Chapter 10
1D Regression Models Such as GLMs

.. estimates of the linear regression coefficients are relevant to the linear
parameters of a broader class of models than might have been suspected.
Brillinger (1977, p. 509)

After computing B, one may go on to prepare a scatter plot of the points
(ij,yj), j=1,...,n and look for a functional form for g(-).
Brillinger (1983, p. 98)

This chapter considers 1D regression models including additive error re-
gression (AER), generalized linear models (GLMs), and generalized additive
models (GAMs). Multiple linear regression is a special case of these four
models.

See Definition 1.2 for the 1D regression model, sufficient predictor (SP =
h(x)), estimated sufficient predictor (ESP = h(x)), generalized linear model
(GLM), and the generalized additive model (GAM). When using a GAM to
check a GLM, the notation ESP may be used for the GLM, and EAP (esti-
mated additive predictor) may be used for the ESP of the GAM. Definition
1.3 defines the response plot of ESP versus Y.

Suppose the sufficient predictor SP = h(z). Often SP = &’ 3. If u only
contains the nontrivial predictors, then SP = 3 +u’ By = a +u’n is often
used where 8 = (81,83)" = (a,n")" and & = (1,u”)".

10.1 Introduction

First we describe some regression models in the following three definitions.
The most general model uses SP = h(x) as defined in Definition 1.2. The
GAM with SP = AP will be useful for checking the model (often a GLM)
with SP = x”3. Thus the additive error regression model with SP = AP
is useful for checking the multiple linear regression model. The model with
SP = 3Tz = 273 tends to have the most theory for inference and variable
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418 10 1D Regression Models Such as GLMs

selection. For the models below, the model estimated mean function and
often a nonparametric estimator of the mean function, such as lowess, will
be added to the response plot as a visual aid. For all of the models in the
following three definitions, Y7, ..., Y,, are independent, but often the subscripts
are suppressed. For example, Y = SP + e is used instead of Y; = Y;|x; =

Definition 10.1. i) The additive error regression (AER) model
Y = SP + e has conditional mean function E(Y|SP) = SP and conditional
variance function V(Y |SP) = 02 = V(e). See Section 10.2. The response
plot of ESP versus Y and the residual plot of ESP versus r =Y — Y are
used just as for multiple linear regression. The estimated model (conditional)
mean function is the identity line Y = ESP. The response transformation
modelis Y = t(Z) = SP + e where the response transformation ¢(Z) can be
found using a graphical method similar to Section 1.2.

SP
ii) The binary regression model is Y ~ binomial (1,p— 1-7-75*’ .
e
This model has E(Y|SP) = p = p(SP) and V(Y |SP) = p(SP)(1 — p(SP)).
ESP
Then p = LT—W is the estimated mean function. See Section 10.3.
oSP
iii) The binomial regression model is Y; ~ binomial [ m;, p = 1+7$P> .
e
Then E(Y;|SP;) = m;p(SP;) and V(Y;|SP;) = m;p(SP;)(1 — p(SP;)), and
R ESP
E(Yi|x;) = mip = ﬁfw is the estimated mean function. See Section

10.3.

iv) The Poisson regression (PR) model Y ~ Poisson (¢°") has
E(Y[SP) = V(Y|SP) = exp(SP). The estimated mean and variance func-
tions are E(Y|x) = e¥5F. See Section 10.4.

v) Suppose Y has a gamma G(v, \) distribution so that F(Y) = vA and
V(Y) = vA%2. The Gamma regression model Y ~ G (v, A\ = u(SP)/v)
has E(Y|SP) = u(SP) and V(Y|SP) = [u(SP)]?/v. The estimated mean
function is E(Y|z) = u(ESP). The choices u(SP) = SP, u(SP) = exp(SP)
and p(SP) = 1/SP are common. Since p(SP) > 0, Gamma regression mod-
els that use the identity or reciprocal link run into problems if pu(ESP) is
negative for some of the cases.

Alternatives to the binomial and Poisson regression models are needed
because often the mean function for the model is good, but the variance
function is not: there is overdispersion. See Section 10.8.

A useful alternative to the binomial regression model is a beta—binomial
regression (BBR) model. Following Simonoff (2003, pp. 93-94) and Agresti
(2002, pp. 554-555), let § = p/6 and v = (1 — p)/0, so p = §/(6 + v) and
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0=1/(0+v).Let B(o,v) = % If Y has a beta-binomial distribution,
Y ~ BB(m, p, §), then the probability mass function of ¥ is P(Y = y) =
(m)B(5+y,y+m—y)

y B(6,v)
Hence § > 0 and v > 0. Then E(Y) = mdé/(§ + v) = mp and V(Y) =
mp(1—p)[14+ (m—1)0/(1+6)]. If Y|r ~ binomial(m, 7) and = ~ beta(d, v),
then Y ~ BB(m, p,6). As § — 0, it can be shown that V(r) — 0, and the
beta—binomial distribution converges to the binomial distribution.

fory =0,1,2,...,m where 0 < p < 1 and 6 > 0.

Definition 10.2. The BBR model states that Yi,...,Y,, are independent
random variables where Y;|SP; ~ BB(myj, p(SP;),0). Hence E(Y;|SF;) =
m;p(SP;) and

V(Yi|SP;) = mip(SP;)(1 = p(SP))[1 + (mi —1)0/(1 +0)].

The BBR model has the same mean function as the binomial regression
model, but allows for overdispersion. As § — 0, it can be shown that the
BBR model converges to the binomial regression model.

A useful alternative to the PR model is a negative binomial regression
(NBR) model. If Y has a (generalized) negative binomial distribution, ¥ ~
N B(u, k), then the probability mass function of Y is

r " Y
P(Y:y): (y+/§) ( A ) (1_ K )
) MNy+1) \p+k JT
for y = 0,1,2,... where ¢ > 0 and x > 0. Then E(Y) = g and V(V) =
p+p?/k. (This distribution is a generalization of the negative binomial (x, p)

distribution where p = k/(1 + ) and £ > 0 is an unknown real parameter
rather than a known integer.)

Definition 10.3. The negative binomial regression (NBR) model
is Y|SP ~ NB(exp(SP), k). Thus E(Y|SP) = exp(SP) and

exp(SP)

KR

V(Y|SP) = exp(SP) (1 + ) = exp(SP) + Texp(2 SP).

The NBR model has the same mean function as the PR model but allows
for overdispersion. Following Agresti (2002, p. 560), as 7 = 1/k — 0, it can
be shown that the NBR model converges to the PR model.

Several important survival regression models are 1D regression models
with SP = 2”3, including the Cox (1972) proportional hazards regression
model. The following survival regression models are parametric. The accel-
erated failure time model has log(Y) = a + SP4 + oe where SPy = u’ 8,
V(e) = 1, and the e; are iid from a location scale family. If the Y; are log-
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normal, the e; are normal. If the Y; are loglogistic, the e; are logistic. If the
Y; are Weibull, the e; are from a smallest extreme value distribution. The
Weibull regression model is a proportional hazards model using Y; and an
accelerated failure time model using log(Y;) with 8p = B8,4/0. Let Y hav a
Weibull W (~y, ) distribution if the pdf of Y is

f(y) = My~ exp[—Ay7]

for y > 0. Prediction intervals for parametric survival regression models are
for survival times Y, not censored survival times. See Section 10.10.

Definition 10.4. The Weibull proportional hazards regression model is
Y|SP ~ W(FY = 1/07 )\0 eXp(SP))a
where Ao = exp(—a/0).

Generalized linear models are an important class of parametric 1D regres-
sion models that include multiple linear regression, logistic regression, and
Poisson regression. Assume that there is a response variable Y and a ¢ x 1
vector of nontrivial predictors x. Before defining a generalized linear model,
the definition of a one parameter exponential family is needed. Let f(y) be
a probability density function (pdf) if Y is a continuous random variable,
and let f(y) be a probability mass function (pmf) if Y is a discrete random
variable. Assume that the support of the distribution of Y is )} and that the
parameter space of 0 is 6.

Definition 10.5. A family of pdfs or pmfs {f(y|f) : 0 € O} is a
1-parameter exponential family if

f(l0) = E(0)h(y) exp[w(0)t(y)] (10.1)

where k(6) > 0 and h(y) > 0. The functions h, k,t, and w are real valued
functions.

In the definition, it is crucial that & and w do not depend on y and that
h and t do not depend on 6. The parameterization is not unique since, for
example, w could be multiplied by a nonzero constant m if ¢ is divided by m.
Many other parameterizations are possible. If h(y) = g(y)Iy (y), then usually
k(9) and g(y) are positive, so another parameterization is

f(|0) = explw(0)t(y) + d(0) + S(y) 1y (y) (10.2)

where S(y) = log(g(y)), d(0) = log(k(#)), and the support Y does not depend
on 6. Here the indicator function I'y(y) = 1ify € Y and I (y) = 0, otherwise.
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Definition 10.6. Assume that the data is (Y;, ;) for i = 1,...,n. An
important type of generalized linear model (GLM) for the data states
that the Y7, ..., Y, are independent random variables from a 1-parameter ex-
ponential family with pdf or pmf

e (10.3)

Here ¢ is a known constant (often a dispersion parameter), a(-) is a known
function, and 6(z;) = n(z!B). Let E(Y;) = E(Y;|x;) = p(x;). The GLM
also states that g(u(z;)) = xI'3 where the link function g is a differen-
tiable monotone function. Then the canonical link function is g(u(x;)) =
c(pu(x;)) = BT x;, and the quantity 87« is called the linear predictor.

F(3i10(@2)) = k(0(@))hl) exp [C("(“’””yz] .

The GLM parameterization (10.3) can be written in several ways. By
Equation (10.2), f(y|0(xi)) = exp[w(6(z:))y; + d(0(z:)) + S() Iy (y) =

@) blelbla)
o | = g+ sw)] b

—exp | My, M)
= p[a(@yl a(¢)+3(y)]1y(y)

where v; = ¢(0(x;)) is called the natural parameter, and b(-) is some known
function.

Notice that a GLM is a parametric model determined by the 1-parameter
exponential family, the link function, and the linear predictor. Since the link
function is monotone, the inverse link function g~!(-) exists and satisfies

(@) = g~ (27 B). (10.4)
Also notice that the Y; follow a 1-parameter exponential family where

()
a()’

and notice that the value of the parameter 6(x;) = n(x'3) depends on the
value of x;. Since the model depends on x only through the linear predictor
2”3, a GLM is a 1D regression model. Thus the linear predictor is also a
sufficient predictor.

t(y;) = y; and w(0) =

The following three sections illustrate three of the most important gen-
eralized linear models. Inference and variable selection for these GLMs are
discussed in Sections 10.5 and 10.6. Their generalized additive model analogs
are discussed in Section 10.7.
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10.2 Additive Error Regression

The linear regression model Y = SP + e = 73 + e includes multiple linear
regression (MLR) and many experimental design models as special cases. See
Chapters 1-4.

If Y is quantitative, a useful extension is the additive error regression
(AER) model Y = SP + e where SP = h(x). See Definition 10.1 i). If
e~ N(0,0%), then Y ~ N(SP,0?). If e ~ N(0,02) and SP = 2T 3, then the
resulting multiple linear regression model is also a GLM and an additive error
regression model. The normality assumption is too restrictive since the error
distribution is rarely normal. If m is a smooth function, the additive error
single index model, where SP = h(x) = m(z”3), is an important special
case.

Response plots, residual plots, and response transformations for the addi-
tive error regression model are very similar to those for the multiple linear
regression model. See Olive (2004b). To avoid overfitting, assume n > 10d
where d is the model degrees of freedom, possibly estimated. Hence d = p for
multiple linear regression with OLS. Prediction intervals are given in Section
4.3.

The GAM additive error regression model is useful for checking the mul-
tiple linear regression (MLR) model. Let ESP = 73 be the ESP for MLR
where z = (1,23, ...,2,)7. Let ESP = EAP = &+ Y_"_, S;(z;) be the ESP
for the GAM additive error regression model.

After making the usual checks on the MLR model, there are two useful
plots that use the GAM. If the plotted points of the EE plot of EAP versus
ESP cluster tightly about the identity line, then the MLR and the GAM
produce similar fitted values. A plot of x; versus S’j (x;) can be useful for
visualizing whether a predictor transformation t;(x;) is needed for the jth
predictor x;. If the plot is linear then no transformation may be needed. If the
plot is nonlinear, the shape of the plot, along with the graphical methods of
Section 1.2, may be useful for suggesting the transformation ¢;. The additive
error regression GAM can be fit with all p of the S; unspecified, or fit p GAMs
where S; is linear except for unspecified S; where j = 2, ..., p. Some of these
applications for checking GLMs with GAMs will be discussed in Section 10.7.

Suppose n/p is large and SP = m(x?3). Olive (2008: ch. 12, 2010: ch.
15), Olive and Hawkins (2005), and Chang and Olive (2010) show that vari-
able selection methods using C), and the partial I test, originally meant for
multiple linear regression, can be used (under regularity conditions) for the
additive error single index model. See Section 10.11.



10.3 Binary, Binomial, and Logistic Regression 423

10.3 Binary, Binomial, and Logistic Regression

Multiple linear regression is used when the response variable is quantitative,
but for many data sets the response variable is categorical and takes on two
values: 0 or 1. The occurrence of the category that is counted is labelled as a
1 or a “success,” while the nonoccurrence of the category that is counted is
labelled as a 0 or a “failure.” For example, a “success” = “occurrence” could
be a person who contracted lung cancer and died within 5 years of detection.
Often the labelling is arbitrary, e.g., if the response variable is gender taking
on the two categories female and male. If males are counted then Y = 1 if the
subject is male and Y = 0 if the subject is female. If females are counted then
this labelling is reversed. For a binary response variable, a binary regression
model is often appropriate.

Definition 10.7. The binomial regression model states that Y7, ..., Y,
are independent random variables with Y; ~ binomial(m;, p(z;)). The binary
regression model is the special case where m; = 1 for ¢ = 1, ..., n while the
logistic regression (LR) model is the special case of binomial regression

where
exp(h(z;))

1+ exp(h(z;))’ (10.5)

P(success|xi) = p(x;) =

If the sufficient predictor SP = h(x) = & 3, then the most used binomial
regression models are such that Y7, ..., Y, are independent random variables
with Y; ~ binomial(m;, p(z*3)), or

Y;|SP; ~ binomial(m;, p(SP;)). (10.6)

Note that the conditional mean function E(Y;|SP;) = m;p(SP;) and the
conditional variance function V(Y;|SP;) = m;p(SP;)(1 — p(SP;)).
Thus the binary logistic regression model says that

Y|SP ~ binomial(1, p(SP))

where (SP)
exp
SP)= —————
P(SP) 1+ exp(SP)
for the LR model. Note that the conditional mean function E(Y|SP) =
p(SP) and the conditional variance function V(Y|SP) = p(SP)(1 — p(SP)).
For the LR model, the Y are independent and

exp(ESP) ) |

Y|z =~ bi jal 1
| &~ binomia ( ' T+ exp(ESD)

or Y|SP ~ Y|ESP = binomial(1, p(ESP)).
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Although the logistic regression model is the most important model for
binary regression, several other models are also used. Notice that p(x) =
P(S|x) is the population probability of success S given @, while 1 — p(x) =
P(F|x) is the probability of failure F' given @. In particular, for binary re-
gression, p(x) = P(Y = 1jz) = 1— P(Y = 0]z). If this population proportion
p = p(h(x)), then the model is a 1D regression model. The model is a GLM if
the link function g is differentiable and monotone so that g(p(z?3)) = =73
and g~} (zTB) = p(zTB). Usually the inverse link function corresponds to
the cumulative distribution function of a location scale family. For example,
for logistic regression, g~!(z) = exp(x)/(1 + exp(x)) which is the cdf of the
logistic L(0, 1) distribution. For probit regression, g~!(z) = ®(z) which is the
cdf of the normal N(0,1) distribution. For the complementary log-log link,
g Y(z) = 1 — exp[— exp(x)] which is the cdf for the smallest extreme value
distribution. For this model, g(p(x)) = log[—1log(1 — p(z))] = =T 3.

Another important binary regression model is the discriminant function
model. See Hosmer and Lemeshow (2000, pp. 43-44). Assume that 7, =
P(Y = j) and that z|Y" = j ~ Ni(p;, X) for j = 0, 1. That is, the conditional
distribution of x given Y = j follows a multivariate normal distribution with
mean vector p; and covariance matrix X' which does not depend on j. Notice
that X = Cov(x]Y) # Cov(x). Then as for the binary logistic regression
model with z = (1,u”)T and 8 = (a,n?)7,

B B _ expla+u’n) exp(z’pB)
P =1lz) = p(@) = 1 +expla+uln) 1+exp(xlB)

Definition 10.8. Under the conditions above, the discriminant func-
tion parameters are given by

n=3""(p — pp) (10.7)

and o = log (%) = 0.5(py — o) " X7 by + pao)-

The logistic regression (maximum likelihood) estimator also tends to per-
form well for this type of data. An exception is when the Y = 0 cases and
Y =1 cases can be perfectly or nearly perfectly classified by the ESP. Let
the logistic regression ESP = :CTB. Consider the response plot of the ESP
versus Y. If the Y = 0 values can be separated from the ¥ = 1 values by
the vertical line ESP = 0, then there is perfect classification. See Figure 10.1
b). In this case the maximum likelihood estimator for the logistic regression
parameters 3 does not exist because the logistic curve can not approximate
a step function perfectly. See Atkinson and Riani (2000, pp. 251-254). If only
a few cases need to be deleted in order for the data set to have perfect clas-
sification, then the amount of “overlap” is small and there is nearly “perfect
classification.”
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Ordinary least squares (OLS) can also be useful for logistic regression. The
ANOVA F test, partial F test, and OLS ¢t tests are often asymptotically valid
when the conditions in Definition 10.8 are met, and the OLS ESP and LR
ESP are often highly correlated. See Haggstrom (1983). For binary data the
Y; only take two values, 0 and 1, and the residuals do not behave very well.
Hence the response plot will be used both as a goodness of fit plot and as a
lack of fit plot.

Definition 10.9. For binary logistic regression, the response plot or esti-
mated sufficient summary plot is the plot of the ESP = h(x;) versus Y; with
the estimated mean function

R _ exp(ESP)
PESP) = 1 o (BSP)

added as a visual aid.

A scatterplot smoother such as lowess is also added as a visual aid. Alter-
natively, divide the ESP into J slices with approximately the same number
of cases in each slice. Then compute the sample mean = sample proportion
in slice s: ps = Y, = > .Y/ > . m; where m; = 1 and the sum is over the
cases in slice s. Then plot the resulting step function.

Suppose that @ = (1,u”)T is a p x 1 vector of predictors where ¢ =
p—1, Ny = > Y; = the number of 1s and Ny = n — Ny = the number of
0s. Also assume that ¢ < min(Ny, N1)/5. Then if the parametric estimated
mean function s(ESP) looks like a smoothed version of the step function,
then the LR model is likely to be useful. In other words, the observed slice
proportions should scatter fairly closely about the logistic curve p(ESP) =
exp(ESP)/[1 + exp(ESP)].

The response plot is a powerful method for assessing the adequacy of the
binary LR regression model. Suppose that both the number of Os and the
number of 1s is large compared to the number of predictors ¢, that the ESP
takes on many values and that the binary LR model is a good approximation
to the data. Then Y|ESP ~ binomial(1, p(ESP). Unlike the response plot
for multiple linear regression where the mean function is always the identity
line, the mean function in the response plot for LR can take a variety of
shapes depending on the range of the ESP. For LR, the (estimated) mean
function is (ESP)

. exXp
PESP) = 4 o (BSPY

If the ESP = 0 then Y'|SP & binomial(1,0.5). If the ESP = —5, then Y |SP ~
binomial(1,p = 0.007) while if the ESP = 5, then Y|SP ~ binomial(1,p ~
0.993). Hence if the range of the ESP is in the interval (—oo, —5) then the
mean function is flat and p(ESP) ~ 0. If the range of the ESP is in the
interval (5,00) then the mean function is again flat but s(ESP) ~ 1. If
—5 < ESP < 0 then the mean function looks like a slide. If —1 < ESP <1
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then the mean function looks linear. If 0 < ESP < 5 then the mean function
first increases rapidly and then less and less rapidly. Finally, if -5 < ESP < 5
then the mean function has the characteristic “ESS” shape shown in Figure
10.1 ¢).

This plot is very useful as a goodness of fit diagnostic. Divide the ESP into
J “slices” each containing approximately n/J cases. Compute the sample
mean = sample proportion of the Ys in each slice and add the resulting step
function to the response plot. This is done in Figure 10.1 ¢) with J = 4
slices. This step function is a simple nonparametric estimator of the mean
function p(SP). If the step function follows the estimated LR mean function
(the logistic curve) closely, then the LR model fits the data well. The plot
of these two curves is a graphical approximation of the goodness of fit tests
described in Hosmer and Lemeshow (2000, pp. 147-156).

The deviance test described in Section 10.5 is used to test whether 8 = 0,
and is the analog of the ANOVA F test for multiple linear regression. If the
binary LR model is a good approximation to the data but 3 = 0, then the
predictors x are not needed in the model and p(x;) = p = Y (the usual
univariate estimator of the success proportion) should be used instead of the
LR estimator .

N exp(z!3)
Y1y exp(xl'3)’

If the logistic curve clearly fits the step function better than the line Y =Y,
then Hy will be rejected, but if the line Y = Y fits the step function about
as well as the logistic curve (which should only happen if the logistic curve
is linear with a small slope), then Y may be independent of the predictors.
See Figure 10.1 a).

pla

For binomial logistic regression, the response plot needs to be modified
and a check for overdispersion is needed.

Definition 10.10. Let Z; = Y;/m;. Then the conditional distribution
Z;|x; of the LR binomial regression model can be visualized with a response

T
plot of the ESP = B «; versus Z; with the estimated mean function

A _ exp(ESP)
PESP) = 1 o (BSP)

added as a visual aid. Divide the ESP into J slices with approximately the
same number of cases in each slice. Then compute ps = > Y;/ > m; where
the sum is over the cases in slice s. Then plot the resulting step function
or the lowess curve. For binary data the step function is simply the sample
proportion in each slice.

Both the lowess curve and step function are simple nonparametric estima-
tors of the mean function p(SP). If the lowess curve or step function tracks
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the logistic curve (the estimated mean) closely, then the LR mean function
is a reasonable approximation to the data.

Checking the LR model in the nonbinary case is more difficult because
the binomial distribution is not the only distribution appropriate for data
that takes on values 0, 1,...,m if m > 2. Hence both the mean and variance
functions need to be checked. Often the LR mean function is a good approx-
imation to the data, the LR MLE is a consistent estimator of 3, but the
LR model is not appropriate. The problem is that for many data sets where
E(Yi|x;) = mip(SPE;), it turns out that V(Yi|x;) > m;p(SF;)(1 — p(SP;)).
This phenomenon is called overdispersion. The BBR model of Definition 10.2
is a useful alternative to LR.

For both the LR and BBR models, the conditional distribution of Y'|x can
still be visualized with a response plot of the ESP versus Z; = Y;/m; with the
estimated mean function E(Z;|x;) = p(SP) = p(ESP) and a step function
or lowess curve added as visual aids.

Since the binomial regression model is simpler than the BBR model, graph-
ical diagnostics for the goodness of fit of the LR model would be useful. The
following plot was suggested by Olive (2013b) to check for overdispersion.

Definition 10.11. To check for overdispersion, use the OD plot of the
estimated model variance Vi; = V(Y|SP) versus the squared residuals V =
[V — E(Y|SP))2 For the LR model, V (Y;|SP) = m;p(ESP;)(1 — p(ESP;))
and E(Y;|SP) = mip(ESP;).

Numerical summaries are also available. The deviance G2 is a statistic
used to assess the goodness of fit of the logistic regression model much as R?
is used for multiple linear regression. When the m; are small, G2 may not be
reliable but the response plot is still useful. If the Y; are not too close to 0
or m;, if the response and OD plots look good, and the deviance G? satisfies
G?/(n—p) ~ 1, then the LR model is likely useful. If G* > (n—p)+3y/n — p,
then a more complicated count model may be needed.

Combining the response plot with the OD plot is a powerful method for
assessing the adequacy of the LR model. To motivate the OD plot, recall that
if a count Y is not too close to 0 or m, then a normal approximation is good
for the binomial distribution. Notice that if Y; = E(Y|SP) + 2/V(Y|SP),
then [V; — E(Y|SP)]? = 4V (Y|SP). Hence if both the estimated mean and
estimated variance functions are good approximations, and if the counts are
not too close to 0 or m;, then the plotted points in the OD plot will scatter
about a wedge formed by the V = 0 line and the line through the origin
with slope 4: V = 4V (Y|SP). Only about 5% of the plotted points should
be above this line.

When the counts are small, the OD plot is not wedge shaped, but if the LR
model is correct, the least squares (OLS) line should be close to the identity
line through the origin with unit slope. If the data are binary, the response
plot is enough to check the binomial regression assumption.
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Suppose the bulk of the plotted points in the OD plot fall in a wedge.
Then the identity line, slope 4 line, and OLS line will be added to the plot
as visual aids. It is easier to use the OD plot to check the variance function
than the response plot since judging the variance function with the straight
lines of the OD plot is simpler than judging the variability about the logistic
curve. Also outliers are often easier to spot with the OD plot. For the LR
model, V(Y;|SP) = mip(ESP;)(1 — p(ESP;)) and E(Y;|SP) = m;p(ESP;).
The evidence of overdispersion increases from slight to high as the scale of the
vertical axis increases from 4 to 10 times that of the horizontal axis. There is
considerable evidence of overdispersion if the scale of the vertical axis is more
than 10 times that of the horizontal, or if the percentage of points above the
slope 4 line through the origin is much larger than 5%.

If the binomial LR OD plot is used but the data follows a beta—binomial re-
gression model, then Vyoqg = V (Y;|SP) ~ m;p(ESP)(1-p(ESP)) while V=
[Y; — mip(ESP))? = (Y; — E(Y;))?. Hence E(V) =~ V(Y;) ~ m;p(ESP)(1 —
p(ESP))[1 4+ (m; —1)0/(1 + 0)], so the plotted points with m; = m should
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scatter about a line with slope ~ 1+ (m — 1)
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Fig. 10.1 Response Plots for Museum Data

The first example is for binary data. For binary data, G2 is not approxi-
mately x? and some plots of residuals have a pattern whether the model is
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correct or not. For binary data the OD plot is not needed, and the plotted
points follow a curve rather than falling in a wedge. The response plot is
very useful if the logistic curve and step function of observed proportions are
added as visual aids. The logistic curve gives the estimated LR probability of
success. For example, when ESP = 0, the estimated probability is 0.5. The
following three examples used SP = ™ 3.

Example 10.1. Schaaffhausen (1878) gives data on skulls at a museum.
The 1st 47 skulls are humans while the remaining 13 are apes. The response
variable ape is 1 for an ape skull. The response plot in Figure 10.1a) uses
the predictor face length. The model fits very poorly since the probability
of a 1 decreases then increases. The response plot in Figure 10.1b) uses the
predictor head height and perfectly classifies the data since the ape skulls can
be separated from the human skulls with a vertical line at ESP = 0. The
response plot in Figure 10.1c uses predictors lower jaw length, face length,
and upper jaw length. None of the predictors is good individually, but together
provide a good LR model since the observed proportions (the step function)
track the model proportions (logistic curve) closely. The OD plot in Figure
10.1d) is curved and is not needed for a binary response.

a) ESSP b) OD Plot
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Fig. 10.2 Visualizing the Death Penalty Data

Example 10.2. Abraham and Ledolter (2006, pp. 360-364) describe death
penalty sentencing in Georgia. The predictors are aggravation level from 1 to
6 (treated as a continuous variable) and race of victim coded as 1 for white
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and 0 for black. There were 362 jury decisions and 12 level race combinations.
The response variable was the number of death sentences in each combination.
The response plot (ESSP) in Figure 10.2a shows that the Y;/m; are close to
the estimated LR mean function (the logistic curve). The step function based
on b slices also tracks the logistic curve well. The OD plot is shown in Figure
10.2b with the identity, slope 4, and OLS lines added as visual aids. The
vertical scale is less than the horizontal scale, and there is no evidence of
overdispersion.
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Fig. 10.3 Plots for Rotifer Data

Example 10.3. Collett (1999, pp. 216-219) describes a data set where
the response variable is the number of rotifers that remain in suspension in
a tube. A rotifer is a microscopic invertebrate. The two predictors were the
density of a stock solution of Ficolli and the species of rotifer coded as 1
for polyarthra major and 0 for keratella cochlearis. Figure 10.3a shows the
response plot (ESSP). Both the observed proportions and the step function
track the logistic curve well, suggesting that the LR mean function is a good
approximation to the data. The OD plot suggests that there is overdispersion
since the vertical scale is about 30 times the horizontal scale. The OLS line
has slope much larger than 4 and two outliers seem to be present.



10.4 Poisson Regression 431

10.4 Poisson Regression

If the response variable Y is a count, then the Poisson regression model is
often useful. For example, counts often occur in wildlife studies where a region
is divided into subregions and Y; is the number of a specified type of animal
found in the subregion.

Definition 10.12. The Poisson regression (PR) model states that
Y1, ..., Y, are independent random variables with Y; ~ Poisson(u(x;)) where
w(x;) = exp(h(x;)). Thus Y|SP ~ Poisson(exp(SP)). Notice that Y|SP =
0 ~ Poisson(1). Note that the conditional mean and variance functions are
equal: E(Y|SP) =V (Y|SP) = exp(SP).

In the response plot for Poisson regression, the shape of the estimated
mean function i(ESP) = exp(ESP) depends strongly on the range of the
ESP. The variety of shapes occurs because the plotting software attempts
to fill the vertical axis. Hence if the range of the ESP is narrow, then the
exponential function will be rather flat. If the range of the ESP is wide, then
the exponential curve will look flat in the left of the plot but will increase
sharply in the right of the plot.

Definition 10.13. The estimated sufficient summary plot (ESSP) or re-
sponse plot, is a plot of the ESP = h(x;) versus Y; with the estimated mean
function

((ESP) = exp(ESP)

added as a visual aid. A scatterplot smoother such as lowess is also added as
a visual aid.

This plot is very useful as a goodness of fit diagnostic. The lowess curve
is a nonparametric estimator of the mean function and is represented as a
jagged curve to distinguish it from the estimated PR mean function (the
exponential curve). See Figure 10.4 a). If the number of nontrivial predictors
g < n/10, if there is no overdispersion, and if the lowess curve follows the
exponential curve closely (except possibly for the largest values of the ESP),
then the PR mean function may be a useful approximation for E(Y|x). A
useful lack of fit plot is a plot of the ESP versus the deviance residuals
that are often available from the software.

The deviance test described in Section 10.5 is used to test whether 8 = 0,
and is the analog of the ANOVA F test for multiple linear regression. If the
PR model is a good approximation to the data but 3 = 0, then the predictors
x are not needed in the model and fi(x;) = i = Y (the sample mean) should
be used instead of the PR estimator

u(@:) = exp(? B).
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If the exponential curve clearly fits the lowess curve better than the line
Y =Y, then Hy should be rejected, but if the line Y = Y fits the lowess
curve about as well as the exponential curve (which should only happen if
the exponential curve is approximately linear with a small slope), then Y
may be independent of the predictors. See Figure 10.6 a).

Warning: For many count data sets where the PR mean function is
good, the PR model is not appropriate but the PR MLE is still a con-
sistent estimator of 3. The problem is that for many data sets where
EY|z) = pu(x) = exp(SP), it turns out that V(Y]x) > exp(SP). This
phenomenon is called overdispersion. Adding parametric and nonparamet-
ric estimators of the standard deviation function to the response plot can
be useful. See Cook and Weisberg (1999, pp. 401-403). The NBR model of
Definition 10.3 is a useful alternative to PR.

Since the Poisson regression model is simpler than the NBR model, graph-
ical diagnostics for the goodness of fit of the PR model would be useful. The
following plot was suggested by Winkelmann (2000, p. 110).

Definition 10.14. To check for overdispersion, use the OD plot of the
estimated model variance Vy; = V(Y|SP) versus the squared residuals V=
Y — E(Y|SP)]2. For the PR model, V(Y|SP) = exp(ESP) = E(Y|SP) and
V= [Y — exp(ESP)]?.

Numerical summaries are also available. The deviance G2, described in
Section 10.5, is a statistic used to assess the goodness of fit of the Poisson
regression model much as R? is used for multiple linear regression. For Poisson
regression, G2 is approximately chi-square with n — p degrees of freedom.
Since a X?i random variable has mean d and standard deviation \/_ d, the 98th
percentile of the x? distribution is approximately d + 3Vd ~ d+2.121v/2d. If
the response and OD plots look good, and G?/(n—p) = 1, then the PR model
is likely useful. If G® > (n — p) + 3y/n — p, then a more complicated count
model than PR may be needed. A good discussion of such count models is in
Simonoff (2003).

For PR, Winkelmann (2000, p. 110) suggested that the plotted points in
the OD plot should scatter about the identity line through the origin with unit
slope and that the OLS line should be approximately equal to the identity
line if the PR model is appropriate. But in simulations, it was found that the
following two observations make the OD plot much easier to use for Poisson
regression.

First, recall that a normal approximation is good for both the Poisson
and negative binomial distributions if the count Y is not too small. Notice
that if Y = E(Y|SP) + 2\/V(Y|SP), then [Y — E(Y|SP)]? = 4V(Y|SP).
Hence if both the estimated mean and estimated variance functions are good
approximations, the plotted points in the OD plot for Poisson regression will
scatter about a wedge formed by the V = 0 line and the line through the
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origin with slope 4: V = 4V(Y|SP). If the normal approximation is good,
only about 5% of the plotted points should be above this line.

Second, the evidence of overdispersion increases from slight to high as the
scale of the vertical axis increases from 4 to 10 times that of the horizontal
axis. (The scale of the vertical axis tends to depend on the few cases with
the largest V(Y|SP), and P[(Y — E(Y|SP))? > 10V(Y|SP)] can be ap-
proximated with a normal approximation or Chebyshev’s inequality.) There
is considerable evidence of overdispersion if the scale of the vertical axis is
more than 10 times that of the horizontal, or if the percentage of points above
the slope 4 line through the origin is much larger than 5%. Hence the identity
line and slope 4 line are added to the OD plot as visual aids, and one should
check whether the scale of the vertical axis is more than 10 times that of the
horizontal.

Combining the response plot with the OD plot is a powerful method for
assessing the adequacy of the Poisson regression model. It is easier to use the
OD plot to check the variance function than the response plot since judging
the variance function with the straight lines of the OD plot is simpler than
judging two curves. Also outliers are often easier to spot with the OD plot.

For Poisson regression, judging the mean function from the response plot
may be rather difficult for large counts since the mean function is curved
and lowess does not track the exponential function very well for large counts.
Definition 10.16 will give some useful plots. Since P(Y; = 0) > 0, the estima-
tors given in the following definition are used. Let Z; = Y; if ¥; > 0, and let
Z; =0.5if Y; = 0. Let = (1,u”)”.

Definition 10.15. The minimum chi-square estimator of the pa-
rameters 3 = (a,n?)T in a Poisson regression model are (Gas,),,), and are
found from the weighted least squares regression of log(Z;) on u; with weights
w; = Z;. Equivalently, use the ordinary least squares (OLS) regression (with-
out intercept) of v/Z;log(Z;) on v/Z;(1,ul)T.

The minimum chi-square estimator tends to be consistent if n is fixed
and all n counts Y; increase to oo, while the Poisson regression maximum
likelihood estimator 3 = (&, ﬁT)T tends to be consistent if the sample size
n — o0o. See Agresti (2002, pp. 611-612). However, the two estimators are
often close for many data sets.

The basic idea of the following two plots for Poisson regression is to trans-
form the data towards a linear model, then make the response plot of W
versus W and residual plot of the residuals W — W for the transformed re-
sponse variable W. The mean function is the identity line and the vertical
deviations from the identity line are the WLS residuals. If ESP = :clTB, The
plots are based on weighted least squares (WLS) regression. Use the equiva-
lent OLS regression (without intercept) of W = /Z; log(Z;) on v/Z;(1,ul)T.
Then the plot of the “fitted values” W = /Z;(aas + 7 3yw;) versus the “re-
sponse” /Z;log(Z;) should have points that scatter about the identity line.
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These results and the equivalence of the minimum chi-square estimator to
an OLS estimator suggest the following diagnostic plots.

Definition 10.16. For a Poisson regression model, a weighted fit re-
sponse plot is a plot of Z;ESP versus v/Z;log(Z;). The weighted
residual plot is a plot of \/Z;ESP versus the “WLS” residuals ry; =

VZ:log(Z:) — VZ:ESP.

If the Poisson regression model is appropriate and the PR estimator is
good, then the plotted points in the weighted fit response plot should follow
the identity line. When the counts Y; are small, the “WLS” residuals can
not be expected to be approximately normal. Often the larger counts are fit
better than the smaller counts and hence the residual plots have a “left open-
ing megaphone” shape. This fact makes residual plots for Poisson regression
rather hard to use, but cases with large “WLS” residuals may not be fit very
well by the model. Both the weighted fit response and residual plots perform
better for simulated PR data with many large counts than for data where all
of the counts are less than 10. The following three examples use SP = =7 3.

Example 10.4. For the Ceriodaphnia data of Myers et al. (2002, pp.
136-139), the response variable Y is the number of Ceriodaphnia organisms
counted in a container. The sample size was n = 70, and the predictors were
a constant (1), seven concentrations of jet fuel (z2), and an indicator for
two strains of organism (x3). The jet fuel was believed to impair reproduction
so high concentrations should have smaller counts. Figure 10.4 shows the 4
plots for this data. In the response plot of Figure 10.4a, the lowess curve
is represented as a jagged curve to distinguish it from the estimated PR
mean function (the exponential curve). The horizontal line corresponds to
the sample mean Y. The OD plot in Figure 10.4b suggests that there is little
evidence of overdispersion. These two plots as well as Figures 10.4c and 10.4d
suggest that the Poisson regression model is a useful approximation to the
data.

Example 10.5. For the crab data, the response Y is the number of satel-
lites (male crabs) near a female crab. The sample size n = 173 and the pre-
dictor variables were the color, spine condition, caparice width, and weight
of the female crab. Agresti (2002, pp. 126-131) first uses Poisson regression,
and then uses the NBR model with £ = 0.98 ~ 1. Figure 4.5a suggests that
there is one case with an unusually large value of the ESP. The lowess curve
does not track the exponential curve all that well. Figure 4.5b suggests that
overdispersion is present since the vertical scale is about 10 times that of
the horizontal scale and too many of the plotted points are large and greater
than the slope 4 line. Figure 4.5¢ also suggests that the Poisson regression
mean function is a rather poor fit since the plotted points fail to cover the
identity line. Although the exponential mean function fits the lowess curve
better than the line Y = Y, an alternative model to the NBR model may fit
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Fig. 10.5 Plots for Crab Data
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Fig. 10.6 Plots for Popcorn Data

the data better. In later chapters, Agresti uses binomial regression models
for this data.

Example 10.6. For the popcorn data of Myers et al. (2002, p. 154), the
response variable Y is the number of inedible popcorn kernels. The sample
size was n = 15 and the predictor variables were temperature (coded as 5,
6, or 7), amount of oil (coded as 2, 3, or 4), and popping time (75, 90, or
105). One batch of popcorn had more than twice as many inedible kernels
as any other batch and is an outlier. Ignoring the outlier in Figure 10.6a
suggests that the line Y =Y will fit the data and lowess curve better than
the exponential curve. Hence Y seems to be independent of the predictors.
Notice that the outlier sticks out in Figure 10.6b and that the vertical scale is
well over 10 times that of the horizontal scale. If the outlier was not detected,
then the Poisson regression model would suggest that temperature and time
are important predictors, and overdispersion diagnostics such as the deviance
would be greatly inflated. However, we probably need to delete the high
temperature, low oil, and long popping time combination, to conclude that
the response is independent of the predictors.
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10.5 GLM Inference, n/p Large

This section gives a very brief discussion of inference for the logistic regression
(LR) and Poisson regression (PR) models. Inference for these two models is
very similar to inference for the multiple linear regression (MLR) model. For
all three of these models, Y is independent of the p x 1 vector of predictors
x = (z1,2,...,7p)T given the sufficient predictor 73 where the constant
X1 1.

To perform inference for LR and PR, computer output is needed. Shown
below is output using symbols and output from a real data set with p = 3
nontrivial predictors. This data set is the banknote data set described in Cook
and Weisberg (1999, p. 524). There were 200 Swiss bank notes of which 100
were genuine (Y = 0) and 100 counterfeit (Y = 1). The goal of the analysis
was to determine whether a selected bill was genuine or counterfeit from
physical measurements of the bill.

Label Estimate Std. Error Est/SE p-value
Constant 01 se(fr) Zo,1 for Hy: 81 =0
T B2 se(B2) 202 = B2/se(B2) for Hy: B =0

Lp Bp Se(Bp) Zo,p = Bp/se(ﬁp) for Hy: B, =0

Number of cases: n
Degrees of freedom: n-p
Pearson X2:

Deviance: D =G"2

Binomial Regression

Kernel mean function = Logistic
Response = Status

Terms = (Bottom Left)
Trials = Ones

Coefficient Estimates

Label Estimate Std. Error Est/SE p-value
Constant -389.806 104.224 -3.740 0.0002
Bottom 2.26423 0.333233 6.795 0.0000
Left 2.83356 0.795601 3.562 0.0004
Scale factor: 1.

Number of cases: 200

Degrees of freedom: 197

Pearson X2: 179.809

Deviance: 99.169
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Point estimators for the mean function are important. Given values of
x = (x1,...,2p)T, a major goal of binary logistic regression is to estimate the
success probability P(Y = 1|x) = p(x) with the estimator

Aa) = exp(z”B)

= 10.8
1+ exp(zTPB) ( )

Similarly, a major goal of Poisson regression is to estimate the mean
E(Y|x) = p(x) with the estimator

fu(m) = exp(x” ). (10.9)

For tests, pval, the estimated p-value, is an important quantity. Again
what output labels as p—value is typically pval. Recall that Hy is rejected if
the pval < §. A pval between 0.07 and 1.0 provides little evidence that Hy
should be rejected, a pval between 0.01 and 0.07 provides moderate evidence
and a pval less than 0.01 provides strong statistical evidence that Hy should
be rejected. Statistical evidence is not necessarily practical evidence, and
reporting the pval along with a statement of the strength of the evidence is
more informative than stating that the pval is less than some chosen value
such as § = 0.05. Nevertheless, as a homework convention, use 6 = 0.05 if
0 is not given.

Investigators also sometimes test whether a predictor x; is needed in the
model given that the other p—1 predictors are in the model with the following
4 step Wald test of hypotheses.

i) State the hypotheses Hy : 3; =0 Hy4: 8; #0.

ii) Find the test statistic z,; = Bj/se(ﬁj) or obtain it from output.

iii) The pval = 2P(Z < —|z,5|) = 2P(Z > |z,4]). Find the pval from output
or use the standard normal table.

iv) State whether you reject Hy or fail to reject Hy and give a nontechnical
sentence restating your conclusion in terms of the story problem.

If Hy is rejected, then conclude that z; is needed in the GLM model for
Y given that the other p — 1 predictors are in the model. If you fail to reject
Hy, then conclude that z; is not needed in the GLM model for Y given that
the other p — 1 predictors are in the model. (Or there is not enough evidence
to conclude that x; is needed in the model.) Note that x; could be a very
useful GLM predictor, but may not be needed if other predictors are added
to the model.

The Wald confidence interval (CI) for ; can also be obtained using the
output: the large sample 100 (1 —0) % CI for §; is 8 & z1_5/2 se(f3;).
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The Wald test and CI tend to give good results if the sample size n is large.
Here 1 — 0 refers to the coverage of the CI. A 90% CI uses z1_5/2 = 1.645, a
95% CI uses z1_5/2 = 1.96, and a 99% CI uses z;_5/2 = 2.576.

For a GLM, often 3 models are of interest: the full model that uses all

p of the predictors 7 = (zk,x]), the reduced model that uses the r
predictors i, and the saturated model that uses n parameters 64, ..., 0,

where n is the sample size. For the full model the p parameters 31, ..., 8, are
estimated while the reduced model has r + 1 parameters. Let lsar (01, ..., 0r)
be the likelihood function for the saturated model and let Ipy Lz (3) be the
likelihood function for the full model. Let Lgar = log lsar (61, ..., 6,) be the
log likelihood function for the saturated model evaluated at the maximum

likelihood estimator (MLE) (él, wey0y) and let Lpyrr = log lpynr(8) be the
log likelihood function for the full model evaluated at the MLE (3). Then
the deviance D = G? = —2(Lpyrr — Lsar). The degrees of freedom for
the deviance = dfpyrr = n — p where n is the number of parameters for the

saturated model and p is the number of parameters for the full model.

The saturated model for logistic regression states that for i = 1,...,n, the
Y;|@; are independent binomial(m;, p;) random variables where p; = Y;/m,.
The saturated model is usually not very good for binary data (all m; = 1)
or if the m; are small. The saturated model can be good if all of the m; are
large or if p; is very close to 0 or 1 whenever m; is not large.

The saturated model for Poisson regression states that for ¢ = 1,....n,
the Y;|@; are independent Poisson(u;) random variables where fi; = Y;. The
saturated model is usually not very good for Poisson data, but the saturated
model may be good if n is fixed and all of the counts Y; are large.

If X ~ x2 then E(X) = d and VAR(X) = 2d. An observed value of
X > d+3Vd is unusually large and an observed value of X < d — 3vd is
unusually small.

When the saturated model is good, a rule of thumb is that the logistic or
Poisson regression model is ok if G> <n —p (or if G> < n —p+ 3y/n —p).
For binary LR, the xZ_, approximation for G* is rarely good even for large
sample sizes n. For LR, the response plot is often a much better diagnostic
for goodness of fit, especially when ESP = x! 3 takes on many values and
when p << n. For PR, both the response plot and G2 < n —p+ 3y/n—p
should be checked.

Response =Y
Terms = (z1, ..., Tp)
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Sequential Analysis of Deviance

Total Change

Predictor df Deviance df Deviance
Ones n—1=df, G?
To n—2 1
T3 n—3 1

z, n—-p=dfrurr Gryry 1

Data set = cbrain, Name of Fit = Bl
Response = sex
Terms = (cephalic size log[size])
Sequential Analysis of Deviance

Total Change
Predictor df Deviance \ df Deviance
Ones 266 363.820
cephalic 265 363.605 \ 1 0.214643
size 264 315.793 \ 1 47.8121
loglsize] 263 305.045 \ 1 10.7484

The above output, shown in symbols and for a real data set, is used for the
deviance test described below. Assume that the response plot has been made
and that the logistic or Poisson regression model fits the data well in that the
nonparametric step or lowess estimated mean function follows the estimated
model mean function closely and there is no evidence of overdispersion. The
deviance test is used to test whether B, = 0 where 8 = (81, 83)" = (a,n")7.
If this is the case, then the nontrivial predictors are not needed in the GLM
model. If Hy : B35 = 0 is not rejected, then for Poisson regressmn the estimator

fi =Y should be used while for logistic regression p = Z Y/ Z m; should

=1 =1
be used. Note that p = Y for binary logistic regression since m; = 1 for
i = 1,...,n. This test is similar to the ANOVA F test for multiple liner
regression.

The 4 step deviance test is

i)Ho:B8,=0 Hy:B,#0,

ii) test statistic G*(o|F) = G2 — G%y -

iii) The pval = P(x* > G*(o|F)) where x* ~ x2 has a chi-square dis-
tribution with ¢ = p — 1 degrees of freedom. Note that ¢ = ¢+ 1 -1 =
dfo_dfFULL :n—l—(n—q— 1)

iv) Reject Hy if the pval < § and conclude that there is a GLM relationship
between Y and the predictors X, ..., Xj,. If pval > 6, then fail to reject Ho and
conclude that there is not a GLM relationship between Y and the predictors
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Xs, ..., Xp. (Or there is not enough evidence to conclude that there is a GLM
relationship between Y and the predictors.)

This test can be performed in R by obtaining output from the full and
null model.

outf <- glm(¥Y"x2 + x3 + ... + xp, family = binomial)
outn <- glm(Y¥"1l,family = binomial)
anova (outn, outf, test="Chi")

Resid. Df Resid. Dev Df Deviance P(>|Chi])
1 * * K * * K Kk
2 * %Kk Kk Kk ok k G"2(0|F) pvalue

The output below, shown both in symbols and for a real data set, can be
used to perform the change in deviance test. If the reduced model leaves out
a single variable x;, then the change in deviance test becomes Hy : 3; = 0
versus Hy4 : 3; # 0. This test is a competitor of the Wald test. This change in
deviance test is usually better than the Wald test if the sample size n is not
large, but the Wald test is often easier for software to produce. For large n
the test statistics from the two tests tend to be very similar (asymptotically
equivalent tests).

If the reduced model is good, then the EE plot of ESP(R) = mﬁi,@R
versus ESP = cclTB should be highly correlated with the identity line with
unit slope and zero intercept.

Response =Y Terms = (x1,...,xp) (Full Model)

Label Estimate Std. Error Est/SE p-value
Constant 061 se(f1) Zo,1 for Hy: 81 =0
T B se(B1) 201 = B1/se(Br) for Ho : 1 =0

Tp Bq se(Bp) Zop = Bp/se(ﬁp) for Hy : 3, =0
Degrees of freedom: n — p = dfryrr
Deviance: D = G% .1

Response =Y Terms = (x1,...,2,) (Reduced Model)

Label Estimate Std. Error Est/SE p-value
Constant 01 se(f1) Zo,1 for Hy: 81 =0
T B2 se(f2)  Zop = [P2/se(f2) for Hy: 31 =0

Ty Br Se(Br) 2o = Bk/se(ﬁr) for Hy: - =0
Degrees of freedom: n — r = dfrep
Deviance: D = G%xp

(Full Model) Response = Status,
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Terms = (Diagonal Bottom Top)

Label Estimate Std. Error Est/SE p-value
Constant 2360.49 5064.42 0.466 0.6411

Diagonal -19.8874 37.2830 -0.533 0.5937

Bottom 23.6950 45.5271 0.520 0.6027

Top 19.6464 60.6512 0.324 0.7460

Degrees of freedom: 196

Deviance: 0.009

(Reduced Model) Response = Status, Terms = (Diagonal)
Label Estimate Std. Error Est/SE p-value
Constant 989.545 219.032 4.518 0.0000

Diagonal -7.04376 1.55940 -4.517 0.0000

Degrees of freedom: 198

Deviance: 21.109

After obtaining an acceptable full model where
SP =B + fawa + - + By, = &' B = 2B + 2500
try to obtain a reduced model

SP(red) = p1 + Bratrz + -+ - + BreZrr = ThBR

where the reduced model uses 7 of the predictors used by the full model and
xo denotes the vector of p — r predictors that are in the full model but not
the reduced model. For logistic regression, the reduced model is Y;|xp; ~
independent Binomial(m;, p(xg;)) while for Poisson regression the reduced
model is Yj|xp; ~ independent Poisson(u(xpg;)) for i =1,...,n.

Assume that the response plot looks good. Then we want to test Hy: the
reduced model is good (can be used instead of the full model) versus H4:
use the full model (the full model is significantly better than the reduced
model). Fit the full model and the reduced model to get the deviances G%; .
and G%p. The next test is similar to the partial F' test for multiple linear
regression.

The 4 step change in deviance test is

i) Hy: the reduced model is good H 4: use the full model,

ii) test statistic G*(R|F) = G%zp — G3yLL-

iii) The pval = P(x* > G*(R|F)) where x> ~ x7_, has a chi-square
distribution with p — r degrees of freedom. Note that p — 1 is the number of
nontrivial predictors in the full model while r — 1 is the number of nontrivial



10.5 GLM Inference, n/p Large 443

predictors in the reduced model. Also notice that p —r = dfrgp — dfrurLr =
n—r—(n-p=pP-1)—-(-1).

iv) Reject Hy if the pval < ¢ and conclude that the full model should be
used. If pval > §, then fail to reject Hy and conclude that the reduced model
is good.

This test can be performed in R by obtaining output from the full and
reduced model.

outf <- glm(¥Y"x2 + x3 + ... + xp, family = binomial)
outr <- glm(Y¥™ x4 + x6 + x8,family = binomial)
anova (outr,outf, test="Chi")

Resid. Df Resid. Dev Df Deviance P(>|Chi])
1 * * * * * kK
2 * %Kk Kk Kk K p-r G 2(RI|F) pvalue

Interpretation of coefficients: if xa, ..., £;_1, Zi41, ..., Tp can be held fixed,
then increasing x; by 1 unit increases the sufficient predictor SP by (; units.
As a special case, consider logistic regression. Let p(x) = P(success|z) = 1 —
P(failure|x) where a “success” is what is counted and a “failure” is what is not
counted (so if the Y; are binary, p(x) = P(Y; = 1|x)). Then the estimated
p(x)
T~ p()
increasing a predictor x; by 1 unit (while holding all other predictors fixed)
multiplies the estimated odds of success by a factor of exp(Bl-).

odds of success is 2(x) = = exp(z”B). In logistic regression,

Output for Full Model, Response = gender, Terms =
(age loglage] breadth circum headht

height length size log[sizel])

Number of cases: 267, Degrees of freedom: 257,
Deviance: 234.792

Logistic Regression Output for Reduced Model,

Response = gender, Terms = (height size)
Label Estimate Std. Error Est/SE p-value
Constant -6.26111 1.34466 -4.656 0.0000
height -0.0536078 0.0239044 -2.243 0.0249
size 0.0028215 0.000507935 5.555 0.0000

Number of cases: 267, Degrees of freedom: 264
Deviance: 313.457

Example 10.7. Let the response variable Y = gender = 0 for F and 1
for M. Let z2 = height (in inches) and z3 = size of head (in mm?). Logistic
regression is used, and data is from Gladstone (1905). There is output above.

a) Predict p(x) if height = xo = 65 and size = x3 = 3500.
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b) The full model uses the predictors listed above to the right of Terms.
Perform a 4 step change in deviance test to see if the reduced model can be
used. Both models contain a constant.

Solution: a) ESP = (i + foxy + fszs = —6.26111 — 0.0536078(65) +
0.0028215(3500) = 0.1296. So

ESP 1.1384
__° — 384 ) 5304,
14+ eBSP  141.1384

px)

b) i) Ho: the reduced model is good H 4: use the full model

ii) G?(R|F) = 313.457 — 234.792 = 78.665

iii) Now df = 264 — 257 = 7, and comparing 78.665 with y2 ¢ 9o — 24.32
shows that the pval =0 < 1 —0.999 = 0.001.

iv) Reject Hyp, use the full model.

Example 10.8. Suppose that Y is a 1 or 0 depending on whether the
person is or is not credit worthy. Let 22 through x7 be the predictors and
use the following output to perform a 4 step deviance test. The credit data is
available from the text’s website as file credit.lsp, and is from Fahrmeir and
Tutz (2001).

Response =y
Sequential Analysis of Deviance
All fits include an intercept.

Total Change
Predictor df Deviance \ df Deviance
Ones 999 1221.73
X2 998 1177.11 \ 1 44.6148
%3 997 1176.55 \ 1 0.561629
x4 996 1168.33 \ 1 8.21723
x5 995 1168.20 \ 1 0.137583
X6 994 1163.44 \ 1 4.75625
x7 993 1158.22 \ 1 5.21846
Solution: i) Hy : o = -+~ = 7 Ha: not Hy

ii) G?(0|F) = 1221.73 — 1158.22 = 63.51

iii) Now df = 999 — 993 = 6, and comparing 63.51 with Xg,o.ggg = 22.46
shows that the pval =0 <1 —0.999 = 0.001.

iv) Reject Hop, there is a LR relationship between Y = credit worthiness
and the predictors zo, ..., 7.

Coefficient Estimates

Label Estimate Std. Error Est/SE p-value
Constant -5.84211 1.74259 -3.353 0.0008
jaw ht 0.103606 0.0383650 ? ?7?
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Example 10.9. A museum has 60 skulls, some of which are human and
some of which are from apes. Consider trying to estimate whether the skull
type is human or ape from the height of the lower jaw. Use the above logistic
regression output to answer the following problems. The museum data is
available from the text’s website as file museum.lsp, and is from Schaaffhausen
(1878). Here = = z5.

a) Predict p(x) if = 40.0.

b) Find a 95% CI for f3,.

¢) Perform the 4 step Wald test for Hp : 32 = 0.

Solution: a) exp[ESP] = exp[f1+52(40)] = exp[—5.8421140.103606(40)] =
exp[—1.69787] = 0.1830731. So

. eEst 0.1830731

@) = T72BsF ~ Tro1ssom1 Y

b) B2 + 1.96SE(32) = 0.103606 % 1.96(0.03865) = 0.103606 4 0.0751954 =
0.02841,0.1788).

C)i)H():ﬁQA:O HA: 62#0
_ BQA _ 0.103606 _ 9 7005.

SE(3;)  0.038365

iii) Using a standard normal table, pval = 2P(Z < —2.70) = 2(0.0035) =
0.0070.

iv) Reject Hp, jaw height is a useful LR predictor for whether the skull is
human or ape (so is needed in the LR model).

i) Zo

Label Estimate Std. Error Est/SE p-value
Constant -0.406023 0.877382 -0.463 0.6435
bombload 0.165425 0.0675296 2.450 0.0143
exper -0.0135223 0.00827920 -1.633 0.1024
type 0.568773 0.504297 1.128 0.2594

Example 10.10. Use the above output to perform inference on the num-
ber of locations where aircraft was damaged. The output is from a Poisson
regression. The variable exper = total months of aircrew experience while
type of aircraft was coded as 0 or 1. There were n = 30 cases. Data is from
Montgomery et al. (2001).

a) Predict fi(x) if bombload = xo = 7.0, exper = xz3 = 80.2, and type
= T4 = 1.0.

b) Perform the 4 step Wald test for Hy : 83 = 0.

¢) Find a 95% confidence interval for 3.

Solution: a) ESP = fy + faas + Fsws + fazs = —0.406023 + 0.165426(7) —
0.0135223(80.2)40.568773(1) = 0.2362. So fi(x) = exp(ESP) = exp(0.2360) =
1.2665.

b)l) H0:63:0 HA: 63#0
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ii) tg3 = —1.633.

iii) pval = 0.1024

iv) Fail to reject Hy, exper in not needed in the PR model for number of
locations given that bombload and type are in the model.

¢) By £ 1.96SE(B4) = 0.568773 £+ 1.96(0.504297) = 0.568773 £ 0.9884 =
[—0.4196, 1.5572].

10.6 Variable and Model Selection

10.6.1 When n/p is Large

This subsection gives some rules of thumb for variable selection for logistic
and Poisson regression when SP = a” 3. Before performing variable selection,
a useful full model needs to be found. The process of finding a useful full
model is an iterative process. Given a predictor x, sometimes x is not used
by itself in the full model. Suppose that Y is binary. Then to decide what
functions of x should be in the model, look at the conditional distribution of
z|Y =i fori = 0, 1. The rules shown in Table 10.1 are used if z is an indicator
variable or if x is a continuous variable. Replace normality by “symmetric
with similar spreads” and “symmetric with different spreads” in the second
and third lines of the table. See Cook and Weisberg (1999, p. 501) and Kay
and Little (1987).

The full model will often contain factors and interactions. If w is a nominal
variable with K levels, make w into a factor by using K — 1 (indicator or)
dummy variables 1 ), ..., Tk -1, in the full model. For example, let z; , = 1
if w is at its ith level, and let z; ,, = 0, otherwise. An interaction is a product
of two or more predictor variables. Interactions are difficult to interpret.
Often interactions are included in the full model, and then the reduced model
without any interactions is tested. The investigator is often hoping that the
interactions are not needed.

Table 10.1 Building the Full Logistic Regression Model

distribution of x|y =1 variables to include in the model
x|y = 4 is an indicator T
zly =i ~ N(pi,0?) x
zly =4 ~ N(ps, 02 z and z?2
z|y = i has a skewed distribution z and log(z)

x|y = 4 has support on (0,1) log(z) and log(1 — )




10.6 Variable and Model Selection 447

A scatterplot matrix is used to examine the marginal relationships of
the predictors and response. Place Y on the top or bottom of the scatterplot
matrix. Variables with outliers, missing values, or strong nonlinearities may
be so bad that they should not be included in the full model. Suppose that
all values of the variable x are positive. The log rule says add log(z) to the
full model if max(x;)/ min(x;) > 10. For the binary logistic regression model,
it is often useful to mark the plotted points by a 0 if ¥ = 0 and by a + if
Y =1

To make a full model, use the above discussion and then make a response
plot to check that the full model is good. The number of predictors in the
full model should be much smaller than the number of data cases n. Suppose
that the Y; are binary fori = 1,...,n. Let Ny = >_Y; = the number of 1s and
Ny = n— N1 = the number of 0s. A rough rule of thumb is that the full model
should use no more than min(Ny, N1)/5 predictors and the final submodel
should have r predictor variables where r is small with r < min(Ny, Ny)/10.
For Poisson regression, a rough rule of thumb is that the full model should
use no more than n/5 predictors and the final submodel should use no more
than n/10 predictors.

Variable selection is the search for a subset of predictor variables that
can be deleted without important loss of information. A model for variable
selection for many models, including GLMs, is given is Section 4.1. Let ESP
correspond to the full model and let ESP(I) correspond to the submodel I.

Definition 10.17. An EE plot is a plot of ESP(I) versus ESP.

Variable selection is closely related to the change in deviance test for
a reduced model. You are seeking a subset I of the variables to keep in the
model. The AIC(I) statistic is used as an aid in backward elimination and
forward selection. The full model and the model I,,,;, found with the smallest
AIC are always of interest. Burnham and Anderson (2004) suggest that if
A(I) = AIC(I) — AIC (Ipmin), then models with A(I) < 2 are good, models
with 4 < A(I) < 7 are borderline, and models with A(I) > 10 should not be
used as the final submodel. Create a full model. The full model has a deviance
at least as small as that of any submodel. The final submodel should have an
EE plot that clusters tightly about the identity line. As a rough rule of thumb,
a good submodel I has corr(ESP(I), ESP) > 0.95. Find the submodel Iy
with the smallest number of predictors such that A(I7) < 2. Then submodel
Iy is the initial submodel to examine. Also examine submodels I with fewer
predictors than Iy with A(I) <7.

Backward elimination starts with the full model with ¢ = p — 1 non-
trivial variables, and the predictor that optimizes some criterion is deleted. A
constant 7 = x1 = 1 is always in the model. Then there are ¢ — 1 nontrivial
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variables left, and the predictor that optimizes some criterion is deleted. This
process continues for models with ¢ — 2,¢ — 3, ..., 2, and 1 predictors.

Forward selection starts with the model with a constant =7 = =1 = 1,
and the predictor that optimizes some criterion is added. Then there are 2
variables in the model, and the predictor that optimizes some criterion is
added. This process continues for models with 2,3, ...,p—1, and p predictors.
Both forward selection and backward elimination result in a sequence, often
different, of p models {x7}, {z7,23},.... {2,235, ...,y 1}, {21, 25, ..., 75} =
full model.

All subsets variable selection can be performed with the following pro-
cedure. Compute the ESP of the GLM and compute the OLS ESP found by
the OLS regression of Y on @. Check that |corr(ESP, OLS ESP)| > 0.95.This
high correlation will exist for many data sets. Then perform multiple linear
regression and the corresponding all subsets OLS variable selection with the
Cp(I) criterion. If the sample size n is large and Cp,(I) < 2r where the subset
I has r variables including a constant, then corr(OLS ESP, OLS ESP(I))
will be high by Olive and Hawkins (2005), and hence corr(ESP, ESP(I))
will be high. In other words, if the OLS ESP and GLM ESP are highly
correlated, then performing multiple linear regression and the corresponding
MLR variable selection (e.g. forward selection, backward elimination, or all
subsets selection) based on the C)(I) criterion may provide many interesting
submodels.

Know how to find good models from output. The following rules of thumb
(roughly in order of decreasing importance) may be useful. It is often not
possible to have all 12 rules of thumb to hold simultaneously. Let submodel
I have r; predictors, including a constant. Do not use more predictors than
submodel Ij, which has no more predictors than the minimum AIC model.
It is possible that Ir = Inin = Ifuy. Assume the response plot for the full
model is good. Then the submodel I is good if
i) the response plot for the submodel looks like the response plot for the full
model.

ii) corr(ESP,ESP(I)) > 0.95.

iii) The plotted points in the EE plot cluster tightly about the identity line.
iv) Want the pval > 0.01 for the change in deviance test that uses I as the
reduced model.

v) For binary LR want r; < min(Ny, Ny)/10. For PR, want r; < n/10.

vi) Fit OLS to the full and reduced models. The plotted points in the plot of
the OLS residuals from the submodel versus the OLS residuals from the full
model should cluster tightly about the identity line.

vii) Want the deviance G?(I) > G?(full) but close. (G*(I) > G?*(full) since
adding predictors to I does not increase the deviance.)

viii) Want AIC(I) < AIC(Inin) + 7 where I, is the minimum AIC model
found by the variable selection procedure.

ix) Want hardly any predictors with pvals > 0.05.
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x) Want few predictors with pvals between 0.01 and 0.05.
xi) Want G?(I) <n —ry +3y/n —r17.
xii) The OD plot should look good.

Heuristically, forward selection tries to add the variable that will decrease
the deviance the most. A decrease in deviance less than 4 (if the predictor
has 1 degree of freedom) may be troubling in that a bad predictor may have
been added. In practice, the forward selection program may add the variable
such that the submodel I with j nontrivial predictors has a) the smallest
AIC(I), b) the smallest deviance G2(I), or c¢) the smallest pval (preferably
from a change in deviance test but possibly from a Wald test) in the test
Hy : B; = 0 versus Hy : 3; # 0 where the current model with j terms plus
the predictor z; is treated as the full model (for all variables x; not yet in
the model).

Suppose that the full model is good and is stored in M1. Let M2, M3,
M4, and M5 be candidate submodels found after forward selection, backward
elimination, etc. Make a scatterplot matrix of the ESPs for M2, M3, M4,
M5, and M1. Good candidates should have estimated sufficient predictors
that are highly correlated with the full model estimated sufficient predictor
(the correlation should be at least 0.9 and preferably greater than 0.95). For
binary logistic regression, mark the symbols (0 and +) using the response
variable Y.

The final submodel should have few predictors, few variables with large
Wald pvals (0.01 to 0.05 is borderline), a good response plot, and an EE plot
that clusters tightly about the identity line. If a factor has K — 1 dummy
variables, either keep all K — 1 dummy variables or delete all K — 1 dummy
variables, do not delete some of the dummy variables.

Some logistic regression output can be unreliable if p(z) = 1 or p(z) =0
exactly. Then ESP = oo or ESP = —oo respectively. Some binary logistic
regression output can also be unreliable if there is perfect classification of Os
and 1s so that the Os are to the left and the 1s to the right of ESP = 0 in
the response plot. Then the logistic regression MLE B 1.r does not exist, and
variable selection rules of thumb may fail. Note that when there is perfect
classification, the logistic regression model is very useful, but the logistic
curve can not approximate a step function rising from 0 to 1 at ESP = 0,
arbitrarily closely.

Example 10.11. The following output is for forward selection. All models
use a constant. For forward selection, the min AIC model uses {F}LOC, TYP,
AGE, CAN, SYS, PCO, and PH. Model I; uses {F}LOC, TYP, AGE, CAN,
and SYS. Let model I use {F}LOC, TYP, AGE, and CAN. This model
may be good, so for forward selection, models I; and I are the first models
to examine. {F}LOC is notation used for a factor with K — 1 = 3 dummy
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variables, while & is the number of variables in I, including a constant. Output
is from the Cook and Weisberg (1999) Arc software.

Forward Selection comment
Base terms: ({F}LOC TYP)

Deviance Pearson X2 | k AIC > min AIC + 7
Add:AGE 141.873 187.84 \ 5 151.873

Base terms:

Add:CAN 134.595

Base terms:

({F}LOC TYP AGE)
Deviance Pearson X2 |
170.367 | 6
({F}LOC TYP AGE CAN)

k AIC < min AIC + 7
146.595
could be a good model

({F}LOC TYP AGE CAN)

Deviance Pearson X2 | k AIC < min AIC + 2
Add:SYS 128.441 179.753 | 7 142.441
({F}LOC TYP AGE CAN SYS) could be a good model

Base terms:

Add:PCO 126.572

Base terms:

({F}LOC TYP AGE CAN SYS)
Deviance Pearson X2 | k AIC
186.71 | 8 142.572
PCO not important since AIC <

({F}LOC TYP AGE CAN SYS PCO)

< min AIC + 2

min AIC + 2

Deviance Pearson X2 | k AIC
Add:PH 123.285 191.264 | 9 141.285 min AIC
PH not important since AIC < min AIC + 2
B1 B2 B3 B4
df 255 258 259 263
# of predictors 11 8 7 3
# with 0.01 < Wald p-value < 0.05[ 2 1 0 0
# with Wald p-value > 0.05 4 0 0 0
G? 233.765 237.212 243.482 278.787
AlIC 257.765 255.212 259.482 286.787
corr(ESP,ESP(I)) 1.0 0.99 0.97 0.80
p-value for change in deviance test | 1.0 0.328 0.045 0.000

Example 10.12. The above table gives summary statistics for 4 models
considered as final submodels after performing variable selection. One pre-
dictor was a factor, and a factor was considered to have a bad Wald p-value
> 0.05 if all of the dummy variables corresponding to the factor had p-values
> 0.05. Similarly the factor was considered to have a borderline p-value with
0.01 < p-value < 0.05 if none of the dummy variables corresponding to the
factor had a p-value < 0.01 but at least one dummy variable had a p-value
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between 0.01 and 0.05. The response was binary and logistic regression was
used. The response plot for the full model B1 was good. Model B2 was the
minimum AIC model found. There were 267 cases: for the response, 113 were
0’s and 154 were 1’s.

Which two models are the best candidates for the final submodel? Explain
briefly why each of the other 2 submodels should not be used.

Solution: B2 and B3 are best. B1 has too many predictors with rather
large p-values. For B4, the AIC is too high and the corr and p-value are too
low.

Response Plot

1.0

0.8

0.4

0.0
|

-20 -10 0 10 20 30 40

ESP

Fig. 10.7 Visualizing the ICU Data

Example 10.13. The ICU data is available from the text’s website and
from STATLIB (http://lib.stat.cmu.edu/DASL/Datafiles/ICU.html). Also
see Hosmer and Lemeshow (2000, pp. 23-25). The survival of 200 patients
following admission to an intensive care unit was studied with logistic regres-
sion. The response variable was STA (0 = Lived, 1 = Died). Predictors were
AGE, SEX (0 = Male, 1 = Female), RACE (1 = White, 2 = Black, 3 =
Other), SER= Service at ICU admission (0 = Medical, 1 = Surgical), CAN=
Is cancer part of the present problem? (0 = No, 1 = Yes), CRN= History
of chronic renal failure (0 = No, 1 = Yes), INF= Infection probable at ICU
admission (0 = No, 1 = Yes), CPR= CPR prior to ICU admission (0 = No, 1
= Yes), SYS= Systolic blood pressure at ICU admission (in mm Hg), HRA=
Heart rate at ICU admission (beats/min), PRE= Previous admission to an
ICU within 6 months (0 = No, 1 = Yes), TYP= Type of admission (0 =
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EE PLOT for Model without Race
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Fig. 10.8 EE Plot Suggests Race is an Important Predictor

Elective, 1 = Emergency), FRA= Long bone, multiple, neck, single area, or
hip fracture (0 = No, 1 = Yes), PO2= PO2 from initial blood gases (0 if >60,
1 if < 60), PH= PH from initial blood gases (0 if > 7.25, 1 if <7.25), PCO=
PCO2 from initial blood gases (0 if < 45, 1 if >45), Bic= Bicarbonate from
initial blood gases (0 if > 18, 1 if <18), CRE= Creatinine from initial blood
gases (0 if < 2.0, 1 if >2.0), and LOC= Level of consciousness at admission
(0 = no coma or stupor, 1= deep stupor, 2 = coma).

Factors LOC and RACE had two indicator variables to model the three
levels. The response plot in Figure 10.7 shows that the logistic regression
model using the 19 predictors is useful for predicting survival, although the
output has p(z) = 1 or p(x) = 0 exactly for some cases. Note that the
step function of slice proportions tracks the model logistic curve fairly well.
Variable selection, using forward selection and backward elimination with
the AIC criterion, suggested the submodel using AGE, CAN, SYS, TYP, and
LOC. The EE plot of ESP(sub) versus ESP(full) is shown in Figure 10.8.
The plotted points in the EE plot should cluster tightly about the identity
line if the full model and the submodel are good. Since this clustering did
not occur, the submodel seems to be poor. The lowest cluster of points and
the case on the right nearest to the identity line correspond to black patients.
The main cluster and upper right cluster correspond to patients who are not
black.

Figure 10.9 shows the EE plot when RACE is added to the submodel.
Then all of the points cluster about the identity line. Although numerical
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Fig. 10.9 EE Plot Suggests Race is an Important Predictor

variable selection did not suggest that RACE is important, perhaps since
output had p(x) = 1 or p(x) = 0 exactly for some cases, the two EE plots
suggest that RACE is important. Also the RACE variable could be replaced
by an indicator for black. This example illustrates how the plots can be
used to quickly improve and check the models obtained by following logistic
regression with variable selection even if the MLE 3, g does not exist.

P1 P2 P3 P4
df 144 147 148 149
# of predictors 6 3 2 1
# with 0.01 < Wald p-value < 0.05| 1 0 0 0
# with Wald p-value > 0.05 3 0 1 0
G? 127.506 131.644 147.151 149.861
AlIC 141.506 139.604 153.151 153.861
corr(ESP,ESP(I)) 1.0 0.954 0.810 0.792
p-value for change in deviance test | 1.0 0.247 0.0006 0.0

Example 10.14. The above table gives summary statistics for 4 models
considered as final submodels after performing variable selection. Poisson
regression was used. The response plot for the full model P1 was good. Model
P2 was the minimum AIC model found.

Which model is the best candidate for the final submodel? Explain briefly
why each of the other 3 submodels should not be used.
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Solution: P2 is best. P1 has too many predictors with large pvalues and
more predictors than the minimum AIC model. P3 and P4 have corr and
pvalue too low and AIC too high.

Warning. Variable selection for GLMs is very similar to that for multiple
linear regression. Finding a model I7 from variable selection, and using GLM
output for model I7 does not give valid tests and confidence intervals. If there
is a good full model that was found before examining the response, and if Iy
is the minimum AIC model, then Section 10.9 describes how to do inference
after variable selection. If the model needs to be built using the response, use
data splitting. A pilot study can also be useful.

10.6.2 When n/p is Not Necessarily Large

Forward selection with EBIC, lasso, and/or elastic net can be used for the
Cox proportional hazards regression model and for some GLMs, including
binomial and Poisson regression. The relaxed lasso = VS-lasso and relaxed
elastic net = VS-elastic net estimators apply the GLM or Cox regression
model to the predictors with nonzero lasso or elastic net coefficients. As
with multiple linear regression, the population number of active nontrivial
predictors = kg, but for a GLM, model I with SP = x¥ 3, has k active
nontrivial predictors. See Section 4.1.

Remark 10.1. Most of the plots in this chapter that use ESP = :CTB,
and can also be made using ESP(I) = ¥ 3;. Obtaining a good ESP becomes
more difficult as n/p becomes smaller.

Remark 10.2. Suppose the 1D regression model, such as a GLM, has
SP = xT3. If n > 10p, then fit the model using Chapter 5 MLR type
methods, such as relaxed lasso and forward selection (using C,), to find a
subset of predictors I. If n < 10p, fit the model with MLR lasso. (Limited
experience suggests that MLR with EBIC leads to severe underfitting if n <
10p if the 1D regression model is not MLR.) Then fit the 1D regression
with Y and x;. Check the model with the response plot and the EE plot
of the MLR ESP versus the 1D regression ESP. High correlation in the EE
plot suggests MLR model selection may be useful for the 1D regression model
selection. For some GLMs, make the OD plot. If 7 is an a x 1 vector, we want
n > Ja where J > 5 and preferably J > 10. For binary logistic regression, we
want a > Jmin(Ny, N1). Note that if n < 5p, the EE plot of the submodel
ESP versus the full model ESP should not be used since the full model is
overfitting. This method should be best when the predictors are linearly
related: there should be no strong nonlinear relationships. See Olive and
Hawkins (2005) for this method when n > 10p.
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Some R commands for GLM lasso and Remark 10.2 are shown below. Note
that the family command indicates whether a binomial regression (including
binary regression) or a Poisson regression is being fit. The default for GLM
lasso uses 10-fold CV with a deviance criterion.

set.seed(1976) #Binary regression
library (glmnet)
n<-100

m<-1 #binary regression

g <— 100 #100 nontrivial predictors, 95 inactive
k <= 5 #k_S = 5 population active predictors

y <-= 1l:n

mv <-m + 0 x y

vars <- 1l:qg

beta <= 0 « 1l:qg

beta[l:k] <- betall:k] + 1

beta
alpha <- 0
X <- matrix(rnorm(n * ), nrow = n, ncol = q)

SP <— alpha + x[,1:k] %*% betal[l:k]
pv <- exp(SP)/ (1 + exp(SP))

y <- rbinom(n,size=m, prob=pv)

Y
out<-cv.glmnet (x,y, family="binomial")
lam <- out$lambda.min

bhat <- as.vector (predict (out, type="coefficients",s=1lam))

ahat <- bhat[1l] #alphahat
bhat<-bhat [-1]
vin <- vars[bhat!=0] #want 1-5, overfit
[1] 1 2 3 4 5 6 16 59 61 74 75 76 96

ind <- as.data.frame(cbind(y,x[,vin])) #relaxed lasso GLM

tem <- glm(y~.,family="binomial",data=ind)
temS$Scoef

(Inter) V2 V3 v4 v5 Vo6
0.2103 1.0037 1.4304 0.6208 1.8805 0.3831
V7 v38 V9 V10 V1l v1i2
0.8971 0.4716 0.5196 0.8900 0.6673 -0.7611
V13 V14

-0.5918 0.6926

lrplot3 (tem=tem,x=x[,vin]) #binary response plot
#now use MLR lasso

outm<-cv.glmnet (x,y)

lamm <- outm$lambda.min

bm <- as.vector (predict (outm, type="coefficients", s=lamm))

am <- bm[1l] #alphahat
bm<-bm[-1]
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vm <— vars[bm!=0] #1 more variable than GLM lasso
vm
[1] 1 2 3 4 5 6 16 35 59 61 74 75 76 96

vin
[11] 1 2 3 4 5 6 16 59 61 74 75 76 96
inm <- as.data.frame(cbind(y,x[,vm])) #relaxed lasso GLM

tm <- glm(y~.,family="binomial",data=inm)
lrplot3 (tem=tm,x=x[,vm]) #binary response plot
#Now use MLR forward selection with EBRIC since n < 10p.
library (leaps)

out<-fsel (x,V)

vin<-out$vin

vin #severe underfit

[1] 4

inm <- as.data.frame (cbind(y,x[,vin]))

tm <- glm(y~.,family="binomial",data=inm)
lrplot3 (tem=tm, x=x[,vin]) #binary response plot

#Poisson regression, using same x and beta as above
y <- rpois(n,lambda=exp (SP))
out<-cv.glmnet (x,y, family="poisson")
lam <- out$lambda.min
bhat <- as.vector (predict (out, type="coefficients",s=1lam))
ahat <- bhat[1l] #alphahat
bhat<-bhat [-1]
vin <- vars[bhat!=0] #want 1-5, overfit
vin
[1] 1 2 3 4 5 7 910 13 16 17 18 21 23 25
26 27 30 37 39 40 42 44 46 51 53 57 59 62 71 74 84 85 93 95 97 99
ind <- as.data.frame(cbind(y,x[,vin])) #relaxed lasso GLM
out <- glm(y~.,family="poisson",data=ind)
ESP <- predict (out)
prplot2 (ESP, x=x[,vin],y) #response and OD plots
#now use MLR lasso
outm<-cv.glmnet (x,v)
lamm <- outm$lambda.min
bm <- as.vector (predict (outm, type="coefficients", s=lamm))
am <- bm[1l] #alphahat
bm<-bm[-1]
vm <- vars[bm!=0]
vm #much less overfit than GLM lasso
(1] 1 2 3 4 5 9 17 21 22 27 29 60 75 95
inm <- as.data.frame(cbind(y,x[,vm])) #relaxed lasso GLM
out <- glm(y~.,family="poisson",data=inm)
ESP <- predict (out)
prplot2 (ESP,x=x[,vm],y) #response and OD plots
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#Now use MLR forward selection with EBIC since n < 10p.
library (leaps)

out<-fsel (x,V)

vin<-out$vin

vin #severe underfit causes poor fit and overdispersion
[1] 5

inm <- as.data.frame (cbind(y,x[,vin]))

out <- glm(y~.,family="poisson",data=inm)

ESP <- predict (out)

prplot2 (ESP,x=x[,vin],y) #response and OD plots

10.7 Generalized Additive Models

There are many alternatives to the binomial and Poisson regression GLMs.
Alternatives to the binomial GLM of Definition 10.7 include the discriminant
function model of Definition 10.8, the quasi-binomial model, the binomial
generalized additive model (GAM), and the beta-binomial model of Definition
10.2.

Alternatives to the Poisson GLM of Definition 10.12 include the quasi-
Poisson model, the Poisson GAM, and the negative binomial regression model
of Definition 10.3. Other alternatives include the zero truncated Poisson
model, the zero truncated negative binomial model, the hurdle or zero in-
flated Poisson model, the hurdle or zero inflated negative binomial model,
the hurdle or zero inflated additive Poisson model, and the hurdle or zero
inflated additive negative binomial model. See Zuur et al. (2009), Simonoff
(2003), and Hilbe (2011).

Many of these models can be visualized with response plots. An interesting
research project would be to make response plots for these models, adding
the conditional mean function and lowess to the plot. Also make OD plots to
check whether the model handled overdispersion. This section will examine
several of the above models, especially GAMs. A GAM is a 1D regression
model with SP=AP and ESP=EAP. We may use ESP for a GLM and EAP
for a GAM.

Definition 10.18. In a 1D regression, Y is independent of x given the
sufficient predictor SP = h(x) where SP = T3 for a GLM. In a general-
ized additive model, Y is independent of & = (z1, ..., x,)T given the additive
predictor AP = o + Z?:z S;j(z;) for some (usually unknown) functions S;.
The estimated sufficient predictor ESP = h(x) and ESP = 73 for a GLM.
The estimated additive predictor EAP = &—1-21;22 S’j (z;). An ESP-response
plot is a plot of ESP versus Y while an EAP-response plot is a plot of EAP
versus Y.
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Note that a GLM is a special case of the GAM using S;(z;) = B;x; for j =
2,..,pwith o = 8;. A GLM with SP = a+ 222 + f323 + faz122 is a special
case of a GAM with x4 = x172. A GLM with SP = a + a2 + (373 + Bax3
is a special case of a GAM with So(z2) = Bora + (373 and S3(r3) = Baxs.
A GLM with p terms may be equivalent to a GAM with k terms wy, ..., wg
where k < p.

The plotted points in the EE plot defined below should scatter tightly
about the identity line if the GLM is appropriate and if the sample size is
large enough so that the ESP is a good estimator of the SP and the EAP is a
good estimator of the AP. If the clustering is not tight but the GAM gives a
reasonable approximation to the data, as judged by the EAP-response plot,
then examine the S’j of the GAM to see if some simple terms such as z? can
be added to the GLM so that the modified GLM has a good ESP-response
plot. (This technique is easiest if the GLM and GAM have the same p terms
Z1, ..., Tp. The technique is more difficult, for example, if the GLM has terms
x1, T2, 23, and x3 while the GAM has terms z1, z2 and z3.)

Definition 10.19. An EFE plot is a plot of EAP versus ESP.
Definition 10.20. Recall the binomial GLM

: _ . . _ exp(SF;)
Y;|SP; ~ binomial (ml, T oxn(SP) xp(SP) )"

Let p(w) = exp(w)/[1 + exp(w)].
i) The binomial GAM is Y;|AP; ~ binomial (mi, M) The
1+ exp(AP)
EAP-response plot adds the estimated mean function p(EAP) and a step
function to the plot as done for the ESP-response plot of Section 10.3.

ii) The quasi-binomial model is a 1D regression model with E(Y;|x;) =
m;p(SF;) and V(Yilx;) = ¢ m; p(SP;)(1 — p(SP;)) where the dispersion
parameter ¢ > 0. Note that this model and the binomial GLM have the
same conditional mean function, and the conditional variance functions are

the same if ¢ = 1.

Definition 10.21. Recall the Poisson GLM Y|SP ~ Poisson(exp(SP)).

i) The Poisson GAM is Y|AP ~ Poisson(exp(AP)). The EAP-response
plot adds the estimated mean function exp(EAP) and lowess to the plot as
done for the ESP-response plot of Section 10.4.

ii) The quasi-Poisson model is a 1D regression model with E(Y|z) =
exp(SP) and V(YV|z) = ¢pexp(SP) where the dispersion parameter ¢ > 0.
Note that this model and the Poisson GLM have the same conditional mean
function, and the conditional variance functions are the same if ¢ = 1.

For the quasi-binomial model, the conditional mean and variance functions
are similar to those of the binomial distribution, but it is not assumed that
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Y|SP has a binomial distribution. Similarly, it is not assumed that Y|SP
has a Poisson distribution for the quasi-Poisson model.

Next, some notation is needed to derive the zero truncated Poisson re-
gression model. Y has a zero truncated Poisson distribution, Y ~ ZTP(u),
e Y
(1 —e#)y!
y=1,2,3,... where u > 0. The ZTP pmf is obtained from a Poisson distri-
bution where y = 0 values are truncated, so not allowed. If W ~ Poisson(u)
with pmf fw(y), then P(W = 0) = e *, so Z;ozl fwly) =1—et =
ZEZO fw(y) = 3521 fw(y). So the ZTP pmf f(y) = fw(y)/(1 — e*) for

y # 0.

Now E(Y) = > 2, yf(y) = Xy2ouf (W) = X loufw(y)/(1 —e™) =
EW)/(1—e™) =p/(1 —e").

Similarly, E(Y?) = 3272, 4 f(y) = 2020%°f(y) = 2020 " fw (v)/(1 —
et) = E(W2)/(1— ) = (1 + ] /(1 — e#). So

if the probability mass function (pmf) of YV is f(y) = for

V(Y) = B(Y?) - (E()? = L8 —( L ) .

T l—en 1—eH

Definition 10.22. The zero truncated Poisson regression model has
Y|SP ~ ZTP(exp(SP)). Hence the parameter p(SP) = exp(SP),

exp(SP)

1 — exp(—exp(SP)) and

E(Y|z) =

V(Y|SP) =

[exp(SP))? + exp(SP) ( exp(SP) )
1 — exp(—exp(SP)) 1 —exp(—exp(SP)))

The quasi-binomial, quasi-Poisson, and zero truncated Poisson regression
models have GAM analogs that replace SP by AP. Definitions 10.1, 10.2, and
10.3 give important GAM models where SP = AP. Several of these models
are GAM analogs of models discussed in Sections 10.2, 10.3, and 10.4.

10.7.1 Response Plots

For a 1D regression model, there are several useful plots using the ESP. A
GAM is a 1D regression model with ESP = FAP. It is well known that the
residual plot of ESP or EAP versus the residuals (on the vertical axis) is
useful for checking the model. Similarly, the response plot of ESP or EAP
versus the response Y is useful. Assume that the ESP or EAP takes on many
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values. For a GAM, substitute EAP for ESP for the plots in Definitions 10.9,
10.10, 10.11, 10.13, 10.14, and 10.16.

The response plot for the beta-binomial GAM is similar to that for the
binomial GAM. The plots for the negative binomial GAM are similar to those
of the Poisson regression GAM, including the plots in Definition 10.16. See
Examples 10.4, 10.5, and 10.6.

10.7.2 The EE Plot for Variable Selection

Variable selection is the search for a subset of variables that can be deleted
without important loss of information. Olive and Hawkins (2005) make an
EE plot of ESP(I) versus ESP where ESP(I) is for a submodel I and ESP
is for the full model. This plot can also be used to complement the hypothesis
test that the reduced model I (which is selected before gathering data) can
be used instead of the full model. The obvious extension to GAMs is to make
the EE plot of EAP(I) versus EAP. If the fitted full model and submodel
I are good, then the plotted points should follow the identity line with high
correlation (use correlation > 0.95 as a benchmark).

To justify this claim, assume that there exists a subset S of predictor
variables such that if g is in the model, then none of the other predictors
is needed in the model. Write E for these (‘extraneous’) variables not in S,
partitioning « = (2, z%)T. Then

AP = a+)_ Sj(x;) = a+Y_ Sj(x;)+ > Sk(zr) = a+y _ Sj(x;). (10.10)

j=2 jeSs keE jeS

The extraneous terms that can be eliminated given that the subset S is in
the model have Sy (zx) =0 for k € E.

Now suppose that I is a candidate subset of predictors and that S C I.
Then

AP = a—l—ZSj(xj) = a—l—ZSj(xj) = a—i—ZSk(xk) = AP(I),

Jj=2 JjES kel

(if T includes predictors from F, these will have Sy (zx) = 0). For any subset
I that includes all relevant predictors, the correlation corr(AP, AP(I)) = 1.
Hence if the full model and submodel are reasonable and if EAP and EAP(I)
are good estimators of AP and AP(I), then the plotted points in the EE plot
of EAP(I) versus EAP will follow the identity line with high correlation.
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10.7.3 An EE Plot for Checking the GLM

One useful application of a GAM is for checking whether the corresponding
GLM has the correct form of the predictors x; in the model. Suppose a GLM
and the corresponding GAM are both fit with the same link function where
at least one general S;(x;) was used. Since the GLM is a special case of the
GAM, the plotted points in the EE plot of EAP versus ESP should follow
the identity line with very high correlation if the fitted GLM and GAM are
roughly equivalent. If the correlation is not very high and the GAM has some
nonlinear S’j (x;), update the GLM, and remake the EE plot. For example,
update the GLM by adding terms such as 23 and possibly =%, or add log(z;)
if ; is highly skewed. Then remake the EAP versus ESP plot.

10.7.4 Examples

For the binary logistic GAM, the FAP will not be a consistent estimator
of the AP if the estimated probability p(AP) = p(EAP) is exactly zero or
one. The following example will show that GAM output and plots can still
be used for exploratory data analysis. The example also illustrates that EE
plots are useful for detecting cases with high leverage and clusters of cases.
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Fig. 10.10 Visualizing the ICU GAM
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Fig. 10.11 GAM and GLM give Similar Success Probabilities

Example 10.15. For the ICU data of Example 10.13, a binary general-
ized additive model was fit with unspecified functions for AGE, SYS, and
HRA, and linear functions for the remaining 16 variables. Output suggested
that functions for SYS and HRA are linear but the function for AGE may
be slightly curved. Several cases had p(AP) equal to zero or one, but the
response plot in Figure 10.10 suggests that the full model is useful for pre-
dicting survival. Note that the ten slice step function closely tracks the logistic
curve. To visualize the model with the response plot, use Y'|@ a2 binomial[l,
p(EAP) = ePAP /(14+eFAP)]. When @ is such that FAP < —5, p(EAP) ~ 0.
If EAP > 5, p(FAP) ~ 1, and if EAP = 0, then p(EAP) = 0.5. The logistic
curve gives p(EAP) = P(Y = 1|x) = p(AP). The different estimated bi-
nomial distributions have p(AP) = p(EAP) that increases according to the
logistic curve as EAP increases. If the step function tracks the logistic curve
closely, the binary GAM gives useful smoothed estimates of p(AP) provided
that the number of 0s and 1s are both much larger than the model degrees
of freedom so that the GAM is not overfitting.

A binary logistic regression was also fit, and Figure 10.11 shows the plot of
EAP versus ESP. The plot shows that the near zero and near one probabilities
are handled differently by the GAM and GLM, but the estimated success
probabilities for the two models are similar: p(ESP) ~ p(EAP). Hence we
used the GLM and perform variable selection as in Example 10.13. Some R
code is below.

##ICU data from Statlib or URL
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#http://parker.ad.siu.edu/0Olive/ICU.1lsp

#delete header of ICU.lsp and delete last parentheses
#at the end of the file. Save the file on F drive as
#icu.txt.

icu <- read.table("F:\\icu.txt")

names (icu) <- c("ID", "STA", "AGE", "SEX", "RACE",
"SER", "CAN", "CRN", "INF", "CPR", "SYS", "HRA",
"PRE", "TYP", "FRA", "POZ", "pH", "PCO", "BiC",
"CRE", "LOC")

icul,5] <- as.factor(icul,5])

icul[,21] <- as.factor(icul,21])

icu2<-icul,-1]

outf <- glm(formula=STA"., family=binomial,data=icu2)
ESP <- predict (outf)

library (mgcv)

outgam <— gam(STA ~ s (AGE)+SEX+RACE+SER+CAN+CRN+INF+
CPR+s (SYS) +s (HRA) +PRE+TYP+FRA+PO2+PH+PCO+Bic+CRE+LOC,
family=binomial, data=icu?2)

EAP <- predict.gam(outgam)

plot (EAP, ESP)

abline (0, 1)

#Figure 10.11

Y <- icu2[,1]
lrplot3 (ESP=EAP,Y,slices=18)
#Figure 10.10

lrplot3 (ESP,Y,slices=18)
#Figure 10.7

Example 10.16. For binary data, Kay and Little (1987) suggest exam-
ining the two distributions z|Y = 0 and z|Y = 1. Use predictor z if the two
distributions are roughly symmetric with similar spread. Use x and 22 if the
distributions are roughly symmetric with different spread. Use = and log(z)
if one or both of the distributions are skewed. The log rule says add log(z)
to the model if min(z) > 0 and max(x)/ min(z) > 10. The Gladstone (1905)
data is useful for illustrating these suggestions. The response was gender with
Y =1 for male and Y = 0 for female. The predictors were age, height, and
the head measurements circumference, length, and size. When the GAM was
fit without log(age) or log(size), the S’j for age, height, and circumference
were nonlinear. The log rule suggested adding log(age), and log(size) was
added because size is skewed. The GAM for this model had plots of S;(z;)
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that were fairly linear. The response plot is not shown but was similar to
Figure 10.10, and the step function tracked the logistic curve closely. When
EAP =0, the estimated probability of Y = 1 (male) is 0.5. When EAP > 5
the estimated probability is near 1, but near 0 for FAP < —5. The response
plot for the binomial GLM, not shown, is similar.

ESPp

-2

4

EAP

Fig. 10.12 EE plot for cubic GLM for Heart Attack Data

Example 10.17. Wood (2017, pp. 125-130) describes heart attack data
where the response Y is the number of heart attacks for m; patients suspected
of suffering a heart attack. The enzyme ck (creatine kinase) was measured for
the patients and it was determined whether the patient had a heart attack
or not. A binomial GLM with predictors x1 = ck, xs = [ck]?, and z3 = [ck]?
was fit and had AIC = 33.66. The binomial GAM with predictor x; was fit in
R, and Figure 10.12 shows that the EE plot for the GLM was not too good.
The log rule suggests using ck and log(ck), but ck was not significant. Hence
a GLM with the single predictor log(ck) was fit. Figure 10.13 shows the EE
plot, and Figure 10.14 shows the response plot where the Z; = Y;/m; track
the logistic curve closely. There was no evidence of overdispersion and the
model had AIC = 33.45. The GAM using log(ck) had a linear S, and the
correlation of the plotted points in the EE plot, not shown, was one.
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Fig. 10.13 EE plot with log(ck) in the GLM
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Fig. 10.14 Response Plot for Heart Attack Data
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10.8 Overdispersion

Definition 10.23. Overdispersion occurs when the actual conditional vari-
ance function V(Y |x) is larger than the model conditional variance function
Vu (Yx).

Overdispersion can occur if the model underfits, if the response variables
are correlated, if the population follows a mixture distribution, or if outliers
are present. Typically it is assumed that the model is correct so V(Y|x) =
Va (Y|x). Hence the subscript M is usually suppressed. A GAM has condi-
tional mean and variance functions Ej/(Y|AP) and Vi (Y |AP) where the
subscript M indicates that the function depends on the model. Then overdis-
persion occurs if V(Y|x) > Va(Y|AP) where E(Y|z) and V(Y |z) denote
the actual conditional mean and variance functions. Then the assumptions
that E(Y|x) = En(Y|e) = m(AP) and V(Y|x) = V(Y |AP) = v(AP)
need to be checked.

First check that the assumption E(Y|x) = m(SP) is a reasonable approx-
imation to the data using the response plot with lowess and the estimated
conditional mean function Ep/(Y|x) = m(SP) added as visual aids. Overdis-
persion can occur even if the model conditional mean function E(Y|SP)
is a good approximation to the data. For example, for many data sets
where E(Y;|x;) = m;p(SP;), the binomial regression model is inappropriate
since V (Y;|z;) > mip(SP;)(1 — p(SPF;)). Similarly, for many data sets where
E(Y|z) = p(x) = exp(SP), the Poisson regression model is inappropriate
since V(Y |x) > exp(SP). If the conditional mean function is adequate, then
we suggest checking for overdispersion using the OD plot.

Definition 10.24. For 1D regression, the OD plot is a plot of the estimated
model variance V(Y|SP) versus the squared residuals
V =[Y — Ex(Y|SP))%. Replace SP by AP for a GAM.

The OD plot has been used by Winkelmann (2000, p. 110) for the Poisson
regression model where Vi, (Y |SP) = Ep (Y |SP) = exp(ESP). For binomial
and Poisson regression, the OD plot can be used to complement tests and
diagnostics for overdispersion such as those given in Cameron and Trivedi
(2013), Collett (1999, ch. 6), and Winkelmann (2000). See discussion below
Definitions 10.11 and 10.14 for how to interpret the OD plot with the identity
line, OLS line, and slope 4 line added as visual aids, and for discussion of the
numerical summaries G2 and X? for GLMs.

Definition 10.1, with SP = AP, gives Ep (Y|AP) = m(AP) and Vi (Y |AP)
= v(AP) for several models. Often m(AP) = m(EAP) and 0(AP) =
v(EAP), but additional parameters sometimes need to be estimated. Hence
D(AP) = mip(EAP;)(1—p(EAP:))[14(m;—1)0/(1+0)], 5(AP) = exp(EAP)+
7exp(2 EAP), and 9(AP) = [m(EAP)]?/v for the beta-binomial, nega-
tive binomial, and gamma GAMSs, respectively. The beta-binomial regres-
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sion model is often used if the binomial regression is inadequate because of
overdispersion, and the negative binomial GAM is often used if the Poisson
GAM is inadequate.

Since the Poisson regression (PR) model is simpler than the negative bi-
nomial regression (NBR) model, and the binomial logistic regression (LR)
model is simpler beta-binomial regression (BBR) model, the graphical di-
agnostics for the goodness of fit of the PR and LR models are very useful.
Combining the response plot with the OD plot is a powerful method for as-
sessing the adequacy of the Poisson and logistic regression models. NBR and
BBR models should also be checked with response and OD plots. See Exam-
ples 10.2-10.6 and the R code at the end of Section 10.6 (where ¢ =p — 1).

Example 10.18. The species data is from Cook and Weisberg (1999,
pp. 285-286) and Johnson and Raven (1973). The response variable is the
total number of species recorded on each of 29 islands in the Galapagos
Archipelago. Predictors include area of island, areanear = the area of the
closest island, the distance to the closest island, the elevation, and endem =
the number of endemic species (those that were not introduced from else-
where). A scatterplot matrix of the predictors suggested that log transfor-
mations should be taken. Poisson regression suggested that log(endem) and
log(areanear) were the important predictors, but the deviance and Pear-
son X? statistics suggested overdispersion was present since both statistics
were near 71.4 with 26 degrees of freedom. The residual plot also suggested
increasing variance with increasing fitted value. A negative binomial regres-
sion suggested that only log(endem) was needed in the model, and had a
deviance of 26.12 on 27 degrees of freedom. The residual plot for this model
was roughly ellipsoidal. The negative binomial GAM with log(endem) had
an S that was linear and the plotted points in the EE plot had correlation
near 1.

The response plot with the exponential and lowess curves added as visual
aids is shown in Figure 10.15. The interpretation is that Y|z &~ negative
binomial with E(Y|x) ~ exp(EAP). Hence if EAP = 0, E(Y|x) ~ 1. The
negative binomial and Poisson GAM have the same conditional mean func-
tion. If the plot was for a Poisson GAM, the interpretation would be that
Y|x ~ Poisson(exp(EAP)). Hence if EAP = 0, Y|x ~ Poisson(1).

Figure 10.16 shows the OD plot for the negative binomial GAM with the
identity line and slope 4 line through the origin added as visual aids. The
plotted points fall within the “slope 4 wedge,” suggesting that the negative
binomial regression model has successfully dealt with overdispersion. Here
E(Y|AP) = exp(EAP) and V(Y|AP) = exp(EAP) + 7 exp(2EAP) where
7=1/37.
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10.9 Inference After Variable Selection for GLMs

Inference after variable selection for GLMs is very similar to inference after
variable selection for multiple linear regression. AIC, BIC, EBIC, lasso, and
elastic net can be used for variable selection. Read Section 4.2 for the large
sample theory for B I.m.0- We assume that n >> p. Theorem 4.4, the Vari-
able Selection CLT, still applies, as does Remark 4.4. Hence if lasso or elastic
net is consistent, then relaxed lasso or relaxed elastic net is \/n consistent.
The geometric argument of Theorem 4.5 also applies. We follow Rathnayake
and Olive (2019) closely. Read Sections 4.2, 4.5, and 4.6 before reading this
section. We will describe the parametric bootstrap, and then consider boot-
strapping variable selection.

10.9.1 The Parametric and Nonparametric Bootstrap

Consider a parametric 1D regression model Y|z ~ D(z”3,v) where D is a
parametric distribution that depends on the p x 1 vector of predictors x only
through SP = 2”3, and v is a ¢ x 1 vector of parameters.

Suppose Yi|lz; ~ D(xTB,~), va(B — B) 2 N,(0,V(8)), and that
V() i V(B) asn — oo. These assumptions tend to be mild for a parametric

regression model where the maximum likelihood estimator (MLE) 3 is used.
Then V(B8) = I"'(B), the inverse Fisher information matrix. If I,,(8) is the
Fisher information matrix based on a sample of size n, then I,,(3)/n 21 (8).
For GLMs, see, for example, Sen and Singer (1993, p. 309). For the paramet-
ric regression model, we regress Y on X to obtain (3,4) where the n x 1
vector Y = (Y;) and the ith row of the n x p design matrix X is =} .

The parametric bootstrap uses Y = (¥;*) where Y;*|z; ~ D(zTB,%)
for i« = 1,....,n. Regress Y;f on X to get B; for j = 1,..., B. The large
sample theory for B* is simple. Note that if Y*|x; ~ D(zI'b,4) where b
does not depend on n, then (Y™, X) follows the parametric regression model
with parameters (b,%). Hence \/H(B* - b) 5 N,(0,V(b)). Now fix large
integer ng, and let b = Bno. Then \/H(B* - Bno) 5 N, (0, V(Bno)) Since

N,(0,V(B)) & N, (0, V(8)), we have

VB - B) 2 Ny(0,V(8)) (10.11)

asn — 0o. X
Now suppose S C I. Without loss of generality, let 3 = (BIT, ,Bg)T and 3 =
(BT, B(0)1)T. Then (Y, X 1) follows the parametric regression model with

parameters (8;,7). Hence va(B; — B;) 2 Na, (0, V(8;)). Now (Y™, X )



470 10 1D Regression Models Such as GLMs

only follows the parametric regression model asymptotically, since 3(O) # 0.
However, under regularity conditions, E (B;) ~ 3; and COV(B;)— Cov(3;) —
0 as n, B — oo.

To see the above claim for GLMs, consider a GLM with n; = SP, = 273 =
g(u;) where pu; = E(Y;|x;) = g~ (n;). Let V; = V(Yi|z;). Let

on;
zi = g(us) + g/ () (Y — ) = i + 8—2_0@ — ), Z=(z),

2
i 1 . i 7
o= (G) g W detw), W= Wiy, i 2= 2]y

Then
B=X"WX)'X"WZ and B;= (XWX X[ WZ;

while

By =(XTW X)) 'XTW,Z, (10.12)
where B; is fit as if (Y™, X[) follows the GLM with parameters (3(I), ).
If S C I, then this approximation is correct asymptotically since \/n3(0) =
Op(1). Hence nj; = i B(I) = g(p;), and V;; = Var(Y;*|@ir) where Viy
is the model variance from the GLM with parameters (3(I),4). Also, the
estimated asymptotic covariance matrices are

Cov(B) = (X"WX)™' and Cov(B;) = (X{ WX "

See, for example, Agresti (2002, pp. 138, 147), Hillis and Davis (1994),
and McCullagh and Nelder (1989). From Sen and Singer (1994, p. 307),

n(XTW, X)) L 17Y8;) asn — o0 if SC 1.

Let 3= (XTWX) 'XTWZ. Then E(B) = 8 since E(Z) = X3, and
Cov(Y) = Cov(Y|X) = diag(V;). Since

Opi 1 oni ’
= and = i),
o g' (ki) o ° (1)

Cov(Z) = Cov(Z|X) = W~ Thus Cov(B) = (XWX)~!. Although
B—B=0p(n=1?), we have n(X"WX)! - n(X"WX)1 & 17(8) -
I''(B)=0asn— oo

Let B = (XTW3iX )" XTW}Z} where W} and Z7 are evaluated using
B(I). Then Cov(Y™*) = diag(V;*) — diag(V;;). Hence Cov(Z}) — W™t and
Cov(B;) — (XTW3iX )~ as n, B — o0o. Hence Cov(B;)— Cov(B;) — 0 as
n,B—ocoif S C1I.

As an example, consider the Poisson regression model from Section 10.4.
Then u}; = exp(xX,B(I)) = exp(n};) = V;}. Hence
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Opiy _
;i

eXP(n;}) = #;} = ;}a

wir = eXP(miTIB(I))a and w; = eXp(mg}Bl)' Similarly, n;; = log(u;7),

* * 877;[ * * * 1 * *
Zip = Mir + (Y — i) =i + . (Y — i), and

Oy 1235

Ak 1 Ak
T ————— (V" —exp(z]18))).
GXP(%TIBI)

Note that for (Y, X ), the formulas are the same with the asterisks removed

and pir = exp(x]B;).
The nonparametric bootstrap samples cases (Y;, @;) with replacement to

form (Y7}, X7), and regresses Y on X to get B; for j = 1,...,B. The
nonparametric bootstrap can be useful even if heteroscedasticity or overdis-
persion is present, if the cases are an iid sample from some population, a very

strong assumption.

10.9.2 Bootstrapping Variable Selection

Consider testing Ho : @ = 6o versus H; : 0 # 6y where 0 is g x 1. Let the
variable selection estimator T,, = AB; . o with 8 = AB. Recall T}, is equal
to the estimator T}, with probability 7;, for j =1,...,J. Here A is a known

full rank g x p matrix with 1 < g < p. We have /n(T,, — 0) B by (4.6)
where E(v) = 0, and Xy = >, m; AV oAT. Hence geometric argument
Theorem 4.5 holds: if we had iid data 11, ...,Tp, then the prediction region
applied to the iid data and centered at a randomly chosen 7T;, would be a
large sample confidence region for 6.

Next use the argument for multiple linear regression in Section 4.6.4. For
the bootstrap, suppose that 73" is equal to T} with probability p;, for j =
1,...,J where ijjn = 1, and pj, — m; as n — oo. Let Bj, count the
number of times 77 = T, in the bootstrap sample. Then the bootstrap
sample 17, ..., Tf can be written as

* * * *
Tl,l’ ""TBln,l’ ""Tl,J’ ""TBJmJ

where the Bj, follow a multinomial distribution and Bj, /B A Pjn as B —

oo. Denote 175, ..., ngn ; as the jth bootstrap component of the bootstrap

sample with sample mean 7'; and sample covariance matrix S ;- Then
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Bjn

1 & B, 1 .
1= J 1= J

Similarly, we can define the jth component of the iid sample 77, ...,Tp to
have sample mean Tj and sample covariance matrix St ;.

Suppose the jth component of an iid sample 771, ..., Tp and the jth compo-
nent of the bootstrap sample 17, ..., T4 have the same variability asymptot-
ically. Since E(T},) ~ 6, each component of the iid sample is approximately
centered at 6. The bootstrap components are centered at E(77,), and often
E(T},) = Tjn. Geometrically, separating the component clouds so that they
are no longer centered at one value makes the overall data cloud larger. Thus
the variability of T is larger than that of T;, for a mixture distribution,
asymptotically. Hence the prediction region applied to the bootstrap sample
is slightly larger than the prediction region applied to the iid sample, asymp-
totically (we want n > 20p). Hence cutoff 13%717 s = D(QUB) gives coverage

s

close to or higher than the nominal coverage for confidence regions (4.32)
and (4.34), using the geometric argument. The deviation T} — T, tends to
be larger in magnitude than the deviation and T;* — T". Hence the cutoff
1357175 = D7, 7y tends to be larger than D7 . and region (4.33) tends to
have higher coverage than region (4.34) for a mixture distribution.

The full model should be checked with the response plot before do-
ing variable selection inference. Assume p is fixed and n > 20p. Assume
P(S C Inin) — 1 as n — oo, and that S C I;. For multiple linear re-
gression with the residual bootstrap that uses residuals from the full OLS
model, Chapter 4 showed that the components of the iid sample and boot-
strap sample have the same variability asymptotically. The components of the
iid sample are centered at AB3 while the components of the bootstrap sample
are centered at A3 1;,0- Now consider regression models with ¥ 1L x|z’ 3.

Assume \/ﬁA(sz,o -0) RN Ng, (0, X;) where X; = AV ;AT For the non-

parametric bootstrap, assume \/H(AB;O - ABIj,o) 5 Ng, (0, X). Then the
components of the iid sample and bootstrap sample have the same variability
asymptotically. The components of iid sample are centered at A3 while the
components of the bootstrap sample are centered at AB 1;,0- For the nonpara-

metric bootstrap, the above results tend to hold if v/n(3 — 8) 5 Ny(0,V)

and if \/ﬁ(,@* - B) 5 N,(0, V). Assumptions for the nonparametric boot-
strap tend to be rather strong: often one assumption is that the n cases
(Y;,2F')T are iid from some population. See Shao and Tu (1995, pp. 335-349)
for the nonparametric bootstrap for GLMs, nonlinear regression, and Cox’s
proportional hazards regression. Also see Burr (1994), Efron and Tibshirani
(1993), Freedman (1981), and Tibshirani (1997).

For the parametric bootstrap, Section 10.9.1 showed that under regular-
ity conditions, COV(B;)— Cov(B;) — 0 as n,B — oo if § C I. Hence
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Cov(Tjn) — Cov(T},) — 0 as n,B — oo if § C I. Here T,, = ABIW-",O’
Tjn = ABy o Tp = APy, o and T, = AB; . Then E(T},) ~ AB = 6
while the E(T7;,) are more variable than the E(T},) with E(T},) ~ AB(I i, 0),
roughly, where 3(I i,0) is formed from B(I ;) by adding zeros corresponding
to variables not in I;. Hence the jth component of an iid sample T1,...,Tp
and the jth component of the bootstrap sample T7,...,Tf have the same
variability asymptotically.

In simulations for n > 20p for Hy : ABg = 0y, the coverage tended to
get close to 1 — § for B > max(200,50p) so that S7 is a good estimator of
Cov(T™*). In the simulations where S is not the full model, inference with
backward elimination with [, using AIC was often more precise than in-
ference with the full model if n > 20p and B > 50p. It is possible that S7. is
singular if a column of the bootstrap sample is equal to 0. If the regression
model has a g x 1 vector of parameters <, we may need to replace p by p+ q.

Undercoverage can occur if bootstrap sample data cloud is less variable
than the iid data cloud, e.g., if (n —p)/n is not close to one. Coverage can be
higher than the nominal coverage for two reasons: i) the bootstrap data cloud
is more variable than the iid data cloud of T1, ..., Ts, and ii) zero padding.

To see the effect of zero padding, consider Hy : A8 = B, = 0 where
Bo = (61-1,....,61-5)T and O C FE in (4.1) so that Hp is true. Suppose a
nominal 95% confidence region is used and Up is the 96th percentile. Hence
the confidence region (4.32) or (4.33) covers at least 96% of the bootstrap
sample. If B*O,j = 0 for more than 4% of the B*O)l, e ,AB*O)B, then 0 is in the
confidence region and the bootstrap test fails to reject Hy. If this occurs for
each run in the simulation, then the observed coverage will be 100%.

Now suppose B*O,j =0 for j = 1,...,B. Then S} is singular, but the
singleton set {0} is the large sample 100(1 — 6)% confidence region (4.32),
(4.33), or (4.34) for B, and § € (0,1), and the pvalue for Hy : B = 0 is
one. (This result holds since {0} contains 100% of the B*O,j in the bootstrap
sample.) For large sample theory tests, the pvalue estimates the population
pvalue. Let I denote the other predictors in the model so 3 = (BIT, BS)T. For
the I,,,;, model from variable selection, there may be strong evidence that xo
is not needed in the model given x; is in the model if the “100%” confidence
region is {0}, n > 20p, and B > 50p. (Since the pvalue is one, this technique
may be useful for data snooping: applying MLE theory to submodel I may
have negligible selection bias.)

Remark 10.3. As in Chapter 4, another way to look at the bootstrap con-
fidence region for variable selection estimators is to consider the estimator
15, that chooses I; with probability equal to the observed bootstrap propor-
tion p;n. The bootstrap sample 17, ..., T tends to be slightly more variable
than an iid sample 75 i, ..., 15 p, and the geometric argument suggests that
the large sample coverage of the nominal 100(1 — §)% confidence region will
be at least as large as the nominal coverage 100(1 — 6)%.
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10.9.3 Examples and Simulations

Pelawa Watagoda and Olive (2019a) have an example and simulations for
multiple linear regression using the residual bootstrap. See Chapter 4. We
will use Poisson and binomial regression.

Example 10.19. Lindenmayer et al. (1991) and Cook and Weisberg (1999,
p. 533) give a data set with 151 cases where Y is the number of possum
species found in a tract of land in Australia. The predictors are acacia=basal
area of acacia + 1, bark=bark index, habitat=habitat score, shrubs=number
of shrubs + 1, stags= number of hollow trees + 1, stumps=indicator for
presence of stumps, and a constant. Inference for the full Poisson regression
model is shown along with the shorth(c) nominal 95% confidence intervals for
(; computed using the parametric bootstrap with B = 1000. As expected, the
bootstrap intervals are close to the large sample GLM confidence intervals
~ B; £2SE(5;).

The minimum AIC model from backward elimination used a constant,
bark, habitat, and stags. The shorth(c) nominal 95% confidence intervals for
(i using the parametric bootstrap are shown. Note that most of the confidence
intervals contain 0 when closed intervals are used instead of open intervals.
The Poisson regression output is also shown, but should only be used for
inference if the model was selected before looking at the data.

large sample full model inference

Est. SE z Pr(>|z|) 95% shorth CI
int -1.0428 0.2480 -4.205 0.0000 [-1.562,-0.538]
acacia 0.0166 0.0103 1.612 0.1070 [-0.004, 0.035]
bark 0.0361 0.0140 2.579 0.0099 [ 0.007, 0.065]
habitat 0.0762 0.0375 2.032 0.0422 [-0.003, 0.144]
shrubs 0.0145 0.0205 0.707 0.4798 [-0.028, 0.056]
stags 0.0325 0.0103 3.161 0.0016 [ 0.013, 0.054]
stumps -0.3907 0.2866 -1.364 0.1727 [-1.010, 0.171]

output and shorth intervals for the min AIC submodel
Est. SE z Pr(>]z|) 95% shorth CI

int -0.8994 0.2135 -4.212 0.0000 [-1.438,-0.428]
acacia 0 [ 0.000, 0.037]
bark 0.0336 0.0121 2.773 0.0056 [ 0.000, 0.060]
habitat 0.1069 0.0297 3.603 0.0003 [ 0.000, 0.156]
shrubs 0 [ 0.000, 0.060]
stags 0.0302 0.0094 3.210 0.0013 [ 0.000, 0.054]
stumps O [-0.970, 0.000]

We tested Hy : B2 = (5 = [y = 0 with the I,,;, model selected by
backward elimination. (Of course this test would be easy to do with the
full model using GLM theory.) Then Hy : AB = (32,35, 47)7 = 0. Using
the prediction region method with the full model had [0, D(y,,)] = [0, 2.836]
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with Dg = 2.135. Note that WX%,O.% = 2.795. So fail to reject Hy. Using

the prediction region method with the I,,;, backward elimination model had
[0, Dw,)] = [0,2.804] while Dg = 1.269. So fail to reject Hg. The ratio of
the volumes of the bootstrap confidence regions for this test was 0.322. (Use
(3.35) with S% and D from backward elimination for the numerator, and
from the full model for the denominator.) Hence the backward elimination
bootstrap test was more precise than the full model bootstrap test.

Example 10.20. For binary logistic regression, the MLE tends to converge
if max(|zZ3|) < 7 and if the Y values of 0 and 1 are not nearly perfectly
classified by the rule Y =1if :cTB >05and Y = 0, otherwise. If there
is perfect classification, the MLE does not exist. Let p(x) = P(Y = 1|x)
under the binary logistic regression. If |2Z3|) > 10, some of the j(x;) tend
to be estimated to be exactly equal to 0 or 1, which causes problems for
the MLE. The Flury and Riedwyl (1988, pp. 5-6) banknote data consists of
100 counterfeit and 100 genuine Swiss banknote. The response variable is
an indicator for whether the banknote is counterfeit. The six predictors are
measurements on the banknote: bottom, diagonal, left, length, right, and top.
When the logistic regression model is fit with these predictors and a constant,
there is almost perfect classification and backward elimination had problems.
We deleted diagonal, which is likely an important predictor, so backward
elimination would run. For this full model, classification is very good, but
the :clTB run from —20 to 20. In a plot of cclTB versus Y on the vertical axis
(not shown), the logistic regression mean function is tracked closely by the
lowess scatterplot smoother. The full model and backward elimination output
is below. Inference using the logistic regression normal approximation appears
to greatly underestimate the variability of B compared to the parametric full
model bootstrap variability. We tested Hy : f2 = §3 = B4 = 0 with the L,
model selected by backward elimination. Using the prediction region method
with the full model had [0, Dy ,)] = [0,1.763] with Dg = 0.2046. Note that

w/Xg,o.% = 2.795. So fail to reject Hy. Using the prediction region method

with the I, backward elimination model had [0, D(y,)] = [0,1.511] while
Dg = 0.2297. So fail to reject Hy. The ratio of the volumes of the bootstrap
confidence regions for this test was 16.2747. Hence the full model bootstrap
inference was much more precise. Backward elimination produced many zeros,
but also produced many estimates that were very large in magnitude.

large sample full model inference
Est. SE z Pr(>|z]) 95% shorth CI

int -475.581 404.913 -1.175 0.240 [-83274.99,1939.72]
length 0.375 1.418 0.265 0.791 [ -98.902,137.589]
left -1.531 4.080 -0.375 0.708 [ -364.814,611.688]
right 3.628 3.285 1.104 0.270 [ -261.034,465.675]
bottom 5.239 1.872 2.798 0.005 [ 3.159,567.427]
top 6.996 2.181 3.207 0.001 [ 4.137,666.010]
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output and shorth intervals for the min AIC submodel
Est. SE z Pr(>|z|) 95% shorth CI

int -472.999 269.271 -1.757 0.079 [-168131.6,35623.9]
length O [ -110.850,286.265]
left 0 [ -752.695,724.702]
right 2.725 2.050 1.329 0.184 [-656.1549,906.136]
bottom 5.005 1.657 3.020 0.003 [ 2.985,1428.346]
top 6.821 2.071 3.294 0.001 [ 4.333,1957.107]

Binary regression data sets like the one in Example 10.20 are common:
the response plot of :clTB versus Y suggests that the logistic regression mean
function is good, but the range of :clTB is such that the GLM normal ap-
proximation to the MLE B is likely invalid. Since the parametric bootstrap
produces datasets very similar to the actual dataset, the bootstrap distri-
bution of the logistic regression MLE may be superior to the GLM normal
approximation. For Example 10.20, the GLM and bootstrap inference for the
full model both suggest that bottom and top are important predictors.

The results of the following simulation are similar to those of Chapter 4
for multiple linear regression using the residual bootstrap with residuals from
the OLS full model. This simulation was for Poisson regression and binomial
regression, using B = max(200,7n/10,50p) and 5000 runs. The simulation
used p = 4,6,7,8, and 10; n = 25p, n = 50p; ¢ = 0,1/,/p, and 0.9; and
k =1 and p — 2 where k and 1 are defined in the following paragraph. A
larger simulation study is in Rathnayake (2019). In the simulations, we used
0=AB=0i,0=AB=0Bg=(1,1,...,1)T and § = AB = B = 0.

Let z = (1,u”)T where u is the (p—1) x 1 vector of nontrivial predictors.
In the simulations, for ¢ = 1, ..., n, we generated w; ~ N,_1(0, I) where the
g = p — 1 elements of the vector w; are iid N(0,1). Let the ¢ x ¢ matrix
A = (a;;) with a;; = 1 and a;; = ¢ where 0 < ¢ < 1 for i # j. Then the
vector z; = Aw; so that Cov(z;) = Xz = AAT = (0i5) where the diagonal
entries ;; = [1+(g—1)%?] and the off diagonal entries o;; = [21)+ (g —2)1)?].
Hence the correlations are cor(z;, z;) = p = (2¢ + (¢ — 2)¥?) /(1 + (¢ — 1)9?)
for ¢ # j. Then Z?:l zj ~ N(0,koii+k(k—1)o;;) = N(0,v?). Let u = az/v.
Then cor(z;,z;) = p for i # j where x; and x; are nontrivial predictors. If
Y =1//cp, then p — 1/(c+ 1) as p — 0o where ¢ > 0. As ¢ gets close to 1,
the predictor vectors u; cluster about the line in the direction of (1, ...,1)7.
Let SP = :ET,B = 61 + 1{Ei72—|— SRR o 1$i,k+1 ~ N(ﬂl, CL2) fori = 1, N Hence
B = (B1,1,..,1,0,...,0)7 with 31, k ones, and p — k — 1 zeros. Binomial
regression used 1 = 0,a = 5/3, and m; = m with m = 1 or 20. Poisson
regression used §; =1 =a and #; = 5 with a = 2.

The simulation computed the Frey shorth(c) interval for each f; and used
bootstrap confidence regions to test Hy : Bg = (81,1, ...,1)7 where £y =
o= P41 = 1, and Hy : By = 0 (whether the last p — k — 1 8; = 0). The
nominal coverage was 0.95 with § = 0.05. Observed coverage between 0.94
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and 0.96 would suggest coverage is close to the nominal value. The parametric
bootstrap was used with AIC.

In the tables, there are two rows for each model giving the observed confi-
dence interval coverages and average lengths of the confidence intervals. The
term “reg” is for the full model regression, and the term “vs” is for backward
elimination. The last six columns give results for the tests. The terms pr,
hyb, and br are for the prediction region method (4.32), hybrid region (4.34),
and Bickel and Ren region (4.33). The 0 indicates the test was Hp : B = 0,
while the 1 indicates that the test was Hy : B¢ = (81, 1...,1)T. The length
and coverage = P(fail to reject Hy) for the interval [0, D(y,)] or [0, D, 1))
where D7) or Dy 7y is the cutoff for the confidence region. The cutoff

will often be near , /X;o.% if the statistic T' is asymptotically normal. Note

that 4/ X%,o.% = 2.448 is close to 2.45 for the full model regression bootstrap

tests for B¢ if k = 1.

Volume ratios of the three confidence regions can be compared using (4.35),
but there is not enough information in the tables to compare the volume of
the confidence region for the full model regression versus that for the variable
selection regression since the two methods have different determinants |S7|.

The inference for backward elimination was often as precise or more precise
than the inference for the full model. The coverages tended to be near 0.95
for the parametric bootstrap on the full model. Variable selection coverage
tended to be near 0.95 unless the Bl could equal 0. An exception was binary
logistic regression with m = 1 where variable selection and the full model
often had higher coverage than the nominal 0.95 for the hypothesis tests,
especially for n = 25p. Compare Tables 10.2 and 10.3. For binary regression,
the bootstrap confidence regions using smaller ¢ and larger n resulted in
coverages closer to 0.95 for the full model, and convergence problems caused
the programs to fail for @ > 4. The Bickel and Ren (4.33) average cutoffs
were at least as high as those of the hybrid region (4.34).

If B; was a component of Sg, then the backward elimination confidence
intervals had higher coverage but were shorter than those of the full model
due to zero padding. The zeros in B & tend to result in higher than nominal
coverage for the variable selection estimator, but can greatly decrease the
volume of the confidence region compared to that of the full model.

For the simulated data, when ¢ = 0, the asymptotic covariance matrix
I7(B) is diagonal. Hence B¢ has the same multivariate normal limiting
distribution for I,,;, and the full model by Remark 4.4. For Tables 10.2-
10.5, Bg = (51,52)T, and B,_1 and B, are components of 8. For Table
10.6, Bg = (b1, .-, B9)T. Hence Sy, 32, and Bp—1 are components of B¢, while
Br = Pio. For the n in the tables and 1 = 0, the coverages and “lengths”
did tend to be close for the 3; that are components of B¢, and for prl, hybl,
and brl.
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Table 10.2 Bootstrapping Binomial Logistic Regression, Backward Elimination with
AIC, B=200,n=100,p=4,k=1,and m=1

P 61 B2 Bp-1 DBp prO  hyb0 brO0O prl hybl brl
reg,0 0.9516 0.9328 0.9524 0.9504 0.9724 0.9872 0.9920 0.9802 0.9838 0.9888
len 1.1605 1.0953 0.7171 0.7151 2.5225 2.5225 2.5476 2.5173 2.5173 2.6893
vs,0 0.9564 0.9322 0.9976 0.9976 0.9960 0.9964 0.9988 0.9774 0.9794 0.9948
len 1.1483 1.0798 0.6143 0.6204 2.7329 2.7329 3.0386 2.5160 2.5160 2.6899
reg,0.5 0.9538 0.9428 0.9440 0.9544 0.9680 0.9854 0.9896 0.9724 0.9828 0.9858
len 1.1622 1.6737 1.4547 1.4588 2.5221 2.5221 2.5475 2.5165 2.5165 2.6037
vs,0.5 0.9528 0.9662 0.9978 0.9982 0.9948 0.9918 0.9978 0.9760 0.9756 0.9872
len 1.1462 1.6714 1.2879 1.2883 2.7230 2.7230 3.0170 2.5379 2.5379 2.6860
reg,0.9 0.9662 0.9578 0.9520 0.9500 0.9690 0.9846 0.9884 0.9724 0.9848 0.9876
len 1.1606 9.4523 9.4241 9.4379 2.5220 2.5220 2.5454 2.5142 2.5142 2.5389
vs,0.9 0.9566 0.9422 0.9960 0.9974 0.9958 0.9972 0.9982 0.9866 0.9932 0.9956
len 1.1502 8.4654 8.4806 8.4951 2.7700 2.7700 3.0182 2.6176 2.6176 2.7644

Table 10.3 Bootstrapping Binomial Logistic Regression, Backward Elimination with
AIC, B=200,n=200,p=4,k=1,and m=1

P 61 B2 Bp-1 DBp prO  hybO br0 prl hybl brl
reg,0 0.9504 0.9440 0.9552 0.9544 0.9584 0.9662 0.9674 0.9580 0.9662 0.9728
len 0.7539 0.6771 0.4583 0.4587 2.4884 2.4884 2.4992 2.4846 2.4846 2.5745
vs,0  0.9552 0.9490 0.9986 0.9978 0.9954 0.9908 0.9968 0.9600 0.9698 0.9762
len 0.7510 0.6736 0.3909 0.3926 2.7226 2.7226 3.0310 2.4814 2.4814 2.5740
reg,0.5 0.9538 0.9508 0.9550 0.9578 0.9590 0.9686 0.9690 0.9578 0.9658 0.9714
len 0.7548 1.0543 0.9337 0.9309 2.4858 2.4858 2.4958 2.4828 2.4828 2.5266
vs,0.5 0.9538 0.9602 0.9984 0.9974 0.9930 0.9922 0.9958 0.9708 0.9786 0.9828
len 0.7501 1.0607 0.8064 0.8047 2.7022 2.7023 2.9948 2.5004 2.5004 2.6164
reg,0.9 0.9462 0.9536 0.9522 0.9496 0.9548 0.9642 0.9658 0.9496 0.9610 0.9626
len 0.7546 6.0844 6.0691 6.0800 2.4888 2.4888 2.4990 2.4860 2.4860 2.4967
vs,0.9 0.9562 0.9520 0.9958 0.9954 0.9936 0.9922 0.9968 0.9822 0.9870 0.9896
len 0.7502 5.3338 5.3737 5.3847 2.7934 2.7934 3.0392 2.5873 2.5873 2.7225

Table 10.4 Bootstrapping Binomial Logistic Regression, Backward Elimination with
AIC, B =500, n =250, p =10, k =1, and m = 20

P 61 B2 Bp-1 Bp prO  hybO0 br0 prl  hybl brl
reg,0 0.9576 0.9502 0.9520 0.9548 0.9500 0.9528 0.9530 0.9480 0.9496 0.9502
len  0.1428 0.1232 0.0860 0.0860 3.9837 3.9837 3.9876 2.4538 2.4538 2.4653
vs,0  0.9510 0.9510 0.9992 0.9978 0.9980 0.9982 0.9998 0.9412 0.9458 0.9478
len  0.1424 0.1229 0.0706 0.0707 4.3081 4.3081 4.7454 2.4531 2.4531 2.4747
reg,0.32 0.9536 0.9534 0.9514 0.9548 0.9496 0.9524 0.9530 0.9474 0.9490 0.9506
len  0.1426 0.1833 0.1609 0.1610 3.9840 3.9840 3.9884 2.4528 2.4528 2.4589
vs,0.32 0.9534 0.9620 0.9966 0.9976 0.9968 0.9976 0.9988 0.9534 0.9544 0.9582
len  0.1424 0.1837 0.1347 0.1352 4.2607 4.2607 4.6891 2.4527 2.4527 2.5042
reg,0.9 0.9514 0.9432 0.9552 0.9498 0.9434 0.9448 0.9446 0.9430 0.9440 0.9450
len 0.1427 2.2178 2.2170 2.2175 3.9846 3.9846 3.9887 2.4530 2.4530 2.4553
vs,0.9 0.9590 0.9656 0.9982 0.9986 0.9982 0.9978 0.9996 0.9532 0.9478 0.9654
len 0.1425 2.0342 1.8778 1.8862 4.2368 4.2368 4.6742 2.4449 2.4449 2.5661
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Table 10.5 Bootstrapping Poisson Regression, Backward Elimination with AIC,
B=500,n=250,p=10,k=1,a=1, f1 =1

P 61 B2 Bp-1 Bp prO0  hyb0 br0O prl  hybl brl
reg,0 0.9480 0.9526 0.9526 0.9520 0.9502 0.9512 0.9524 0.9432 0.9454 0.9472
len 0.1752 0.1325 0.1275 0.1276 3.9859 3.9859 3.9901 2.4528 2.4528 2.4740
vs,0  0.9552 0.9574 0.9982 0.9982 0.9984 0.9982 0.9998 0.9524 0.9574 0.9628
len 0.1752 0.1323 0.1051 0.1047 4.3004 4.3004 4.7408 2.4543 2.4543 2.5009
reg,0.32 0.9552 0.9518 0.9520 0.9536 0.9538 0.9536 0.9538 0.9510 0.9532 0.9552
len 0.1752 0.2419 0.2390 0.2386 3.9852 3.9852 3.9894 2.4518 2.4518 2.4689
vs,0.32 0.9562 0.9632 0.9986 0.9992 0.9980 0.9982 0.9992 0.9630 0.9644 0.9712
len  0.1750 0.2419 0.2005 0.2004 4.2618 4.2618 4.6811 2.4520 2.4520 2.5384
reg,0.9 0.9478 0.9530 0.9570 0.9554 0.9458 0.9478 0.9484 0.9448 0.9448 0.9476
len 0.1754 3.2873 3.2859 3.2912 3.9831 3.9831 3.9872 2.4536 2.4536 2.4691
vs,0.9 0.9500 0.9574 0.9984 0.9994 0.9970 0.9966 0.9984 0.9638 0.9626 0.9742
len 0.1752 2.8710 2.7922 2.7879 4.2597 4.2597 4.6886 2.4809 2.4809 2.6402

Table 10.6 Bootstrapping Poisson Regression, Backward Elimination with AIC,
B =500,n=250,p=10,k=8,a=2, 81 =5

P 61 B2 Bp-1 Bp prO  hybO0 br0 prl  hybl brl
reg,0 0.9522 0.9468 0.9540 0.9518 0.9496 0.9492 0.9488 0.9474 0.9464 0.9478
len  0.0210 0.0146 0.0146 0.0142 1.9593 1.9593 1.9609 4.1633 4.1633 4.1675
vs,0  0.9544 0.9546 0.9518 0.9980 0.9966 0.9374 0.9966 0.9534 0.9524 0.9552
len  0.0210 0.0146 0.0146 0.0117 2.1470 2.1470 2.3955 4.1655 4.1655 4.1880
reg,0.32 0.9522 0.9510 0.9486 0.9540 0.9494 0.9504 0.9516 0.9460 0.9468 0.9472
len 0.0210 0.0664 0.0664 0.0663 1.9595 1.9595 1.9614 4.1636 4.1636 4.1684
vs,0.32 0.9508 0.9596 0.9496 0.9992 0.9986 0.9434 0.9986 0.9634 0.9646 0.9696
len  0.0210 0.0663 0.0662 0.0541 2.1434 2.1434 2.3960 4.1970 4.1970 4.2703
reg,0.9 0.9536 0.9580 0.9550 0.9584 0.9538 0.9538 0.9548 0.9496 0.9512 0.9524
len  0.0210 1.0357 1.0361 1.0336 1.9585 1.9585 1.9605 4.1603 4.1603 4.1643
vs,0.9 0.9486 0.9484 0.9492 0.9988 0.9982 0.9492 0.9982 0.9688 0.9546 0.9676
len 0.0212 1.0742 1.0745 0.8793 2.1387 2.1387 2.3860 4.2883 4.2883 4.3818

10.10 Prediction Intervals

We use two prediction intervals from Olive et al. (2019). The first predic-
tion interval for Yy applies the shorth prediction interval of Section 4.3 to
the parametric bootstrap sample Y, ..., Y7 where the Y;* are iid from the
distribution D(h(x £),%)- If the regression method produces a consistent es-
timator (h(z),4) of (h(z),7), then this new prediction interval is a large
sample 100(1 — )% PI that is a consistent estimator of the shortest popula-
tion interval [L, U] that contains at least 1 — 4 of the mass as B,n — oo. The

new large sample 100(1 — §)% PI using Y7%, ..., Y} uses the shorth(c) PI with

¢ =min(B, [B[1 -6 +1.12:/5/B | ]). (10.13)
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For models with a linear predictor ” 3, we will want prediction intervals
after variable selection or model selection. Refer to Equation (4.1) and Section
10.6.1. Forward selection or backward elimination with the Akaike (1973) AIC
criterion or Schwarz (1978) BIC criterion are often used for GLM variable
selection. The Chen and Chen (2008) EBIC criterion can be useful, especially
if n/p is not large. GLM model selection with lasso and the elastic net is
also common. See Hastie et al. (2015, ch. 3), Tibshirani (1996), Friedman et
al. (2007), and Friedman et al. (2010). Relaxed lasso applies the regression
method, such as a GLM, to the active predictors with nonzero coefficients
selected by lasso. For n > 10p, Olive and Hawkins (2005) suggested using
multiple linear regression variable selection software with the Mallows (1973)
C)p criterion to get a subset I, then fit the GLM using Y and x;. If the
regression model contains a g x 1 vector of parameters =, then we may need
n > 10(p + q).

The prediction interval (10.13) can have undercoverage if n is small com-
pared to the number of estimated parameters. The modified shorth PT (10.14)
inflates PI (10.13) to compensate for parameter estimation and model selec-
tion. Let d be the number of variables z7, ..., 2 used by the full model, for-
ward selection, lasso, or relaxed lasso. (We could let d = j if j is the degrees
of freedom of the selected model if that model was chosen in advance without
model or variable selection. Hence d = j is not the model degrees of freedom
if model selection was used. For a GAM full model, suppose the “degrees of
freedom” d; for S(z;) is bounded by k. We could let d = 1+ > ¥ _, d; with
p < d < pk.) We want n > 10d, and the prediction interval length will be
increased (penalized) if n/d is not large. Let ¢, = min(1—3§+0.05,1—6+d/n)
for § > 0.1 and

gn =min(l — /2,1 — 0+ 100d/n), otherwise.

If1 -0 <0999 and ¢, < 1 — 9+ 0.001, set ¢, =1 —§. Then compute the
shorth PI with

Cmod = min(B, [Blg, + 1.124/6/B | 1). (10.14)

Olive (2007, 2018) and Pelawa Watagoda and Olive (2019b) used similar
correction factors since the maximum simulated undercoverage was about
0.05 when n = 20d. If a ¢ x 1 vector of parameters - is also estimated, we
may need to replace d by dq = d + q.

If B 7 is ax1, form the px1 vector B 1,0 from B 1 by adding 0s corresponding
= (Bl, Bg)T is the
estimator that minimized the variable selection criterion, then B Ipin0 =
(61,0, B3, 0)".

Hong et al. (2018) explain why classical PIs after AIC variable selection
may not work. Fix p and let I,,;, correspond to the predictors used after
variable selection, including AIC, BIC, and relaxed lasso. Suppose P(S C

to the omitted variables. For example, if p = 4 and B I

min
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Imin) — 1 as n — oo. See Charkhi and Claeskens (2018), Claeskens and
Hjort (2008, pp. 70, 101, 102, 114, 232), Hastie et al. (2015, pp. 295-302)
and Haughton (1988, 1989) for more information and references about this

assumption. For relaxed lasso, the assumption holds if lasso is a consistent
estimator. Suppose model (4.1) holds, and that if S C I}, then /n(3 L~

Br,) 5 N, (0, V). Hence

VB, o — B) 2 Ny(0,V ) (10.15)

where V ;¢ adds columns and rows of zeros corresponding to the x; not
in I;. Then B I,.:,.0 15 @ /0 consistent estimator of 3 under model (4.1)
if the variable selection criterion is used with forward selection, backward
elimination, or all subsets. Hence (10.13) and (10.14) are large sample PIs.
Rathnayake and Olive (2019) gave the limiting distribution of v/n(3 Ioin.0 —
B3), generalizing the Pelawa Watagoda and Olive (2019a) result for multiple
linear regression. Regularity conditions for (10.13) and (10.14) to be large
sample PIs when p > n are much stronger.

Prediction intervals (10.13) and (10.14) often have higher than the nominal
coverage if n is large and Y} can only take on a few values. Consider binary
regression where Y; € {0,1} and the PIs (10.13) and (10.14) are [0,1] with
100% coverage, [0,0], or [1,1]. If [0,0] or [1,1] is the PI, coverage tends to be
higher than nominal coverage unless P(Yy = 1|z ) is near ¢ or 1 — 4, e.g., if
P(Y; = 1|xy) = 0.01, then [0,0] has coverage near 99% even if 1 —§ < 0.99.

Example 10.21. For the Ceriodaphnia data of Example 10.4, Figure 10.17
shows the response plot of ESP versus Y for this data. In this plot, the lowess
curve is represented as a jagged curve to distinguish it from the estimated
Poisson regression mean function (the exponential curve). The horizontal line
corresponds to the sample mean Y. The circles correspond to the Y; and the
x’s to the PIs (10.13) with d = p = 3. The n large sample 95% PIs contained
97% of the Y;. There was no evidence of overdispersion: see Example 10.4.
There were 5 replications for each of the 14 strain—species combinations,
which helps show the bootstrap PI variability when B = 1000. This example
illustrates a useful goodness of fit diagnostic: if the model D is a useful
approximation for the data and n is large enough, we expect the coverage on
the training data to be close to or higher than the nominal coverage 1 — 4.
For example, there may be undercoverage if a Poisson regression model is
used when a negative binomial regression model is needed.

Example 10.22. For the banknote data of Example 10.20, after variable
selection, we decided to use a constant, right, and bottom as predictors. The
response plot for this submodel is shown in the left plot of Figure 10.18 with
Z =Z; =Y;/m; =Y, and the large sample 95% PIs for Z; = Y;. The circles
correspond to the ¥; and the x’s to the PIs (10.13) with d = 3, and 199 of the
200 PIs contain Y;. The PI [0,0] that did not contain Y; corresponds to the
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Fig. 10.17 Ceriodaphnia Data Response Plot.

circle in the upper left corner. The PIs were [0,0], [0,1], or [1,1] since the data
is binary. The mean function is the smooth curve and the step function gives
the sample proportion of ones in the interval. The step function approximates
the smooth curve closely, hence the binary logistic regression model seems
reasonable. The right plot of Figure 10.18 shows the GAM using right and
bottom with d = 3. The coverage was 100% and the GAM had many [1,1]
intervals.

Example 10.23. For the species data of Examples 10.18, we used a con-
stant and log(endem), log(area), log(distance), and log(areanear). The re-
sponse plot looks good, but the OD plot (not shown) suggests overdispersion.
When the response plot for the Poisson regression model was made, the n
large sample 95% PIs (10.13) contained 89.7% of the Y;.

For the simulations, generating 2”3 is important. For example, for bino-
mial logistic regression, typically —5 < &8 < 5 or there can be problems
with the MLE. We used the same simulated data as that used for variable
selection in Section 10.9.3. Thus SP = :cTB = +1lzio+ -+ 1z ~
N(B1,a?) for i =1,...,n. Hence 8 = (81,1, ..,1,0,...,0)” with 8;, k ones and
p — k — 1 zeros. The default settings for Poisson regression use /1 =1 = a.
The default settings for binomial regression use $; = 0 and a = 5/3.

The simulation used 5000 runs, so an observed coverage in [0.94, 0.96]
gives no reason to doubt that the PI has the nominal coverage of 0.95. The
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Fig. 10.18 Banknote Data GLM and GAM Response Plots.

simulation used B = 1000; p = 4,50,n, or 2n; ¥ = 0,1/,/p, or 0.9; and
k = 1,19, or p — 1. The simulated data sets are rather small since the R
estimators are rather slow. For binomial and Poisson regression, we only
computed the GAM for p = 4 with SP = AP = a+ Ss(x2) + S2(v3) + S4(z4)
and d = p = 4. We only computed the full model GLM if n > 5p. Lasso and
relaxed lasso were computed for all cases. The regression model was computed
from the training data, and a prediction interval was made for the test case
Yy given ;. The “length” and “coverage” were the average length and the
proportion of the 5000 prediction intervals that contained Y. Two rows per
table were used to display these quantities.

Tables 10.7 to 10.9 show some simulation results for Poisson regression.
Lasso minimized 10-fold cross validation and relaxed lasso was applied to the
selected lasso model. The full GLM, full GAM and backward elimination (BE
in the tables) used PI (10.13) while lasso, relaxed lasso (RL in the tables),
and forward selection using the Olive and Hawkins (2005) method (OHFS
in the tables) used PI (10.14). For n > 10p, coverages tended to be near
or higher than the nominal value of 0.95, except for lasso and the Olive and
Hawkins (2005) method in Tables 10.8 and 10.9. In Table 10.7, coverages were
high because the Poisson counts were small and the Poisson distribution is
discrete. In Table 10.8, the Poisson counts were not small, so the discreteness
of the distribution did not affect the coverage much. For Table 10.9, p = 50,
and PI (10.13) has slight undercoverage for the full GLM since n = 10p. Table
10.9 helps illustrate the importance of the correction factor: PI (10.14) would
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Table 10.7 Simulated Large Sample 95% PI Coverages and Lengths for Poisson
Regression,p =4, 1 =1=a

n Y k GLM GAM lasso RL OHFS BE
100 0 1 cov 0.9712 0.9714 0.9810 0.9800 0.9792 0.9734
len 6.6448 6.6118 7.2770 7.2004 7.0680 6.6632
400 0 1 cov 0.9692 0.9694 0.9728 0.9714 0.9722 0.9665
len 6.6392 6.6474 6.7996 6.7722 6.7588 6.6778
100 0.5 1 cov 0.9642 0.9644 0.9796 0.9786 0.9760 0.9689
len 6.6922 6.6806 7.3136 7.2824 7.1160 6.7767
400 0.5 1 cov 0.9668 0.9670 0.9722 0.9716 0.9702 0.9754
len 6.6720 6.6896 6.8342 6.8140 6.7992 6.7802
100 0.9 1 cov 0.9672 0.9674 0.9766 0.9768 0.9738 0.9665
len 6.6038 6.6186 7.1480 7.1214 7.0002 6.5789
400 0.9 1 cov 0.9660 0.9662 0.9734 0.9700 0.9692 0.9798
len 6.5838 6.5746 6.7526 6.7196 6.7004 6.7443
100 0 3 cov 0.9696 0.9698 0.9848 0.9834 0.9818 0.9654
len 6.7080 6.7084 7.5632 7.5442 7.5348 6.7408
400 0 3 cov 0.9728 0.9730 0.9750 0.9746 0.9748 0.9657
len 6.5718 6.5684 6.7690 6.7356 6.7406 6.7063
100 0.5 3 cov 0.9672 0.9674 0.9842 0.9838 0.9736 0.9592
len 6.6992 6.7044 7.5804 7.5494 7.3810 6.7128
400 0.5 3 cov 0.9682 0.9684 0.9730 0.9722 0.9702 0.9772
len 6.6794 6.6890 6.8726 6.8520 6.8466 6.7504
100 0.9 3 cov 0.9664 0.9666 0.9804 0.9810 0.9750 0.9678
len 6.6704 6.6646 7.2880 7.2672 7.0722 6.7635
400 0.9 3 cov 0.9690 0.9692 0.9744 0.9742 0.9736 0.9667
len 6.7960 6.8092 6.9696 6.9682 6.9120 6.6987

have higher coverage and longer average length. Lasso was good at choosing
subsets that contain S since relaxed lasso had good coverage. The Olive and
Hawkins (2005) method is partly graphical, and graphs were not used in the
simulation.

Tables 10.10 and 10.11 are for binomial regression where only PI (10.13)
was used. For large n, coverage is likely to be higher than the nominal if the
binomial probability of success can get close to 0 or 1. For binomial regression,
neither lasso nor the Olive and Hawkins (2005) method had undercoverage
in any of the simulations with n > 10p.

For n < p, good performance needed stronger regularity conditions, and
Table 10.12 shows some results with n = 100 and p = 200. For k£ = 1,
relaxed lasso performed well as did lasso except in the second to last column
of Table 10.12. With £ = 19 and ¥ = 0, there was undercoverage since
n < 10(k 4+ 1). For the dense models with & = 199 and ¢ = 0, there was often
severe undercoverage, lasso sometimes picked 100 predictors including the
constant, and then relaxed lasso caused the program to fail with 5000 runs.
Coverage was usually good for 1 > 0 except for the second to last column
and sometimes the last column of Table 10.12. With ¢ = 0.9, each predictor
was highly correlated with the one dominant principal component.
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Table 10.8 Simulated Large Sample 95% PI Coverages and Lengths for Poisson
Regression, p =4, f1 =5,a =2

n Yk GLM GAM lasso RL OHFS BE
100 0 1 cov 0.9500 0.9440 0.7730 0.9664 0.9654 0.9520
len 77.6072 77.6306 84.1066 81.8374 82.4752 84.1432
400 0 1 cov 0.9580 0.9564 0.7566 0.9622 0.9628 0.9534
len 82.0126 82.0212 85.5704 83.2692 83.4374 80.9897
100 0.5 1 cov 0.9456 0.9424 0.7646 0.9634 0.9408 0.9512
len 83.0236 82.9034 90.5822 88.3060 88.6700 79.6887
400 0.5 1 cov 0.9530 0.9500 0.7584 0.9604 0.9566 0.9678
len 83.8588 83.8292 87.4336 85.1042 85.1434 79.9855
100 0.9 1 cov 0.9492 0.9452 0.7688 0.9646 0.7712 0.9654
len 78.3554 78.3798 87.0086 84.6072 83.4980 81.5432
400 0.9 1 cov 0.9550 0.9574 0.7606 0.9606 0.7928 0.9513
len 76.7028 76.7594 80.5070 78.2308 78.2538 80.1298
100 0 3 cov 0.9544 0.9466 0.7798 0.9708 0.9404 0.9487
len 80.1476 80.1362 92.1372 89.8532 90.3456 79.4565
400 0 3 cov 0.9560 0.9548 0.7514 0.9582 0.9566 0.9567
len 80.7868 80.8976 85.0642 82.7982 82.7912 79.4522
100 0.5 3 cov 0.9516 0.9478 0.7848 0.9694 0.3324 0.9515
len 77.1120 77.1130 88.9346 86.4680 85.8634 81.5643
400 0.5 3 cov 0.9568 0.9558 0.7534 0.9636 0.5214 0.9528
len 80.4226 80.4932 84.7646 82.5590 83.7526 79.9786
100 0.9 3 cov 0.9492 0.9456 0.7882 0.9620 0.7510 0.9554
len 79.5374 79.6172 91.2052 89.0692 84.5648 81.8544
400 0.9 3 cov 0.9544 0.9546 0.7638 0.9554 0.7384 0.9586
len 79.7384 79.6906 83.8318 81.6862 81.0882 80.7521

Table 10.9 Simulated Large Sample 95% PI Coverages and Lengths for Poisson
Regression, p =50, 1 =5, a=2

n Y k GLM lasso RL OHFS BE
500 0 1 cov 0.9352 0.7564 0.9598 0.9640 0.9476
len 81.2668 84.3188 81.8934 85.2922 81.1010
500 0.14 1 cov 0.9370 0.7508 0.9580 0.9628 0.9458
len 81.1820 84.4530 82.1894 85.2304 81.1146
500 0.9 1 cov 0.9368 0.7630 0.9620 0.8994 0.9456
len 80.4568 86.3506 84.4942 84.1448 80.4202
500 0 19 cov 0.9388 0.7592 0.9756 0.3778 0.9472
len 81.6922 96.8546 94.6350 99.7436 81.7218
500 0.14 19 cov 0.9368 0.7556 0.9730 0.2770 0.9438
len 80.0654 95.2964 93.2748 87.3814 80.1276
500 0.9 19 cov 0.9350 0.7544 0.9536 0.9480 0.9352
len 79.7324 86.3448 84.0674 83.2958 79.6172
500 0 49 cov 0.9386 0.7104 0.9666 0.1004 0.9364
len 81.1422 96.4304 94.8818 108.0518 81.2516
500 0.14 49 cov 0.9396 0.7194 0.9558 0.2858 0.9402
len 79.7874 94.8908 93.2538 86.4234 79.8692
500 0.9 49 cov 0.9380 0.7640 0.9480 0.9512 0.9430
len 78.8146 85.5786 83.2812 82.4104 78.8316
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Table 10.10 Simulated Large Sample 95% PI Coverages and Lengths for Binomial
Regression, p =4, m = 40

n Yk GLM GAM lasso RL OHFS BE
100 0 1 cov 0.9786 0.9788 0.9774 0.9744 0.9720 0.9726
len 10.7696 10.7656 10.5332 10.4430 10.1990 10.2016
400 0 1 cov 0.9708 0.9700 0.9696 0.9708 0.9702 0.9688
len 9.8374 9.8426 9.8292 9.7866 9.7518 9.7548
100 0.5 1 cov 0.9792 0.9720 0.9742 0.9750 0.9724 0.9708
len 10.6668 10.6426 10.3790 10.3282 10.1060 10.1012
400 0.5 1 cov 0.9678 0.9676 0.9692 0.9670 0.9668 0.9656
len 9.8352 9.8452 9.8196 9.7890 9.7612 9.7590
100 0.9 1 cov 0.9780 0.9766 0.9762 0.9742 0.9704 0.9714
len 10.7324 10.7222 10.3774 10.3186 10.1438 10.1602
400 0.9 1 cov 0.9688 0.9672 0.9680 0.9674 0.9684 0.9672
len 9.7554 9.7646 9.7392 9.7012 9.6778 9.6790
100 0 3 cov 0.9790 0.9750 0.9782 0.9772 0.9780 0.9776
len 10.6974 10.6960 10.7388 10.7030 10.6956 10.7020
400 0 3 cov 0.9652 0.9652 0.9654 0.9656 0.9650 0.9626
len 9.7838 9.7878 9.8244 9.7864 9.7800 9.7722
100 0.5 3 cov 0.9780 0.9734 0.9776 0.9766 0.9770 0.9784
len 10.7224 10.7034 10.7482 10.7042 10.7162 10.7134
400 0.5 3 cov 0.9686 0.9688 0.9726 0.9702 0.9704 0.9706
len 9.7250 9.7170 9.7460 9.7172 9.7152 9.7290
100 0.9 3 cov 0.9800 0.9798 0.9802 0.9786 0.9698 0.9720
len 10.6978 10.6994 10.5820 10.5414 10.0660 10.1802
400 0.9 3 cov 0.9682 0.9684 0.9696 0.9674 0.9678 0.9676
len 9.8146 9.8074 9.8364 9.8190 9.7594 9.7764

Table 10.11 Simulated Large Sample 95% PI Coverages and Lengths for Binomial
Regression, p =50, m =7

n v k GLM lasso RL OHFS BE
1000 0 1 cov 0.9896 0.9838 0.9802 0.9798 0.9798
len 4.0008 3.6666 3.5744 3.5838 3.5842
1000 0.14 1 cov 0.9868 0.9818 0.9782 0.9774 0.9770
len 4.0422 3.6836 3.6158 3.6226 3.6312
1000 0.9 1 cov 0.9894 0.9794 0.9796 0.9800 0.9798
len 4.0214 3.5994 3.5794 3.6122 3.6114
1000 0 19 cov 0.9888 0.9870 0.9848 0.9814 0.9812
len 4.0294 3.9730 3.8438 3.7110 3.7030
1000 0.14 19 cov 0.9872 0.9846 0.9852 0.9804 0.9806
len 4.0376 3.8350 3.7834 3.7170 3.7066
1000 0.9 19 cov 0.9884 0.9804 0.9808 0.9802 0.9772
len 4.0348 3.6170 3.5948 3.6226 3.6216
1000 0 49 cov 0.990 0.9904 0.9904 0.9900 0.9904
len 4.0428 4.0726 4.0528 4.0490 4.0460
1000 0.14 49 cov 0.9866 0.9866 0.9856 0.9806 0.9796
len 4.0396 3.9044 3.8640 3.7046 3.6988
1000 0.9 49 cov 0.9874 0.9808 0.9792 0.9790 0.9772
len 4.0660 3.6444 3.6230 3.6556 3.6490
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Table 10.12 Simulated Large Sample 95% PI Coverages and Lengths, n = 100,
p =200

BR m=7 BR m=40 PR,a=1 1 =1PRa=2 (1 =5

P,k lasso RL lasso RL lasso RL lasso RL
0 cov 0.9912 0.9654 0.9836 0.9602 0.9816 0.9612 0.7620 0.9662
1 len 4.2774 3.8356 11.3482 11.001 7.8350 7.5660 93.7318 91.4898
0.07 cov 0.9904 0.9698 0.9796 0.9644 0.9790 0.9696 0.7652 0.9706
1 len 4.2570 3.9256 11.4018 11.1318 7.8488 7.6680 92.0774 89.7966
0.9 cov 0.9844 0.9832 0.9820 0.9820 0.9880 0.9858 0.7850 0.9628
1 len 3.8242 3.7844 10.9600 10.8716 7.6380 7.5954 98.2158 95.9954
0 cov 0.9146 0.8216 0.8532 0.7874 0.8678 0.8038 0.1610 0.6754
19 len 4.7868 3.8632 12.0152 11.3966 7.8126 7.5188 88.0896 90.6916
0.07 cov 0.9814 0.9568 0.9424 0.9208 0.9620 0.9444 0.3790 0.5832
19 len 4.1992 3.8266 11.3818 11.0382 7.9010 7.7828 92.3918 92.1424
0.9 cov 0.9858 0.9840 0.9812 0.9802 0.9838 0.9848 0.7884 0.9594
19 len 3.8156 3.7810 10.9194 10.8166 7.6900 7.6454 97.744 95.2898
0.07 cov 0.9820 0.9640 0.9604 0.9390 0.9720 0.9548 0.3076 0.4394
199 len 4.1260 3.7730 11.2488 10.9248 8.0784 7.9956 90.4494 88.0354
0.9 cov 0.9886 0.9870 0.9822 0.9804 0.9834 0.9814 0.7888 0.9586
199 len 3.8558 3.8172 10.9714 10.8778 7.6728 7.6602 97.0954 94.7604

10.11 OLS and 1D Regression

For this section let SP = &3 = a + u'n. An important 1D regression
model, introduced by Li and Duan (1989), has the form

Y =g(a+uln,e) (10.16)

where g is a bivariate (inverse link) function and e is a zero mean error that
is independent of x. The constant term « may be absorbed by ¢ if desired.
An important special case is the response transformation model where

g@'B,e) =t (@" B +e) (10.17)
and ¢t~! is a one to one (typically monotone) function. Hence
tY)=zT8+e.

Dimension reduction can greatly simplify our understanding of the con-
ditional distribution Y'|@. If a 1D regression model is appropriate, then the
p-dimensional vector & can be replaced by the 1-dimensional scalar =’ 3
with “no loss of information about the conditional distribution.” Cook and
Weisberg (1999, p. 411) define a sufficient summary plot (SSP) to be a plot
that contains all the sample regression information about the conditional dis-
tribution Y'|@ of the response given the predictors. The response plot of ESP
versus Y is an estimated sufficient summary plot (ESSP).
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Remark 10.4. Suppose the 1D regression model is Y I x|x” 3. Then
Y I x|(a+cB” x) for any constants a and ¢ # 0. Hence a+cxT 3 is a sufficient
predictor (SP) with ESP = a+ 2T 3 where (3 is an estimator of ¢ for some
nonzero constant c. Let & = (1,uT)?. We can also use ESP = a + u’n
where 77 is an estimator of ¢ 1 for some nonzero constant c.

Consider the OLS estimator 8 = (Bl,Bg)T = (&,ﬁT)T. Li and Duan
(1989, p. 1031) showed that under regularity conditions, 7) is a /1 consistent
estimator of cn for some constant c. If ) ~ ¢ when Y 1 z|x” 3, then the
response plot of

ad4+u'n versus Y or &3 versus Y

can be used to visualize the conditional distribution Y|z”3 provided that
¢ # 0. Often if no strong nonlinearities are present among the pre-
dictors, u”7 is a useful ESP.

Remark 10.5. For OLS, call the plot of :cTB versus Y the OLS view.
The fact that the OLS view is frequently a useful response plot was perhaps
first noted by Brillinger (1977, 1983) and called the 1D Estimation Result by
Cook and Weisberg (1999, p. 432).

Olive (2002, 2004b, 2008: ch.12) showed that the trimmed views esti-
mator of Chapter 7 also gives useful response plots for 1D regression. If
Y = m(z?B) + e = m(a + uTn) + e, look for a plot with a smooth mean
function and the smallest variance function. The trimmed view with 0% trim-
ming is the OLS view.

Recall from Definition 2.17 and Theorem 2.20 that if z = (1,u”)T and
B = (a,n")T, then nors = Xy Zu.y- Let ¢ = p—1. The following notation
will be useful for studying the OLS estimator. Let the sufficient predictor z =
u’n =nTuandlet w = u—E(u). Let 1 = w—(Xyn)nTw. The proof of the
next result is outlined in Problem 10.1 using an argument due to Aldrin, et al.
(1993). If the 1D regression model is appropriate, then typically Cov(u,Y) #
0 unless u” 3 follows a symmetric distribution and m is symmetric about the
median of u’'n.

Theorem 10.1. Suppose that (Y;,ul)T are iid observations and that the
positive definite ¢ x ¢ matrix Cov(u) = X', and the ¢ x 1 vector Cov(u,Y) =
Y.y Assume that Y; = m(ul'n)+e; where the zero mean constant variance
iid errors e; are independent of the predictors w;. Then

Nors = Zu' Zuy = cmun + bmu (10.18)

where the scalar
cmu = EMT (u— E(u)) m(u’n)) (10.19)

and the bias vector
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bmu = Xy E[m(u’n)r]. (10.20)

Moreover, by, 4, = 0 if u is from an elliptically contoured distribution with
nonsingular ¥y, and ¢, u # 0 unless Cov(u,Y) = 0. If the multiple linear
regression model holds, then ¢y, 4 = 1, and by, 4 = 0.

Olive and Hawkins (2005) and Olive (2008, ch. 12) suggested using variable
selection methods with C),, originally meant for multiple linear regression,
for 1D regression models with SP = a” 3. In particular, Theorem 4.2 is still
useful.

10.11.1 Inference for 1D Regression With a Linear
Predictor

This section follows Chang and Olive (2010) closely. Theorem 2.20 is useful.
Some notation is needed for the following results. Many 1D regression models
have an error e with

o? = Var(e) = E(e?). (10.21)
Let é be the error residual for e. Let the population OLS residual
v=Y —aors —u'noLs (10.22)

with
= E[(Y —aoLs — uTnOLS)2] = E(U2)a (10.23)
and let the OLS residual be

r=Y —éaors — u fopLs- (10.24)

Typically the OLS residual r is not estimating the error e and 72 # o2, but
the following results show that the OLS residual is of great interest for 1D
regression models.

Assume that a 1D model holds, Y I u|(a + uT'n), which is equivalent to
Y L uju®n. Then under regularity conditions, results i) — iii) below hold.

i) Li and Duan (1989): 1 = ¢n for some constant c.
ii) Li and Duan (1989) and Chen and Li (1998):

Vn(flors —en) 2 »—1(0,Cors) (10.25)
where

Cors = 4 E[(Y —aors —u’ Bors)* (u—E(u))(u—E(u))"] Sy (10.26)
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iii) Chen and Li (1998): Let A be a known full rank constant k x (p — 1)
matrix. If the null hypothesis Hy : An = 0 is true, then

Vn(Anors — cAn) = VnAfors = Ni(0,ACorsA”)

and
ACosAT = 12Ax, AT, (10.27)

Notice that Cors = 7'221]1 ifv=Y—-aors —uTnOLS 1L u or if the MLR
model holds. If the MLR model holds, 72 = o2.
To create test statistics, the estimator

n

R 1 5
~2 2 A T 2
#2 — MSE = > 1l = > (Yi — doLs — u B
. n_pi:1( oLs)

will be useful. The estimator C’O LS =

2111 % Z[(Yi —dors —u] Boys) (wi — ) (u; — W) 2;1 (10.28)
1=1

can also be useful. Notice that for general 1D regression models, the OLS
MSE estimates 72 rather than the error variance o2.

iv) Result iii) suggests that a test statistic for Hy : An =0 is
X &1 _ - N
Wors = nilo,s AT [ASy AT Adlos /72 5 X, (10.29)
the chi-square distribution with & degrees of freedom.

Before presenting the main theoretical result, some results from OLS MLR
theory are needed. Let the px1 vector B = (a, n”)T, the known k xp constant
matrix A = [a A] where a is a kx 1 vector, and let ¢ be a known kx 1 constant
vector. Using Equation (2.6), the usual F statistic for testing Hy : A3 = c is

(A7 — )T[AXTX) AT Y (AR — )/ (k72) (10.30)

where MSE = 72. Recall that if Hy is true, the MLR model holds and the
errors e; are iid N(0,0?), then F, ~ Fy ,,_p, the F distribution with & and
n — p degrees of freedom. By Theorem 2.25, if Z,, ~ F}, n—p, then

Zn 2 2 /K (10.31)

as n — 0o.

The main theoretical result of this section is Theorem 10.2 below. This
theorem and (10.31) suggest that OLS output, originally meant for testing
with the MLR model, can also be used for testing with many 1D regression
data sets. Without loss of generality, let the 1D model Y I z|(a + u’'n) be
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written as
Y lx|(o+upBr +ubHB0)

where the reduced model is Y L |(a + ukng) and uo denotes the terms
outside of the reduced model. Notice that OLS ANOVA F test corresponds
to Ho: ; = 0 and uses A = I,_q. The tests for Hy : 8; = 0 use A =
(0,...,0,1,0,...,0) where the 1 is in the (¢ — 1)th position for i = 2, ..., p and
are equivalent to the OLS ¢ tests. The test Hy : 7o = 0 uses A = [0 I;] if
Mo is a j x 1 vector, and the test statistic (10.30) can be computed with the
OLS partial F test: run OLS on the full model to obtain SSE and on the
reduced model to obtain SSE(R).

In the theorem below, it is crucial that Hy : An = 0. Tests for Hy : An =
1, say, may not be valid even if the sample size n is large. Also, confidence
intervals corresponding to the ¢ tests are for ¢f3;, and are usually not very
useful when ¢ is unknown.

Theorem 10.2. Assume that a 1D regression model Y I x|z 3 holds
and that Equation (10.29) holds when Ho : A8 = 0 is true. Then the test
statistic (10.30) satisfies

n —

1 D
. Wors = xi/k

Fo=

asn — 0o.

Proof. Notice that by (10.29), the result follows if Fy = (n—1)Wors/(kn).
Let A = [0 A] so that Hy : A3 = 0 is equivalent to Hy : Ap = 0. By
Theorem 2.19,

1 —Tp-1l— _—Tp-1
Tyv-1_ (o +tuw D7 u —u D
(X' X)) = ( D lm D1 ) (10.32)
where the (p — 1) x (p — 1) matrix
D' = [(n—1)Zu] =5y /(n—1). (10.33)

Using A and (10.32) in (10.30) shows that Fy =

. Liyw"p'a —a’D™! o"\1' .. .
(Afors)” [[0 Al (" D 'm D! AT Anops/(k72),

and the result follows from (10.33) after algebra. O

See Chang and Olive (2010) and Olive (2008: ch. 12, 2010: ch. 15) for

simulations and more information.
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10.12 Data Splitting

Data splitting is used for inference after model selection. Use a training set
to select a full model, and a validation set for inference with the selected full
model. Here p >> n is possible. See Hurvich and Tsai (1990, p. 216) and
Rinaldo et al. (2019). Typically when training and validation sets are used,
the training set is bigger than the validation set or half sets are used, often
causing large efficiency loss.

Let J be a positive integer and let |x| be the integer part of z, e.g.,
|7.7] = 7. Initially divide the data into two sets Hy with ny = |[n/(2J)]
cases and V7 with n — n; cases. If the fitted model from H; is not good
enough, randomly select ny cases from V; to add to H; to form Hs. Let V5
have the remaining cases from V;. Continue in this manner, possibly forming
sets (Hy1, V1), (Ha2, V), ..., (H,Vy) where H; has n; = iny cases. Stop when
H,; gives a reasonable model I; with a4 predictors if d < J. Use d = J,
otherwise. Use the model I; as the full model for inference with the data in
Va.

This procedure is simple for a fixed data set, but it would be good to
automate the procedure. For example, if n = 500000 and p = 90, using
n1 = 900 would result in a much smaller loss of efficiency than n; = 250000.

10.13 Complements

This chapter used material from Chang and Olive (2010), Olive (2013b,
2017a: ch. 13), Olive et al. (2019), and Rathnayake and Olive (2019). GLMs
were introduced by Nelder and Wedderburn (1972). Useful references for
generalized additive models include Hastie and Tibshirani (1986, 1990), and
Wood (2017). Zhou (2001) is useful for simulating the Weibull regression
model. Also see McCullagh and Nelder (1989), Agresti (2013, 2015), and Cook
and Weisberg (1999, ch. 21-23). Collett (2003) and Hosmer and Lemeshow
(2000) are excellent texts on logistic regression while Cameron and Trivedi
(2013) and Winkelmann (2008) cover Poisson regression. Alternatives to Pois-
son regression mentioned in Section 10.7 are covered by Zuur et al. (2009),
Simonoff (2003), and Hilbe (2011). Cook and Zhang (2015) show that enve-
lope methods have the potential to significantly improve GLMs. Some GLM
large sample theory is given by Claeskens and Hjort (2008, p. 27), Cook and
Zhang (2015), and Sen and Singer (1993, p. 309).

An introduction to 1D regression and regression graphics is Cook and
Weisberg (1999a, ch. 18, 19, and 20), while Olive (2010) considers 1D regres-
sion. A more advanced treatment is Cook (1998). Important papers include
Brillinger (1977, 1983) and Li and Duan (1989). Li (1997) shows that OLS F
tests can be asymptotically valid for model (10.18) if w is multivariate nor-
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mal and Z{Ll Yuy # 0. The scatterplot smoother lowess is due to Cleveland
(1979, 1981).

Suppose n > 10p. Results from Cameron and Trivedi (1998, p. 89) suggest
that if a Poisson regression model is fit using OLS software for MLR, then
a rough approximation is B PR N BO LS/?. So a rough approximation is
PR ESP =~ (OLS ESP)/Y. Results from Haggstrom (1983) suggest that if
a binary regression model is fit using OLS software for MLR, then a rough
approximation is BLR a2 BOLS/MSE.

Haughton (1988, 1989) showed P(S C IL,,) — 1 as n — oo if BIC is
used. AIC has a smaller penalty than BIC, so often overfits. According to
Claeskens and Hjort (2008, p. xi), inference after variable selection has been
called “the quiet scandal of statistics.”

Plots were made in R and Splus, see R Core Team (2016). The Wood
(2017) library mgcv was used for fitting a GAM, and the Venables and Ripley
(2010) library MASS was used for the negative binomial family. The gam
library is also useful. The Lesnoff and Lancelot (2010) R package aod has
function betabin for beta binomial regression and is also useful for fitting
negative binomial regression. SAS has proc genmod, proc gam, and proc
countreg which are useful for fitting GLMs such as Poisson regression,
GAMs such as the Poisson GAM, and overdispersed count regression models.

In Section 10.9, the functions binregbootsim and pregbootsim are
useful for the full binomial regression and full Poisson regression models. The
functions vsbrbootsim and vsprbootsim were used to bootstrap back-
ward elimination for binomial and Poisson regression. The functions LRboot
and vsLRboot bootstrap the logistic regression full model and backward
elimination. The functions PRboot and vsPRboot bootstrap the Poisson
regression full model and backward elimination.

In Section 10.10, table entries for Poisson regression were made with
prpisim2 while entries for binomial regression were made with brpisim.
The functions prpiplot2 and lrpiplot were used to make Figures 10.17
and 10.18. The function prplot can be used to check the full Poisson regres-
sion model for overdispersion. The function prplot2 can be used to check
other Poisson regression models such as a GAM or lasso.

1) Resistant regression: Suppose the regression model has an m x 1 response
vector y, and a p x 1 vector of predictors &. Assume that predictor trans-
formations have been performed to make x, and that w consists of £k < p
continuous predictor variables that are linearly related. Find the RMVN set
based on the w to obtain n, cases (Y., ), and then run the regression
method on the cleaned data. Often the theory of the method applies to the
cleaned data set since y was not used to pick the subset of the data. Effi-
ciency can be much lower since n, cases are used where n/2 < n, <n, and
the trimmed cases tend to be the “farthest” from the center of w.

The method will have the most outlier resistance if k =p (or k=p — 1 if
there is a trivial predictor X; = 1). If m» = 1, make the response plot of Y,
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versus Y, with the identity line added as a visual aid, and make the residual
plot of f’c versus r. = Y, — f’c

In R, assume Y is the vector of response variables, z is the data matrix of
the predictors (often not including the trivial predictor), and w is the data
matrix of the w;. Then the following R commands can be used to get the
cleaned data set. We could use the covmb2 set B instead of the RMVN set
U computed from the w by replacing the command getu(w) by getB (w).

indx <- getu(w)$indx #often w = x

Yc <- Y[indx]

Xc <- x[indx, ]

#example

indx <- getu(buxx) $indx

Yc <- buxy[indx]

Xc <- buxx[indx, ]

outr <- 1lsfit (Xc,Yc)

MLRplot (Xc,Yc) #right click Stop twice

a) Resistant additive error regression: An additive error regression model
has the form Y = h(x)+ e where there is m = 1 response variable Y, and the
p x 1 vector of predictors « is assumed to be known and independent of the
additive error e. An enormous variety of regression models have this form,
including multiple linear regression, nonlinear regression, nonparametric re-
gression, partial least squares, lasso, ridge regression, etc. Find the RMVN
set (or covmb2 set) based on the w to obtain ny cases (Y, ), and then
run the additive error regression method on the cleaned data.

b) Resistant Additive Error Multivariate Regression

Assume y = g(z) +€ = E(y|x)+€ where g : R — R™, y = (Y1, ..., Y,,)T,
and € = (€1, ..., €,)7. Many models have this form, including multivariate
linear regression, seemingly unrelated regressions, partial envelopes, partial
least squares, and the models in a) with m = 1 response variable. Clean the
data as in a) but let the cleaned data be stored in (Z., X ). Again, the theory
of the method tends to apply to the method applied to the cleaned data since
the response variables were not used to select the cases, but the efficiency is
often much lower. In the R code below, assume the y are stored in z.

indx <- getu(w)$indx #often w = x
Zc <— z[indx]

Xc <- x[indx, ]

#example

ht <- buxy

t <- cbind (buxx, ht);

z <- t[,c(2,5)]1;

x <—= t[,c(l,3,4)]

indx <- getu(x)$indx

Zc <- z[indx, ]
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Xc <- x[indx, ]
mltreg(Xc,Zc) #right click Stop four times

10.14 Problems

10.1*. (Aldrin et al. 1993). Suppose
Y =m(uln) +e (10.34)

where m is a possibly unknown function and the zero mean errors e are inde-
pendent of the predictors. Let z = u”n and let w = u — E(u). Let Xy =
Cov(u,Y), and let Xy, = Cov(u) = Cov(w). Let » = w — (Xyn)nT w.

a) Recall that Cov(u,Y) = E[(u — E(u))(Y — E(Y))T] and show that
Zuyy = E(wY)

b) Show that E(wY) = Xy = E[(r + (Zun)nTw) m(z)] =
E[m(2)r] + E[nTw m(2)| Zun.

¢) Using nors = Yo' Zu.y, show that nore = c(u)n + b(u) where the
constant
c(u) = Eln" (u — E(u))m(u’n)]

and the bias vector b(u) = X' E[m(u”n)r].

d) Show that E(wz) = Xqyn. (Hint: Use E(wz) = E[(u — E(u))uln] =
El(u— E(uw))(u” — E(u”) + E(u”))n].)

e) Assume m(z) = z. Using d), show that c(u) = 1 if n7 Xyn = 1.

f) Assume that n7 Xqyn = 1. Show that E(zr) = E(rz) = 0. (Hint: Find
E(rz) and use d).)

g) Suppose that n”' Xyn = 1 and that the distribution of u is multivariate
normal. Then the joint distribution of z and 7 is multivariate normal. Using
the fact that E(zr) = 0, show Cov(r, z) = 0 so that z and 7 are independent.
Then show that b(u) = 0.

(Note: the assumption n7 X1 = 1 can be made without loss of generality
since if nT Xyn = d? > 0 (assuming Xy, is positive definite), then y =
m(d(n/d)Tu) + e = myg(0Tu) + e where mg(v) = m(dv), 8 = n/d and
0"xu0=1)



