest is in how well the
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method performs on the test data. If the training data is (1, Y1), ..., (xn, Yn),
and the previously unseen test data is (xf, Yy), then particular interest is in
the accuracy of the estimator Yj of Yy obtained when the Statistical Learning
method is applied to the predictor ;. The two Pelawa Watagoda and Olive
(2021b) prediction intervals, developed in Section 2.2, will be tools for eval-
uating Statistical Learning methods for the additive error regression model
Y: = m(x;) + e; = E(Y;|x;) +e; for i = 1,...,n where E(W) is the expected
value of the random variable W. The multiple linear regression (MLR) model,
Yi=01i+ 2280+ +xp0p +e = 2”3 + e, is an important special case.
Olive, Rathnayake, and Haile (2022) give prediction intervals for paramet-
ric regression models such as generalized linear models (GLMs), generalized
additive models (GAMs), and some survival regression models.

The estimator Yj is a prediction if the response variable Y} is continuous,
as occurs in regression models. If Y} is categorical, then fﬁ is a classification.
For example, if Yy can be 0 or 1, then xy is classified to belong to group i if
fﬁ:ifori:Oor 1.

Following Marden (2006, pp. 5,6), the focus of supervised learning is pre-
dicting a future value of the response variable Yy given x; and the training
data (Y1,@1), ..., (Y, @1). Hence the focus is not on hypothesis testing, con-
fidence intervals, parameter estimation, or which model fits best, although
these four inference topics can be useful for better prediction. The focus
of unsupervised learning is to group 1, ..., x, into clusters. Data mining is
looking for relationships in large data sets.

Notation: Typically lower case boldface letters such as  denote column
vectors, while upper case boldface letters such as S or Y are used for ma-
trices or column vectors. If context is not enough to determine whether y
is a random vector or an observed random vector, then Y = (Y7,...,Y,)T
may be used for the random vector, and y = (yi,...,y,)" for the observed
value of the random vector. An upper case letter such as Y will usually be a
random variable. A lower case letter such as x; will also often be a random
variable. An exception to this notation is the generic multivariate location
and dispersion estimator (T, C) where the location estimator T is a p x 1
vector such as T'==. C is a p X p dispersion estimator and conforms to the
above notation.

The main focus of the first three chapters is developing tools to analyze
the multiple linear regression (MLR) model Y; = X8 +¢; for i = 1,...,n.
Classical regression techniques use (ordinary) least squares (OLS) and assume
n >> p, but Statistical Learning methods often give useful results if p >> n.
OLS forward selection, lasso, ridge regression, marginal maximum likelihood
(MMLE), one component partial least squares (OPLS), the elastic net, partial
least squares (PLS), and principal component regression (PCR) will be some
of the techniques examined. See Chapter 3.



