Chapter 11

Stuff for Students

To be blunt, many of us are lousy teachers, and our efforts to improve are
feeble. So students frequently view statistics as the worst course taken in

college.
Hogg (1991)

11.1 R/Splus Statistical Software

R /Splus are statistical software packages, and R is the free version of Splus..
A very useful R link is (www.r-project.org/#doc).

As of January 2008, the author’s personal computer has Version 2.4.1
(December 18, 2006) of R and Splus—2000 (see Mathsoft 1999ab).

Downloading the book’s R/Splus functions sipack.trt into R or
Splus:

Many of the homework problems use R/Splus functions contained in
the book’s website (www.math.siu.edu/olive/sipack.txt) under the file name
sipack.tzt. Suppose that you download sipack.tzt onto a disk. Enter R and
wait for the curser to appear. Then go to the File menu and drag down
Source R Code. A window should appear. Navigate the Look in box until it
says 3 1/2 Floppy(A:). In the Files of type box choose All files(*.*) and then
select sipack.txt. The following line should appear in the main R window.

> source("A:/sipack.txt")

Type Is(). About 9 R/Splus functions from sipack.tzt should appear.
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Alternatively, from the website (www.math.siu.edu/olive/sipack.txt), go
to the Edit menu and choose Select All, then go to the Edit menu and choose
Copy. Next enter R, go to the Edit menu and choose Paste. These commands
also enter the sipack functions into R.

When you finish your R/Splus session, enter the command ¢(). A window
asking “Save workspace image?’ will appear. Click on No if you do not want
to save the programs in R. (If you do want to save the programs then click
on Yes.)

If you use Splus, the command

> source("A:/sipack.txt")

will enter the functions into Splus. Creating a special workspace for the
functions may be useful.

This section gives tips on using R/Splus, but is no replacement for books
such as Becker, Chambers, and Wilks (1988), Chambers (1998), Dalgaard
(2002) or Venables and Ripley (2003). Also see Mathsoft (1999ab) and use
the website (http://www.google.com) to search for useful websites. For ex-
ample enter the search words R documentation.

The command ¢() gets you out of R or Splus.

The commands help(fn) and args(fn) give information about the function
fn, eg if fn = rnorm.

Making functions in R and Splus is easy.

For example, type the following commands.

mysquare <- function(x){
# this function squares x
r <- x72

r }
The second line in the function shows how to put comments into functions.

Modifying your function is easy.

Use the fix command.
fix(mysquare)
This will open an editor such as Notepad and allow you to make changes.
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In Splus, the command FEdit(mysquare) may also be used to modify the
function mysquare.

To save data or a function in R, when you exit, click on Yes when the
“Save worksheet image?’ window appears. When you reenter R, type Is().
This will show you what is saved. You should rarely need to save anything
for the material in the first thirteen chapters of this book. In Splus, data
and functions are automatically saved. To remove unwanted items from the
worksheet, eg z, type rm(z),
pairs(z) makes a scatterplot matrix of the columns of z,
hist(y) makes a histogram of y,
bozplot(y) makes a boxplot of ¥,
stem(y) makes a stem and leaf plot of y,
scan(), source(), and sink() are useful on a Uniz workstation.

To type a simple list, use y <— ¢(1,2,3.5).
The commands mean(y), median(y), var(y) are self explanatory.

The following commands are useful for a scatterplot created by the com-
mand plot(z,y).
lines(z,y), lines(lowess(x,y,f=.2))

identify(z,y)
abline(out$coef ), abline(0,1)

The usual arithmetic operators are 2+ 4, 3 — 7, 8 x4, 8/4, and
2°{10}.

The ith element of vector y is y[i] while the ij element of matrix = is
x[i, j]. The second row of z is x[2,]| while the 4th column of x is z[,4]. The
transpose of z is t(z).

The command apply(z,1,fn) will compute the row means if fn = mean.
The command apply(z,2,fn) will compute the column variances if fn = var.
The commands cbind and rbind combine column vectors or row vectors with
an existing matrix or vector of the appropriate dimension.
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11.2 Hints and Solutions to Selected Prob-
lems
1.10. d) See Problem 1.19 with Y =W and r = 1.

f) Use the fact that E(Y") = E[(Y?)/?] = E(W"/?) where W ~ EXP()).
Take r = 1.

1.11. d) Find E(Y") for r = 1,2 using Problem 1.19 with Y = W.
f) For r = 1,2, find E(Y") using the the fact that E(Y") = E[(Y?)"/?¢] =
E(W'/?) where W ~ EXP()).

1.12. a) 200
b) 0.9(10) + 0.1(200) = 29

1.13. a) 400(1) = 400

b) 0.9E(Z) + 0.LE(W) = 0.9(10) + 0.1(400) = 49
1.15. a) 1A+ +0575 = Af:B-
b) 45

1.16. ) g(x,) P(X = 2,) = g(x.)
b) E(e!X) = e!® by a).
) m(t) = zoet®, m7 (t) = x2e!ve, MM (t) = ghetee,

1.17. m(t) = B(eX) =e!P(X = 1) + e 'P(X = —1) = 0.5(e! + 7).

1.18. a) Y ! ze' f(x)
b) > o zf(x) = E(X)
Do e f(2)
2amo ¥ f(x) = B(X?)
e) Xa—pr e f()
1.19. EW") = E(e"X) = mx(r) = exp(ru+1r202/2) where mx(t) is the
mgf of a N(u,0?) random variable.
1.20. a) E(X?) =V (X) + (E(X))? = 0% + p2.
b) B(X3) = 202E(X) + pE(X?) = 20%u + p(o? + p?) = 302 + 1.

a o
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o0 1
1.22. —/ exp(— y Ndy = 1. So/ exp(—§y2)dy = /2r.

e}

1.23. [ f(z]o,0)dz =1, so

< 1 1
/U Wdl’ = W (111)
50 > 1 ~ 1 fo?
T T 7] 7] o g
EX :/U x 0o I9+1d:v:90 /U ze—r+1dz_ 0= )orr
by Equation 11.1. So
fo"
EX" =
0—r
for 8 > r.
1.24.

EY” = /0 yrig((g;(?) Y =)y =

L(6+v)T(6+7r)(v) /1 (0 +7+V) 50
TN TE +r+v) Jy TO+n0w)?
D5 + )05 + 1)
T + 7+ v)

for r > —§ since 1 = fol beta(d + r,v) pdf.

1.25. E(e™) = > etym expllog(#)y]. But e expllog(f)y] =
exp[(log(f) + t)y] = exp|(log(f) + log(e’))y] = eXp[log(9€ )]

So E(eY) = W[ log(1 —60e")] 3°0, m L expllog(fel)y] =
% since 1 = Y [logarithmic (fe') pmf] if 0 < fe* <1 or 0 <e' < 1/6

or —oo < t < —log(6).

(1—y)dy =

1.28. a) EX = 0.9EZ+0.1EW = 0.9vA+0.1(10) = 0.9(3)(4)+1 = 11.8.
b) EX? =09V (Z) + (E(Z))?] + 0.1V (W) 4+ (E(W))?]

= 0.9[v\? + (vA)?] + 0.1[10 + (10)?]

= 0.9[3(16) + 9(16)] + 0.1(110) = 0.9(192) + 11 = 183.8.

2.8. a) Fy(w) = PW < w) = P(Y < w—pu) = Fy(w — ). So
fw(w) = o Fy(w = p) = fy(w - p).
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b) Fw(w) = P(W < w) = P(Y < w/o) = Fy(w/o). So fw(w) =
A Fy(wfo) = fr(w/o)L]

c) Fw(w) = PW < w) = P(oY < w—p) = Fy(*3*). So fw(w) =
APV = S5

o

2.9. a) See Example 2.16.
2.11. W = Z% ~ x% where Z ~ N(0,1). So the pdf of W is

14 _w
w2 e 2 1 w
w) = = e 2
Ftw) 2:0(Y)  Vwver

for w > 0.

2.12. (Y —p)/o = |Z| ~ HN(0,1) where Z ~ N(0,1). So (Y — p)* =
02Z?% ~ o?x? ~ G(0.5,207?).

2.16. a) y =e ¥ =t"Hw), and

'dt‘l(w)
dw

' =|—eY|=e".

Now P(Y =0) =0s0 0 <Y <1 implies that W = —log(Y) > 0. Hence

dt™1 1 . 1
fw(w) = fy(t™H(w)) W)l _ “(eTW)xiT e = Zemw/A
dw A
for w > 0 which is the EXP()\) pdf.
2.18. a)
1 oy

ﬂy)Z}\W

where y, ¢, and \ are all positive. Since Y > 0, W = log(1+Y?) > log(1) > 0
t 1

and the support W = (0,00). Now 14 y® = e®, so y = (e¥ — 1)/¢ = t~1(w).
Hence J 1( ) )
t (w 19

— = (% — 1) eV

‘ dw ‘ gb(e )
since w > 0. Thus

dw)| 1 ser -1 1 1

fwlw) = ol ) | = 5 R
e e ) Ea
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1

1(e” —1)' 5 (e — 1!
A (6w)§+1

6’Ll)

1
Xe—w/)\
for w > 0 which is the EXP(\) pdf.

2.25. b)
1

molL+ (%)

where y and u are real numbers and o > 0. Now w = log(y) = ¢t !(w) and
W = e¥ > 0 so the support W = (0, c0). Thus

fly) =

dt='(w)|
dw |y’
and i () N 1 1
fw(w) = fy (7 (w)) dw | 7o 1+ (log(y)—)2]§ N

1
1t (los—py2
moy[l+ (Z55=)?]
for y > 0 which is the LC(u, o) pdf.
2.63. a) EX = BIE[X|Y] = B[, + 6,Y] = fo + 36,

b) V(X) = E[V(X|Y)]+ V[E(X]Y)] = E(Y?) + V(G + 1Y) =
VIY)+ [EY))?+B3V(Y)=10+9 + $210 = 19 + 1082,

2.64. a) X5 ~ N(100, 6).

b)

(é)%((??)» (53))
c) Xp L Xy and X3 1L Xy.
d)

Cov(X1, X3) -1
VVAR(X,)VAR(X;) 3V4

p(X1, Xo) = = —0.2887.
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2.65. a) Y|X ~ N(49,16) since Y 1L X. (Or use E(Y|X) = uy +
Y19Y0s (X — p1z) = 49 4+ 0(1/25)(X — 100) = 49 and VAR(Y|X) = 1 —
Y19X50 Yoy = 16 — 0(1/25)0 = 16.)

b) E(Y|X) = py +X12555 (X — p1z) = 49+10(1/25)(X —100) = 9+0.4X.

¢) VAR(Y|X) = £11 — 215559 591 = 16 — 10(1/25)10 = 16 — 4 = 12.
2.68. a) E(Y) = E[E(Y|A)] = E(A) =
b) V(Y) = E[V(Y|A)] + VIE(Y|A)] = E(A) + V(A) =1+ (1)2 = 2.

y 0 1
2.71.
frly)=PY1=vy) 076 0.24

Som(t) =3, e"f(y) =3, e P(Y =y) = €0.76 + €"0.24
= 0.76 + 0.24¢".
2.72. No, f(z,y) # fx(2)fy(y) = & exp[F(z? + y?)].

2.73. a) E(Y) = E[E(Y|P)] = E(kP) = kE(P) = k5 = kd/10 =
0.4k.

b) V(Y) = E[V(Y|P)] + V(E(Y|P)] = E[kP(1 — P)] + V (kP) =
kE(P) — kE(P?) + k?V(P) =

9 %

Tk (0+v)2(0+v+1)

L0 v (D ?
stv O+v)20+v+1) d+v

— k0.4 — k[0.021818 + 0.16] + k20.021818 = 0.021818k2 + 0.21818k.

Yo 0 1 2
274 2) Fv(y2) 055 0.16 0.29

b) f(n1]2) = F(1,2)/fv,(2) and £(0,2)/ fy, (2) = .24/.29 while
£(1,2)/ fy, (2) = .05/.29
% 0 1
FriaWilye = 2) 24/20 ~ 0.8276  5/29 ~ 0.1724

3.1. a) See Section 10.3.
b) See Section 10.10.
c¢) See Section 10.35.
d) See Example 3.5.
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3.2. a) See Section 10.1.
b) See Section 10.6.
c¢) See Section 10.13.
d) See Section 10.29.
e) See Section 10.32.

3.3. b) See Section 10.16.
c¢) See Section 10.25.
d) See Section 10.31.
f) See Section 10.36.
g) See Section 10.41.
h) See Section 10.44.

3.4. a) See Section 10.32.
b) See Section 10.32.
c¢) See Section 10.13.

3.5. a) See Section 10.4.
b) See Section 10.9.
c¢) See Section 10.11.
d) See Section 10.24.
h) See Section 10.34.
i) See Section 10.37.
j) See Section 10.43.

4.26.
1'(26)

— W exp[(e — 1)(10g(:£) + 108;(1 - $))]>

for 0 < z < 1, a 1 parameter exponential family. Hence Y " (log(X;) +
log(1 — X;)) is a complete minimal sufficient statistic.

4.27. a) and b)

fz) = ﬁexp[—ulog@)]f{l,z,...}(z)

is a 1 parameter regular exponential family. Hence Y, log(X;) is a complete
minimal sufficient statistic.

c¢) By the Factorization Theorem, W = (X1, ..., X,,) is sufficient, but W
is not minimal since W is not a function of Y | log(X;).
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5.2. The likelihood function L(f) =

(271r)" exp(%l[Z( — pcosf) —I—Z — psin0)?]) =

1 —1
2n) exp(T[Z x7—2pcos Z x;+p? cos? 9+Z y?—2psin 6 Z yi+p*sin? 0])

1 —1 '
= @n) eXp(T[Z z; + ny + p?]) exp(pcos § le + psinf Zyl)

Hence the log likelihood log L(6)

= c+pcos€2zi+psin92yi.

The derivative with respect to 6 is

—psin@Zzi+pcos92yi.

Setting this derivative to zero gives

pZyicose :prisine

or
%iz = tan .
Thus
= tan_l(&).

> Ti

Now the boundary points are § = 0 and 6 = 27. Hence e equals 0, 27,
or 6 depending on which value maximizes the likelihood.

5.6. See Section 10.4.
5.7. See Section 10.6.
5.8. See Section 10.9.
5.9. See Section 10.10.
5.10. See Section 10.13.
5.11. See Section 10.16.
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5.12. See Section 10.22.
5.13. See Section 10.22.
5.14. See Section 10.24.
5.15. See Section 10.31.
5.16. See Section 10.37.
5.17. See Section 10.43.
5.18. See Section 10.3.

5.19. See Section 10.11.
5.20. See Section 10.41,

5.23. a) The log likelihood is log L(7) = log(27r7‘) = (X — )2
The derivative of the log likelihood is equal to — 2=+ 555 .1 | (X;—p)?. Setting

the derivative equal to 0 and solving for 7 gives the MLE 7 = M
Now the likelihood is only defined for 7 > 0. As 7 goes to 0 or oo, log L(7)
tends to —oo. Since there is only one critical point, 7 is the MLE.

b) By the invariance principle, the MLE is W

5.28. This problem is nearly the same as finding the MLE of 02 when
the data are iid N(u,0?) when u is known. See Problem 5.23. The MLE
in a) is > (X; — p)?/n. For b) use the invariance principle and take the
square root of the answer in a).

5.29. See Example 5.5.
5.30.

In(L(A)) = —In(0) — In(vV2r) — (z — )% /26

din(L@#) -1 xz—-6 (z—0)
o 0 TTe T
2 o 1



by solving for 6,
0= g * (_1 + \/5)7

and

ng*(—l—\/g).

But, 8 > 0. Thus,é=§*(—1+\/§),when:£>0, andézg*(—l—\/g),
when z < 0.
To check with the second derivative

d*In(L(0)) B _29 +x n 3(0% + Oz — 2?)
df? N 03 94
0% + 20x — 32

but the sign of the 0% is always positive, thus the sign of the second derivative
depends on the sign of the numerator. Substitute 6 in the numerator and
simplify, you get %(—5 + /5), which is always negative. Hence by the
invariance principle, the MLE of 62 is 62.

5.31. a) For any A > 0, the likelihood function

~(1+73) Zlogm)]

is maximized by making o as large as possible. Hence 6 = X(1).

b)

1
L(o,\) = 0"/* I[x) > 0] = P

1
L(6,\) = 6" Iz > 6] 7 P

Hence log L(5,\) =

glog(&) —nlog(\) — (1+ %) Z log (1)

Thus

d N L on 1 set
- log (6, A) = 57 log(6) — 1 + 35 Zlog(azo =0,
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or —nlog(d) + > log(x;) = nA. So
> iy log(xi) . > iy log(xi/0)

5 — _los(s _
A og(d) + - -
Now
2 A A n n
S log L(6,4) = S5 log(0) + 15— 33 ; log ()
mn 2 — | . —n 0
_E_ﬁz g(xi/0) T
=1

Hence (6, \) is the MLE of (o, \).
5.32. a) the likelihood

L(\) = c% exp {—(1 + ;) Z log(xi)] ,

and the log likelihood
1
log(L(A\)) = d —nlog(\) — (1 + X) E log(z;).

Hence p )
—nNn set
- = — 5 1 i) — U,
Tlog(L(N) = S+ 15 D lo(ar) 20
or Y log(z;) =nA or
A = Z log(X;)
=
Notice that
d? n 2> log(z;) B
D2 log(L(A)) VIl 23 s =
n m\ . -n
2w R

Hence A is the MLE of \.
b) By invariance, A® is the MLE of A8,
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5.33. a) The likelihood

L(0) = ¢ e expllog(26) Z xil,
and the log likelihood

log(L(0)) = d — n20 + log(20) > _ z:.

Hence p 9
—log(L(0) = —2n+ — ;< 0,
Slog(L(0) = —2n+
or Y x; = 2n#, or
0=X/2
Notice that
d2

unless > x; = 0.
b) (6)* = (X/2)* by invariance.

5.34. L(0O|]x) =1for 0 < z; <1, and L(1]x) =

I 12\/_for()<zl<1.
Thus the MLE is 0 if 1 > ]2

e 12\/_aundtheMLElsl1f1<H
5.35. a) Notice that # > 0 and

()

=1 2,/mi'

—_

Hence the likelihood

1 —1 9
L(0) =c gnz P {% Z(yz —0) ]
and the log likelihood

log(L(8)) = d — Zlog(6) — —

_ _ Z i
d = los(6) 2;(9 9 0



=1
Thus
d —nl 1 " 1 T set
L og(L(0) = 22 4 252 _ Dt
or n
“Nge Ny 1 2 _
29 294‘2;% 0,
or

nd®> + nf — ny:@. (11.2)
i=1
Now the quadratic formula states that for a # 0, the quadratic equation
ay? + by + ¢ = 0 has roots

—b+ Vb? — 4ac
2a '

Applying the quadratic formula to (11.2) gives
—nE\/n?+Any Ty

2n '
Since € > 0, a candidate for the MLE is

9:

—n+/n?+4andy " Y2 =1+ \/14’4% > i Y7

H =
2n 2

Since 6 satisfies (11.2),
nf — ny = —nb>. (11.3)
i=1
Note that

d? no >y 1 "
—log(L()) = — — ==220 — —_[nf — 2 2

0=0

1 . n n 1 . n
2@3[719—2@/3 =Yyl = 5 =Y Y <0

i=1 =1 i=1
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by (11.3). Since L(f) is continuous with a unique root on 6 > 0,  is the
MLE.

5.36. a) L(0) = (0—x)?/3forz—2 <0 <z+1.Sincez =7, L(5) = 4.3,
L(7) =0, and L(8) = 1/3. So L is maximized at an endpoint and the MLE

D>

= 5.
b) By invariance the MLE is h(0) = h(5) = 10 — e~25 ~ 10.
5.37. a) L(\) = ¢35 exp (555 Doiy (€ — 1)%)

232
Thus
1 . x; 2
log(L(A)) = d = nlog(A) — 535 ;(e —1)2
Hence dlog(L(V) .
0og — __n i T; _ 1)\2 ng
ax x T2 TE0
or nA? =Y (e” — 1), or
5 _ >o(et —1)?
n

Now

So A is the MLE.
5.38. a) The likelihood

2 =T st = (T1 ) e | =]

and the log likelihood

log(L(A)) = d — Z log(x;) — nlog(\) — Z(#gzxi)z.
Hence )
L rog(p() = =1 4 Zog ) ey

d\ A A3
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or > (logz;)* = n)\?, or

(L [Slog iy
n
This solution is unique.
Notice that
d? n 3> (logxz;)?
o) = g =
n o 3\ —2n
T e <Y
Hence
5 = ) 2ulog Xi)®
n
is the MLE of .
b)
s 2 (log Xi)?
n

is the MLE of A\? by invariance.
6.7. a) The joint density

1 1 9
flz) = Wexp[—§ Z(fﬂz — )]

1 1
— Wexp[—§( E x7 —2u E z; + np’)]
1 1 _ onu?
— @ exp[—§ E x7] exp[nu® — T]

Hence by the factorization theorem X is a sufficient statistic for .

b) X is sufficient by a) and complete since the N(y, 1) family is a regular

one parameter exponential family.

) E(I_(0oq)(X1)|X =7) = P(X; <t[X =7) = @(m).

d) By Rao-Blackwell-Lehmann-Scheffe,
t—X

(I)(\/l—l/n
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is the UMV UE.

6.14. Note that Y | X; ~ G(n, ). Hence MSE(c) = Varyg(T,(c))+[EeT,.(c)—
01 = *Vare(d> X;) + [ncEg X — 0)* = ¢*nb? + [nch — 6]%.
So
d

d—MSE(c) = 2cnb? + 2[nch — O)nd.
c

Set this equation to 0 to get 2n6%*[c + nc — 1] = 0 or ¢(n + 1) = 1. So
c=1/(n+1).

The second derivative is 2n6% + 2n%6? > 0 so the function is convex and
the local min is in fact global.

6.17. a) Since this is an exponential family, log(f(z|\)) = —log(A) —x /A
and

0 -1
55 loa(f(alN) = <= + 5.
Hence 92 ) 5
S5 los (2 N) = 55 — 35
and 0 1 2\ 1
B =B | o] = 35 + 53 = 5
b)
/ 2 2
FORLB(r(\) = T A )

ol (\) /X2

c) (T' =51, X; ~ Gamma(n, \) is a complete sufficient statistic. Now
E(T?) = V(T)+ [E(T)]? = nA\* + n*\%. Hence the UMVUE of \? is T?%/(n +
n?).) No, W is a nonlinear function of the complete sufficient statistic 7.

6.19.

W = S8%(k)/o% ~ xu/k
and
MSE(S*(k)) = MSE(W) =VARW) + (E(W) — ¢*)?

4 0.2

=1 2n + (—k: o)
2n  n 2n+ (n —k)?
= aﬂﬁ + (E —1)?] = 047.
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Now the derivative LM SE(S*(k))/o* =

—2(n — k)

ot (0 K

L3
Set this derivative equal to zero. Then
2k* — 2nk = 4n + 2(n — k)* = 4n + 2n* — dnk + 2>
Hence
2nk = 4n + 2n®

or k=mn-+2.

Should also argue that k = n + 2 is the global minimizer. Certainly need
k > 0 and the absolute bias will tend to oo as £ — 0 and the bias tends
to 0% as k — 00, so k = n + 2 is the unique critical point and is the global
minimizer.

6.20. a) Let W = X?. Then f(w) = fx(vw) 1/(2y/w) = (1/6) exp(—w/0)
and W ~ exp(f). Hence Ey(X?) = Ey(W) = 6.

b) This is an exponential family and
1
log(f(]6)) = log(2x) — log(6) — 52

for x < 0. Hence
0 —1 1

g _ T
go/ W0 = 5+
and o2 T
a2 ! (#10) = g3 + G5
Hence 1 5 1
by a). Now
[T'(0)]* 6
LB = = —
Cr nli(6) n

where 7(0) = 0.
¢) This is a regular exponential family so > | X? is a complete sufficient

statistic. Since S 2
Ey[==—+] =0

=Y
n
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the UMVUE is 251X
6.21. a) In normal samples, X and S are independent, hence

Varg[W(a)] = o®Varg(Ty) + (1 — a)*Vare(T3).

b) W{(«) is an unbiased estimator of §. Hence MSE(W (a)) = MSE(a) =
Varg|W («)] which is found in part a).

c) Now
d
%MSE(Q) =2aVary(Ty) —2(1 — a)Vary(Tz) = 0.
Hence 02
V T: o
G — ar@( 2) ~ 22n 2:1/3
Vm’g(Tl) + VGTG(T2) g—n + %

using the approximation and the fact that Var(X) = #%/n. Note that the
second derivative
d2
WMSE(O&) = 2[Varg(Ty) + Vare(T3)] > 0,
o
so a = 1/3 is a local min. The critical value was unique, hence 1/3 is the
global min.

6.22. a) X; — Xy ~ N(0,20%). Thus,

00 1 2
E(T)) = U e du
(1) /0 VAaro?

1 [ 1 -
E(T?) = —/ 2 07 d
(1) 2 Jo ! \/4%026 N
= 5
V() =0%(1 — 1) and
1 1 1 3 2
MSE(T) = o*[(—=) — 1)+ 5 — =] = o’[5 — —=]



b) £ has a N(0,1) and %ﬁXZ has a chi square distribution with n degrees
of freedom. Thus

E( ';2 : ) - P(Q)z )
and Var()
B = 72
Therefore, (=)
Vi)
S IC

6.23. This is a regular one parameter exponential family with complete
sufficient statistic T, = > | X; ~ G(n,\). Hence E(T,) = n\, E(T?) =
V(T,) + (E(T,))? = nA\?> + n?\?, and T?/(n + n?) is the UMVUE of A\2.

6.24.

1 Wi X %

X; o o

Hence if
n

1 T
T:Z— thenE(—):i
n

i1 Xi’ HO"

and T'/n is the UMVUE since f(z) is an exponential family with complete
sufficient statistic 1/X.

6.25. The pdf of T is

2nt2n—1
g(t) = g
for 0 <t < 4.
E(T) = 25119 and E(T?) = 22%92.
2n 2n 2n
MSE TY = _ 2 2 2 2
SE(CT) (C2n+19 2 +C[2n+29 (2n+19)]
dMSE(CT) 2cnd 2n6 2n 6> 4n?6?
=2 — 0 ] 42 - 3]
ac 2n+1 2n+1 2n+2 (2n+1)
Solve %C(CT) =0 to get o
n
=2 .
¢ 2n+1
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d?MSE(CT) __ — 4 nf>
dcC? 2n+27

Check with the second derivative which is always posi-

tive.

6.26. a) E(Y;) = 20/3 and V(Y;) = 6?/18. So bias of T = B(T) =
EcX — 0 =c30 — 6 and Var(T) =

X; 2 ng?
Vow(CZ =3 ZVar = %%

So MSE = Var(T) +[B(T)]* =

b)

MSE 2c6? 2 2
dMSE(c)  2c0 +2(—90—9)—9

de  18n 3 37
Set this equation equal to 0 and solve, so
9220 4 2
— 9 Oc—0)=0
18n ( ¢ )
o 20> 8 4
= _92 — _92
en 97173
o 1 8 4
_ _92 — _92
Gnt9?) =3
or
( 1 N 8n) 4
“on o T3
or
On 4 12n

T 1+8n3 1+8n

This is a global min since the MSE is a quadratic in ¢ with a positive
coefficient, or because

d>*MSE(c) _ 262 N 86% S0
dc? 18n 9
6.27. See Example 6.5.
7.6. For both a) and b), the test is reject Ho iff [, z;(1 —2;) > ¢ where

P9=1[H?:1 [L’Z(l — [L’Z) > C] = Q.
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7.10. H says f(z) = e~® while K says
f(z) =2t /T(0).
The monotone likelihood ratio property holds for [ ] z; since then

fal®,05) _ (g @)™ HTO)" _ D00 0 1T ,y0 0
T 00 ~ ([0, e Ty — i) L)

i=1

which increases as H?:l x; increases if 65 > 6. Hence the level o UMP test

rejects H if
HXZ > C
i=1

where

PH(H Xi > ¢) = Pu()_log(X;) > log(c)) =1 —a.

7.11. See Example 7.6.

7.13. Let #; = 4. By Neyman Pearson lemma, reject Ho if

fom ~ (057) F () 770

if |
(#itm) (3)
ifft
(%)Zm >k
ifft

in log(61/2) > .
So reject Ho iff Y~ X; > ¢ where Py—2 (> X; > ¢) = a.
7.14. a) By NP lemma reject Ho if

f(x]o = 2)
f(x]o = 1)
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The LHS =
i eXp[ > @]

exp[ 5 3 o]

or if Y22 > k where Py,(> 22 > k) = a.
b) In the above argument, with any o > 1, get

Z i 201

1 1
2 207

So reject Ho if

and
>0

for any 0% > 1. Hence the UMP test is the same as in a).

7.15. a) By NP lemma reject Ho if

The LHS =

So reject Ho if

or if Y [log(X;)]* > k where Py,(> [log(X;)]* > k) = «
b) In the above argument, with any o > 1, get

1 1
and
2 207

for any 0% > 1. Hence the UMP test is the same as in a).
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7.16. The most powerful test will have the following form

Reject Hy iff Q)Eﬁ% > k.

But ?Emg = 42~3 and hence we reject Hy iff X is small, i.e. reject Hy is
X < k for some constant k. This test must also have the size «, that is we
require:

= P(X < k) when f(z) = fo(z)) = fok Satde = 5k,
so that k = 4a5.
For the power, when k: 4a%

P[X < k when f(z) fo 2ade = \Ja
When a = 0.01, the power is = 0.10.

8.1 ¢) The histograms should become more like a normal distribution as
n increases from 1 to 200. In particular, when n = 1 the histogram should be
right skewed while for n = 200 the histogram should be nearly symmetric.
Also the scale on the horizontal axis should decrease as n increases.

d) Now Y ~ N(0,1/n). Hence the histograms should all be roughly
symmetric, but the scale on the horizontal axis should be from about —3//n

to 3/y/n.
8.3. a) E(X)= 9+1,thus
V(X ())—>N(0V( ), but
V(:E) W Let g( ) = yy, thus ¢'(y) =

b) It is asymptotically efficient if \/n(T,, — ) — N(0,v(0)), where

(€= y . Using delta method

d
0
v(0) = (%)
—E(gzInf(z]))
But, B((4 ln f(:v|9)) . Thus v(4) = 67 # 201"
c) X — 9+—1 in probablhty Thus T, — 6 in probability.

8.5. See Example 8.8.
8.7. a) See Example 8.7.

8.13. a) Y, L " . X; where the X; are iid 3. Hence F(X;) = 1 and
=1 1
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Var(X;) = 2. Thus by the CLT,
Y, X
vn (——1)2\/5 (21—71—1) 2 N(0,2).
n n
b) Let g(6) = 3. Then ¢'(0) = 30%, ¢'(1) = 3, and by the delta method,

Vvn

n

(E) 1 ] D N(0,2(¢'(1))?) = N(0, 18).

8.27. a) See Example 8.1b.
b) See Example 8.3.

8.28. a) By the CLT, vn(X — A\)/vVA 2 N(0,1). Hence /n(X — \) 2
N(0, A).
b) Let g(A) = A3 so that ¢'(A) = 3A2 then v/n](X)3—(A)?] 2 N (0, A[¢(V)]?) =
N(0,9)%).
8.29. a) X is a complete sufficient statistic. Also we have (n71 has a
chi square distribution with df = n—1, thus since o2 is known the dlstrlbutlon

of S? does not depend on i, so S? is ancillary. Thus, by Basu’s Theorem X
and S? are independent.

b) by CLT (n is large ) \/n(X — ) has approximately normal distribution
with mean 0 and variance o2, Let g(z) = 2®, thus, ¢ (z) = 322 Using
delta method /n(g(X) — g(u)) goes in distribution to N(0,02(g (1))?) or
V(X — 1) goes in distribution to N(0, 02(3,u2)2). Thus the distribution
of X” is approximately normal with mean ;* and variance 9”9“

8.30. a) According to the standard theorem, /n(f, — 6) — N(0,3).

w2 : N

b) 2E(Y) = 0,Var(Y) = %, according to CLT we have y/n(Y, —0) —

N(0,%).

F(MED(Y)) = 22000, = 1. Thus /n(MED(n) —60) — N(0, 1 ) —

VR(MED(n) — 6) — N(0,4).

d) All three estimators are consistent, but 3 < % < 4, therefore the

estimator 0, is the best, and the estimator MED(n) is the worst.
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9.1. a) Y. | X? is minimal sufficient for a.

b) It can be shown that XTb has an exponential distribution with mean 1.

Thus, %:le is distributed y3,. Let X%n,a/2 be the upper 100(3a)% point

of the chi-square distribution with 2n degrees of freedom. Thus, we can write

2% i X7
a

l-—a= P(X%n,l—a/2 < < X%n,a/2)

which translates into

Y

<zzz;1 Xt o2y, Xf’)

2 2
Xona/2  Xoni-a/2

as a two sided (1 — «) confidence interval for a. For a = 0.05 and n = 20, we
have X%n,a/2 = 34.1696 and X%n,l—a/2 = 9.59083. Thus the confidence interval

for a is
(Z?zl X} Y X} )

17.0848 7 4.795415

9.4. Tables are from simulated data but should be similar to the table
below.

n p ccov  acov

50 .01 .4236 .9914 AC CI better

100 .01 .6704 .9406 AC CI better

150 .01 .8278 .9720 AC CI better

200 .01 .9294 .9098 the CIs are about the same
250 .01 .8160 .8160 the CIs are about the same
300 .01 .9158 .9228 the CIs are about the same
350 .01 .9702 .8312 classical is better

400 .01 .9486 .6692 classical is better

450 .01 .9250 .4080 classical is better
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