
Chapter 8

Large Sample Theory

8.1 The CLT, Delta Method and an Expo-

nential Family Limit Theorem

Large sample theory, also called asymptotic theory, is used to approximate
the distribution of an estimator when the sample size n is large. This theory
is extremely useful if the exact sampling distribution of the estimator is
complicated or unknown. To use this theory, one must determine what the
estimator is estimating, the rate of convergence, the asymptotic distribution,
and how large n must be for the approximation to be useful. Moreover, the
(asymptotic) standard error (SE), an estimator of the asymptotic standard
deviation, must be computable if the estimator is to be useful for inference.

Theorem 8.1: the Central Limit Theorem (CLT). Let Y1, ..., Yn be
iid with E(Y ) = µ and VAR(Y ) = σ2. Let the sample mean Y n = 1

n

∑n
i=1 Yi.

Then √
n(Y n − µ)

D→ N(0, σ2).

Hence
√

n

(

Y n − µ

σ

)

=
√

n

(∑n
i=1 Yi − nµ

nσ

)

D→ N(0, 1).

Note that the sample mean is estimating the population mean µ with
a
√

n convergence rate, the asymptotic distribution is normal, and the SE
= S/

√
n where S is the sample standard deviation. For many distributions
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the central limit theorem provides a good approximation if the sample size
n > 30. A special case of the CLT is proven at the end of Section 4.

Notation. The notation X ∼ Y and X
D
= Y both mean that the random

variables X and Y have the same distribution. See Definition 1.24. The
notation Yn

D→ X means that for large n we can approximate the cdf of
Yn by the cdf of X. The distribution of X is the limiting distribution or
asymptotic distribution of Yn. For the CLT, notice that

Zn =
√

n

(

Y n − µ

σ

)

=

(

Y n − µ

σ/
√

n

)

is the z–score of Y . If Zn
D→ N(0, 1), then the notation Zn ≈ N(0, 1), also

written as Zn ∼ AN(0, 1), means approximate the cdf of Zn by the standard
normal cdf. Similarly, the notation

Y n ≈ N(µ, σ2/n),

also written as Y n ∼ AN(µ, σ2/n), means approximate cdf of Y n as if Y n ∼
N(µ, σ2/n).

The two main applications of the CLT are to give the limiting distribution
of

√
n(Y n −µ) and the limiting distribution of

√
n(Yn/n−µX) for a random

variable Yn such that Yn =
∑n

i=1 Xi where the Xi are iid with E(X) = µX

and VAR(X) = σ2
X. Several of the random variables in Theorems 2.17 and

2.18 can be approximated in this way.

Example 8.1. a) Let Y1, ..., Yn be iid Ber(ρ). Then E(Y ) = ρ and
VAR(Y ) = ρ(1 − ρ). Hence

√
n(Y n − ρ)

D→ N(0, ρ(1 − ρ))

by the CLT.

b) Now suppose that Yn ∼ BIN(n, ρ). Then Yn
D
=
∑n

i=1 Xi where
X1, ..., Xn are iid Ber(ρ). Hence

√
n(

Yn

n
− ρ)

D→ N(0, ρ(1 − ρ))

since √
n(

Yn

n
− ρ)

D
=

√
n(Xn − ρ)

D→ N(0, ρ(1 − ρ))
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by a).
c) Now suppose that Yn ∼ BIN(kn, ρ) where kn → ∞ as n → ∞. Then

√

kn(
Yn

kn
− ρ) ≈ N(0, ρ(1 − ρ))

or
Yn

kn
≈ N

(

ρ,
ρ(1 − ρ)

kn

)

or Yn ≈ N (knρ, knρ(1 − ρ)) .

Theorem 8.2: the Delta Method. If g′(θ) 6= 0 and

√
n(Tn − θ)

D→ N(0, σ2),

then √
n(g(Tn) − g(θ))

D→ N(0, σ2[g′(θ)]2).

Example 8.2. Let Y1, ..., Yn be iid with E(Y ) = µ and VAR(Y ) = σ2.
Then by the CLT, √

n(Y n − µ)
D→ N(0, σ2).

Let g(µ) = µ2. Then g′(µ) = 2µ 6= 0 for µ 6= 0. Hence

√
n((Y n)2 − µ2)

D→ N(0, 4σ2µ2)

for µ 6= 0 by the delta method.

Example 8.3. Let X ∼ Binomial(n, p) where the positive integer n is

large and 0 < p < 1. Find the limiting distribution of
√

n

[

(

X

n

)2

− p2

]

.

Solution. Example 8.1b gives the limiting distribution of
√

n(X
n
− p). Let

g(p) = p2. Then g′(p) = 2p and by the delta method,

√
n

[

(

X

n

)2

− p2

]

=
√

n

(

g(
X

n
) − g(p)

)

D→

N(0, p(1 − p)(g′(p))2) = N(0, p(1 − p)4p2) = N(0, 4p3(1 − p)).

Example 8.4. Let Xn ∼ Poisson(nλ) where the positive integer n is
large and 0 < λ.
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a) Find the limiting distribution of
√

n

(

Xn

n
− λ

)

.

b) Find the limiting distribution of
√

n

[
√

Xn

n
−

√
λ

]

.

Solution. a) Xn
D
=
∑n

i=1 Yi where the Yi are iid Poisson(λ). Hence E(Y ) =
λ = V ar(Y ). Thus by the CLT,

√
n

(

Xn

n
− λ

)

D
=

√
n

( ∑n
i=1 Yi

n
− λ

)

D→ N(0, λ).

b) Let g(λ) =
√

λ. Then g′(λ) = 1

2
√

λ
and by the delta method,

√
n

[
√

Xn

n
−

√
λ

]

=
√

n

(

g(
Xn

n
) − g(λ)

)

D→

N(0, λ (g′(λ))2) = N(0, λ
1

4λ
) = N(0,

1

4
).

Example 8.5. Let Y1, ..., Yn be independent and identically distributed
(iid) from a Gamma(α, β) distribution.

a) Find the limiting distribution of
√

n
(

Y − αβ
)

.

b) Find the limiting distribution of
√

n
(

(Y )2 − c
)

for appropriate con-
stant c.

Solution: a) Since E(Y ) = αβ and V (Y ) = αβ2, by the CLT√
n
(

Y − αβ
) D→ N(0, αβ2).

b) Let µ = αβ and σ2 = αβ2. Let g(µ) = µ2 so g′(µ) = 2µ and

[g′(µ)]2 = 4µ2 = 4α2β2. Then by the delta method,
√

n
(

(Y )2 − c
) D→

N(0, σ2[g′(µ)]2) = N(0, 4α3β4) where c = µ2 = α2β2.

Barndorff–Nielsen (1982), Casella and Berger (2002, p. 472, 515), Cox
and Hinckley (1974, p. 286), Lehmann and Casella (1998, Section 6.3),
Schervish (1995, p. 418), and many others suggest that under regularity
conditions if Y1, ..., Yn are iid from a one parameter regular exponential family,
and if θ̂ is the MLE of θ, then

√
n(τ (θ̂) − τ (θ))

D→ N

(

0,
[τ ′(θ)]2

I1(θ)

)

= N [0, FCRLB1(τ (θ))] (8.1)
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where the Fréchet Cramér Rao lower bound for τ (θ) is

FCRLB1(τ (θ)) =
[τ ′(θ)]2

I1(θ)

and the Fisher information based on a sample of size one is

I1(θ) = −Eθ[
∂2

∂θ2
log(f(X|θ))].

Notice that if
√

n(θ̂ − θ)
D→ N

(

0,
1

I1(θ)

)

,

then (8.1) follows by the delta method. Also recall that τ (θ̂) is the MLE of
τ (θ) by the invariance principle and that

I1(τ (θ)) =
I1(θ)

[τ ′(θ)]2

if τ ′(θ) 6= 0 by Definition 6.3.
For a 1P–REF, T n = 1

n

∑n
i=1 t(Yi) is the UMVUE and generally the MLE

of its expectation µt ≡ µT = Eθ(Tn) = Eθ[t(Y )]. Let σ2
t = VARθ[t(Y )].

These values can be found by using the distribution of t(Y ) (see Theorems
3.6 and 3.7) or by the following result.

Proposition 8.3. Suppose Y is a 1P–REF with pdf or pmf

f(y|θ) = h(y)c(θ) exp[w(θ)t(y)]

and natural parameterization

f(y|η) = h(y)b(η) exp[ηt(y)].

Then a)

µt = E[t(Y )] =
−c′(θ)

c(θ)w′(θ)
=

−∂

∂η
log(b(η)), (8.2)

and b)

σ2
t = V [t(Y )] =

−∂2

∂θ2 log(c(θ)) − [w′′(θ)]µt

[w′(θ)]2
=

−∂2

∂η2
log(b(η)). (8.3)
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Proof. The proof will be for pdfs. For pmfs replace the integrals by
sums. By Theorem 3.3, only the middle equalities need to be shown. By
Remark 3.2 the derivative and integral operators can be interchanged for a
1P–REF. a) Since 1 =

∫

f(y|θ)dy,

0 =
∂

∂θ
1 =

∂

∂θ

∫

h(y) exp[w(θ)t(y) + log(c(θ))]dy

=

∫

h(y)
∂

∂θ
exp[w(θ)t(y) + log(c(θ))]dy

=

∫

h(y) exp[w(θ)t(y) + log(c(θ))]

(

w′(θ)t(y) +
c′(θ)

c(θ)

)

dy

or

E[w′(θ)t(Y )] =
−c′(θ)

c(θ)

or

E[t(Y )] =
−c′(θ)

c(θ)w′(θ)
.

b) Similarly,

0 =

∫

h(y)
∂2

∂θ2
exp[w(θ)t(y) + log(c(θ))]dy.

From the proof of a) and since ∂
∂θ

log(c(θ)) = c′(θ)/c(θ),

0 =

∫

h(y)
∂

∂θ

[

exp[w(θ)t(y) + log(c(θ))]

(

w′(θ)t(y) +
∂

∂θ
log(c(θ))

)]

dy

=

∫

h(y) exp[w(θ)t(y) + log(c(θ))]

(

w′(θ)t(y) +
∂

∂θ
log(c(θ))

)2

dy

+

∫

h(y) exp[w(θ)t(y) + log(c(θ))]

(

w′′(θ)t(y) +
∂2

∂θ2
log(c(θ))

)

dy.

So

E

(

w′(θ)t(Y ) +
∂

∂θ
log(c(θ))

)2

= −E

(

w′′(θ)t(Y ) +
∂2

∂θ2
log(c(θ))

)

. (8.4)
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Using a) shows that the left hand side of (8.4) equals

E

(

w′(θ)

(

t(Y ) +
c′(θ)

c(θ)w′(θ)

))2

= [w′(θ)]2 VAR(t(Y ))

while the right hand side of (8.4) equals

−
(

w′′(θ)µt +
∂2

∂θ2
log(c(θ))

)

and the result follows. QED

The simplicity of the following result is rather surprising. When (as is
usually the case) T n = 1

n

∑n
i=1 t(Yi) is the MLE of µt, η̂ = g−1(Tn) is the

MLE of η by the invariance principle.

Theorem 8.4. Let Y1, ..., Yn be iid from a 1P–REF with pdf or pmf

f(y|θ) = h(y)c(θ) exp[w(θ)t(y)]

and natural parameterization

f(y|η) = h(y)b(η) exp[ηt(y)].

Let
E(t(Y )) = µt ≡ g(η)

and VAR(t(Y )) = σ2
t .

a) Then √
n[Tn − µt]

D→ N(0, I1(η))

where

I1(η) = σ2
t = g′(η) =

[g′(η)]2

I1(η)
.

b) If η = g−1(µt), η̂ = g−1(Tn), and g−1′(µt) 6= 0 exists, then

√
n[η̂ − η]

D→ N

(

0,
1

I1(η)

)

.

c) Suppose the conditions in b) hold. If θ = w−1(η), θ̂ = w−1(η̂), w−1′

exists and is continuous, and w−1′(η) 6= 0, then

√
n[θ̂ − θ]

D→ N

(

0,
1

I1(θ)

)

.
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d) If the conditions in c) hold, if τ ′ is continuous and if τ ′(θ) 6= 0, then

√
n[τ (θ̂) − τ (θ)]

D→ N

(

0,
[τ ′(θ)]2

I1(θ)

)

.

Proof: a) The result follows by the central limit theorem if σ2
t = I1(η) =

g′(η). Since log(f(y|η)) = log(h(y)) + log(b(η)) + ηt(y),

∂

∂η
log(f(y|η)) =

∂

∂η
log(b(η)) + t(y) = −µt + t(y) = −g(η) + t(y)

by Proposition 8.3 a). Hence

∂2

∂η2
log(f(y|η)) =

∂2

∂η2
log(b(η)) = −g′(η),

and thus by Proposition 8.3 b)

I1(η) =
−∂2

∂η2
log(b(η)) = σ2

t = g′(η).

b) By the delta method,

√
n(η̂ − η)

D→ N(0, σ2
t [g

−1′(µt)]
2),

but

g−1′(µt) =
1

g′(g−1(µt))
=

1

g′(η)
.

Since σ2
t = I1(η) = g′(η), it follows that σ2

t = [g′(η)]2/I1(η), and

σ2
t [g

−1′(µt)]
2 =

[g′(η)]2

I1(η)

1

[g′(η)]2
=

1

I1(η)
.

So
√

n(η̂ − η)
D→ N

(

0,
1

I1(η)

)

.

c) By the delta method,

√
n(θ̂ − θ)

D→ N

(

0,
[w−1′(η)]2

I1(η)

)

,
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but
[w−1′(η)]2

I1(η)
=

1

I1(θ)
.

The last equality holds since by Theorem 6.3c, if θ = g(η), if g′ exists and
is continuous, and if g′(θ) 6= 0, then I1(θ) = I1(η)/[g′(η)]2. Use η = w(θ) so
θ = g(η) = w−1(η).

d) The result follows by the delta method. QED

8.2 Asymptotically Efficient Estimators

Definition 8.1. Let Y1, ..., Yn be iid random variables. Let Tn ≡ Tn(Y1, ..., Yn)
be an estimator of a parameter µT such that

√
n(Tn − µT )

D→ N(0, σ2
A).

Then the asymptotic variance of
√

n(Tn − µT ) is σ2
A and the asymptotic

variance (AV) of Tn is σ2
A/n. If S2

A is a consistent estimator of σ2
A, then the

(asymptotic) standard error (SE) of Tn is SA/
√

n.

Remark 8.1. Consistent estimators are defined in the following section.
The parameter σ2

A is a function of both the estimator Tn and the underlying
distribution F of Y1. Frequently nVAR(Tn) converges in distribution to σ2

A,
but not always. See Staudte and Sheather (1990, p. 51) and Lehmann (1999,
p. 232).

Example 8.6. If Y1, ..., Yn are iid from a distribution with mean µ and
variance σ2, then by the central limit theorem,

√
n(Y n − µ)

D→ N(0, σ2).

Recall that VAR(Y n) = σ2/n = AV (Y n) and that the standard error SE(Y n)
= Sn/

√
n where S2

n is the sample variance.

Definition 8.2. Let T1,n and T2,n be two estimators of a parameter θ
such that

nδ(T1,n − θ)
D→ N(0, σ2

1(F ))

and
nδ(T2,n − θ)

D→ N(0, σ2
2(F )),
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then the asymptotic relative efficiency of T1,n with respect to T2,n is

ARE(T1,n, T2,n) =
σ2

2(F )

σ2
1(F )

.

This definition brings up several issues. First, both estimators must have
the same convergence rate nδ. Usually δ = 0.5. If Ti,n has convergence rate
nδi, then estimator T1,n is judged to be “better” than T2,n if δ1 > δ2. Secondly,
the two estimators need to estimate the same parameter θ. This condition
will often not hold unless the distribution is symmetric about µ. Then θ = µ
is a natural choice. Thirdly, estimators are often judged by their Gaussian
efficiency with respect to the sample mean (thus F is the normal distribu-
tion). Since the normal distribution is a location–scale family, it is often
enough to compute the ARE for the standard normal distribution. If the
data come from a distribution F and the ARE can be computed, then T1,n is
judged to be a “better” estimator (for the data distribution F ) than T2,n if
the ARE > 1. Similarly, T1,n is judged to be a “worse” estimator than T2,n if
the ARE < 1. Notice that the “better” estimator has the smaller asymptotic
variance.

The population median is any value MED(Y ) such that

P (Y ≤ MED(Y )) ≥ 0.5 and P (Y ≥ MED(Y )) ≥ 0.5. (8.5)

In simulation studies, typically the underlying distribution F belongs to a
symmetric location–scale family. There are at least two reasons for using such
distributions. First, if the distribution is symmetric, then the population
median MED(Y ) is the point of symmetry and the natural parameter to
estimate. Under the symmetry assumption, there are many estimators of
MED(Y ) that can be compared via their ARE with respect to the sample
mean or the maximum likelihood estimator (MLE). Secondly, once the ARE
is obtained for one member of the family, it is typically obtained for all
members of the location–scale family. That is, suppose that Y1, ..., Yn are iid
from a location–scale family with parameters µ and σ. Then Yi = µ + σZi

where the Zi are iid from the same family with µ = 0 and σ = 1. Typically

AV [Ti,n(Y )] = σ2AV [Ti,n(Z)],

so
ARE[T1,n(Y ), T2,n(Y )] = ARE[T1,n(Z), T2,n(Z)].
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Theorem 8.5. Let Y1, ..., Yn be iid with a pdf f that is positive at the
population median: f(MED(Y )) > 0. Then

√
n(MED(n) − MED(Y ))

D→ N

(

0,
1

4[f(MED(Y ))]2

)

.

Example 8.7. Let Y1, ..., Yn be iid N(µ, σ2), T1,n = Y and let T2,n =
MED(n) be the sample median. Let θ = µ = E(Y ) = MED(Y ). Find
ARE(T1,n, T2,n).

Solution: By the CLT, σ2
1(F ) = σ2 when F is the N(µ, σ2) distribution.

By Theorem 8.5,

σ2
2(F ) =

1

4[f(MED(Y ))]2
=

1

4[ 1√
2πσ2

exp( −0
2σ2 )]2

=
πσ2

2
.

Hence

ARE(T1,n, T2,n) =
πσ2/2

σ2
=

π

2
≈ 1.571

and the sample mean Y is a “better” estimator of µ than the sample median
MED(n) for the family of normal distributions.

Recall from Definition 6.3 that I1(θ) is the information number for θ based
on a sample of size 1. Also recall that I1(τ (θ)) = I1(θ)/[τ

′(θ)]2.

Definition 8.3. Assume τ ′(θ) 6= 0. Then an estimator Tn of τ (θ) is
asymptotically efficient if

√
n(Tn − τ (θ))

D→ N

(

0,
[τ ′(θ)]2

I1(θ)

)

. (8.6)

In particular, the estimator Tn of θ is asymptotically efficient if

√
n(Tn − θ)

D→ N

(

0,
1

I1(θ)

)

. (8.7)

Following Lehmann (1999, p. 486), if T2,n is an asymptotically efficient
estimator of θ, if I1(θ) and v(θ) are continuous functions, and if T1,n is an
estimator such that √

n(T1,n − θ)
D→ N(0, v(θ)),
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then under regularity conditions, v(θ) ≥ 1/I1(θ) and

ARE(T1,n, T2,n) =

1
I1(θ)

v(θ)
=

1

I1(θ)v(θ)
≤ 1.

Hence asymptotically efficient estimators are “better” than estimators of the
form T1,n. When T2,n is asymptotically efficient,

AE(T1,n) = ARE(T1,n, T2,n) =
1

I1(θ)v(θ)

is sometimes called the asymptotic efficiency of T1,n.
Notice that for a 1P–REF, Tn = 1

n

∑n
i=1 t(Yi) is an asymptotically efficient

estimator of g(η) = E(t(Y )) by Theorem 8.4. Tn is the UMVUE of E(t(Y ))
by the LSU theorem.

The following rule of thumb suggests that MLEs and UMVUEs are often
asymptotically efficient. The rule often holds for location families where the
support does not depend on θ. The rule does not hold for the uniform (0, θ)
family.

Rule of Thumb 8.1. Let θ̂n be the MLE or UMVUE of θ. If τ ′(θ) 6= 0,
then

√
n[τ (θ̂n) − τ (θ)]

D→ N

(

0,
[τ ′(θ)]2

I1(θ)

)

.

8.3 Modes of Convergence and Consistency

Definition 8.4. Let {Zn, n = 1, 2, ...} be a sequence of random variables
with cdfs Fn, and let X be a random variable with cdf F. Then Zn converges
in distribution to X, written

Zn
D→ X,

or Zn converges in law to X, written Zn
L→ X, if

lim
n→∞

Fn(t) = F (t)

at each continuity point t of F. The distribution of X is called the limiting
distribution or the asymptotic distribution of Zn.
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Notice that the CLT, delta method and Theorem 8.4 give the limiting
distributions of Zn =

√
n(Y n−µ), Zn =

√
n(g(Tn)−g(θ)) and Zn =

√
n(Tn−

E(t(Y ))), respectively.
Convergence in distribution is useful because if the distribution of Xn is

unknown or complicated and the distribution of X is easy to use, then for
large n we can approximate the probability that Xn is in an interval by the

probability that X is in the interval. To see this, notice that if Xn
D→ X,

then P (a < Xn ≤ b) = Fn(b) − Fn(a) → F (b)− F (a) = P (a < X ≤ b) if F
is continuous at a and b.

Warning: convergence in distribution says that the cdf Fn(t) of Xn gets
close to the cdf of F(t) of X as n → ∞ provided that t is a continuity
point of F . Hence for any ε > 0 there exists Nt such that if n > Nt, then
|Fn(t) − F (t)| < ε. Notice that Nt depends on the value of t. Convergence
in distribution does not imply that the random variables Xn converge to the
random variable X.

Example 8.8. Suppose that Xn ∼ U(−1/n, 1/n). Then the cdf Fn(x) of
Xn is

Fn(x) =







0, x ≤ −1
n

nx
2

+ 1
2
, −1

n
≤ x ≤ 1

n

1, x ≥ 1
n
.

Sketching Fn(x) shows that it has a line segment rising from 0 at x = −1/n
to 1 at x = 1/n and that Fn(0) = 0.5 for all n ≥ 1. Examining the cases
x < 0, x = 0 and x > 0 shows that as n → ∞,

Fn(x) →







0, x < 0
1
2

x = 0
1, x > 0.

Notice that if X is a random variable such that P (X = 0) = 1, then X has
cdf

FX(x) =

{

0, x < 0
1, x ≥ 0.

Since x = 0 is the only discontinuity point of FX(x) and since Fn(x) → FX(x)
for all continuity points of FX(x) (ie for x 6= 0),

Xn
D→ X.
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Example 8.9. Suppose Yn ∼ U(0, n). Then Fn(t) = t/n for 0 < t ≤ n
and Fn(t) = 0 for t ≤ 0. Hence limn→∞ Fn(t) = 0 for t ≤ 0. If t > 0 and
n > t, then Fn(t) = t/n → 0 as n → ∞. Thus limn→∞ Fn(t) = 0 for all
t and Yn does not converge in distribution to any random variable Y since
H(t) ≡ 0 is not a cdf.

Definition 8.5. A sequence of random variables Xn converges in distri-
bution to a constant τ (θ), written

Xn
D→ τ (θ), if Xn

D→ X

where P (X = τ (θ)) = 1. The distribution of the random variable X is said
to be degenerate at τ (θ).

Definition 8.6. A sequence of random variables Xn converges in prob-
ability to a constant τ (θ), written

Xn
P→ τ (θ),

if for every ε > 0,

lim
n→∞

P (|Xn − τ (θ)| < ε) = 1 or, equivalently, lim
n→∞

P(|Xn − τ (θ)| ≥ ε) = 0.

The sequence Xn converges in probability to X, written

Xn
P→ X,

if Xn −X
P→ 0.

Notice that Xn
P→ X if for every ε > 0,

lim
n→∞

P (|Xn − X| < ε) = 1, or, equivalently, lim
n→∞

P(|Xn − X| ≥ ε) = 0.

Definition 8.7. A sequence of estimators Tn of τ (θ) is consistent for
τ (θ) if

Tn
P→ τ (θ)

for every θ ∈ Θ. If Tn is consistent for τ (θ), then Tn is a consistent esti-
mator of τ (θ).
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Consistency is a weak property that is usually satisfied by good estima-
tors. Tn is a consistent estimator for τ (θ) if the probability that Tn falls in
any neighborhood of τ (θ) goes to one, regardless of the value of θ ∈ Θ.

Definition 8.8. For a real number r > 0, Yn converges in rth mean to a
random variable Y , written

Yn
r→ Y,

if
E(|Yn − Y |r) → 0

as n → ∞. In particular, if r = 2, Yn converges in quadratic mean to Y ,
written

Yn
2→ Y or Yn

qm→ Y,

if
E[(Yn − Y )2] → 0

as n → ∞.

Lemma 8.6: Generalized Chebyshev’s Inequality. Let u : < →
[0,∞) be a nonnegative function. If E[u(Y )] exists then for any c > 0,

P [u(Y ) ≥ c] ≤ E[u(Y )]

c
.

If µ = E(Y ) exists, then taking u(y) = |y − µ|r and c̃ = cr gives
Markov’s Inequality: for r > 0 and any c > 0,

P (|Y − µ| ≥ c] = P (|Y − µ|r ≥ cr] ≤ E[|Y − µ|r]
cr

.

If r = 2 and σ2 = VAR(Y ) exists, then we obtain
Chebyshev’s Inequality:

P (|Y − µ| ≥ c] ≤ VAR(Y )

c2
.

Proof. The proof is given for pdfs. For pmfs, replace the integrals by
sums. Now

E[u(Y )] =

∫

<
u(y)f(y)dy =

∫

{y:u(y)≥c}
u(y)f(y)dy +

∫

{y:u(y)<c}
u(y)f(y)dy
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≥
∫

{y:u(y)≥c}
u(y)f(y)dy

since the integrand u(y)f(y) ≥ 0. Hence

E[u(Y )] ≥ c

∫

{y:u(y)≥c}
f(y)dy = cP [u(Y ) ≥ c]. QED

The following proposition gives sufficient conditions for Tn to be a con-
sistent estimator of τ (θ). Notice that MSEτ (θ)(Tn) → 0 for all θ ∈ Θ is

equivalent to Tn
qm→ τ (θ) for all θ ∈ Θ.

Proposition 8.7. a) If

lim
n→∞

MSEτ (θ)(Tn) = 0

for all θ ∈ Θ, then Tn is a consistent estimator of τ (θ).

b) If
lim

n→∞
VARθ(Tn) = 0 and lim

n→∞
Eθ(Tn) = τ (θ))

for all θ ∈ Θ, then Tn is a consistent estimator of τ (θ).

Proof. a) Using Lemma 8.6 with Y = Tn, u(Tn) = [Tn−τ (θ)]2 and c = ε2

shows that for any ε > 0,

Pθ(|Tn − τ (θ)| ≥ ε) = Pθ[(Tn − τ (θ))2 ≥ ε2] ≤ Eθ[(Tn − τ (θ))2]

ε2
.

Hence
lim

n→∞
Eθ[(Tn − τ (θ))2] = lim

n→∞
MSEτ (θ)(Tn) → 0

is a sufficient condition for Tn to be a consistent estimator of τ (θ).
b) Referring to Definition 6.1,

MSEτ (θ)(Tn) = VARθ(Tn) + [Biasτ (θ)(Tn)]
2

where Biasτ (θ)(Tn) = Eθ(Tn)−τ (θ). Since MSEτ (θ)(Tn) → 0 if both VARθ(Tn)
→ 0 and Biasτ (θ)(Tn) = Eθ(Tn)−τ (θ) → 0, the result follows from a). QED

The following result shows estimators that converge at a
√

n rate are
consistent. Use this result and the delta method to show that g(Tn) is a con-
sistent estimator of g(θ). Note that b) follows from a) with Xθ ∼ N(0, v(θ)).
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The WLLN shows that Y is a consistent estimator of E(Y ) = µ if E(Y )
exists.

Proposition 8.8. a) Let X be a random variable and 0 < δ ≤ 1. If

nδ(Tn − τ (θ))
D→ X

then Tn
P→ τ (θ).

b) If √
n(Tn − τ (θ))

D→ N(0, v(θ))

for all θ ∈ Θ, then Tn is a consistent estimator of τ (θ).

Definition 8.9. A sequence of random variables Xn converges almost
everywhere (or almost surely, or with probability 1) to X if

P ( lim
n→∞

Xn = X) = 1.

This type of convergence will be denoted by

Xn
ae→ X.

Notation such as “Xn converges to X ae” will also be used. Sometimes
“ae” will be replaced with “as” or “wp1.” We say that Xn converges almost
everywhere to τ (θ), written

Xn
ae→ τ (θ),

if P (limn→∞ Xn = τ (θ)) = 1.

Theorem 8.9. Let Yn be a sequence of iid random variables with E(Yi) =
µ. Then

a) Strong Law of Large Numbers (SLLN): Y n
ae→ µ, and

b) Weak Law of Large Numbers (WLLN): Y n
P→ µ.

Proof of WLLN when V (Yi) = σ2: By Chebyshev’s inequality, for
every ε > 0,

P (|Y n − µ| ≥ ε) ≤ V (Y n)

ε2
=

σ2

nε2
→ 0

as n → ∞. QED
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8.4 Slutsky’s Theorem and Related Results

Theorem 8.10: Slutsky’s Theorem. Suppose Yn
D→ Y and Wn

P→ w for
some constant w. Then

a) Yn + Wn
D→ Y + w,

b) YnWn
D→ wY, and

c) Yn/Wn
D→ Y/w if w 6= 0.

Theorem 8.11. a) If Xn
P→ X then Xn

D→ X.

b) If Xn
ae→ X then Xn

P→ X and Xn
D→ X.

c) If Xn
r→ X then Xn

P→ X and Xn
D→ X.

d) Xn
P→ τ (θ) iff Xn

D→ τ (θ).

e) If Xn
P→ θ and τ is continuous at θ, then τ (Xn)

P→ τ (θ).

f) If Xn
D→ θ and τ is continuous at θ, then τ (Xn)

D→ τ (θ).

Suppose that for all θ ∈ Θ, Tn
D→ τ (θ), Tn

r→ τ (θ) or Tn
ae→ τ (θ). Then

Tn is a consistent estimator of τ (θ) by Theorem 8.11.

Example 8.10. Let Y1, ..., Yn be iid with mean E(Yi) = µ and variance
V (Yi) = σ2. Then the sample mean Y n is a consistent estimator of µ since
i) the SLLN holds (use Theorem 8.9 and 8.11), ii) the WLLN holds and iii)
the CLT holds (use Proposition 8.8). Since

lim
n→∞

VARµ(Y n) = lim
n→∞

σ2/n = 0 and lim
n→∞

Eµ(Y n) = µ,

Y n is also a consistent estimator of µ by Proposition 8.7b. By the delta
method and Proposition 8.8b, Tn = g(Y n) is a consistent estimator of g(µ)
if g′(µ) 6= 0 for all µ ∈ Θ. By Theorem 8.11e, g(Y n) is a consistent estimator
of g(µ) if g is continuous at µ for all µ ∈ Θ.

Theorem 8.12: Generalized Continuous Mapping Theorem. If

Xn
D→ X and the function g is such that P [X ∈ C(g)] = 1 where C(g) is the

set of points where g is continuous, then g(Xn)
D→ g(X).

Remark 8.2. For Theorem 8.11, a) follows from Slutsky’s Theorem

by taking Yn ≡ X = Y and Wn = Xn − X. Then Yn
D→ Y = X and

Wn
P→ 0. Hence Xn = Yn+Wn

D→ Y +0 = X. The convergence in distribution
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parts of b) and c) follow from a). Part f) follows from d) and e). Part
e) implies that if Tn is a consistent estimator of θ and τ is a continuous
function, then τ (Tn) is a consistent estimator of τ (θ). Theorem 8.12 says
that convergence in distribution is preserved by continuous functions, and
even some discontinuities are allowed as long as the set of continuity points
is assigned probability 1 by the asymptotic distribution. Equivalently, the
set of discontinuity points is assigned probability 0.

Example 8.11. (Ferguson 1996, p. 40): If Xn
D→ X then 1/Xn

D→ 1/X
if X is a continuous random variable since P (X = 0) = 0 and x = 0 is the
only discontinuity point of g(x) = 1/x.

Example 8.12. Show that if Yn ∼ tn, a t distribution with n degrees of

freedom, then Yn
D→ Z where Z ∼ N(0, 1).

Solution: Yn
D
= Z/

√

Vn/n where Z Vn ∼ χ2
n. If Wn =

√

Vn/n
P→ 1,

then the result follows by Slutsky’s Theorem. But Vn
D
=
∑n

i=1 Xi where the

iid Xi ∼ χ2
1. Hence Vn/n

P→ 1 by the WLLN and
√

Vn/n
P→ 1 by Theorem

8.11e.

Theorem 8.13: Continuity Theorem. Let Yn be sequence of random
variables with characteristic functions φn(t). Let Y be a random variable
with cf φ(t).

a)

Yn
D→ Y iff φn(t) → φ(t) ∀t ∈ <.

b) Also assume that Yn has mgf mn and Y has mgf m. Assume that
all of the mgfs mn and m are defined on |t| ≤ d for some d > 0. Then if

mn(t) → m(t) as n → ∞ for all |t| < c where 0 < c < d, then Yn
D→ Y .

Application: Proof of a Special Case of the CLT. Following
Rohatgi (1984, p. 569-9), let Y1, ..., Yn be iid with mean µ, variance σ2 and
mgf mY (t) for |t| < to. Then

Zi =
Yi − µ

σ

has mean 0, variance 1 and mgf mZ(t) = exp(−tµ/σ)mY (t/σ) for |t| < σto.
Want to show that

Wn =
√

n

(

Y n − µ

σ

)

D→ N(0, 1).
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Notice that Wn =

n−1/2

n
∑

i=1

Zi = n−1/2

n
∑

i=1

(

Yi − µ

σ

)

= n−1/2

∑n
i=1 Yi − nµ

σ
=

n−1/2

1
n

Y n − µ

σ
.

Thus

mWn(t) = E(etWn) = E[exp(tn−1/2
n
∑

i=1

Zi)] = E[exp(
n
∑

i=1

tZi/
√

n)]

=

n
∏

i=1

E[etZi/
√

n] =

n
∏

i=1

mZ(t/
√

n) = [mZ(t/
√

n)]n.

Set φ(x) = log(mZ(x)). Then

log[mWn(t)] = n log[mZ(t/
√

n)] = nφ(t/
√

n) =
φ(t/

√
n)

1
n

.

Now φ(0) = log[mZ(0)] = log(1) = 0. Thus by L’Hôpital’s rule (where the
derivative is with respect to n), limn→∞ log[mWn(t)] =

lim
n→∞

φ(t/
√

n )
1
n

= lim
n→∞

φ′(t/
√

n )[−t/2

n3/2 ]

(−1
n2 )

=
t

2
lim

n→∞

φ′(t/
√

n )
1√
n

.

Now

φ′(0) =
m′

Z(0)

mZ(0)
= E(Zi)/1 = 0,

so L’Hôpital’s rule can be applied again, giving limn→∞ log[mWn(t)] =

t

2
lim

n→∞

φ′′(t/
√

n )[ −t
2n3/2 ]

( −1
2n3/2 )

=
t2

2
lim

n→∞
φ′′(t/

√
n ) =

t2

2
φ′′(0).

Now

φ′′(t) =
d

dt

m′
Z(t)

mZ(t)
=

m′′
Z(t)mZ(t) − (m′

Z(t))2

[mZ(t)]2
.

So
φ′′(o) = m′′

Z(0) − [m′
Z(0)]2 = E(Z2

i ) − [E(Zi)]
2 = 1.

Hence limn→∞ log[mWn(t)] = t2/2 and

lim
n→∞

mWn(t) = exp(t2/2)

which is the N(0,1) mgf. Thus by the continuity theorem,

Wn =
√

n

(

Y n − µ

σ

)

D→ N(0, 1).
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8.5 Order Relations and Convergence Rates

Definition 8.10. Lehmann (1999, p. 53-54): a) A sequence of random
variables Wn is tight or bounded in probability, written Wn = OP (1), if for
every ε > 0 there exist positive constants Dε and Nε such that

P (|Wn| ≤ Dε) ≥ 1 − ε

for all n ≥ Nε. Also Wn = OP (Xn) if |Wn/Xn| = OP (1).
b) The sequence Wn = oP (n−δ) if nδWn = oP (1) which means that

nδWn
P→ 0.

c) Wn has the same order as Xn in probability, written Wn �P Xn, if for
every ε > 0 there exist positive constants Nε and 0 < dε < Dε such that

P (dε ≤
∣

∣

∣

∣

Wn

Xn

∣

∣

∣

∣

≤ Dε) ≥ 1 − ε

for all n ≥ Nε.
d) Similar notation is used for a k × r matrix An = [ai,j(n)] if each

element ai,j(n) has the desired property. For example, An = OP (n−1/2) if
each ai,j(n) = OP (n−1/2).

Definition 8.11. Let β̂n be an estimator of a p × 1 vector β, and let
Wn = ‖β̂n − β‖.

a) If Wn �P n−δ for some δ > 0, then both Wn and β̂n have (tightness)
rate nδ.

b) If there exists a constant κ such that

nδ(Wn − κ)
D→ X

for some nondegenerate random variable X, then both Wn and β̂n have
convergence rate nδ.

Proposition 8.14. Suppose there exists a constant κ such that

nδ(Wn − κ)
D→ X.

a) Then Wn = OP (n−δ).
b) If X is not degenerate, then Wn �P n−δ .
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The above result implies that if Wn has convergence rate nδ , then Wn has
tightness rate nδ, and the term “tightness” will often be omitted. Part a) is
proved, for example, in Lehmann (1999, p. 67).

The following result shows that if Wn �P Xn, then Xn �P Wn, Wn =
OP (Xn) and Xn = OP (Wn). Notice that if Wn = OP (n−δ), then nδ is a
lower bound on the rate of Wn. As an example, if the CLT holds then
Y n = OP (n−1/3), but Y n �P n−1/2.

Proposition 8.15. a) If Wn �P Xn then Xn �P Wn.
b) If Wn �P Xn then Wn = OP (Xn).
c) If Wn �P Xn then Xn = OP (Wn).
d) Wn �P Xn iff Wn = OP (Xn) and Xn = OP (Wn).

Proof. a) Since Wn �P Xn,

P (dε ≤
∣

∣

∣

∣

Wn

Xn

∣

∣

∣

∣

≤ Dε) = P (
1

Dε
≤
∣

∣

∣

∣

Xn

Wn

∣

∣

∣

∣

≤ 1

d ε
) ≥ 1 − ε

for all n ≥ Nε. Hence Xn �P Wn.
b) Since Wn �P Xn,

P (|Wn| ≤ |XnDε|) ≥ P (dε ≤
∣

∣

∣

∣

Wn

Xn

∣

∣

∣

∣

≤ Dε) ≥ 1 − ε

for all n ≥ Nε. Hence Wn = OP (Xn).
c) Follows by a) and b).
d) If Wn �P Xn, then Wn = OP (Xn) and Xn = OP (Wn) by b) and c).

Now suppose Wn = OP (Xn) and Xn = OP (Wn). Then

P (|Wn| ≤ |Xn|Dε/2) ≥ 1 − ε/2

for all n ≥ N1, and

P (|Xn| ≤ |Wn|1/dε/2) ≥ 1 − ε/2

for all n ≥ N2. Hence

P (A) ≡ P (

∣

∣

∣

∣

Wn

Xn

∣

∣

∣

∣

≤ Dε/2) ≥ 1 − ε/2

and

P (B) ≡ P (dε/2 ≤
∣

∣

∣

∣

Wn

Xn

∣

∣

∣

∣

) ≥ 1 − ε/2
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for all n ≥ N = max(N1, N2). Since P (A∩B) = P (A)+P (B)−P (A∪B) ≥
P (A) + P (B)− 1,

P (A ∩ B) = P (dε/2 ≤
∣

∣

∣

∣

Wn

Xn

∣

∣

∣

∣

≤ Dε/2) ≥ 1 − ε/2 + 1 − ε/2 − 1 = 1 − ε

for all n ≥ N. Hence Wn �P Xn. QED

The following result is used to prove the following Theorem 8.17 which
says that if there are K estimators Tj,n of a parameter β, such that ‖Tj,n −
β‖ = OP (n−δ) where 0 < δ ≤ 1, and if T ∗

n picks one of these estimators, then
‖T ∗

n − β‖ = OP (n−δ).

Proposition 8.16: Pratt (1959). Let X1,n, ..., XK,n each be OP (1)
where K is fixed. Suppose Wn = Xin,n for some in ∈ {1, ..., K}. Then

Wn = OP (1). (8.8)

Proof.

P (max{X1,n, ..., XK,n} ≤ x) = P (X1,n ≤ x, ..., XK,n ≤ x) ≤
FWn(x) ≤ P (min{X1,n, ..., XK,n} ≤ x) = 1 − P (X1,n > x, ..., XK,n > x).

Since K is finite, there exists B > 0 and N such that P (Xi,n ≤ B) > 1−ε/2K
and P (Xi,n > −B) > 1 − ε/2K for all n > N and i = 1, ..., K. Bonferroni’s

inequality states that P (∩K
i=1Ai) ≥

∑K
i=1 P (Ai) − (K − 1). Thus

FWn(B) ≥ P (X1,n ≤ B, ..., XK,n ≤ B) ≥
K(1 − ε/2K) − (K − 1) = K − ε/2 − K + 1 = 1 − ε/2

and
−FWn(−B) ≥ −1 + P (X1,n > −B, ..., XK,n > −B) ≥

−1 + K(1 − ε/2K) − (K − 1) = −1 + K − ε/2 − K + 1 = −ε/2.

Hence
FWn(B)− FWn(−B) ≥ 1 − ε for n > N. QED

Theorem 8.17. Suppose ‖Tj,n − β‖ = OP (n−δ) for j = 1, ..., K where
0 < δ ≤ 1. Let T ∗

n = Tin,n for some in ∈ {1, ..., K} where, for example, Tin,n

is the Tj,n that minimized some criterion function. Then

‖T ∗
n − β‖ = OP (n−δ). (8.9)

Proof. Let Xj,n = nδ‖Tj,n − β‖. Then Xj,n = OP (1) so by Proposition
8.16, nδ‖T ∗

n − β‖ = OP (1). Hence ‖T ∗
n − β‖ = OP (n−δ). QED
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8.6 Multivariate Limit Theorems

Many of the univariate results of the previous 5 sections can be extended to
random vectors. As stated in Section 2.7, the notation for random vectors
is rather awkward. For the limit theorems, the vector X is typically a k × 1
column vector and XT is a row vector. Let ‖x‖ =

√

x2
1 + · · · + x2

k be the
Euclidean norm of x.

Definition 8.12. Let Xn be a sequence of random vectors with joint
cdfs Fn(x) and let X be a random vector with joint cdf F (x).

a) Xn converges in distribution to X, written Xn
D→ X, if Fn(x) →

F (x) as n → ∞ for all points x at which F (x) is continuous. The distribution
of X is the limiting distribution or asymptotic distribution of Xn.

b) Xn converges in probability to X, written Xn
P→ X, if for every

ε > 0, P (‖Xn − X‖ > ε) → 0 as n → ∞.
c) Let r > 0 be a real number. Then Xn converges in rth mean to

X, written Xn
r→ X, if E(‖Xn −X‖r) → 0 as n → ∞.

d) Xn converges almost everywhere to X, written Xn
ae→ X, if

P (limn→∞ Xn = X) = 1.

Theorems 8.18, 8.19 and 8.21 below are the multivariate extensions of
the limit theorems in Section 8.1. When the limiting distribution of Zn =√

n(g(T n) − g(θ)) is multivariate normal Nk(0,Σ), approximate the joint
cdf of Zn with the joint cdf of the Nk(0,Σ) distribution. Thus to find
probabilities, manipulate Zn as if Zn ≈ Nk(0,Σ). To see that the CLT is a
special case of the MCLT below, let k = 1, E(X) = µ and V (X) = Σ = σ2.

Theorem 8.18: the Multivariate Central Limit Theorem (MCLT).
If X1, ..., Xn are iid k×1 random vectors with E(X) = µ and Cov(X) = Σ,
then √

n(X − µ)
D→ Nk(0,Σ)

where the sample mean

X =
1

n

n
∑

i=1

X i.

To see that the delta method is a special case of the multivariate delta
method, note that if Tn and parameter θ are real valued, then Dg(θ)

= g′(θ).
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Theorem 8.19: the Multivariate Delta Method. If
√

n(T n − θ)
D→ Nk(0,Σ),

then √
n(g(T n) − g(θ))

D→ Nd(0, Dg(θ)
ΣDT

g(θ)
)

where the d × k Jacobian matrix of partial derivatives

Dg(θ)
=







∂
∂θ1

g1(θ) . . . ∂
∂θk

g1(θ)
...

...
∂

∂θ1
gd(θ) . . . ∂

∂θk
gd(θ)






.

Here the mapping g : <k → <d needs to be differentiable in a neighborhood
of θ ∈ <k.

Example 8.13. If Y has a Weibull distribution, Y ∼ W (φ, λ), then the
pdf of Y is

f(y) =
φ

λ
yφ−1e−

yφ

λ

where λ, y, and φ are all positive. If µ = λ1/φ so µφ = λ, then the Weibull
pdf

f(y) =
φ

µ

(

y

µ

)φ−1

exp

[

−
(

y

µ

)φ
]

.

Let (µ̂, φ̂) be the MLE of (µ, φ). According to Bain (1978, p. 215),

√
n

( (

µ̂

φ̂

)

−
(

µ
φ

) )

D→ N

(

(

0
0

)

,

(

1.109µ2

φ2 0.257µ

0.257µ 0.608φ2

) )

= N2(0, I−1(θ)).
Let column vectors θ = (µ φ)T and η = (λ φ)T . Then

η = g(θ) =

(

λ
φ

)

=

(

µφ

φ

)

=

(

g1(θ)
g2(θ)

)

.

So

Dg(θ)
=





∂
∂θ1

g1(θ) ∂
∂θ2

g1(θ)

∂
∂θ1

g2(θ) ∂
∂θ2

g2(θ)



 =





∂
∂µ

µφ ∂
∂φ

µφ

∂
∂µ

φ ∂
∂φ

φ



 =





φµφ−1 µφ log(µ)

0 1



 .
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Thus by the multivariate delta method,

√
n

( (

λ̂

φ̂

)

−
(

λ
φ

) )

D→ N2(0,Σ)

where (see Definition 8.15 below)

Σ = I(η)−1 = [I(g(θ))]−1 = Dg(θ)
I−1(θ)DT

g(θ)
=





1.109λ2(1 + 0.4635 log(λ) + 0.5482(log(λ))2) 0.257φλ + 0.608λφ log(λ)

0.257φλ + 0.608λφ log(λ) 0.608φ2



 .

Definition 8.13. Let X be a random variable with pdf or pmf f(x|θ).
Then the information matrix

I(θ) = [Ii,j]

where

I i,j = E

[

∂

∂θi
log(f(X|θ))

∂

∂θj
log(f(X|θ))

]

.

Definition 8.14. An estimator T n of θ is asymptotically efficient if

√
n(T n − θ)

D→ Nk(0, I−1(θ)).

Following Lehmann (1999, p. 511), if T n is asymptotically efficient and
if the estimator W n satisfies

√
n(W n − θ)

D→ Nk(0, J(θ))

where J(θ) and I−1(θ) are continuous functions of θ, then under regularity
conditions, J(θ)−I−1(θ) is a positive semidefinite matrix, and T n is “better”
than W n.

Definition 8.15. Assume that η = g(θ). Then

I(η) = I(g(θ)) = [Dg(θ)
I−1(θ)DT

g(θ)
]−1.
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Notice that this definition agrees with the multivariate delta method if

√
n(T n − θ)

D→ Nk(0,Σ)

where Σ = I−1(θ).

Now suppose that X1, ..., Xn are iid random variables from a k-parameter
REF

f(x|θ) = h(x)c(θ) exp

[

k
∑

i=1

wi(θ)ti(x)

]

(8.10)

with natural parameterization

f(x|η) = h(x)b(η) exp

[

k
∑

i=1

ηiti(x)

]

. (8.11)

Then the complete minimal sufficient statistic is

T n =
1

n
(

n
∑

i=1

t1(Xi), ...,
n
∑

i=1

tk(Xi))
T .

Let µT = (E(t1(X), ..., E(tk(X)))T . From Theorem 3.3, for η ∈ Ω,

E(ti(X)) =
−∂

∂ηi

log(b(η)),

and

Cov(ti(X), tj(X)) ≡ σi,j =
−∂2

∂ηi∂ηj

log(b(η)).

Proposition 8.20. If the random variable X is a kP–REF with pdf or
pdf (8.12), then the information matrix

I(η) = [Ii,j]

where

Ii,j = E

[

∂

∂ηi
log(f(X|η))

∂

∂ηj
log(f(X|η))

]

= −E

[

∂2

∂ηi∂ηj
log(f(X|η))

]

.

Several authors, including Barndorff–Nielsen (1982), have noted that the

multivariate CLT can be used to show that
√

n(T n − µT )
D→ Nk(0,Σ). The

fact that Σ = I(η) appears in Lehmann (1983, p. 127).
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Theorem 8.21. If X1, ..., Xn are iid from a k-parameter regular expo-
nential family, then

√
n(T n − µT )

D→ Nk(0, I(η)).

Proof. By the multivariate central limit theorem,

√
n(T n − µT )

D→ Nk(0,Σ)

where Σ = [σi,j]. Hence the result follows if σi,j = Ii,j. Since

log(f(x|η)) = log(h(x)) + log(b(η)) +
k
∑

l=1

ηltl(x),

∂

∂ηi
log(f(x|η)) =

∂

∂ηi
log(b(η)) + ti(X).

Hence

−Ii,j = E

[

∂2

∂ηi∂ηj

log(f(X|η))

]

=
∂2

∂ηi∂ηj

log(b(η)) = −σi,j. QED

To obtain standard results, use the multivariate delta method, assume
that both θ and η are k × 1 vectors, and assume that η = g(θ) is a one
to one mapping so that the inverse mapping is θ = g−1(η). If Dg(θ)

is

nonsingular, then
D−1

g(θ)
= Dg−1(η) (8.12)

(see Searle 1982, p. 339), and

I(η) = [D
g(θ)

I−1(θ)DT

g(θ)
]−1 = [D−1

g(θ)
]TI(θ)D−1

g(θ)
= DT

g−1(η)I(θ)Dg−1(η).

(8.13)
Compare Lehmann (1999, p. 500) and Lehmann (1983, p. 127).

For example, suppose that µT and η are k × 1 vectors, and

√
n(η̂ − η)

D→ Nk(0, I−1(η))

where µT = g(η) and η = g−1(µT ). Also assume that T n = g(η̂) and
η̂ = g−1(T n). Then by the multivariate delta method and Theorem 8.21,

√
n(T n−µT ) =

√
n(g(η̂)−g(η))

D→ Nk[0, I(η)] = Nk[0, Dg(η)I
−1(η)DT

g(η)].
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Hence
I(η) = Dg(η)I

−1(η)DT
g(η).

Similarly,

√
n(g−1(T n) − g−1(µT )) =

√
n(η̂ − η)

D→ Nk[0, I−1(η)] =

Nk[0, Dg−1(µT )I(η)DT
g−1(µT )].

Thus

I−1(η) = Dg−1(µT )I(η)DT
g−1(µT ) = Dg−1(µT )Dg(η)I

−1(η)DT
g(η)D

T
g−1(µT )

as expected by Equation (8.13). Typically θ̂ is a function of the sufficient
statistic T n and is the unique MLE of θ. Replacing η by θ in the above

discussion shows that
√

n(θ̂− θ)
D→ Nk(0, I−1(θ)) is equivalent to

√
n(T n −

µT )
D→ Nk(0, I(θ)) provided that Dg(θ)

is nonsingular.

8.7 More Multivariate Results

Definition 8.16. If the estimator g(T n)
P→ g(θ) for all θ ∈ Θ, then g(T n)

is a consistent estimator of g(θ).

Proposition 8.22. If 0 < δ ≤ 1, X is a random vector, and

nδ(g(T n) − g(θ))
D→ X,

then g(T n)
P→ g(θ).

Theorem 8.23. If X1, ..., Xn are iid, E(‖X‖) < ∞ and E(X) = µ,
then

a) WLLN: Xn
D→ µ and

b) SLLN: Xn
ae→ µ.

Theorem 8.24: Continuity Theorem. Let Xn be a sequence of k×1
random vectors with characteristic function φn(t) and let X be a k × 1
random vector with cf φ(t). Then

Xn
D→ X iff φn(t) → φ(t)
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for all t ∈ <k.

Theorem 8.25: Cramér Wold Device. Let Xn be a sequence of k×1
random vectors and let X be a k × 1 random vector. Then

Xn
D→ X iff tTXn

D→ tTX

for all t ∈ <k.

Theorem 8.26. a) If Xn
P→ X, then Xn

D→ X.
b)

Xn
P→ g(θ) iff Xn

D→ g(θ).

Let g(n) ≥ 1 be an increasing function of the sample size n: g(n) ↑
∞, eg g(n) =

√
n. See White (1984, p. 15). If a k × 1 random vector

T n − µ converges to a nondegenerate multivariate normal distribution with
convergence rate

√
n, then T n has (tightness) rate

√
n.

Definition 8.17. Let An = [ai,j(n)] be an r × c random matrix.
a) An = OP (Xn) if ai,j(n) = OP (Xn) for 1 ≤ i ≤ r and 1 ≤ j ≤ c.
b) An = op(Xn) if ai,j(n) = op(Xn) for 1 ≤ i ≤ r and 1 ≤ j ≤ c.
c) An �P (1/(g(n)) if ai,j(n) �P (1/(g(n)) for 1 ≤ i ≤ r and 1 ≤ j ≤ c.
d) Let A1,n = T n − µ and A2,n = Cn − cΣ for some constant c > 0. If
A1,n �P (1/(g(n)) and A2,n �P (1/(g(n)), then (T n, Cn) has (tightness)
rate g(n).

Recall that the smallest integer function dxe rounds up, eg d7.7e = 8.

Definition 8.18. The sample α quantile ξ̂n,α = Y(dnαe). The population
quantile ξα = Q(α) = inf{y : F (y) ≥ α}.

Theorem 8.27: Serfling (1980, p. 80). Let 0 < ρ1 < ρ2 < · · · <
ρk < 1. Suppose that F has a density f that is positive and continuous in
neighborhoods of ξρ1 , ..., ξρk

. Then

√
n[(ξ̂n,ρ1 , ..., ξ̂n,ρk

)T − (ξρ1 , ..., ξρk
)T ]

D→ Nk(0,Σ)

where Σ = (σij) and

σij =
ρi(1 − ρj)

f(ξρi)f(ξρj )

for i ≤ j and σij = σji for i > j.

232



Theorem 8.28: Continuous Mapping Theorem. Let Xn ∈ <k. If

Xn
D→ X and if the function g : <k → <j is continuous, then

g(Xn)
D→ g(X).

8.8 Summary

1) CLT: Let Y1, ..., Yn be iid with E(Y ) = µ and V (Y ) = σ2. Then√
n(Y n − µ)

D→ N(0, σ2).

2) Delta Method: If g′(θ) 6= 0 and
√

n(Tn − θ)
D→ N(0, σ2), then√

n(g(Tn) − g(θ))
D→ N(0, σ2[g′(θ)]2).

3) 1P–REF Limit Theorem: Let Y1, ..., Yn be iid from a 1P–REF with
pdf or pmf f(y|θ) = h(y)c(θ) exp[w(θ)t(y)] and natural parameterization
f(y|η) = h(y)b(η) exp[ηt(y)]. Let E(t(Y )) = µt ≡ g(η) and V (t(Y )) = σ2

t .

Then
√

n[Tn − µt]
D→ N(0, I1(η)) where I1(η) = σ2

t = g′(η) and Tn =
1
n

∑n
i=1 t(Yi).

4) Limit theorem for the Sample Median:
√

n(MED(n) − MED(Y ))
D→ N

(

0, 1
4f2(MED(Y ))

)

.

5) If nδ(T1,n − θ)
D→ N(0, σ2

1(F )) and nδ(T2,n − θ)
D→ N(0, σ2

2(F )), then
the asymptotic relative efficiency of T1,n with respect to T2,n is

ARE(T1,n, T2,n) =
σ2

2(F )

σ2
1(F )

.

The “better” estimator has the smaller asymptotic variance or σ2
i (F ).

6) An estimator Tn of τ (θ) is asymptotically efficient if

√
n(Tn − τ (θ))

D→ N

(

0,
[τ ′(θ)]2

I1(θ)

)

.

7) For a 1P–REF, Tn = 1
n

∑n
i=1 t(Yi) is an asymptotically efficient esti-

mator of g(η) = E(t(Y )).
8) Rule of thumb: If θ̂n is the MLE or UMVUE of θ, then Tn = τ (θ̂n) is

an asymptotically efficient estimator of τ (θ). Hence if τ ′(θ) 6= 0, then

√
n[τ (θ̂n) − τ (θ)]

D→ N

(

0,
[τ ′(θ)]2

I1(θ)

)

.
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9) Xn
D→ X if

lim
n→∞

Fn(t) = F (t)

at each continuity point t of F.

10) Xn
P→ τ (θ) if for every ε > 0,

lim
n→∞

P (|Xn − τ (θ)| < ε) = 1 or, equivalently, lim
n→∞

P(|Xn − τ (θ)| ≥ ε) = 0.

11) Tn is a consistent estimator of τ (θ) if Tn
P→ τ (θ) for every θ ∈ Θ.

12) Tn is a consistent estimator of τ (θ) if any of the following 3 condi-
tions holds:

i) limn→∞ VARθ(Tn) = 0 and limn→∞ Eθ(Tn) = τ (θ) for all θ ∈ Θ.

ii) MSEτ (θ)(Tn) → 0 for all θ ∈ Θ.

iii) E[(Tn − τ (θ)2) → 0 for all θ ∈ Θ.

13) If √
n(Tn − τ (θ))

D→ N(0, v(θ))

for all θ ∈ Θ, then Tn is a consistent estimator of τ (θ).

14) WLLN: Let Y1, ..., Yn, ... be a sequence of iid random variables with

E(Yi) = µ. Then Y n
P→ µ. Hence Y n is a consistent estimator of µ.

15) i) If Xn
P→ X then Xn

D→ X.

ii) Tn
P→ τ (θ) iff Tn

D→ τ (θ).

iii) If Tn
P→ θ and τ is continuous at θ, then τ (Tn)

P→ τ (θ). Hence if Tn is
a consistent estimator of θ, then τ (Tn)is a consistent estimator of τ (θ) if τ is
a continuous function on Θ.

8.9 Complements

The following extension of the delta method is sometimes useful.
Theorem 8.29. Suppose that g′(θ) = 0, g′′(θ) 6= 0 and

√
n(Tn − θ)

D→ N(0, τ 2(θ)).

Then

n[g(Tn) − g(θ)]
D→ 1

2
τ 2(θ)g′′(θ)χ2

1.
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Example 8.14. Let Xn ∼ Binomial(n, p) where the positive integer n
is large and 0 < p < 1. Let g(θ) = θ3 − θ. Find the limiting distribution of

n

[

g

(

Xn

n

)

− c

]

for appropriate constant c when p =
1√
3
.

Solution: Since Xn
D
=
∑n

i=1 Yi where Yi ∼ BIN(1, p),

√
n

(

Xn

n
− p

)

D→ N(0, p(1 − p))

by the CLT. Let θ = p. Then g′(θ) = 3θ2 − 1 and g′′(θ) = 6θ. Notice that

g(1/
√

3) = (1/
√

3)3 − 1/
√

3 = (1/
√

3)(
1

3
− 1) =

−2

3
√

3
= c.

Also g′(1/
√

3) = 0 and g′′(1/
√

3) = 6/
√

3. Since τ 2(p) = p(1 − p),

τ 2(1/
√

3) =
1√
3
(1 − 1√

3
).

Hence

n

[

g

(

Xn

n

)

−
( −2

3
√

3

) ]

D→ 1

2

1√
3
(1 − 1√

3
)

6√
3

χ2
1 = (1 − 1√

3
) χ2

1.

There are many texts on large sample theory including, in roughly in-
creasing order of difficulty, Lehmann (1999), Ferguson (1996), Sen and Singer
(1993), and Serfling (1980). Cramér (1946) is also an important reference,
and White (1984) considers asymptotic theory for econometric applications.
Lecture notes are available from
(www.stat.psu.edu/∼dhunter/asymp/lectures/). Also see DasGupta (2008),
Davidson (1994) and van der Vaart (1998).

In analysis, convergence in probability is a special case of convergence in
measure and convergence in distribution is a special case of weak convergence.
See Ash (1972, p. 322) and Sen and Singer (1993, p. 39). Almost sure
convergence is also known as strong convergence. See Sen and Singer (1993,

p. 34). Since Y
P→ µ iff Y

D→ µ, the WLLN refers to weak convergence.
Technically the Xn and X need to share a common probability space for
convergence in probability and almost sure convergence.

Perlman (1972) and Wald (1949) give general results on the consistency
of the MLE while Berk (1972), Lehmann (1980) and Schervish (1995, p.
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418) discuss the asymptotic normality of the MLE in exponential families.
Theorems 8.4 and 8.20 appear in Olive (2007a). Also see Cox (1984) and
McCulloch (1988). A similar result to Theorem 8.20 for linear exponential
families where ti(x) = xi, are given by Brown (1986, p. 172). Portnoy
(1977) gives large sample theory for unbiased estimators in exponential fam-
ilies. Although Tn is the UMVUE of E(t(Y )) = µt, asymptotic efficiency of
UMVUEs is not simple in general. See Pfanzagl (1993).

The multivariate delta method appears, for example, in Ferguson (1996,
p. 45), Lehmann (1999, p. 315), Mardia, Kent and Bibby (1979, p. 52), Sen
and Singer (1993, p. 136) or Serfling (1980, p. 122).

In analysis, the fact that

D−1

g(θ)
= Dg−1(η)

is a corollary of the inverse mapping theorem (or of the inverse function
theorem). See Apostol (1957, p. 146) and Wade (2000, p. 353).

Casella and Berger (2002, p. 112, 133) give results similar to Proposition
8.3.

According to Rohatgi (1984, p. 626), if Y1, ..., Yn are iid with pdf f(y), if
Yrn:n is the rnth order statistic, rn/n → ρ, F (ξρ) = ρ and if f(ξρ) > 0, then

√
n(Yrn:n − ξρ)

D→ N

(

0,
ρ(1 − ρ)

[f(ξρ)]2

)

.

So there are many asymptotically equivalent ways of defining the sample ρ
quantile.

8.10 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

Refer to Chapter 10 for the pdf or pmf of the distributions in
the problems below.

8.1∗. a) Enter the following R/Splus function that is used to illustrate
the central limit theorem when the data Y1, ..., Yn are iid from an exponential
distribution. The function generates a data set of size n and computes Y 1

from the data set. This step is repeated nruns = 100 times. The output is
a vector (Y 1, Y 2, ..., Y 100). A histogram of these means should resemble a
symmetric normal density once n is large enough.
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cltsim <- function(n=100, nruns=100){

ybar <- 1:nruns

for(i in 1:nruns){

ybar[i] <- mean(rexp(n))}

list(ybar=ybar)}

b) The following commands will plot 4 histograms with n = 1, 5, 25 and
100. Save the plot in Word.

> z1 <- cltsim(n=1)

> z5 <- cltsim(n=5)

> z25 <- cltsim(n=25)

> z200 <- cltsim(n=200)

> par(mfrow=c(2,2))

> hist(z1$ybar)

> hist(z5$ybar)

> hist(z25$ybar)

> hist(z200$ybar)

c) Explain how your plot illustrates the central limit theorem.

d) Repeat parts a), b) and c), but in part a), change rexp(n) to rnorm(n).
Then Y1, ..., Yn are iid N(0,1) and Y ∼ N(0, 1/n).

8.2∗. Let X1, ..., Xn be iid from a normal distribution with unknown
mean µ and known variance σ2. Let

X =

∑n
i=1 Xi

n

Find the limiting distribution of
√

n(X
3 − c) for an appropriate constant c.

8.3∗. (Aug. 03 QUAL) Let X1, ..., Xn be a random sample from a popu-
lation with pdf

f(x) =

{

θxθ−1

3θ 0 < x < 3
0 elsewhere

The method of moments estimator for θ is Tn =
X

3 − X
.
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a) Find the limiting distribution of
√

n(Tn − θ) as n → ∞.

b) Is Tn asymptotically efficient? Why?

c) Find a consistent estimator for θ and show that it is consistent.

8.4∗. From Theorems 2.17 and 2.18, if Yn =
∑n

i=1 Xi where the Xi are iid
from a nice distribution, then Yn also has a nice distribution. If E(X) = µ
and VAR(X) = σ2 then by the CLT

√
n(Xn − µ)

D→ N(0, σ2).

Hence √
n(

Yn

n
− µ)

D→ N(0, σ2).

Find µ, σ2 and the distribution of Xi if

i) Yn ∼ BIN(n, ρ) where BIN stands for binomial.

ii) Yn ∼ χ2
n.

iii) Yn ∼ G(nν, λ) where G stands for gamma.

iv) Yn ∼ NB(n, ρ) where NB stands for negative binomial.

v) Yn ∼ POIS(nθ) where POIS stands for Poisson.

vi) Yn ∼ N(nµ, nσ2).

8.5∗. Suppose that Xn ∼ U(−1/n, 1/n).
a) What is the cdf Fn(x) of Xn?
b) What does Fn(x) converge to?

(Hint: consider x < 0, x = 0 and x > 0.)

c) Xn
D→ X. What is X?

8.6. Continuity Theorem problem: Let Xn be sequence of random vari-
ables with cdfs Fn and mgfs mn. Let X be a random variable with cdf F
and mgf m. Assume that all of the mgfs mn and m are defined to |t| ≤ d for
some d > 0. Then if mn(t) → m(t) as n → ∞ for all |t| < c where 0 < c < d,

then Xn
D→ X.

Let

mn(t) =
1

[1 − (λ + 1
n
)t]

for t < 1/(λ + 1/n). Then what is m(t) and what is X?

238



8.7. Let Y1, ..., Yn be iid, T1,n = Y and let T2,n = MED(n) be the sample
median. Let θ = µ.

Then

√
n(MED(n) −MED(Y ))

D→ N

(

0,
1

4f2(MED(Y ))

)

where the population median is MED(Y ) (and MED(Y ) = µ = θ for a) and
b) below).

a) Find ARE(T1,n, T2,n) if F is the cdf of the normal N(µ, σ2) distribution.

b) Find ARE(T1,n, T2,n) if F is the cdf of the double exponential DE(θ, λ)
distribution.

8.8. (Sept. 2005 Qual) Let X1, ..., Xn be independent identically dis-
tributed random variables with probability density function

f(x) = θxθ−1, 0 < x < 1, θ > 0.

a) Find the MLE of
1

θ
. Is it unbiased? Does it achieve the information

inequality lower bound?

b) Find the asymptotic distribution of the MLE of
1

θ
.

c) Show that Xn is unbiased for
θ

θ + 1
. Does Xn achieve the information

inequality lower bound?

d) Find an estimator of
1

θ
from part (c) above using Xn which is different

from the MLE in (a). Find the asymptotic distribution of your estimator
using the delta method.

e) Find the asymptotic relative efficiency of your estimator in (d) with
respect to the MLE in (b).

8.9. Many multiple linear regression estimators β̂ satisfy

√
n(β̂ − β)

D→ Np(0, V (β̂, F ) W ) (8.14)

when
XT X

n
P→ W −1, (8.15)
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and when the errors ei are iid with a cdf F and a unimodal pdf f that is
symmetric with a unique maximum at 0. When the variance V (ei) exists,

V (OLS, F ) = V (ei) = σ2 while V(L1, F) =
1

4[f(0)]2
.

In the multiple linear regression model,

Yi = xi,1β1 + xi,2β2 + · · · + xi,pβp + ei = xT
i β + ei (8.16)

for i = 1, . . . , n. In matrix notation, these n equations become

Y = Xβ + e, (8.17)

where Y is an n × 1 vector of dependent variables, X is an n × p matrix
of predictors, β is a p × 1 vector of unknown coefficients, and e is an n × 1
vector of unknown errors.

a) What is the ijth element of the matrix

XT X

n
?

b) Suppose xk,1 = 1 and that xk,j ∼ Xj are iid with E(Xj) = 0 and
V (Xj) = 1 for k = 1, ..., n and j = 2, ..., p. Assume that Xi and Xj are
independent for i 6= j, i > 1 and j > 1. (Often xk,j ∼ N(0, 1) in simulations.)
Then what is W −1 in (8.16)?

c) Suppose p = 2 and Yi = α + βXi + ei. Show

(XT X)−1 =







P

X2
i

n
P

(Xi−X)2
−

P

Xi

n
P

(Xi−X)2

−
P

Xi

n
P

(Xi−X)2
n

n
P

(Xi−X)2






.

d) Under the conditions of c), let S2
x =

∑

(Xi − X)2/n. Show that

n(XT X)−1 =

(

XT X

n

)−1

=







1
n

P

X2
i

S2
x

−X
S2

x

−X
S2

x

1
S2

x






.

e) If the Xi are iid with variance V (X) then n(XTX)−1 P→ W . What is
W ?
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f) Now suppose that n is divisible by 5 and the n/5 of Xi are at 0.1, n/5
at 0.3, n/5 at 0.5, n/5 at 0.7 and n/5 at 0.9. (Hence if n = 100, 20 of the Xi

are at 0.1, 0.3, 0.5, 0.7 and 0.9.)
Find

∑

X2
i /n, X and S2

x. (Your answers should not depend on n.)

g) Under the conditions of f), estimate V (α̂) and V (β̂) if L1 is used and
if the ei are iid N(0, 0.01).

Hint: Estimate W with n(XTX)−1 and V (β̂, F ) = V (L1, F ) = 1
4[f(0)]2

.
Hence





α̂

β̂



 ≈ N2











α

β



 ,
1

n

1

4[f(0)]2







1
n

P

X2
i

S2
x

−X
S2

x

−X
S2

x

1
S2

x












.

You should get an answer like 0.0648/n.

Problems from old quizzes and exams.

8.10. Let X1, ..., Xn be iid Bernoulli(p) random variables.

a) Find I1(p).

b) Find the FCRLB for estimating p.

c) Find the limiting distribution of
√

n( Xn − p ).

d) Find the limiting distribution of
√

n [ (Xn)2 − c ] for an appropriate
constant c.

8.11. Let X1, ..., Xn be iid Exponential(β) random variables.

a) Find the FCRLB for estimating β.

b) Find the limiting distribution of
√

n( Xn − β ).

c) Find the limiting distribution of
√

n [ (Xn)
2 − c ] for an appropriate

constant c.

8.12. Let Y1, ..., Yn be iid Poisson (λ) random variables.
a) Find the limiting distribution of

√
n( Y n − λ ).

b) Find the limiting distribution of
√

n [ (Y n)2 − c ] for an appropriate
constant c.

8.13. Let Yn ∼ χ2
n.

a) Find the limiting distribution of
√

n

(

Yn

n
− 1

)

.
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b) Find the limiting distribution of
√

n

[

(

Yn

n

)3

− 1

]

.

8.14. Let X1, ..., Xn be iid with cdf F (x) = P (X ≤ x). Let Yi =
I(Xi ≤ x) where the indicator equals 1 if Xi ≤ x and 0, otherwise.

a) Find E(Yi).

b) Find VAR(Yi).

c) Let F̂n(x) =
1

n

n
∑

i=1

I(Xi ≤ x) for some fixed real number x. Find the

limiting distribution of
√

n
(

F̂n(x) − cx

)

for an appropriate constant cx.

8.15. Suppose Xn has cdf

Fn(x) = 1 −
(

1 − x

θn

)n

for x ≥ 0 and Fn(x) = 0 for x < 0. Show that Xn
D→ X by finding the cdf of

X.

8.16. Let Xn be a sequence of random variables such that
P (Xn = 1/n) = 1. Does Xn converge in distribution? If yes, prove it by
finding X and the cdf of X. If no, prove it.

8.17. Suppose that Y1, ..., Yn are iid with E(Y ) = (1−ρ)/ρ and VAR(Y ) =
(1 − ρ)/ρ2 where 0 < ρ < 1.

a) Find the limiting distribution of

√
n

(

Y n − 1 − ρ

ρ

)

.

b) Find the limiting distribution of
√

n
[

g(Y n) − ρ
]

for appropriate
function g.

8.18. Let Xn ∼ Binomial(n, p) where the positive integer n is large and
0 < p < 1.

a) Find the limiting distribution of
√

n

(

Xn

n
− p

)

.

b) Find the limiting distribution of
√

n

[

(

Xn

n

)2

− p2

]

.
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8.19. Let Y1, ..., Yn be iid exponential (λ) so that E(Y ) = λ and MED(Y ) =
log(2)λ.

a) Let T1,n = log(2)Y and find the limiting distribution of√
n(T1,n − log(2)λ).

b) Let T2,n = MED(n) be the sample median and find the limiting dis-
tribution of

√
n(T2,n − log(2)λ).

c) Find ARE(T1,n, T2,n).

8.20. Suppose that η = g(θ), θ = g−1(η) and g′(θ) > 0 exists. If X has
pdf or pmf f(x|θ), then in terms of η, the pdf or pmf is f∗(x|η) = f(x|g−1(η)).
Now

A =
∂

∂η
log[f(x|g−1(η))] =

1

f(x|g−1(η))

∂

∂η
f(x|g−1(η)) =

[

1

f(x|g−1(η))

]

[

∂

∂θ
f(x|θ)

∣

∣

∣

∣

θ=g−1(η)

]

[

∂

∂η
g−1(η)

]

using the chain rule twice. Since θ = g−1(η),

A =

[

1

f(x|θ)

] [

∂

∂θ
f(x|θ)

] [

∂

∂η
g−1(η)

]

.

Hence

A =
∂

∂η
log[f(x|g−1(η))] =

[

∂

∂θ
log[f(x|θ)]

][

∂

∂η
g−1(η)

]

.

Now show that

I∗
1(η) =

I1(θ)

[g′(θ)]2
.

8.21. Let Y1, ..., Yn be iid exponential (1) so that P (Y ≤ y) = F (y) =
1 − e−y for y ≥ 0. Let Y(n) = max(Y1, ..., Yn).

a) Show that FY(n)
(t) = P (Y(n) ≤ t) = [1 − e−t]n for t ≥ 0.

b) Show that P (Y(n) − log(n) ≤ t) → exp(−e−t) (for all t ∈ (−∞,∞)
since t + log(n) > 0 implies t ∈ < as n → ∞).
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8.22. Let Y1, ..., Yn be iid uniform (0, 2θ).

a) Let T1,n = Y and find the limiting distribution of
√

n(T1,n − θ).

b) Let T2,n = MED(n) be the sample median and find the limiting dis-
tribution of

√
n(T2,n − θ).

c) Find ARE(T1,n, T2,n). Which estimator is better, asymptotically?

8.23. Suppose that Y1, ..., Yn are iid from a distribution with pdf f(y|θ)
and that the integral and differentiation operators of all orders can be inter-
changed (eg the data is from a one parameter exponential family).

a) Show that 0 = E
[

∂
∂θ

log(f(Y |θ))
]

by showing that

∂

∂θ
1 = 0 =

∂

∂θ

∫

f(y|θ)dy =

∫ [

∂

∂θ
log(f(y|θ))

]

f(y|θ)dy. (∗)

b) Take 2nd derivatives of (*) to show that

I1(θ) = Eθ[(
∂

∂θ
log f(Y |θ))2] = −Eθ

[

∂2

∂θ2
log(f(Y |θ))

]

.

8.24. Suppose that X1, ..., Xn are iid N(µ, σ2).
a) Find the limiting distribution of

√
n
(

Xn − µ
)

.
b) Let g(θ) = [log(1 + θ)]2. Find the limiting distribution of√

n
(

g(Xn) − g(µ)
)

for µ > 0.
c) Let g(θ) = [log(1 + θ)]2. Find the limiting distribution of

n
(

g(Xn) − g(µ)
)

for µ = 0. Hint: Use Theorem 8.29.

8.25. Let Wn = Xn − X and let r > 0. Notice that for any ε > 0,

E|Xn − X|r ≥ E[|Xn − X|r I(|Xn − X| ≥ ε)] ≥ εrP (|Xn −X| ≥ ε).

Show that Wn
P→ 0 if E|Xn −X|r → 0 as n → ∞.

8.26. Let X1, ..., Xn be iid with E(X) = µ and V (X) = σ2. What is the
limiting distribution of n[(X)2 − µ2] for the value or values of µ where the
delta method does not apply? Hint: use Theorem 8.29.
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8.27. (Sept. 05 QUAL) Let X ∼ Binomial(n, p) where the positive
integer n is large and 0 < p < 1.

a) Find the limiting distribution of
√

n

(

X

n
− p

)

.

b) Find the limiting distribution of
√

n

[

(

X

n

)2

− p2

]

.

c) Show how to find the limiting distribution of

[

(

X

n

)3

− X

n

]

when

p =
1√
3
.

(Actually want the limiting distribution of

n

([

(

X

n

)3

− X

n

]

− g(p)

)

where g(θ) = θ3 − θ.)

8.28. (Aug. 04 QUAL) Let X1, ..., Xn be independent and identically
distributed (iid) from a Poisson(λ) distribution.

a) Find the limiting distribution of
√

n ( X − λ ).

b) Find the limiting distribution of
√

n [ (X)3 − (λ)3 ].

8.29. (Jan. 04 QUAL) Let X1, ..., Xn be iid from a normal distribution

with unknown mean µ and known variance σ2. Let X =
Pn

i=1 Xi

n
and S2 =

1
n−1

∑n
i=1(Xi − X)2.

a) Show that X and S2 are independent.

b) Find the limiting distribution of
√

n(X
3−c) for an appropriate constant

c.
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8.30. Suppose that Y1, ..., Yn are iid logistic(θ, 1) with pdf

f(y) =
exp (−(y − θ))

[1 + exp (−(y − θ))]2

where and y and θ are real.
a) I1(θ) = 1/3 and the family is regular so the “standard limit theorem”

for the MLE θ̂n holds. Using this standard theorem, what is the limiting
distribution of

√
n(θ̂n − θ)?

b) Find the limiting distribution of
√

n(Y n − θ).

c) Find the limiting distribution of
√

n(MED(n) − θ).

d) Consider the estimators θ̂n, Y n and MED(n). Which is the best esti-
mator and which is the worst?

8.31. Let Yn ∼ binomial(n, p). Find the limiting distribution of

√
n

(

arcsin

(
√

Yn

n

)

− arcsin(
√

p)

)

.

(Hint:
d

dx
arcsin(x) =

1√
1 − x2

.)

8.32. Suppose Yn ∼ uniform(−n, n). Let Fn(y) be the cdf of Yn.
a) Find F (y) such that Fn(y) → F (y) for all y as n → ∞.

b) Does Yn
L→ Y ? Explain briefly.
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