Chapter 6
What if n is not >> p?

When p > n, the fitted model should do better than i) interpolating the data
or ii) discarding all of the predictors and using the location model of Section
1.3.5 for inference. If p > n, forward selection, lasso, relaxed lasso, elastic
net, and relaxed elastic net can be useful for several regression models. Ridge
regression, partial least squares, and principal components regression can also
be computed for multiple linear regression. Sections 4.3, 5.9, and 10.7 give
prediction intervals.

One of the biggest errors in regression is to use the response variable
to build the regression model using all n cases, and then do inference as if
the built model was selected without using the response, e.g., selected before
gathering data. Using the response variable to build the model is called data
snooping, then inference is generally no longer valid, and the model built from
data snooping tends to fit the data too well. In particular, do not use data
snooping and then use variable selection or cross validation. See Hastie et al
(2009, p. 245) and Olive (2017a, pp. 85-89).

Building a regression model from data is one of the most challenging regres-
sion problems. The “final full model” will have response variable Y = ¢(Z), a
constant 1, and predictor variables xo = to(wa, ..., wr), ..., Tp = tp(wa, ..., wy)
where the initial data consists of Z,ws, ..., w,. Choosing t,t»,...,%, so that
the final full model is a useful regression approximation to the data can be
difficult.

As a rule of thumb, if strong nonlinearities are apparent in the predictors
Wy, ..., Wp, it is often useful to remove the nonlinearities by transforming the
predictors using power transformations. When p is large, a scatterplot matrix
of wy, ..., wp can not be made, but the log rule of Section 1.2 can be useful.
Plots from Chapter 7, such as the DD plot, can also be useful. A scatterplot
matrix of the w; is an array of scatterplots of w; versus w;. A scatterplot is
a plot of w; versus w;.

In the literature, it is sometimes stated that predictor transformations
that are made without looking at the response are “free.” The reasoning
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is that the conditional distribution of Y|(z2 = a9, ...,zp = ap) is the same
as the conditional distribution of Y|[ta(z2) = ta(az),....tp(xp) = tp(ap)l:
there is simply a change of labelling. Certainly if Y|z = 9 ~ N(0, 1), then
Y|z =3 ~ N(0,1). To see that the above rule of thumb does not always
work, suppose that Y = B + Baxg + -+ + Bpxp + € where the z; are iid
lognormal(0,1) random variables. Then w; = log(z;) ~ N(0,1) fori=2,...,p
and the scatterplot matrix of the w; will be linear while the scatterplot matrix
of the z; will show strong nonlinearities if the sample size is large. However,
there is an MLR relationship between Y and the z; while the relationship
between Y and the w; is nonlinear: Y = f1+ (22 +- - -+ Fper e # BTw+e.
Given Y and the w; with no information of the relationship, it would be
difficult to find the exponential transformation and to estimate the ;. The
moral is that predictor transformations, especially the log transformation, can
and often do greatly simplify the MLR analysis, but predictor transformations
can turn a simple MLR analysis into a very complex nonlinear analysis.
Recall the 1D regression model from Definition 1.2 with

Y Lx|SP or Y Lxh(x),

where the real valued function A : RP — R. An important special case is a
model with a linear predictor h(z) = =7 3.

For the 1D regression model, let the ith case be (Y;,x;) for i = 1,....,n
where the n cases are independent. Variable selection is the search for a
subset of predictor variables that can be deleted with little loss of information
if n/p is large, and so that the model with the remaining predictors is useful
for prediction even if n/p is not large. The model for variable selection given
by Equation (4.1) can be useful even if n/p is not large:

a'B =585 +zpBr = 565 (6.1)
where = (x4, 2L)7, s is an ag x 1 vector, and zg is a (p—ag) x 1 vector.
Given that g is in the model, 35 = 0 and E denotes the subset of terms
that can be eliminated given that the subset S is in the model. Let 1 be the
vector of a terms from a candidate subset indexed by I, and let o be the
vector of the remaining predictors (out of the candidate submodel). Suppose
that S is a subset of I and that model (6.1) holds. Then

'8 =wiBs = x5Bs + m?/S/B(I/S) + 250 =z} B;

where x7,5 denotes the predictors in I that are not in S. Since this is true
regardless of the values of the predictors, B, =01if S C I.
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6.1 Sparse Models

When n/p — 0 as n — oo, consistent estimators generally cannot be found
unless the model has a simplifying structure. A sparse model is one such
structure. For Equation (6.1), a population regression model is sparse if ag
is small. We want n > 10ag.

For multiple linear regression with p > n, results from Hastie et al. (2015,
pp- 20, 296, ch. 6, ch. 11) and Luo and Chen (2013) suggest that lasso, relaxed
lasso, and forward selection with EBIC can perform well for sparse models.
Least angle regression, elastic net, and relaxed elastic net can also be useful.

Suppose the selected model is Iy, and B;, is aq x 1. For multiple linear
regression, forward selection with Cp, and AIC often gives useful results if
n > bp and if the final model I has n > 10aq. For p < n < 5p, forward
selection with C}, and AIC tends to pick the full model (which overfits since
n < 5p) too often, especially if 2 = MSE. The Hurvich and Tsai (1989)
AIC¢ criterion can be useful for MLR and time series if n > max(2p, 10ag).
If n > 5p, AIC and BIC are useful for many regression models, and forward
selection with EBIC can be used for some models if n/p is small. See Section
4.1 and Chen and Chen (2008).

6.2 Data Splitting

Data splitting is useful for many regression models when the n cases are in-
dependent, including multiple linear regression, multivariate linear regression
where there are m > 2 response variables, generalized linear models (GLMs),
the Cox (1972) proportional hazards regression model, and parametric sur-
vival regression models.

Consider a regression model with response variable Y and a p x 1 vector
of predictors «. This model is the full model. Suppose the n cases are inde-
pendent. To perform data splitting, randomly divide the data into two sets
H and V where H has ny of the cases and V has the remaining ny = n—ng
cases i1, ..., in, . Find a model I, possibly with data snooping or model se-
lection, using the data in the training set H. Use the model I as the full
model to perform inference using the data in the validation set V. That is,
regress Yy on Xy ; and perform the usual inference for the model using the
7 =1,...,ny cases in the validation set V. If 3; uses a predictors, we want
ny > 10a and we want P(S C I) — 1 as n — oo or for (Yy, Xy 1) to follow
the regression model.

In the literature, often ngy ~ [n/2]. For model selection, use the training
data set to fit the model selection method, e.g. forward selection or lasso, to
get the a predictors. On the test set, use the standard regression inference
from regressing the response on the predictors found from the training set.
This method can be inefficient if n > 10p, but is useful for a sparse model



268 6 What if n is not >> p?

if n < 5p, if the probability that the model underfits goes to zero, and if
n > 20a.

The method is simple, use one half set to get the predictors, then fit
the regression model, such as a GLM or OLS, to the validation half set
(Yv,Xv,1). The regression model needs to hold for (Y, Xy 1) and we want
ny > 10a if I uses a predictors. The regression model can hold if S C T
and the model is sparse. Let * = (x1,...,x,)T where 1 is a constant. If
(Y, s, ..., x,)T follows a multivariate normal distribution, then (Y, z;) follows
a multiple linear regression model for every I. Hence the full model need not
be sparse, although the selected model may be suboptimal.

Of course other sample sizes than half sets could be used. For example if
n = 1000p, use n = 10p for the training set and n = 990p for the validation
set.

Remark 6.1. i) One use of data splitting is to try to transform the
p > n problem into an m > 10k problem. This method can work if
the model is sparse. For multiple linear regression, this method can work
if Y ~ N,(XB,02I), since then all subsets I satisfy the MLR model:
Y, = mITJﬂI + eri. See Remark 1.5. If B; is k x 1, we want n > 10k and
V(eri) = o2 to be small. For binary logistic regression, the discriminant
function model of Definition 10.7 can be useful if z;|Y = j ~ Ni(p;, X)
for 5 = 0,1. Of course, the models may not be sparse, and the multivariate
normal assumptions for MLR and binary logistic regression rarely hold.

ii) Data splitting can be tricky for lasso, ridge regression, and elastic net
if the sample sizes of the training and validation sets differ. Roughly set
AL, /(2n1) = A2.n,/(2n2). Data splitting is much easier for variable selection
methods such as forward selection, relaxed lasso, and relaxed elastic net. Find
the variables z7, ..., x} indexed by I from the training set, and use model I
as the full model for the validation set.

iii) Another use of data splitting is that data snooping can be used on the
training set: use the model as the full model for the validation set.

6.3 Summary

1) Using the response variable to build a model is known as data snooping,
and invalidates inference if data snooping is used on the entire data set of n
cases.

2) Suppose 73 = mg,ﬁs + m%,@E = mgﬁs where Bg is an ag x 1 vector.
A regression model is sparse if ag is small. We want n > 10ags.

3) Assume the cases are independent. To perform data splitting, randomly
divide the data into two half sets H and V where H has ng of the cases and
V' has the remaining ny = n —ng cases i1, ..., in, . Build the model, possibly
with data snooping, or perform variable selection to Find a model I, possibly
with data snooping or model selection, using the data in the training set H.
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Use the model I as the full model to perform inference using the data in the
validation set V.

6.4 Complements

Suppose model Iy contains k predictors including a constant. For multiple
linear regression, the forward selection algorithm in Chapter 4 adds a pre-
dictor 2, that minimizes the residual sum of squares, while the Pati et al.
(1993) “orthogonal matching pursuit algorithm” uses predictors (scaled to
have unit norm: ! x; = 1 for the nontrivial predictors), and adds the scaled
predictor x} ,; that maximizes |z}, 7| where the maximization is over vari-
ables not yet selected and the rj are the OLS residuals from regressing Y
on X7 . Fan and Li (2001) and Candes and Tao (2007) gave competitors to
lasso. Some fast methods seem similar to the first PLS component. A useful
reference for data splitting is Rinaldo et al (2019).

Fan and Li (2002) give a method of variable selection for the Cox (1972)
proportional hazards regression model. Using AIC is also useful if p is fixed.

For a time series Y7, ..., Y,, we could use Y7, ..., Y;,, as one set and Y41, ..., Yy,
as the other set. Three set inference may be needed. Use Y7, ..., Y,, as the first
set (trianing data), Y41, .-, Ym+k as a burn in set, and Y4541, ..., Ys, as the
third set for inference.

When the entire data set is used to build a model with the response vari-
able, the inference tends to be invalid, and cross validation should not be used
to check the model. See Hastie et al. (2009, p. 245). In order for the inference
and cross validation to be useful, the response variable and the predictors
for the regression should be chosen before looking at the response variable.
Predictor transformations can be done as long as the response variable is not
used to choose the transformation. You can do model building on the test
set, and then inference for the chosen (built) model as the full model with
the validation set, provided this model follows the regression model used for
inference (e.g. multiple linear regression or a GLM). This process is difficult
to simulate.

6.5 Problems



