
Chapter 2

Full Rank Linear Models

2.1 Projection Matrices and the Column Space

Vector spaces, subspaces, and column spaces should be familiar from linear
algebra, but are reviewed below.

Definition 2.1. A set V ⊆ R
k is a vector space if for any vectors

x, y, z ∈ V, and scalars a and b, the operations of vector addition and scalar
multiplication are defined as follows.
1) (x + y) + z = x + (y + z).
2) x + y = y + x.
3) There exists 0 ∈ V such that x + 0 = x = 0 + x.
4) For any x ∈ V, there exists y = −x such that x + y = y + x = 0.
5) a(x + y) = ax + ay.
6) (a + b)x = ax + by.
7) (ab) x = a(b x).
8) 1 x = x.

Hence for a vector space, addition is associative and commutative, there
is an additive identity vector 0, there is an additive inverse −x for each
x ∈ V, scalar multiplication is distributive and associative, and 1 is the
scalar identity element.

Two important vector spaces are R
k and V = {0}. Showing that a set M

is a subspace is a common method to show that M is a vector space.

Definition 2.2. Let M be a nonempty subset of a vector space V. If i)
ax ∈ M ∀x ∈ M and for any scalar a, and ii) x + y ∈ M ∀x, y ∈ M, then
M is a vector space known as a subspace.

Definition 2.3. The set of all linear combinations of x1, ..., xn is the
vector space known as span(x1, ..., xn) = {y ∈ R

k : y =
∑n

i=1 aixi for some
constants a1, ..., an}.
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72 2 Full Rank Linear Models

Definition 2.4. Let x1, ..., xk ∈ V. If ∃ scalars α1, ..., αk not all zero such
that

∑k
i=1 αixi = 0, then x1, ..., xk are linearly dependent. If

∑k
i=1 αixi = 0

only if αi = 0 ∀ i = 1, ..., k, then x1, ..., xk are linearly independent. Suppose
{x1, ..., xk} is a linearly independent set and V = span(x1, ..., xk). Then
{x1, ..., xk} is a linearly independent spanning set for V, known as a basis.

Definition 2.5. Let A = [a1 a2 ... am] be an n × m matrix. The space
spanned by the columns of A = column space of A = C(A). Then C(A) =
{y ∈ R

n : y = Aw for some w ∈ R
m} = {y : y = w1a1 +w2a2 + · · ·+wmam

for some scalars w1, ...., wm} = span(a1, ..., am).

The space spanned by the rows of A is the row space of A. The row space
of A is the column space C(AT ) of AT . Note that

Aw = [a1 a2 ... am]




w1

...
wm


 =

m∑

i=1

wiai.

With the design matrix X , different notation is used to denote the columns
of X since both the columns and rows X are important. Let

X = [v1 v2 ... vp] =




xT
1
...

xT
n




be an n× p matrix. Note that C(X) = {y ∈ R
n : y = Xb for some b ∈ R

p}.
Hence Xb is a typical element of C(X) and Aw is a typical element of C(A).
Note that

Xb =




xT
1
...

xT
n


b =




xT
1 b
...

xT
nb


 = [v1 v2 ... vp]




b1

...
bp


 =

p∑

i=1

bivi.

If the function Xf(b) = Xb where the f indicates that the operation
Xf : R

p → R
n is being treated as a function, then C(X) is the range of Xf .

Hence some authors call the column space of A the range of A.
Let B be n × k, and let A be n × m. One way to show C(A) = C(B)

is to show that i) ∀x ∈ R
m, ∃ y ∈ R

k such that Ax = By ∈ C(B) so
C(A) ⊆ C(B), and ii) ∀y ∈ R

k, ∃ x ∈ R
m such that By = Ax ∈ C(A) so

C(B) ⊆ C(A). Another way to show C(A) = C(B) is to show that a basis
for C(A) is also a basis for C(B).

Definition 2.6. The dimension of a vector space V = dim(V) = the
number of vectors in a basis of V. The rank of a matrix A = rank(A) =
dim(C(A)), the dimension of the column space of A. Let A be n×m. Then
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rank(A) = rank(AT ) ≤ min(m, n). If rank(A) = min(m, n), then A has full
rank, or A is a full rank matrix.

Definition 2.7. The null space of A = N(A) = {x : Ax = 0} = kernel
of A. The nullity of A = dim[N(A)]. The subspace V⊥ = {y ∈ R

k : y ⊥ V}
is the orthogonal complement of V, where y ⊥ V means yT x = 0 ∀ x ∈ V.
N(AT ) = [C(A)]⊥, so N(A) = [C(AT )]⊥.

Theorem 2.1: Rank Nullity Theorem. Let A be n × m. Then
rank(A) + dim(N(A)) = m.

Generalized inverses are useful for the non-full rank linear model and for
defining projection matrices.

Definition 2.8. A generalized inverse of an n × m matrix A is any
m× n matrix A− satisfying AA−A = A.

Other names are conditional inverse, pseudo inverse, g-inverse, and p-
inverse. Usually a generalized inverse is not unique, but if A−1 exists, then
A− = A−1 is unique.

Notation: G := A− means G is a generalized inverse of A.

Recall that if A is idempotent, then A2 = A. A matrix A is tripotent if
A3 = A. For both these cases, A := A− since AAA = A. It will turn out
that symmetric idempotent matrices are projection matrices.

Definition 2.9. Let V be a subspace of R
n. Then every y ∈ R

n can be
expressed uniquely as y = w + z where w ∈ V and z ∈ V⊥. Let X =
[v1 v2 ... vp] be n× p, and let V = C(X) = span(v1, ..., vp). Then the n× n
matrix P V = P X is a projection matrix on C(X) if PX y = w ∀ y ∈ R

n.
(Here y = w + z = wy + zy , so w depends on y.)

Note: Some authors call a projection matrix an “orthogonal projection
matrix,” and call an idempotent matrix a “projection matrix.”

Theorem 2.2: Projection Matrix Theorem. a) PX is unique.

b) P X = X(XT X)−XT where (XT X)− is any generalized inverse of

XT X .
c) A is a projection matrix on C(A) iff A is symmetric and idempotent. Hence
PX is a projection matrix on C(PX ) = C(X), and PX is symmetric and
idempotent. Also, each column pi of P X satisfies P Xpi = pi ∈ C(X).
d) In − P X is the projection matrix on [C(X)]⊥.
e) A = P X iff i) y ∈ C(X) implies Ay = y and ii) y ⊥ C(X) implies
Ay = 0.
f) P XX = X, and P XW = W if each column of W ∈ C(X).
g) P Xvi = vi.
h) If C(XR) is a subspace of C(X), then P XP XR

= P XR
P X = PXR

.
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i) The eigenvalues of P X are 0 or 1.
j) Let tr(A) = trace(A). Then rank(P X) = tr(P X) = rank(X).
k) P X is singular unless X is a nonsingular n×n matrix, and then P X = In.
l) Let X = [Z Xr ] where rank(X) = rank(Xr) = r so the columns of Xr

form a basis for C(X). Then

[
0 0

0 (XT
r Xr)

−1

]

is a generalized inverse of XT X , and PX = Xr(X
T
r Xr)

−1XT
r .

Two important consequences of the above theorem follow. First, P is
a projection matrix iff P is symmetric and idempotent. Partition X as
X = [X1 X2], let P be the projection matrix for C(X) and let P 1 be
the projection matrix for C(X1). Since C(P 1) = C(X1) ⊆ C(X), P P 1 = P 1.
Hence P 1P = (P P 1)

T = P T
1 = P 1.

Some results from linear algebra are needed to prove parts of the above
theorem. Unless told otherwise, matrices in this text are real. Then the
eigenvalues of a symmetric matrix A are real. If A is symmetric, then
rank(A) = number of nonzero eigenvalues of A. Recall that if AB is
a square matrix, then tr(AB) = tr(BA). Similarly, if A1 is m1 × m2,
A2 is m2 × m3, ..., Ak−1 is mk−1 × mk, and Ak is mk × m1 , then
tr(A1A2 · · ·Ak) = tr(AkA1A2 · · ·Ak−1) = tr(Ak−1AkA1A2 · · ·Ak−2) =
· · · = tr(A2A3 · · ·AkA1). Also note that a scalar is a 1 × 1 matrix, so
tr(a) = a. The next two paragraphs follow Christensen (1987, pp. 335-338)
closely.

If P and A are n × n matrices, then P = A iff P y = Ay for all y ∈ R
n

iff yT P = yT A for all y ∈ R
n. Let V be a subspace of R

n. Let y ∈ R
n

with y = w + z where w ∈ V and z ∈ V⊥. Let A and P be projection
matrices on V. Then Ay = w = Py. Since y was arbitrary, A = P and
projection matrices are unique. We prove that P X is symmetric below. Then

the projection matrix A = A(AT A)−A is symmetric by replacing X by A.
Hence Az = AT z = 0. Thus A2y = Aw = w = Ay, and A2 = A since y

was arbitrary.
Now suppose A2 = A = AT , and let w ∈ C(A). Hence w = Aa for some

vector a. Thus Aw = A2a = Aa = w. Let z ⊥ C(A) = C(AT ). Then
zT A = zT AT = 0. Thus Ay = Aw = w, and A is a projection matrix on
C(A). Note that C(PX) ⊆ C(X) since P XX = X , and C(X) ⊆ C(PX)

since PX = XW where W = (XT X)−XT . Thus C(X) = C(P X). To
show that P XX = X , let y = w + z with w = Xa and zT X = 0.

Note that yT P XX = wT X(XT X)−XT X = aT XT X(XT X)−XT X =

aT XT X = wT X = yT X. Since y was arbitrary, P XX = X. Note that

PXy = P X(w+z) = P Xw = X(XT X)−XT Xa = PXXa = Xa = w.
Thus PX is a projection matrix on C(X).
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Note that if G is a generalized linear inverse of a symmetric matrix A,
then AT = AT GT AT = AGT A = A. Hence GT is a generalized linear
inverse of A. Also, AGAGT A = AGT A = A. Hence GAGT , a symmetric
matrix, is a generalized inverse of A. Thus a symmetric matrix A always
has a symmetric generalized linear inverse. Hence let B := (XT X)− be a
symmetric matrix. Then P X = XT BX = XT (XT X)−X is symmetric

since P X is unique, even if (XT X)− is not symmetric.
For part d), note that if y = w + z, then (In − PX )y = z ∈ [C(X)]⊥.

Hence the result follows from the definition of a projection matrix by in-
terchanging the roles of w and z. Part e) follows from the definition of
a projection matrix since if y ∈ C(X) then y = y + 0 where y = w

and 0 = z. If y ⊥ C(X) then y = 0 + y where 0 = w and y = z.
Part g) is a special case of f). In k), P X is singular unless p = n since
rank(X) = r ≤ min(p, n) < max(n, p) unless p = n, and PX is an
n × n matrix. Need rank(P X) = n for P X to be nonsingular. For h),
PXPXR

= P XR
by f) since each column of P Xr

∈ C(P X ). Taking
transposes and using symmetry shows P XR

P X = P XR
. For i), if λ is an

eigenvalue of PX , then for some x 6= 0, λx = P Xx = P 2
Xx = λ2x since

PX is idempotent by c). Hence λ = λ2 is real since P X is symmetric, so
λ = 0 or λ = 1. Then j) follows from i) since rank(PX ) = number of nonzero
eigenvalues of PX = tr(P X ).

For l), note that C(X) = C(Xr). Thus Xr(X
T
r Xr)

−1XT
r = PX . Then

XT X =

[
ZT Z ZT Xr

XT
r Z XT

r Xr

]
and XT X

[
0 0

0 (XT
r Xr)

−1

]
XT X =

[
ZT Xr(X

T
r Xr)

−1XT
r Z ZT Xr

XT
r Z XT

r Xr

]
= XT X

since ZT P XZ = ZT Z because each column of Z ∈ C(X).

Most of the above results apply to full rank and nonfull rank matrices.
A corollary of the following theorem is that if X is full rank, then P X =

X(XT X)−1XT = H.
Suppose A is p×p. Then the following are equivalent. 1) A is nonsingular,

2) A has a left inverse L with LA = Ip, and 3) A has a right inverse R

with AR = Ip. To see this, note that 1) implies (2) and 3) since A−1A =
Ip = AA−1 by the definition of an inverse matrix. Suppose AR = Ip. Then
the determinant det(Ip) = 1 = det(AR) = det(A) det(R). Hence det(A) 6= 0
and A is nonsingular. Hence R = A−1AR = A−1 and 3) implies 1). Similarly
2) implies 1). Also note that L = LIp = LAR = IpR = R = A−1. Hence
in the proof below, we could just show that A− = L or A− = R.

Theorem 2.3. If A is nonsingular, the unique generalized inverse of A is
A−1.
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Proof. Let A− be any generalized inverse of A. We give two proofs. i)
A− = A−1AA−AA−1 = A−1AA−1 = A−1. ii) A−A = A−1AA−A =
A−1A = I and AA− = AA−AA−1 = AA−1 = I. Thus A− = A−1. �

2.2 Quadratic Forms

Definition 2.10. Let A be an n×n matrix and let x ∈ R
n. Then a quadratic

form xT Ax =
∑n

i=1

∑n
j=1 aijxixj , and a linear form is Ax. Suppose A

is a symmetric matrix. Then A is positive definite (A > 0) if xT Ax >
0 ∀ x 6= 0, and A is positive semidefinite (A ≥ 0) if xT Ax ≥ 0 ∀ x.

Notation: The matrix A in a quadratic form xT Ax will be symmetric
unless told otherwise. Suppose B is not symmetric. Since the quadratic form
is a scalar, xT Bx = (xT Bx)T = xT BT x = xT (B+BT )x/2, and the matrix
A = (B + BT )/2 is symmetric. If A ≥ 0 then the eigenvalues λi of A are
real and nonnegative. If A ≥ 0, let λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. If A > 0, then
λn > 0. Some authors say symmetric A is nonnegative definite if A ≥ 0, and
that A is positive semidefinite if A ≥ 0 and there exists a nonzero x such
that xT Ax = 0. Then A is singular.

The spectral decomposition theorem is very useful. One application for
linear models is defining the square root matrix.

Theorem 2.4: Spectral Decomposition Theorem. Let A be an n×n
symmetric matrix with eigenvalue eigenvector pairs (λ1, t1), (λ2, t2), ..., (λn, tn)
where tT

i ti = 1 and tT
i tj = 0 if i 6= j for i = 1, ..., n. Hence Ati = λiti. Then

the spectral decomposition of A is

A =
n∑

i=1

λitit
T
i = λ1t1t

T
1 + · · ·+ λntntT

n .

Let T = [t1 t2 · · · tn] be the n × n orthogonal matrix with ith column

ti. Then TT T = T T T = I . Let Λ = diag(λ1, ..., λn) and let Λ1/2 =
diag(

√
λ1, ...,

√
λn). Then A = TΛT T .

Definition 2.11. If A is a positive definite n × n symmetric matrix with
spectral decomposition A =

∑n
i=1 λitit

T
i , then A = TΛT T and

A−1 = TΛ−1T T =
n∑

i=1

1

λi
tit

T
i .

The square root matrix A1/2 = TΛ1/2T T is a positive definite symmetric
matrix such that A1/2A1/2 = A.
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The following theorem is often useful. Both the expected value and trace
are linear operators. Hence tr(A + B) = tr(A) + tr(B), and E[tr(X)] =
tr(E[X]) when the expected value of the random matrix X exists.

Theorem 2.5: expected value of a quadratic form. Let x be a ran-
dom vector with E(x) = µ and Cov(x) = Σ. Then

E(xT Ax) = tr(AΣ) + µT Aµ.

Proof. Two proofs are given. i) Searle (1971, p. 55): Note that E(xxT ) =
Σ + µµT . Since the quadratic form is a scalar and the trace is a linear
operator, E[xT Ax] = E[tr(xT Ax)] = E[tr(AxxT )] = tr(E[AxxT ]) =
tr(AΣ + AµµT ) = tr(AΣ) + tr(AµµT ) = tr(AΣ) + µT Aµ.

ii) Graybill (1976, p. 140): Using E(xixj) = σij + µiµj , E[xT Ax] =∑n
i=1

∑n
j=1 aijE(xixj) =

∑n
i=1

∑n
j=1 aij(σij +µiµj) = tr(AΣ)+µT Aµ. �

Much of the theoretical results for quadratic forms assumes that the ei

are iid N(0, σ2). These exact results are often special cases of large sample
theory that holds for a large class of iid zero mean error distributions that
have V (ei) ≡ σ2. For linear models, Y is typically an n × 1 random vector.
The following theorem from statistical inference will be useful.

Theorem 2.6. Suppose x y, g(x) is a function of x alone, and h(y) is
a function of y alone. Then g(x) h(y).

The following theorem shows that independence of linear forms implies
independence of quadratic forms.

Theorem 2.7. If A and B are symmetric matrices and AY BY , then
Y T AY Y T BY .

Proof. Let g(AY ) = Y T AT A−AY = Y T AA−AY = Y T AY , and
let h(BY ) = Y T BT B−BY = Y T BB−BY = Y T BY . Then the result
follows by Theorem 2.6. �

Theorem 2.8. Let Y ∼ Nn(µ, Σ). a) Let u = AY and w = BY .
Then AY BY iff Cov(u, w) = AΣBT = 0 iff BΣAT = 0. Note that if
Σ = σ2In, then AY BY iff ABT = 0 iff BAT = 0.

b) If A is a symmetric n × n matrix, and B is an m × n matrix, then
Y T AY BY if AΣBT = 0 if BΣAT = BΣA = 0. Note that if Σ =
σ2In, then Y T AY BY if ABT = 0 if BA = 0.

Proof. a) Note that

(
u

w

)
=

(
AY

BY

)
=

(
A

B

)
Y

has a multivariate normal distribution. Hence AY BY iff Cov(u, w) = 0.
Taking transposes shows Cov(u, w) = AΣBT = 0 iff BΣAT = 0.
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b) If AΣBT = 0 , then AY BY by a). Let g(AY ) = Y T AT A−AY =
Y T AA−AY = Y T AY . Then g(AY ) = Y T AY BY by Theorem 2.6. �

One of the most useful theorems for proving that Y T AY Y T BY is
Craig’s Theorem. Taking transposes shows AΣB = 0 iff BΣA = 0. Note
that if AΣB = 0, then (∗) holds. Note AΣB = 0 is a sufficient condition
for Y T AY Y T BY if Σ ≥ 0, but necessary and sufficient if Σ > 0. If
Y ∼ Nn(µ, Σ) and AY BY , then Y T AY Y T BY , but if Σ is singular,
it is possible that Y T AY Y T BY even if AY and BY are dependent.

Theorem 2.9: Craig’s Theorem. Let Y ∼ Nn(µ, Σ).
a) If Σ > 0, then Y T AY Y T BY iff AΣB = 0 iff BΣA = 0.
b) If Σ ≥ 0, then Y T AY Y T BY if AΣB = 0 (or if BΣA = 0).
c) If Σ ≥ 0, then Y T AY Y T BY iff

(∗) ΣAΣBΣ = 0, ΣAΣBµ = 0, ΣBΣAµ = 0, and µT AΣBµ = 0.
Proof. For a) and b), AΣB = 0 implies Y T AY Y T BY by c)

or by Theorems 2.6, 2.7, and 2.8. See Reid and Driscoll (1988) for why
Y T AY Y T BY implies AΣB = 0 in a).

c) See Driscoll and Krasnicka (1995).

The following theorem is a corollary of Craig’s Theorem.

Theorem 2.10. Let Y ∼ Nn(0, In), with A and B symmetric. If
Y T AY ∼ χ2

r and Y T BY ∼ χ2
d, then Y T AY Y T BY iff AB = 0.

Theorem 2.11. If Y ∼ Nn(µ, Σ) with Σ > 0, then the population
squared Mahalanobis distance (Y − µ)T Σ−1(Y − µ) ∼ χ2

n.

Proof. Let Z = Σ1/2(Y − µ) ∼ Nn(0, I). Then Z = (Z1, ..., Zn)T where
the Zi are iid N(0, 1). Hence (Y −µ)T Σ−1(Y −µ) = ZT Z =

∑n
i=1 Z2

i ∼ χ2
n.

�

For large sample theory, the noncentral χ2 distribution is important. If
Z1, ..., Zn are independent N(0, 1) random variables, then

∑n
i=1 Z2

i ∼ χ2
n.

The noncentral χ2(n, γ) distribution is the distribution of
∑n

i=1 Y 2
i where

Y1, ..., Yn are independent N(µi, 1) random variables. Note that if Y ∼
N(µ, 1), then Y 2 ∼ χ2(n = 1, γ = µ2/2), and if Y ∼ N(

√
2γ, 1), then

Y 2 ∼ χ2(n = 1, γ).

Definition 2.12. Suppose Y1, ..., Yn are independent N(µi, 1) random
variables so that Y = (Y1, ..., Yn)T ∼ Nn(µ, In). Then Y T Y =

∑n
i=1 Y 2

i ∼
χ2(n, γ = µT µ/2), a noncentral χ2(n, γ) distribution, with n degrees of free-
dom and noncentrality parameter γ = µT µ/2 = 1

2

∑n
i=1 µ2

i ≥ 0. The noncen-
trality parameter δ = µT µ = 2γ is also used. If W ∼ χ2

n, then W ∼ χ2(n, 0)
so γ = 0. The χ2

n distribution is also called the central χ2 distribution.

Some of the proof ideas for the following theorem came from Marden
(2012, pp. 48, 96-97). Recall that if Y1, ..., Yk are independent with moment
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generating functions (mgfs) mYi
(t), then the mgf of

∑k
i=1 Yi is m∑

k
i=1

Yi
(t) =

k∏

i=1

mYi
(t). If Y ∼ χ2(n, γ), then the probability density function (pdf) of Y

is rather hard to use, but is given by

f(y) =

∞∑

j=0

e−γγj

j!

y
n
2
+j−1e−y/2

2
n
2
+jΓ (n

2 + j)
=

∞∑

j=0

pγ(j)fn+2j(y)

where pγ(j) = P (W = j) is the probability mass function of a Poisson(γ)
random variable W , and fn+2j(y) is the pdf of a χ2

n+2j random variable. If

γ = 0, define γ0 = 1 in the first sum, and p0(0) = 1 with p0(j) = 0 for
j > 0 in the second sum. For computing moments and the moment gen-
erating function, the integration and summation operations can be inter-
changed. Hence

∫∞

0
f(y)dy =

∑∞

j=0 pγ(j)
∫∞

0
fn+2j(y)dy =

∑∞

j=0 pγ(j) = 1.

Similarly, if mn+2j(t) = (1 − 2t)−(n+2j)/2 is the mgf of a χ2
n+2j ran-

dom variable, then the mgf of Y is mY (t) = E(etY ) =
∫∞

0 etyf(y)dy =∑∞

j=0 pγ(j)
∫∞

0
etyfn+2j(y)dy =

∑∞

j=0 pγ(j)mn+2j(t).

Theorem 2.12. a) If Y ∼ χ2(n, γ), then the moment generating function
of Y is mY (t) = (1 − 2t)−n/2 exp(−γ[1 − (1 − 2t)−1]) =
(1 − 2t)−n/2 exp[2γt/(1 − 2t)] for t < 0.5.

b) If Yi ∼ χ2(ni, γi) are independent for i = 1, ..., k, then∑k
i=1 Yi ∼ χ2

(∑k
i=1 ni,

∑k
i=1 γi

)
.

c) If Y ∼ χ2(n, γ), then E(Y ) = n + 2γ and V (Y ) = 2n + 8γ.
Proof. Two proofs are given. a) i) From the above remarks, and using ex =

∞∑

j=0

xj

j!
, mY (t) =

∞∑

j=0

e−γγj

j!
(1−2t)−(n+2j)/2 = (1−2t)−n/2

∞∑

j=0

e−γ
(

γ
1−2t

)j

j!
=

(1 − 2t)−n/2 exp

(
−γ +

γ

1 − 2t

)
= (1 − 2t)−n/2 exp

(
2γt

1 − 2t

)
.

ii) Let W ∼ N(
√

δ, 1) where δ = 2γ. Then W 2 ∼ χ2(1, δ/2) = χ2(1, γ).
Let W X where X ∼ χ2

n−1 ∼ χ2(n− 1, 0), and let Y = W 2 +X ∼ χ2(n, γ)
by b). Then mW2 (t) =

E(etW2

) =

∫ ∞

−∞

etw2 1√
2π

exp

[−1

2
(w −

√
δ)2
]

dw =

∫
∞

−∞

1√
2π

exp

[
2

2
tw2 − 1

2
(w2 − 2

√
δ w + δ)

]
dw =

∫ ∞

−∞

1√
2π

exp

[−1

2
(w2 − 2tw2 − 2

√
δ w + δ)

]
dw =
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∫
∞

−∞

1√
2π

exp

[−1

2
(w2(1 − 2t) − 2

√
δw + δ)

]
dw =

∫
∞

−∞

1√
2π

exp

[−1

2
A

]
dw

where A = [
√

1 − 2t (w − b)]2 + c with

b =

√
δ

1 − 2t
and c =

−2tδ

1 − 2t

after algebra. Hence m2
W (t) =

e−c/2

√
1

1 − 2t

∫ ∞

−∞

1√
2π

1√
1

1−2t

exp

[
−1

2

1
1

1−2t

(w − b)2

]
dw = e−c/2

√
1

1 − 2t

since the integral = 1 =
∫∞

−∞
f(w)dw where f(w) is the N(b, 1/(1− 2t)) pdf.

Thus

mW2 (t) =
1√

1 − 2t
exp

(
tδ

1 − 2t

)
.

So mY (t) = mW2+X(t) = mW2 (t)mX (t) =

1√
1 − 2t

exp

(
tδ

1 − 2t

)(
1

1− 2t

)(n−1)/2

=
1

(1 − 2t)n/2
exp

(
tδ

1 − 2t

)
=

(1 − 2t)−n/2 exp

(
2γt

1 − 2t

)
.

b) i) By a), m∑
k
i=1

Yi
(t) =

k∏

i=1

mYi
(t) =

k∏

i=1

(1 − 2t)−ni/2 exp(−γi[1− (1 − 2t)−1]) =

(1 − 2t)−
∑k

i=1
ni/2 exp

(
−

k∑

i=1

γi[1− (1 − 2t)−1]

)
,

the χ2

(
k∑

i=1

ni,

k∑

i=1

γi

)
mgf.

ii) Let Yi = ZT
i Zi where the Zi ∼ Nni

(µi, Ini
) are independent. Let

Z =




Z1

Z2

...
Zk


 ∼ N∑

k
i=1

ni







µ1

µ2
...

µk


 , I∑k

i=1
ni


 ∼ N∑

k
i=1

ni
(µZ , I∑k

i=1
ni

).
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Then ZT Z =

k∑

i=1

ZT
i Zi =

k∑

i=1

Yi ∼ χ2

(
k∑

i=1

ni, γZ

)
where

γZ =
µT

Z
µZ

2
=

k∑

i=1

µT
i µi

2
=

k∑

i=1

γi.

c) i) Let W ∼ χ2(1, γ) X ∼ χ2
n−1 ∼ χ2(n − 1, 0). Then by b) Y =

W+X ∼ χ2(n, γ). Let Z ∼ N(0, 1) and δ = 2γ. Then
√

δ+Z ∼ N(
√

δ, 1), and
W = (

√
δ+Z)2. Thus E(W ) = E[(

√
δ+Z)2 ] = δ+2

√
δE(Z)+E(Z2) = δ+1.

Using the binomial theorem

(x + y)n =

n∑

i=0

(
n

i

)
xiyn−i

with x =
√

δ, y = Z, and n = 4, E(W 2) = E[(
√

δ + Z)4] =

E[δ2 + 4δ3/2Z + 6δZ2 + 4
√

δZ3 + Z4] = δ2 + 6δ + 3

since E(Z) = E(Z3) = 0, and E(Z4) = 3 by Problem 2.8. Hence V (W ) =
E(W 2)− [E(W )]2 = δ2 +6δ+3−(δ+1)2 = δ2 +6δ+3−δ2 −2δ−1 = 4δ+2.
Thus E(Y ) = E(W ) + E(X) = δ + 1 + n − 1 = n + δ = n + 2γ, and
V (Y ) = V (W ) + V (X) = 4δ + 2 + 2(n − 1) = 8δ + 2n.

ii) Let Zi ∼ N(µi, 1) so E(Z2
i ) = σ2 + µ2

i = 1 + µ2
i . By Problem 2.8,

E(Z3
i ) = µ3

i + 3µi, and E(Z4
i ) = µ4

i + 6µ2
i + 3. Hence Y ∼ χ2(n, γ) where

Y = ZT Z =
∑n

i=1 Z2
i where Z ∼ Nn(µ, I). So E(Y ) =

∑n
i=1 E(Z2

i ) =∑n
i=1(1 + µ2

i ) = n + µT µ = n + 2γ, and V (Y ) =
∑n

i=1 V (Z2
i ) =

n∑

i=1

[E(Z4
i ) − (E[Z2

i ])2] =

n∑

i=1

[µ4
i + 6µ2

i + 3 − µ4
i − 2µ2

i − 1] =

n∑

i=1

[4µ2
i + 2]

= 2n + 4µT µ = 2n + 8γ. �

For the following theorem, see Searle (1971, p. 57). Most of the results in
Theorem 2.14 are corollaries of Theorem 2.13. Recall that the matrix in a
quadratic form is symmetric, unless told otherwise.

Theorem 2.13. If Y ∼ Nn(µ, Σ) where Σ > 0, then Y T AY ∼
χ2(rank(A), µTAµ/2) iff AΣ is idempotent.
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For the following theorem, note that if A = AT = A2, then A is a
projection matrix since A is symmetric and idempotent. An n×n projection
matrix A is not a full rank matrix unless A = In. See Theorem 2.2 j) and
k). Often results are given for Y ∼ Nn(0, I), and then the Y ∼ Nn(0, σ2I)
case is handled as in c) and g) below, since Y /σ ∼ Nn(0, I).

Theorem 2.14. Let A = AT be symmetric.
a) If Y ∼ Nn(0, Σ) where Σ is a projection matrix, then Y T Y ∼

χ2(rank(Σ)) where rank(Σ) = tr(Σ).
b) If Y ∼ Nn(0, I), then Y T AY ∼ χ2

r iff A is idempotent with rank(A) =
tr(A) = r.

c) Let Y ∼ Nn(0, σ2I). Then

Y T AY

σ2
∼ χ2

r or Y TAY ∼ σ2 χ2
r

iff A is idempotent of rank r.
d) If Y ∼ Nn(0, Σ) where Σ > 0, then Y T AY ∼ χ2

r iff AΣ is idempotent
with rank(A) = r = rank(AΣ).

e) If Y ∼ Nn(0, σ2I) then
Y T Y

σ2
∼ χ2

(
n,

µT µ

2σ2

)
.

f) If Y ∼ Nn(µ, I) then Y T AY ∼ χ2(r, µT Aµ/2) iff A is idempotent
with rank(A) = tr(A) = r.

g) If Y ∼ Nn(µ, σ2I) then
Y T AY

σ2
∼ χ2

(
r,

µT Aµ

2σ2

)
iff A is idempotent

with rank(A) = tr(A) = r.

Note that A is a projection matrix iff A is idempotent in b) since A is
symmetric. Thus b) is a special case d). To see that c) holds, note Z = Y /σ ∼
Nn(0, I). Hence by b)

Y T AY

σ2
= ZT AZ ∼ χ2

r

iff A is idempotent of rank r. Much of Theorem 2.14 follows from Theorem
2.13. For f), we give another proof from Christensen (1987, p. 8). Since A is a
projection matrix with rank(A) = r, let {b1, ..., br} be an orthonormal basis
for C(A) and let B = [b1 b2 ... br ]. Then BT B = Ir and the projection
matrix A = B(BT B)−1BT = BBT . Thus Y T AY = Y T BBT Y = ZT Z

where Z = BT Y ∼ Nr(B
T µ, BT IB) ∼ Nr(B

T µ, Ir). Thus Y T AY =
ZT Z ∼ χ2(r, µT BBT µ/2) ∼ χ2(r, µT Aµ/2) by Definition 2.12.

The following theorem is useful for constructing ANOVA tables. See Searle
(1971, pp. 60-61).

Theorem 2.15: Generalized Cochran’s Theorem. Let Y ∼ Nn(µ, Σ).

Let Ai = AT
i have rank ri for i = 1, ..., k, and let A =

∑k
i=1 Ai = AT have
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rank r. Then Y T AiY ∼ χ2(ri, µ
T Aiµ/2), and the Y T AiY are independent,

and Y T AY ∼ χ2(r, µT Aµ/2), iff
I) any 2 of a) AiΣ are idempotent ∀i,
b) AiΣAj = 0 ∀i < j,
c) AΣ is idempotent

are true; or II) c) is true and d) r =
∑k

i=1 ri;
or III) c) is true and e) A1Σ, .., Ak−1Σ are idempotent and AkΣ ≥ 0 is
singular.

2.3 Least Squares Theory

Definition 2.13. Estimating equations are used to find estimators of
unknown parameters. The least squares criterion and log likelihood for max-
imum likelihood estimators are important examples.

Estimating equations are often used with a model, like Y = Xβ + e,
and often have a variable β that is used in the equations to find the es-
timator β̂ of the vector of parameters in the model. For example, the log
likelihood log(L(β, σ2)) has β and σ2 as variables for a parametric statistical
model where β and σ2 are fixed unknown parameters, and maximizing the
log likelihood with respect to these variables gives the maximum likelihood
estimators of the parameters β and σ2. So the term β is both a variable in
the estimating equations, which could be replaced by another variable such
as η, and a vector of parameters in the model. In the theorem below, we
could replace η by β where β is a vector of parameters in the linear model
and a variable in the least squares criterion which is an estimating equation.

Theorem 2.16. Let θ = Xη ∈ C(X) where Yi = xT
i η + ri(η) and the

residual ri(η) depends on η. The least squares estimator β̂ is the value
of η ∈ R

p that minimizes the least squares criterion∑n
i=1 r2

i (η) = ‖Y − Xη‖2.

Proof. Following Seber and Lee (2003, pp. 36-38), let Ŷ = θ̂ = P XY ∈
C(X), r = (I − PX )Y ∈ [C(X)]⊥, and θ ∈ C(X). Then (Y − θ̂)T (θ̂ −
θ) = (Y − P XY )T (P XY − PXθ) = Y T (I − P X)P X (Y − θ) = 0 since

PXθ = θ. Thus ‖Y − θ‖2 = (Y − θ̂ + θ̂ − θ)T (Y − θ̂ + θ̂ − θ) =

‖Y − θ̂‖2 + ‖θ̂ − θ‖2 + 2(Y − θ̂)T (θ̂ − θ) ≥ ‖Y − θ̂‖2

with equality iff ‖θ̂ − θ‖2 = 0 iff θ̂ = θ = Xη. Since θ̂ = Xβ̂ the result
follows. �

Definition 2.14. The normal equations are
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XT Xβ̂ = XT Y .

To see that the normal equations hold, note that r = Y − Ŷ ⊥ C(X) by
Theorem 1.2 c) (and Theorem 2.20 i)). Thus r ∈ [C(X)]⊥ = N(XT ), and

XT (Y − Ŷ ) = 0. Hence XT Ŷ = XT Xβ̂ = XT Y .

The maximum likelihood estimator uses the log likelihood as an estimating
equation. Note that it is crucial to observe that the likelihood function is a
function of θ (and that y1, ..., yn act as fixed constants). Also, if the MLE θ̂

exists, then θ̂ ∈ Θ, the parameter space.

Definition 2.15. Let f(y|θ) be the joint pdf of Y1, ..., Yn. If Y = y is
observed, then the likelihood function L(θ) = f(y|θ). For each sample

point y = (y1, ..., yn), let θ̂(y) be a parameter value at which L(θ|y) attains
its maximum as a function of θ with y held fixed. Then a maximum likelihood
estimator (MLE) of the parameter θ based on the sample Y is θ̂(Y ).

Definition 2.16. Let the log likelihood of θ1 and θ2 be log[L(θ1, θ2)]. If θ̂2

is the MLE of θ2, then the log profile likelihood is log[Lp(θ1)] = log[L(θ1, θ̂2)].

We can often fix σ and then show β̂ is the MLE by direct maximization.
Then the MLE σ̂ or σ̂2 can be found by maximizing the log profile likelihood
function log[Lp(σ)] or log[Lp(σ

2)] where Lp(σ) = L(σ, β = β̂).

Remark 2.1. a) Know how to find the max and min of a function h that
is continuous on an interval [a,b] and differentiable on (a, b). Solve h′(x) ≡ 0
and find the places where h′(x) does not exist. These values are the critical
points. Evaluate h at a, b, and the critical points. One of these values will
be the min and one the max.

b) Assume h is continuous. Then a critical point θo is a local max of h(θ)
if h is increasing for θ < θo in a neighborhood of θo and if h is decreasing for
θ > θo in a neighborhood of θo. The first derivative test is often used.

c) If h is strictly concave

(
d2

dθ2
h(θ) < 0 for all θ

)
, then any local max

of h is a global max.

d) Suppose h′(θo) = 0. The 2nd derivative test states that if
d2

dθ2
h(θo) < 0,

then θo is a local max.
e) If h(θ) is a continuous function on an interval with endpoints a < b

(not necessarily finite), and differentiable on (a, b) and if the critical point
is unique, then the critical point is a global maximum if it is a local
maximum (because otherwise there would be a local minimum and the critical

point would not be unique). To show that θ̂ is the MLE (the global maximizer
of h(θ) = logL(θ)), show that logL(θ) is differentiable on (a, b). Then show

that θ̂ is the unique solution to the equation
d

dθ
log L(θ) = 0 and that the
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2nd derivative evaluated at θ̂ is negative:
d2

dθ2
logL(θ)|θ̂ < 0. Similar remarks

hold for finding σ̂2 using the profile likelihood.

Theorem 2.17. Let Y = Xβ + e = Ŷ + r where X is full rank, and
Y ∼ Nn(Xβ, σ2I). Then the MLE of β is the least squares estimator β̂ and
the MLE of σ2 is RSS/n = (n − p)MSE/n.

Proof. The Yi = Yi|xi are independent N(xT
i β, σ2) random variables with

probability density functions (pdfs) fYi
(yi). Let yi be the observed values of

Yi. Thus the likelihood function

L(β, σ2) =

n∏

i=1

fYi
(yi) =

n∏

i=1

1

σ
√

2π
exp

(
1

2σ2
(yi − xT

i β)2
)

=

(2πσ2)−n/2 exp

(
1

2σ2

n∑

i=1

(yi − xT
i β)2

)
= (2πσ2)−n/2 exp

( −1

2σ2
‖y − Xβ‖2

)
.

The least squares criterion Q(β) =
∑n

i=1(yi − xT
i β)2 =

∑n
i=1 r2

i (β) = ‖y −
Xβ‖2 = (y − Xβ)T (y − Xβ). For fixed σ2, maximizing the likelihood is
equivalent to maximizing

exp

( −1

2σ2
‖y − Xβ‖2

)
,

which is equivalent to minimizing ‖y−Xβ‖2. But the least squares estimator

minimizes ‖y − Xβ‖2 by Theorem 2.16. Hence β̂ is the MLE of β.

Let Q = ‖y − Xβ̂‖2. Then the MLE of σ2 can be found by maximizing
the log profile likelihood log(LP (σ2)) where

LP (σ2) =
1

(2πσ2)n/2
exp

( −1

2σ2
Q

)
.

Let τ = σ2. Then

log(Lp(σ
2)) = c − n

2
log(σ2) − 1

2σ2
Q,

and

log(Lp(τ )) = c − n

2
log(τ ) − 1

2τ
Q.

Hence
d log(LP (τ ))

dτ
=

−n

2τ
+

Q

2τ2

set
= 0

or −nτ + Q = 0 or nτ = Q or

τ̂ =
Q

n
= σ̂2 =

∑n
i=1 r2

i

n
=

n − p

n
MSE,
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which is a unique solution.
Now

d2 log(LP (τ ))

dτ2
=

n

2τ2
− 2Q

2τ3

∣∣∣∣
τ=τ̂

=
n

2τ̂2
− 2nτ̂

2τ̂3
=

−n

2τ̂2
< 0.

Thus by Remark 2.1, σ̂2 is the MLE of σ2. �

Now assume the n × p matrix X has full rank p. There are two ways to
compute β̂. Use β̂ = (XT X)−1XT Y , and use sample covariance matrices.
The population OLS coefficients are defined below. Let xT

i = (1, uT
i ) where

ui is the vector of nontrivial predictors. Let
1

n

n∑

j=1

Xjk = Xok = uok for

k = 2, ..., p. The subscript “ok” means sum over the first subscript j. Let
u = (uo,2, ..., uo,p)T be the sample mean of the ui. Note that regressing on u

is equivalent to regressing on x if there is an intercept β1 in the model.

Definition 2.17. Using the above notation, let xT
i = (1, uT

i ), and let βT =
(β1, β

T
2 ) where β1 is the intercept and the slopes vector β2 = (β2, ..., βp)

T .
Let the population covariance matrices

Cov(u) = E[(u − E(u))(u − E(u))T ] = Σu, and

Cov(u, Y ) = E[(u − E(u))(Y − E(Y ))] = ΣuY .

Then the population coefficients from an OLS regression of Y on x (even if
a linear model does not hold) are

β1 = E(Y ) − βT
2 E(u) and β2 = Σ−1

u ΣuY.

Definition 2.18. Let the sample covariance matrices be

Σ̂u =
1

n − 1

n∑

i=1

(ui − u)(ui − u)T and Σ̂uY =
1

n − 1

n∑

i=1

(ui − u)(Yi − Y ).

Let the method of moments or maximum likelihood estimators be Σ̃u =
1

n

n∑

i=1

(ui−u)(ui−u)T and Σ̃uY =
1

n

n∑

i=1

(ui−u)(Yi−Y ) =
1

n

n∑

i=1

uiYi−u Y .

Refer to Definitions 1.27, 1.28, and 1.33 for the notation “θ̂
P→ θ as n →

∞,” which means that θ̂ is a consistent estimator of θ, or that θ̂ converges

in probability to θ. Note that D = XT
1 X1 − nu uT = (n − 1)Σ̂

−1

u .

Theorem 2.18: Seber and Lee (2003, p. 106). Let X = (1 X1).

Then XT Y =

(
nY

XT
1 Y

)
=

(
nY∑n

i=1 uiYi

)
, XT X =

(
n nuT

nu XT
1 X1

)
,
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and (XT X)−1 =

(
1
n + uT D−1u −uT D−1

−D−1u D−1

)

where the (p − 1) × (p − 1) matrix D−1 = [(n − 1)Σ̂u]−1 = Σ̂
−1

u /(n − 1).

Theorem 2.19: Second way to compute β̂:

a) If Σ̂
−1

u exists, then β̂1 = Y − β̂
T

2 u and

β̂2 =
n

n − 1
Σ̂

−1

u Σ̃uY = Σ̃
−1

u Σ̃uY = Σ̂
−1

u Σ̂uY .

b) Suppose that (Yi, u
T
i )T are iid random vectors such that σ2

Y , Σ−1
u , and

ΣuY exist. Then β̂1
P→ β1 and

β̂2
P→ β2 as n → ∞.

Proof. Note that

Y T X1 = (Y1 · · ·Yn)




uT
1
...

uT
n


 =

n∑

i=1

Yiu
T
i

and

XT
1 Y = [u1 · · ·un]




Y1

...
Yn


 =

n∑

i=1

uiYi.

So [
β̂1

β̂2

]
=

[
1
n

+ uT D−1u −uT D−1

−D−1u D−1

] [
1T

XT
1

]
Y =

[
1
n + uT D−1u −uT D−1

−D−1u D−1

] [
nY

XT
1 Y

]
.

Thus β̂2 = −nD−1u Y + D−1XT
1 Y = D−1(XT

1 Y − nu Y ) =

D−1

[
n∑

i=1

uiYi − nu Y

]
=

Σ̂
−1

u
n − 1

nΣ̂uY =
n

n − 1
Σ̂

−1

u Σ̂uY . Then

β̂1 = Y + nuT D−1u Y − uT D−1XT
1 Y = Y + [nY uT D−1 − Y T X1D

−1]u

= Y − β̂
T

2 u. The convergence in probability results hold since sample means
and sample covariance matrices are consistent estimators of the population
means and population covariance matrices. �

It is important to note that the convergence in probability results are
for iid (Yi, u

T
i )T with second moments and nonsingular Σu: a linear model
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Y = Xβ+e does not need to hold. Also, X is a random matrix, and the least
squares regression is conditional on X. When the linear model does hold, the
second method for computing β̂ is still valid even if X is a constant matrix,

and β̂
P→ β by the LS CLT. Some properties of the least squares estimators

and related quantities are given below, where X is a constant matrix. The
population results of Definition 2.17 were also shown when




Y
x2

...
xp


 ∼ Np

[(
E(Y )
E(u)

)
,

(
σ2

Y ΣY u
ΣuY Σuu

)]

in Remark 1.5. Also see Theorem 1.40. The following theorem is similar to
Theorem 1.2.

Theorem 2.20. Let Y = Xβ + e = Ŷ + r where X has full rank p,
E(e) = 0, and Cov(e) = σ2I. Let P = PX be the projection matrix on

C(X) so Ŷ = PX , r = Y − Ŷ = (I −P )Y , and PX = X so XT P = XT .
i) The predictor variables and residuals are orthogonal. Hence the columns
of X and the residual vector are orthogonal: XT r = 0.
ii) E(Y ) = Xβ.
iii) Cov(Y ) = Cov(e) = σ2I.

iv) The fitted values and residuals are uncorrelated: Cov(r, Ŷ ) = 0.

v) The least squares estimator β̂ is an unbiased estimator of β : E(β̂) = β.

vi) Cov(β̂) = σ2(XT X)−1.

Proof. i) XT r = XT (I−P )Y = 0Y = 0, while ii) and iii) are immediate.

iv) Cov(r, Ŷ ) = E([r − E(r)][Ŷ − E(Ŷ )]T ) =

E([(I − P )Y − (I − P )E(Y )][PY − P E(Y )]T ) =

E[(I − P )[Y − E(Y )][Y − E(Y )]T P ] = (I − P )σ2IP = σ2(I − P )P = 0.

v) E(β̂) = E[(XT X)−1XT Y ] = (XT X)−1XT E[Y ] = (XT X)−1XT Xβ

= β.
vi) Cov(β̂) = Cov[(XT X)−1XT Y ] = Cov(AY ) = ACov(Y )AT =

σ2(XT X)−1XT IX(XT X)−1 = σ2(XT X)−1. �

Definition 2.19. Let a, b, and c be n × 1 constant vectors. A linear
estimator aT Y of cT θ is the best linear unbiased estimator (BLUE) of cT θ

if E(aT Y ) = cT θ, and for any other unbiased linear estimator bT Y of cT θ,
V ar(aT Y ) ≤ V ar(bT Y ).

The following theorem is useful for finding the BLUE when X has full
rank. Note that if W is a random variable, then the covariance matrix of
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W is Cov(W ) = Cov(W, W ) = V (W ). Note that the theorem shows that

bT Xβ̂ = bT P Y = aT β̂ is the BLUE of bT Xβ = aT β where aT = bT X

and θ = Xβ. Also, if bT Y is an unbiased estimator of aT β = bT Xβ, then
bT P Y = aT β̂ is a better unbiased estimator in that V (bT PY ) ≤ V (bT Y ).

Since X is full rank, aT β is estimable with BLUE aT β̂ for every p × 1
constant vector A. Note that the ei are uncorrelated with zero mean, but not
necessarily independent or identically distributed in the following theorem.
Note that if b = d = Pb, then P b = PP b = P b = d. The proof of the more
general Theorem 3.2 c) also proves Theorem 2.21.

Theorem 2.21: Gauss Markov Theorem-Full Rank Case. Let Y =
Xβ + e where X is full rank, E(e) = 0, and Cov(e) = σ2I . Then aT β̂ is
the unique BLUE of aT β for every constant p × 1 vector a.

Proof. Let bT Y be any linear unbiased estimator of aT β. Then E(bT Y ) =
aT β = bT E(Y ) = bT Xβ for any β ∈ R

p, the parameter space of β. Hence

aT = bT X . The least squares estimator aT β̂ = aT (XT X)−1XT Y =

dT Y = bT Xβ̂ = bT PY is a linear unbiased estimator of aT β since
E(aT β̂) = aT β. Now V (bT Y ) − V (aT β̂) = V (bT Y ) − V (bT P Y ) =
Cov(bT Y )−Cov(bT PY ) = σ2bT b−σ2bT Pb = σ2bT (I −P )b = σ2zT z ≥ 0

with equality iff z = (I − P )b = 0 iff b = d = P b iff bT Y = bT P Y = aT β̂.
Since bT Y was an arbitrary unbiased linear estimator, the least squares es-
timator aT β̂ is BLUE. �

Lai et al. (1979) note that if E(β̂) = β and Cov(β̂) = σ2(XT X)−1 → 0

as n → ∞, then β̂ is a consistent estimator of β. Also see Zhang (2019).
The following theorem gives some properties of the least squares estimators
β̂ and MSE under the normal least squares model. Similar properties will be
developed without the normality assumption.

Theorem 2.22. Suppose Y = Xβ + e where X is full rank, e ∼
Nn(0, σ2I), and Y ∼ Nn(Xβ, σ2I).

a) β̂ ∼ Np(β, σ2(XT X)−1).

b)
(β̂ − β)T XT X(β̂ − β)

σ2
∼ χ2

p.

c) β̂ MSE.

d)
RSS

σ2
=

(n − p)MSE

σ2
∼ χ2

n−p.

Proof. Let P = PX .

a) Since A = (XT X)−1XT is a constant matrix,

β̂ = AY ∼ Np(AE(Y ), ACov(Y )AT ) ∼

Np((XT X)−1XT Xβ, σ2(XT X)−1XT IX(XT X)−1) ∼

Np(β, σ2(XT X)−1).
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b) The population Mahalanobis distance of β̂ is

(β̂ − β)T XT X(β̂ − β)

σ2
= (β̂ − β)T [Cov(β̂)]−1(β̂ − β) ∼ χ2

p

by Theorem 2.11.
c) Since Cov(β̂, r) = Cov((XT X)−1XT Y , (I − P )Y ) =

σ2(XT X)−1XT I(I−P ) = 0, β̂ r. Thus β̂ RSS = ‖r‖2, and β̂ MSE.
d) Since P X = X and XT P = XT , it follows that XT (I − P ) = 0 and

(I − P )X = 0. Thus RSS = rT r = Y T (I − P )Y =

(Y − Xβ)T (I − P )(Y − Xβ) = eT (I − P )e.

Since e ∼ Nn(0, σ2I), then by Theorem 2.14 c), eT (I − P )e/σ2 ∼ χ2
n−p

where n − p = rank(I − P ) = tr(I − P ). �

2.3.1 Hypothesis Testing

Suppose Y = Xβ + e where rank(X) = p, E(e) = 0 and Cov(e) = σ2I. Let
L be an r × p constant matrix with rank(L) = r, let c be an r × 1 constant
vector, and consider testing H0 : Lβ = c. First theory will be given for when
e ∼ Nn(0, σ2I). The large sample theory will be given for when the iid zero
mean ei have V (ei) = σ2. Note that the normal model will satisfy the large
sample theory conditions.

The partial F test, and its special cases the ANOVA F test and the Wald
t test, use c = 0. Let the full model use Y , x1 ≡ 1, x2, ..., xp, and let
the reduced model use Y , x1 = xj1 ≡ 1, xj2 , ..., xjk

where {j1, ..., jk} ⊂
{1, ..., p} and j1 = 1. Here 1 ≤ k < p, and if k = 1, then the model is
Yi = β1 +ei. Hence the full model is Yi = β1 +β2xi,2 + · · ·+βpxi,p +ei, while
the reduced model is Yi = β1 + βj2xi,j2 + · · ·+ βjk

xi,jk
+ ei. In matrix form,

the full model is Y = Xβ + e and the reduced model is Y = XRβR + eR

where the columns of XR are a proper subset of the columns of X . i) The
partial F test has H0 : βjk+1

= · · · = βjp
= 0, or H0 : the reduced model is

good, or H0 : Lβ = 0 where L is a (p− k)× p matrix where the ith row of L

has a 1 in the jk+ith position and zeroes elsewhere. In particular, if β1, ..., βk

are the only βi in the reduced model, then L = [0 Ip−k] and 0 is a (p−k)×k
matrix. Hence r = p− k = number of predictors in the full model but not in
the reduced model. ii) The ANOVA F test is the special case of the partial
F test where the reduced model is Yi = β1+εi. Hence H0 : β2 = · · · = βp = 0,
or H0 : none of the nontrivial predictors x2, ..., xp are needed in the linear
model, or H0 : Lβ = 0 where L = [0 Ip−1] and 0 is a (p − 1) × 1 vector.
Hence r = p − 1. iii) The Wald t test uses the reduced model that deletes
the jth predictor from the full model. Hence H0 : βj = 0, or H0 : the jth
predictor xj is not needed in the linear model given that the other predictors
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are in the model, or H0 : Ljβ = 0 where Lj = [0, ..., 0, 1, 0, ..., 0] is a 1 × p
row vector with a 1 in the jth position for j = 1, ..., p. Hence r = 1.

A way to get the test statistic FR for the partial F test is to fit the
full model and the reduced model. Let RSS be the RSS of the full model,
and let RSS(R) be the RSS of the reduced model. Similarly, let MSE and
MSE(R) be the MSE of the full and reduced models. Let dfR = n − k and
dfF = n− p be the degrees of freedom for the reduced and full models. Then

FR =
RSS(R) − RSS

rMSE
where r = dfR − dfF = p − k = number of predictors

in the full model but not in the reduced model.
If β̂ ∼ Np(β, σ2(XT X)−1), then

Lβ̂ − c ∼ Nr(Lβ − c, σ2L(XT X)−1LT ).

If H0 is true then Lβ̂ − c ∼ Nr(0, σ2L(XT X)−1LT ), and by Theorem 2.11

rF1 =
1

σ2
(Lβ̂ − c)T [L(XT X)−1LT ]−1(Lβ̂ − c) ∼ χ2

r .

Let rFR = σ2rF1/MSE. If H0 is true, rFR
D→ χ2

r for a large class of zero
mean error distributions. See Theorem 2.26 c).

From Definition 1.25, if Zn
D→ Z as n → ∞, then Zn converges in dis-

tribution to the random vector Z, and “Z is the limiting distribution of
Zn” means that the distribution of Z is the limiting distribution of Zn. The

notation Zn
D→ Nk(µ, Σ) means Z ∼ Nk(µ, Σ).

Remark 2.2. a) Z is the limiting distribution of Zn, and does not depend
on the sample size n (since Z is found by taking the limit as n → ∞).

b) When Zn
D→ Z, the distribution of Z can be used to approximate

probabilities P (Zn ≤ c) ≈ P (Z ≤ c) at continuity points c of the cdf FZ (z).
Often the limiting distribution is a continuous distribution, so all points c

are continuity points.

c) Often the two quantities Zn
D→ Nk(µ, Σ) and Zn ∼ Nk(µ, Σ) behave

similarly. A big difference is that the distribution on the RHS (right hand

side) can depend on n for ∼ but not for
D→. In particular, if Zn

D→ Nk(µ, Σ),

then AZn + b
D→ Nm(Aµ + b, AΣAT ), provided the RHS does not depend

on n, where A is an m×k constant matrix and b is an m×1 constant vector.
d) We often want a normal approximation where the RHS can depend on n.

Write Zn ∼ ANk(µ, Σ) for an approximate multivariate normal distribution
where the RHS may depend on n. For normal linear model, if e ∼ Nn(0, σ2I),

then β̂ ∼ Np(β, σ2(XT X)−1). If the ei are iid with E(ei) = 0 and V (ei) =

σ2, use the multivariate normal approximation β̂ ∼ ANp(β, σ2(XT X)−1) or

β̂ ∼ ANp(β, MSE(XT X)−1). The RHS depends on n since the number of
rows of X is n.
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Theorem 2.23. Suppose Σ̂n and Σ are positive definite and symmetric.

If W n
D→ Nk(µ, Σ) and Σ̂n

P→ Σ, then Zn = Σ̂
−1/2

n (W n − µ)
D→ Nk(0, I),

and ZT
nZn = (W n − µ)T Σ̂

−1

n (W n − µ)
D→ χ2

k.

Proof. Zn = (Σ̂
−1/2

n − Σ−1/2 + Σ−1/2)(W n − µ) =

(Σ̂
−1/2

n − Σ−1/2)(W n − µ) + Σ−1/2(W n − µ)
D→ 0 + Nk(0, I) ∼ Nk(0, I)

by Slutsky’s Theorem 1.34 b). Hence ZT
nZn

D→ χ2
k. �

See Remark 2.3 for why Theorem 2.24 is useful.

Theorem 2.24. If Wn ∼ Fr,dn
where the positive integer dn → ∞ as

n → ∞, then rWn
D→ χ2

r.

Proof. If X1 ∼ χ2
d1

X2 ∼ χ2
d2

, then

X1/d1

X2/d2
∼ Fd1,d2

.

If Ui ∼ χ2
1 are iid then

∑k
i=1 Ui ∼ χ2

k. Let d1 = r and k = d2 = dn. Hence if
X2 ∼ χ2

dn
, then

X2

dn
=

∑dn

i=1 Ui

dn
= U

P→ E(Ui) = 1

by the law of large numbers. Hence if W ∼ Fr,dn
, then rWn

D→ χ2
r . �

The following theorem is analogous to the central limit theorem and the
theory for the t–interval for µ based on Y and the sample standard deviation
(SD) SY . If the data Y1, ..., Yn are iid with mean 0 and variance σ2, then Y
is asymptotically normal and the t–interval will perform well if the sample
size is large enough. The result below suggests that the OLS estimators Ŷi

and β̂ are good if the sample size is large enough. The condition maxhi → 0
in probability usually holds if the researcher picked the design matrix X or
if the xi are iid random vectors from a well behaved population. Outliers

can cause the condition to fail. Convergence in distribution, Zn
D→ Np(0, Σ),

means the multivariate normal approximation can be used for probability
calculations involving Zn. When p = 1, the univariate normal distribution
can be used. See Sen and Singer (1993, p. 280) for the theorem, which implies

that β̂ ≈ Np(β, σ2(XT X)−1)). Let hi = Hii where H = PX . Note that

the following theorem is for the full rank model since XT X is nonsingular.

Theorem 2.25, LS CLT (Least Squares Central Limit Theo-
rem): Consider the MLR model Yi = xT

i β + ei and assume that the zero
mean errors are iid with E(ei) = 0 and VAR(ei) = σ2. Also assume that
maxi(h1, ..., hn) → 0 in probability as n → ∞ and
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XT X

n
→ W−1

as n → ∞. Then the least squares (OLS) estimator β̂ satisfies

√
n(β̂ − β)

D→ Np(0, σ2 W ). (2.1)

Equivalently,

(XT X)1/2(β̂ − β)
D→ Np(0, σ2 Ip). (2.2)

If Σ = σ2W , then Σ̂n = nMSE(XT X)−1. Hence

β̂ ∼ ANp(β, MSE(XT X)−1), and

rFR =
1

MSE
(Lβ̂ − c)T [L(XT X)−1LT ]−1(Lβ̂ − c)

D→ χ2
r (2.3)

as n → ∞ if H0 : Lβ = c is true so that
√

n(Lβ̂ − c)
D→ Nr(0, σ2 LWLT ).

Definition 2.20. A test with test statistic Tn is a large sample right tail
δ test if the test rejects H0 if Tn > an and P (Tn > an) = δn → δ as n → ∞
when H0 is true.

Typically we want δ ≤ 0.1, and the values δ = 0.05 or δ = 0.01 are
common. (An analogy is a large sample 100(1 − δ)% confidence interval or
prediction interval.)

Remark 2.3. Suppose P (W ≤ χ2
q(1−δ)) = 1−δ and P (W > χ2

q(1−δ)) =
δ where W ∼ χ2

q . Suppose P (W ≤ Fq,dn
(1 − δ)) = 1 − δ when W ∼ Fq,dn

.
Also write χ2

q(1− δ) = χ2
q,1−δ and Fq,dn

(1− δ) = Fq,dn,1−δ. Suppose P (W >
z1−δ) = δ when W ∼ N(0, 1), and P (W > tdn,1−δ) = δ when W ∼ tdn

.
i) Theorem 2.24 is important because it can often be shown that a statistic

Tn = rWn
D→ χ2

r when H0 is true. Then tests that reject H0 when Tn >
χ2

r(1 − δ) or when Tn/r = Wn > Fr,dn
(1 − δ) are both large sample right

tail δ tests if the positive integer dn → ∞ as n → ∞. Large sample F tests
and intervals are used instead of χ2 tests and intervals since the F tests and
intervals are more accurate for moderate n.

ii) An analogy is that if test statistic Tn
D→ N(0, 1) when H0 is true, then

tests that reject H0 if Tn > z1−δ or if Tn > tdn,1−δ are both large sample
right tail δ tests if the positive integer dn → ∞ as n → ∞. Large sample t
tests and intervals are used instead of Z tests and intervals since the t tests
and intervals are more accurate for moderate n.

iii) Often n ≥ 10p starts to give good results for the OLS output for error
distributions not too far from N(0, 1). Larger values of n tend to be needed
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if the zero mean iid errors have a distribution that is far from a normal
distribution. Also see Theorem 1.5.

Theorem 2.26, Partial F Test Theorem. Suppose H0 : Lβ = 0 is
true for the partial F test. Under the OLS full rank model, a)

FR =
1

rMSE
(Lβ̂)T [L(XT X)−1LT ]−1(Lβ̂).

b) If e ∼ Nn(0, σ2I), then FR ∼ Fr,n−p.

c) For a large class of zero mean error distributions rFR
D→ χ2

r.
d) The partial F test that rejects H0 : Lβ = 0 if FR > Fr,n−p(1 − δ) is a
large sample right tail δ test for the OLS model for a large class of zero mean
error distributions.

Proof sketch. a) Seber and Lee (2003, p. 100) show that

RSS(R) − RSS = (Lβ̂)T [L(XT X)−1LT ]−1(Lβ̂).

b) Let the full model Y = Xβ + e with a constant β1 in the model:
1 is the 1st column of X . Let the reduced model Y = XRβR + e also
have a constant in the model where the columns of XR are a subset of
k of the columns of X . Let P R be the projection matrix on C(XR) so

PP R = P R. Then FR =
SSE(R) − SSE(F )

rMSE(F )
where r = dfR − dfF = p −

k = number of predictors in the full model but not in the reduced model.
MSE = MSE(F ) = SSE(F )/(n−p) where SSE = SSE(F ) = Y (I−P )Y .
SSE(R) − SSE(F ) = Y T (P − P R)Y where SSE(R) = Y T (I − P R)Y .

Now assume Y ∼ Nn(Xβ, σ2I), and when H0 is true, Y ∼ Nn(XRβR, σ2I).
Since (I − P )(P − P R) = 0, [SSE(R) − SSE(F )] MSE(F ) by Craig’s
Theorem. When H0 is true, µ = XRβR and µT Aµ = 0 where A = (I − P )
or A = (P − P R). Hence the noncentrality parameter is 0, and by The-
orem 2.14 g), SSE ∼ σ2χ2

n−p and SSE(R) − SSE(F ) ∼ σ2χ2
p−k since

rank(P − P R) = tr(P − P R) = p − k. Hence under H0, FR ∼ Fp−k,n−p.

Alternatively, let Y ∼ Nn(Xβ, σ2In) where X is an n× p matrix of rank
p. Let X = [X1 X2] and β = (βT

1 βT
2 )T where X1 is an n × k matrix and

r = p−k. Consider testing H0 : β2 = 0. (The columns of X can be rearranged
so that H0 corresponds to the partial F test.) Let P be the projection matrix
on C(X). Then rT r = Y T (I − P )Y = eT (I − P )e =
(Y − Xβ)T (I − P )(Y − Xβ) since P X = X and XT P = XT imply that
XT (I − P ) = 0 and (I − P )X = 0.

Suppose that H0 : β2 = 0 is true so that Y ∼ Nn(X1β1, σ
2In). Let

P 1 be the projection matrix on C(X1). By the above argument, rT
RrR =

Y T (I −P 1)Y = (Y −X1β1)
T (I −P 1)(Y −X1β1) = eT

R(I −P 1)eR where
eR ∼ Nn(0, σ2In) when H0 is true. Or use RHS = Y T (I − P 1)Y

−βT
1 XT

1 (I − P 1)Y + βT
1 XT

1 (I − P 1)X1β1 − Y T (I − P 1)X1β1,
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and the last three terms equal 0 since XT
1 (I−P 1) = 0 and (I −P 1)X1 = 0.

Hence
Y T (I − P )Y

σ2
∼ χ2

n−p

Y T (P − P 1)Y

σ2
∼ χ2

r

by Theorem 2.14 c) using e and eR instead of Y , and Craig’s Theorem 2.9 b)
since n− p = rank(I −P ) = tr(I −P ), r = rank(P − P 1) = tr(P −P 1) =
p − k, and (I − P )(P − P 1) = 0.

If X1 ∼ χ2
d1

X2 ∼ χ2
d2

, then

X1/d1

X2/d2
∼ Fd1,d2

.

Hence
Y T (P − P 1)Y /r

Y T (I − P )Y /(n − p)
=

Y T (P − P 1)Y

rMSE
∼ Fr,n−p

when H0 is true. Since RSS = Y T (I −P )Y and RSS(R) = Y T (I −P 1)Y ,
RSS(R) − RSS = Y T (I − P 1 − [I − P ])Y = Y T (P − P 1)Y , and thus

FR =
Y T (P − P 1)Y

rMSE
∼ Fr,n−p.

c) Assume H0 is true. By the OLS CLT,
√

n(Lβ̂ − Lβ) =
√

nLβ̂
D→

Nr(0, σ2 LWLT ). Thus
√

n(Lβ̂)T (σ2LWLT )−1
√

nLβ̂
D→ χ2

r. Let σ̂2 =

MSE and Ŵ = n(XT X)−1. Then

n(Lβ̂)T [MSE Ln(XT X)−1LT ]−1Lβ̂ = rFR
D→ χ2

r.

d) By Theorem 2.24, if Wn ∼ Fr,dn
then rWn

D→ χ2
r as n → ∞ and

dn → ∞. Hence the result follows by c). �

An ANOVA table for the partial F test is shown below, where k = pR is
the number of predictors used by the reduced model, and r = p− pR = p− k
is the number of predictors in the full model that are not in the reduced
model.

Source df SS MS F

Reduced n − pR SSE(R) = Y T (I − P R)Y MSE(R) FR =
SSE(R)−SSE

rMSE =

Full n − p SSE = Y T (I − P )Y MSE
Y T (P − P R)Y /r

Y T (I − P )Y /(n − p)

The ANOVA F test is the special case where k = 1, XR = 1, P R = P 1,
and SSE(R) − SSE(F ) = SSTO − SSE = SSR.
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ANOVA table: Y = Xβ + e with a constant β1 in the model: 1 is the
1st column of X . MS = SS/df .

SSTO = Y T (I − 1

n
11T )Y =

n∑

i=1

(Yi − Y )2, SSE =
∑n

i=1 r2
i , SSR =

∑n
i=1(Ŷi − Y )2, SSTO = SSR + SSE. SSTO is the SSE (residual sum

of squares) for the location model Y = 1β1 + e that contains a con-
stant but no nontrivial predictors. The location model has projection matrix

P 1 = 1(1T1)−11T =
1

n
11T . Hence PP 1 = P 1 and P1 = P 11 = 1.

Source df SS MS F p-value

Regression p-1 SSR = Y T (P − 1

n
11T )Y MSR F0 = MSR

MSE for H0:

Residual n-p SSE = Y T (I − P )Y MSE β2 = · · · = βp = 0
The matrices in the quadratic forms for SSR and SSE are symmet-

ric and idempotent and their product is 0. Hence if e ∼ Nn(0, σ2I) so
Y ∼ Nn(Xβ, σ2I), then SSE SSR by Craig’s Theorem. If H0 is
true under normality, then Y ∼ Nn(1β1, σ

2I), and by Theorem 2.14 g),
SSE ∼ σ2χ2

n−p and SSR ∼ σ2χ2
p−1 since rank(I − P ) = tr(I − P ) = n − p

and rank(P − 1
n11T ) = tr(P − 1

n11T ) = p − 1. Hence under normality,
F0 ∼ Fp−1,n−p.

Let X ∼ tn−p. Then X2 ∼ F1,n−p. The two tail Wald t test for H0 :
βj = 0 versus H1 : βj 6= 0 is equivalent to the corresponding right tailed F
test since rejecting H0 if |X| > tn−p(1 − δ) is equivalent to rejecting H0 if
X2 > F1,n−p(1 − δ).

Definition 2.21. The pvalue of a test is the probability, assuming H0 is
true, of observing a test statistic as extreme as the test statistic Tn actually
observed. For a right tail test, pvalue = PH0

(of observing a test statistic
≥ Tn).

Under the OLS model where FR ∼ Fq,n−p when H0 is true (so the ei are
iid N(0, σ2)), the pvalue = P (W > FR) where W ∼ Fq,n−p. In general, we
can only estimate the pvalue. Let pval be the estimated pvalue. Then pval

= P (W > FR) where W ∼ Fq,n−p, and pval
P→ pvalue an n → ∞ for the

large sample partial F test. The pvalues in output are usually actually pvals
(estimated pvalues).

Definition 2.22. Let Y ∼ F (d1, d2) ∼ F (d1, d2, 0). Let X1 ∼ χ2(d1, γ)

X2 ∼ χ2(d2, 0). Then W =
X1/d1

X2/d2
∼ F (d1, d2, γ), a noncentral F distri-

bution with d1 and d2 numerator and denominator degrees of freedom, and
noncentrality parameter γ.
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Theorem 2.27, distribution of FR under normality when H0 may
not hold. Assume Y = Xβ + e where e ∼ Nn(0, σ2I). Let X = [X1 X2]
be full rank, and let the reduced model Y = X1β1 + eR. Then

FR =
Y T (P − P 1)Y /r

Y T (I − P )Y /(n − p)
∼ F

(
r, n− p,

βT XT (P − P 1)Xβ

2σ2

)
.

If H0 : β2 = 0 is true, then γ = 0.

Proof. Note that the denominator is the MSE, and (n − p)MSE/σ2 ∼
χ2

n−p by the proof of Theorem 2.26. By Theorem 2.14 f),

Y T (P − P 1)Y /σ2 ∼ χ2

(
r,

βT XT (P − P 1)Xβ

2σ2

)

where r = rank(P −P 1) = tr(P −P 1) = p− k since P −P 1 is a projection
matrix (symmetric and idempotent). �

Consider the test H0 : Lβ = c versus H1 : Lβ 6= c, and suppose H0 is

true. Then
√

n(Lβ̂ − c)
D→ Nr(0, σ2LWLT ). Hence

rF0 =
1

MSE
(Lβ̂ − c)T (L(XT X)−1LT )−1(Lβ̂ − c)

D→ χ2
p,

and rejecting H0 if F0 > Fr,n−p,1−δ is a large sample right tail δ test for a
large class of zero mean error distributions. Seber and Lee (2003, pp. 100-101)
show that F0 ∼ Fr,n−p if H0 is true and e ∼ Np(0, σ2I), but the above result
is far stronger: if the iid ei has to satisfy ei ∼ N(0, σ2), OLS inference would
rarely be useful.

Remark 2.4. Suppose tests and confidence intervals are derived under
the assumption e ∼ Nn(0, σ2I). Then by the LS CLT and Remark 2.3,
the inference tends to give large sample tests and confidence intervals for
a large class of zero mean error distributions. For linear models, often the
error distribution has heavier tails than the normal distribution. See Huber
and Ronchetti (2009, p. 3). If some points stick out a bit in residual and/or
response plots, then the error distribution likely has heavier tails than the
normal distribution. See Figure 1.1.

2.4 WLS and Generalized Least Squares

Definition 2.23. Suppose that the response variable and at least one of the
predictor variables is quantitative. Then the generalized least squares (GLS)
model is
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Y = Xβ + e, (2.4)

where Y is an n × 1 vector of dependent variables, X is an n × p matrix
of predictors, β is a p × 1 vector of unknown coefficients, and e is an n × 1
vector of unknown errors. Also E(e) = 0 and Cov(e) = σ2V where V is a
known n × n positive definite matrix.

Definition 2.24. The GLS estimator

β̂GLS = (XT V −1X)−1XT V −1Y . (2.5)

The fitted values are Ŷ GLS = Xβ̂GLS .

Definition 2.25. Suppose that the response variable and at least one of
the predictor variables is quantitative. Then the weighted least squares (WLS)
model with weights w1, ..., wn is the special case of the GLS model where V

is diagonal: V = diag(v1, ..., vn) and wi = 1/vi. Hence

Y = Xβ + e, (2.6)

E(e) = 0, and Cov(e) = σ2diag(v1, ..., vn) = σ2diag(1/w1, ..., 1/wn).

Definition 2.26. The WLS estimator

β̂WLS = (XT V −1X)−1XT V −1Y . (2.7)

The fitted values are Ŷ WLS = Xβ̂WLS .

Definition 2.27. The feasible generalized least squares (FGLS) model is
the same as the GLS estimator except that V = V (θ) is a function of an

unknown q×1 vector of parameters θ. Let the estimator of V be V̂ = V (θ̂).
Then the FGLS estimator

β̂FGLS = (XT V̂
−1

X)−1XT V̂
−1

Y . (2.8)

The fitted values are Ŷ FGLS = Xβ̂FGLS . The feasible weighted least squares
(FWLS) estimator is the special case of the FGLS estimator where V =

V (θ) is diagonal. Hence the estimated weights ŵi = 1/v̂i = 1/vi(θ̂). The

FWLS estimator and fitted values will be denoted by β̂FWLS and Ŷ FWLS ,
respectively.

Notice that the ordinary least squares (OLS) model is a special case of
GLS with V = In, the n× n identity matrix. It can be shown that the GLS
estimator minimizes the GLS criterion

QGLS(η) = (Y − Xη)T V −1(Y − Xη).
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Notice that the FGLS and FWLS estimators have p+ q +1 unknown param-
eters. These estimators can perform very poorly if n < 10(p + q + 1).

The GLS and WLS estimators can be found from the OLS regression
(without an intercept) of a transformed model. Typically there will be a
constant in the model: the first column of X is a vector of ones. Let the
symmetric, nonsingular n × n square root matrix R = V 1/2 with V = RR.
Let Z = R−1Y , U = R−1X and ε = R−1e.

Theorem 2.28. a)
Z = Uβ + ε (2.9)

follows the OLS model since E(ε) = 0 and Cov(ε) = σ2In.

b) The GLS estimator β̂GLS can be obtained from the OLS regression
(without an intercept) of Z on U .

c) For WLS, Yi = xT
i β + ei. The corresponding OLS model Z = Uβ + ε

is equivalent to Zi = uT
i β + εi for i = 1, ..., n where uT

i is the ith row of U .

Then Zi =
√

wi Yi and ui =
√

wi xi. Hence β̂WLS can be obtained from the
OLS regression (without an intercept) of Zi =

√
wi Yi on ui =

√
wi xi.

Proof. a) E(ε) = R−1E(e) = 0 and

Cov(ε) = R−1Cov(e)(R−1)T = σ2R−1V (R−1)T

= σ2R−1RR(R−1) = σ2In.

Notice that OLS without an intercept needs to be used since U does not
contain a vector of ones. The first column of U is R−11 6= 1.

b) Let β̂ZU denote the OLS estimator obtained by regressing Z on U .
Then

β̂ZU = (UT U)−1UT Z = (XT (R−1)T R−1X)−1XT (R−1)T R−1Y

and the result follows since V −1 = (RR)−1 = R−1R−1 = (R−1)T R−1.

c) The result follows from b) if Zi =
√

wi Yi and ui =
√

wi xi. But for
WLS, V = diag(v1, ..., vn) and hence R = diag(

√
v1, ...,

√
vn). Hence

R−1 = diag(1/
√

v1, ..., 1/
√

vn) = diag(
√

w1, ...,
√

wn)

and Z = R−1Y has ith element Zi =
√

wi Yi. Similarly, U = R−1X has ith
row uT

i =
√

wi xT
i . �

Remark 2.5. Standard software produces WLS output and the ANOVA
F test and Wald t tests are performed using this output.

Remark 2.6. The FGLS estimator can also be found from the OLS re-
gression (without an intercept) of Z on U where V (θ̂) = RR. Similarly the
FWLS estimator can be found from the OLS regression (without an inter-
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cept) of Zi =
√

ŵiYi on ui =
√

ŵixi. But now U is a random matrix instead
of a constant matrix. Hence these estimators are highly nonlinear. OLS out-
put can be used for exploratory purposes, but the p–values are generally not
correct. The Olive (2018) bootstrap tests may be useful for FGLS and FWLS.
See Chapter 4.

Under regularity conditions, the OLS estimator β̂OLS is a consistent esti-

mator of β when the GLS model holds, but β̂GLS should be used because it
generally has higher efficiency.

Definition 2.28. Let β̂ZU be the OLS estimator from regressing Z on

U . The vector of fitted values is Ẑ = Uβ̂ZU and the vector of residuals

is rZU = Z − Ẑ. Then β̂ZU = β̂GLS for GLS, β̂ZU = β̂FGLS for FGLS,

β̂ZU = β̂WLS for WLS, and β̂ZU = β̂FWLS for FWLS. For GLS, FGLS,
WLS, and FWLS, a residual plot is a plot of Ẑi versus rZU,i and a response

plot is a plot of Ẑi versus Zi.

Inference for the GLS model Y = Xβ + e can be performed by using
the partial F test for the equivalent no intercept OLS model Z = Uβ + ε.
Following Section 1.3.7, create Z and U , fit the full and reduced model using
the “no intercept” or “intercept = F” option. Let pval be the estimated
pvalue.

The 4 step partial F test of hypotheses: i) State the hypotheses H0:
the reduced model is good HA: use the full model
ii) Find the test statistic FR =

[
SSE(R) − SSE(F )

dfR − dfF

]
/MSE(F )

iii) Find the pval = P(FdfR−dfF ,dfF
> FR). (On exams often an F table is

used. Here dfR−dfF = p−q = number of parameters set to 0, and dfF = n−p.)
iv) State whether you reject H0 or fail to reject H0. Reject H0 if pval ≤ δ
and conclude that the full model should be used. Otherwise, fail to reject H0

and conclude that the reduced model is good.

Assume that the GLS model contains a constant β1. The GLS ANOVA
F test of H0 : β2 = · · · = βp versus HA: not H0 uses the reduced model
that contains the first column of U . The GLS ANOVA F test of H0 : βi = 0
versus HA : βi 6= 0 uses the reduced model with the ith column of U deleted.
For the special case of WLS, the software will often have a weights option
that will also give correct output for inference.

Freedman (1981) shows that the nonparametric bootstrap can be use-
ful for the WLS model with the ei independent. For this case, the sand-
wich estimator is Ĉov(β̂OLS) = (XT X)−1XT ŴX(XT X)−1 with Ŵ =
n diag(r2

1, ..., r
2
n)/(n− p) where the ri are the OLS residuals and W = σ2V .

See Hinkley (1977), MacKinnon and White (1985), and White (1980).
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2.5 Summary

1) The set of all linear combinations of x1, ..., xn is the vector space known
as span(x1, ..., xn) = {y ∈ R

k : y =
∑n

i=1 aixi for some constants a1, ..., an}.
2) Let A = [a1 a2 ... am] be an n × m matrix. The space spanned by the

columns of A = column space of A = C(A). Then C(A) = {y ∈ R
n : y =

Aw for some w ∈ R
m} = {y : y = w1a1 + w2a2 + · · · + wmam for some

scalars w1, ...., wm} = span(a1, ..., am).
3) A generalized inverse of an n×m matrix A is any m×n matrix A−

satisfying AA−A = A.
4) The projection matrix P = PX onto the column space of X is

unique, symmetric, and idempotent. P X = X , and PW = W if each
column of W ∈ C(X). The eigenvalues of P X are 0 or 1. Rank(P ) = tr(P ).
Hence P is singular unless X is a nonsingular n×n matrix, and then P = In.
If C(XR) is a subspace of C(X), then P XP XR

= P XR
P X = PXR

.

5) In − P is the projection matrix on [C(X)]⊥.
6) Let A be a positive definite symmetric matrix. The square root matrix

A1/2 is a positive definite symmetric matrix such that A1/2A1/2 = A.
7) The matrix A in a quadratic form xT Ax will be symmetric unless

told otherwise.
8) Theorem 2.5. Let x be a random vector with E(x) = µ and Cov(x) =

Σ. Then E(xT Ax) = tr(AΣ) + µT Aµ.
9) Theorem 2.7. If A and B are symmetric matrices and AY BY ,

then Y T AY Y T BY .
10) The important part of Craig’s Theorem is that if Y ∼ Nn(µ, Σ),

then Y T AY Y T BY if AΣB = 0.
11) Theorem 2.14. Let A = AT be symmetric. b) If Y ∼ Nn(0, I),

then Y T AY ∼ χ2
r iff A is idempotent of rank r. c) If Y ∼ Nn(0, σ2I), then

Y T AY ∼ σ2 χ2
r iff A is idempotent of rank r.

12) Often theorems are given for when Y ∼ Nn(0, I). If Y ∼ Nn(0, σ2I),
then apply the theorem using Z = Y /σ ∼ Nn(0, I).

13) Suppose Y1, ..., Yn are independent N(µi, 1) random variables so that
Y = (Y1, ..., Yn)T ∼ Nn(µ, In). Then Y T Y =

∑n
i=1 Y 2

i ∼ χ2(n, γ =
µT µ/2), a noncentral χ2(n, γ) distribution, with n degrees of freedom and
noncentrality parameter γ = µT µ/2 = 1

2

∑n
i=1 µ2

i ≥ 0. The noncentrality
parameter δ = µT µ = 2γ is also used.

14) Theorem 2.16. Let θ = Xη ∈ C(X) where Yi = xT
i η+ri(η) and the

residual ri(η) depends on η. The least squares estimator β̂ is the value
of η ∈ R

p that minimizes the least squares criterion∑n
i=1 r2

i (η) = ‖Y − Xη‖2.

15) Let xT
i = (1, uT

i ), and let βT = (β1, β
T
2 ) where β1 is the intercept and

the slopes vector β2 = (β2, ..., βp)
T . Let the population covariance matrices

Cov(u) = Σu, and Cov(u, Y ) = ΣuY . If the (Yi, u
T
i )T are iid, then the

population coefficients from an OLS regression of Y on x are



102 2 Full Rank Linear Models

β1 = E(Y ) − βT
2 E(u) and β2 = Σ−1

u ΣuY.

16) Theorem 2.19: Second way to compute β̂: a) If Σ̂
−1

u exists, then

β̂1 = Y − β̂
T

2 u and

β̂2 =
n

n − 1
Σ̂

−1

u Σ̃uY = Σ̃
−1

u Σ̃uY = Σ̂
−1

u Σ̂uY .

b) Suppose that (Yi, u
T
i )T are iid random vectors such that σ2

Y , Σ−1
u , and

ΣuY exist. Then β̂1
P→ β1 and β̂2

P→ β2 as n → ∞ even if the OLS model
Y = Xβ + e does not hold.

17) Theorem 2.20. Let Y = Xβ + e = Ŷ + r where X is full rank,
E(e) = 0, and Cov(e) = σ2I. Let P = PX be the projection matrix on

C(X) so Ŷ = PX , r = Y − Ŷ = (I −P )Y , and PX = X so XT P = XT .
i) The predictor variables and residuals are orthogonal. Hence the columns
of X and the residual vector are orthogonal: XT r = 0.
ii) E(Y ) = Xβ.
iii) Cov(Y ) = Cov(e) = σ2I.

iv) The fitted values and residuals are uncorrelated: Cov(r, Ŷ ) = 0.

v) The least squares estimator β̂ is an unbiased estimator of β : E(β̂) = β.

vi) Cov(β̂) = σ2(XT X)−1.
18) LS CLT. Suppose that the ei are iid and

XT X

n
→ W−1.

Then the least squares (OLS) estimator β̂ satisfies

√
n(β̂ − β)

D→ Np(0, σ2 W ).

Also,

(XT X)1/2(β̂ − β)
D→ Np(0, σ2 Ip).

19) Theorem 2.26, Partial F Test Theorem. Suppose H0 : Lβ = 0 is
true for the partial F test. Under the OLS full rank model, a)

FR =
1

rMSE
(Lβ̂)T [L(XT X)−1LT ]−1(Lβ̂).

b) If e ∼ Nn(0, σ2I), then FR ∼ Fr,n−p.

c) For a large class of zero mean error distributions rFR
D→ χ2

r.
d) The partial F test that rejects H0 : Lβ = 0 if FR > Fr,n−p(1 − δ) is a
large sample right tail δ test for the OLS model for a large class of zero mean
error distributions.
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2.6 Complements

A good reference for quadratic forms and the noncentral χ2, t, and F distri-
butions is Johnson and Kotz (1970, ch. 28-31).

The theory for GLS and WLS is similar to the theory for the OLS MLR
model, but the theory for FGLS and FWLS is often lacking or huge sample
sizes are needed. However, FGLS and FWLS are often used in practice be-
cause usually V is not known and V̂ must be used instead. See Eicker (1963,
1967).

Least squares theory can be extended in at least two ways. For the first
extension, see Chang and Olive (2010) and Chapter 10. The second extension
of least squares theory is to an autoregressive AR(p) time series model: Yt =
φ0 +φ1Yt−1 + · · ·+φpYt−p +et. In matrix form, this model is Y = Xβ +e =




Yp+1

Yp+2

...
Yn


 =




1 Yp Yp−1 . . . Y1

1 Yp+1 Yp . . . Y2

...
...

...
. . .

...
1 Yn−1 Yn−2 . . . Yn−p







φ0

φ1

...
φp


+




ep+1

ep+2

...
en


 .

If the AR(p) model is stationary, then under regularity conditions, OLS
partial F tests are large sample tests for this model. See Anderson (1971, pp.
210–217).

2.7 Problems

Problems from old qualifying exams are marked with a Q since these problems
take longer than quiz and exam problems.

2.1Q. Suppose Yi = xT
i β + ei where the errors are independent N(0, σ2).

Then the likelihood function is

L(β, σ2) = (2πσ2)−n/2 exp

( −1

2σ2
‖Y − Xβ‖2

)
.

a) Since the least squares estimator β̂ minimizes ‖Y − Xβ‖2, show that

β̂ is the MLE of β.

b) Then find the MLE σ̂2 of σ2.

2.2Q. Suppose Yi = xT
i β + ei where the errors are iid double exponential

(0, σ) where σ > 0. Then the likelihood function is

L(β, σ) =
1

2n

1

σn
exp

(
−1

σ

n∑

i=1

|Yi − xT
i β|

)
.
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Suppose that β̃ is a minimizer of
∑n

i=1 |Yi − xT
i β|.

a) By direct maximization, show that β̃ is an MLE of β regardless of the
value of σ.

b) Find an MLE of σ by maximizing

L(σ) ≡ L(β̃, σ) =
1

2n

1

σn
exp

(
−1

σ

n∑

i=1

|Yi − xT
i β̃|

)
.

2.3Q. Suppose Yi = xT
i β+ei where the errors are independent N(0, σ2/wi)

where wi > 0 are known constants. Then the likelihood function is

L(β, σ2) =

(
n∏

i=1

√
wi

)(
1√
2π

)n
1

σn
exp

(
−1

2σ2

n∑

i=1

wi(yi − xT
i β)2

)
.

a) Suppose that β̂W minimizes
∑n

i=1 wi(yi −xT
i β)2. Show that β̂W is the

MLE of β.

b) Then find the MLE σ̂2 of σ2.

2.4Q. Suppose Y ∼ Nn(Xβ, σ2V ) for known positive definite n×n matrix
V . Then the likelihood function is

L(β, σ2) =

(
1√
2π

)n
1

|V |1/2

1

σn
exp

( −1

2σ2
(y − Xβ)T V −1(y − Xβ)

)
.

a) Suppose that β̂G minimizes (y − Xβ)T V −1(y − Xβ). Show that β̂G

is the MLE of β.

b) Find the MLE σ̂2 of σ2.

2.5. Find the vector a such that aT Y is an unbiased estimator for E(Yi)
if the usual linear model holds.

2.6. Write the following quantities as bT Y or Y T AY or AY .

a) Y , b)
∑

i(Yi − Ŷi)
2, c)

∑
i(Ŷi)

2, d) β̂, e) Ŷ

2.7. Show that I −H = I −X(XT X)−1XT is idempotent, that is, show
that (I − H)(I − H) = (I − H)2 = I − H.

2.8. Let Y ∼ N(µ, σ2) so that E(Y ) = µ and Var(Y ) = σ2 = E(Y 2) −
[E(Y )]2. If k ≥ 2 is an integer, then

E(Y k) = (k − 1)σ2E(Y k−2) + µE(Y k−1).
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Let Z = (Y − µ)/σ ∼ N(0, 1). Hence µk = E(Y − µ)k = σkE(Zk). Use this
fact and the above recursion relationship E(Zk) = (k − 1)E(Zk−2) to find
a) µ3 and b) µ4.

2.9. Let A and B be matrices with the same number of rows. If C is
another matrix such that A = BC, is it true that rank(A) = rank(B)?
Prove or give a counterexample.

2.10. Let x be an n × 1 vector and let B be an n × n matrix. Show that
xT Bx = xT BT x.

(The point of this problem is that if B is not a symmetric n × n matrix,

then xT Bx = xT Ax where A =
B + BT

2
is a symmetric n × n matrix.)

2.11. Consider the model Yi = β1 +β2Xi,2 + · · ·+βpXi,p +ei = xT
i β +ei.

The least squares estimator β̂ minimizes

QOLS(η) =

n∑

i=1

(Yi − xT
i η)2

and the weighted least squares estimator minimizes

QWLS(η) =

n∑

i=1

wi(Yi − xT
i η)2

where the wi, Yi and xi are known quantities. Show that

n∑

i=1

wi(Yi − xT
i η)2 =

n∑

i=1

(Ỹi − x̃T
i η)2

by identifying Ỹi, and x̃i. (Hence the WLS estimator is obtained from the
least squares regression of Ỹi on x̃i without an intercept.)

2.12. Suppose that X is an n × p matrix but the rank of X < p < n.
Then the normal equations XT Xβ = XT Y have infinitely many solutions.
Let β̂ be a solution to the normal equations. So XT Xβ̂ = XT Y . Let G =
(XT X)− be a generalized inverse of (XT X). Assume that E(Y ) = Xβ and
Cov(Y ) = σ2I . It can be shown that all solutions to the normal equations
have the form bz given below.

a) Show that bz = GXT Y + (GXT X − I)z is a solution to the normal
equations where the p × 1 vector z is arbitrary.

b) Show that E(bz) 6= β.

(Hence some authors suggest that bz should be called a solution to the
normal equations but not an estimator of β.)
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c) Show that Cov(bz) = σ2GXT XGT .

d) Although G is not unique, the projection matrix P = XGXT onto

C(X) is unique. Use this fact to show that Ŷ = Xbz does not depend on G

or z.

e) There are two ways to show that aT β is an estimable function. Either
show that there exists a vector c such that E(cT Y ) = aT β, or show that
a ∈ C(XT ). Suppose that a = XT w for some fixed vector w. Show that
E(aT bz) = aT β.

(Hence aT β is estimable by aT bz where bz is any solution of the normal
equations.)

f) Suppose that a = XT w for some fixed vector w. Show that V ar(aT bz) =
σ2wT P w.

2.13. Let P be a projection matrix.
a) Show that P is a generalized inverse of P .
b) Show that P = P (P T P )−P T .

2.14Q. Suppose Yi = xT
i β + ei with Q(β) ≥ 0. Let cn be a constant that

does not depend on β or σ. Suppose the likelihood function is

L(β, σ) = cn
1

σn
exp

(−1

σ
Q(β)

)
.

a) Suppose that β̂Q minimizes Q(β). Show that β̂Q is an MLE of β.
b) Then find an MLE σ̂ of σ.

2.15Q. Suppose Yi = xT
i β + εi with Q(β) ≥ 0. Let cn be a constant that

does not depend on β or σ2. Suppose the likelihood function is

L(β, σ2) = cn
1

σn
exp

( −1

2σ2
Q(β)

)
.

a) Suppose that β̂Q minimizes Q(β). Show that β̂Q is the MLE of β.
b) Then find the MLE σ̂2 of σ2.

2.16. Suppose that G is a generalized inverse of a symmetric matrix A.

a) Show that GT is a generalized inverse of A.
b) Show that GAGT is a generalized inverse of A. (Hence, since a gener-

alized inverse always exists, a symmetric generalized inverse of a symmetric
matrix A always exists.)
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2.17. (Searle (1971, p. 217)): Let A =




1 2 4 3
3 −1 2 −2
5 −4 0 −7


 and show that A− =

1
7




1 2 0
3 −1 0
0 0 0
0 0 0


 is a generalized inverse of A.

2.18. Find the projection matrix P for C(X) where X is the 2×1 vector
X = (1, 2)T .

2.19. Let y ∼ Np(θ, Σ) where Σ is positive definite. Let A be a symmetric
p × p matrix.

a) Let x = y − θ. What is the distribution of x?
b) Show that

E[(y − θ)T A(y − θ)] = E[xT Ax]

is a function of A and Σ but not of θ.

2.20. (Hocking (2003, p. 61): Let y ∼ N3(µ, σ2I) where y = (Y1, Y2, Y3)
T

and µ = (µ1, µ2, µ3)
T .

Let A = 1
2




1 −1 0
−1 1 0
0 0 0


 and B = 1

6




1 1 −2
1 1 −2
−2 −2 4


.

Are yT Ay and yT By independent? Explain.

2.21Q. Let Y = Xβ+e where e ∼ Nn(0, σ2In). Assume X has full rank.
Let r be the vector of residuals. Then the residual sum of squares RSS =

rT r. The sum of squared fitted values is Ŷ
T
Ŷ . Prove that rT r and Ŷ

T
Ŷ

independent (or dependent).
(Hint: write each term as a quadratic form.)

2.22. Let B =

[
1 2
2 4

]
.

a) Find rank(B).
b) Find a basis for C(B).
c) Find [C(B)]⊥ = nullspace of BT .

d) Show that B− =

[
1 −1
1 0

]
is a generalized inverse of B.

2.23. Suppose that Y = Xβ+e where Cov(e) = σ2Σ and Σ = Σ1/2Σ1/2

where Σ1/2 is nonsingular and symmetric. Hence Σ−1/2Y = Σ−1/2Xβ +
Σ−1/2e. Find Cov(Σ−1/2e). Simplify.

2.24. Let y ∼ N2(µ, σ2I) where y = (Y1, Y2)
T and µ = (µ1, µ2)

T . Let

A =

[
1/2 1/2
1/2 1/2

]
and B =

[
1/2 −1/2
−1/2 1/2

]
.

Are yT Ay and yT By independent? Explain.
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2.25. Assuming the assumptions of the least squares central limit theorem
hold, what is the limiting distribution of

√
n (β̂ − β) if (X ′X)/n → W−1

as n → ∞?

√
n (β̂ − β)

D→

2.26. Let the model be Yi = β1 +β2xi2 +β3xi3 +β4xi4 + ...+β10xi10 +ei.
The model in matrix form is Y = Xβ + e where e ∼ Nn(0, σ2I). Let P be
the projection matrix on C(X) where the n × p matrix X has full rank p.
What is the distribution of Y T PY ?

Hint: If Y ∼ Nn(µ, I), then Y T AY ∼ χ2(rank(A), µTAµ/2) iff A = AT

is idempotent. Y ∼ Nn(Xβ, σ2I), so
Y

σ
∼ Nn

(
Xβ

σ
, I

)
. Simplify.

2.27. Let Y ′ = Y T . Let Y ∼ Nn(Xβ, σ2I). Recall that E(Y ′AY ) =
tr(ACov(Y )) + E(Y ′)AE(Y ).
Find E(Y ′Y ) = E(Y ′IY ).

2.28. Let y ∼ N2(µ, σ2I) where y = (Y1, Y2)
T and µ = (µ1, µ2)

T . Let

A =

[
1/2 1/2
1/2 1/2

]
and B =

[
1/4

√
3/4√

3/4 3/4

]
.

Are Ay and By independent? Explain.

2.29. Let X =




1 0
1 0
1 1


 .

a) Find rank(X).
b) Find a basis for C(X).
c) Find [C(X)]⊥ = nullspace of XT .

2.30Q. Let Y = Xβ + e where e ∼ Nn(0, σ2In). Assume X has full
rank and that the first column of X = 1 so that a constant is in the model.
Let r be the vector of residuals. Then the residual sum of squares RSS =
rT r = ‖(I − P )Y ‖2. The sample mean Y = 1

n
1T Y . Prove that rT r and Y

independent (or dependent).
(Hint: If Y ∼ Nn(µ, Σ), then AY BY iff AΣBT = 0.

So prove whether (I − P )Y
1

n
1T Y .)

2.31. Let the full model be Yi = β1+β2xi2+β3xi3+β4xi4+β5xi5+β6xi6+ei

and let the reduced model be Yi = β1+β3xi3+ei for i = 1, ..., n. Write the full
model as Y = Xβ+e = X1β1+X2β2 +e, and consider testing H0 : β2 = 0
where β1 corresponds to the reduced model. Let P 1 be the projection matrix
on C(X1) and let P be the projection matrix on C(X).

Then FR =
n − p

q

Y T (P − P 1)Y

Y T (I − P )Y
.

Assume ε ∼ Nn(0, σ2I). Assume H0 is true.
a) What is q?
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b) What is the distribution of Y T (P − P 1)Y ?
c) What is the distribution of Y T (I − P )Y ?
d) What is the distribution of FR?

2.32Q. If P is a projection matrix, prove a) the eigenvalues of P are 0 or
1, b) rank(P ) = tr(P ).

2.33Q. Suppose that AY and BY are independent where A and B are
symmetric matrices. Are Y ′AY and Y ′BY independent? (Hint: show that
the quadratic form Y ′AY is a function of AY by using the definition of the
generalized inverse A−.)

2.34. Craig’s theorem states that if x ∼ Nn(µ, V ) and if A and B are
symmetric matrices, then the quadratic forms x′Ax and x′Bx are indepen-
dent iff i) V AV BV = 0, ii) V AV Bµ = 0, iii) V BV Aµ = 0, and iv)
µ′AV Bµ = 0. Here V is positive semidefinite. Hence V could be singular.
Notice that V is symmetric since it is a covariance matrix.

Suppose that AV B = 0. Are x′Ax and x′Bx are independent? Explain
briefly.

2.35Q. 2.35. Let Y be an n×1 random vector and A an n×n symmetric
matrix. Let E(Y ) = θ and Cov(Y ) = Σ = (σij).

a) Prove that E(Y T AY ) = tr(AΣ) + θT Aθ.
b) Let E(Yi) = θ for all i, σii = σ2 for all i, and σij = ρσ2 for i 6= j

where −1 < ρ < 1. Show that
∑

i(Yi − Y )2 is an unbiased estimator of

σ2(1 − ρ)(n − 1). Hint: write
∑

i(Yi − Y )2 = Y T AY and use a).
c) Show when

∑
i(Yi − Y )2 and Y are independent if Σ = σ2I. State the

theorems clearly wherever used in your proof.
2.36Q (NIU, summer 1991). Consider the regression model Yi = βxi +

ei for i = 1, ..., n where the ei are iid N(0, σ2).
a) Show that the least squares estimator of β is

β̂ =

∑n
i=1 xiYi∑n
i=1 x2

i

.

b) Express β̂ as a linear combination of the responses and derive its mean
and variance.

c) Show that Ŷi = β̂xi is an unbiased estimator of E(Yi)and derive its
variance.

d) Derive the maximum likelihood estimators of β and σ2.

2.37Q. a) For an n × 1 vector Y with E(Y ) = µ and Cov(Y ) = Σ, show
E(Y T AY ) = trace(AΣ) + µT Aµ. is normality necessary here?

b) Consider the usual full rank linear model Y = Xβ + e where X is
n × p, the first column of X is 1, β is p × 1 and e ∼ Nn(0, σ2I).

i) Write down an ANOVA table to test (β2, ..., βp)
T = 0, giving expressions

for the regression sum of squares (SSR) and the error sum of squares (SSE).
ii) Find E(SSR) and E(SSE) when H0 is true.
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iii) Derive the distribution of SSE/σ2 if H0 is true. State any theorems
used.

2.38Q. a) Define a generalized inverse of a matrix A.
b) i) Suppose X is n × p with rank r < p. Give the formula for the

projection matrix P onto the column space of X.
ii) For

X =




1 −2
1 −2
1 −2


 ,

calculate P .
iii) With X as above and Y = (1, 2, 3)T , calculate the error sum of squares

SSE.
2.39Q. Consider the usual full rank model Y = Xβ + e where X is n× p

and e ∼ Nn(0, σ2In). Let β = (βT
1 βT

2 )T where βi is pi × 1.
a) Write down the complete ANOVA table for the test H0 : β2 = 0,

including the expected mean squares.
b) Prove that SSE(R) − SSE and MSE are independent.
c) If H0 is true, show FR ∼ Fp2,n−p.
2.40Q. Let Y ∼ Nn(µ, Σ) where Σ > 0, and let A be a symmetric matrix.
a) State the necessary and sufficient condition(s) for Y T AY to be a chi-

square random variable.
b) Suppose rank(Σ) = n and BΣA = 0 where B is a q×n matrix. Prove

that Y T AY and BY are independent.
c) If µ = µ1 and Σ = σ2I where σ2 > 0, prove that

Y =
1

n

n∑

i=1

Yi and
1

n − 1

n∑

i=1

(Yi − Y )2 are independent.

2.41Q. Let Y = Xβ + e where e ∼ Nn(0, σ2I), X is an n × p matrix of
rank p, and β is a p × 1 vector.

a) Write down (do not derive) the MLEs of β and σ2.
b) If σ̂2 is the MLE of σ2, derive the distribution of (n − p)σ̂2/σ2.

c) Prove that β̂ (MLE of β) and σ̂2 are independent.
d) Now suppose e ∼ Nn(0, σ2V ) where V is a known positive definite

matrix. Write down the MLE of β.
2.42Q. a) Suppose Y ∼ Nn(µ, Σ). Let A be an n× n symmetric matrix.
i) Show E[(Y − µ)T A(Y − µ)] = tr(AΣ). Is normality of Y necessary

here?
ii) State a necessary and sufficient condition for (Y −µ)T A(Y −µ) to be

a chi-square random variable.
iii) State a necessary and sufficient condition for (Y −µ)T A(Y −µ) and

BY to be independent where B is an q × n matrix.
b) Suppose Y ∼ Nn(Xβ, σ2I) where X is an n × p matrix of rank p and

β is p × 1.
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i) Derive the distribution of
1

σ
(I−H)Y where H is the projection matrix

onto the column space C(X).

ii) Derive the distribution of u =
Y T (I − H)Y

σ2
.

iii) Show that u and v = HY are independent.

2.43Q. Consider the regression model yi = βxi + ei for i = 1, ..., n where
the ei are iid N(0, σ2).

a) Derive the least squares estimator of β.
b) Write down an unbiased estimator of σ2.
c) Derive the maximum likelihood estimators of β and σ2.
2.44Q. Let Y1 and Y2 be iindependent random variables with mean θ and

2θ respectively. Find the least squares estimate of θ and the residual sum of
squares.

2.45Q. a) By the least squares central limit theorem,
√

n(β̂ − β)
D→

Np(0, σ2 W ). Hence the limiting distribution of of
√

n(β̂−β) is the Np(0, σ2 W )
distribution. Let A be a constant r×p matrix. Find the limiting distribution
of A

√
n(β̂ − β).

b) Suppose Zn
D→ Nk(µ, I). Let A be a constant r × k matrix. Find the

limiting distribution of A(Zn − µ).
2.46.
2.47.
2.48.
2.49.
2.50.
2.51.
2.52.
2.53.

R Problems
Use the command source(“G:/linmodpack.txt”) to download the

functions and the command source(“G:/linmoddata.txt”) to download the
data. See Preface or Section 11.1. Typing the name of the linmodpack
function, e.g. regbootsim2, will display the code for the function. Use the
args command, e.g. args(regbootsim2), to display the needed arguments for
the function. For the following problem, the R commands can be copied and
pasted from (http://parker.ad.siu.edu/Olive/linmodrhw.txt) into R.

2.54. Generalized and weighted least squares are each equivalent to
a least squares regression without intercept. Let w′ = wT . Let V =
diag(1, 1/2, 1/3, ..., 1/9) = diag(wi) where n = 9 and the weights wi = i
for i = 1, ..., 9. Let x′ = (1, x1, x2, x3). Then the weighted least squares
with weight vector w′ = (1, 2, ..., 9) is equivalent to the OLS regression of√

wi Yi = Zi on u where u =
√

wix = (
√

wi,
√

wix1,
√

wix2,
√

wix3)
′. There

is no intercept because the vector of ones has been replaced by a vector of
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the
√

wi’s. Copy and paste the commands for this problem into R. The com-
mands fit weightd least squares and the equivalent OLS regression without
an intercept. Include one page of output in Word.


