
Chapter 10

Some Useful Distributions

Definition 10.1. The population median is any value MED(Y ) such that

P (Y ≤ MED(Y )) ≥ 0.5 and P (Y ≥ MED(Y )) ≥ 0.5. (10.1)

Definition 10.2. The population median absolute deviation is

MAD(Y ) = MED(|Y − MED(Y )|). (10.2)

Finding MED(Y ) and MAD(Y ) for symmetric distributions and location–
scale families is made easier by the following lemma. Let F (yα) = P (Y ≤
yα) = α for 0 < α < 1 where the cdf F (y) = P (Y ≤ y). Let D = MAD(Y ),
M = MED(Y ) = y0.5 and U = y0.75.

Lemma 10.1. a) If W = a + bY, then MED(W ) = a + bMED(Y ) and
MAD(W ) = |b|MAD(Y ).

b) If Y has a pdf that is continuous and positive on its support and
symmetric about µ, then MED(Y ) = µ and MAD(Y ) = y0.75 − MED(Y ).
Find M = MED(Y ) by solving the equation F (M) = 0.5 for M , and find U
by solving F (U) = 0.75 for U . Then D = MAD(Y ) = U −M.

c) Suppose that W is from a location–scale family with standard pdf
fY (y) that is continuous and positive on its support. Then W = µ + σY
where σ > 0. First find M by solving FY (M) = 0.5. After finding M , find
D by solving FY (M + D) − FY (M − D) = 0.5. Then MED(W ) = µ + σM
and MAD(W ) = σD.
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Definition 10.3. The gamma function Γ(x) =
∫∞

0
tx−1e−tdt for x > 0.

Some properties of the gamma function follow.
i) Γ(k) = (k − 1)! for integer k ≥ 1.
ii) Γ(x + 1) = x Γ(x) for x > 0.
iii) Γ(x) = (x− 1) Γ(x− 1) for x > 1.
iv) Γ(0.5) =

√
π.

Some lower case Greek letters are alpha: α, beta: β, gamma: γ, delta: δ,
epsilon: ε, zeta: ζ, eta: η, theta: θ, iota: ι, kappa: κ, lambda: λ, mu: µ, nu:
ν, xi: ξ, omicron: o, pi: π, rho: ρ, sigma: σ, upsilon: υ, phi: φ, chi: χ, psi:
ψ and omega: ω.

Some capital Greek letters are gamma: Γ, theta: Θ, sigma: Σ and phi:
Φ.

For the discrete uniform and geometric distributions, the following facts
on series are useful.

Lemma 10.2. Let n, n1 and n2 be integers with n1 ≤ n2, and let a be a
constant. Notice that

∑n2

i=n1
ai = n2 − n1 + 1 if a = 1.

a)
n2
∑

i=n1

ai =
an1 − an2+1

1 − a
, a 6= 1.

b)
∞
∑

i=0

ai =
1

1 − a
, |a| < 1.

c)

∞
∑

i=1

ai =
a

1 − a
, |a| < 1.

d)
∞
∑

i=n1

ai =
an1

1 − a
, |a| < 1.

e)
n
∑

i=1

i =
n(n + 1)

2
.

f)

n
∑

i=1

i2 =
n(n+ 1)(2n + 1)

6
.
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See Gabel and Roberts (1980, p. 473-476) for the proof of a)–d).
For the special case of 0 ≤ n1 ≤ n2, notice that

n2
∑

i=0

ai =
1 − an2+1

1 − a
, a 6= 1.

To see this, multiply both sides by (1 − a). Then

(1 − a)
n2
∑

i=0

ai = (1 − a)(1 + a + a2 + · · · + an2−1 + an2) =

1 + a + a2 + · · · + an2−1 + an2

−a− a2 − · · · − an2 − an2+1

= 1 − an2+1 and the result follows. Hence for a 6= 1,

n2
∑

i=n1

ai =
n2
∑

i=0

ai −
n1−1
∑

i=0

ai =
1 − an2+1

1 − a
− 1 − an1

1 − a
=
an1 − an2+1

1 − a
.

The binomial theorem below is sometimes useful.

Theorem 10.3, The Binomial Theorem. For any real numbers x and
y and for any integer n ≥ 0,

(x+ y)n =

n
∑

i=0

(

n

i

)

xiyn−i = (y + x)n =

n
∑

i=0

(

n

i

)

yixn−i.

10.1 The Beta Distribution

If Y has a beta distribution, Y ∼ beta(δ, ν), then the probability density
function (pdf) of Y is

f(y) =
Γ(δ + ν)

Γ(δ)Γ(ν)
yδ−1(1 − y)ν−1

where δ > 0, ν > 0 and 0 ≤ y ≤ 1.

E(Y ) =
δ

δ + ν
.
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VAR(Y ) =
δν

(δ + ν)2(δ + ν + 1)
.

Notice that

f(y) =
Γ(δ + ν)

Γ(δ)Γ(ν)
I[0,1](y) exp[(δ − 1) log(y) + (ν − 1) log(1 − y)]

is a 2P–REF. Hence Θ = (0,∞) × (0,∞), η1 = δ − 1, η2 = ν − 1 and
Ω = (−1,∞) × (−1,∞).

If δ = 1, then W = − log(1 − Y ) ∼ EXP(1/ν). Hence Tn =
−∑ log(1 − Yi) ∼ G(n, 1/ν) and if r > −n then T rn is the UMVUE of

E(T rn) =
1

νr
Γ(r + n)

Γ(n)
.

If ν = 1, then W = − log(Y ) ∼ EXP(1/δ). Hence Tn = −
∑

log(Yi) ∼
G(n, 1/δ) and and if r > −n then T rn is the UMVUE of

E(T rn) =
1

δr
Γ(r + n)

Γ(n)
.

10.2 The Beta–Binomial Distribution

If Y has a beta–binomial distribution, Y ∼ BB(m, ρ, θ), then the probability
mass function of Y is

P (Y = y) =

(

m

y

)

B(δ + y, ν +m− y)

B(δ, ν)

for y = 0, 1, 2, ..., m where 0 < ρ < 1 and θ > 0. Here δ = ρ/θ and ν =
(1 − ρ)/θ, so ρ = δ/(δ + ν) and θ = 1/(δ + ν). Also

B(δ, ν) =
Γ(δ)Γ(ν)

Γ(δ + ν)
.

Hence δ > 0 and ν > 0. Then E(Y ) = mδ/(δ + ν) = mρ and V(Y ) =
mρ(1−ρ)[1+(m−1)θ/(1+ θ)]. If Y |π ∼ binomial(m, π) and π ∼ beta(δ, ν),
then Y ∼ BB(m, ρ, θ).
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10.3 The Bernoulli and Binomial Distribu-

tions

If Y has a binomial distribution, Y ∼ BIN(k, ρ), then the probability mass
function (pmf) of Y is

f(y) = P (Y = y) =

(

k

y

)

ρy(1 − ρ)k−y

for y = 0, 1, . . . , k where 0 < ρ < 1.
If ρ = 0, P (Y = 0) = 1 = (1 − ρ)k while if ρ = 1, P (Y = k) = 1 = ρk.
The moment generating function

m(t) = [(1 − ρ) + ρet]k,

and the characteristic function c(t) = [(1 − ρ) + ρeit]k.

E(Y ) = kρ.

VAR(Y ) = kρ(1 − ρ).

The Bernoulli (ρ) distribution is the binomial (k = 1, ρ) distribution.
Pourahmadi (1995) showed that the moments of a binomial (k, ρ) random

variable can be found recursively. If r ≥ 1 is an integer,
(

0
0

)

= 1 and the last
term below is 0 for r = 1, then

E(Y r) = kρ
r−1
∑

i=0

(

r − 1

i

)

E(Y i) − ρ
r−2
∑

i=0

(

r − 1

i

)

E(Y i+1).

The following normal approximation is often used.

Y ≈ N(kρ, kρ(1 − ρ))

when kρ(1 − ρ) > 9. Hence

P (Y ≤ y) ≈ Φ

(

y + 0.5 − kρ
√

kρ(1 − ρ)

)

.

Also

P (Y = y) ≈ 1
√

kρ(1 − ρ)

1√
2π

exp

(

−1

2

(y − kρ)2

kρ(1 − ρ)

)

.
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See Johnson, Kotz and Kemp (1992, p. 115). This approximation suggests
that MED(Y ) ≈ kρ, and MAD(Y ) ≈ 0.674

√

kρ(1 − ρ). Hamza (1995) states
that |E(Y ) −MED(Y )| ≤ max(ρ, 1 − ρ) and shows that

|E(Y ) − MED(Y )| ≤ log(2).

If k is large and kρ small, then Y ≈ Poisson(kρ).
If Y1, ..., Yn are independent BIN(ki, ρ) then

∑n
i=1 Yi ∼ BIN(

∑n
i=1 ki, ρ).

Notice that

f(y) =

(

k

y

)

(1 − ρ)k exp

[

log(
ρ

1 − ρ
)y

]

is a 1P–REF in ρ if k is known. Thus Θ = (0, 1),

η = log

(

ρ

1 − ρ

)

and Ω = (−∞,∞).
Assume that Y1, ..., Yn are iid BIN(k, ρ), then

Tn =
n
∑

i=1

Yi ∼ BIN(nk, ρ).

If k is known, then the likelihood

L(ρ) = c ρ
Pn

i=1
yi (1 − ρ)nk−

Pn
i=1

yi ,

and the log likelihood

log(L(ρ)) = d+ log(ρ)

n
∑

i=1

yi + (nk −
n
∑

i=1

yi) log(1 − ρ).

Hence
d

dρ
log(L(ρ)) =

∑n
i=1 yi
ρ

+
nk −∑n

i=1 yi
1 − ρ

(−1)
set
= 0,

or (1 − ρ)
∑n

i=1 yi = ρ(nk −∑n
i=1 yi), or

∑n
i=1 yi = ρnk or

ρ̂ =
n
∑

i=1

yi/(nk).
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This solution is unique and

d2

dρ2
log(L(ρ)) =

−
∑n

i=1 yi
ρ2

− nk −
∑n

i=1 yi
(1 − ρ)2

< 0

if 0 <
∑n

i=1 yi < nk. Hence kρ̂ = Y is the UMVUE, MLE and MME of kρ if
k is known.

Let ρ̂ = number of “successes”/n and let P (Z ≤ z1−α/2) = 1 − α/2 if
Z ∼ N(0, 1). Let ñ = n+ z2

1−α/2 and

ρ̃ =
nρ̂+ 0.5z2

1−α/2
n + z2

1−α/2
.

Then the large sample 100 (1 − α)% Agresti Coull CI for ρ is

p̃± z1−α/2

√

ρ̃(1 − ρ̃)

ñ
.

Let W =
∑n

i=1 Yi ∼ bin(
∑n

i=1 ki, ρ) and let nw =
∑n

i=1 ki. Often ki ≡ 1
and then nw = n. Let P (Fd1,d2 ≤ Fd1,d2(α)) = α where Fd1,d2 has an F
distribution with d1 and d2 degrees of freedom. Then the Clopper Pearson
“exact” 100 (1 − α)% CI for ρ is

(

0,
1

1 + nw F2nw,2(α)

)

for W = 0,

(

nw
nw + F2,2nw(1 − α)

, 1

)

for W = nw,

and (ρL, ρU) for 0 < W < nw with

ρL =
W

W + (nw −W + 1)F2(nw−W+1),2W (1 − α/2)

and

ρU =
W + 1

W + 1 + (nw −W )F2(nw−W ),2(W+1)(α/2)
.

280



10.4 The Burr Distribution

If Y has a Burr distribution, Y ∼ Burr(φ, λ), then the pdf of Y is

f(y) =
1

λ

φyφ−1

(1 + yφ)
1

λ
+1

where y, φ, and λ are all positive.
The cdf of Y is

F (y) = 1 − exp

[− log(1 + yφ)

λ

]

= 1 − (1 + yφ)−1/λ for y > 0.

MED(Y ) = [eλ log(2) − 1]1/φ.
See Patel, Kapadia and Owen (1976, p. 195).
W = log(1 + Y φ) is EXP(λ).

Notice that

f(y) =
1

λ
φyφ−1 1

1 + yφ
exp

[

−1

λ
log(1 + yφ)

]

I(y > 0)

is a one parameter exponential family if φ is known.
If Y1, ..., Yn are iid Burr(λ, φ), then

Tn =
n
∑

i=1

log(1 + Y φ
i ) ∼ G(n, λ).

If φ is known, then the likelihood

L(λ) = c
1

λn
exp

[

−1

λ

n
∑

i=1

log(1 + yφi )

]

,

and the log likelihood log(L(λ)) = d− n log(λ) − 1
λ

∑n
i=1 log(1 + yφi ). Hence

d

dλ
log(L(λ)) =

−n
λ

+

∑n
i=1 log(1 + yφi )

λ2

set
= 0,

or
∑n

i=1 log(1 + yφi ) = nλ or

λ̂ =

∑n
i=1 log(1 + yφi )

n
.
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This solution is unique and

d2

dλ2
log(L(λ)) =

n

λ2
− 2

∑n
i=1 log(1 + yφi )

λ2

∣

∣

∣

∣

∣

λ=λ̂

=
n

λ̂2
− 2nλ̂

λ̂3
=

−n
λ̂2

< 0.

Thus

λ̂ =

∑n
i=1 log(1 + Y φ

i )

n
is the UMVUE and MLE of λ if φ is known.

If φ is known and r > −n, then T rn is the UMVUE of

E(T rn) = λr
Γ(r + n)

Γ(n)
.

10.5 The Cauchy Distribution

If Y has a Cauchy distribution, Y ∼ C(µ, σ), then the pdf of Y is

f(y) =
σ

π

1

σ2 + (y − µ)2
=

1

πσ[1 + (y−µ
σ

)2]

where y and µ are real numbers and σ > 0.
The cumulative distribution function (cdf) of Y is

F (y) =
1

π
[arctan(

y − µ

σ
) + π/2].

See Ferguson (1967, p. 102). This family is a location–scale family that is
symmetric about µ.

The moments of Y do not exist, but the characteristic function of Y is

c(t) = exp(itµ− |t|σ).

MED(Y ) = µ, the upper quartile = µ + σ, and the lower quartile = µ− σ.
MAD(Y ) = F−1(3/4) − MED(Y ) = σ.
If Y1, ..., Yn are independent C(µi, σi), then

n
∑

i=1

aiYi ∼ C(
n
∑

i=1

aiµi,
n
∑

i=1

|ai|σi).

In particular, if Y1, ..., Yn are iid C(µ, σ), then Y ∼ C(µ, σ).
If W ∼ U(−π/2, π/2), then Y = tan(W ) ∼ C(0, 1).
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10.6 The Chi Distribution

If Y has a chi distribution (also called a p–dimensional Rayleigh distribution),
Y ∼ chi(p, σ), then the pdf of Y is

f(y) =
yp−1e

−1

2σ2 y
2

σp2
p

2
−1Γ(p/2)

where y ≥ 0 and σ, p > 0. This is a scale family if p is known.

E(Y ) = σ
√

2
Γ(1+p

2
)

Γ(p/2)
.

VAR(Y ) = 2σ2





Γ(2+p
2

)

Γ(p/2)
−
(

Γ(1+p
2

)

Γ(p/2)

)2


 ,

and

E(Y r) = 2r/2σr
Γ( r+p

2
)

Γ(p/2)

for r > −p.
The mode is at σ

√
p− 1 for p ≥ 1. See Cohen and Whitten (1988, ch. 10).

Note that W = Y 2 ∼ G(p/2, 2σ2).
Y ∼ generalized gamma (ν = p/2, λ = σ

√
2, φ = 2).

If p = 1, then Y has a half normal distribution, Y ∼ HN(0, σ2).
If p = 2, then Y has a Rayleigh distribution, Y ∼ R(0, σ).
If p = 3, then Y has a Maxwell–Boltzmann distribution (also known as a
Boltzmann distribution or a Maxwell distribution), Y ∼ MB (0, σ).
If p is an integer and Y ∼ chi(p, 1), then Y 2 ∼ χ2

p.
Since

f(y) =
1

2
p

2
−1Γ(p/2)σp

I(y > 0) exp[(p− 1) log(y)− 1

2σ2
y2],

this family appears to be a 2P–REF. Notice that Θ = (0,∞) × (0,∞),
η1 = p− 1, η2 = −1/(2σ2), and Ω = (−1,∞) × (−∞, 0).

If p is known then

f(y) =
yp−1

2
p

2
−1Γ(p/2)

I(y > 0)
1

σp
exp

[−1

2σ2
y2

]
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appears to be a 1P–REF.
If Y1, ..., Yn are iid chi(p, σ), then

Tn =
n
∑

i=1

Y 2
i ∼ G(np/2, 2σ2).

If p is known, then the likelihood

L(σ2) = c
1

σnp
exp[

−1

2σ2

n
∑

i=1

y2
i ],

and the log likelihood

log(L(σ2)) = d− np

2
log(σ2) − 1

2σ2

n
∑

i=1

y2
i .

Hence
d

d(σ2)
log(σ2) =

−np
2σ2

+
1

2(σ2)2

n
∑

i=1

y2
i
set
= 0,

or
∑n

i=1 y
2
i = npσ2 or

σ̂2 =

∑n
i=1 y

2
i

np
.

This solution is unique and

d2

d(σ2)2
log(L(σ2)) =

np

2(σ2)2
−
∑n

i=1 y
2
i

(σ2)3

∣

∣

∣

∣

σ2=σ̂2

=
np

2(σ̂2)2
− npσ̂

(σ̂2)3

2

2
=

−np
2(σ̂2)2

< 0.

Thus σ̂2

σ̂2 =

∑n
i=1 Y

2
i

np

is the UMVUE and MLE of σ2 when p is known.
If p is known and r > −np/2, then T rn is the UMVUE of

E(T rn) =
2rσ2rΓ(r + np/2)

Γ(np/2)
.
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10.7 The Chi–square Distribution

If Y has a chi–square distribution, Y ∼ χ2
p, then the pdf of Y is

f(y) =
y

p

2
−1e−

y

2

2
p

2 Γ(p
2
)

where y ≥ 0 and p is a positive integer.
The mgf of Y is

m(t) =

(

1

1 − 2t

)p/2

= (1 − 2t)−p/2

for t < 1/2. The characteristic function

c(t) =

(

1

1 − i2t

)p/2

.

E(Y ) = p.
VAR(Y ) = 2p.
Since Y is gamma G(ν = p/2, λ = 2),

E(Y r) =
2rΓ(r + p/2)

Γ(p/2)
, r > −p/2.

MED(Y ) ≈ p−2/3. See Pratt (1968, p. 1470) for more terms in the expansion
of MED(Y ).
Empirically,

MAD(Y ) ≈
√

2p

1.483
(1 − 2

9p
)2 ≈ 0.9536

√
p.

There are several normal approximations for this distribution. The Wilson–
Hilferty approximation is

(

Y

p

)1

3

≈ N(1 − 2

9p
,

2

9p
).

See Bowman and Shenton (1992, p. 6). This approximation gives

P (Y ≤ x) ≈ Φ[((
x

p
)1/3 − 1 + 2/9p)

√

9p/2],
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and

χ2
p,α ≈ p(zα

√

2

9p
+ 1 − 2

9p
)3

where zα is the standard normal percentile, α = Φ(zα). The last approxima-
tion is good if p > −1.24 log(α). See Kennedy and Gentle (1980, p. 118).

This family is a one parameter exponential family, but is not a REF since
the set of integers does not contain an open interval.

10.8 The Discrete Uniform Distribution

If Y has a discrete uniform distribution, Y ∼ DU(θ1, θ2), then the pmf of Y
is

f(y) = P (Y = y) =
1

θ2 − θ1 + 1

for θ1 ≤ y ≤ θ2 where y and the θi are integers. Let θ2 = θ1 + τ − 1 where
τ = θ2 − θ1 + 1.

The cdf for Y is

F (y) =
byc − θ1 + 1

θ2 − θ1 + 1

for θ1 ≤ y ≤ θ2. Here byc is the greatest integer function, eg, b7.7c = 7. This
result holds since for θ1 ≤ y ≤ θ2,

F (y) =

byc
∑

i=θ1

1

θ2 − θ1 + 1
.

E(Y ) = (θ1 + θ2)/2 = θ1 + (τ − 1)/2 while V (Y ) = (τ 2 − 1)/12.
The result for E(Y ) follows by symmetry, or because

E(Y ) =
θ2
∑

y=θ1

y

θ2 − θ1 + 1
=
θ1(θ2 − θ1 + 1) + [0 + 1 + 2 + · · · + (θ2 − θ1)]

θ2 − θ1 + 1

where last equality follows by adding and subtracting θ1 to y for each of the
θ2 − θ1 + 1 terms in the middle sum. Thus

E(Y ) = θ1 +
(θ2 − θ1)(θ2 − θ1 + 1)

2(θ2 − θ1 + 1)
=

2θ1

2
+
θ2 − θ1

2
=
θ1 + θ2

2

since
∑n

i=1 i = n(n+ 1)/2 by Lemma 10.2e with n = θ2 − θ1.
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To see the result for V (Y ), let W = Y − θ1 +1. Then V (Y ) = V (W ) and
f(w) = 1/τ for w = 1, ..., τ . Hence W ∼ DU(1, τ ),

E(W ) =
1

τ

τ
∑

i=1

w =
τ (τ + 1)

2τ
=

1 + τ

2
,

and

E(W ) =
1

τ

τ
∑

i=1

w2 =
τ (τ + 1)(2τ + 1)

6τ
=

(τ + 1)(2τ + 1)

6

by Lemma 10.2. So

V (Y ) = V (W ) = E(W 2) − (E(W ))2 =
(τ + 1)(2τ + 1)

6
−
(

1 + τ

2

)2

=

2(τ + 1)(2τ + 1) − 3(τ + 1)2

12
=

2(τ + 1)[2(τ + 1) − 1] − 3(τ + 1)2

12
=

4(τ + 1)2 − 2(τ + 1) − 3(τ + 1)2

12
=

(τ + 1)2 − 2τ − 2

12
=

τ 2 + 2τ + 1 − 2τ − 2

12
=
τ 2 − 1

12
.

Let Z be the set of integers and let Y1, ..., Yn be iid DU(θ1, θ2). Then the
likelihood function L(θ1, θ2) =

1

(θ2 − θ1 + 1)n
I(θ1 ≤ Y(1))I(θ2 ≥ Y(n))I(θ1 ≤ θ2)I(θ1 ∈ Z)I(θ2 ∈ Z)

is maximized by making θ2−θ1−1 as small as possible where integers θ2 ≥ θ1.
So need θ2 as small as possible and θ1 as large as possible, and the MLE of
(θ1, θ2) is (Y(1), Y(n)).

10.9 The Double Exponential Distribution

If Y has a double exponential distribution (or Laplace distribution), Y ∼
DE(θ, λ), then the pdf of Y is

f(y) =
1

2λ
exp

(−|y − θ|
λ

)
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where y is real and λ > 0.
The cdf of Y is

F (y) = 0.5 exp

(

y − θ

λ

)

if y ≤ θ,

and

F (y) = 1 − 0.5 exp

(−(y − θ)

λ

)

if y ≥ θ.

This family is a location–scale family which is symmetric about θ.
The mgf

m(t) = exp(θt)/(1 − λ2t2)

for |t| < 1/λ,
and the characteristic function c(t) = exp(θit)/(1 + λ2t2).
E(Y ) = θ, and
MED(Y ) = θ.
VAR(Y ) = 2λ2, and
MAD(Y ) = log(2)λ ≈ 0.693λ.
Hence λ = MAD(Y )/ log(2) ≈ 1.443MAD(Y ).
To see that MAD(Y ) = λ log(2), note that F (θ+λ log(2)) = 1−0.25 = 0.75.

The maximum likelihood estimators are θ̂MLE = MED(n) and

λ̂MLE =
1

n

n
∑

i=1

|Yi − MED(n)|.

A 100(1 − α)% confidence interval (CI) for λ is

(

2
∑n

i=1 |Yi −MED(n)|
χ2

2n−1,1−α
2

,
2
∑n

i=1 |Yi −MED(n)|
χ2

2n−1,α
2

)

,

and a 100(1 − α)% CI for θ is



MED(n) ± z1−α/2
∑n

i=1 |Yi −MED(n)|
n
√

n − z2
1−α/2





where χ2
p,α and zα are the α percentiles of the χ2

p and standard normal dis-
tributions, respectively. See Patel, Kapadia and Owen (1976, p. 194).
W = |Y − θ| ∼ EXP(λ).
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Notice that

f(y) =
1

2λ
exp

[−1

λ
|y − θ|

]

is a one parameter exponential family in λ if θ is known.
If Y1, ..., Yn are iid DE(θ, λ) then

Tn =

n
∑

i=1

|Yi − θ| ∼ G(n, λ).

If θ is known, then the likelihood

L(λ) = c
1

λn
exp

[

−1

λ

n
∑

i=1

|yi − θ|
]

,

and the log likelihood

log(L(λ)) = d− n log(λ) − 1

λ

n
∑

i=1

|yi − θ|.

Hence
d

dλ
log(L(λ)) =

−n
λ

+
1

λ2

n
∑

i=1

|yi − θ| set= 0

or
∑n

i=1 |yi − θ| = nλ or

λ̂ =

∑n
i=1 |yi − θ|

n
.

This solution is unique and

d2

dλ2
log(L(λ)) =

n

λ2
− 2

∑n
i=1 |yi − θ|
λ3

∣

∣

∣

∣

λ=λ̂

=
n

λ̂2
− 2nλ̂

λ̂3
=

−n
λ̂2

< 0.

Thus

λ̂ =

∑n
i=1 |Yi − θ|

n

is the UMVUE and MLE of λ if θ is known.
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10.10 The Exponential Distribution

If Y has an exponential distribution, Y ∼ EXP(λ), then the pdf of Y is

f(y) =
1

λ
exp (

−y
λ

) I(y ≥ 0)

where λ > 0.
The cdf of Y is

F (y) = 1 − exp(−y/λ), y ≥ 0.

This distribution is a scale family with scale parameter λ.
The mgf

m(t) = 1/(1 − λt)

for t < 1/λ, and the characteristic function c(t) = 1/(1 − iλt).
E(Y ) = λ,
and VAR(Y ) = λ2.
W = 2Y/λ ∼ χ2

2.
Since Y is gamma G(ν = 1, λ), E(Y r) = λΓ(r + 1) for r > −1.

MED(Y ) = log(2)λ and
MAD(Y ) ≈ λ/2.0781 since it can be shown that

exp(MAD(Y )/λ) = 1 + exp(−MAD(Y )/λ).

Hence 2.0781 MAD(Y ) ≈ λ.
The classical estimator is λ̂ = Y n and the 100(1 − α)% CI for E(Y ) = λ

is
(

2
∑n

i=1 Yi
χ2

2n,1−α
2

,
2
∑n

i=1 Yi
χ2

2n,α
2

)

where P (Y ≤ χ2
2n,α

2

) = α/2 if Y is χ2
2n. See Patel, Kapadia and Owen (1976,

p. 188).
Notice that

f(y) =
1

λ
I(y ≥ 0) exp

[−1

λ
y

]

is a 1P–REF. Hence Θ = (0,∞), η = −1/λ and Ω = (−∞, 0).
Suppose that Y1, ..., Yn are iid EXP(λ), then

Tn =
n
∑

i=1

Yi ∼ G(n, λ).
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The likelihood

L(λ) =
1

λn
exp

[

−1

λ

n
∑

i=1

yi

]

,

and the log likelihood

log(L(λ)) = −n log(λ) − 1

λ

n
∑

i=1

yi.

Hence
d

dλ
log(L(λ)) =

−n
λ

+
1

λ2

n
∑

i=1

yi
set
= 0,

or
∑n

i=1 yi = nλ or

λ̂ = y.

Since this solution is unique and

d2

dλ2
log(L(λ)) =

n

λ2
− 2

∑n
i=1 yi
λ3

∣

∣

∣

∣

λ=λ̂

=
n

λ̂2
− 2nλ̂

λ̂3
=

−n
λ̂2

< 0,

the λ̂ = Y is the UMVUE, MLE and MME of λ.
If r > −n, then T rn is the UMVUE of

E(T rn) =
λrΓ(r + n)

Γ(n)
.

10.11 The Two Parameter Exponential Dis-

tribution

If Y has a 2 parameter exponential distribution, Y ∼ EXP(θ, λ) then the pdf
of Y is

f(y) =
1

λ
exp

(−(y − θ)

λ

)

I(y ≥ θ)

where λ > 0 and θ is real.
The cdf of Y is

F (y) = 1 − exp[−(y − θ)/λ)], y ≥ θ.
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This family is an asymmetric location-scale family.
The mgf

m(t) = exp(tθ)/(1 − λt)

for t < 1/λ, and
the characteristic function c(t) = exp(itθ)/(1 − iλt).
E(Y ) = θ + λ,
and VAR(Y ) = λ2.

MED(Y ) = θ + λ log(2)

and
MAD(Y ) ≈ λ/2.0781.

Hence θ ≈ MED(Y ) − 2.0781 log(2)MAD(Y ). See Rousseeuw and Croux
(1993) for similar results. Note that 2.0781 log(2) ≈ 1.44.

To see that 2.0781MAD(Y ) ≈ λ, note that

0.5 =

∫ θ+λ log(2)+MAD

θ+λ log(2)−MAD

1

λ
exp(−(y − θ)/λ)dy

= 0.5[−e−MAD/λ + eMAD/λ]

assuming λ log(2) > MAD. Plug in MAD = λ/2.0781 to get the result.
If θ is known, then

f(y) = I(y ≥ θ)
1

λ
exp

[−1

λ
(y − θ)

]

is a 1P–REF in λ. Notice that Y − θ ∼ EXP (λ). Let

λ̂ =

∑n
i=1(Yi − θ)

n
.

Then λ̂ is the UMVUE and MLE of λ if θ is known.
If Y1, ..., Yn are iid EXP(θ, λ), then the likelihood

L(θ, λ) =
1

λn
exp

[

−1

λ

n
∑

i=1

(yi − θ)

]

I(y(1) ≥ θ),
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and the log likelihood

log(L(θ, λ)) = [−n log(λ) − 1

λ

n
∑

i=1

(yi − θ)]I(y(1) ≥ θ).

For any fixed λ > 0, the log likelihood is maximized by maximizing θ. Hence
θ̂ = Y(1), and the profile log likelihood is

log(L(λ|y(1))) = −n log(λ) − 1

λ

n
∑

i=1

(yi − y(1))

is maximized by λ̂ = 1
n

∑n
i=1(yi − y(1)). Hence the MLE

(θ̂, λ̂) =

(

Y(1),
1

n

n
∑

i=1

(Yi − Y(1))

)

= (Y(1), Y − Y(1)).

Let Dn =
∑n

i=1(Yi − Y(1)) = nλ̂. Then for n ≥ 2,

(

2Dn

χ2
2(n−1),1−α/2

,
2Dn

χ2
2(n−1),α/2

)

(10.3)

is a 100(1 − α)% CI for λ, while

(Y(1) − λ̂[(α)−1/(n−1) − 1], Y(1)) (10.4)

is a 100 (1 − α)% CI for θ. See Mann, Schafer, and Singpurwalla (1974, p.
176).

If θ is known and Tn =
∑n

i=1(Yi − θ), then a 100(1 − α)% CI for λ is

(

2Tn
χ2

2n,1−α/2
,

2Tn
χ2

2n,α/2

)

. (10.5)

10.12 The F Distribution

If Y has an F distribution, Y ∼ F (ν1, ν2), then the pdf of Y is

f(y) =
Γ(ν1+ν2

2
)

Γ(ν1/2)Γ(ν2/2)

(

ν1

ν2

)ν1/2 y(ν1−2)/2

(

1 + (ν1
ν2

)y
)(ν1+ν2)/2
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where y > 0 and ν1 and ν2 are positive integers.

E(Y ) =
ν2

ν2 − 2
, ν2 > 2

and

VAR(Y ) = 2

(

ν2

ν2 − 2

)2
(ν1 + ν2 − 2)

ν1(ν2 − 4)
, ν2 > 4.

E(Y r) =
Γ(ν1+2r

2
)Γ(ν2−2r

2
)

Γ(ν1/2)Γ(ν2/2)

(

ν2

ν1

)r

, r < ν2/2.

Suppose that X1 and X2 are independent where X1 ∼ χ2
ν1

and X2 ∼ χ2
ν2
.

Then

W =
(X1/ν1)

(X2/ν2)
∼ F (ν1, ν2).

Notice that E(Y r) = E(W r) =
(

ν2
ν1

)r

E(Xr
1)W (X−r

2 ).

If W ∼ tν, then Y = W 2 ∼ F (1, ν).

10.13 The Gamma Distribution

If Y has a gamma distribution, Y ∼ G(ν, λ), then the pdf of Y is

f(y) =
yν−1e−y/λ

λνΓ(ν)

where ν, λ, and y are positive.
The mgf of Y is

m(t) =

(

1/λ
1
λ
− t

)ν

=

(

1

1 − λt

)ν

for t < 1/λ. The characteristic function

c(t) =

(

1

1 − iλt

)ν

.

E(Y ) = νλ.
VAR(Y ) = νλ2.

E(Y r) =
λrΓ(r + ν)

Γ(ν)
if r > −ν. (10.6)
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Chen and Rubin (1986) show that λ(ν − 1/3) < MED(Y ) < λν = E(Y ).
Empirically, for ν > 3/2,

MED(Y ) ≈ λ(ν − 1/3),

and

MAD(Y ) ≈ λ
√
ν

1.483
.

This family is a scale family for fixed ν, so if Y is G(ν, λ) then cY is G(ν, cλ)
for c > 0. If W is EXP(λ) then W is G(1, λ). If W is χ2

p, then W is G(p/2, 2).
Some classical estimators are given next. Let

w = log

[

yn
geometric mean(n)

]

where geometric mean(n) = (y1y2 . . . yn)
1/n = exp[ 1

n

∑n
i=1 log(yi)].Then Thom’s

estimator (Johnson and Kotz 1970a, p. 188) is

ν̂ ≈ 0.25(1 +
√

1 + 4w/3 )

w
.

Also

ν̂MLE ≈ 0.5000876 + 0.1648852w − 0.0544274w2

w
for 0 < w ≤ 0.5772, and

ν̂MLE ≈ 8.898919 + 9.059950w + 0.9775374w2

w(17.79728 + 11.968477w + w2)

for 0.5772 < w ≤ 17. If W > 17 then estimation is much more difficult, but
a rough approximation is ν̂ ≈ 1/w for w > 17. See Bowman and Shenton
(1988, p. 46) and Greenwood and Durand (1960). Finally, λ̂ = Y n/ν̂. Notice
that β̂ may not be very good if ν̂ < 1/17.

Several normal approximations are available. The Wilson–Hilferty ap-
proximation says that for ν > 0.5,

Y 1/3 ≈ N

(

(νλ)1/3(1 − 1

9ν
), (νλ)2/3 1

9ν

)

.

Hence if Y is G(ν, λ) and

α = P [Y ≤ Gα],
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then

Gα ≈ νλ

[

zα

√

1

9ν
+ 1 − 1

9ν

]3

where zα is the standard normal percentile, α = Φ(zα). Bowman and Shenton
(1988, p. 101) include higher order terms.

Notice that

f(y) =
1

λνΓ(ν)
I(y > 0) exp

[−1

λ
y + (ν − 1) log(y)

]

is a 2P–REF. Hence Θ = (0,∞) × (0,∞), η1 = −1/λ, η2 = ν − 1 and
Ω = (−∞, 0) × (−1,∞).

If Y1, ..., Yn are independent G(νi, λ) then
∑n

i=1 Yi ∼ G(
∑n

i=1 νi, λ).
If Y1, ..., Yn are iid G(ν, λ), then

Tn =
n
∑

i=1

Yi ∼ G(nν, λ).

Since

f(y) =
1

Γ(ν)
exp[(ν − 1) log(y)]I(y > 0)

1

λν
exp

[−1

λ
y

]

,

Y is a 1P–REF when ν is known.
If ν is known, then the likelihood

L(β) = c
1

λnν
exp

[

−1

λ

n
∑

i=1

yi

]

.

The log likelihood

log(L(λ)) = d− nν log(λ) − 1

λ

n
∑

i=1

yi.

Hence
d

dλ
log(L(λ)) =

−nν
λ

+

∑n
i=1 yi
λ2

set
= 0,

or
∑n

i=1 yi = nνλ or

λ̂ = y/ν.
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This solution is unique and

d2

dλ2
log(L(λ)) =

nν

λ2
− 2

∑n
i=1 yi
λ3

∣

∣

∣

∣

λ=λ̂

=
nν

λ̂2
− 2nνλ̂

λ̂3
=

−nν
λ̂2

< 0.

Thus Y is the UMVUE, MLE and MME of νλ if ν is known.

10.14 The Generalized Gamma Distribution

If Y has a generalized gamma distribution, Y ∼ GG(ν, λ, φ), then the pdf of
Y is

f(y) =
φyφν−1

λφνΓ(ν)
exp(−yφ/λφ)

where ν, λ, φ and y are positive.
This family is a scale family with scale parameter λ if φ and ν are known.

E(Y k) =
λkΓ(ν + k

φ
)

Γ(ν)
if k > −φν. (10.7)

If φ and ν are known, then

f(y) =
φyφν−1

Γ(ν)
I(y > 0)

1

λφν
exp

[−1

λφ
yφ
]

,

which is a one parameter exponential family.
Notice that W = Y φ ∼ G(ν, λφ). If Y1, ..., Yn are iid GG(ν, λ, φ) where φ

and ν are known, then Tn =
∑n

i=1 Y
φ
i ∼ G(nν, λφ), and T rn is the UMVUE

of

E(T rn) = λφr
Γ(r + nν)

Γ(nν)

for r > −nν.

10.15 The Generalized Negative Binomial Dis-

tribution

If Y has a generalized negative binomial distribution, Y ∼ GNB(µ, κ), then
the pmf of Y is

f(y) = P (Y = y) =
Γ(y + κ)

Γ(κ)Γ(y + 1)

(

κ

µ+ κ

)κ(

1 − κ

µ+ κ

)y
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for y = 0, 1, 2, ... where µ > 0 and κ > 0. This distribution is a generalization
of the negative binomial (κ, ρ) distribution with ρ = κ/(µ + κ) and κ > 0 is
an unknown real parameter rather than a known integer.

The mgf is

m(t) =

[

κ

κ+ µ(1 − et)

]κ

for t < − log(µ/(µ + κ)).
E(Y ) = µ and
VAR(Y ) = µ + µ2/κ.

If Y1, ..., Yn are iid GNB(µ, κ), then
∑n

i=1 Yi ∼ GNB(nµ, nκ).
When κ is known, this distribution is a 1P–REF. If Y1, ..., Yn are iid

GNB(µ, κ) where κ is known, then µ̂ = Y is the MLE, UMVUE and MME
of µ.

10.16 The Geometric Distribution

If Y has a geometric distribution, Y ∼ geom(ρ) then the pmf of Y is

f(y) = P (Y = y) = ρ(1 − ρ)y

for y = 0, 1, 2, ... and 0 < ρ < 1.
The cdf for Y is F (y) = 1 − (1 − ρ)byc+1 for y ≥ 0 and F (y) = 0 for y < 0.

Here byc is the greatest integer function, eg, b7.7c = 7. To see this, note that
for y ≥ 0,

F (y) = ρ

byc
∑

i=0

(1 − ρ)y = ρ
1 − (1 − ρ)byc+1

1 − (1 − ρ)

by Lemma 10.2a with n1 = 0, n2 = byc and a = 1 − ρ.
E(Y ) = (1 − ρ)/ρ.
VAR(Y ) = (1 − ρ)/ρ2.
Y ∼ NB(1, ρ).
Hence the mgf of Y is

m(t) =
ρ

1 − (1 − ρ)et

for t < − log(1 − ρ).
Notice that

f(y) = ρ exp[log(1 − ρ)y]
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is a 1P–REF. Hence Θ = (0, 1), η = log(1 − ρ) and Ω = (−∞, 0).
If Y1, ..., Yn are iid geom(ρ), then

Tn =

n
∑

i=1

Yi ∼ NB(n, ρ).

The likelihood

L(ρ) = ρn exp[log(1 − ρ)
n
∑

i=1

yi],

and the log likelihood

log(L(ρ)) = n log(ρ) + log(1 − ρ)

n
∑

i=1

yi.

Hence
d

dρ
log(L(ρ)) =

n

ρ
− 1

1 − ρ

n
∑

i=1

yi
set
= 0

or n(1 − ρ)/ρ =
∑n

i=1 yi or n− nρ− ρ
∑n

i=1 yi = 0 or

ρ̂ =
n

n +
∑n

i=1 yi
.

This solution is unique and

d2

dρ2
log(L(ρ)) =

−n
ρ2

−
∑n

i=1 yi
(1 − ρ)2

< 0.

Thus
ρ̂ =

n

n+
∑n

i=1 Yi

is the MLE of ρ.
The UMVUE, MLE and MME of (1 − ρ)/ρ is Y .

10.17 The Gompertz Distribution

If Y has a Gompertz distribution, Y ∼ Gomp(θ, ν), then the pdf of Y is

f(y) = νeθy exp
[ν

θ
(1 − eθy)

]
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for θ 6= 0 where ν > 0 and y > 0. The parameter θ is real, and the
Gomp(θ = 0, ν) distribution is the exponential (1/ν) distribution. The cdf is

F (y) = 1 − exp
[ν

θ
(1 − eθy)

]

for θ 6= 0 and y > 0. For fixed θ this distribution is a scale family with scale
parameter 1/ν.

10.18 The Half Cauchy Distribution

If Y has a half Cauchy distribution, Y ∼ HC(µ, σ), then the pdf of Y is

f(y) =
2

πσ[1 + (y−µ
σ

)2]

where y ≥ µ, µ is a real number and σ > 0. The cdf of Y is

F (y) =
2

π
arctan(

y − µ

σ
)

for y ≥ µ and is 0, otherwise. This distribution is a right skewed location-
scale family.

MED(Y ) = µ+ σ.
MAD(Y ) = 0.73205σ.

10.19 The Half Logistic Distribution

If Y has a half logistic distribution, Y ∼ HL(µ, σ), then the pdf of Y is

f(y) =
2 exp (−(y − µ)/σ)

σ[1 + exp (−(y − µ)/σ)]2

where σ > 0, y ≥ µ and µ are real. The cdf of Y is

F (y) =
exp[(y − µ)/σ] − 1

1 + exp[(y − µ)/σ)]

for y ≥ µ and 0 otherwise. This family is a right skewed location–scale family.
MED(Y ) = µ+ log(3)σ.
MAD(Y ) = 0.67346σ.
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10.20 The Half Normal Distribution

If Y has a half normal distribution, Y ∼ HN(µ, σ2), then the pdf of Y is

f(y) =
2√

2π σ
exp (

−(y − µ)2

2σ2
)

where σ > 0 and y ≥ µ and µ is real. Let Φ(y) denote the standard normal
cdf. Then the cdf of Y is

F (y) = 2Φ(
y − µ

σ
) − 1

for y > µ and F (y) = 0, otherwise.
E(Y ) = µ+ σ

√

2/π ≈ µ + 0.797885σ.

VAR(Y ) =
σ2(π − 2)

π
≈ 0.363380σ2 .

This is an asymmetric location–scale family that has the same distribution
as µ + σ|Z| where Z ∼ N(0, 1). Note that Z2 ∼ χ2

1. Hence the formula for
the rth moment of the χ2

1 random variable can be used to find the moments
of Y .

MED(Y ) = µ+ 0.6745σ.
MAD(Y ) = 0.3990916σ.
Notice that

f(y) =
2√

2π σ
I(y ≥ µ) exp

[

(
−1

2σ2
)(y − µ)2

]

is a 1P–REF if µ is known. Hence Θ = (0,∞), η = −1/(2σ2) and Ω =
(−∞, 0).

W = (Y − µ)2 ∼ G(1/2, 2σ2).
If Y1, ..., Yn are iid HN(µ, σ2), then

Tn =
n
∑

i=1

(Yi − µ)2 ∼ G(n/2, 2σ2).

If µ is known, then the likelihood

L(σ2) = c
1

σn
− exp

[

(
−1

2σ2
)

n
∑

i=1

(yi − µ)2

]

,
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and the log likelihood

log(L(σ2)) = d− n

2
log(σ2) − 1

2σ2

n
∑

i=1

(yi − µ)2.

Hence
d

d(σ2)
log(L(σ2)) =

−n
2(σ2)

+
1

2(σ2)2

n
∑

i=1

(yi − µ)2 set
= 0,

or
∑n

i=1(yi − µ)2 = nσ2 or

σ̂2 =
1

n

n
∑

i=1

(yi − µ)2.

This solution is unique and

d2

d(σ2)2
log(L(σ2)) =

n

2(σ2)2
−
∑n

i=1(yi − µ)2

(σ2)3

∣

∣

∣

∣

σ2=σ̂2

=
n

2(σ̂2)2
− nσ̂2

(σ̂2)3

2

2
=

−n
2σ̂2

< 0.

Thus

σ̂2 =
1

n

n
∑

i=1

(Yi − µ)2

is the UMVUE and MLE of σ2 if µ is known.
If r > −n/2 and if µ is known, then T rn is the UMVUE of

E(T rn) = 2rσ2rΓ(r + n/2)/Γ(n/2).

Example 5.3 shows that (µ̂, σ̂2) = (Y(1),
1
n

∑n
i=1(Yi − Y(1))

2) is MLE of
(µ, σ2). Following Pewsey (2002), a large sample 100(1 − α)% confidence
interval for σ2 is

(

nσ̂2

χ2
n−1(1 − α/2)

,
nσ̂2

χ2
n−1(α/2)

)

(10.8)

while a large sample 100(1 − α)% CI for µ is

(µ̂ + σ̂ log(α) Φ−1(
1

2
+

1

2n
) (1 + 13/n2), µ̂). (10.9)

If µ is known, then a 100(1 − α)% CI for σ2 is
(

Tn
χ2
n(1 − α/2)

,
Tn

χ2
n(α/2)

)

. (10.10)
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10.21 The Hypergeometric Distribution

If Y has a hypergeometric distribution, Y ∼ HG(C,N−C, n), then the data
set contains N objects of two types. There are C objects of the first type
(that you wish to count) and N−C objects of the second type. Suppose that
n objects are selected at random without replacement from the N objects.
Then Y counts the number of the n selected objects that were of the first
type. The pmf of Y is

f(y) = P (Y = y) =

(

C
y

)(

N−C
n−y
)

(

N
n

)

where the integer y satisfies max(0, n−N + C) ≤ y ≤ min(n, C). The right
inequality is true since if n objects are selected, then the number of objects
y of the first type must be less than or equal to both n and C . The first
inequality holds since n − y counts the number of objects of second type.
Hence n− y ≤ N − C .

Let p = C/N. Then

E(Y ) =
nC

N
= np

and

VAR(Y ) =
nC(N − C)

N2

N − n

N − 1
= np(1 − p)

N − n

N − 1
.

If n is small compared to both C and N −C then Y ≈ BIN(n, p). If n is
large but n is small compared to both C and N−C then Y ≈ N(np, np(1−p)).

10.22 The Inverse Gaussian Distribution

If Y has an inverse Gaussian distribution, Y ∼ IG(θ, λ), then the pdf of Y is

f(y) =

√

λ

2πy3
exp

[−λ(y − θ)2

2θ2y

]

where y, θ, λ > 0.
The mgf is

m(t) = exp

[

λ

θ

(

1 −
√

1 − 2θ2t

λ

)]
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for t < λ/(2θ2). See Datta (2005) and Schwarz and Samanta (1991) for
additional properties.

The characteristic function is

φ(t) = exp

[

λ

θ

(

1 −
√

1 − 2θ2it

λ

)]

.

E(Y ) = θ and

VAR(Y ) =
θ3

λ
.

Notice that

f(y) =

√

λ

2π
eλ/θ

√

1

y3
I(y > 0) exp

[−λ
2θ2

y − λ

2

1

y

]

is a two parameter exponential family.
If Y1, ..., Yn are iid IG(θ, λ), then

n
∑

i=1

Yi ∼ IG(nθ, n2λ) and Y ∼ IG(θ, nλ).

If λ is known, then the likelihood

L(θ) = c enλ/θ exp[
−λ
2θ2

n
∑

i=1

yi],

and the log likelihood

log(L(θ)) = d +
nλ

θ
− λ

2θ2

n
∑

i=1

yi.

Hence
d

dθ
log(L(θ)) =

−nλ
θ2

+
λ

θ3

n
∑

i=1

yi
set
= 0,

or
∑n

i=1 yi = nθ or

θ̂ = y.

This solution is unique and

d2

dθ2
log(L(θ)) =

2nλ

θ3
− 3λ

∑n
i=1 yi
θ4

∣

∣

∣

∣

θ=θ̂

=
2nλ

θ̂3
− 3nλθ̂

θ̂4
=

−nλ
θ̂3

< 0.
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Thus Y is the UMVUE, MLE and MME of θ if λ is known.
If θ is known, then the likelihood

L(λ) = c λn/2 exp

[

−λ
2θ2

n
∑

i=1

(yi − θ)2

yi

]

,

and the log likelihood

log(L(λ)) = d+
n

2
log(λ) − λ

2θ2

n
∑

i=1

(yi − θ)2

yi
.

Hence
d

dλ
log(L(λ)) =

n

2λ
− 1

2θ2

n
∑

i=1

(yi − θ)2

yi

set
= 0

or

λ̂ =
nθ2

∑n
i=1

(yi−θ)2
yi

.

This solution is unique and

d2

dλ2
log(L(λ)) =

−n
2λ2

< 0.

Thus

λ̂ =
nθ2

∑n
i=1

(Yi−θ)2
Yi

is the MLE of λ if θ is known.

Another parameterization of the inverse Gaussian distribution takes θ =
√

λ/ψ so that

f(y) =

√

λ

2π
e
√
λψ

√

1

y3
I [y > 0] exp

[−ψ
2
y − λ

2

1

y

]

,

where λ > 0 and ψ ≥ 0. Here Θ = (0,∞) × [0,∞), η1 = −ψ/2, η2 = −λ/2
and Ω = (−∞, 0]×(−∞, 0). Since Ω is not an open set, this is a 2 parameter

full exponential family that is not regular. If ψ is known then Y is a
1P–REF, but if λ is known the Y is a one parameter full exponential family.
When ψ = 0, Y has a one sided stable distribution with index 1/2. See
Barndorff–Nielsen (1978, p. 117).
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10.23 The Inverted Gamma Distribution

If Y has an inverted gamma distribution, Y ∼ INV G(ν, λ), then the pdf of
Y is

f(y) =
1

yν+1Γ(ν)
I(y > 0)

1

λν
exp

(−1

λ

1

y

)

where λ, ν and y are all positive. It can be shown that W = 1/Y ∼ G(ν, λ).
This family is a scale family with scale parameter τ = 1/λ if ν is known.

If ν is known, this family is a 1 parameter exponential family. If Y1, ..., Yn
are iid INVG(ν, λ) and ν is known, then Tn =

∑n
i=1

1
Yi

∼ G(nν, λ) and T rn is
the UMVUE of

λr
Γ(r + nν)

Γ(nν)

for r > −nν.

10.24 The Largest Extreme Value Distribu-

tion

If Y has a largest extreme value distribution (or Gumbel distribution), Y ∼
LEV (θ, σ), then the pdf of Y is

f(y) =
1

σ
exp(−(

y − θ

σ
)) exp[− exp(−(

y − θ

σ
))]

where y and θ are real and σ > 0. The cdf of Y is

F (y) = exp[− exp(−(
y − θ

σ
))].

This family is an asymmetric location–scale family with a mode at θ.
The mgf

m(t) = exp(tθ)Γ(1 − σt)

for |t| < 1/σ.
E(Y ) ≈ θ + 0.57721σ, and
VAR(Y ) = σ2π2/6 ≈ 1.64493σ2.

MED(Y ) = θ − σ log(log(2)) ≈ θ + 0.36651σ
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and
MAD(Y ) ≈ 0.767049σ.

W = exp(−(Y − θ)/σ) ∼ EXP(1).
Notice that

f(y) =
1

σ
eθ/σe−y/σ exp

[

−eθ/σe−y/σ
]

is a one parameter exponential family in θ if σ is known.
If Y1, ..., Yn are iid LEV(θ, σ) where σ is known, then the likelihood

L(σ) = c enθ/σ exp[−eθ/σ
n
∑

i=1

e−yi/σ],

and the log likelihood

log(L(θ)) = d+
nθ

σ
− eθ/σ

n
∑

i=1

e−yi/σ.

Hence
d

dθ
log(L(θ)) =

n

σ
− eθ/σ

1

σ

n
∑

i=1

e−yi/σ set
= 0,

or

eθ/σ
n
∑

i=1

e−yi/σ = n,

or
eθ/σ =

n
∑n

i=1 e
−yi/σ

,

or

θ̂ = log

(

n
∑n

i=1 e
−yi/σ

)

.

Since this solution is unique and

d2

dθ2
log(L(θ)) =

−1

σ2
eθ/σ

n
∑

i=1

e−yi/σ < 0,

θ̂ = log

(

n
∑n

i=1 e
−Yi/σ

)

is the MLE of θ.
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10.25 The Logarithmic Distribution

If Y has a logarithmic distribution, then the pmf of Y is

f(y) = P (Y = y) =
−1

log(1 − θ)

θy

y

for y = 1, 2, ... and 0 < θ < 1. This distribution is sometimes called the
logarithmic series distribution or the log-series distribution.

The mgf

m(t) =
log(1 − θet)

log(1 − θ)

for t < − log(θ).

E(Y ) =
−1

log(1 − θ)

θ

1 − θ
.

Notice that

f(y) =
−1

log(1 − θ)

1

y
exp(log(θ)y)

is a 1P–REF. Hence Θ = (0, 1), η = log(θ) and Ω = (−∞, 0).
If Y1, ..., Yn are iid logarithmic (θ), then Y is the UMVUE of E(Y ).

10.26 The Logistic Distribution

If Y has a logistic distribution, Y ∼ L(µ, σ), then the pdf of Y is

f(y) =
exp (−(y − µ)/σ)

σ[1 + exp (−(y − µ)/σ)]2

where σ > 0 and y and µ are real.
The characteristic function of Y is

F (y) =
1

1 + exp (−(y − µ)/σ)
=

exp ((y − µ)/σ)

1 + exp ((y − µ)/σ)
.

This family is a symmetric location–scale family.
The mgf of Y is m(t) = πσteµt csc(πσt) for |t| < 1/σ, and
the chf is c(t) = πiσteiµt csc(πiσt) where csc(t) is the cosecant of t.
E(Y ) = µ, and
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MED(Y ) = µ.
VAR(Y ) = σ2π2/3, and
MAD(Y ) = log(3)σ ≈ 1.0986 σ.
Hence σ = MAD(Y )/ log(3).

The estimators µ̂ = Y n and S2 = 1
n−1

∑n
i=1(Yi−Y n)

2 are sometimes used.
Note that if

q = FL(0,1)(c) =
ec

1 + ec
then c = log(

q

1 − q
).

Taking q = .9995 gives c = log(1999) ≈ 7.6.
To see that MAD(Y ) = log(3)σ, note that F (µ+ log(3)σ) = 0.75,
F (µ− log(3)σ) = 0.25, and 0.75 = exp (log(3))/(1 + exp(log(3))).

10.27 The Log-Cauchy Distribution

If Y has a log–Cauchy distribution, Y ∼ LC(µ, σ), then the pdf of Y is

f(y) =
1

πσy[1 + ( log(y)−µ
σ

)2]

where y > 0, σ > 0 and µ is a real number. This family is a scale family with
scale parameter τ = eµ if σ is known. It can be shown that W = log(Y ) has
a Cauchy(µ, σ) distribution.

10.28 The Log-Logistic Distribution

If Y has a log–logistic distribution, Y ∼ LL(φ, τ ), then the pdf of Y is

f(y) =
φτ (φy)τ−1

[1 + (φy)τ ]2

where y > 0, φ > 0 and τ > 0. The cdf of Y is

F (y) = 1 − 1

1 + (φy)τ

for y > 0. This family is a scale family with scale parameter φ−1 if τ is
known.
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MED(Y ) = 1/φ.
It can be shown that W = log(Y ) has a logistic(µ = − log(φ), σ = 1/τ )

distribution. Hence φ = e−µ and τ = 1/σ. Kalbfleisch and Prentice (1980,
p. 27-28) suggest that the log-logistic distribution is a competitor of the
lognormal distribution.

10.29 The Lognormal Distribution

If Y has a lognormal distribution, Y ∼ LN(µ, σ2), then the pdf of Y is

f(y) =
1

y
√

2πσ2
exp

(−(log(y) − µ)2

2σ2

)

where y > 0 and σ > 0 and µ is real.
The cdf of Y is

F (y) = Φ

(

log(y)− µ

σ

)

for y > 0

where Φ(y) is the standard normal N(0,1) cdf.
This family is a scale family with scale parameter τ = eµ if σ2 is known.

E(Y ) = exp(µ+ σ2/2)

and
VAR(Y ) = exp(σ2)(exp(σ2) − 1) exp(2µ).

For any r,
E(Y r) = exp(rµ + r2σ2/2).

MED(Y ) = exp(µ) and
exp(µ)[1 − exp(−0.6744σ)] ≤ MAD(Y ) ≤ exp(µ)[1 + exp(0.6744σ)].

Notice that

f(y) =
1√
2π

1

σ
exp(

−µ2

2σ2
)
1

y
I(y ≥ 0) exp

[−1

2σ2
(log(y))2 +

µ

σ2
log(y)

]

is a 2P–REF. Hence Θ = (−∞,∞)× (0,∞), η1 = −1/(2σ2), η2 = µ/σ2 and
Ω = (−∞, 0) × (−∞,∞).

Note that W = log(Y ) ∼ N(µ, σ2).
Notice that

f(y) =
1√
2π

1

σ

1

y
I(y ≥ 0) exp

[−1

2σ2
(log(y)− µ)2

]
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is a 1P–REF if µ is known,.
If Y1, ..., Yn are iid LN(µ, σ2) where µ is known, then the likelihood

L(σ2) = c
1

σn
exp

[

−1

2σ2

n
∑

i=1

(log(yi) − µ)2

]

,

and the log likelihood

log(L(σ2)) = d − n

2
log(σ2) − 1

2σ2

n
∑

i=1

(log(yi) − µ)2.

Hence

d

d(σ2)
log(L(σ2)) =

−n
2σ2

+
1

2(σ2)2

n
∑

i=1

(log(yi) − µ)2 set
= 0,

or
∑n

i=1(log(yi) − µ)2 = nσ2 or

σ̂2 =

∑n
i=1(log(yi) − µ)2

n
.

Since this solution is unique and

d2

d(σ2)2
log(L(σ2)) =

n

2(σ2)2
−
∑n

i=1(log(yi) − µ)2

(σ2)3

∣

∣

∣

∣

σ2=σ̂2

=
n

2(σ̂2)2
− nσ̂2

(σ̂2)3

2

2
=

−n
2(σ̂2)2

< 0,

σ̂2 =

∑n
i=1(log(Yi) − µ)2

n

is the UMVUE and MLE of σ2 if µ is known.
Since Tn =

∑n
i=1[log(Yi)−µ]2 ∼ G(n/2, 2σ2), if µ is known and r > −n/2

then T rn is UMVUE of

E(T rn) = 2rσ2rΓ(r + n/2)

Γ(n/2)
.

If σ2 is known,

f(y) =
1√
2π

1

σ

1

y
I(y ≥ 0) exp(

−1

2σ2
(log(y))2) exp(

−µ2

2σ2
) exp

[ µ

σ2
log(y)

]
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is a 1P–REF.
If Y1, ..., Yn are iid LN(µ, σ2), where σ2 is known, then the likelihood

L(µ) = c exp(
−nµ2

2σ2
) exp

[

µ

σ2

n
∑

i=1

log(yi)

]

,

and the log likelihood

log(L(µ)) = d− nµ2

2σ2
+

µ

σ2

n
∑

i=1

log(yi).

Hence
d

dµ
log(L(µ)) =

−2nµ

2σ2
+

∑n
i=1 log(yi)

σ2

set
= 0,

or
∑n

i=1 log(yi) = nµ or

µ̂ =

∑n
i=1 log(yi)

n
.

This solution is unique and

d2

dµ2
log(L(µ)) =

−n
σ2

< 0.

Since Tn =
∑n

i=1 log(Yi) ∼ N(nµ, nσ2),

µ̂ =

∑n
i=1 log(Yi)

n

is the UMVUE and MLE of µ if σ2 is known.
When neither µ nor σ are known, the log likelihood

log(L(σ2)) = d − n

2
log(σ2) − 1

2σ2

n
∑

i=1

(log(yi) − µ)2.

Let wi = log(yi) then the log likelihood is

log(L(σ2)) = d − n

2
log(σ2) − 1

2σ2

n
∑

i=1

(wi − µ)2,

312



which has the same form as the normal N(µ, σ2) log likelihood. Hence the
MLE

(µ̂, σ̂) =





1

n

n
∑

i=1

Wi,

√

√

√

√

1

n

n
∑

i=1

(Wi −W )2



 .

Hence inference for µ and σ is simple. Use the fact that Wi = log(Yi) ∼
N(µ, σ2) and then perform the corresponding normal based inference on the
Wi. For example, a the classical (1−α)100% CI for µ when σ is unknown is

(W n − tn−1,1−α
2

SW√
n
,W n + tn−1,1−α

2

SW√
n

)

where

SW =
n

n − 1
σ̂ =

√

√

√

√

1

n − 1

n
∑

i=1

(Wi −W )2,

and P (t ≤ tn−1,1−α
2
) = 1 − α/2 when t is from a t distribution with n − 1

degrees of freedom. Compare Meeker and Escobar (1998, p. 175).

10.30 The Maxwell-Boltzmann Distribution

If Y has a Maxwell–Boltzmann distribution, Y ∼MB(µ, σ), then the pdf of
Y is

f(y) =

√
2(y − µ)2e

−1

2σ2 (y−µ)2

σ3
√
π

where µ is real, y ≥ µ and σ > 0. This is a location–scale family.

E(Y ) = µ+ σ
√

2
1

Γ(3/2)
= µ+ σ

2
√

2√
π
.

VAR(Y ) = 2σ2

[

Γ(5
2
)

Γ(3/2)
−
(

1

Γ(3/2)

)2
]

= σ2

(

3 − 8

π

)

.

MED(Y ) = µ+ 1.5381722σ and MAD(Y ) = 0.460244σ.
This distribution a one parameter exponential family when µ is known.
Note that W = (Y − µ)2 ∼ G(3/2, 2σ2).
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If Z ∼MB(0, σ), then Z ∼ chi(p = 3, σ), and

E(Zr) = 2r/2σr
Γ( r+3

2
)

Γ(3/2)

for r > −3.
The mode of Z is at σ

√
2.

10.31 The Negative Binomial Distribution

If Y has a negative binomial distribution (also called the Pascal distribution),
Y ∼ NB(r, ρ), then the pmf of Y is

f(y) = P (Y = y) =

(

r + y − 1

y

)

ρr(1 − ρ)y

for y = 0, 1, . . . where 0 < ρ < 1.
The moment generating function

m(t) =

[

ρ

1 − (1 − ρ)et

]r

for t < − log(1 − ρ).
E(Y ) = r(1 − ρ)/ρ, and

VAR(Y ) =
r(1 − ρ)

ρ2
.

Notice that

f(y) = ρr
(

r + y − 1

y

)

exp[log(1 − ρ)y]

is a 1P–REF in ρ for known r. Thus Θ = (0, 1), η = log(1 − ρ) and
Ω = (−∞, 0).

If Y1, ..., Yn are independent NB(ri, ρ), then

n
∑

i=1

Yi ∼ NB(
n
∑

i=1

ri, ρ).
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If Y1, ..., Yn are iid NB(r, ρ), then

Tn =
n
∑

i=1

Yi ∼ NB(nr, ρ).

If r is known, then the likelihood

L(p) = c ρnr exp[log(1 − ρ)
n
∑

i=1

yi],

and the log likelihood

log(L(ρ)) = d+ nr log(ρ) + log(1 − ρ)

n
∑

i=1

yi.

Hence
d

dρ
log(L(ρ)) =

nr

ρ
− 1

1 − ρ

n
∑

i=1

yi
set
= 0,

or
1 − ρ

ρ
nr =

n
∑

i=1

yi,

or nr − ρnr − ρ
∑n

i=1 yi = 0 or

ρ̂ =
nr

nr +
∑n

i=1 yi
.

This solution is unique and

d2

dρ2
log(L(ρ)) =

−nr
ρ2

− 1

(1 − ρ)2

n
∑

i=1

yi < 0.

Thus
ρ̂ =

nr

nr +
∑n

i=1 Yi

is the MLE of ρ if r is known.
Notice that Y is the UMVUE, MLE and MME of r(1−ρ)/ρ if r is known.
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10.32 The Normal Distribution

If Y has a normal distribution (or Gaussian distribution), Y ∼ N(µ, σ2),
then the pdf of Y is

f(y) =
1√

2πσ2
exp

(−(y − µ)2

2σ2

)

where σ > 0 and µ and y are real.
Let Φ(y) denote the standard normal cdf. Recall that Φ(y) = 1 − Φ(−y).
The cdf F (y) of Y does not have a closed form, but

F (y) = Φ

(

y − µ

σ

)

,

and
Φ(y) ≈ 0.5(1 +

√

1 − exp(−2y2/π) )

for y ≥ 0. See Johnson and Kotz (1970a, p. 57).
The moment generating function is

m(t) = exp(tµ+ t2σ2/2).

The characteristic function is c(t) = exp(itµ− t2σ2/2).
E(Y ) = µ and
VAR(Y ) = σ2.

E[|Y − µ|r] = σr
2r/2Γ((r + 1)/2)√

π
for r > −1.

If k ≥ 2 is an integer, then E(Y k) = (k − 1)σ2E(Y k−2) + µE(Y k−1). See
Stein (1981) and Casella and Berger (2002, p. 125).
MED(Y ) = µ and

MAD(Y ) = Φ−1(0.75)σ ≈ 0.6745σ.

Hence σ = [Φ−1(0.75)]−1MAD(Y ) ≈ 1.483MAD(Y ).
This family is a location–scale family which is symmetric about µ.

Suggested estimators are

Y n = µ̂ =
1

n

n
∑

i=1

Yi and S2 = S2
Y =

1

n− 1

n
∑

i=1

(Yi − Y n)
2.
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The classical (1 − α)100% CI for µ when σ is unknown is

(Y n − tn−1,1−α
2

SY√
n
, Y n + tn−1,1−α

2

SY√
n

)

where P (t ≤ tn−1,1−α
2
) = 1 − α/2 when t is from a t distribution with n− 1

degrees of freedom.
If α = Φ(zα), then

zα ≈ m− co + c1m+ c2m
2

1 + d1m+ d2m2 + d3m3

where
m = [−2 log(1 − α)]1/2,

c0 = 2.515517, c1 = 0.802853, c2 = 0.010328, d1 = 1.432788, d2 = 0.189269,
d3 = 0.001308, and 0.5 ≤ α. For 0 < α < 0.5,

zα = −z1−α.

See Kennedy and Gentle (1980, p. 95).
To see that MAD(Y ) = Φ−1(0.75)σ, note that 3/4 = F (µ+ MAD) since

Y is symmetric about µ. However,

F (y) = Φ

(

y − µ

σ

)

and
3

4
= Φ

(

µ+ Φ−1(3/4)σ − µ

σ

)

.

So µ+ MAD = µ + Φ−1(3/4)σ. Cancel µ from both sides to get the result.
Notice that

f(y) =
1√

2πσ2
exp(

−µ2

2σ2
) exp

[−1

2σ2
y2 +

µ

σ2
y

]

is a 2P–REF. Hence Θ = (0,∞)× (−∞,∞), η1 = −1/(2σ2), η2 = µ/σ2 and
Ω = (−∞, 0) × (−∞,∞).

If σ2 is known,

f(y) =
1√

2πσ2
exp

[−1

2σ2
y2

]

exp(
−µ2

2σ2
) exp

[ µ

σ2
y
]
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is a 1P–REF. Also the likelihood

L(µ) = c exp(
−nµ2

2σ2
) exp

[

µ

σ2

n
∑

i=1

yi

]

and the log likelihood

log(L(µ)) = d− nµ2

2σ2
+

µ

σ2

n
∑

i=1

yi.

Hence
d

dµ
log(L(µ)) =

−2nµ

2σ2
+

∑n
i=1 yi
σ2

set
= 0,

or nµ =
∑n

i=1 yi, or
µ̂ = y.

This solution is unique and

d2

dµ2
log(L(µ)) =

−n
σ2

< 0.

Since Tn =
∑n

i=1 Yi ∼ N(nµ, nσ2), Y is the UMVUE, MLE and MME of µ
if σ2 is known.

If µ is known,

f(y) =
1√

2πσ2
exp

[−1

2σ2
(y − µ)2

]

is a 1P–REF. Also the likelihood

L(σ2) = c
1

σn
exp

[

−1

2σ2

n
∑

i=1

(yi − µ)2

]

and the log likelihood

log(L(σ2)) = d− n

2
log(σ2) − 1

2σ2

n
∑

i=1

(yi − µ)2.

Hence
d

dσ2
log(L(σ2)) =

−n
2σ2

+
1

2(σ2)2

n
∑

i=1

(yi − µ)2 set
= 0,
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or nσ2 =
∑n

i=1(yi − µ)2, or

σ̂2 =

∑n
i=1(yi − µ)2

n
.

This solution is unique and

d2

d(σ2)2
log(L(σ2)) =

n

2(σ2)2
−
∑n

i=1(yi − µ)2

(σ2)3

∣

∣

∣

∣

σ2=σ̂2

=
n

2(σ̂2)2
− nσ̂2

(σ̂2)3

2

2

=
−n

2(σ̂2)2
< 0.

Since Tn =
∑n

i=1(Yi − µ)2 ∼ G(n/2, 2σ2),

σ̂2 =

∑n
i=1(Yi − µ)2

n

is the UMVUE and MLE of σ2 if µ is known.
Note that if µ is known and r > −n/2, then T rn is the UMVUE of

E(T rn) = 2rσ2rΓ(r + n/2)

Γ(n/2)
.

10.33 The One Sided Stable Distribution

If Y has a one sided stable distribution (with index 1/2, also called a Lévy
distribution), Y ∼ OSS(σ), then the pdf of Y is

f(y) =
1

√

2πy3

√
σ exp

(−σ
2

1

y

)

for y > 0 and σ > 0. This distribution is a scale family with scale param-
eter σ and a 1P–REF. When σ = 1, Y ∼ INVG(ν = 1/2, λ = 2) where
INVG stands for inverted gamma. This family is a special case of the inverse
Gaussian IG distribution. It can be shown that W = 1/Y ∼ G(1/2, 2/σ).
This distribution is even more outlier prone than the Cauchy distribution.
See Feller (1971, p. 52) and Lehmann (1999, p. 76). For applications see
Besbeas and Morgan (2004).
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If Y1, ..., Yn are iid OSS(σ) then Tn =
∑n

i=1
1
Yi

∼ G(n/2, 2/σ). The likeli-
hood

L(σ) =
n
∏

i=1

f(yi) =

(

n
∏

i=1

1
√

2πy3
i

)

σn/2 exp

(

−σ
2

n
∑

i=1

1

yi

)

,

and the log likelihood

log(L(σ)) = log

(

n
∏

i=1

1
√

2πy3
i

)

+
n

2
log(σ)− σ

2

n
∑

i=1

1

yi
.

Hence
d

dσ
log(L(σ)) =

n

2

1

σ
− 1

2

n
∑

i=1

1

yi

set
= 0,

or
n

2
= σ

1

2

n
∑

i=1

1

yi
,

or
σ̂ =

n
∑n

i=1
1
yi

.

This solution is unique and

d2

dσ2
log(L(σ)) = −n

2

1

σ2
< 0.

Hence the MLE
σ̂ =

n
∑n

i=1
1
Yi

.

Notice that Tn/n is the UMVUE and MLE of 1/σ and T rn is the UMVUE
of

1

σr
2rΓ(r + n/2)

Γ(n/2)

for r > −n/2.
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10.34 The Pareto Distribution

If Y has a Pareto distribution, Y ∼ PAR(σ, λ), then the pdf of Y is

f(y) =
1
λ
σ1/λ

y1+1/λ

where y ≥ σ, σ > 0, and λ > 0. The mode is at Y = σ.
The cdf of Y is F (y) = 1 − (σ/y)1/λ for y > σ.
This family is a scale family with scale parameter σ when λ is fixed.

E(Y ) =
σ

1 − λ

for λ < 1.

E(Y r) =
σr

1 − rλ
for r < 1/λ.

MED(Y ) = σ2λ.
X = log(Y/σ) is EXP(λ) and W = log(Y ) is EXP(θ = log(σ), λ).

Notice that

f(y) =
1

σλ

1

y
I [y ≥ σ] exp

[−1

λ
log(y/σ)

]

is a one parameter exponential family if σ is known.
If Y1, ..., Yn are iid PAR(σ, λ) then

Tn =

n
∑

i=1

log(Yi/σ) ∼ G(n, λ).

If σ is known, then the likelihood

L(λ) = c
1

λn
exp

[

−(1 +
1

λ
)

n
∑

i=1

log(yi/σ)

]

,

and the log likelihood

log(L(λ)) = d− n log(λ) − (1 +
1

λ
)

n
∑

i=1

log(yi/σ).
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Hence
d

dλ
log(L(λ)) =

−n
λ

+
1

λ2

n
∑

i=1

log(yi/σ)
set
= 0,

or
∑n

i=1 log(yi/σ) = nλ or

λ̂ =

∑n
i=1 log(yi/σ)

n
.

This solution is unique and

d2

dλ2
log(L(λ)) =

n

λ2
− 2

∑n
i=1 log(yi/σ)

λ3

∣

∣

∣

∣

λ=λ̂

=

n

λ̂2
− 2nλ̂

λ̂3
=

−n
λ̂2

< 0.

Hence

λ̂ =

∑n
i=1 log(Yi/σ)

n

is the UMVUE and MLE of λ if σ is known.
If σ is known and r > −n, then T rn is the UMVUE of

E(T rn) = λr
Γ(r + n)

Γ(n)
.

If neither σ nor λ are known, notice that

f(y) =
1

y

1

λ
exp

[

−
(

log(y) − log(σ)

λ

)]

I(y ≥ σ).

Hence the likelihood

L(λ, σ) = c
1

λn
exp

[

−
n
∑

i=1

(

log(yi) − log(σ)

λ

)

]

I(y(1) ≥ σ),

and the log likelihood is

logL(λ, σ) =

[

d − n log(λ) −
n
∑

i=1

(

log(yi) − log(σ)

λ

)

]

I(y(1) ≥ σ).
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Let wi = log(yi) and θ = log(σ), so σ = eθ. Then the log likelihood is

logL(λ, θ) =

[

d− n log(λ) −
n
∑

i=1

(

wi − θ

λ

)

]

I(w(1) ≥ θ),

which has the same form as the log likelihood of the EXP(θ, λ) distribution.
Hence (λ̂, θ̂) = (W −W(1),W(1)), and by invariance, the MLE

(λ̂, σ̂) = (W −W(1), Y(1)).

Let Dn =
∑n

i=1(Wi − W1:n) = nλ̂ where W(1) = W1:n. For n > 1, a
100(1 − α)% CI for θ is

(W1:n − λ̂[(α)−1/(n−1) − 1],W1:n). (10.11)

Exponentiate the endpoints for a 100(1 − α)% CI for σ. A 100(1 − α)% CI
for λ is

(

2Dn

χ2
2(n−1),1−α/2

,
2Dn

χ2
2(n−1),α/2

)

. (10.12)

This distribution is used to model economic data such as national yearly
income data, size of loans made by a bank, et cetera.

10.35 The Poisson Distribution

If Y has a Poisson distribution, Y ∼ POIS(θ), then the pmf of Y is

f(y) = P (Y = y) =
e−θθy

y!

for y = 0, 1, . . . , where θ > 0.
The mgf of Y is

m(t) = exp(θ(et − 1)),

and the characteristic function of Y is c(t) = exp(θ(eit − 1)).
E(Y ) = θ, and
VAR(Y ) = θ.
Chen and Rubin (1986) and Adell and Jodrá (2005) show that
−1 < MED(Y ) − E(Y ) < 1/3.
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Pourahmadi (1995) showed that the moments of a Poisson (θ) random
variable can be found recursively. If k ≥ 1 is an integer and

(

0
0

)

= 1, then

E(Y k) = θ
k−1
∑

i=0

(

k − 1

i

)

E(Y i).

The classical estimator of θ is θ̂ = Y n.
The approximations Y ≈ N(θ, θ) and 2

√
Y ≈ N(2

√
θ, 1) are sometimes used.

Notice that

f(y) = e−θ
1

y!
exp[log(θ)y]

is a 1P–REF. Thus Θ = (0,∞), η = log(θ) and Ω = (−∞,∞).
If Y1, ..., Yn are independent POIS(θi) then

∑n
i=1 Yi ∼ POIS(

∑n
i=1 θi).

If Y1, ..., Yn are iid POIS(θ) then

Tn =
n
∑

i=1

Yi ∼ POIS(nθ).

The likelihood

L(θ) = c e−nθ exp[log(θ)
n
∑

i=1

yi],

and the log likelihood

log(L(θ)) = d− nθ + log(θ)
n
∑

i=1

yi.

Hence
d

dθ
log(L(θ)) = −n+

1

θ

n
∑

i=1

yi
set
= 0,

or
∑n

i=1 yi = nθ, or

θ̂ = y.

This solution is unique and

d2

dθ2
log(L(θ)) =

−∑n
i=1 yi
θ2

< 0
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unless
∑n

i=1 yi = 0.
Hence Y is the UMVUE and MLE of θ.
Let W =

∑n
i=1 Yi and suppose that W = w is observed. Let P (T <

χ2
d(α)) = α if T ∼ χ2

d. Then an “exact” 100 (1 − α)% CI for θ is
(

χ2
2w(α

2
)

2n
,
χ2

2w+2(1 − α
2
)

2n

)

for w 6= 0 and
(

0,
χ2

2(1 − α)

2n

)

for w = 0.

10.36 The Power Distribution

If Y has a power distribution, Y ∼ POW(λ), then the pdf of Y is

f(y) =
1

λ
y

1

λ
−1,

where λ > 0 and 0 < y ≤ 1.
The cdf of Y is F (y) = y1/λ for 0 < y ≤ 1.
MED(Y ) = (1/2)λ.
W = − log(Y ) is EXP(λ). Notice that Y ∼ beta(δ = 1/λ, ν = 1).

Notice that

f(y) =
1

λ
I(0,1](y) exp

[

(
1

λ
− 1) log(y)

]

=
1

λ

1

y
I(0,1](y) exp

[−1

λ
(− log(y))

]

is a 1P–REF. Thus Θ = (0,∞), η = −1/λ and Ω = (−∞, 0).
If Y1, ..., Yn are iid POW (λ), then

Tn = −
n
∑

i=1

log(Yi) ∼ G(n, λ).

The likelihood

L(λ) =
1

λn
exp

[

(
1

λ
− 1)

n
∑

i=1

log(yi)

]

,

325



and the log likelihood

log(L(λ)) = −n log(λ) + (
1

λ
− 1)

n
∑

i=1

log(yi).

Hence
d

dλ
log(L(λ)) =

−n
λ

−
∑n

i=1 log(yi)

λ2

set
= 0,

or −∑n
i=1 log(yi) = nλ, or

λ̂ =
−∑n

i=1 log(yi)

n
.

This solution is unique and

d2

dλ2
log(L(λ)) =

n

λ2
− 2

∑n
i=1 log(yi)

λ3

∣

∣

∣

∣

λ=λ̂

=
n

λ̂2
+

2nλ̂

λ̂3
=

−n
λ̂2

< 0.

Hence

λ̂ =
−∑n

i=1 log(Yi)

n
is the UMVUE and MLE of λ.

If r > −n, then T rn is the UMVUE of

E(T rn) = λr
Γ(r + n)

Γ(n)
.

A 100(1 − α)% CI for λ is
(

2Tn
χ2

2n,1−α/2
,

2Tn
χ2

2n,α/2

)

. (10.13)

10.37 The Rayleigh Distribution

If Y has a Rayleigh distribution, Y ∼ R(µ, σ), then the pdf of Y is

f(y) =
y − µ

σ2
exp

[

−1

2

(

y − µ

σ

)2
]
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where σ > 0, µ is real, and y ≥ µ. See Cohen and Whitten (1988, Ch. 10).
This is an asymmetric location–scale family.
The cdf of Y is

F (y) = 1 − exp

[

−1

2

(

y − µ

σ

)2
]

for y ≥ µ, and F (y) = 0, otherwise.

E(Y ) = µ+ σ
√

π/2 ≈ µ+ 1.253314σ.

VAR(Y ) = σ2(4 − π)/2 ≈ 0.429204σ2.

MED(Y ) = µ+ σ
√

log(4) ≈ µ + 1.17741σ.
Hence µ ≈ MED(Y ) − 2.6255MAD(Y ) and σ ≈ 2.230MAD(Y ).
Let σD = MAD(Y ). If µ = 0, and σ = 1, then

0.5 = exp[−0.5(
√

log(4) −D)2] − exp[−0.5(
√

log(4) +D)2].

Hence D ≈ 0.448453 and MAD(Y ) ≈ 0.448453σ.
It can be shown that W = (Y − µ)2 ∼ EXP(2σ2).

Other parameterizations for the Rayleigh distribution are possible.
Note that

f(y) =
1

σ2
(y − µ)I(y ≥ µ) exp

[

− 1

2σ2
(y − µ)2

]

appears to be a 1P–REF if µ is known.
If Y1, ..., Yn are iid R(µ, σ), then

Tn =
n
∑

i=1

(Yi − µ)2 ∼ G(n, 2σ2).

If µ is known, then the likelihood

L(σ2) = c
1

σ2n
exp

[

− 1

2σ2

n
∑

i=1

(yi − µ)2

]

,

and the log likelihood

log(L(σ2)) = d− n log(σ2) − 1

2σ2

n
∑

i=1

(yi − µ)2.
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Hence
d

d(σ2)
log(L(σ2)) =

−n
σ2

+
1

2σ2

n
∑

i=1

(yi − µ)2 set
= 0,

or
∑n

i=1(yi − µ)2 = 2nσ2, or

σ̂2 =

∑n
i=1(yi − µ)2

2n
.

This solution is unique and

d2

d(σ2)2
log(L(σ2)) =

n

(σ2)2
−
∑n

i=1(yi − µ)2

(σ2)3

∣

∣

∣

∣

σ2=σ̂2

=

n

(σ̂2)2
− 2nσ̂2

(σ̂2)3
=

−n
(σ̂2)2

< 0.

Hence

σ̂2 =

∑n
i=1(Yi − µ)2

2n

is the UMVUE and MLE of σ2 if µ is known.
If µ is known and r > −n, then T rn is the UMVUE of

E(T rn) = 2rσ2rΓ(r + n)

Γ(n)
.

10.38 The Smallest Extreme Value Distribu-

tion

If Y has a smallest extreme value distribution (or log-Weibull distribution),
Y ∼ SEV (θ, σ), then the pdf of Y is

f(y) =
1

σ
exp(

y − θ

σ
) exp[− exp(

y − θ

σ
)]

where y and θ are real and σ > 0.
The cdf of Y is

F (y) = 1 − exp[− exp(
y − θ

σ
)].

This family is an asymmetric location-scale family with a longer left tail than
right.
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E(Y ) ≈ θ − 0.57721σ, and
VAR(Y ) = σ2π2/6 ≈ 1.64493σ2.

MED(Y ) = θ − σ log(log(2)).
MAD(Y ) ≈ 0.767049σ.
Y is a one parameter exponential family in θ if σ is known.
If Y has a SEV(θ, σ) distribution, then W = −Y has an LEV(−θ, σ)

distribution.

10.39 The Student’s t Distribution

If Y has a Student’s t distribution, Y ∼ tp, then the pdf of Y is

f(y) =
Γ(p+1

2
)

(pπ)1/2Γ(p/2)
(1 +

y2

p
)−( p+1

2
)

where p is a positive integer and y is real. This family is symmetric about
0. The t1 distribution is the Cauchy(0, 1) distribution. If Z is N(0, 1) and is
independent of W ∼ χ2

p, then
Z

(W
p

)1/2

is tp.
E(Y ) = 0 for p ≥ 2.
MED(Y ) = 0.
VAR(Y ) = p/(p − 2) for p ≥ 3, and
MAD(Y ) = tp,0.75 where P (tp ≤ tp,0.75) = 0.75.

If α = P (tp ≤ tp,α), then Cooke, Craven, and Clarke (1982, p. 84) suggest
the approximation

tp,α ≈
√

p[exp(
w2
α

p
) − 1)]

where

wα =
zα(8p + 3)

8p+ 1
,

zα is the standard normal cutoff: α = Φ(zα), and 0.5 ≤ α. If 0 < α < 0.5,
then

tp,α = −tp,1−α.
This approximation seems to get better as the degrees of freedom increase.
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10.40 The Topp-Leone Distribution

If Y has a Topp–Leone distribution, Y ∼ TL(ν), then pdf of Y is

f(y) = ν(2 − 2y)(2y − y2)ν−1

for ν > 0 and 0 < y < 1. The cdf of Y is F (y) = (2y − y2)ν for 0 < y < 1.
This distribution is a 1P–REF since

f(y) = ν(2 − 2y)I(0,1)(y) exp[(1 − ν)(− log(2y − y2))].

MED(Y ) = 1 −
√

1 − (1/2)1/ν , and Example 2.17 showed that
W = − log(2Y − Y 2) ∼ EXP (1/ν).

The likelihood

L(ν) = c νn
n
∏

i=1

(2yi − y2
i )
ν−1,

and the log likelihood

log(L(ν)) = d + n log(ν) + (ν − 1)
n
∑

i=1

log(2yi − y2
i ).

Hence
d

dν
log(L(ν)) =

n

ν
+

n
∑

i=1

log(2yi − y2
i )

set
= 0,

or n+ ν
∑n

i=1 log(2yi − y2
i ) = 0, or

ν̂ =
−n

∑n
i=1 log(2yi − y2

i )
.

This solution is unique and

d2

dν2
log(L(ν)) =

−n
ν2

< 0.

Hence

ν̂ =
−n

∑n
i=1 log(2Yi − Y 2

i )
=

n

−
∑n

i=1 log(2Yi − Y 2
i )

is the MLE of ν.
If Tn = −∑n

i=1 log(2Yi − Y 2
i ) ∼ G(n, 1/ν), then T rn is the UMVUE of

E(T rn) =
1

νr
Γ(r + n)

Γ(n)

for r > −n. In particular, ν̂ = n
Tn

is the MLE and UMVUE of ν for n > 1.
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10.41 The Truncated Extreme Value Distri-

bution

If Y has a truncated extreme value distribution, Y ∼ TEV(λ), then the pdf
of Y is

f(y) =
1

λ
exp

(

y − ey − 1

λ

)

where y > 0 and λ > 0.
The cdf of Y is

F (y) = 1 − exp

[−(ey − 1)

λ

]

for y > 0.
MED(Y ) = log(1 + λ log(2)).
W = eY − 1 is EXP(λ).

Notice that

f(y) =
1

λ
eyI(y ≥ 0) exp

[−1

λ
(ey − 1)

]

is a 1P–REF. Hence Θ = (0,∞), η = −1/λ and Ω = (−∞, 0).
If Y1, ..., Yn are iid TEV(λ), then

Tn =

n
∑

i=1

(eYi − 1) ∼ G(n, λ).

The likelihood

L(λ) = c
1

λn
exp

[

−1

λ

n
∑

i=1

log(eyi − 1)

]

,

and the log likelihood

log(L(λ)) = d − n log(λ) − 1

λ

n
∑

i=1

log(eyi − 1).

Hence
d

dλ
log(L(λ)) =

−n
λ

+

∑n
i=1 log(eyi − 1)

λ2

set
= 0,
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or
∑n

i=1 log(eyi − 1) = nλ, or

λ̂ =
−∑n

i=1 log(eyi − 1)

n
.

This solution is unique and

d2

dλ2
log(L(λ)) =

n

λ2
− 2

∑n
i=1 log(eyi − 1)

λ3

∣

∣

∣

∣

λ=λ̂

=
n

λ̂2
− 2nλ̂

λ̂3
=

−n
λ̂2

< 0.

Hence

λ̂ =
−
∑n

i=1 log(eYi − 1)

n

is the UMVUE and MLE of λ.
If r > −n, then T rn is the UMVUE of

E(T rn) = λr
Γ(r + n)

Γ(n)
.

A 100(1 − α)% CI for λ is

(

2Tn
χ2

2n,1−α/2
,

2Tn
χ2

2n,α/2

)

. (10.14)

10.42 The Uniform Distribution

If Y has a uniform distribution, Y ∼ U(θ1, θ2), then the pdf of Y is

f(y) =
1

θ2 − θ1
I(θ1 ≤ y ≤ θ2).

The cdf of Y is F (y) = (y − θ1)/(θ2 − θ1) for θ1 ≤ y ≤ θ2.
This family is a location-scale family which is symmetric about (θ1 + θ2)/2.
By definition, m(0) = c(0) = 1. For t 6= 0, the mgf of Y is

m(t) =
etθ2 − etθ1

(θ2 − θ1)t
,
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and the characteristic function of Y is

c(t) =
eitθ2 − eitθ1

(θ2 − θ1)it
.

E(Y ) = (θ1 + θ2)/2, and
MED(Y ) = (θ1 + θ2)/2.
VAR(Y ) = (θ2 − θ1)

2/12, and
MAD(Y ) = (θ2 − θ1)/4.
Note that θ1 = MED(Y ) − 2MAD(Y ) and θ2 = MED(Y ) + 2MAD(Y ).
Some classical estimators are θ̂1 = Y(1) and θ̂2 = Y(n).

10.43 The Weibull Distribution

If Y has a Weibull distribution, Y ∼W (φ, λ), then the pdf of Y is

f(y) =
φ

λ
yφ−1e−

yφ

λ

where λ, y, and φ are all positive. For fixed φ, this is a scale family in
σ = λ1/φ.
The cdf of Y is F (y) = 1 − exp(−yφ/λ) for y > 0.
E(Y ) = λ1/φ Γ(1 + 1/φ).
VAR(Y ) = λ2/φΓ(1 + 2/φ) − (E(Y ))2.

E(Y r) = λr/φ Γ(1 +
r

φ
) for r > −φ.

MED(Y ) = (λ log(2))1/φ.
Note that

λ =
(MED(Y ))φ

log(2)
.

W = Y φ is EXP(λ).
W = log(Y ) has a smallest extreme value SEV(θ = log(λ1/φ), σ = 1/φ)

distribution.
Notice that

f(y) =
φ

λ
yφ−1I(y ≥ 0) exp

[−1

λ
yφ
]

is a one parameter exponential family in λ if φ is known.
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If Y1, ..., Yn are iid W (φ, λ), then

Tn =
n
∑

i=1

Y φ
i ∼ G(n, λ).

If φ is known, then the likelihood

L(λ) = c
1

λn
exp

[

−1

λ

n
∑

i=1

yφi

]

,

and the log likelihood

log(L(λ)) = d− n log(λ) − 1

λ

n
∑

i=1

yφi .

Hence
d

dλ
log(L(λ)) =

−n
λ

+

∑n
i=1 y

φ
i

λ2

set
= 0,

or
∑n

i=1 y
φ
i = nλ, or

λ̂ =

∑n
i=1 y

φ
i

n
.

This solution was unique and

d2

dλ2
log(L(λ)) =

n

λ2
− 2

∑n
i=1 y

φ
i

λ3

∣

∣

∣

∣

∣

λ=λ̂

=
n

λ̂2
− 2nλ̂

λ̂3
=

−n
λ̂2

< 0.

Hence

λ̂ =

∑n
i=1 Y

φ
i

n

is the UMVUE and MLE of λ.
If r > −n, then T rn is the UMVUE of

E(T rn) = λr
Γ(r + n)

Γ(n)
.

MLEs and CIs for φ and λ are discussed in Example 9.18.
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10.44 The Zeta Distribution

If Y has a Zeta distribution, Y ∼ Zeta(ν), then the pmf of Y is

f(y) = P (Y = y) =
1

yνζ(ν)

where ν > 1 and y = 1, 2, 3, .... Here the zeta function

ζ(ν) =
∞
∑

y=1

1

yν

for ν > 1. This distribution is a one parameter exponential family.

E(Y ) =
ζ(ν − 1)

ζ(ν)

for ν > 2, and

VAR(Y ) =
ζ(ν − 2)

ζ(ν)
−
[

ζ(ν − 1)

ζ(ν)

]2

for ν > 3.

E(Y r) =
ζ(ν − r)

ζ(ν)

for ν > r + 1.
This distribution is sometimes used for count data, especially by linguis-

tics for word frequency. See Lindsey (2004, p. 154).

10.45 Complements

Many of the distribution results used in this chapter came from Johnson and
Kotz (1970a,b) and Patel, Kapadia and Owen (1976). Bickel and Doksum
(2007), Castillo (1988), Cohen and Whitten (1988), Cramér (1946), DeG-
root and Schervish (2001), Ferguson (1967), Hastings and Peacock (1975),
Kennedy and Gentle (1980), Kotz and van Dorp (2004), Leemis (1986),
Lehmann (1983) and Meeker and Escobar (1998) also have useful results
on distributions. Also see articles in Kotz and Johnson (1982ab, 1983ab,
1985ab, 1986, 1988ab). Often an entire book is devoted to a single distribu-
tion, see for example, Bowman and Shenton (1988).

Abuhassan and Olive (2007) discuss confidence intervals for the two pa-
rameter exponential, half normal and Pareto distributions.
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