
Chapter 11

Stuff for Students

11.1 R

R is available from the CRAN website (https://cran.
r-project.org/). As of January 2020, the author’s personal computer has Ver-
sion 3.3.1 (June 21, 2016) of R. R is similar to Splus, but is free. R is very
versatile since many people have contributed useful code, often as packages.

Downloading the book’s files into R

Many of the homework problems use R functions contained in the book’s
website (http://parker.ad.siu.edu/Olive/linmodbk.htm) under the file name
linmodpack.txt. The following two R commands can be copied and pasted into
R from near the top of the file (http://parker.ad.siu.edu/Olive/
linmodrhw.txt).

Downloading the book’s R functions linmodpack.txt and data files
linmoddata.txt into R: the commands

source("http://parker.ad.siu.edu/Olive/linmodpack.txt")

source("http://parker.ad.siu.edu/Olive/linmoddata.txt")

can be used to download the R functions and data sets into R. Type ls().
Nearly 10 R functions from linmodpack.txt should appear. In R, enter the
command q(). A window asking “Save workspace image?” will appear. Click
on No to remove the functions from the computer (clicking on Yes saves the
functions in R, but the functions and data are easily obtained with the source
commands).

Citing packages

We will use R packages often in this book. The following R command is
useful for citing the Mevik et al. (2015) pls package.

citation("pls")
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Other packages cited in this book include MASS and class: both from Ven-
ables and Ripley (2010), glmnet: Friedman et al. (2015), and leaps: Lumley
(2009).

This section gives tips on using R, but is no replacement for books such
as Becker et al. (1988), Crawley (2005, 2013), Fox and Weisberg (2010), or
Venables and Ripley (2010). Also see Mathsoft (1999ab) and use the website
(www.google.com) to search for useful websites. For example enter the search
words R documentation.

The command q() gets you out of R.
Least squares regression can be done with the function lsfit or lm.
The commands help(fn) and args(fn) give information about the function

fn, e.g. if fn = lsfit.
Type the following commands.

x <- matrix(rnorm(300),nrow=100,ncol=3)

y <- x%*%1:3 + rnorm(100)

out<- lsfit(x,y)

out$coef

ls.print(out)

The first line makes a 100 by 3 matrix x with N(0,1) entries. The second
line makes y[i] = 0+1∗x[i, 1]+2∗x[i, 2]+3∗x[i, 2]+e where e is N(0,1). The
term 1:3 creates the vector (1, 2, 3)T and the matrix multiplication operator is
%∗%. The function lsfit will automatically add the constant to the model.
Typing “out” will give you a lot of irrelevant information, but out$coef and
out$resid give the OLS coefficients and residuals respectively.

To make a residual plot, type the following commands.

fit <- y - out$resid

plot(fit,out$resid)

title("residual plot")

The first term in the plot command is always the horizontal axis while the
second is on the vertical axis.

To put a graph in Word, hold down the Ctrl and c buttons simulta-
neously. Then select “Paste” from the Word menu, or hit Ctrl and v at the
same time.

To enter data, open a data set in Notepad or Word. You need to know
the number of rows and the number of columns. Assume that each case is
entered in a row. For example, assuming that the file cyp.lsp has been saved
on your flash drive from the webpage for this book, open cyp.lsp in Word. It
has 76 rows and 8 columns. In R , write the following command.

cyp <- matrix(scan(),nrow=76,ncol=8,byrow=T)

Then copy the data lines from Word and paste them in R. If a cursor does
not appear, hit enter. The command dim(cyp) will show if you have entered
the data correctly.
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Enter the following commands

cypy <- cyp[,2]

cypx<- cyp[,-c(1,2)]

lsfit(cypx,cypy)$coef

to produce the output below.

Intercept X1 X2 X3

205.40825985 0.94653718 0.17514405 0.23415181

X4 X5 X6

0.75927197 -0.05318671 -0.30944144

Making functions in R is easy.

For example, type the following commands.

mysquare <- function(x){

# this function squares x

r <- xˆ2

r }

The second line in the function shows how to put comments into functions.

Modifying your function is easy.

Use the fix command.
fix(mysquare)

This will open an editor such as Notepad and allow you to make changes. (In
Splus, the command Edit(mysquare) may also be used to modify the function
mysquare.)

To save data or a function in R, when you exit, click on Yes when the
“Save worksheet image?” window appears. When you reenter R, type ls().
This will show you what is saved. You should rarely need to save anything
for this book. To remove unwanted items from the worksheet, e.g. x, type
rm(x),
pairs(x) makes a scatterplot matrix of the columns of x,
hist(y) makes a histogram of y,
boxplot(y) makes a boxplot of y,
stem(y) makes a stem and leaf plot of y,
scan(), source(), and sink() are useful on a Unix workstation.
To type a simple list, use y <− c(1,2,3.5).
The commands mean(y), median(y), var(y) are self explanatory.

The following commands are useful for a scatterplot created by the com-
mand plot(x,y).
lines(x,y), lines(lowess(x,y,f=.2))
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identify(x,y)
abline(out$coef), abline(0,1)

The usual arithmetic operators are 2 + 4, 3 − 7, 8 ∗ 4, 8/4, and

2ˆ{10}.

The ith element of vector y is y[i] while the ij element of matrix x is x[i, j].
The second row of x is x[2, ] while the 4th column of x is x[, 4]. The transpose
of x is t(x).

The command apply(x,1,fn) will compute the row means if fn = mean.
The command apply(x,2,fn) will compute the column variances if fn = var.
The commands cbind and rbind combine column vectors or row vectors with
an existing matrix or vector of the appropriate dimension.

Getting information about a library in R

In R, a library is an add–on package of R code. The command library()
lists all available libraries, and information about a specific library, such as
leaps for variable selection, can be found, e.g., with the command
library(help=leaps).

Downloading a library into R

Many researchers have contributed a library or package of R code that can
be downloaded for use. To see what is available, go to the website
(http://cran.us.r-project.org/) and click on the Packages icon.

Following Crawley (2013, p. 8), you may need to “Run as administrator”
before you can install packages (right click on the R icon to find this). Then
use the following command to install the glmnet package.

install.packages("glmnet")

Open R and type the following command.
library(glmnet)

Next type help(glmnet) to make sure that the library is available for use.

Warning: R is free but not fool proof. If you have an old version of R
and want to download a library, you may need to update your version of
R. The libraries for robust statistics may be useful for outlier detection, but
the methods have not been shown to be consistent or high breakdown. All
software has some bugs. For example, Version 1.1.1 (August 15, 2000) of R
had a random generator for the Poisson distribution that produced variates
with too small of a mean θ for θ ≥ 10. Hence simulated 95% confidence
intervals might contain θ 0% of the time. This bug seems to have been fixed
in Versions 2.4.1 and later. Also, some functions in lregpack may no longer
work in new versions of R.
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11.2 Hints for Selected Problems

Chapter 1

1.1 a) Sort each column, then find the median of each column. Then
MED(W ) = (1430, 180, 120)T.

b) The sample mean of (X1, X2, X3)
T is found by finding the sample mean

of each column. Hence x = (1232.8571, 168.00, 112.00)T .

1.2 a) 7 + βXi

b) β̂ =
∑

(Yi − 7)Xi/
∑

X2
i

1.3 See Section 1.3.5.
1.5 a) β̂3 =

∑

X3i(Yi − 10− 2X2i)/
∑

X2
3i. The second partial derivative

=
∑

X2
3i > 0.

1.10 a) X2 ∼ N(100, 6).

b)
(

X1

X3

)

∼ N2

((

49
17

)

,

(

3 −1
−1 4

))

.

c) X1 X4 and X3 X4.

d)

ρ(X1 , X2) =
Cov(X1 , X3)

√

VAR(X1)VAR(X3)
=

−1√
3
√

4
= −0.2887.

1.11 a) Y |X ∼ N(49, 16) since Y X. (Or use E(Y |X) = µY +
Σ12Σ

−1
22 (X − µx) = 49 + 0(1/25)(X − 100) = 49 and VAR(Y |X) =

Σ11 − Σ12Σ
−1
22 Σ21 = 16− 0(1/25)0 = 16.)

b) E(Y |X) = µY +Σ12Σ
−1
22 (X−µx) = 49+10(1/25)(X−100) = 9+0.4X.

c) VAR(Y |X) = Σ11 − Σ12Σ
−1
22 Σ21 = 16 − 10(1/25)10 = 16 − 4 = 12.

1.13 The proof is identical to that given in Example 3.2. (In addition, it
is fairly simple to show that M1 = M2 ≡ M . That is, M depends on Σ but
not on c or g.)

1.19 ΣB = E[E(X|BT X)XT B)] = E(MBBT XXT B) = MBBT ΣB.
Hence MB = ΣB(BT ΣB)−1.

1.26 a)

N2

((

3
2

)

,

(

3 1
1 2

))

.

b) X2 X4 and X3 X4.

c)
σ12√
σ11σ33

=
1√
2
√

3
= 1/

√
6 = 0.4082.
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1.31 See Section 1.3.6.

1.32 a) Model I:

β̂1 =

∑n
i=1(Xi − X)Yi

∑n
j=1(xj − x)2

=

n
∑

i=1

kiYi with ki =
xi − x

∑n
j=1(xj − x)2

.

Model II:

β̂1 =

∑n
i=1 xiYi

∑n
j=1 x2

j

=

n
∑

i=1

kiYi with ki =
xi

∑n
j=1 x2

j

.

b) Model I:

V (β̂1) =

n
∑

i=1

k2
i V (Yi) = σ2

n
∑

i=1

k2
i = σ2

∑n
i=1(xi − x)2

[
∑n

j=1(xj − x)2]2
= σ2/

n
∑

i=1

(xi − x)2.

Model II:

V (β̂1) =

n
∑

i=1

k2
i V (Yi) = σ2

n
∑

i=1

k2
i = σ2

∑n
i=1 x2

i

[
∑n

j=1 x2
j ]

2
= σ2/

n
∑

i=1

x2
i .

c) The result follows if
∑

i=1 x2
i ≥ ∑

i=1(xi − x)2, but
∑n

i=1(xi − µ)2 is
the least squares criterion for the model xi = µ + ei, and the criterion is
minimized by the least squares estimator µ̂ = x. Hence using µ̃ = 0 gives a
least squares criterion at least as large as that using µ̂, and the result holds.

1.33 a) E(r) = E[(I − P )Y ] = (I − P )Xβ = 0. Cov(r) = Cov[(I −
P )Y ] = (I − P )Cov(Y )(I − P )T = σ2(I − P ).

b) Cov(r, Y ) = E([r − E(r)][Y − E(Y )]T ) =

E([(I − P )Y − (I − P )E(Y )][Y − E(Y )]T ) =

E[(I−P )[Y −E(Y )][Y −E(Y )]T ] = (I−P )Cov(Y ) = (I−P )σ2I = σ2(I−P ).

c) Cov(r, Ŷ ) = E([r − E(r)][Ŷ − E(Ŷ )]T ) =

E([(I − P )Y − (I − P )E(Y )][PY − P E(Y )]T ) =

E[(I − P )[Y − E(Y )][Y − E(Y )]T P ] = (I − P )σ2IP = σ2(I − P )P = 0.

Chapter 2

2.1 See the proof of Theorem 2.18.

2.14 For fixed σ > 0, L(β, σ2) is maximized by minimizing Q(β) ≥ 0. So

β̂Q maximizes L(β, σ2) regardless of the value of σ2 > 0. So β̂Q is the MLE.
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b) Let Q = Q(β̂Q). Then the MLE σ̂2 is found by maximizing the profile

likelihood, Lp(σ2) = L(β̂Q, σ2) = cn
1

σn
exp

( −1

2σ2
Q

)

. Let τ = σ2. The

Lp(τ ) = cn
1

τn/2
exp

(−1

2τ
Q

)

, and the log profile likelihood logLp(τ ) =

d− n

2
log(τ ) − Q

2τ
. Thus

d log Lp(τ )

dτ
=

−n

2τ
+

Q

2τ2

set
= 0

or −nτ + Q = 0 or τ̂ = σ̂2 = Q/n, unique. Then

d2 log Lp(τ )

dτ2
=

n

2τ2
− 2Q

2τ3

∣

∣

∣

∣

τ̂

=
n

2τ2
− 2nτ̂

2τ̂3
=

−n

2τ̂2
< 0

which proves that σ̂2 is the MLE of σ2.

2.32 a) If λ is an eigenvalue of P , then for some x 6= 0, λx = Px =
P 2x = λ2x. So λ(λ − 1) = 0, which only has possible solutions λ = 0 or
λ = 1.

b) Thus rank(P ) = number of nonzero eigenvalues of P = tr(P ) by a).

2.35 a) Note that E(Y Y T ) = Σ + θθT . Since the quadratic form is
a scalar and the trace is a linear operator, E[Y T AY ] = E[tr(Y T AY )] =
E[tr(AY Y T )] = tr(E[AY Y T ]) = tr(AΣ+AθθT ) = tr(AΣ)+tr(AθθT ) =
tr(AΣ) + θT Aθ.

b) Note that
∑

i(Yi−Y )2 is the residual sum of squares for the linear model

Y = 1 + e. Hence
∑

i

(Yi − Y )2 = Y T (I − H)Y = Y T (I − 1

n
11T )Y where

H = 1(1T1)−11T . Now tr(AΣ) = tr(Σ)−tr(
1

n
11T Σ). Now 1T Σ = (σ2[1+

(n− 1)ρ], ..., σ2[1 + (n− 1)ρ], 11T Σ = (σ2[1 + (n− 1)ρ]), and tr( 1
n11T Σ) =

σ2[1+(n−1)ρ]. So tr(AΣ) = nσ2 −σ2[1+(n−1)ρ] = σ2[n−1− (n−1)ρ] =
σ2(n− 1)(1− ρ). Now θT Aθ = θ1T (I − 1

n
11T )1 = θ2(n− n2/n) = 0. Hence

the result follows by a).

c) Assume Y ∼ Nn(θ, σ2I). Then Y = BY where B =
1

n
1T . Now

Y T AY = Y T AT AY . Hence the two terms are independent if AY BY

iff ABT = 0, but ABT =
1

n
(I − 1

n
11T )1 =

1

n
(1− 1) = 0.

2.37 a) Use either proof of Theorem 2.5. Normality is not necessary.

b) i)
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Source df SS MS F p-value

Regression p-1 SSR = Y T (P − 1

n
11T )Y MSR F0 = MSR

MSE
for H0:

Residual n-p SSE = Y T (I − P )Y MSE β2 = · · · = βp = 0

ii) E(MSE) = σ2, so E(SSE) = (n − p)σ2. By a)

E(SSR) = βT XT (P−11T

n
)Xβ+tr[σ2(P−11T

n
)] = βT XT (P−11T

n
)Xβ+σ2(p−1).

When H0 is true Xβ = 1β1 and E(SSR) = σ2(p − 1).

iii) By Theorem 2.14 g), if Y ∼ Nn(µ, σ2I) then
Y T AY

σ2
∼ χ2

(

r,
µT Aµ

2σ2

)

iff A is idempotent with rank(A) = tr(A) = r.
This theorem applies to SSE/σ2 with A = I−P , r = n−p, and µ = Xβ.

Then µT (I−P )µ = 0 since PX = X . Hence SSE/σ2 ∼ χ2(n−p, 0) ∼ χ2
n−p.

2.38 a) A− is a generalized inverse of A if AA−A = A.

b) i) P = X(XT X)−X
T

.

ii) C(X) = C(1). Hence P = 1(1T1)−11T =
1

3
11T .

iii) SSE = Y T (I−P )Y = Y T Y − 1
3 (

∑

Yi)
2 = 1+4+9−(1+2+3)2/3 =

14− 36/3 = 2.
2.39 a)

Source df SS MS E(MS) F

Reduced n − p1 SSE(R) = Y T (I − P 1)Y MSE(R) E(MSE(R)) FR = SSE(R)−SSE
p2MSE

=

Full n − p SSE = Y T (I − P )Y MSE σ2 Y T (P − P 1)Y /p2

Y T (I − P )Y /(n − p)

where

E(MSE(R)) =
1

n − p1
[σ2tr(I−P 1)+βT XT (I−P 1)Xβ] =

1

n − p1
[σ2(n−p1)+βT XT (I−P 1)Xβ].

If H0 is true, then Y ∼ Nn(X1β1, σ
2I), and E(MSE(R)) = σ2.

b) Need to show that SSE(R) − SSE = Y T (P − P 1)Y and SSE =
Y T (I − P )Y are independent. This result follows from Craig’s Theorem
since (P − P 1)(I − P ) = P − P 1 − P + P 1 = 0.

c) By Theorem 2.14 g), if Y ∼ Nn(µ, σ2I) then
Y T AY

σ2
∼ χ2

(

r,
µT Aµ

2σ2

)

iff A is idempotent with rank(A) = tr(A) = r.
This theorem applies to SSE/σ2 with A = I−P and r = n−p. Then µ =

Xβ, and µT (I −P )µ = 0 since P X = X . Hence SSE/σ2 ∼ χ2(n− p, 0) ∼
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χ2
n−p. Similarly, when H0 is true, the theorem applies to Y T (P − P 1)Y /σ2

with A = P −P 1 and r = p−p1 = p2. Then µ = X1β1, and µT (P −P 1)µ =
0 since PX1 = P 1X1 = X1. Hence Y T (P − P 1)Y /σ2 ∼ χ2(p2, 0) ∼ χ2

p2
.

Thus

FR =
Y T (P − P 1)Y /p2

Y T (I − P )Y /(n − p)
∼ Fp2,n−p.

2.40 a) Y T AY ∼ χ2(rank(A)) iff AΣ is idempotent and µT Aµ = 0 by
Theorem 2.13.

b) This proof similar to the proof of Theorem 2.8. Let u = AY and
w = BY . Then AY BY iff Cov(w, u) = BΣA = 0. Thus AY BY .

Let g(AY ) = Y T AT A−AY = Y T AA−AY = Y T AY . Then g(AY ) =
Y T AY BY since AY BY .

c) Y = 1T Y /n and
∑n

i=1(Yi − Y )2 = Y T (I − P 1)Y where P 1 = 11T /n
is the projection matrix on C(1) since

∑n
i=1(Yi − Y )2 is the residual sum of

squares for the model Y = 1µ+e with least squares estimator µ̂ = Y . Hence
the quantities are independent if BY = 1T Y and Y T AY = Y T (I − P 1)Y
are independent, or if 1T I(I−P 1) = 0 by b). This result holds since 1T P 1 =
1T since P 1 is the projection matrix on C(1) means P 11 = 1.

2.41 a) β̂ = (XT X)−1XT Y and σ̂2 =
1

n

n
∑

i=1

r2
i =

1

n
SSE =

1

n
Y T (I −

P )Y .

b) By Theorem 2.14 g), if Y ∼ Nn(µ, σ2I) then
Y T AY

σ2
∼ χ2

(

r,
µT Aµ

2σ2

)

iff A is idempotent with rank(A) = tr(A) = r.
This theorem applies to SSE/σ2 with A = I−P , r = n−p, and µ = Xβ.

Then µT (I−P )µ = 0 since PX = X . Hence SSE/σ2 ∼ χ2(n−p, 0) ∼ χ2
n−p.

Thus

(n − p)σ̂2/σ2 =
n − p

n

SSE

σ2
∼ n − p

n
χ2

n−p.

c) BY Y T AY if BA = 0 by Theorem 2.8 b). Here BA = (XT X)−1XT (I−
P ) = 0 since XT P = XT . Thus the MLEs are independent.

d) The MLE is the generalized least squares estimator β̂ = (XT V −1X)−1XT V −1Y .

2.42 Note that H = P and that Z = Y − µ ∼ Nn(0, Σ).
a) i) E[(Y − µ)T A(Y − µ)] = E[ZT AZ] = tr(AΣ) + 0T A0 = tr(AΣ)

by Theorem 2.5 using E(Z) = 0.
Alternatively, E(ZZT ) = Σ since E(Z) = 0. Since the quadratic form

is a scalar and the trace is a linear operator, E[ZT AZ] = E[tr(ZT AZ)] =
E[tr(AZZT )] = tr(E[AZZT ]) = tr(AΣ).

Normality is not needed for this result.
ii) AΣ is idempotent by Theorem 2.13.
iii) BΣA = 0 (or AΣBT = 0) by Theorem 2.8.
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b) i)
1

σ
(I−H)Y ∼ Nn(

1

σ
(I−H)Xβ,

1

σ
(I−H)σ2I

1

σ
(I−H) ∼ Nn(0, I−

H) since HX = X .

ii) By Theorem 2.14 g), if Y ∼ Nn(µ, σ2I) then
Y T AY

σ2
∼ χ2

(

r,
µT Aµ

2σ2

)

iff A is idempotent with rank(A) = tr(A) = r.

This theorem applies to u =
Y T (I − H)Y

σ2
= SSE/σ2 with A = I − H,

r = n − p, and µ = Xβ. Then µT (I − H)µ = 0 since HX = X . Hence
SSE/σ2 ∼ χ2(n − p, 0) ∼ χ2

n−p.
iii) By Theorem 2.8 b), independence follows since H(I − H) = 0.

2.43 a) Q(β) =
∑n

i=1(yi − βxi)
2. By the chain rule,

dQ(β)

dβ
= −2

n
∑

i=1

(yi − βxi)xi.

Setting the derivative equal to 0 and calling the unique solution β̂ gives
∑n

i=1 xiyi = β̂
∑n

i=1 x2
i or

β̂ =

∑n
i=1 xiyi

∑n
i=1 x2

i

.

b) MSE =
1

n − 1

n
∑

i=1

r2
i since p = 1.

c) Since yi ∼ N(xiβ, σ2), the likelihood function

L(β, σ2) =

n
∏

i=1

fyi
(yi) =

n
∏

i=1

1√
2π

1

σ
exp[

−1

2σ2
(yi−xiβ)2 ] = cn

1

σn
exp[

−1

2σ2

n
∑

i=1

(yi−xiβ)2 ] =

cn
1

σn
exp[

−1

2σ2
Q(β)]

where Q(β) is the least squares criterion. For fixed σ > 0, maiximizing L(β, σ)

is equivalent to minimizing the least squares criterion Q(β). Thus β̂ from a)
is the MLE of β. To find the MLE of σ2, use the profile likelihood function

Lp(σ2) = Lp(τ ) = cn
1

σn
exp[

−1

2σ2
Q] = cn

1

τn/2
exp[

−1

2τ
Q]

where Q = Q(β̂). Then the log profile likelihood function

log(Lp(τ )) = dn − n

2
log(τ ) − Q

2τ
,

and
d

dτ
log(Lp(τ )) =

−n

2τ
+

Q

2τ2

set
= 0.
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Thus nτ = Q or τ̂ = σ̂2 = Q/n =
∑

i=1 r2
i /n, which is a unique solution.

Now
d2

dτ2
log(Lp(τ )) =

n

2τ2
− 2Q

2τ3

∣

∣

∣

∣

τ̂

=
n

2τ̂2
− 2nτ̂

2τ̂3
=

−n

2τ̂2
< 0.

Thus σ̂2 is the MLE of σ2.

2.44 Let Y1 and Y2 be iindependent random variables with mean θ and
2θ respectively. Find the least squares estimate of θ and the residual sum of
squares.

Solution:

Y = Xβ + e =

(

Y1

Y2

)

=

(

1
2

)

θ +

(

e1

e2

)

.

Then

θ̂ = (XT X)−1XT Y =

[

(1 2)

(

1
2

)]

−1

(1 2)

(

Y1

Y2

)

=
Y1 + 2Y2

5
.

Now Ŷ = X θ̂ =

(

1
2

)

Y1 + 2Y2

5
=





Y1+2Y2

5

2Y1+4Y2

5



 .

Thus

RSS =

(

Y1 −
Y1 + 2Y2

5

)2

+

(

Y2 −
2Y1 + 4Y2

5

)2

.

2.45 a)
√

nA(β̂ − β)
D→ Nr(0, σ2AWAT ).

b) A(Zn − µ)
D→ Nr(0, AAT ).

Chapter 3

3.7 Note that ZT
AZA = ZT Z,

GA ηA =

(

Gη
√

λ∗

2 η

)

,

and ZT
AGAηA = ZT Gη. Then

RSS(ηA) = ‖ZA − GAηA‖2
2 = (ZA − GAηA)T (ZA − GAηA) =

ZT
AZA − ZT

AGAηA − ηT
AGT

AZA + ηT
AGT

AGAηA =

ZT Z − ZT Gη − ηT GT Z +
(

ηT GT
√

λ2 ηT
)

(

Gη
√

λ∗

2 η

)

.

Thus

QN (ηA) = ZT Z − ZT Gη − ηT GT Z + ηT GT Gη + λ∗

2η
T η + γ‖ηA‖1 =
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‖Z − Gη‖2
2 + λ∗

2‖η‖2
2 +

λ∗

1
√

1 + λ∗

2

‖ηA‖1 =

RSS(η) + λ∗

2‖η‖2
2 + λ∗

1‖η‖1 = Q(η). �

3.12 a) SSE = Y T (I − P )Y and SSR = Y T (P − 1

n
11T )Y = Y T (P −

P 1)Y where P 1 =
1

n
11T = 1(1T1)−11T is the projection matrix on C(1).

b) E(MSE) = σ2, so E(SSE) = (n − r)σ2. By a) and Theorem 2.5,

E(SSR) = βT XT (P−11T

n
)Xβ+tr[σ2(P−11T

n
)] = βT XT (P−11T

n
)Xβ+σ2(r−1).

When H0 is true Xβ = 1β1 and E(SSR) = σ2(r − 1).

c) By Theorem 2.14 g), if Y ∼ Nn(µ, σ2I) then
Y T AY

σ2
∼ χ2

(

a,
µT Aµ

2σ2

)

iff A is idempotent with rank(A) = tr(A) = a.
i) Theorem 2.14 g) applies to SSE/σ2 with A = I − P and a = n − r.

Since µ = Xβ, and µT (I − P )µ = 0 since PX = X . Hence SSE/σ2 ∼
χ2(n − r, 0) ∼ χ2

n−r. Thus SSE ∼ σ2χ2
n−r regardless of whether H0 is true

or false.
ii) Theorem 2.14 g) applies to SSR/σ2 with A = P − P 1 and a = r − 1.

If H0 is true, then µ = 1β1 and and µT (P − P 1)µ = 0 since 1 is the first
column of X and P 1 is the projection matrix on C(1). Thus P1 = P 11 = 1.
Hence SSR/σ2 ∼ χ2(r − 1, 0) ∼ χ2

r−1. Thus SSR ∼ σ2χ2
r−1.

iii) SSE and SSR are independent by Craig’s theorem since (I − P )(P −
P 1) = P − P 1 − P + P 1 = 0. MSE = SSE/(n-r) and MSR = SSR/(r-1).
Thus

MSE/MSR =
SSR/[σ2(r − 1)]

SSE/[σ2(n − r)]
∼ Fr−1,n−r.

3.13 a) i) Let a and b be constant vectors. Then aT β is estimable if there
exists a linear unbiased estimator bT Y so E(bT Y ) = aT β. Also, the quantity
aT β is estimable iff aT = bT X iff a = XT b iff a ∈ C(XT ).

ii) Let a least squares estimator β̂ be any solution to the normal equations

XT Xβ̂ = XT Y . Then the least squares estimator of aT β is aT β̂ = bT Xβ̂ =
bT P Y .

iii) MSE = Y T (I − P )Y /(n − r) = SSE/(n − r).
b) ii) E(bT P Y ) = bT P Xβ = bT Xβ = aT β.
iii) E(SSE) = E(Y T (I − P )Y ) = tr[σ2(I − P )I ] + µT (I − P )µ by

Theorem 2.5 where µ = Xβ. Hence E(SSE) = σ2(tr(I − P ) = σ2(n − r).
Hence E(MSE) = E(SSE)/(n − r) = σ2.

c) If aT β is estimable and a least squares estimator β̂ is any solution to

the normal equations XT Xβ̂ = XT Y , then aT β̂ is the unique BLUE of
aT β.
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d) SSE = Y T (I −P )Y and SSR = Y T (P − 1

n
11T )Y = Y T (P −P 1)Y

where P 1 =
1

n
11T = 1(1T1)−11T is the projection matrix on C(1).

3.14 a) Note that β is estimable for i) since X for i) has full rank 2.
Note that β is not estimable for ii) since X for ii) does not have full rank
(rank(X) = 1).

b)

B = (XT X)−1XT =





[

2 1 0
0 1 2

]





2 0
1 1
0 2









−1

XT =

[

5 1
1 5

]

−1

XT .

If

A =

[

a11 a12

a21 a22

]

and d = a11a22 − a21a12 6= 0, then

A−1 =
1

d

[

a22 −a12

−a21 a11

]

.

Thus

B =
1

24

[

5 −1
−1 5

][

2 1 0
0 1 2

]

=
1

24

[

10 4 −2
−2 4 10

]

.

c) Note that bT Y is an unbiased estimator of bT Xβ = aT β with aT =
bT X . If b = 1, then

aT = 1T X = (1 1 1)





3 6
2 4
1 2



 = (6 12).

Thus the estimable function aT β = 6β1+12β2 has unbiased estimator bT Y =
1T Y = Y1 + Y2 + Y3.

Alternatively, let b = 1 and a be as above. Then the unbiased least squares
estimator aT β̂ = bT PY where

P =





3
2
1







(3 2 1)





3
2
1









−1

(3 2 1) =
1

14





9 6 3
6 4 2
3 2 1



 .

Since b = 1, the unbiased least squares estimator is

1

14
(18 12 6)





Y1

Y2

Y3



 =
18

14
Y1 +

12

14
Y2 +

6

14
Y3.
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Since E(Y ) = Xβ, note that E(aT β̂) =

18

14
(3β1+6β2)+

12

14
(2β1+4β2)+

6

14
(β1+2β2) = (84/14)β1+(168/14)β2 = 6β1+12β2.

Chapter 4

4.11 a) (XT X)−1XT E(Y ∗) = (XT X)−1XT Xβ̂ = β̂.
b) ACov(Y ∗)AT = (XT X)−1XT diag(r2

i )X(XT X)−1.

c) We will use Xβ̂ = PY and P XI = XI . Then E(β̂
∗

I) = (XT
I XI)

−1XT
I E(Y ∗) =

(XT
I XI)

−1XT
I Xβ̂ = (XT

I XI)
−1XT

I P Y = (XT
I XI)

−1XT
I Y = β̂I .

d) ACov(Y ∗)AT = (XT
I XI)

−1XT
I diag(r2

i )XI(X
T
I XI)

−1.
Chapter 10

10.1

a) Since Y is a (random) scalar and E(w) = 0, Σu,Y = E[(u−E(u))(Y −
E(Y ))T ] = E[w(Y − E(Y ))] = E(wY ) − E(w)E(Y ) = E(wY ).

b) Using the definition of z and r, note that Y = m(z) + e and
w = r + (Σuη)ηT w. Hence E(wY ) = E[(r + (Σuη)ηT w)(m(z) + e)] =
E[(r+(Σuη)ηT w)m(z)]+E[r +(Σuη)ηT w]E(e) since e is independent of
x. Since E(e) = 0, the latter term drops out. Since m(z) and ηT wm(z) are
(random) scalars, E(wY ) = E[m(z)r] + E[ηT w m(z)]Σuη.

c) Using result b), Σ−1
u Σu,Y = Σ−1

u E[m(z)r] + Σ−1
u E[ηT w m(z)]Σuη

= E[ηT w m(z)]Σ−1
u Σuη+Σ−1

u E[m(z)r] = E[ηT w m(z)]η+Σ−1
u E[m(z)r]

and the result follows.

d) E(wz) = E[(u−E(u))uT η] = E[(u−E(u))(uT − E(uT ) + E(uT ))η]
= E[(u − E(u))(uT − E(uT ))]η + E[u − E(u)]E(uT )η = Σuη.

e) If m(z) = z, then c(u) = E(ηT wz) = ηT E(wz) = ηT Σuη = 1 by
result d).

f) Since z is a (random) scalar, E(zr) = E(rz) = E[(w−(Σuη)ηT w)z] =
E(wz)− (Σuη)ηT E(wz). Using result d), E(rz) = Σuη −ΣuηηT Σuη =
Σuη − Σuη = 0.

g) Since z and r are linear combinations of u, the joint distribution of z and
r is multivariate normal. Since E(r) = 0, z and r are uncorrelated and thus
independent. Hence m(z) and r are independent and b(u) = Σ−1

u E[m(z)r] =
Σ−1

u E[m(z)]E(r) = 0.
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11.3 Tables

Tabled values are F(k,d, 0.95) where P (F < F (k, d, 0.95)) = 0.95.
00 stands for ∞. Entries were produced with the qf(.95,k,d) command
in R. The numerator degrees of freedom are k while the denominator degrees
of freedom are d.

k 1 2 3 4 5 6 7 8 9 00

d

1 161 200 216 225 230 234 237 239 241 254

2 18.5 19.0 19.2 19.3 19.3 19.3 19.4 19.4 19.4 19.5

3 10.1 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.53

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.63

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.37

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 3.67

7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.23

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 2.93

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 2.71

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.54

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.41

12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.30

13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.21

14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.13

15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.07

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.01

17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 1.96

18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 1.92

19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 1.88

20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 1.84

25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 1.71

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 1.62

00 3.84 3.00 2.61 2.37 2.21 2.10 2.01 1.94 1.88 1.00
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Tabled values are tα,d where P (t < tα,d) = α where t has a t distribution
with d degrees of freedom. If d > 29 use the N(0, 1) cutoffs d = Z = ∞.

alpha pvalue

d 0.005 0.01 0.025 0.05 0.5 0.95 0.975 0.99 0.995 left tail

1 -63.66 -31.82 -12.71 -6.314 0 6.314 12.71 31.82 63.66

2 -9.925 -6.965 -4.303 -2.920 0 2.920 4.303 6.965 9.925

3 -5.841 -4.541 -3.182 -2.353 0 2.353 3.182 4.541 5.841

4 -4.604 -3.747 -2.776 -2.132 0 2.132 2.776 3.747 4.604

5 -4.032 -3.365 -2.571 -2.015 0 2.015 2.571 3.365 4.032

6 -3.707 -3.143 -2.447 -1.943 0 1.943 2.447 3.143 3.707

7 -3.499 -2.998 -2.365 -1.895 0 1.895 2.365 2.998 3.499

8 -3.355 -2.896 -2.306 -1.860 0 1.860 2.306 2.896 3.355

9 -3.250 -2.821 -2.262 -1.833 0 1.833 2.262 2.821 3.250

10 -3.169 -2.764 -2.228 -1.812 0 1.812 2.228 2.764 3.169

11 -3.106 -2.718 -2.201 -1.796 0 1.796 2.201 2.718 3.106

12 -3.055 -2.681 -2.179 -1.782 0 1.782 2.179 2.681 3.055

13 -3.012 -2.650 -2.160 -1.771 0 1.771 2.160 2.650 3.012

14 -2.977 -2.624 -2.145 -1.761 0 1.761 2.145 2.624 2.977

15 -2.947 -2.602 -2.131 -1.753 0 1.753 2.131 2.602 2.947

16 -2.921 -2.583 -2.120 -1.746 0 1.746 2.120 2.583 2.921

17 -2.898 -2.567 -2.110 -1.740 0 1.740 2.110 2.567 2.898

18 -2.878 -2.552 -2.101 -1.734 0 1.734 2.101 2.552 2.878

19 -2.861 -2.539 -2.093 -1.729 0 1.729 2.093 2.539 2.861

20 -2.845 -2.528 -2.086 -1.725 0 1.725 2.086 2.528 2.845

21 -2.831 -2.518 -2.080 -1.721 0 1.721 2.080 2.518 2.831

22 -2.819 -2.508 -2.074 -1.717 0 1.717 2.074 2.508 2.819

23 -2.807 -2.500 -2.069 -1.714 0 1.714 2.069 2.500 2.807

24 -2.797 -2.492 -2.064 -1.711 0 1.711 2.064 2.492 2.797

25 -2.787 -2.485 -2.060 -1.708 0 1.708 2.060 2.485 2.787

26 -2.779 -2.479 -2.056 -1.706 0 1.706 2.056 2.479 2.779

27 -2.771 -2.473 -2.052 -1.703 0 1.703 2.052 2.473 2.771

28 -2.763 -2.467 -2.048 -1.701 0 1.701 2.048 2.467 2.763

29 -2.756 -2.462 -2.045 -1.699 0 1.699 2.045 2.462 2.756

Z -2.576 -2.326 -1.960 -1.645 0 1.645 1.960 2.326 2.576

CI 90% 95% 99%

0.995 0.99 0.975 0.95 0.5 0.05 0.025 0.01 0.005 right tail

0.01 0.02 0.05 0.10 1 0.10 0.05 0.02 0.01 two tail


