
Chapter 6

UMVUEs and the FCRLB

Warning: UMVUE theory is rarely used in practice unless the UMVUE Un

of θ satisfies Un = anθ̂MLE where an is a constant that could depend on the
sample size n. UMVUE theory tends to be somewhat useful if the data is iid
from a 1P–REF.

6.1 MSE and Bias

Definition 6.1. Let the sample Y = (Y1, ..., Yn) where Y has a pdf or pmf
f(y|θ) for θ ∈ Θ. Assume all relevant expectations exist. Let τ (θ) be a real
valued function of θ, and let T ≡ T (Y1, ..., Yn) be an estimator of τ (θ). The
bias of the estimator T for τ (θ) is

B(T ) ≡ B
τ (θ)

(T ) ≡ Bias(T) ≡ Bias
τ (θ)

(T) = Eθ(T) − τ (θ). (6.1)

The mean squared error (MSE) of an estimator T for τ (θ) is

MSE(T) ≡ MSE
τ (θ)

(T) = Eθ[(T− τ (θ))2]

= V arθ(T ) + [Bias
τ (θ)

(T)]2. (6.2)

T is an unbiased estimator of τ (θ) if

Eθ(T ) = τ (θ) (6.3)

for all θ ∈ Θ. Notice that Bias
τ (θ)

(T) = 0 for all θ ∈ Θ if T is an unbiased

estimator of τ (θ).
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Notice that the bias and MSE are functions of θ for θ ∈ Θ. If MSE
τ (θ)

(T1)

< MSE
τ (θ)

(T2) for all θ ∈ Θ, then T1 is “a better estimator” of τ (θ) than

T2. So estimators with small MSE are judged to be better than ones with
large MSE. Often T1 has smaller MSE than T2 for some θ but larger MSE
for other values of θ.

Often θ is real valued. A common problem considers a class of estimators
Tk(Y ) of τ (θ) where k ∈ Λ. Find the MSE as a function of k and then find
the value ko ∈ Λ that is the global minimizer of MSE(k) ≡ MSE(Tk). This
type of problem is a lot like the MLE problem except you need to find the
global min rather than the global max.

This type of problem can often be done if Tk = kW1(X)+ (1− k)W2(X)
where both W1 and W2 are unbiased estimators of τ (θ) and 0 ≤ k ≤ 1.

Example 6.1. If X1, ..., Xn are iid N(µ, σ2) then ko = n+1 will minimize
the MSE for estimators of σ2 of the form

S2(k) =
1

k

n
∑

i=1

(Xi − X)2

where k > 0. See Problem 6.2.

Example 6.2. Find the bias and MSE (as a function of n and c ) of
an estimator T = c

∑n
i=1 Yi or (T = bY ) of θ when Y1, ..., Yn are iid with

E(Y1) = µ = h(θ) and V (Yi) = σ2.
Solution: E(T ) = c

∑n
i=1 E(Yi) = ncµ, V (T ) = c2

∑n
i=1 V (Yi) = nc2σ2,

B(T ) = E(T ) − θ and MSE(T ) = V (T ) + [B(T )]2. (For T = bY , use
c = b/n.)

Example 6.3. Suppose that Y1, ..., Yn are independent binomial(mi, ρ)
where the mi ≥ 1 are known constants. Let

T1 =

∑n
i=1 Yi

∑n
i=1 mi

and T2 =
1

n

n
∑

i=1

Yi

mi

be estimators of ρ.
a) Find MSE(T1).

b) Find MSE(T2).

c) Which estimator is better?
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Hint: by the arithmetic–geometric–harmonic mean inequality,

1

n

n
∑

i=1

mi ≥
n

∑n
i=1

1
mi

.

Solution: a)

E(T1) =

∑n
i=1 E(Yi)
∑n

i=1 mi
=

∑n
i=1 miρ

∑n
i=1 mi

= ρ,

so MSE(T1) = V (T1) =

1

(
∑n

i=1 mi)2
V (

n
∑

i=1

Yi) =
1

(
∑n

i=1 mi)2

n
∑

i=1

V (Yi) =
1

(
∑n

i=1 mi)2

n
∑

i=1

miρ(1 − ρ)

=
ρ(1 − ρ)
∑n

i=1 mi
.

b)

E(T2) =
1

n

n
∑

i=1

E(Yi)

mi
=

1

n

n
∑

i=1

miρ

mi
=

1

n

n
∑

i=1

ρ = ρ,

so MSE(T2) = V (T2) =

1

n2
V (

n
∑

i=1

Yi

mi
) =

1

n2

n
∑

i=1

V (
Yi

mi
) =

1

n2

n
∑

i=1

V (Yi)

(mi)2
=

1

n2

n
∑

i=1

miρ(1 − ρ)

(mi)2

=
ρ(1 − ρ)

n2

n
∑

i=1

1

mi

.

c) The hint

1

n

n
∑

i=1

mi ≥
n

∑n
i=1

1
mi

implies that

n
∑n

i=1 mi
≤
∑n

i=1
1

mi

n
and

1
∑n

i=1 mi
≤
∑n

i=1
1

mi

n2
.

Hence MSE(T1) ≤ MSE(T2), and T1 is better.
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6.2 Exponential Families, UMVUEs and the

FCRLB.

Definition 6.2. Let the sample Y = (Y1, ..., Yn) where Y has a pdf or pmf
f(y|θ) for θ ∈ Θ. Assume all relevant expectations exist. Let τ (θ) be a real
valued function of θ, and let U ≡ U(Y1, ..., Yn) be an estimator of τ (θ). Then
U is the uniformly minimum variance unbiased estimator (UMVUE) of τ (θ)
if U is an unbiased estimator of τ (θ) and if Varθ(U) ≤ Varθ(W) for all θ ∈ Θ
where W is any other unbiased estimator of τ (θ).

The following theorem is the most useful method for finding UMVUEs
since if Y1, ..., Yn are iid from a 1P–REF f(y|θ) = h(y)c(θ) exp[w(θ)t(y)]
where η = w(θ) ∈ Ω = (a, b) and a < b are not necessarily finite, then
T (Y ) =

∑n
i=1 t(Yi) is a complete sufficient statistic. It will turn out that

Eθ[W (Y )|T (Y )] ≡ E[W (Y )|T (Y )] does not depend on θ. Hence U =
E[W (Y )|T (Y )] is a statistic.

Theorem 6.1, Lehmann-Scheffé UMVUE (LSU) Theorem: If
T (Y ) is a complete sufficient statistic for θ, then

U = g(T (Y )) (6.4)

is the UMVUE of its expectation Eθ(U) = Eθ[g(T (Y ))]. In particular, if
W (Y ) is any unbiased estimator of τ (θ), then

U ≡ E[W (Y )|T (Y )] (6.5)

is the UMVUE of τ (θ).

The process (6.5) is called Rao-Blackwellization because of the following
theorem.

Theorem 6.2, Rao-Blackwell Theorem. Let W ≡ W (Y ) be an
unbiased estimator of τ (θ) and let T ≡ T (Y ) be a sufficient statistic for τ (θ).
Then φ(T ) = E[W |T ] is an unbiased estimator of τ (θ) and VARθ[φ(T )] ≤
VARθ(W ) for all θ ∈ Θ.

Proof. Notice that φ(T ) does not depend on θ by the definition of a
sufficient statistic, and that φ(T ) is an unbiased estimator for τ (θ) since
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τ (θ) = Eθ(W ) = Eθ(E(W |T )) = Eθ(φ(T )) by iterated expectations (Theo-
rem 2.10). By Steiner’s formula (Theorem 2.11), VARθ(W ) =

Eθ[VAR(W |T )] + VARθ[E(W |T )] ≥ VARθ[E(W |T )] = VARθ[φ(T )]. QED

Tips for finding the UMVUE:

i) From the LSU Theorem, if T (Y ) is complete sufficient statistic and
g(T (Y )) is a real valued function, then U = g(T (Y )) is the UMVUE of
its expectation Eθ[g(T (Y ))].

ii) Given a complete sufficient statistic T (Y ) (eg T (Y ) =
∑n

i=1 t(Yi) if
the data are iid from a 1P–REF), the first method for finding the UMVUE
of τ (θ) is to guess g and show that Eθ[g(T (Y ))] = τ (θ) for all θ.

iii) If T (Y ) is complete, the second method is to find any unbiased
estimator W (Y ) of τ (θ). Then U(Y ) = E[W (Y )|T (Y )] is the UMVUE of
τ (θ).

This problem is often very hard because guessing g or finding an unbiased
estimator W and computing E[W (Y )|T (Y )] tend to be difficult. Write down
the two methods for finding the UMVUE and simplify E[W (Y )|T (Y )] as far
as you can for partial credit. If you are asked to find the UMVUE of τ (θ), see
if an unbiased estimator W (Y ) is given in the problem. Also check whether
you are asked to compute E[W (Y )|T (Y ) = t] anywhere.

iv) The following facts can be useful for computing the conditional expec-
tation (Rao-Blackwellization). Suppose Y1, ..., Yn are iid with finite expecta-
tion.
a) Then E[Y1|

∑n
i=1 Yi = x] = x/n.

b) If the Yi are iid Poisson(λ), then (Y1|
∑n

i=1 Yi = x) ∼ bin(x, 1/n).
c) If the Yi are iid Bernoulli Ber(p), then (Y1|

∑n
i=1 Yi = x) ∼ Ber(x/n).

d) If the Yi are iid N(µ, σ2), then (Y1|
∑n

i=1 Yi = x) ∼ N [x/n, σ2(1 − 1/n)].

Often students will be asked to compute a lower bound on the variance
of unbiased estimators of η = τ (θ) when θ is a scalar.

Definition 6.3. Let Y = (Y1, ..., Yn) have a pdf or pmf f(y|θ). Then the
information number or Fisher Information is

IY (θ) ≡ In(θ) = Eθ

(

[

∂

∂θ
log(f(Y |θ))

]2
)

. (6.6)
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Let η = τ (θ) where τ ′(θ) 6= 0. Then

In(η) ≡ In(τ (θ)) =
In(θ)

[τ ′(θ)]2.
(6.7)

Theorem 6.3. a) Equations (6.6) and (6.7) agree if τ ′(θ) is continuous,
τ ′(θ) 6= 0, and τ (θ) is one to one and onto so that an inverse function exists
such that θ = τ−1(η)

b) If the Y1 ≡ Y is from a 1P–REF, then the Fisher information in a
sample of size one is

I1(θ) = −Eθ

[

∂2

∂θ2
log(f(Y |θ))

]

. (6.8)

c) If the Y1, ..., Yn are iid from a 1P–REF, then

In(θ) = nI1(θ). (6.9)

Hence if τ ′(θ) exists and is continuous and if τ ′(θ) 6= 0, then

In(τ (θ)) =
nI1(θ)

[τ ′(θ)]2
. (6.10)

Proof. a) See Lehmann (1999, p. 467–468).

b) The proof will be for a pdf. For a pmf replace the integrals by sums.
By Remark 3.2, the integral and differentiation operators of all orders can
be interchanged. Note that

0 = E

[

∂

∂θ
log(f(Y |θ))

]

(6.11)

since

∂

∂θ
1 = 0 =

∂

∂θ

∫

f(y|θ)dy =

∫

∂

∂θ
f(y|θ)dy =

∫ ∂
∂θ

f(y|θ)
f(y|θ) f(y|θ)dy

or

0 =
∂

∂θ

∫

f(y|θ)dy =

∫
[

∂

∂θ
log(f(y|θ))

]

f(y|θ)dy
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which is (6.11). Taking 2nd derivatives of the above expression gives

0 =
∂2

∂θ2

∫

f(y|θ)dy =
∂

∂θ

∫
[

∂

∂θ
log(f(y|θ))

]

f(y|θ)dy =

∫

∂

∂θ

([

∂

∂θ
log(f(y|θ))

]

f(y|θ)
)

dy =

∫
[

∂2

∂θ2
log(f(y|θ))

]

f(y|θ)dy +

∫
[

∂

∂θ
log(f(y|θ))

] [

∂

∂θ
f(y|θ)

]

f(y|θ)
f(y|θ)dy

=

∫
[

∂2

∂θ2
log(f(y|θ))

]

f(y|θ)dy +

∫
[

∂

∂θ
log(f(y|θ))

]2

f(y|θ)dy

or

I1(θ) = Eθ[(
∂

∂θ
log f(Y |θ))2] = −Eθ

[

∂2

∂θ2
log(f(Y |θ))

]

.

c) By independence,

In(θ) = Eθ





(

∂

∂θ
log(

n
∏

i=1

f(Yi|θ))
)2


 = Eθ





(

∂

∂θ

n
∑

i=1

log(f(Yi|θ))
)2


 =

Eθ

[(

∂

∂θ

n
∑

i=1

log(f(Yi|θ))
)(

∂

∂θ

n
∑

j=1

log(f(Yj |θ))
)]

=

Eθ

[(

n
∑

i=1

∂

∂θ
log(f(Yi|θ))

)(

n
∑

j=1

∂

∂θ
log(f(Yj |θ))

)]

=

n
∑

i=1

Eθ

[

(

∂

∂θ
log(f(Yi|θ))

)2
]

+

∑∑

i6=j

Eθ

[(

∂

∂θ
log(f(Yi|θ))

)(

∂

∂θ
log(f(Yj |θ))

)]

.

Hence

In(θ) = nI1(θ) +
∑∑

i6=j

Eθ

[(

∂

∂θ
log(f(Yi|θ))

)]

Eθ

[(

∂

∂θ
log(f(Yj |θ))

)]
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by independence. Hence

In(θ) = nI1(θ) + n(n − 1)

[

Eθ

(

∂

∂θ
log(f(Yj |θ))

)]2

since the Yi are iid. Thus In(θ) = nI1(θ) by Equation (6.11) which holds
since the Yi are iid from a 1P–REF. QED

Definition 6.4. Let Y = (Y1, ..., Yn) be the data, and consider τ (θ)
where τ ′(θ) 6= 0. The quantity

FCRLBn(τ (θ)) =
[τ ′(θ)]2

In(θ)

is called the Fréchet Cramér Rao lower bound (FCRLB) for the variance
of unbiased estimators of τ (θ). In particular, if τ (θ) = θ, then FCRLBn(θ) =

1

In(θ)
. The FCRLB is often called the Cramér Rao lower bound (CRLB).

Theorem 6.4, Fréchet Cramér Rao Lower Bound or Information
Inequality. Let Y1, ..., Yn be iid from a 1P–REF with pdf or pmf f(y|θ). Let
W (Y1, ..., Yn) = W (Y ) be any unbiased estimator of τ (θ) ≡ EθW (Y ). Then

VARθ(W (Y )) ≥ FCRLBn(τ (θ)) =
[τ ′(θ)]2

In(θ)
=

[τ ′(θ)]2

nI1(θ)
.

Proof. By Definition 6.4 and Theorem 6.3c,

FCRLBn(τ (θ)) =
[τ ′(θ)]2

In(θ)
=

[τ ′(θ)]2

nI1(θ)
.

Since the Yi are iid from a 1P–REF, by Remark 3.2 the derivative and integral
or sum operators can be interchanged when finding the derivative of Eθh(Y )
if Eθ|h(Y )| < ∞. The following argument will be for pdfs. For pmfs, replace
the integrals by appropriate sums. Following Casella and Berger (2002, p.
335-8), the Cauchy Schwarz Inequality is

[Cov(X, Y)]2 ≤ V(X)V(Y), or V(X) ≥ [Cov(X, Y)]2

V(Y)
.

Hence

Vθ(W (Y )) ≥ (Covθ[W(Y ), ∂
∂θ

log(f(Y |θ))])2

Vθ[
∂
∂θ

log(f(Y |θ))] . (6.12)
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Now

Eθ[
∂

∂θ
log(f(Y |θ))] = Eθ

[

∂
∂θ

f(Y |θ)
f(Y |θ)

]

since the derivative of log(h(t)) is h′(t)/h(t). By the definition of expectation,

Eθ[
∂

∂θ
log(f(Y |θ))] =

∫

· · ·
∫

Y

∂
∂θ

f(y|θ)
f(y|θ) f(y|θ)dy

=

∫

· · ·
∫

Y

∂

∂θ
f(y|θ)dy =

d

dθ

∫

· · ·
∫

Y

f(y|θ)dy =
d

dθ
1 = 0.

Notice that f(y|θ) > 0 on the support Y, that the f(y|θ) cancelled in the
2nd term, that the derivative was moved outside of the integral by Remark
3.2, and that the integral of f(y|θ) on the support Y is equal to 1.

This result implies that

Covθ[W(Y ),
∂

∂θ
log(f(Y |θ))] = Eθ[W(Y )

∂

∂θ
log(f(Y |θ))]

= Eθ

[

W (Y ) ( ∂
∂θ

f(Y |θ))
f(Y |θ)

]

since the derivative of log(h(t)) is h′(t)/h(t). By the definition of expectation,
the right hand side is equal to

∫

· · ·
∫

Y

W (y) ∂
∂θ

f(y|θ)
f(y|θ) f(y|θ)dy =

d

dθ

∫

· · ·
∫

Y

W (y)f(y|θ)dy

=
d

dθ
EθW (Y ) = τ ′(θ) = Covθ[W(Y ),

∂

∂θ
log(f(Y |θ))]. (6.13)

Since

Eθ[
∂

∂θ
log f(Y |θ)] = 0,

Vθ[
∂

∂θ
log(f(Y |θ))] = Eθ([

∂

∂θ
log(f(Y |θ))]2) = In(θ) (6.14)

by Definition 6.3. Plugging (6.13) and (6.14) into (6.12) gives the result.
QED

Theorem 6.4 is not very useful in applications. If the data are iid from
a 1P–REF then FCRLBn(τ (θ)) = [τ ′(θ)]2/[nI1(θ)] by Theorem 6.4. Notice
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that W (Y ) is an unbiased estimator of τ (θ) since EθW (Y ) = τ (θ). Hence
if the data are iid from a 1P–REF and if VARθ(W (Y )) = FCRLBn(τ (θ))
for all θ ∈ Θ then W (Y ) is the UMVUE of τ (θ); however, this technique for
finding a UMVUE rarely works since typically equality holds only if
1) the data come from a 1P–REF with complete sufficient statistic T , and
2) W = a + bT is a linear function of T .
The FCRLB inequality will typically be strict for nonlinear functions of T
if the data is iid from a 1P–REF. If T is complete, g(T ) is the UMVUE of
its expectation, and determining that T is the complete sufficient statistic
from a 1P–REF is simpler than computing VARθ(W ) and FCRLBn(τ (θ)). If
the family is not an exponential family, the FCRLB may not be a lower
bound on the variance of unbiased estimators of τ (θ).

Example 6.4. Let Y1, ..., Yn be iid random variables with pdf

f(y) =
2√
2πλ

1

y
I[0,1](y) exp

[−(log(y))2

2λ2

]

where λ > 0. Then [log(Yi)]
2 ∼ G(1/2, 2λ2) ∼ λ2χ2

1.
a) Find the uniformly minimum variance estimator (UMVUE) of λ2.

b) Find the information number I1(λ).

c) Find the Fréchet Cramér Rao lower bound (FCRLB) for estimating
τ (λ) = λ2.

Solution. a) This is a one parameter exponential family with complete
sufficient statistic Tn =

∑n
i=1[log(Yi)]

2. Now E(Tn) = nE([log(Yi)]
2) = nλ2.

Hence E(Tn/n) = λ2 and Tn/n is the UMVUE of λ2 by the LSU Theorem.
b) Now

log(f(y|λ)) = log(2/
√

2π) − log(λ) − log(y) − [log(y)]2

2λ2
.

Hence
d

dλ
log(f(y|λ)) =

−1

λ
+

[log(y)]2

λ3
,

and
d2

dλ2
log(f(y|λ)) =

1

λ2
− 3[log(y)]2

λ4
.

Thus

I1(λ) = −E

[

1

λ2
− 3[log(Y )]2

λ4

]

=
−1

λ2
+

3λ2

λ4
=

2

λ2
.
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c)

FCRLB(τ (λ)) =
[τ ′(λ)]2

nI1(λ)
.

Now τ (λ) = λ2 and τ ′(λ) = 2λ. So

FCRLB(τ (λ)) =
4λ2

n2/λ2
=

2λ4

n
.

Example 6.5. Suppose that X1, ..., Xn are iid Bernoulli(p) where n ≥ 2
and 0 < p < 1 is the unknown parameter.

a) Derive the UMVUE of τ (p), where τ (p) = e2(p(1 − p)).

b) Find the FCRLB for estimating τ (p) = e2(p(1 − p)).

Solution: a) Consider the statistic W = X1(1−X2) which is an unbiased
estimator of τ (p) = p(1 − p). The statistic T =

∑n
i=1 Xi is both complete

and sufficient. The possible values of W are 0 or 1. Then U = φ(T ) where

φ(t) = E[X1(1 − X2)|T = t]

= 0P [X1(1 − X2) = 0|T = t] + 1P [X1(1 − X2) = 1|T = t]

= P [X1(1 −X2) = 1|T = t]

=
P [X1 = 1, X2 = 0 and

∑n
i=1 Xi = t]

P [
∑n

i=1 Xi = t]

=
P [X1 = 1]P [X2 = 0]P [

∑n
i=3 Xi = t − 1]

P [
∑n

i=1 Xi = t]
.

Now
∑n

i=3 Xi is Bin(n − 2, p) and
∑n

i=1 Xi is Bin(n, p). Thus

φ(t) =
p(1 − p)[

(

n−2
t−1

)

pt−1(1 − p)n−t−1]
(

n
t

)

pt(1 − p)n−t

=

(

n−2
t−1

)

(

n
t

) =
(n − 2)!

(t− 1)!(n − 2 − t + 1)!

t(t − 1)!(n − t)(n − t − 1)!

n(n − 1)(n − 2)!
=

t(n − t)

n(n − 1)

=
t
n
(n − n t

n
)

n − 1
=

t
n
n(1 − t

n
)

n − 1
=

n

n − 1
x(1 − x).

Thus n
n−1

X(1 − X) is the UMVUE of p(1 − p) and U = e2 n
n−1

X(1 − X)
is the UMVUE of τ (p) = e2p(1 − p).
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Alternatively, X is a complete sufficient statistic, so try an estimator of
the form U = a(X)2+bX+c. Then U is the UMVUE if Ep(U) = e2p(1−p) =
e2(p − p2). Now E(X) = E(X1) = p and V (X) = V (X1)/n = p(1 − p)/n
since

∑

Xi ∼ Bin(n, p). So E[(X)2] = V (X) + [E(X)]2 = p(1 − p)/n + p2.
So Ep(U) = a[p(1 − p)/n] + ap2 + bp + c

=
ap

n
− ap2

n
+ ap2 + bp + c = (

a

n
+ b)p + (a − a

n
)p2 + c.

So c = 0 and a − a
n

= an−1
n

= −e2 or

a =
−n

n − 1
e2.

Hence a
n

+ b = e2 or

b = e2 − a

n
= e2 +

n

n(n − 1)
e2 =

n

n − 1
e2.

So

U =
−n

n − 1
e2(X)2 +

n

n − 1
e2X =

n

n − 1
e2X(1 − X).

b) The FCRLB for τ (p) is [τ ′(p)]2/nI1(p). Now f(x) = px(1 − p)1−x, so
log f(x) = x log(p) + (1 − x) log(1 − p). Hence

∂ log f

∂p
=

x

p
− 1 − x

1 − p

and
∂2 log f

∂p2
=

−x

p2
− 1 − x

(1 − p)2
.

So

I1(p) = −E(
∂2 log f

∂p2
) = −(

−p

p2
− 1 − p

(1 − p)2
) =

1

p(1 − p)
.

So

FCRLB =
[e2(1 − 2p)]2

n
p(1−p)

=
e4(1 − 2p)2p(1 − p)

n
.

Example 6.6. Let X1, ..., Xn be iid random variables with pdf

f(x) =
1

λ
φxφ−1 1

1 + xφ
exp

[

− 1

λ
log(1 + xφ)

]
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where x, φ, and λ are all positive. If φ is known, find the uniformly minimum
unbiased estimator of λ using the fact that log(1+Xφ

i ) ∼ Gamma (ν = 1, λ).

Solution: This is a regular one parameter exponential family with com-
plete sufficient statistic Tn =

∑n
i=1 log(1+Xφ

i ) ∼ G(n, λ). Hence E(Tn) = nλ
and Tn/n is the UMVUE of λ.

6.3 Summary

1) The bias of the estimator T for τ (θ) is

B(T ) ≡ B
τ (θ)

(T ) ≡ Bias
τ (θ)

(T) = EθT − τ (θ)

and the MSE is

MSE
τ (θ)

(T) = Eθ[(T − τ (θ))2] = Vθ(T) + [Bias
τ (θ)

(T)]2.

2) T is an unbiased estimator of τ (θ) if EθT = τ (θ) for all θ ∈ Θ.

3) Let U ≡ U(Y1, ..., Yn) be an estimator of τ (θ). Then U is the UMVUE
of τ (θ) if U is an unbiased estimator of τ (θ) and if VARθU ≤ VARθW for all
θ ∈ Θ where W is any other unbiased estimator of τ (θ).

4) If Y1, ..., Yn are iid from a 1P–REF f(y|θ) = h(y)c(θ) exp[w(θ)t(y)]
where η = w(θ) ∈ Ω = (a, b), and if T ≡ T (Y ) =

∑n
i=1 t(Yi), then by the

LSU Theorem, g(T ) is the UMVUE of its expectation τ (θ) = Eθ(g(T )).

5) Given a complete sufficient statistic T (Y ) and any unbiased estimator
W (Y ) of τ (θ), then U(Y ) = E[W (Y )|T (Y )] is the UMVUE of τ (θ).

7) In(θ) = Eθ[(
∂
∂θ

log f(Y |θ))2].

8) FCRLBn(τ (θ)) =
[τ ′(θ)]2

In(θ)
.

9) If Y1, ..., Yn are iid from a 1P–REF f(y|θ) = h(y)c(θ) exp[w(θ)t(y)],
then a)

I1(θ) = −Eθ

[

∂2

∂θ2
log(f(Y |θ))

]

.

b)

In(τ (θ)) =
nI1(θ)

[τ ′(θ)]2
.
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c)

FCRLBn(τ (θ)) =
[τ ′(θ)]2

nI1(θ)
.

d) Information inequality: Let Y1, ..., Yn be iid from a 1P–REF and let
W (Y ) be any unbiased estimator of τ (θ) ≡ EθW (Y ). Then

VARθ(W (Y )) ≥ FCRLBn(τ (θ)) =
[τ ′(θ)]2

nI1(θ)
.

e) Rule of thumb for a 1P–REF: Let T (Y ) =
∑n

i=1 t(Yi) and τ (θ) =
Eθ(g(T (Y )). Then g(T (Y )) is the UMVUE of τ (θ) by LSU, but the in-
formation inequality is strict for nonlinear functions g(T (Y )). Expect the
equality

VARθ(g(T (Y )) =
[τ ′(θ)]2

nI1(θ)

only if g is a linear function, ie, g(T ) = a + bT for some fixed constants a
and b.

10) If the family is not an exponential family, the FCRLB may not be
a lower bound on the variance of unbiased estimators of τ (θ).

6.4 Complements

For a more precise statement of when the FCRLB is achieved and for some
counterexamples, see Wijsman (1973) and Joshi (1976). Although the FCRLB
is not very useful for finding UMVUEs, similar ideas are useful for finding the
asymptotic variances of UMVUEs and MLEs. See Chapter 8 and Portnoy
(1977).

Karakostas (1985) has useful references for UMVUEs. Also see Guenther
(1978).

6.5 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

Refer to Chapter 10 for the pdf or pmf of the distributions in
the problems below.
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6.1∗. Let W be an estimator of τ (θ). Show that

MSEτ (θ)(W ) = V arθ(W ) + [Biasτ (θ)(W )]2.

6.2. (Aug. 2002 QUAL): Let X1, ..., Xn be independent identically dis-
tributed random variable from a N(µ, σ2) distribution. Hence E(X1) = µ
and V AR(X1) = σ2. Consider estimates of σ2 of the form

S2(k) =
1

k

n
∑

i=1

(Xi − X)2

where k > 0 is a constant to be chosen. Determine the value of k which gives
the smallest mean square error. (Hint: Find the MSE as a function of k,
then take derivatives with respect to k. Also, use Theorem 4.1c.)

6.3. Let X1, ..., Xn be iid N(µ, 1) random variables. Find τ (µ) such that
T (X1, ..., Xn) = (

∑n
i=1 Xi)

2 is the UMVUE of τ (µ).

6.4. Let X ∼ N(µ, σ2) where σ2 is known. Find the Fisher information
I1(µ).

6.5. Let X ∼ N(µ, σ2) where µ is known. Find the Fisher information
I1(σ

2).

6.6. Let X1, ..., Xn be iid N(µ, σ2) random variables where µ is known
and σ2 > 0. Then W =

∑n
i=1(Xi − µ)2 is a complete sufficient statistic and

W ∼ σ2χ2
n. From Chapter 10,

EY k =
2kΓ(k + n/2)

Γ(n/2)

if Y ∼ χ2
n. Hence

Tk(X1, ..., Xn) ≡
Γ(n/2)W k

2kΓ(k + n/2)

is the UMVUE of τk(σ
2) = σ2k for k > 0. Note that τk(θ) = (θ)k and θ = σ2.

a) Show that

V arθTk(X1, ..., Xn) = σ4k

[

Γ(n/2)Γ(2k + n/2)

Γ(k + n/2)Γ(k + n/2)
− 1

]

≡ ckσ
4k
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b) Let k = 2 and show that VarθT2−CRLB(τ2(θ)) > 0 where CRLB(τ2(θ))
is for estimating τ2(σ

2) = σ4 and θ = σ2.

6.7. (Jan. 2001 QUAL): Let X1, ..., Xn be independent, identically dis-
tributed N(µ, 1) random variables where µ is unknown and n ≥ 2. Let t be
a fixed real number. Then the expectation

Eµ[S] = Eµ(I(−∞,t](X1)) = Pµ(X1 ≤ t) = Φ(t − µ)

for all µ where Φ(x) is the cumulative distribution function of a N(0, 1)
random variable.

a) Show that the sample mean X is a sufficient statistic for µ.

b) Explain why (or show that) X is a complete sufficient statistic for µ.

c) Using the fact that the conditional distribution of X1 given X = x is
the N(x, 1 − 1/n) distribution where the second parameter 1 − 1/n is the
variance of conditional distribution, find

Eµ(I(−∞,t](X1)|X = x) = Eµ[I(−∞,t](W )]

where W ∼ N(x, 1 − 1/n). (Hint: your answer should be Φ(g(x)) for some
function g.)

d) What is the uniformly minimum variance unbiased estimator for
Φ(t − µ)?

Problems from old quizzes and exams.

6.8. Suppose that X is Poisson with pmf

f(x|λ) = P (X = x|λ) =
e−λλx

x!

where x = 0, 1, ... and λ > 0. Find the Fisher information I1(λ).

6.9. Let X1, ..., Xn be iid Exponential(β) random variables and Y1, ..., Ym

iid Exponential(β/2) random variables. Assume that the Yi’s and Xj’s are
independent.

a) Find the joint pdf f(x1, ..., xn, y1, ..., ym) and show that this pdf is a
regular exponential family with complete sufficient statistic T =

∑n
i=1 Xi +

2
∑m

i=1 Yi.
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b) Find the function τ (β) such that T is the UMVUE of τ (β). (Hint:
find EβT. The theorems of this chapter apply since X1, ..., Xn, 2Y1, ..., 2Ym

are iid.)

6.10. Let X1, ..., Xn be independent, identically distributed N(µ, 1) ran-
dom variables where µ is unknown.

a) Find EµX
2
1 .

b) Using the fact that the conditional distribution of X1 given X = x is
the N(x, 1 − 1/n) distribution where the second parameter 1 − 1/n is the
variance of conditional distribution, find

Eµ(X
2
1 |X = x).

[Hint: this expected value is equal to E(W 2) where W ∼ N(x, 1 − 1/n).]

c) What is the MLE for µ2 + 1? (Hint: you may use the fact that the
MLE for µ is X.)

d) What is the uniformly minimum variance unbiased estimator for µ2+1?
Explain.

6.11. Let X1, ..., Xn be a random sample from a Poisson(λ) population.

a) Find the Fréchet Cramér Rao lower bound FCRLBn(λ
2) for the vari-

ance of an unbiased estimator of τ (λ) = λ2.

b) The UMVUE for λ2 is T (X1, ..., Xn) = (X)2 − X/n. Will V arλT =
FCRLBn(λ

2) or will V arλT > FCRLBn(λ
2)? Explain. (Hint: use the rule

of thumb 9e from Section 6.3.)
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6.12. Let X1, ..., Xn be independent, identically distributed Poisson(λ)
random variables where λ > 0 is unknown.

a) Find EλX
2
1 .

b) Using the fact that the conditional distribution of X1 given
∑n

i=1 Xi =
y is the Binomial(y, 1/n) distribution, find

Eλ(X
2
1 |

n
∑

i=1

Xi = y).

c) Find τ (λ) such that Eλ(X
2
1 |
∑n

i=1 Xi) is the uniformly minimum vari-
ance unbiased estimator for τ (λ).

6.13. Let X1, ..., Xn be iid Bernoulli(ρ) random variables.

a) Find the Fisher information I1(ρ).

b) Find the Fréchet Cramér Rao lower bound for unbiased estimators of
τ (ρ) = ρ.

c) The MLE for ρ is X. Find Var(X).

d) Does the MLE achieve the FCRLB? Is this surprising? Explain.

6.14. (Jan. 2003 QUAL): Let X1, ..., Xn be independent, identically dis-
tributed exponential(θ) random variables where θ > 0 is unknown. Consider
the class of estimators of θ

{Tn(c) = c

n
∑

i=1

Xi | c > 0}.

Determine the value of c that minimizes the mean square error MSE. Show
work and prove that your value of c is indeed the global minimizer.
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6.15. Let X1, ..., Xn be iid from a distribution with pdf

f(x|θ) = θxθ−1I(0 < x < 1), θ > 0.

a) Find the MLE of θ.

b) What is the MLE of 1/θ2? Explain.

c) Find the Fisher information I1(θ). You may use the fact that − log(X) ∼
exponential(1/θ).

d) Find the Fréchet Cramér Rao lower bound for unbiased estimators of
τ (θ) = 1/θ2.

6.16. Let X1, ..., Xn be iid random variables with E(X) = µ and V ar(X) =
1. Suppose that T =

∑n
i=1 Xi is a complete sufficient statistic. Find the

UMVUE of µ2.

6.17. Let X1, ..., Xn be iid exponential(λ) random variables.

a) Find I1(λ).

b) Find the FCRLB for estimating τ (λ) = λ2.

c) If T =
∑n

i=1 Xi, it can be shown that the UMVUE of λ2 is

W =
Γ(n)

Γ(2 + n)
T 2.

Do you think that V arλ(W ) is equal to the FCRLB in part b)? Explain
briefly.

6.18. Let X1, ..., Xn be iid N(µ, σ2) where µ is known and n > 1. Suppose
interest is in estimating θ = σ2. You should have memorized the fact that

(n − 1)S2

σ2
∼ χ2

n−1.

a) Find the MSE of S2 for estimating σ2.

b) Find the MSE of T for estimating σ2 where

T =
1

n

n
∑

i=1

(xi − µ)2.
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6.19. (Aug. 2000 SIU, 1995 Univ. Minn. QUAL): Let X1, ..., Xn be
independent identically distributed random variable from a N(µ, σ2) distri-
bution. Hence E(X1) = µ and V AR(X1) = σ2. Suppose that µ is known and
consider estimates of σ2 of the form

S2(k) =
1

k

n
∑

i=1

(Xi − µ)2

where k is a constant to be chosen. Note: E(χ2
m) = m and V AR(χ2

m) = 2m.
Determine the value of k which gives the smallest mean square error. (Hint:
Find the MSE as a function of k, then take derivatives with respect to k.)

6.20. (Aug. 2001 QUAL): Let X1, ..., Xn be independent identically
distributed random variables with pdf

f(x|θ) =
2x

θ
e−x2/θ, x > 0

and f(x|θ) = 0 for x ≤ 0.

a) Show that X2
1 is an unbiased estimator of θ. (Hint: use the substitution

W = X2 and find the pdf of W or use u-substitution with u = x2/θ.)

b) Find the Cramer-Rao lower bound for the variance of an unbiased
estimator of θ.

c) Find the uniformly minimum variance unbiased estimator (UMVUE)
of θ.

6.21. (Aug. 2001 QUAL): See Mukhopadhyay (2000, p. 377). Let
X1, ..., Xn be iid N(θ, θ2) normal random variables with mean θ and variance
θ2. Let

T1 = X =
1

n

n
∑

i=1

Xi

and let

T2 = cnS = cn

√

∑n
i=1(Xi −X)2

n − 1

where the constant cn is such that Eθ[cnS] = θ. You do not need to find the
constant cn. Consider estimators W (α) of θ of the form.

W (α) = αT1 + (1 − α)T2
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where 0 ≤ α ≤ 1.

a) Find the variance

V arθ[W (α)] = V arθ(αT1 + (1 − α)T2).

b) Find the mean square error of W (α) in terms of V arθ(T1), V arθ(T2)
and α.

c) Assume that

V arθ(T2) ≈
θ2

2n
.

Determine the value of α that gives the smallest mean square error. (Hint:
Find the MSE as a function of α, then take the derivative with respect to
α. Set the derivative equal to zero and use the above approximation for
V arθ(T2). Show that your value of α is indeed the global minimizer.)

6.22. (Aug. 2003 QUAL): Suppose that X1, ..., Xn are iid normal dis-
tribution with mean 0 and variance σ2. Consider the following estimators:

T1 = 1
2
|X1 −X2| and T2 =

√

1
n

∑n
i=1 X2

i .

a) Is T1 unbiased for σ? Evaluate the mean square error (MSE) of T1.

b) Is T2 unbiased for σ? If not, find a suitable multiple of T2 which is
unbiased for σ.

6.23. (Aug. 2003 QUAL): Let X1, ..., Xn be independent identically
distributed random variables with pdf (probability density function)

f(x) =
1

λ
exp

(

−x

λ

)

where x and λ are both positive. Find the uniformly minimum variance
unbiased estimator (UMVUE) of λ2.
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6.24. (Jan. 2004 QUAL): Let X1, ..., Xn be independent identically dis-
tributed random variables with pdf (probability density function)

f(x) =

√

σ

2πx3
exp

(

− σ

2x

)

where x and σ are both positive. Then Xi =
σ

Wi
where Wi ∼ χ2

1. Find the

uniformly minimum variance unbiased estimator (UMVUE) of
1

σ
.

6.25. (Jan. 2004 QUAL): Let X1, ..., Xn be a random sample from the
distribution with density

f(x) =

{

2x
θ2 , 0 < x < θ
0 elsewhere

Let T = max(X1, ..., Xn). To estimate θ consider estimators of the form CT .
Determine the value of C which gives the smallest mean square error.

6.26. (Aug. 2004 QUAL): Let X1, ..., Xn be a random sample from a
distribution with pdf

f(x) =
2x

θ2
, 0 < x < θ.

Let T = cX be an estimator of θ where c is a constant.

a) Find the mean square error (MSE) of T as a function of c (and of θ
and n).

b) Find the value c that minimizes the MSE. Prove that your value is the
minimizer.

6.27. (Aug. 2004 QUAL): Suppose that X1, ..., Xn are iid Bernoulli(p)
where n ≥ 2 and 0 < p < 1 is the unknown parameter.

a) Derive the UMVUE of ν(p), where ν(p) = e2(p(1 − p)).

b) Find the Cramér Rao lower bound for estimating ν(p) = e2(p(1− p)).

6.28. Let X1, ..., Xn be independent identically distributed Poisson(λ)
random variables. Find the UMVUE of

λ

n
+ λ2.
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