Chapter 2
Full Rank Linear Models

2.1 Projection Matrices and the Column Space

Vector spaces, subspaces, and column spaces should be familiar from linear
algebra, but are reviewed below.

Definition 2.1. A set V C R* is a vector space if for any vectors
x,y,z €V, and scalars a and b, the operations of vector addition and scalar
multiplication are defined as follows.

D@+y)+z=x+(y+2).
2Q)z+y=y+=x
3) There exists 0 € V such that £ + 0=z = 0 + .
4) For any @ € V, there exists y = —x such that t + y =y + x = 0.
) a(x +y) = ax + ay.
) (a +b)x = ax + by.
) (ab) & = a(b x).
)1

r = x.

0 3 O Ot

Hence for a vector space, addition is associative and commutative, there
is an additive identity vector O, there is an additive inverse —ax for each
x € V, scalar multiplication is distributive and associative, and 1 is the
scalar identity element.

Two important vector spaces are R¥ and V = {0}. Showing that a set M
is a subspace is a common method to show that M is a vector space.

Definition 2.2. Let M be a nonempty subset of a vector space V. If i)
ax € M Ve € M and for any scalar a, and ii) * + y € M Va,y € M, then
M is a vector space known as a subspace.

Definition 2.3. The set of all linear combinations of x1, ..., x, is the
vector space known as span(xi,...,xz,) = {y € R¥ : y = Y1 | a;x; for some
constants ai, ..., ap}.
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72 2 Full Rank Linear Models

Definition 2.4. Let x1, ..., x; € V. If 3 scalars ay, ..., aj not all zero such
that Zle a;x; = 0, then @1, ..., xy are linearly dependent. If Zle a;x; =0
onlyifa; =0V i=1,....k, then x, ..., xx are linearly independent. Suppose
{x1,...,x} is a linearly independent set and V = span(xi, ..., xx). Then
{x1, ..., @k} is a linearly independent spanning set for V, known as a basis.

Definition 2.5. Let A = [a; a3 ... a;,] be an n x m matrix. The space
spanned by the columns of A = column space of A = C(A). Then C(A) =
{yeR":y=Aw forsome w € R} = {y: y = wia; +weas+ - +Wnan
for some scalars wy, ...., wy} = span(ay, ..., am).

The space spanned by the rows of A is the row space of A. The row space
of A is the column space C(A”) of AT, Note that

w1 m
Aw =[a; az ...ap] | = Zwiai.
1=1

Wm

With the design matrix X, different notation is used to denote the columns
of X since both the columns and rows X are important. Let

T
Ty

X =[vivy..vp) =] :

z,,
be an n x p matrix. Note that C(X) = {y € R" : y = Xb for some b € RP}.
Hence Xb is a typical element of C(X) and Aw is a typical element of C(A).
Note that

xT zT'b b1 »
Xb= b= :[’Ul V2 ...’Up] :Zbl’l}l
xl ) bp i=1

If the function X y(b) = Xb where the f indicates that the operation
Xy :R? — R" is being treated as a function, then C'(X) is the range of X ;.
Hence some authors call the column space of A the range of A.

Let B be n x k, and let A be n x m. One way to show C(A) = C(B)
is to show that i) Vz € R™, 3 y € R¥ such that Az = By € C(B) so
C(A) C O(B), and ii) Vy € R*¥, 3 & € R™ such that By = Az € C(A) so
C(B) C C(A). Another way to show C(A) = C(B) is to show that a basis
for C(A) is also a basis for C'(B).

Definition 2.6. The dimension of a vector space V = dim(V) = the
number of vectors in a basis of V. The rank of a matrix A = rank(A) =
dim(C(A)), the dimension of the column space of A. Let A be n x m. Then
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rank(A) = rank(AT) < min(m, n). If rank(A) = min(m, n), then A has full

rank, or A is a full rank matrix.

Definition 2.7. The null space of A = N(A) = {x : Ax = 0} = kernel
of A. The nullity of A = dim[N(A)]. The subspace V* = {y ¢ R¥ : y 1 V}
is the orthogonal complement of V, where y L V means y"x =0V x € V.
N(AT) = [C(A)]*, so N(A) = [C(AT)]*.

Theorem 2.1: Rank Nullity Theorem. Let A be n x m. Then
rank(A) + dim(N(A)) = m.

Generalized inverses are useful for the non-full rank linear model and for
defining projection matrices.

Definition 2.8. A generalized inverse of an n x m matrix A is any
m X n matrix A~ satisfying AA™ A = A.

Other names are conditional inverse, pseudo inverse, g-inverse, and p-
inverse. Usually a generalized inverse is not unique, but if A™! exists, then
A~ = A is unique.

Notation: G := A~ means G is a generalized inverse of A.

Recall that if A is idempotent, then A = A. A matrix A is tripotent if

A% = A. For both these cases, A := A~ since AAA = A. It will turn out
that symmetric idempotent matrices are projection matrices.

Definition 2.9. Let V be a subspace of R™. Then every y € R™ can be
expressed uniquely as y = w + z where w € V and z € V. Let X =
[v1 V2 ... vp] be n X p, and let V = C(X) = span(vi, ..., vp). Then the n x n
matrix Py = P x is a projection matrix on C(X)if Px y =wVy € R".
(Here y = w + z = wy + zy, so w depends on y.)

Note: Some authors call a projection matrix an “orthogonal projection
matrix,” and call an idempotent matrix a “projection matrix.”

Theorem 2.2: Projection Matrix Theorem. a) P x is unique.
b) Px = X(XTX)~XT where (XTX)~ is any generalized inverse of
xX'x.
¢) A is a projection matrix on C'(A) iff A is symmetric and idempotent. Hence
P x is a projection matrix on C'(P x ) = C(X), and P x is symmetric and
idempotent. Also, each column p; of P x satisfies P xp, = p;, € C(X).
d) I,, — P x is the projection matrix on [C(X)]*.
e) A= Px iff i) y € C(X) implies Ay = y and ii) y L C(X) implies
Ay =0.
f) Px X = X, and PxW = W if each column of W € C(X).
g) Pxv;=wv;.
h) If C(Xg) is a subspace of C(X), then PxPx =Px Px=Px .
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i) The eigenvalues of P x are 0 or 1.

j) Let tr(A) = trace(A). Then rank(P x ) = tr(P x ) = rank(X).

k) P x issingular unless X is a nonsingular nxn matrix, and then P x = I,,.
1) Let X = [Z X,] where rank(X) = rank(X,) = r so the columns of X,
form a basis for C(X). Then

0 0
0 (XX,
is a generalized inverse of X" X, and Py = X, (X! X,)"' X!,

Two important consequences of the above theorem follow. First, P is
a projection matrix iff P is symmetric and idempotent. Partition X as
X = [X;1 Xg|, let P be the projection matrix for C(X) and let Py be
the projection matrix for C(X ). Since C(P;) = C(X1) CC(X), PP, = P;.
Hence PP = (PP;)" = PT = P,.

Some results from linear algebra are needed to prove parts of the above
theorem. Unless told otherwise, matrices in this text are real. Then the
eigenvalues of a symmetric matrix A are real. If A is symmetric, then

rank(A) = number of nonzero eigenvalues of A. Recall that if AB is
a square matrix, then ¢r(AB) = tr(BA). Similarly, if A; is my X mg,
As is mo X mg, ..., Ag_1 is mr_1 X my, and Ay is myp X my, then

tT(AlAQ . Ak) = tT(AkAlAQ s 'Akfl) = tT(AkflAkAlAQ tee Ak,Q) =

- = tr(AgsAs--- A A;). Also note that a scalar is a 1 x 1 matrix, so
tr(a) = a. The next two paragraphs follow Christensen (1987, pp. 335-338)
closely.

If P and A are n x n matrices, then P = A iff Py = Ay for all y € R"
iff y"P = yTA for all y € R™. Let V be a subspace of R". Let y € R”
with y = w + z where w € V and z € V*. Let A and P be projection
matrices on V. Then Ay = w = Py. Since y was arbitrary, A = P and
projection matrices are unique. We prove that P x is symmetric below. Then
the projection matrix A = A(AT A)~ A is symmetric by replacing X by A.
Hence Az = ATz = 0. Thus A%y = Aw = w = Ay, and A2 = A since y
was arbitrary.

Now suppose A2 = A = AT and let w e C (A). Hence w = Aa for some
vector a. Thus Aw = A%a = Aa = w. Let z L C(A) = C(AT). Then
2TA = 2TAT = 0. Thus Ay = Aw = w, and A is a projection matrix on
C(A). Note that C(Px) € C(X) since Px X = X, and C(X) C C(Px)
since Py = XW where W = (X" X)~X". Thus C(X) = C(Px). To
show that Px X = X, let y = w + z with w = Xa and z2I'X = 0.
Note that y" Px X = wTX(X"X) " X"X =" X" X(X"X)"X"X =
a’XTX = w'X = yTX. Since y was arbitrary, P x X = X. Note that
Pxy=Px(wt+z)=Pxw=X(X"X)"X"Xa=PxXa=Xa=w.
Thus P x is a projection matrix on C(X).
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Note that if G is a generalized linear inverse of a symmetric matrix A,
then AT = ATGTAT = AGTA = A. Hence G” is a generalized linear
inverse of A. Also, AGAGTA = AGTA = A. Hence GAGT, a symmetric
matrix, is a generalized inverse of A. Thus a symmetric matrix A always
has a symmetric generalized linear inverse. Hence let B := (X7 X)~ be a
symmetric matrix. Then Py = XTBX = XT(XTX)~ X is symmetric
since P x is unique, even if (X T X)~ is not symmetric.

For part d), note that if y = w + 2, then (I, — Px )y = z € [C(X)]*.
Hence the result follows from the definition of a projection matrix by in-
terchanging the roles of w and z. Part e) follows from the definition of
a projection matrix since if y € C(X) then y = y + 0 where y = w
and 0 = z. If y L C(X) then y = 0+ y where 0 = w and y = z.
Part g) is a special case of f). In k), P x is singular unless p = n since
rank(X) = r < min(p,n) < max(n,p) unless p = n, and Px is an
n x n matrix. Need rank(Px) = n for Px to be nonsingular. For h),
PxPx = Px_byf) since each column of Px € C(Px). Taking
transposes and using symmetry shows Px Px = Px . For i), if A is an
eigenvalue of P x, then for some & # 0, A\x = P xx = P?ch = M2z since
P x is idempotent by c). Hence X\ = A2 is real since P X is symmetric, so
A =0or A = 1. Then j) follows from i) since rank(P x ) = number of nonzero
eigenvalues of Px = tr(P x ).

For 1), note that C'(X) = C(X,). Thus X, (X! X,) ' X! = Px. Then

z'z zZ'Xx 0 0
T o T T T _
=[S k] e o e X
Z'X (X, X)X Z ZTX | _ ey
xTz xXT'x, |~

since Z' Px Z = Z" Z because each column of Z € C(X).

Most of the above results apply to full rank and nonfull rank matrices.
A corollary of the following theorem is that if X is full rank, then Py =
X(xXTx)'xT=H.

Suppose A is p x p. Then the following are equivalent. 1) A is nonsingular,
2) A has a left inverse L with LA = I,,, and 3) A has a right inverse R
with AR = I,. To see this, note that 1) implies (2) and 3) since A™'A =
I, = AA™! by the definition of an inverse matrix. Suppose AR = I,. Then
the determinant det(I,) =1 = det(AR) = det(A) det(R). Hence det(A) # 0
and A is nonsingular. Hence R = A"* AR = A~ ! and 3) implies 1). Similarly
2) implies 1). Also note that L = LI, = LAR = I,R = R = A~'. Hence
in the proof below, we could just show that A~ = L or A~ = R.

Theorem 2.3. If A is nonsingular, the unique generalized inverse of A is
AL
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Proof. Let A™ be any generalized inverse of A. We give two proofs. i)
A = A'AAAAT = A7TAAT = AT ) ATA = ATTAATA =
A'A=Tand AA-=AA AA "' =AA " =1 Thus A~ =A"". O

2.2 Quadratic Forms

Definition 2.10. Let A be an nxn matrix and let € R™. Then a quadratic
form 2" Az = Y | Z?:l a;jr;xj, and a linear form is Ax. Suppose A
is a symmetric matrix. Then A is positive definite (A > 0) if z7 Az >
0V x # 0, and A is positive semidefinite (A > 0) if T Az >0V =.

Notation: The matrix A in a quadratic form &7 Az will be symmetric
unless told otherwise. Suppose B is not symmetric. Since the quadratic form
is ascalar, 27 Bx = (27 Bx)” = 2" BT 2 = 27 (B+B7")x/2, and the matrix
A = (B + B")/2 is symmetric. If A > 0 then the eigenvalues \; of A are
real and nonnegative. If A > 0, let Ay > Ao > --- >\, > 0. If A > 0, then
An > 0. Some authors say symmetric A is nonnegative definite if A > 0, and
that A is positive semidefinite if A > 0 and there exists a nonzero x such
that 7 Az = 0. Then A is singular.

The spectral decomposition theorem is very useful. One application for
linear models is defining the square root matrix.

Theorem 2.4: Spectral Decomposition Theorem. Let A be an nxn
symmetric matrix with eigenvalue eigenvector pairs (A1, 1), (A2, t2), ..., (An, tr)
where t7t; = 1 and t/t; = 0 if i # j for i = 1,...,n. Hence At; = \;t;. Then
the spectral decomposition of A is

n
A=) Nitit] = Mgt 4 At
1=1

Let T = [t; ta --- t,] be the n x n orthogonal matrix with ith column
t;. Then TTT = TTT = I. Let A = diag(\1,..., \,) and let AY? =
diag(vAL, ..., \/An). Then A = TATT.

Definition 2.11. If A is a positive definite n X n symmetric matrix with
spectral decomposition A = 37| \it;t!, then A = TAT” and

"1
A =TAITT =N ¢!

The square root matriz AY? = TAY?*TT is a positive definite symmetric
matrix such that AY/24Y% = A.
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The following theorem is often useful. Both the expected value and trace
are linear operators. Hence tr(A + B) = tr(A) + tr(B), and E[tr(X)] =
tr(FE[X]) when the expected value of the random matrix X exists.

Theorem 2.5: expected value of a quadratic form. Let x be a ran-
dom vector with F(x) = p and Cov(x) = X. Then

E(xT Ax) = tr(AX) + ul Ap.

Proof. Two proofs are given. i) Searle (1971, p. 55): Note that E(zx’) =
X + pp®. Since the quadratic form is a scalar and the trace is a linear
operator, E[zT Az] = Etr(zT Az)] = E[tr(Azz?)] = tr(E[AzzT]) =
tr(AX + AppT) = tr(AX) + tr(App®) = tr(AX) + uT Ap.

ii) Graybill (1976, p. 140): Using E(z;x;) = 04 + pipj, ElzT Az] =
Y X ai Blaiy) = Y01y Y05y aij(0i + papy) = tr(AX) + pT Ap. O

Much of the theoretical results for quadratic forms assumes that the e;
are iid N(0,02). These exact results are often special cases of large sample
theory that holds for a large class of iid zero mean error distributions that
have V (e;) = o2. For linear models, Y is typically an n x 1 random vector.
The following theorem from statistical inference will be useful.

Theorem 2.6. Suppose x 1Ly, g(x) is a function of x alone, and h(y) is
a function of y alone. Then g(x) 1L h(y).

The following theorem shows that independence of linear forms implies
independence of quadratic forms.

Theorem 2.7. If A and B are symmetric matrices and AY 1L BY | then
YTAY 1LYTBY.

Proof. Let g(AY) = YTATA"AY = YTAA AY = YTAY, and
let W(BY) = Y'B'"B "BY = Y'BB BY = Y'BY. Then the result
follows by Theorem 2.6. [J

Theorem 2.8. Let Y ~ N,(u,X). a) Let u = AY and w = BY.
Then AY 1 BY iff Cov(u,w) = AXB” = 0 iff BX A" = 0. Note that if
¥ =o2I,, then AY 1L BY iff ABT = 0 iff BAT =o0.

b) If A is a symmetric n X n matrix, and B is an m X n matrix, then
YTAY 1 BY if AYBT = 0 if BXYAT = BXA = 0. Note that if ¥ =
o2I,, then YTAY 1L BY if ABT =0if BA=0.

Proof. a) Note that

u AY A
(o) =(5v)=(5)7
has a multivariate normal distribution. Hence AY 1L BY iff Cov(u,w) = 0.
Taking transposes shows Cov(u, w) = AXB? =0 iff BX AT = 0.
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b) If AXBT =0, then AY 1L BY by a). Let g(AY) =Y TATA-AY =
YTAAAY = YTAY. Then g(AY) = YT AY 1L BY by Theorem 2.6. (]

One of the most useful theorems for proving that Y7 AY 1L YTBY is
Craig’s Theorem. Taking transposes shows AYB = 0 iff B¥ A = 0. Note
that if A¥B = 0, then (*) holds. Note A¥XB = 0 is a sufficient condition
for YYAY 1L YTBY if 3 > 0, but necessary and sufficient if X > 0. If
Y ~ N,(p, X) and AY L BY , then Y7 AY L YT BY, but if X is singular,
it is possible that YT AY 1L YTBY even if AY and BY are dependent.

Theorem 2.9: Craig’s Theorem. Let Y ~ N, (u, ).

a) If ¥ >0, then YTAY 1 Y'BY if AYB=0iff BXYA = 0.

b) If X >0, then YTAY 1 YTBY if AXB =0 (or if BXA = 0).

¢) If ¥ >0, then YTAY L YT BY iff
() YJAYBY =0, YAXBu=0,YXBXAu =0, and uy’ AXBpu = 0.

Proof. For a) and b), AXB = 0 implies Y'AY 1L Y'BY by c)
or by Theorems 2.6, 2.7, and 2.8. See Reid and Driscoll (1988) for why
YTAY L YTBY implies AXB =0 in a).

¢) See Driscoll and Krasnicka (1995).

The following theorem is a corollary of Craig’s Theorem.

Theorem 2.10. Let Y ~ N,(0,I,), with A and B symmetric. If
YTAY ~ 2 and Y'BY ~ X2, then YTAY 1 YT BY iff AB = 0.

Theorem 2.11. If Y ~ N,(u,X) with X > 0, then the population
squared Mahalanobis distance (Y — p)T X1 (Y — ) ~ x2.

Proof. Let Z = X'V/?(Y — p) ~ N, (0,I). Then Z = (Z,, ..., Z,)" where
the Z; are iid N(0,1). Hence (Y — )" XN Y —p) = ZTZ =30 | Z? ~ X2.
O

For large sample theory, the noncentral x? distribution is important. If
Z1, ..., Zn, are independent N(0,1) random variables, then > I | ZZ ~ x2.
The noncentral x?(n,v) distribution is the distribution of Y7, Y;? where
Y1,...,Y, are independent N(u;,1) random variables. Note that if ¥ ~
N(u, 1), then Y2 ~ x%(n = 1,y = p?/2), and if Y ~ N(y/27,1), then
V2~ X2(n = 1)7)'

Definition 2.12. Suppose Yi,...,Y, are independent N(u;,1) random
variables so that Y = (Y1, ..., ¥,)T ~ N, (, I,). Then Y'Y =30 | V2 ~
X2(n,y = pu¥'w1/2), a noncentral x*(n,~) distribution, with n degrees of free-
dom and noncentrality parameter v = p*'pu/2 = % >, uZ > 0. The noncen-
trality parameter § = puT p = 27 is also used. If W ~ x2, then W ~ x2(n,0)
so v = 0. The x2 distribution is also called the central x? distribution.

Some of the proof ideas for the following theorem came from Marden
(2012, pp. 48, 96-97). Recall that if Y7, ..., Y} are independent with moment



2.2 Quadratic Forms 79
generating functions (mgfs) my; (t), then the mgf of Zle Yiis myr oy, )=
Hmy .IfY ~ x%(n,7), then the probability density function (pdf) of Y’

1s rather hard to use, but is given by

fy) =Y

=0

e Yyl yEtic 16 y/2
jU 25T va ()2 (y
j=

where p,(j) = P(W = j) is the probability mass function of a Poisson(y)
random variable W, and f,,12;(y) is the pdf of a x? 427 Tandom variable. If
v = 0, define 4° = 1 in the first sum, and po(0) = 1 with po(j) = 0 for
7 > 0 in the second sum. For computing moments and the moment gen-
erating function, the integration and summation operations can be inter-
changed. Hence fo ydy = 327200y (0) fo Favei(y)dy = 332 opv( ) =1.
Similarly, if mn+2J(t) = (1 —2t)~("#2)/2 is the mgf of a x2,,; ran-
dom variable, then the mgf of Y is my (t) = E(e") = [;% e f(y)dy

Z;io py(J) fooo e frt2j(y)dy = Z;io Py (F)mn2; ().

Theorem 2.12. a) If Y ~ x?(n,~), then the moment generating function
of Yis my (t) = (1 — 2t) /2 exp(—7[1 — (1 — 2t)7}]) =
(1 —2t)™/ 2 exp[2vt/(1 — 2t)] for t < 0.5.

b) If Y; ~ x?(n;,7;) are independent for i = 1, ..., k, then

k k k
i1 Vi~ X (Zi:l iy Y iy ”Yi) :
c) fY ~ x?(n,v), then E(Y) =n+ 2y and V(Y) = 2n + 8.
Proof. Two proofs are given. a) i) From the above remarks, and using e”

J
Z Ze Wl 24)~(n+24)/2 — (1_9¢) "/22 (1 Qt) -
ji= 0] Jj=0 :

_ _ 27t
1 - 2t)~"/2 - T ) =12t .
(1= 20 2exp (= 10 ) = (- 20 e (25

ii) Let W ~ N(V/3,1) where § = 2. Then W? ~ x2(1,6/2) = x3(1,7).
Let W 1L X where X ~ x2_; ~ x%(n—1,0), and let Y = W2 + X ~ x%(n, )
by b). Then my (t) =

Be?) = /Oo et L e [_—1(10 - \/3)2] dw =

o V2 2
/O:o\/l_exp[2tw —%(w —2\/_w—|—5)]dw—

/O:o\/l_exp[ 1(w — 2tw? —2\/_w+5)]



80 2 Full Rank Linear Models
/Oo L, [_1( 2(1—2t) —2V§ +5)]d /Oo L [_1A]d
Xp |5 (W - - w w = Xp | — w
—oo V2T P 2 —oo V2T P 2
where A = [\/1—2t (w— b)]?+ ¢ with

NG} —2t6

=1 M e=T

after algebra. Hence mi, (t) =

T/~ 1 1 —1 1 I
—c/2 — 02| dw = —c/2
‘ \/1—2t/,oo\/27r I eXp[z mty )] R 7
1-2t

since the integral = 1= [~ f(w)dw where f(w) is the N(b,1/(1—2t)) pdf.
Thus

- . t6
myy2 —7\/@ Xp T2 )

So my (t) = Mmw24Xx (t) = M2 (t)mX (t) =

1 t5 1 \"v2 L t5
X = —— eX _— =
St P\1—2r)\1—2¢ 1 —20m2 “P\1-2

(1 —2t)""/%exp ( 2yt ) .

1—2¢
b) i) By a), myx 1y, (t) =

k

k
[Ty 6) = [1( — 207" exp(ift — (1 ~20)7) =

=1

k
(1— 20*2?:1 ni/2 exp (— Z%[l —(1- 2t)1]> ,

k k
the x? <Z nuZ%) mgf.
=1 i=1
ii) Let Y; = ZT' Z; where the Z; ~ N,,(u;, I,,) are independent. Let
Z My
Z K2
: 1 i : ’ IZ?:l ni| ™ NZ?:l i (“Z’ IZ?:l "1)

Zy, ey,
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k k k
Then Z7Z = ZZl-TZl- = ZYi ~ X2 <Z ni,yz> where

=1 =1 =1

k
vy = “Z“Z Zuml Z”Y

c) i) Let W ~ x?(1,7) L X ~ x2_; ~ x*(n — 1,0). Then by b) Y =
W+X ~ x%(n,7). Let Z ~ N(0,1) and § = 2. Then vV6+Z ~ N(+/6,1), and
= (Vo+2)%. Thus E(W) = E[(V3+2)?] = 6+2V0E(Z)+ E(Z?) = 6 +1.

Using the binomial theorem

wrpr=d (1)

1=0
withz =0, y = Z, and n = 4, E(W?) = E[(V§ + 2)] =
B0 +40°%2Z + 662% + 4V62°% + 2% = 62 + 60 + 3

since E(Z) = E(Z%) = 0, and E(Z*) = 3 by Problem 2.8. Hence V(W) =

E(W?) —[E(W)]? = 5246543~ (0+1)2 =62465+3—0%2—-25—1 =45+2.
Thus E(Y) = EW)+ E(X) =6d+14+n—-1=n+0 = n+ 2y, and
VY)=V(W)4+V(X)=46+2+2(n—1) =85+ 2n.

ii) Let Z; ~ N(ui, 1) so E(Z?) = 0% + 2 = 1 + p2. By Problem 2.8,
E(Z}) = p3 + 3pi, and E(Z}) = pt + 6u? + 3. Hence Y ~ x2(n,~) where
Y =277 =30 | 72 where Z ~ N, (u,I). So E(Y) = Y| E(Z?) =
YA+ =n+pfp=n+2y,and V(Y) =30, V(Z7) =

n n n

SN EZY — (BIZ2)%) =D [ut +6p2 +3 —pf —2p — 1] = > [4p? +2)

i=1 i=1 i=1
=2n+4pp=2n+8y. 0O

For the following theorem, see Searle (1971, p. 57). Most of the results in
Theorem 2.14 are corollaries of Theorem 2.13. Recall that the matrix in a
quadratic form is symmetric, unless told otherwise.

Theorem 2.13. If Y ~ N,(u,X) where ¥ > 0, then YTAY ~
’(rank(A), uT Ap/2) iff AX is idempotent.
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For the following theorem, note that if A = A7 = A% then A is a
projection matrix since A is symmetric and idempotent. An n x n projection
matrix A is not a full rank matrix unless A = I,,. See Theorem 2.2 j) and
k). Often results are given for Y ~ N, (0, I), and then the Y ~ N, (0, 02I)
case is handled as in ¢) and g) below, since Y /o ~ N, (0, I).

Theorem 2.14. Let A = AT be symmetric.

a) If Y ~ N,(0,%) where X is a projection matrix, then Y?Y ~
x2(rank(X)) where rank(X) = tr(X).

b)IfY ~ N, (0,I),then YTAY ~ x2iff A isidempotent with rank(A) =
tr(A) =r.

c) Let Y ~ N, (0,02%I). Then

YTAY
2

> ~x2 or YTAY ~ o2 2

iff A is idempotent of rank r.
d)IfY ~ N, (0, X) where X > 0, then YZ AY ~ x2 iff AY is idempotent
with rank(A) = r = rank(AX).
T T
e) If Y ~ N, (0,0%I) then Y 2Y ~x? (n, M) :
o 202
f) If Y ~ N, (s, I) then YTAY ~ x2(r, u? Ap/2) iff A is idempotent
with rank(A) = tr(A) =r.

Yy'AY TA
g) If Y ~ N,,(p,0%I) then — ~ X (r, “2 2”) iff A is idempotent
o
with rank(A) = tr(A) =r.

g

Note that A is a projection matrix iff A is idempotent in b) since A is
symmetric. Thus b) is a special case d). To see that ¢) holds, note Z =Y /o ~
N,(0,I). Hence by b)

YTAY
2

=ZTAZ ~ \?
o

iff A is idempotent of rank 7. Much of Theorem 2.14 follows from Theorem
2.13. For f), we give another proof from Christensen (1987, p. 8). Since A is a
projection matrix with rank(A) = r, let {by,...,b,} be an orthonormal basis
for C(A) and let B = [b; by ... b,]. Then B B = I, and the projection
matrix A = B(B"B)"'B” = BB". Thus Y"AY = Y'BB"Y = 272
where Z = B'Y ~ N.(BT'u,B"IB) ~ N,(B'u,I,). Thus Y AY =
ZTZ ~ 2(r,u)" BBT 1/2) ~ x2(r, uT Ap/2) by Definition 2.12.

The following theorem is useful for constructing ANOVA tables. See Searle
(1971, pp. 60-61).

Theorem 2.15: Generalized Cochran’s Theorem. Let Y ~ N, (i, X).
Let A; = AT have rank r; for i = 1,...,k, and let A = Zle A; = AT have
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rank 7. Then Y7 A;Y ~ x2(rs, ¥ A;pn/2), and the YT A;Y are independent,
and YTAY ~ x2(r, uT Ap/2), iff

I) any 2 of a) A; X are idempotent Vi,

b) A, YA; =0 Vi<j,

¢) AX is idempotent

are true; or II) c) is true and d) r = Zle T4

or ITI) ¢) is true and e) A1X,.., Ap_1 X are idempotent and AxX > 0 is
singular.

2.3 Least Squares Theory

Definition 2.13. Estimating equations are used to find estimators of
unknown parameters. The least squares criterion and log likelihood for max-
imum likelihood estimators are important examples.

Estimating equations are often used with a model, like Y = X3 + e,
and often have a variable 3 that is used in the equations to find the es-
timator B of the vector of parameters in the model. For example, the log
likelihood log(L(3, 0%)) has 3 and ¢? as variables for a parametric statistical
model where 3 and o2 are fixed unknown parameters, and maximizing the
log likelihood with respect to these variables gives the maximum likelihood
estimators of the parameters 3 and o2. So the term 3 is both a variable in
the estimating equations, which could be replaced by another variable such
as 1, and a vector of parameters in the model. In the theorem below, we
could replace m by B where 3 is a vector of parameters in the linear model
and a variable in the least squares criterion which is an estimating equation.

Theorem 2.16. Let 8 = Xn € C(X) where Y; = ] 1 + r;(n) and the
residual r;(n) depends on 7). The least squares estimator (3 is the value
of m € RP that minimizes the least squares criterion

Yiarim) =Y — Xn|?. o

Proof. Following Seber and Lee (2003, pp. 36-38),let Y =0 = PxY ¢
C(X),r=(I—-Px)Y € [C(X)]*, and 8 € C(X). Then (Y — 6)7(6 —
0)=(Y -PxY)'(PxY -Px0)=Y"(I-Px)Px(Y —8) =0 since
Px0=0.Thus [[Y —0]>=(Y -0+6-0)T(Y —0+6—-0)=

1Y =0+ 6 -6]>+2(Y -0)"(6-6) = |Y - |

with equality iff |§ — 6|2 = 0 iff @ = & = Xn. Since § = X3 the result
follows. [

Definition 2.14. The normal equations are
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xT'xp=x"y.

To see that the normal equations hold, note that r =Y — Y L C(X) by
Theorem 1.2 ¢) (and Theorem 2.20 i)). Thus 7 € [C(X)]* = N(X7T), and
XT(Y —Y)=0.Hence XY = X"X3=X"Y.

The maximum likelihood estimator uses the log likelihood as an estimating
equation. Note that it is crucial to observe that the likelihood function is a
function of @ (and that y1, ..., y, act as fixed constants). Also, if the MLE 6

exists, then 0e O, the parameter space.

Definition 2.15. Let f(y|0) be the joint pdf of Y1,....Y,. Y = y is
observed, then the likelihood function L(6) = f(y|0). For each sample
point y = (y1, ..., Yn), let é(y) be a parameter value at which L(6|y) attains
its maximum as a function of @ with y held fixed. Then a maximum likelihood
estimator (MLE) of the parameter 8 based on the sample Y is 8(Y).

Definition 2.16. Let the log likelihood of 8, and 65 be log[L(81, 62)]. If 0,
is the MLE of 05, then the log profile likelihood is log[L,(01)] = log[L(61, 02)].

We can often fix ¢ and then show B is the MLE by direct maximization.
Then the MLE & or 62 can be found by maximizing the log profile likelihood
function log[L,(c)] or log[L,(c?)] where L,(c) = L(o, 8 = B3).

Remark 2.1. a) Know how to find the max and min of a function h that
is continuous on an interval [a,b] and differentiable on (a, b). Solve h/(z) =0
and find the places where h/(x) does not exist. These values are the critical
points. Evaluate h at a, b, and the critical points. One of these values will
be the min and one the max.

b) Assume h is continuous. Then a critical point 6, is a local max of h(6)
if h is increasing for 6 < 6, in a neighborhood of 6, and if h is decreasing for

6 > 0, in a neighborhood of 6,. The first derivative test is often used.
2

d
¢) If h is strictly concave (Wh(ﬁ) <0 for all 9), then any local max

of h is a global max.
2

d
d) Suppose h'(6,) = 0. The 2nd derivative test states that if Wh(ﬂo) <0,
then 6, is a local max.

e) If h(#) is a continuous function on an interval with endpoints a < b
(not necessarily finite), and differentiable on (a,b) and if the critical point
is unique, then the critical point is a global maximum if it is a local
maximum (because otherwise there would be a local minimum and the critical
point would not be unique). To show that @ is the MLE (the global maximizer
of h(0) =log L(0)), show that log L(#) is differentiable on (a,b). Then show

N d
that € is the unique solution to the equation 70 log L(#) = 0 and that the
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A d?
2nd derivative evaluated at 6 is negative: pre) log L(0)|; < 0. Similar remarks

hold for finding 62 using the profile likelihood.

Theorem 2.17. Let Y = X3+ e = Y + r where X is full rank, and
Y ~ N, (XB,0%I). Then the MLE of 3 is the least squares estimator B and
the MLE of 02 is RSS/n = (n — p)M SE/n.

Proof. The Y; = Y;|x; are independent N (z!' 3, 0%) random variables with
probability density functions (pdfs) fy,(vi). Let y; be the observed values of
Y;. Thus the likelihood function

L(B, 0'2) = il;[lin(yi) = };[1 U—\/%GXP (F(yi - $?5)2> =

n 1 — o -1
(2m0?) /% exp (F Z(yl - CC?,@V) = (210?) /2 exp (FHJ - X/B|2> .
i=1

The least squares criterion Q(8) = Y1 (v —x! B)> = >, r2(B) = ||y —
XB|? = (y — XB)T(y — XB). For fixed %, maximizing the likelihood is

equivalent to maximizing
—1 ly — H2
ex X3
p 252 Yy )

which is equivalent to minimizing ||y — X 3||?. But the least squares estimator
minimizes ||y — X 8|2 by Theorem 2.16. Hence 3 is the MLE of 3.

Let Q = ||y — XB|%. Then the MLE of 62 can be found by maximizing
the log profile likelihood log(Lp(0?)) where

1 -1
2\ _ _
Lr(e®) = (2mwa2)n/2 P (202 Q) '
Let 7 = 02. Then
n 1
log(Ly(0?)) = ¢ — 5 log(c?) — FQ’
and )
n
log(Ly(r)) = ¢ — 5 log(r) ~ 5-Q.
Hence
dlog(Lp(r)) _ —n @ sty
dr Co2r 272

or —nT + @ =0 or nT = Q or

7/;:

Q :(3'2: Z?:lrg _ n_pMSE,

n n n
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which is a unique solution.
Now
d?log(Lp(T))  n  2Q n  2nt  -n

L e —" )
dr? 212 273 __. 272 273 272

Thus by Remark 2.1, 62 is the MLE of 02. [0

Now assume the n x p matrix X has full rank p. There are two ways to
compute 8. Use 3 = (X Tx )Tl Ty and use sample covariance matrices.
The population OLS coefficients are defined below. Let 7 = (1, ul) where

n

1 _
u; is the vector of nontrivial predictors. Let — ZXjk = Xor = U,y for
n
j=1
k = 2,...,p. The subscript “ok” means sum over the first subscript j. Let
T = (Tpz2,..., Hoyp)T be the sample mean of the u;. Note that regressing on u
is equivalent to regressing on  if there is an intercept 3; in the model.

Definition 2.17. Using the above notation, let z7 = (1, u!), and let gl =
(61, Bg) where $3; is the intercept and the slopes vector By = (B2, ..., Bp)T.
Let the population covariance matrices

Cov(u) = E[(u — E(u))(u — E(u))’] = Xy, and

Cov(u,Y) = E[(u — E(w))(Y — E(Y))] = Suy.

Then the population coefficients from an OLS regression of Y on @ (even if
a linear model does not hold) are

pr=E(Y) —BQTE(U) and B, = Zu Yuy-
Definition 2.18. Let the sample covariance matrices be

S

Let the method of moments or maximum likelihood estimators be i‘u =
n

—Z w;—)(u;—w)" and Zyy = %Z(ui_ﬁ)(yi—Y) = %;uiYi—EY.

=1

Refer to Definitions 1 27, 1.28, and 1.33 for the notation “9 A 0 asn—

”»

00,” which means that 6 is a consistent estimator of 6, or that 6 converges
o1
in probability to 0. Note that D = X7 X| —n@ @’ = (n — 1), .

Theorem 2.18: Seber and Lee (2003, p. 106). Let X = (1 X).

T nY nY T+ [ T na’
Then X°Y = (XTY> (Z?_IU'LK), X X_(Tl,ﬂ X’{X1>a
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1 =T —1— =T —1
_ t+u D"u —-u D
and (XTX)™ = (n D 'm D! )

where the (p— 1) x (p — 1) matrix D™ = [(n — 1)) = g /(n — 1).

Theorem 2.19: Second way to compute B:
o A = AT
a) If Zul exists, then §1 =Y — B, w and

n—1

b) Suppose that (Y;, u])” are iid random vectors such that o3, 3y, and

X uy exist. Then Bl L (1 and
Bz il B; as n — oo.

Proof. Note that

’LLT
1 n
YiXi=(W--Yo) | 1 | =D Y
’LLT 1=1
and
g n
XlTY:[u1~~~un] : :ZuiYi.
Yn 1=1
So A
4] [f+w"D'w —w"D'|[17 v —
B,] | -D'm D! x{|7
Liyw"™D'u —w'D7'| [ nY
-D'u D! XTy |-

Thus B, = —nD @Y+ D 'XTYy = D' (XTY —nwY) =
~ —1

n . b .
Di1 l E ul-Yl- —nu Y| = u TLZuy = n
i=1

A —1 A
—u ——— %y Suy. Then

B =Y+na"D'uY -w'D'XTY =Y+ nYu'D' - Y"X, D '|u
=Y — BQTu The convergence in probability results hold since sample means

and sample covariance matrices are consistent estimators of the population
means and population covariance matrices. [

It is important to note that the convergence in probability results are
for iid (V;,ul)T with second moments and nonsingular Xq,: a linear model
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Y = X B+e does not need to hold. Also, X is a random matrix, and the least
squares regression is conditional on X. When the linear model does hold, the
second method for computing B is still valid even if X is a constant matrix,
and B Eit B by the LS CLT. Some properties of the least squares estimators
and related quantities are given below, where X is a constant matrix. The
population results of Definition 2.17 were also shown when

Y
e () (S 5

in Remark 1.5. Also see Theorem 1.40. The following theorem is similar to
Theorem 1.2.

Theorem 2.20. Let Y = X8+ e = Y + 7 where X has full rank p,
E(e) = 0, and Cov(e) = 0?I. Let P = Px be the projection matrix on
C(X)soY =PX,r=Y-Y =(I-P)Y,and PX = X so X' P=Xx".
i) The predictor variables and residuals are orthogonal. Hence the columns
of X and the residual vector are orthogonal: X Tr =o0.
ii) E(Y) = X33.
iii) Cov(Y') = Cov(e) = o?I.
iv) The fitted values and residuals are uncorrelated: Cov(r,Y) = 0.
v) The least squares estimator 3 is an unbiased estimator of 3: E(3) = 3.
vi) Cov(B) = o2(XT X)L

Proof.i) X7r = X7 (I-P)Y = 0Y = 0, while i) and iii) are immediate.

iv) Cov(r, V) = E(lr — E(m)|[Y — B(Y)|T) =

E([(I-P)Y —(I-P)E(Y)][PY - PE(Y)]") =

E[(I-P)[Y —EXY)][Y —EY)]*P]= (I - P)o*IP =¢*(I - P)P =0.

V)EB)=E[(XTX)'XTY]= (XTX)"'XTE[Y] = (XTX)'XTXp
= IB .

vi) Cov(B) = Cov[(XTX)"' XTY] = Cov(AY) = ACov(Y)AT =

AXTX)TIXTIX(XTX) T =02 XTX)T O

Definition 2.19. Let a,b, and ¢ be n x 1 constant vectors. A linear

estimator a’’Y of €70 is the best linear unbiased estimator (BLUE) of ¢78

if E(aTY) = ¢, and for any other unbiased linear estimator b’ Y of ¢,
Var(a’Y) < Var(b'Y).

The following theorem is useful for finding the BLUE when X has full
rank. Note that if W is a random variable, then the covariance matrix of
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W is Cov(W) = Cov(W, W) = V(W). Note that the theorem shows that
b’ X3 =b'PY = aTB is the BLUE of b X3 = a” 3 where a” = b'X
and @ = X 8. Also, if b''Y is an unbiased estimator of a’8 = bTXB, then
b'PY = a3 is a better unbiased estimator in that V(6" PY) < V(bY).
Since X is full rank, a”3 is estimable with BLUE aTB for every p x 1
constant vector A. Note that the e; are uncorrelated with zero mean, but not
necessarily independent or identically distributed in the following theorem.
Note that if b = d = Pb, then Pb = PPb = Pb = d. The proof of the more
general Theorem 3.2 ¢) also proves Theorem 2.21.

Theorem 2.21: Gauss Markov Theorem-Full Rank Case. Let Y =
X3 + e where X is full rank, E(e) = 0, and Cov(e) = o2I. Then a3 is
the unique BLUE of a” 3 for every constant p x 1 vector a.

Proof. Let b Y be any linear unbiased estimator of a” 8. Then E(b"Y) =
a’B=b"E(Y) =b" X for any B € R, the parameter space of 3. Hence
a” = bT'X. The least squares estimator a”’B8 = o7(XTX)1XTY =
d'y = b'X B = b'PY is a linear unbiased estimator of a’B since
E(@™B) = a”B8. Now V(b'Y) — V(aTB) = V(b'Y) — V(b'PY) =
Cov(b"Y) — Cov(b" PY) = 626" b— 026" Pb = 0?b" (I — P)b = 02272 > 0
with equality iff z = (I - P)b=0iff b=d = Pbiff 'Y = b" PY = a” 3.
Since b”Y was an arbitrary unbiased linear estimator, the least squares es-
timator a”3 is BLUE. O

Lai et al. (1979) note that if E(3) = 8 and Cov(8) = c2(XTX)™1 — 0
as n — oo, then B is a consistent estimator of 3. Also see Zhang (2019).
The following theorem gives some properties of the least squares estimators
B and MSE under the normal least squares model. Similar properties will be
developed without the normality assumption.

Theorem 2.22. Suppose ¥ = X3 + e where X is full rank, e ~
N, (0 o%I), and Y ~ N, (XS, o%I).
B~ N,y (B,0* (X" X)),
B-BX"X(B-B)

o2 ~ Xp-

B1LMSE.

RSS (n —p)MSE 9
o2 ~ Xn—p:

Proof. Let P=Px.
a) Since A = (X7 X)~' X7 is a constant matrix,

=

a)
)
) B

d)

B =AY ~ N,(AE(Y), ACov(Y)AT) ~
Ny(XTX) ' XTXB, 0 XTX) I XTIX(XTX)™!) ~
N, (8,03 (XTX)™).
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b) The population Mahalanobis distance of B is

A~ o T T ol _ R ~ A~
(B-B) J;X(B B _ (5 - BYTICov(B) (B - B) ~ X2

by Theorem 2.11.
¢) Since Cov(B,7) = Cov((XTX) ' XTY,(I - P)Y) =
oA(XTX) ' XTI(I-P)=0,31r. Thus 81 RSS = ||r|]2, and B 1L MSE.
d) Since PX = X and X7 P = X7 it follows that X (I — P) = 0 and
(I - P)X =0. Thus RSS =+Tr =Y (I - P)Y =

(Y - XB)I(I-P)(Y - XB) =€l (I - Pe.

Since € ~ N,(0,0%I), then by Theorem 2.14 c), e"(I — P)e/o* ~ x7_,
where n —p =rank(I — P) =tr(I — P). O

2.3.1 Hypothesis Testing

Suppose Y = X 3+ e where rank(X) = p, E(e) = 0 and Cov(e) = 0*I. Let
L be an r x p constant matrix with rank(L) = r, let ¢ be an r x 1 constant
vector, and consider testing Hy : L3 = c. First theory will be given for when
e ~ N, (0,02I). The large sample theory will be given for when the iid zero
mean e; have V(e;) = 0. Note that the normal model will satisfy the large
sample theory conditions.

The partial F' test, and its special cases the ANOVA F' test and the Wald
t test, use ¢ = 0. Let the full model use Y, 1 = 1, xa,...,zp, and let
the reduced model use Y, z1 = z;, = 1, xj,, ..., z;, where {ji,...,jr} C
{1,...,p} and j; = 1. Here 1 < k < p, and if k¥ = 1, then the model is
Y; = 81 +e;. Hence the full model is Y; = (1 + Baxs 2+ - -+ Bpxs p + €5, while
the reduced model is Y; = 81 + B, %4 j, + - - - + B4 %i 5, + €;. In matrix form,
the full model is Y = X3 + e and the reduced model is Y = XrBr + er
where the columns of X are a proper subset of the columns of X. i) The
partial F test has Hy: 8;,,, =---= f;, =0, or Hg : the reduced model is
good, or Hy : LB = 0 where L is a (p — k) X p matrix where the ith row of L
has a 1 in the jx;th position and zeroes elsewhere. In particular, if 31, ..., O
are the only f; in the reduced model, then L = [0 I,_;] and Oisa (p—k) xk
matrix. Hence r = p — k = number of predictors in the full model but not in
the reduced model. ii) The ANOVA F test is the special case of the partial
F test where the reduced model is Y; = 31 +¢€;. Hence Hy : Bp = --- = 3, =0,
or Hy : none of the nontrivial predictors xa, ..., z, are needed in the linear
model, or Hy : LB = 0 where L = [0 I, 1] and O isa (p — 1) x 1 vector.
Hence r = p — 1. iii) The Wald t test uses the reduced model that deletes
the jth predictor from the full model. Hence Hy : B; = 0, or Hp : the jth
predictor x; is not needed in the linear model given that the other predictors



2.3 Least Squares Theory 91

are in the model, or Hy : L;j3 = 0 where L; = [0,...,0,1,0,...,0]isa 1 x p
row vector with a 1 in the jth position for j =1, ..., p. Hence r = 1.

A way to get the test statistic Fr for the partial F' test is to fit the
full model and the reduced model. Let RSS be the RSS of the full model,
and let RSS(R) be the RSS of the reduced model. Similarly, let M SE and
MSE(R) be the MSE of the full and reduced models. Let dfg = n — k and

dfr = n — p be the degrees of freedom for the reduced and full models. Then
P RSS(R) — RSS
R= ——= o

rMSE
in theA full model but not in the reduced model.
If B~ N,(B,0%(XTX)~1), then

where r = dfgr — dfr = p — k = number of predictors

L3 —c~ Ny (LB —c,c?L(XTX)'LT).
If Hy is true then LB — ¢ ~ N,.(0,02L(XTX)~' L"), and by Theorem 2.11
1. .
rF = — (LB - o [LXTX) LT THIB - ¢) ~ i

Let rFr = o?rFy/MSE. If Hy is true, rFr £ X2 for a large class of zero
mean error distributions. See Theorem 2.26 c).

From Definition 1.25, if Z,, D Zasn — oo, then Z,, converges in dis-
tribution to the random vector Z, and “Z is the limiting distribution of
Z,” means that the distribution of Z is the limiting distribution of Z,,. The

notation Z, 2 Ni(p, X) means Z ~ Ni(p, X).

Remark 2.2. a) Z is the limiting distribution of Z,,, and does not depend
on the sample size n (since Z is found by taking the limit as n — o).

b) When Z, Lz , the distribution of Z can be used to approximate
probabilities P(Z,, < c¢) ~ P(Z < c) at continuity points c of the cdf Fz(z).
Often the limiting distribution is a continuous distribution, so all points ¢
are continuity points.

¢) Often the two quantities Z, B N (pn, X) and Z,, ~ Nji(p, X) behave
similarly. A big difference is that the distribution on the RHS (right hand
side) can depend on n for ~ but not for A particular, if Z,, £ Ni(p, X,
then AZ, +b 2> N,,(Au+b, AXAT), provided the RHS does not depend
on n, where A is an m X k constant matrix and b is an m x 1 constant vector.

d) We often want a normal approximation where the RHS can depend on n.
Write Z,, ~ ANy (p, X) for an approximate multivariate normal distribution
where the RHS may depend on n. For normal linear model, if e ~ N,,(0, 021),
then B ~ N,(B,0%(XTX)™1). If the ¢; are iid with E(e;) = 0 and V (e;) =
o2, use the multivariate normal approximation 3 ~ AN, (8,0*(X* X)) or
B ~ AN,(B, MSE(XTX)~'). The RHS depends on n since the number of
rows of X is n.
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Theorem 2.23. Suppose ¥, and X are positive definite and symmetric.
W, 2 N, ) and £, £ 2, then Z, = 5. (W, — u) 2 N.(0, 1),
and Z1Z, = (W, — )75, (W — ) 2 2.

Proof. Z,, = (2;1/2 -2 \W, —p) =
(s W — )+ 5 2W, — ) B0+ NG(0,1) ~ Ni(0,T)

by Slutsky’s Theorem 1.34 b). Hence Z% Z, 2 y2. O
See Remark 2.3 for why Theorem 2.24 is useful.

Theorem 2.24. If W,, ~ F, 4, where the positive integer d,, — oo as

n — oo, then rW, 5 X2
Proof. If X; ~ X?ll 1 Xy ~ Xflz, then

Xl/dl
XQ/dQ

~ Fd17d2'

If U; ~ x? are iid then Y-F | U; ~ x3. Let dy = r and k = dy = d,,. Hence if
Xy ~ X3 , then

dn .
Xo 2l g P gy -1

dnp dnp
by the law of large numbers. Hence if W ~ F, 4, then W, Sy O

The following theorem is analogous to the central limit theorem and the
theory for the ¢-interval for 4 based on Y and the sample standard deviation
(SD) Sy. If the data Y7, ...,Y,, are iid with mean 0 and variance o2, then Y
is asymptotically normal and the t—interval will perform well if the sample
size is large enough. The result below suggests that the OLS estimators Y;
and 3 are good if the sample size is large enough. The condition maxh; — 0
in probability usually holds if the researcher picked the design matrix X or
if the x; are iid random vectors from a well behaved population. Outliers

can cause the condition to fail. Convergence in distribution, Z,, 5 Ny(0, %),
means the multivariate normal approximation can be used for probability
calculations involving Z,,. When p = 1, the univariate normal distribution
can be used. See Sen and Singer (1993, p. 280) for the theorem, which implies
that 3 ~ N,(B8,0*(X" X)™")). Let h; = H;; where H = P x. Note that
the following theorem is for the full rank model since X T X is nonsingular.

Theorem 2.25, LS CLT (Least Squares Central Limit Theo-
rem): Consider the MLR model Y; = :ciTB + e; and assume that the zero
mean errors are iid with E(e;) = 0 and VAR(e;) = o?. Also assume that
max;(h1, ..., h,) — 0 in probability as n — co and
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xTx
R

n

W*l
as n — oo. Then the least squares (OLS) estimator 3 satisfies

V(B - B) 2 N, (0,0 W). (2.1)

Equivalently,
(XTX)V2(B - B) 2 N,y(0,0% I,). (2.2)

If ¥ =02W, then ¥, = nMSE(XTX)~'. Hence

B~ AN, (B, MSE(X"X)™"), and

rFr LA —o)T[L(X"X) 'L (LB - ¢) 2 x2 (2.3)

 MSE
asn — oo if Hy : LB = c is true so that \/a(LB — ¢) 2> N,(0,02 LWLT).

Definition 2.20. A test with test statistic T,, is a large sample right tail
J test if the test rejects Hy if T,, > a,, and P(T,, > a,) = 6, — J as n — oo
when Hj is true.

Typically we want § < 0.1, and the values 6 = 0.05 or 6 = 0.01 are
common. (An analogy is a large sample 100(1 — §)% confidence interval or
prediction interval.)

Remark 2.3. Suppose P(W < x2(1-0)) = 1—6 and P(W > x2(1-0)) =
§ where W ~ x2. Suppose P(W < Fy4,(1 —6)) =1—38 when W ~ Fyq,.
Also write (1 —6) = x2, 5 and Fy 4, (1 —08) = Fyq4,,1-5. Suppose P(W >
z1—5) = 0 when W ~ N(0,1), and P(W > t4,1-s) =06 when W ~ ¢4 .

i) Theorem 2.24 is important because it can often be shown that a statistic
T, = rW, L X2 when Hj is true. Then tests that reject Ho when T, >
X2(1 — §) or when T, /r = W,, > F,.q4,(1 — §) are both large sample right
tail ¢ tests if the positive integer d,, — oo as n — oo. Large sample F tests
and intervals are used instead of y? tests and intervals since the F tests and
intervals are more accurate for moderate n.

ii) An analogy is that if test statistic T, 5 N(0,1) when Hj is true, then
tests that reject Hy if 1), > 215 or if T}, > t4, 1—s are both large sample
right tail § tests if the positive integer d,, — oo as n — oo. Large sample ¢
tests and intervals are used instead of Z tests and intervals since the ¢ tests
and intervals are more accurate for moderate n.

iii) Often n > 10p starts to give good results for the OLS output for error
distributions not too far from N (0, 1). Larger values of n tend to be needed
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if the zero mean iid errors have a distribution that is far from a normal
distribution. Also see Theorem 1.5.

Theorem 2.26, Partial F Test Theorem. Suppose Hy : L3 = 0 is
true for the partial F' test. Under the OLS full rank model, a)

1
 rMSE

Fr (LB)"L(XTX) ' LT (LB).

b) If e ~ N,,(0,02I), then Fr ~ F ,_,.

¢) For a large class of zero mean error distributions rFg 5 2

d) The partial F' test that rejects Hy : L@ = 0 if Fr > F,p_p(1 —6) is a
large sample right tail § test for the OLS model for a large class of zero mean
error distributions.

Proof sketch. a) Seber and Lee (2003, p. 100) show that
RSS(R) — RSS = (LB)T[L(XTX)'LT]~(LP).

b) Let the full model Y = X3 + e with a constant $; in the model:
1 is the 1st column of X. Let the reduced model Y = XgrBy + e also
have a constant in the model where the columns of X i are a subset of
k of the columns of X. Let Pgr be the projection matrix on C(XRg) so
PPR = PR. Then FR = SSEﬁZ)SEfg)Ej(F)
k = number of predictors in the full model but not in the reduced model.
MSE = MSE(F) =SSE(F)/(n—p) where SSE = SSE(F) =Y (I-P)Y.
SSE(R) — SSE(F) =YT(P — PR)Y where SSE(R) =Y ' (I — PR)Y.

Now assume Y ~ N,,(X3,0%I), and when Hy istrue, Y ~ N,,(X rBp, 0?I).
Since (I — P)(P — Pr) = 0, [SSE(R) — SSE(F)] L MSE(F) by Craig’s
Theorem. When Hy is true, p = X g8 and p? Ap = 0 where A = (I — P)
or A = (P — Ppg). Hence the noncentrality parameter is 0, and by The-
orem 2.14 g), SSE ~ o?x;_, and SSE(R) — SSE(F) ~ o°x;_, since
rank(P — Pg) =tr(P — Pgr) = p — k. Hence under Hy, Fr ~ Fp_k n—p.

Alternatively, let Y ~ N, (X3, 02I,) where X is an n x p matrix of rank
p. Let X = [X; X5] and 8 = (BT 82)" where X, is an n x k matrix and
r = p—k. Consider testing Hy : B35 = 0. (The columns of X can be rearranged
so that Hy corresponds to the partial F' test.) Let P be the projection matrix
on C(X). Then #Tr = YT (I - P)Y = e (I — P)e =
(Y — XB)"(I — P)(Y — XB) since PX = X and X" P = X* imply that
XT"I-P)=0and (I-P)X =0.

Suppose that Hy : B, = 0 is true so that Y ~ N, (X18,0°I,). Let
P, be the projection matrix on C(X1). By the above argument, rkrp =
YI'(I-P)Y =(Y-X.18)TI-P)(Y -X,8,) = ek (I — Py)er where
er ~ N,(0,021,) when Hy is true. Or use RHS = Y7(I — P,)Y

where r = dfgp — dfr = p —

—BIXTI-P)Y +B]X{(I-P)X .18, -Y"'(I-P1)X.3,
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and the last three terms equal 0 since X7 (I—P;) =0and (I - P1)X; = 0.

Hence
yhior-pPy Yyi(P-P)Y

2
2 ~ anp 2 ~ Xr

g g

by Theorem 2.14 c) using e and e instead of Y, and Craig’s Theorem 2.9 b)
since n —p = rank(I — P) = tr(I — P), r = rank(P — P1) =tr(P — Py) =
p—k,and (I — P)(P— P,)=0.

If Xy ~ le 1 X5 ~ lez, then

Hence
Y"(P-P)Y/r _Y'(P-P)Y .
Y'(I-P)Y/n—p) rMSE P
when Hy is true. Since RSS = Y (I — P)Y and RSS(R) =Y ' (I - P,)Y,
RSS(R)— RSS=Y'(I-P,-[I-P))Y =Y"(P - P,)Y, and thus

Yyi(P-P)Y

F =
R rMSE

~ Fr,nfp-

¢) Assume Hy is true. By the OLS CLT, vn(LB3 — L3) = y/nLB3 =
N, (0,0 LWLT). Thus /n(LB)T(2LWLT)1\/nLB 2 2. Let 62 =
MSE and W = n(X*X)~'. Then

n(LB)T[MSE In(X"X) LT 'LB = rFr 2 %

d) By Theorem 2.24, if W,, ~ F, 4, then rW, A X2 as n — oo and
d,, — oco. Hence the result follows by ¢). O

An ANOVA table for the partial F' test is shown below, where k = pp is
the number of predictors used by the reduced model, and r =p—pr =p—k
is the number of predictors in the full model that are not in the reduced
model.

Source df SS MS F
Reduced n — pr SSE(R) = Y7 (I — PRp)Y MSE(R) F — 220 _S5E _

YX(P - PR)Y/r

Ful n-p SSE=Y"(I-P)YY MSE ——
Y (I-P)Y/(n—p)

The ANOVA F test is the special case where k =1, Xp =1, Pp = Py,
and SSE(R) — SSE(F) = SSTO — SSE = SSR.
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ANOVA table: Y = X3 + e with a constant 3; in the model: 1 is the
1st column of X. MS = SS/df.
1

n

SSTO = Y'(I - —11")Y = ) (¥; - Y)?, SSE = Yi' %, SSR =
n
i=1
S (Vi —Y)?, SSTO = SSR + SSE. SSTO is the SSE (residual sum
of squares) for the location model Y = 18; + e that contains a con-

stant but no nontrivial predictors. The location model has projection matrix
1

P, =1(171)"%17 = —117. Hence PP, = P; and P1 = P11 =1.
n

Source  df SS MS F p-value
1
Regression p-1 SSR =Y " (P — —117)Y MSR F, = 128 for Hy:
n
Residual n-p SSE=YT(I - P)Y MSE Bo=-=p,=0

The matrices in the quadratic forms for SSR and SSE are symmet-
ric and idempotent and their product is 0. Hence if € ~ N, (0,0%I) so
Y ~ N,(XB,0%I), then SSE 1 SSR by Craig’s Theorem. If H is
true under normality, then Y ~ N, (15;,0%I), and by Theorem 2.14 g),
SSE ~ o°x}_, and SSR ~ o°x;_, since rank(I — P) =tr(I — P)=n—p
and rank(P — 2117) = ¢r(P — 2117) = p — 1. Hence under normality,
For~ Fyinp

Let X ~ t,—p. Then X? ~ Fy,_,. The two tail Wald ¢ test for Hy :
B; = 0 versus H; : B # 0 is equivalent to the corresponding right tailed F'
test since rejecting Hy if | X| > ¢,—p(1 — ) is equivalent to rejecting Hy if
X2> Fy,_p(1-0).

Definition 2.21. The pvalue of a test is the probability, assuming H is
true, of observing a test statistic as extreme as the test statistic 7,, actually
observed. For a right tail test, pvalue = Pp,(of observing a test statistic
>T,).

Under the OLS model where Fr ~ F, ,_, when Hy is true (so the e; are
iid N(0,0?)), the pvalue = P(W > Fg) where W ~ F,,,_,. In general, we
can only estimate the pvalue. Let pval be the estimated pvalue. Then pval
= P(W > Fgr) where W ~ F, ,_,, and pval KR pvalue an n — oo for the
large sample partial F' test. The pvalues in output are usually actually pvals
(estimated pvalues).

Definition 2.22. Let Y ~ F(dl, dg) ~ F(dl, d2, O) Let Xl ~ X2(d1, ’7) A
Xl/dl
Xs ~ x%(d2,0). Then W =
2 X ( 2, ) €n XQ/dQ
bution with d; and ds numerator and denominator degrees of freedom, and
noncentrality parameter ~.

~ F(dy,d2,7), a noncentral F distri-
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Theorem 2.27, distribution of F'r under normality when H; may
not hold. Assume Y = X3 + e where e ~ N,,(0,0%I). Let X = [X; X>]
be full rank, and let the reduced model Y = X 13; + er. Then

YT(P - P)Y/r BTXT(P — PQXB)
Fr .

TYTI-P)Y/(n—p) NF(“”_p’ 207

If Hy : By = 0 is true, then v = 0.
Proof. Note that the denominator is the MSE, and (n — p)MSE/o? ~
Xa_p by the proof of Theorem 2.26. By Theorem 2.14 f),

YI(P - P)Y /0" ~ ( BTXT(P - Pl)Xﬁ>

202

where r = rank(P — P1) = tr(P — P1) = p— k since P — P is a projection
matrix (symmetric and idempotent). O

Consider the test Hy : L3 = ¢ versus Hy : L3 # ¢, and suppose Hj is
true. Then /(LB — ¢) 2 N, (0,02LWLT). Hence

rFy LB - )" (L(XT"X) L") (LB - ¢) 2 12,

1
 MSE (
and rejecting Hy if Fy > F, n—p1-s is a large sample right tail 0 test for a
large class of zero mean error distributions. Seber and Lee (2003, pp. 100-101)
show that Fy ~ F,.,_, if Hy is true and e ~ N, (0, 02I), but the above result
is far stronger: if the iid e; has to satisfy e; ~ N(0,0?%), OLS inference would
rarely be useful.

Remark 2.4. Suppose tests and confidence intervals are derived under
the assumption e ~ N, (0,0%I). Then by the LS CLT and Remark 2.3,
the inference tends to give large sample tests and confidence intervals for
a large class of zero mean error distributions. For linear models, often the
error distribution has heavier tails than the normal distribution. See Huber
and Ronchetti (2009, p. 3). If some points stick out a bit in residual and/or
response plots, then the error distribution likely has heavier tails than the
normal distribution. See Figure 1.1.

2.4 WLS and Generalized Least Squares

Definition 2.23. Suppose that the response variable and at least one of the
predictor variables is quantitative. Then the generalized least squares (GLS)
model is
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Y =X3+e, (2.4)

where Y is an n x 1 vector of dependent variables, X is an n X p matrix
of predictors, B is a p x 1 vector of unknown coefficients, and e is an n x 1
vector of unknown errors. Also F(e) = 0 and Cov(e) = 02V where V is a
known n x n positive definite matrix.

Definition 2.24. The GLS estimator
Bors = (XTVvix)'xTv-ly. (2.5)
The fitted values are Y grs = XBGLS.

Definition 2.25. Suppose that the response variable and at least one of
the predictor variables is quantitative. Then the weighted least squares (WLS)
model with weights wy, ..., w, is the special case of the GLS model where V'
is diagonal: V' = diag(vy, ..., vy) and w; = 1/v;. Hence

Y =Xp3+e, (2.6)
E(e) = 0, and Cov(e) = o?diag(vy, ..., vn) = o2diag(1/w1, ..., 1/wy).
Definition 2.26. The WLS estimator
Bwrs = (XTVIxX)1xTv-ly. (2.7)
The fitted values are YWLS = XBWLS.

Definition 2.27. The feasible generalized least squares (FGLS) model is
the same as the GLS estimator except that V' = V(0) is a function of an

unknown ¢ x 1 vector of parameters . Let the estimator of V be V = V/(8).
Then the FGLS estimator

~ ~—1 ~—1
Brors = (XTV X)"IXTVv Y. (2.8)

The fitted values are Y parg = XBFGLS. The feasible weighted least squares
(FWLS) estimator is the special case of the FGLS estimator where V' =
V(0) is diagonal. Hence the estimated weights w; = 1/9; = 1/v;(0). The

FWLS estimator and fitted values will be denoted by B rwrs and Y pwrg,
respectively.

Notice that the ordinary least squares (OLS) model is a special case of
GLS with V' = I,,, the n x n identity matrix. It can be shown that the GLS
estimator minimizes the GLS criterion

Qars(m) = (Y — Xn)"'V-I(Y — Xn).
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Notice that the FGLS and FWLS estimators have p+ ¢+ 1 unknown param-
eters. These estimators can perform very poorly if n < 10(p + ¢ + 1).

The GLS and WLS estimators can be found from the OLS regression
(without an intercept) of a transformed model. Typically there will be a
constant in the model: the first column of X is a vector of ones. Let the
symmetric, nonsingular n X n square root matrix R = VY2 with V = RR.
Let Z=R'Y, U=R 'X and e = R 'e.

Theorem 2.28. a)
Z=UB+e (2.9)
follows the OLS model since E(€) = 0 and Cov(e) = 021,,.

b) The GLS estimator BG s can be obtained from the OLS regression
(without an intercept) of Z on U.

¢) For WLS, Y; = I8 + ¢;. The corresponding OLS model Z = UB + €
is equivalent to Z; = ul' B +¢; for i = 1,...,n where u? is the ith row of U.
Then Z; = \/w; Y; and u; = \/w; x;. Hence BWLS can be obtained from the
OLS regression (without an intercept) of Z; = \/w; Y; on u; = Jw; x;.

Proof. a) E(e) = R"'E(e) = 0 and
Cov(e) = R 'Cov(e)(R"HT = *’R'V(R™HT
=0d’R'RR(R™') = o*I,.

Notice that OLS without an intercept needs to be used since U does not
contain a vector of ones. The first column of U is R™'1 # 1.

b) Let BZU denote the OLS estimator obtained by regressing Z on U.
Then

and the result follows since V' = (RR) "' =R 'R = (R"H"R ™.

¢) The result follows from b) if Z; = Jw; Y; and u; = Jw; x;. But for
WLS, V = diag(vy, ..., vn) and hence R = diag(/V1, ..., /Vn). Hence

R = diag(1/ /A1, ..., 1/Am) = diag(y/w1, ..., /)

and Z = R™'Y has ith element Z; = \/w; Y;. Similarly, U = R™' X has ith
row u] = Jw; z. O

Remark 2.5. Standard software produces WLS output and the ANOVA
F test and Wald t tests are performed using this output.

Remark 2.6. The FGLS estimator can also be found from the OLS re-
gression (without an intercept) of Z on U where V(6) = RR. Similarly the
FWLS estimator can be found from the OLS regression (without an inter-
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cept) of Z; = v/w;Y; on u; = \/i;x;. But now U is a random matrix instead
of a constant matrix. Hence these estimators are highly nonlinear. OLS out-
put can be used for exploratory purposes, but the p—values are generally not
correct. The Olive (2018) bootstrap tests may be useful for FGLS and FWLS.
See Chapter 4.

Under regularity conditions, the OLS estimator BO 15 1s a consistent esti-
mator of 3 when the GLS model holds, but B4,¢ should be used because it
generally has higher efficiency.

Definition 2.28. Let ,BZU be the OLS estimator from regressing Z on
U. The vector of fitted values is Z = U,BZU and the vector of residuals
is rzu = Z — Z. Then BZU = BGLS for GLS, BZU = BFGLS for FGLS,
Byu = Bwyrs for WLS, and By = Bpy g for FWLS. For GLS, FGLS,
WLS, and FWLS, a residual plot is a plot of Z; versus rzu,; and a response
plot is a plot of ZAl versus Z;.

Inference for the GLS model Y = X3 + e can be performed by using
the partial F' test for the equivalent no intercept OLS model Z = U3 + €.
Following Section 1.3.7, create Z and U, fit the full and reduced model using
the “no intercept” or “intercept = F” option. Let pval be the estimated
pvalue.

The 4 step partial F test of hypotheses: i) State the hypotheses Hy:
the reduced model is good H 4: use the full model
ii) Find the test statistic Fr =

SSE(R) — SSE(F)
dfr — dfr

iii) Find the pval = P(Fyrp—dfp.af» > Fr). (On exams often an F' table is
used. Here df p—dfr = p—q = number of parameters set to 0, and dfp = n—p.)
iv) State whether you reject Hy or fail to reject Hy. Reject Hy if pval < §
and conclude that the full model should be used. Otherwise, fail to reject Hy
and conclude that the reduced model is good.

/MSE(F)

Assume that the GLS model contains a constant (3;. The GLS ANOVA
F test of Hy : 2 = -+ = B, versus H4: not Hy uses the reduced model
that contains the first column of U. The GLS ANOVA F test of Hy: 3; =0
versus Hy4 : (3; # 0 uses the reduced model with the ith column of U deleted.
For the special case of WLS, the software will often have a weights option
that will also give correct output for inference.

Freedman (1981) shows that the nonparametric bootstrap can be use-
ful for the WLS model with the e; independent. For this case the sand-
wich estimator is Cov(BpLg) = (XTX)1XTWX (X" X)"! with W =
n diag(r?, ...,r2)/(n — p) where the r; are the OLS residuals and W = 02V

in

See Hinkley (1977), MacKinnon and White (1985), and White (1980).
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2.5 Summary

1) The set of all linear combinations of @1, ..., x, is the vector space known
as span(x1, ..., x,) = {y € R¥ 1y =37 | a;x; for some constants a1, ..., an}.

2) Let A = a1 a3 ... ay] be an n x m matrix. The space spanned by the
columns of A = column space of A = C(A). Then C(A) ={yeR":y =
Aw for some w € R™} = {y : y = wia1 + waas + - -+ + wpa, for some
scalars wy, ..., wm} = span(ay, ..., an).

3) A generalized inverse of an n x m matrix A is any m x n matrix A~
satisfying AA™ A = A.

4) The projection matrix P = Px onto the column space of X is
unique, symmetric, and idempotent. PX = X, and PW = W if each
column of W € C(X). The eigenvalues of P x are 0 or 1. Rank(P) = tr(P).
Hence P is singular unless X is a nonsingular n x n matrix, and then P = I,,.
If C(XR) is a subspace of C(X), then PxPx =Px Px=Px .

5) I,, — P is the projection matrix on [C'(X)]*.

6) Let A be a positive definite symmetric matrix. The square root matriz
A2 ig a positive definite symmetric matrix such that A¥2A42 = A,

7) The matrix A in a quadratic form 7 Az will be symmetric unless
told otherwise.

8) Theorem 2.5. Let « be a random vector with F(x) = p and Cov(x) =
Y. Then E(x” Axz) = tr(AX) + u" Ap.

9) Theorem 2.7. If A and B are symmetric matrices and AY 1L BY,
then Y'AY L Y"BY.

10) The important part of Craig’s Theorem is that if Y ~ N, (u, X)),
then Y AY 1 Y"BY if AXB = 0.

11) Theorem 2.14. Let A = A’ be symmetric. b) If Y ~ N, (0, 1),
then YT AY ~ 2 iff A is idempotent of rank r. ¢) If Y ~ N, (0, 02I), then
YTAY ~ 0% x2 iff A is idempotent of rank 7.

12) Often theorems are given for when Y ~ N, (0,I). If Y ~ N, (0, 0%I),
then apply the theorem using Z =Y /o ~ N, (0, I).

13) Suppose Y1, ..., Y, are independent N (u;, 1) random variables so that
Y = (Yi,..,Y)" ~ Nu(p, I,). Then Y'Y = 37" V2 ~ x%(n,y =
u1/2), a noncentral x*(n,~y) distribution, with n degrees of freedom and
noncentrality parameter v = p'p/2 = 13" | p? > 0. The noncentrality
parameter § = 7'y = 27 is also used.

14) Theorem 2.16. Let @ = Xn € C(X) where Y; = 27 n+7;(n) and the
residual r;(n) depends on 7). The least squares estimator B is the value
of m € RP that minimizes the least squares criterion
ST 2 (m) = Y — X%,

15) Let 27 = (1,ul), and let BT = (61, BY) where 3 is the intercept and
the slopes vector By = (32, ..., B,)T. Let the population covariance matrices
Cov(u) = Xy, and Cov(u,Y) = Xqyy. If the (Y;,ul )T are iid, then the
population coefficients from an OLS regression of Y on x are
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B =E(Y)-BEE(u) and B, = Xy' Duy.
16) Theorem 2.19: Second way to compute B: a) If 2111 exists, then
A — AT
01 =Y — B;w and

~ n

52:

P <1z o1
Yu Zuy =2y Yuy =2y Yuy-

n—1

b) Suppose that (V;, ul)T are iid random vectors such that o2, >, and

Yuy exist. Then Bl KR (1 and BQ it B; as n — oo even if the OLS model
Y = X3 + e does not hold.

17) Theorem 2.20. Let Y = X3 4+ e = Y + r where X is full rank,
E(e) = 0, and Cov(e) = 0?I. Let P = Px be the projection matrix on
C(X)soY =PX,r=Y-Y=(I-P)Y,and PX =Xso X" P=X".
i) The predictor variables and residuals are orthogonal. Hence the columns
of X and the residual vector are orthogonal: X7r = 0.

ii) E(Y) = X33.
iii) Cov(Y') = Cov(e) = o?I.
iv) The fitted values and residuals are uncorrelated: Cov(r,Y) = 0.
v) The least squares estimator 3 is an unbiased estimator of 8: F (B) =p.
vi) Cov(B) = o2(XT X)L,
18) LS CLT. Suppose that the e; are iid and

XTx

n

w1l

Then the least squares (OLS) estimator 3 satisfies

Vi(B —B8) 2 N,(0,5> W).
Also,
(XTX)V2(B - B) 2 N,(0,0% T,,).
19) Theorem 2.26, Partial F Test Theorem. Suppose Hy: L3 =0 is
true for the partial F' test. Under the OLS full rank model, a)

1

= == (LB L(X"X) L") (LB).

Fr

b) If e ~ N,,(0,02I), then Fr ~ F,_,.

¢) For a large class of zero mean error distributions rFp RN X2

d) The partial F' test that rejects Hy : LB = 0 if Fr > F, p_p(1 —¢) is a
large sample right tail § test for the OLS model for a large class of zero mean
error distributions.



2.7 Problems 103

2.6 Complements

A good reference for quadratic forms and the noncentral x?2, ¢, and F distri-
butions is Johnson and Kotz (1970, ch. 28-31).

The theory for GLS and WLS is similar to the theory for the OLS MLR
model, but the theory for FGLS and FWLS is often lacking or huge sample
sizes are needed. However, FGLS and FWLS are often used in practice be-
cause usually V' is not known and V must be used instead. See Eicker (1963,
1967).

Least squares theory can be extended in at least two ways. For the first
extension, see Chang and Olive (2010) and Chapter 10. The second extension
of least squares theory is to an autoregressive AR(p) time series model: ¥; =
do+d1Yeo1+ -+ ¢pYi_p+e;. In matrix form, this modelis Y = XB+e =

Yo 1Y, YV,1... 11 ®o €p+1
Yt 1Y,11 Y, ... Yo o1 €pi2
. =1|. . .. . |t .
Yn 1 Yn,1 Yn,Q e Ynfp ¢;D €n

If the AR(p) model is stationary, then under regularity conditions, OLS
partial F' tests are large sample tests for this model. See Anderson (1971, pp.
210-217).

2.7 Problems

Problems from old qualifying exams are marked with a Q since these problems
take longer than quiz and exam problems.

2.19. Suppose Y; = = B + e; where the errors are independent N (0, o2).
Then the likelihood function is

L(B.0%) = (210%) " exp ( S 5I1¥ - XBI?).

a) Since the least squares estimator 3 minimizes ||Y — X 8|2, show that
B is the MLE of 3.
b) Then find the MLE 62 of o2.

2.2%. Suppose Y; = 27’3 + ¢; where the errors are iid double exponential
(0,0) where o > 0. Then the likelihood function is

11 -1 &
L(B,0) = on g OXP (72 Y — fCiT5|> :
=1
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Suppose that B is a minimizer of 3.1, |V; — 7 3|
a) By direct maximization, show that 3 is an MLE of 3 regardless of the
value of o.

b) Find an MLE of ¢ by maximizing

g

- 11 1< -
L(U)EL(B,U):?"U—HGXP <—Z|Yi—$?5|>-
=1

2.3%. Suppose Y; = ! B+e; where the errors are independent N (0, 02 /w;)
where w; > 0 are known constants. Then the likelihood function is

18,0 = (_H W) (=) Hew (% 3w - m?m?) .

a) Suppose that By minimizes 327, w; (y; — 27 B)%. Show that By is the
MLE of 3.
b) Then find the MLE 62 of o2.

2.49. Suppose Y ~ N,,(X 3, 02V) for known positive definite n xn matrix
V. Then the likelihood function is

1 " 1 1 -1
L(B,0%) = (E) V2 o eXP (F(y - XB)'V iy - Xﬁ)) .

a) Suppose that BG minimizes (y — XB8)TV ' (y — X3). Show that BG
is the MLE of 3.
b) Find the MLE 62 of o2.

2.5. Find the vector a such that a’’Y is an unbiased estimator for E(Y;)
if the usual linear model holds.

2.6. Write the following quantities as b'Y or YT AY or AY.
a) 7) b) Zz(ifl - }A/i)Qa C) Zz(ifl)Qa d) Ba e) ff

2.7. Show that I — H = I — X (X7 X)"' X7 is idempotent, that is, show
that (I — H)(I-H)=(I-H)?=1—-H.

2.8. Let Y ~ N(u,0?) so that E(Y) = p and Var(Y) = 0% = E(Y?) —
[E(Y)]?. If k > 2 is an integer, then

EY") =(k—-1)0*EY* ) + uB(Y* ).
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Let Z = (Y — p)/o ~ N(0,1). Hence pp = E(Y — p)*k = o*E(Z¥). Use this
fact and the above recursion relationship E(Z*) = (k — 1)E(Z*~2) to find
a) us and b) pg.

2.9. Let A and B be matrices with the same number of rows. If C is
another matrix such that A = BC, is it true that rank(A) = rank(B)?
Prove or give a counterexample.

2.10. Let  be an n x 1 vector and let B be an n X n matrix. Show that
2I'Bzr = "B x.
(The point of this problem is that if B is not a symmetric n X n matrix,

B+ B"
then 7 Bx = 7 Az where A = +T is a symmetric n X n matrix.)

2.11. Consider the model }/1 = 61 +62X1'72 “+- - +6pXi,p +e; = :E;T,B—i-el
The least squares estimator 3 minimizes

n

Qors(n) =Y (Y —z{n)

=1

and the weighted least squares estimator minimizes
n
Qwrs(n) = wi(Yi —afn)?
i=1

where the w;, Y; and x; are known quantities. Show that

S (Y — aFa)? = (% - &7 n)?
=1 =1

by identifying Y;, and &;. (Hence the WLS estimator is obtained from the

least squares regression of Y; on &; without an intercept.)

2.12. Suppose that X is an n X p matrix but the rank of X < p < n.
Then the normal equations X7 X3 = XY have infinitely many solutions.
Let B be a solution to the normal equations. So XTXB =XTy Let G =
(XTX)~ be a generalized inverse of (X X). Assume that E(Y) = X8 and
Cov(Y) = o%I. It can be shown that all solutions to the normal equations
have the form bz given below.

a) Show that by = GX”Y + (GX* X — I)z is a solution to the normal
equations where the p x 1 vector z is arbitrary.

b) Show that E(bz) # 8.

(Hence some authors suggest that bz should be called a solution to the
normal equations but not an estimator of 3.)
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¢) Show that Cov(bz) = c?’GXTXG".

d) Although G is not unique, the projection matrix P = X GXT onto
C(X) is unique. Use this fact to show that ¥ = X bz does not depend on G
or z.

e) There are two ways to show that a3 is an estimable function. Either
show that there exists a vector ¢ such that E(c’Y) = a’3, or show that
a € C(XT). Suppose that & = XTw for some fixed vector w. Show that
E(a’bz) = a’B.

(Hence a”' (3 is estimable by a”bz where bz is any solution of the normal
equations.)

f) Suppose that @ = X w for some fixed vector w. Show that Var(a’bz) =
o?w? Pw.

2.13. Let P be a projection matrix.
a) Show that P is a generalized inverse of P.
b) Show that P = P(P*P)~PT.

2.149. Suppose Y; = T 3 + e; with Q(B) > 0. Let ¢, be a constant that
does not depend on 3 or ¢. Suppose the likelihood function is

L(B,0) = ¢, ai" exp (;Q(ﬂ)) :

a) Suppose that BQ minimizes Q(3). Show that BQ is an MLE of 8.
b) Then find an MLE 6 of .

2.159. Suppose Y; = 7 3 + ¢; with Q(83) > 0. Let ¢, be a constant that
does not depend on 3 or ¢2. Suppose the likelihood function is

-1

202

L(B.0%) = o e (53000)).

a) Suppose that BQ minimizes Q(3). Show that BQ is the MLE of 3.
b) Then find the MLE 62 of o2.

2.16. Suppose that G is a generalized inverse of a symmetric matrix A.

a) Show that G” is a generalized inverse of A.

b) Show that GAG? is a generalized inverse of A. (Hence, since a gener-
alized inverse always exists, a symmetric generalized inverse of a symmetric
matrix A always exists.)
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1 243
2.17. (Searle (1971, p. 217)): Let A = | 3 —1 2 —2 | and show that A~ =
5—-40-7
120
3—-10
l . . .
710 0 0 is a generalized inverse of A.
00O

2.18. Find the projection matrix P for C(X) where X is the 2 x 1 vector
X =(1,2)T.
2.19. Let y ~ N, (0, X') where X is positive definite. Let A be a symmetric
P X p matrix.
a) Let = y — 6. What is the distribution of ?
b) Show that
Elly —6)" Ay — )] = E[z" Ax]

is a function of A and X but not of 6.

2.20. (Hocking (2003, p. 61): Let y ~ N3(p, 02I) where y = (Y7, Yz, Y3)T

and p = (p1, iz, p13)" .
1 —-10 1 1 -2

Let A=1|-110|landB=1]1 1 -2
000 —2-2 4

Are yT Ay and y” By independent? Explain.
2.219. Let Y = XB+e where e ~ N,,(0,0%1,,). Assume X has full rank.
Let r be the vector of residuals. Then the residual sum of squares RSS =

AT ~ ~T A
rTr. The sum of squared fitted values is Y~ Y. Prove that »’r and Y Y
independent (or dependent).
(Hint: write each term as a quadratic form.)

12
2.22. Let B = [24].

a) Find rank(B).

b) Find a basis for C(B).

¢) Find [C(B)]* = nullspace of BT

d) Show that B~ = [1 _01] is a generalized inverse of B.

2.23. Suppose that Y = X B+e where Cov(e) = 02X and X = X/251/2
where X/ is nonsingular and symmetric. Hence Y12y = »712Xx3 +
3 ~2e. Find Cov(X~'/?e). Simplify.

2.24. Let y ~ Na(p,0%I) where y = (Y1,Y2)? and p = (uy, p2)?. Let

=[] mam=[ 12,00

Are yT Ay and y” By independent? Explain.
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2.25. Assuming the assumptions of the least squares central limit theorem
hold, what is the limiting distribution of v/n (8 — 8) if (X'X)/n — W1

asn — oo’

Vi (B-8)2

2.26. Let the model be }/1 = 61 +62.§C1‘2 +63.§C1‘3 +64£C1'4 —+ ... +610.§C1‘10 +e;.
The model in matrix form is Y = X3 + e where e ~ N,,(0,0%I). Let P be
the projection matrix on C(X) where the n x p matrix X has full rank p.
What is the distribution of Y PY?

Hint: If Y ~ N,,(u, I), then YT AY ~ x%(rank(A), uTAp/2) iff A = AT

Y X
is idempotent. Y ~ N, (X3, 0%I), so — ~ N, (—'B, I) . Simplify.
o o

2.27. Let Y = YT, Let Y ~ N,(X,02I). Recall that E(Y'AY) =

tr(ACov(Y)) + E(Y')AE(Y).
Find E(Y'Y) = E(Y'TY).
2.28. Let y ~ Na(p,0%I) where y = (Y1,Y2)? and p = (ug, p2)?. Let

A [1/2 1/2] o B — [ 1/4 \/5/4]'

1/21/2 V3/4 3/4
Are Ay and By independent? Explain.
10
2.29. Let X =|1 0

11

a) Find rank(X).

b) Find a basis for C(X).

¢) Find [C(X)]* = nullspace of X7

2.309. Let Y = X3 + e where e ~ N, (0,0%1,). Assume X has full
rank and that the first column of X =1 so that a constant is in the model.
Let r be the vector of residuals. Then the residual sum of squares RSS =
rTr = ||(I — P)Y|?. The sample mean Y = 217'Y". Prove that r"r and Y’
independent (or dependent).
(Hint: If Y ~ N, (u, X), then AY 1L BY iff AXB” = 0.

1
So prove whether (I — P)Y 1. —17Y".)
n

2.31. Let the full model be }/1 = 61+62xig—i—ﬂg$i3+64£61'4+65£61‘5+66£61‘6+€i
and let the reduced model be Y; = 814+ (sx;3+e¢; fori = 1, ..., n. Write the full
modelas Y = XB+e = X18,+ X285 +e, and consider testing Hp : 85 =0
where 3, corresponds to the reduced model. Let P; be the projection matrix
on C(X ) and let P be the projection matrix on C(X).
n—pY?(P—P)Y

¢ Y'(I-PY
Assume € ~ N,,(0,0%I). Assume Hj is true.

a) What is ¢7

Then FR =
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b) What is the distribution of Y* (P — P1)Y ?
¢) What is the distribution of Y7 (I — P)Y?
d) What is the distribution of Fg?

2.32%. If P is a projection matrix, prove a) the eigenvalues of P are 0 or
1, b) rank(P) = tr(P).

2.339. Suppose that AY and BY are independent where A and B are
symmetric matrices. Are Y'AY and Y'BY independent? (Hint: show that
the quadratic form Y’ AY is a function of AY by using the definition of the
generalized inverse A™.)

2.34. Craig’s theorem states that if @ ~ N, (p, V) and if A and B are
symmetric matrices, then the quadratic forms '’ Az and x’ Bx are indepen-
dent iff i) VAV BV = 0, ii) VAV Bu = 0, iii) VBV Au = 0, and iv)
W AV Bp = 0. Here V is positive semidefinite. Hence V' could be singular.
Notice that V is symmetric since it is a covariance matrix.

Suppose that AV B = 0. Are '’ Ax and =’ Bx are independent? Explain
briefly.

2.35%. 2.35. Let Y be an n x 1 random vector and A an n x n symmetric
matrix. Let E(Y) = 0 and Cov(Y) = X' = (0y5).

a) Prove that E(YTAY) = tr(AX) + 07 A6.

b) Let E(Y;) = 0 for all i, 0;; = o2 for all i, and 0;; = po? for i # j
where —1 < p < 1. Show that ) ,(¥; — Y)? is an unbiased estimator of
o%(1 — p)(n — 1). Hint: write ,(V; = Y)?2 = YT AY and use a).

¢) Show when >_;(Y; —Y)? and Y are independent if X = o21. State the
theorems clearly wherever used in your proof.

2.369 (NIU, summer 1991). Consider the regression model Y; = Bx; +
e; for i = 1,...,n where the ¢; are iid N (0, 0?).

a) Show that the least squares estimator of 3 is

Dic1 Y
Z’?:l 'r’L2

b) Express B as a linear combination of the responses and derive its mean
and variance.

¢) Show that ¥; = fBa; is an unbiased estimator of E(Y;)and derive its
variance.

d) Derive the maximum likelihood estimators of 3 and o2.

2.379. a) For an n x 1 vector Y with E(Y) = p and Cov(Y) = X, show
E(YTAY) = trace(AX) + u” Ap. is normality necessary here?

b) Consider the usual full rank linear model Y = X8 + e where X is
n X p, the first column of X is 1, B is p x 1 and e ~ N, (0, o21).

i) Write down an ANOVA table to test (82, ..., 3p)T = 0, giving expressions
for the regression sum of squares (SSR) and the error sum of squares (SSE).

ii) Find E(SSR) and E(SSE) when Hj is true.

B =
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iii) Derive the distribution of SSE/o? if Hy is true. State any theorems
used.

2.389. a) Define a generalized inverse of a matrix A.

b) i) Suppose X is n X p with rank r < p. Give the formula for the
projection matrix P onto the column space of X.

ii) For
1-2
X=|1-2],
1-2

calculate P.

iii) With X as above and Y = (1, 2,3)7, calculate the error sum of squares
SSE.

2.399. Consider the usual full rank model Y = X3 + e where X isn x p
and e ~ N,,(0,6°I,,). Let 8 = (BT 81T where B, is p; x 1.

a) Write down the complete ANOVA table for the test Hy : B35 = 0,
including the expected mean squares.

b) Prove that SSE(R) — SSE and M SE are independent.

c) If Hy is true, show Fr ~ Fp, n—p.

2.409. Let Y ~ N, (u, X) where X > 0, and let A be a symmetric matrix.

a) State the necessary and sufficient condition(s) for Y7 AY to be a chi-
square random variable.

b) Suppose rank(X) = n and BX A = 0 where B is a ¢ X n matrix. Prove
that Y7 AY and BY are independent.

c) If u = pl and X' = 021 where 0% > 0, prove that

. 1 n 1 n — )
Y = - ; Y; and p—] ;(K —Y)” are independent.

2.41%. Let Y = X3 + e where e ~ N,,(0,02I), X is an n x p matrix of
rank p, and 3 is a p x 1 vector.

a) Write down (do not derive) the MLEs of 8 and o?.

b) If 62 is the MLE of o2, derive the distribution of (n — p)§?/o2.

¢) Prove that 8 (MLE of 8) and 42 are independent.

d) Now suppose € ~ N, (0,0%2V) where V is a known positive definite
matrix. Write down the MLE of 3.

2.429. a) Suppose Y ~ N, (1, X). Let A be an n x n symmetric matrix.

i) Show E[(Y — w)TA(Y — p)] = tr(AX). Is normality of Y necessary
here?

ii) State a necessary and sufficient condition for (Y — u)T A(Y — ) to be
a chi-square random variable.

iii) State a necessary and sufficient condition for (Y — p)T A(Y — p) and
BY to be independent where B is an g X n matrix.

b) Suppose Y ~ N,,(X3,0%I) where X is an n x p matrix of rank p and
Bispx1.
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1
i) Derive the distribution of —(I — H)Y where H is the projection matrix

onto the column space C'(X).

YH'(I-H)Y
a? '

iii) Show that u and v = HY are independent.

2.43%. Consider the regression model y; = Bx; + e; for i = 1, ..., n where
the e; are iid N (0, 0?).

a) Derive the least squares estimator of .

b) Write down an unbiased estimator of o2.

¢) Derive the maximum likelihood estimators of 3 and 2.

2.44%. Let Y7 and Y, be iindependent random variables with mean 6 and
26 respectively. Find the least squares estimate of § and the residual sum of
squares.

2.459. a) By the least squares central limit theorem, /n(3 — B) 5
N, (0,02 W). Hence the limiting distribution of of \/n(3—8) is the N, (0,02 W)
distribution. Let A be a constant r X p matrix. Find the limiting distribution
of Avn(B — B).

b) Suppose Z,, Z N (p, I). Let A be a constant r x k matrix. Find the
limiting distribution of A(Z,, — p).

2.46.

2.47.

2.48.

2.49.

2.50.

2.51.

2.52.

2.53.

ii) Derive the distribution of u =

R Problems

Use the command source( “G:/linmodpack.tzt”) to download the
functions and the command source( “G:/linmoddata.tzt”) to download the
data. See Preface or Section 11.1. Typing the name of the 1 inmodpack
function, e.g. regbootsim2, will display the code for the function. Use the
args command, e.g. args(regbootsim2), to display the needed arguments for
the function. For the following problem, the R commands can be copied and
pasted from (http://parker.ad.siu.edu/Olive/linmodrhw.txt) into R.

2.54. Generalized and weighted least squares are each equivalent to
a least squares regression without intercept. Let w’ = w”. Let V =
diag(1,1/2,1/3,...,1/9) = diag(w;) where n = 9 and the weights w; = ¢
for i = 1,...,9. Let ' = (1,21,22,23). Then the weighted least squares
with weight vector w’ = (1,2,...,9) is equivalent to the OLS regression of

Vw; Y; = Z; on u where u = Jw;x = (/w;, JWiT1, JWiZT2, Jw;zs)'. There

is no intercept because the vector of ones has been replaced by a vector of
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the /w;’s. Copy and paste the commands for this problem into R. The com-
mands fit weightd least squares and the equivalent OLS regression without
an intercept. Include one page of output in Word.



