
Chapter 7

Robust Regression

This chapter considers outlier detection and then develops robust regression
estimators. Robust estimators of multivariate location and dispersion are
useful for outlier detection and for developing robust regression estimators.
Outliers and dot plots were discussed in Chapter 3.

Definition 7.1 An outlier corresponds to a case that is far from the bulk
of the data.

Definition 7.2. A dot plot of Z1, ..., Zm consists of an axis and m points
each corresponding to the value of Zi.

The following plots and techniques will be developed in this chapter. For
the location model, use a dot plot to detect outliers. For the multivariate
location model with p = 2 make a scatterplot. For multiple linear regression
with one nontrivial predictor x, plot x versus Y . For the multiple linear
regression model, make the residual and response plots. For the multivariate
location model, make the DD plot if n ≥ 5p, and use ddplot5 if p > n. If p
is not much larger than 5, elemental sets are useful for outlier detection for
multiple linear regression and multivariate location and dispersion.

7.1 The Location Model

The location model is

Yi = µ + ei, i = 1, . . . , n (7.1)

where e1, ..., en are error random variables, often iid with zero mean. The
location model is used when there is one variable Y , such as height, of interest.
The location model is a special case of the multiple linear regression model
and of the multivariate location and dispersion model, where there are p
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272 7 Robust Regression

variables x1, ..., xp of interest, such as height and weight if p = 2. The dot
plot of Definition 7.2 is useful for detecting outliers in the location model.

The location model is often summarized by obtaining point estimates and
confidence intervals for a location parameter and a scale parameter. Assume
that there is a sample Y1, . . . , Yn of size n where the Yi are iid from a distri-
bution with median MED(Y ), mean E(Y ), and variance V (Y ) if they exist.
The location parameter µ is often the population mean or median while the
scale parameter is often the population standard deviation

√
V (Y ). The ith

case is Yi.
Point estimation is one of the oldest problems in statistics and four impor-

tant statistics for the location model are the sample mean, median, variance,
and the median absolute deviation (MAD). Let Y1, . . . , Yn be the random
sample; i.e., assume that Y1, ..., Yn are iid. The sample mean is a measure of
location and estimates the population mean (expected value) µ = E(Y ). The

sample mean Y =

∑n
i=1 Yi

n
. The sample variance S2

n =

∑n
i=1(Yi − Y )2

n − 1
=

∑n
i=1 Y 2

i − n(Y )2

n − 1
, and the sample standard deviation Sn =

√
S2

n.

If the data set Y1, ..., Yn is arranged in ascending order from smallest to
largest and written as Y(1) ≤ · · · ≤ Y(n), then Y(i) is the ith order statistic
and the Y(i)’s are called the order statistics. If the data Y1 = 1, Y2 = 4, Y3 =

2, Y4 = 5, and Y5 = 3, then Y = 3, Y(i) = i for i = 1, ..., 5 and MED(n) = 3
where the sample size n = 5. The sample median is a measure of location
while the sample standard deviation is a measure of spread. The sample mean
and standard deviation are vulnerable to outliers, while the sample median
and MAD, defined below, are outlier resistant.

Definition 7.3. The sample median

MED(n) = Y((n+1)/2) if n is odd, (7.2)

MED(n) =
Y(n/2) + Y((n/2)+1)

2
if n is even.

The notation MED(n) = MED(Y1, ..., Yn) will also be used.

Definition 7.4. The sample median absolute deviation is

MAD(n) = MED(|Yi − MED(n)|, i = 1, . . . , n). (7.3)

Since MAD(n) is the median of n distances, at least half of the observations
are within a distance MAD(n) of MED(n) and at least half of the observations
are a distance of MAD(n) or more away from MED(n). Like the standard
deviation, MAD(n) is a measure of spread.

Example 7.1. Let the data be 1, 2, 3, 4, 5, 6, 7, 8, 9. Then MED(n) = 5
and MAD(n) = 2 = MED{0, 1, 1, 2, 2, 3, 3, 4, 4}.
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The trimmed mean is used in Chapter 9. We recommend the 25% trimmed
mean. Let bxc denote the “greatest integer function” (e.g., b7.7c = 7).

Definition 7.5. The symmetrically trimmed mean or the δ trimmed mean

Tn = Tn(Ln, Un) =
1

Un − Ln

Un∑

i=Ln+1

Y(i) (7.4)

where Ln = bnδc and Un = n − Ln. If δ = 0.25, say, then the δ trimmed
mean is called the 25% trimmed mean.

The (δ, 1 − γ) trimmed mean uses Ln = bnδc and Un = bnγc.

Estimators that use order statistics are common. Theory for the MAD,
median, and trimmed mean is given, for example, in Olive (2008), which
also gives confidence intervals based on the median and trimmed mean. The
shorth estimator of Section 4.3 was used for prediction intervals.

7.2 The Multivariate Location and Dispersion Model

The multivariate location and dispersion (MLD) model is a special case of the
multivariate linear model, just like the location model is a special case of the
multiple linear regression model. Robust estimators of multivariate location
and dispersion are useful for detecting outliers in the predictor variables and
for developing an outlier resistant multiple linear regression estimator.

The practical, highly outlier resistant,
√

n consistent FCH, RFCH, and
RMVN estimators of (µ, cΣ) are developed along with proofs. The RFCH
and RMVN estimators are reweighted versions of the FCH estimator. It is
shown why competing “robust estimators” fail to work, are impractical, or are
not yet backed by theory. The RMVN and RFCH sets are defined and will be
used for outlier detection and to create practical robust methods of multiple
linear regression and multivariate linear regression. Many more applications
are given in Olive (2017b).

Warning: This section contains many acronyms, abbreviations, and es-
timator names such as FCH, RFCH, and RMVN. Often the acronyms start
with the added letter A, C, F, or R: A stands for algorithm, C for con-
centration, F for estimators that use a fixed number of trial fits, and R for
reweighted.

Definition 7.6. The multivariate location and dispersion model is

Y i = µ + ei, i = 1, . . . , n (7.5)

where e1, ..., en are p× 1 error random vectors, often iid with zero mean and
covariance matrix Cov(e) = Cov(Y ) = ΣY = Σe.
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Note that the location model is a special case of the MLD model with
p = 1. If E(e) = 0, then E(Y ) = µ. A p×p dispersion matrix is a symmetric
matrix that measures the spread of a random vector. Covariance and corre-
lation matrices are dispersion matrices. One way to get a robust estimator
of multivariate location is to stack the marginal estimators of location into
a vector. The coordinatewise median MED(W ) is an example. The sample
mean x also stacks the marginal estimators into a vector, but is not outlier
resistant.

Let µ be a p × 1 location vector and Σ a p × p symmetric dispersion
matrix. Because of symmetry, the first row of Σ has p distinct unknown
parameters, the second row has p−1 distinct unknown parameters, the third
row has p − 2 distinct unknown parameters, ..., and the pth row has one
distinct unknown parameter for a total of 1 + 2 + · · · + p = p(p + 1)/2
unknown parameters. Since µ has p unknown parameters, an estimator (T, C)
of multivariate location and dispersion, needs to estimate p(p+3)/2 unknown
parameters when there are p random variables. If the p variables can be
transformed into an uncorrelated set then there are only 2p parameters, the
means and variances, while if the dimension can be reduced from p to p− 1,
the number of parameters is reduced by p(p+3)/2− (p−1)(p+2)/2 = p+1.

The sample covariance or sample correlation matrices estimate these pa-
rameters very efficiently since Σ = (σij) where σij is a population covariance
or correlation. These quantities can be estimated with the sample covariance
or correlation taking two variables Xi and Xj at a time. Note that there are
p(p + 1)/2 pairs that can be chosen from p random variables X1, ..., Xp.

Rule of thumb 7.1. For the classical estimators of multivariate location
and dispersion, (x, S) or (z = 0, R), we want n ≥ 10p. We want n ≥ 20p for
the robust MLD estimators (FCH, RFCH, or RMVN) described later in this
section.

7.2.1 Affine Equivariance

Before defining an important equivariance property, some notation is needed.
Assume that the data is collected in an n × p data matrix W . Let B = 1bT

where 1 is an n × 1 vector of ones and b is a p × 1 constant vector. Hence
the ith row of B is bT

i ≡ bT for i = 1, ..., n. For such a matrix B, consider
the affine transformation Z = WAT + B where A is any nonsingular p × p
matrix. An affine transformation changes xi to zi = Axi + b for i = 1, ..., n,
and affine equivariant multivariate location and dispersion estimators change
in natural ways.

Definition 7.7. The multivariate location and dispersion estimator (T, C)
is affine equivariant if
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T (Z) = T (WAT + B) = AT (W ) + b, (7.6)

and C(Z) = C(WAT + B) = AC(W )AT . (7.7)

The following theorem shows that the Mahalanobis distances are invariant
under affine transformations. See Rousseeuw and Leroy (1987, pp. 252-262)
for similar results. Thus if (T, C) is affine equivariant, so is
(T, D2

(cn)(T, C) C) where D2
(j)(T, C) is the jth order statistic of the D2

i .

Theorem 7.1. If (T, C) is affine equivariant, then

D2
i (W ) ≡ D2

i (T (W ), C(W )) = D2
i (T (Z), C(Z)) ≡ D2

i (Z). (7.8)

Proof. Since Z = WAT + B has ith row zT
i = xT

i AT + bT ,

D2
i (Z) = [zi − T (Z)]T C−1(Z)[zi − T (Z)]

= [A(xi − T (W ))]T [AC(W )AT ]−1[A(xi − T (W ))]

= [xi − T (W )]T C−1(W )[xi − T (W )] = D2
i (W ). �

Definition 7.8. For MLD, an elemental set J = {m1, ..., mp+1} is a set of
p+ 1 cases drawn without replacement from the data set of n cases. The ele-
mental fit (TJ , CJ ) = (xJ , SJ) is the sample mean and the sample covariance
matrix computed from the cases in the elemental set.

If the data are iid, then the elemental fit gives an unbiased but inconsistent
estimator of (E(x), Cov(x)). Note that the elemental fit uses the smallest
sample size p + 1 such that SJ is nonsingular if the data are in “general
position” defined in Definition 7.10. See Definition 4.7 for the sample mean
and sample covariance matrix.

7.2.2 Breakdown

This subsection gives a standard definition of breakdown for estimators of
multivariate location and dispersion. The following notation will be useful.
Let W denote the n × p data matrix with ith row xT

i corresponding to the
ith case. Let w1, ...wn be the contaminated data after dn of the xi have been
replaced by arbitrarily bad contaminated cases. Let W n

d denote the n×p data
matrix with ith row wT

i . Then the contamination fraction is γn = dn/n. Let
(T (W ), C(W )) denote an estimator of multivariate location and dispersion
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where the p × 1 vector T (W ) is an estimator of location and the p × p
symmetric positive semidefinite matrix C(W ) is an estimator of dispersion.

Theorem 7.2. Let B > 0 be a p × p symmetric matrix with eigenvalue
eigenvector pairs (λ1, e1), ..., (λp, ep) where λ1 ≥ λ2 · · · ≥ λp > 0 and the
orthonormal eigenvectors satisfy eT

i ei = 1 while eT
i ej = 0 for i 6= j. Let d

be a given p × 1 vector and let a be an arbitrary nonzero p × 1 vector.

a) max
a6=0

aT ddT a

aT Ba
= dT B−1d where the max is attained for a = cB−1d

for any constant c 6= 0. Note that the numerator = (aT d)2.

b) max
a6=0

aT Ba

aT a
= max

‖a‖=1
aT Ba = λ1 where the max is attained for a = e1.

c) min
a6=0

aT Ba

aT a
= min

‖a‖=1
aT Ba = λp where the min is attained for a = ep.

d) max
a⊥e1,...,ek

aT Ba

aT a
= max

‖a‖=1,a⊥e1,...,ek

aT Ba = λk+1 where the max is

attained for a = ek+1 for k = 1, 2, ..., p− 1.
e) Let (x, S) be the observed sample mean and sample covariance matrix

where S > 0. Then max
a6=0

naT (x − µ)(x − µ)T a

aT Sa
= n(x−µ)T S−1(x−µ) = T 2

where the max is attained for a = cS−1(x − µ) for any constant c 6= 0.
f) Let A be a p × p symmetric matrix. Let C > 0 be a p × p symmetric

matrix. Then max
a6=0

aT Aa

aT Ca
= λ1(C

−1A), the largest eigenvalue of C−1A. The

value of a that achieves the max is the eigenvector g1 of C−1A corresponding

to λ1(C
−1A). Similarly min

a 6=0

aT Aa

aT Ca
= λp(C

−1A), the smallest eigenvalue of

C−1A. The value of a that achieves the min is the eigenvector gp of C−1A

corresponding to λp(C
−1A).

Proof Sketch. See Johnson and Wichern (1988, pp. 64-65, 184). For a),
note that rank(C−1A) = 1, where C = B and A = ddT , since rank(C−1A)
= rank(A) = rank(d) = 1. Hence C−1A has one nonzero eigenvalue eigen-
vector pair (λ1, g1). Since

(λ1 = dT B−1d, g1 = B−1d)

is a nonzero eigenvalue eigenvector pair for C−1A, and λ1 > 0, the result
follows by f).

Note that b) and c) are special cases of f) with A = B and C = I .
Note that e) is a special case of a) with d = (x− µ) and B = S.
(Also note that (λ1 = (x−µ)T S−1(x−µ), g1 = S−1(x−µ)) is a nonzero

eigenvalue eigenvector pair for the rank 1 matrix C−1A where C = S and
A = (x − µ)(x− µ)T .)
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For f), see Mardia et al. (1979, p. 480). �

From Theorem 7.2, if C(W n
d) > 0, then max

‖a‖=1
aT C(W n

d)a = λ1 and

min
‖a‖=1

aT C(W n
d )a = λp. A high breakdown dispersion estimator C is positive

definite if the amount of contamination is less than the breakdown value.
Since aT Ca =

∑p
i=1

∑p
j=1 cijaiaj, the largest eigenvalue λ1 is bounded as

W n
d varies iff C(W n

d ) is bounded as W n
d varies.

Definition 7.9. The breakdown value of the multivariate location estima-
tor T at W is

B(T, W ) = min

{
dn

n
: sup
W n

d

‖T (W n
d)‖ = ∞

}

where the supremum is over all possible corrupted samples W n
d and 1 ≤

dn ≤ n. Let λ1(C(W )) ≥ · · · ≥ λp(C(W )) ≥ 0 denote the eigenvalues of the
dispersion estimator applied to data W . The estimator C breaks down if the
smallest eigenvalue can be driven to zero or if the largest eigenvalue can be
driven to ∞. Hence the breakdown value of the dispersion estimator is

B(C, W ) = min

{
dn

n
: sup
W n

d

max

[
1

λp(C(W n
d ))

, λ1(C(W n
d))

]
= ∞

}
.

Definition 7.10. Let γn be the breakdown value of (T, C). High break-
down (HB) statistics have γn → 0.5 as n → ∞ if the (uncontaminated) clean
data are in general position: no more than p points of the clean data lie on
any (p−1)-dimensional hyperplane. Estimators are zero breakdown if γn → 0
and positive breakdown if γn → γ > 0 as n → ∞.

Note that if the number of outliers is less than the number needed to cause
breakdown, then ‖T‖ is bounded and the eigenvalues are bounded away from
0 and ∞. Also, the bounds do not depend on the outliers but do depend on
the estimator (T, C) and on the clean data W .

The following result shows that a multivariate location estimator T basi-
cally “breaks down” if the d outliers can make the median Euclidean distance
MED(‖wi−T (W n

d )‖) arbitrarily large where wT
i is the ith row of W n

d . Thus
a multivariate location estimator T will not break down if T can not be driven
out of some ball of (possibly huge) radius r about the origin. For an affine
equivariant estimator, the largest possible breakdown value is n/2 or (n+1)/2
for n even or odd, respectively. Hence in the proof of the following result, we
could replace dn < dT by dn < min(n/2, dT).

Theorem 7.3. Fix n. If nonequivariant estimators (that may have a break-
down value of greater than 1/2) are excluded, then a multivariate location
estimator has a breakdown value of dT /n iff dT = dT,n is the smallest num-
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ber of arbitrarily bad cases that can make the median Euclidean distance
MED(‖wi − T (W n

d)‖) arbitrarily large.

Proof. Suppose the multivariate location estimator T satisfies ‖T (W n
d )‖ ≤

M for some constant M if dn < dT . Note that for a fixed data set W n
d

with ith row wi, the median Euclidean distance MED(‖wi − T (W n
d)‖) ≤

maxi=1,...,n ‖xi − T (W n
d )‖ ≤ maxi=1,...,n ‖xi‖ + M if dn < dT . Similarly,

suppose MED(‖wi − T (W n
d)‖) ≤ M for some constant M if dn < dT , then

‖T (Wn
d )‖ is bounded if dn < dT . �

Since the coordinatewise median MED(W ) is a HB estimator of multi-
variate location, it is also true that a multivariate location estimator T will
not break down if T can not be driven out of some ball of radius r about
MED(W ). Hence (MED(W ), Ip) is a HB estimator of MLD.

If a high breakdown estimator (T, C) ≡ (T (W n
d ), C(W n

d )) is evaluated
on the contaminated data W n

d , then the location estimator T is contained in
some ball about the origin of radius r, and 0 < a < λp ≤ λ1 < b where the
constants a, r, and b depend on the clean data and (T, C), but not on W n

d if
the number of outliers dn satisfies 0 ≤ dn < nγn < n/2 where the breakdown
value γn → 0.5 as n → ∞.

The following theorem will be used to show that if the classical estimator
(XB , SB) is applied to cn ≈ n/2 cases contained in a ball about the origin of
radius r where r depends on the clean data but not on W n

d , then (XB, SB)
is a high breakdown estimator.

Theorem 7.4. If the classical estimator (XB, SB) is applied to cn cases
that are contained in some bounded region where p + 1 ≤ cn ≤ n, then the
maximum eigenvalue λ1 of SB is bounded.

Proof. The largest eigenvalue of a p × p matrix A is bounded above by
p max |ai,j| where ai,j is the (i, j) entry of A. See Datta (1995, p. 403). Denote
the cn cases by z1, ..., zcn

. Then the (i, j)th element ai,j of A = SB is

ai,j =
1

cn − 1

cn∑

m=1

(zi,m − zi)(zj,m − zj).

Hence the maximum eigenvalue λ1 is bounded. �

The determinant det(S) = |S| of S is known as the generalized sample
variance. Consider the hyperellipsoid

{z : (z − T )T C−1(z − T ) ≤ D2
(cn)} (7.9)

where D2
(cn) is the cnth smallest squared Mahalanobis distance based on

(T, C). This hyperellipsoid contains the cn cases with the smallest D2
i . Sup-

pose (T, C) = (xM , b SM ) is the sample mean and scaled sample covariance
matrix applied to some subset of the data where b > 0. The classical, RFCH,
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and RMVN estimators satisfy this assumption. For h > 0, the hyperellipsoid

{z : (z − T )T C−1(z − T ) ≤ h2} = {z : D2
z ≤ h2} = {z : Dz ≤ h}

has volume equal to

2πp/2

pΓ (p/2)
hp
√

det(C) =
2πp/2

pΓ (p/2)
hpbp/2

√
det(SM).

If h2 = D2
(cn), then the volume is proportional to the square root of the deter-

minant |SM |1/2, and this volume will be positive unless extreme degeneracy
is present among the cn cases. See Johnson and Wichern (1988, pp. 103-104).

7.2.3 The Concentration Algorithm

Concentration algorithms are widely used since impractical brand name es-
timators, such as the MCD estimator given in Definition 7.11, take too long
to compute. The concentration algorithm, defined in Definition 7.12, use K
starts and attractors. A start is an initial estimator, and an attractor is an
estimator obtained by refining the start. For example, let the start be the
classical estimator (x, S). Then the attractor could be the classical estima-
tor (T1, C1) applied to the half set of cases with the smallest Mahalanobis
distances. This concentration algorithm uses one concentration step, but the
process could be iterated for k concentration steps, producing an estimator
(Tk, Ck)

If more than one attractor is used, then some criterion is needed to select
which of the K attractors is to be used in the final estimator. If each attractor
(Tk,j, Ck,j) is the classical estimator applied to cn ≈ n/2 cases, then the
minimum covariance determinant (MCD) criterion is often used: choose the
attractor that has the minimum value of det(Ck,j) where j = 1, ..., K.

The remainder of this section will explain the concentration algorithm,
explain why the MCD criterion is useful but can be improved, provide some
theory for practical robust multivariate location and dispersion estimators,
and show how the set of cases used to compute the recommended RMVN or
RFCH estimator can be used to create outlier resistant regression estimators.
The RMVN and RFCH estimators are reweighted versions of the practical
FCH estimator, given in Definition 7.15.

Definition 7.11. Consider the subset Jo of cn ≈ n/2 observations whose
sample covariance matrix has the lowest determinant among all C(n, cn) sub-
sets of size cn. Let TMCD and CMCD denote the sample mean and sample
covariance matrix of the cn cases in Jo. Then the minimum covariance de-
terminant MCD(cn) estimator is (TMCD(W ), CMCD(W )).
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Here

C(n, i) =

(
n

i

)
=

n!

i! (n − i)!

is the binomial coefficient.
The MCD estimator is a high breakdown (HB) estimator, and the value

cn = b(n + p + 1)/2c is often used as the default. The MCD estimator is the
pair

(β̂LTS , QLTS(β̂LTS)/(cn − 1))

in the location model where LTS stands for the least trimmed sum of squares
estimator. See Section 7.6. The population analog of the MCD estimator is
closely related to the hyperellipsoid of highest concentration that contains
cn/n ≈ half of the mass. The MCD estimator is a

√
n consistent HB asymp-

totically normal estimator for (µ, aMCDΣ) where aMCD is some positive
constant when the data xi are iid from a large class of distributions. See
Cator and Lopuhaä (2010, 2012) who extended some results of Butler et al.
(1993).

Computing robust covariance estimators can be very expensive. For exam-
ple, to compute the exact MCD(cn) estimator (TMCD, CMCD), we need to
consider the C(n, cn) subsets of size cn. Woodruff and Rocke (1994, p. 893)
noted that if 1 billion subsets of size 101 could be evaluated per second, it
would require 1033 millenia to search through all C(200, 101) subsets if the
sample size n = 200. See Section 7.8 for the MCD complexity.

Hence algorithm estimators will be used to approximate the robust esti-
mators. Elemental sets are the key ingredient for both basic resampling and
concentration algorithms.

Definition 7.12. Suppose that x1, ..., xn are p × 1 vectors of observed
data. For the multivariate location and dispersion model, an elemental set J
is a set of p + 1 cases. An elemental start is the sample mean and sample
covariance matrix of the data corresponding to J. In a concentration algo-
rithm, let (T−1,j , C−1,j) be the jth start (not necessarily elemental) and
compute all n Mahalanobis distances Di(T−1,j, C−1,j). At the next iter-
ation, the classical estimator (T0,j , C0,j) = (x0,j, S0,j) is computed from
the cn ≈ n/2 cases corresponding to the smallest distances. This itera-
tion can be continued for k concentration steps resulting in the sequence
of estimators (T−1,j, C−1,j), (T0,j, C0,j), ..., (Tk,j, Ck,j). The result of the it-
eration (Tk,j, Ck,j) is called the jth attractor. If Kn starts are used, then
j = 1, ..., Kn. The concentration attractor, (TA, CA), is the attractor chosen
by the algorithm. The attractor is used to obtain the final estimator. A com-
mon choice is the attractor that has the smallest determinant det(Ck,j). The
basic resampling algorithm estimator is a special case where k = −1 so that
the attractor is the start: (xk,j, Sk,j) = (x−1,j, S−1,j).

This concentration algorithm is a simplified version of the algorithms given
by Rousseeuw and Van Driessen (1999) and Hawkins and Olive (1999a). Using
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k = 10 concentration steps often works well. The following proposition is
useful and shows that det(S0,j) tends to be greater than the determinant of
the attractor det(Sk,j).

Theorem 7.5: Rousseeuw and Van Driessen (1999, p. 214). Sup-
pose that the classical estimator (xt,j, St,j) is computed from cn cases and
that the n Mahalanobis distances Di ≡ Di(xt,j, St,j) are computed. If
(xt+1,j, St+1,j) is the classical estimator computed from the cn cases with
the smallest Mahalanobis distances Di, then det(St+1,j) ≤ det(St,j) with
equality iff (xt+1,j, St+1,j) = (xt,j, St,j).

Starts that use a consistent initial estimator could be used. Kn is the
number of starts and k is the number of concentration steps used in the
algorithm. Suppose the algorithm estimator uses some criterion to choose an
attractor as the final estimator where there are K attractors and K is fixed,
e.g. K = 500, so K does not depend on n. A crucial observation is that the
theory of the algorithm estimator depends on the theory of the attractors,
not on the estimator corresponding to the criterion.

For example, let (0, Ip) and (1, diag(1, 3, ..., p)) be the high breakdown
attractors where 0 and 1 are the p × 1 vectors of zeroes and ones. If the
minimum determinant criterion is used, then the final estimator is (0, Ip).
Although the MCD criterion is used, the algorithm estimator does not have
the same properties as the MCD estimator.

Hawkins and Olive (2002) showed that if K randomly selected elemental
starts are used with concentration to produce the attractors, then the result-
ing estimator is inconsistent and zero breakdown if K and k are fixed and free
of n. Note that each elemental start can be made to breakdown by changing
one case. Hence the breakdown value of the final estimator is bounded by
K/n → 0 as n → ∞. Note that the classical estimator computed from hn

randomly drawn cases is an inconsistent estimator unless hn → ∞ as n → ∞.
Thus the classical estimator applied to a randomly drawn elemental set of
hn ≡ p + 1 cases is an inconsistent estimator, so the K starts and the K
attractors are inconsistent.

This theory shows that the Maronna et al. (2006, pp. 198-199) estimators
that use K = 500 and one concentration step (k = 0) are inconsistent and
zero breakdown. The following theorem is useful because it does not depend
on the criterion used to choose the attractor.

Suppose there are K consistent estimators (Tj , Cj) of (µ, a Σ) for some
constant a > 0, each with the same rate nδ. If (TA, CA) is an estimator
obtained by choosing one of the K estimators, then (TA, CA) is a consistent
estimator of (µ, a Σ) with rate nδ by Pratt (1959). See Theorem 1.21.

Theorem 7.6. Suppose the algorithm estimator chooses an attractor as
the final estimator where there are K attractors and K is fixed.

i) If all of the attractors are consistent estimators of (µ, a Σ), then the
algorithm estimator is a consistent estimator of (µ, a Σ).
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ii) If all of the attractors are consistent estimators of (µ, a Σ) with the
same rate, e.g. nδ where 0 < δ ≤ 0.5, then the algorithm estimator is a
consistent estimator of (µ, a Σ) with the same rate as the attractors.

iii) If all of the attractors are high breakdown, then the algorithm estimator
is high breakdown.

iv) Suppose the data x1, ..., xn are iid and P (xi = µ) < 1. The elemental
basic resampling algorithm estimator (k = −1) is inconsistent.

v) The elemental concentration algorithm is zero breakdown.

Proof. i) Choosing from K consistent estimators for (µ, a Σ) results in a
consistent estimator for of (µ, a Σ), and ii) follows from Pratt (1959). iii) Let
γn,i be the breakdown value of the ith attractor if the clean data x1, ..., xn are
in general position. The breakdown value γn of the algorithm estimator can
be no lower than that of the worst attractor: γn ≥ min(γn,1, ..., γn,K) → 0.5
as n → ∞.

iv) Let (x−1,j, S−1,j) be the classical estimator applied to a randomly
drawn elemental set. Then x−1,j is the sample mean applied to p + 1 iid
cases. Hence E(Sj) = Σx, E[x−1,j] = E(x) = µ, and Cov(x−1,j) =
Cov(x)/(p+1) = Σx/(p+1) assuming second moments. So the (x−1,j, S−1,j)
are identically distributed and inconsistent estimators of (µ, Σx). Even with-
out second moments, there exists ε > 0 such that P (‖x−1,j−µ‖ > ε) = δε > 0
where the probability, ε, and δε do not depend on n since the distribution
of x−1,j only depends on the distribution of the iid xi, not on n. Then
P (minj ‖x−1,j − µ‖ > ε) = P (all ‖x−1,j − µ‖ > ε) → δK

ε > 0 as n → ∞
where equality would hold if the x−1,j were iid. Hence the “best start” that
minimizes ‖x−1,j − µ‖ is inconsistent.

v) The classical estimator with breakdown 1/n is applied to each elemental
start. Hence γn ≤ K/n → 0 as n → ∞. �

Since the FMCD estimator is a zero breakdown elemental concentration
algorithm, the Hubert et al. (2008) claim that “MCD can be efficiently com-
puted with the FAST-MCD estimator” is false. Suppose K is fixed, but at
least one randomly drawn start is iterated to convergence so that k is not
fixed. Then it is not known whether the attractors are inconsistent or consis-
tent estimators, so it is not known whether FMCD is consistent. It is possible
to produce consistent estimators if K ≡ Kn is allowed to increase to ∞.

Remark 7.1. Let γo be the highest percentage of large outliers that an
elemental concentration algorithm can detect reliably. For many data sets,

γo ≈ min

(
n − cn

n
, 1 − [1 − (0.2)1/K]1/h

)
100% (7.10)

if n is large, cn ≥ n/2 and h = p + 1.

Proof. Suppose that the data set contains n cases with d outliers and
n − d clean cases. Suppose K elemental sets are chosen with replacement.
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If Wi is the number of outliers in the ith elemental set, then the Wi are
iid hypergeometric(d, n − d, h) random variables. Suppose that it is desired
to find K such that the probability P(that at least one of the elemental
sets is clean) ≡ P1 ≈ 1 − α where 0 < α < 1. Then P1 = 1− P(none of
the K elemental sets is clean) ≈ 1 − [1− (1 − γ)h]K by independence. If the
contamination proportion γ is fixed, then the probability of obtaining at least
one clean subset of size h with high probability (say 1− α = 0.8) is given by
0.8 = 1− [1− (1−γ)h ]K . Fix the number of starts K and solve this equation
for γ. �

7.2.4 Theory for Practical Estimators

It is convenient to let the xi be random vectors for large sample theory,
but the xi are fixed clean observed data vectors when discussing breakdown.
This subsection presents the FCH estimator to be used along with the classi-
cal estimator. Recall from Definition 7.12 that a concentration algorithm uses
Kn starts (T−1,j , C−1,j). After finding (T0,j, C0,j), each start is refined with
k concentration steps, resulting in Kn attractors (Tk,j, Ck,j), and the con-
centration attractor (TA, CA) is the attractor that optimizes the criterion.

Concentration algorithms include the basic resampling algorithm as a spe-
cial case with k = −1. Using k = 10 concentration steps works well, and
iterating until convergence is usually fast. The DGK estimator (Devlin et
al. 1975, 1981) defined below is one example. The DGK estimator is affine
equivariant since the classical estimator is affine equivariant and Mahalanobis
distances are invariant under affine transformations by Theorem 7.1. This
subsection will show that the Olive (2004a) MB estimator is a high break-
down estimator and that the DGK estimator is a

√
n consistent estimator

of (µ, aMCDΣ), the same quantity estimated by the MCD estimator. Both
estimators use the classical estimator computed from cn ≈ n/2 cases. The
breakdown point of the DGK estimator has been conjectured to be “at most
1/p.” See Rousseeuw and Leroy (1987, p. 254).

Definition 7.13. The DGK estimator (Tk,D, Ck,D) = (TDGK , CDGK)
uses the classical estimator (T−1,D, C−1,D) = (x, S) as the only start.

Definition 7.14. The median ball (MB) estimator (Tk,M , Ck,M) =
(TMB, CMB) uses (T−1,M , C−1,M) = (MED(W ), Ip) as the only start where
MED(W ) is the coordinatewise median. So (T0,M , C0,M) is the classical es-
timator applied to the “half set” of data closest to MED(W ) in Euclidean
distance.

The proof of the following theorem implies that a high breakdown estima-
tor (T, C) has MED(D2

i ) ≤ V and that the hyperellipsoid {x|D2
x ≤ D2

(cn)}
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that contains cn ≈ n/2 of the cases is in some ball about the origin of ra-
dius r, where V and r do not depend on the outliers even if the number of
outliers is close to n/2. Also the attractor of a high breakdown estimator is
a high breakdown estimator if the number of concentration steps k is fixed,
e.g. k = 10. The theorem implies that the MB estimator (TMB , CMB) is high
breakdown.

Theorem 7.7. Suppose (T, C) is a high breakdown estimator where C is
a symmetric, positive definite p × p matrix if the contamination proportion
dn/n is less than the breakdown value. Then the concentration attractor
(Tk, Ck) is a high breakdown estimator if the coverage cn ≈ n/2 and the
data are in general position.

Proof. Following Leon (1986, p. 280), if A is a symmetric positive definite
matrix with eigenvalues τ1 ≥ · · · ≥ τp, then for any nonzero vector x,

0 < ‖x‖2 τp ≤ xT Ax ≤ ‖x‖2 τ1. (7.11)

Let λ1 ≥ · · · ≥ λp be the eigenvalues of C. By (7.11),

1

λ1
‖x− T‖2 ≤ (x − T )T C−1(x − T ) ≤ 1

λp
‖x − T‖2. (7.12)

By (7.12), if the D2
(i) are the order statistics of the D2

i (T, C), then D2
(i) < V

for some constant V that depends on the clean data but not on the outliers
even if i and dn are near n/2. (Note that 1/λp and MED(‖xi−T‖2) are both
bounded for high breakdown estimators even for dn near n/2.)

Following Johnson and Wichern (1988, pp. 50, 103), the boundary of
the set {x|D2

x ≤ h2} = {x|(x − T )T C−1(x − T ) ≤ h2} is a hyperellip-
soid centered at T with axes of length 2h

√
λi. Hence {x|D2

x ≤ D2
(cn)} is

contained in some ball about the origin of radius r where r does not de-
pend on the number of outliers even for dn near n/2. This is the set con-
taining the cases used to compute (T0, C0). Since the set is bounded, T0

is bounded and the largest eigenvalue λ1,0 of C0 is bounded by Theorem
7.4. The determinant det(CMCD) of the HB minimum covariance deter-
minant estimator satisfies 0 < det(CMCD) ≤ det(C0) = λ1,0 · · ·λp,0, and

λp,0 > inf det(CMCD)/λp−1
1,0 > 0 where the infimum is over all possible data

sets with n−dn clean cases and dn outliers. Since these bounds do not depend
on the outliers even for dn near n/2, (T0, C0) is a high breakdown estimator.
Now repeat the argument with (T0, C0) in place of (T, C) and (T1, C1) in
place of (T0, C0). Then (T1, C1) is high breakdown. Repeating the argument
iteratively shows (Tk, Ck) is high breakdown. �

The following corollary shows that it is easy to find a subset J of cn ≈ n/2
cases such that the classical estimator (xJ , SJ ) applied to J is a HB estimator
of MLD.
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Theorem 7.8. Let J consist of the cn cases xi such that
‖xi − MED(W )‖ ≤ MED(‖xi − MED(W )‖). Then the classical estimator
(xJ , SJ) applied to J is a HB estimator of MLD.

To investigate the consistency and rate of robust estimators of multivariate
location and dispersion, review Definitions 1.34 and 1.35.

The following assumption (E1) gives a class of distributions where we can
prove that the new robust estimators are

√
n consistent. Cator and Lop-

uhaä (2010, 2012) showed that MCD is consistent provided that the MCD
functional is unique. Distributions where the functional is unique are called
“unimodal,” and rule out, for example, a spherically symmetric uniform dis-
tribution. Theorem 7.9 is crucial for theory and Theorem 7.10 shows that
under (E1), both MCD and DGK are estimating (µ, aMCDΣ).

Assumption (E1): The x1, ..., xn are iid from a “unimodal” ellipti-
cally contoured ECp(µ, Σ, g) distribution with nonsingular covariance ma-
trix Cov(xi) where g is continuously differentiable with finite 4th moment:∫
(xT x)2g(xT x)dx < ∞.

Lopuhaä (1999) showed that if a start (T, C) is a consistent affine equiv-
ariant estimator of (µ, sΣ), then the classical estimator applied to the cases
with D2

i (T, C) ≤ h2 is a consistent estimator of (µ, aΣ) where a, s > 0 are
some constants. Affine equivariance is not used for Σ = Ip. Also, the attrac-
tor and the start have the same rate. If the start is inconsistent, then so is
the attractor. The weight function I(D2

i (T, C) ≤ h2) is an indicator that is
1 if D2

i (T, C) ≤ h2 and 0 otherwise.

Theorem 7.9, Lopuhaä (1999). Assume the number of concentration
steps k is fixed. a) If the start (T, C) is inconsistent, then so is the attractor.

b) Suppose (T, C) is a consistent estimator of (µ, sIp) with rate nδ where
s > 0 and 0 < δ ≤ 0.5. Assume (E1) holds and Σ = Ip. Then the classical
estimator (T0, C0) applied to the cases with D2

i (T, C) ≤ h2 is a consistent
estimator of (µ, aIp) with the same rate nδ where a > 0.

c) Suppose (T, C) is a consistent affine equivariant estimator of (µ, sΣ)
with rate nδ where s > 0 and 0 < δ ≤ 0.5. Assume (E1) holds. Then the
classical estimator (T0, C0) applied to the cases with D2

i (T, C) ≤ h2 is a
consistent affine equivariant estimator of (µ, aΣ) with the same rate nδ where
a > 0. The constant a depends on the positive constants s, h, p, and the
elliptically contoured distribution, but does not otherwise depend on the
consistent start (T, C).

Let δ = 0.5. Applying Theorem 7.9c) iteratively for a fixed number k of
steps produces a sequence of estimators (T0, C0), ..., (Tk, Ck) where (Tj , Cj)
is a

√
n consistent affine equivariant estimator of (µ, ajΣ) where the con-

stants aj > 0 depend on s, h, p, and the elliptically contoured distribution,
but do not otherwise depend on the consistent start (T, C) ≡ (T−1, C−1).
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The 4th moment assumption was used to simplify theory, but likely holds
under 2nd moments. Affine equivariance is needed so that the attractor is
affine equivariant, but probably is not needed to prove consistency.

Conjecture 7.1. Change the finite 4th moments assumption to a finite
2nd moments in assumption E1). Suppose (T, C) is a consistent estimator
of (µ, sΣ) with rate nδ where s > 0 and 0 < δ ≤ 0.5. Then the classical
estimator applied to the cases with D2

i (T, C) ≤ h2 is a consistent estimator
of (µ, aΣ) with the same rate nδ where a > 0.

Remark 7.2. To see that the Lopuhaä (1999) theory extends to con-
centration where the weight function uses h2 = D2

(cn)(T, C), note that

(T, C̃) ≡ (T, D2
(cn)(T, C) C) is a consistent estimator of (µ, bΣ) where b > 0

is derived in (7.14), and weight function I(D2
i (T, C̃) ≤ 1) is equivalent to the

concentration weight function I(D2
i (T, C) ≤ D2

(cn)(T, C)). As noted above

Theorem 7.1, (T, C̃) is affine equivariant if (T, C) is affine equivariant. Hence
Lopuhaä (1999) theory applied to (T, C̃) with h = 1 is equivalent to theory
applied to affine equivariant (T, C) with h2 = D2

(cn)(T, C).

If (T, C) is a consistent estimator of (µ, s Σ) with rate nδ where 0 < δ ≤
0.5, then D2(T, C) = (x − T )T C−1(x − T ) =

(x − µ + µ− T )T [C−1 − s−1Σ−1 + s−1Σ−1](x− µ + µ − T )

= s−1D2(µ, Σ) + OP (n−δ). (7.13)

Thus the sample percentiles of D2
i (T, C) are consistent estimators of the per-

centiles of s−1D2(µ, Σ). Suppose cn/n → ξ ∈ (0, 1) as n → ∞, and let
D2

ξ (µ, Σ) be the 100ξth percentile of the population squared distances. Then

D2
(cn)(T, C)

P→ s−1D2
ξ (µ, Σ) and bΣ = s−1D2

ξ (µ, Σ)sΣ = D2
ξ (µ, Σ)Σ.

Thus
b = D2

ξ (µ, Σ) (7.14)

does not depend on s > 0 or δ ∈ (0, 0.5]. �

Concentration applies the classical estimator to cases with D2
i (T, C) ≤

D2
(cn)(T, C). Let cn ≈ n/2 and

b = D2
0.5(µ, Σ)

be the population median of the population squared distances. By Remark
7.2, if (T, C) is a

√
n consistent affine equivariant estimator of (µ, sΣ) then

(T, C̃) ≡ (T, D2
(cn)(T, C) C) is a

√
n consistent affine equivariant estimator

of (µ, bΣ), and D2
i (T, C̃) ≤ 1 is equivalent to D2

i (T, C) ≤ D2
(cn)(T, C)).

Hence Lopuhaä (1999) theory applied to (T, C̃) with h = 1 is equivalent
to theory applied to the concentration estimator using the affine equivariant
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estimator (T, C) ≡ (T−1, C−1) as the start. Since b does not depend on s,
concentration produces a sequence of estimators (T0, C0), ..., (Tk, Ck) where
(Tj, Cj) is a

√
n consistent affine equivariant estimator of (µ, aΣ) where the

constant a > 0 is the same for j = 0, 1, ..., k.
Theorem 7.10 shows that a = aMCD where ξ = 0.5. Hence concentration

with a consistent affine equivariant estimator of (µ, sΣ) with rate nδ as a start
results in a consistent affine equivariant estimator of (µ, aMCDΣ) with rate
nδ. This result can be applied iteratively for a finite number of concentration
steps. Hence DGK is a

√
n consistent affine equivariant estimator of the

same quantity that MCD is estimating. It is not known if the results hold
if concentration is iterated to convergence. For multivariate normal data,
D2(µ, Σ) ∼ χ2

p.

Theorem 7.10. Assume that (E1) holds and that (T, C) is a consistent
affine equivariant estimator of (µ, sΣ) with rate nδ where the constants s > 0
and 0 < δ ≤ 0.5. Then the classical estimator (xt,j, St,j) computed from the
cn ≈ n/2 of cases with the smallest distances Di(T, C) is a consistent affine
equivariant estimator of (µ, aMCDΣ) with the same rate nδ.

Proof. By Remark 7.2 the estimator is a consistent affine equivariant esti-
mator of (µ, aΣ) with rate nδ. By the remarks above, a will be the same for
any consistent affine equivariant estimator of (µ, sΣ) and a does not depend
on s > 0 or δ ∈ (0, 0.5]. Hence the result follows if a = aMCD. The MCD
estimator is a

√
n consistent affine equivariant estimator of (µ, aMCDΣ) by

Cator and Lopuhaä (2010, 2012). If the MCD estimator is the start, then it
is also the attractor by Theorem 7.5 which shows that concentration does not
increase the MCD criterion. Hence a = aMCD. �

Next we define the easily computed robust
√

n consistent FCH estima-
tor, so named since it is fast, consistent, and uses a high breakdown attrac-
tor. The FCH and MBA estimators use the

√
n consistent DGK estimator

(TDGK , CDGK) and the high breakdown MB estimator (TMB , CMB) as at-
tractors.

Definition 7.15. Let the “median ball” be the hypersphere containing the
“half set” of data closest to MED(W ) in Euclidean distance. The FCH esti-
mator uses the MB attractor if the DGK location estimator TDGK is outside
of the median ball, and the attractor with the smallest determinant, other-
wise. Let (TA, CA) be the attractor used. Then the estimator (TFCH , CFCH)
takes TFCH = TA and

CFCH =
MED(D2

i (TA, CA))

χ2
p,0.5

CA (7.15)

where χ2
p,0.5 is the 50th percentile of a chi–square distribution with p degrees

of freedom.
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Remark 7.3. The MBA estimator (TMBA, CMBA) uses the attractor
(TA, CA) with the smallest determinant. Hence the DGK estimator is used
as the attractor if det(CDGK) ≤ det(CMB), and the MB estimator is used
as the attractor, otherwise. Then TMBA = TA and CMBA is computed using
the right hand side of (7.15). The difference between the FCH and MBA
estimators is that the FCH estimator also uses a location criterion to choose
the attractor: if the DGK location estimator TDGK has a greater Euclidean
distance from MED(W ) than half the data, then FCH uses the MB attractor.
The FCH estimator only uses the attractor with the smallest determinant if
‖TDGK − MED(W )‖ ≤ MED(Di(MED(W ), Ip)). Using the location crite-
rion increases the outlier resistance of the FCH estimator for certain types of
outliers, as will be seen in Section 7.2.5.

The following theorem shows the FCH estimator has good statistical prop-
erties. We conjecture that FCH is high breakdown. Note that the location
estimator TFCH is high breakdown and that det(CFCH) is bounded away
from 0 and ∞ if the data is in general position, even if nearly half of the
cases are outliers.

Theorem 7.11. TFCH is high breakdown if the clean data are in gen-
eral position. Suppose (E1) holds. If (TA, CA) is the DGK or MB attractor
with the smallest determinant, then (TA, CA) is a

√
n consistent estimator

of (µ, aMCDΣ). Hence the MBA and FCH estimators are outlier resistant√
n consistent estimators of (µ, cΣ) where c = u0.5/χ2

p,0.5, and c = 1 for
multivariate normal data.

Proof. TFCH is high breakdown since it is a bounded distance from
MED(W ) even if the number of outliers is close to n/2. Under (E1) the
FCH and MBA estimators are asymptotically equivalent since ‖TDGK −
MED(W )‖ → 0 in probability. The estimator satisfies 0 < det(CMCD) ≤
det(CA) ≤ det(C0,M) < ∞ by Theorem 7.7 if up to nearly 50% of the cases
are outliers. If the distribution is spherical about µ, then the result follows
from Pratt (1959) and Theorem 7.5 since both starts are

√
n consistent. Oth-

erwise, the MB estimator CMB is a biased estimator of aMCDΣ. But the
DGK estimator CDGK is a

√
n consistent estimator of aMCDΣ by Theo-

rem 7.10 and ‖CMCD − CDGK‖ = OP (n−1/2). Thus the probability that
the DGK attractor minimizes the determinant goes to one as n → ∞, and
(TA, CA) is asymptotically equivalent to the DGK estimator (TDGK , CDGK).

Let CF = CFCH or CF = CMBA. Let P (U ≤ uα) = α where U is given
by (1.35). Then the scaling in (7.15) makes CF a consistent estimator of cΣ
where c = u0.5/χ2

p,0.5, and c = 1 for multivariate normal data. �

A standard method of reweighting can be used to produce the RMBA and
RFCH estimators. RMVN uses a slightly modified method of reweighting so
that RMVN gives good estimates of (µ, Σ) for multivariate normal data,
even when certain types of outliers are present.
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Definition 7.16. The RFCH estimator uses two standard reweighting
steps. Let (µ̂1, Σ̃1) be the classical estimator applied to the n1 cases with
D2

i (TFCH , CFCH) ≤ χ2
p,0.975, and let

Σ̂1 =
MED(D2

i (µ̂1, Σ̃1))

χ2
p,0.5

Σ̃1.

Then let (TRFCH , Σ̃2) be the classical estimator applied to the cases with

D2
i (µ̂1, Σ̂1) ≤ χ2

p,0.975, and let

CRFCH =
MED(D2

i (TRFCH , Σ̃2))

χ2
p,0.5

Σ̃2.

RMBA and RFCH are
√

n consistent estimators of (µ, cΣ) by Lopuhaä
(1999) where the weight function uses h2 = χ2

p,0.975, but the two estimators
use nearly 97.5% of the cases if the data is multivariate normal.

Definition 7.17. The RMVN estimator uses (µ̂1, Σ̃1) and n1 as above.
Let q1 = min{0.5(0.975)n/n1, 0.995}, and

Σ̂1 =
MED(D2

i (µ̂1, Σ̃1))

χ2
p,q1

Σ̃1.

Then let (TRMV N , Σ̃2) be the classical estimator applied to the n2 cases with

D2
i (µ̂1, Σ̂1)) ≤ χ2

p,0.975. Let q2 = min{0.5(0.975)n/n2, 0.995}, and

CRMV N =
MED(D2

i (TRMV N , Σ̃2))

χ2
p,q2

Σ̃2.

Definition 7.18. Let the n2 cases in Definition 7.17 be known as the
RMVN set U . Hence (TRMV N , Σ̃2) = (xU , SU ) is the classical estimator
applied to the RMVN set U , which can be regarded as the untrimmed data
(the data not trimmed by ellipsoidal trimming) or the cleaned data. Also
SU is the unscaled estimated dispersion matrix while CRMV N is the scaled
estimated dispersion matrix.

Remark 7.4. Classical methods can be applied to the RMVN subset U to
make robust methods. Under (E1), (xU , SU ) is a

√
n consistent estimator of

(µ, cUΣ) for some constant cU > 0 that depends on the underlying distribu-
tion of the iid xi. For a general estimator of multivariate location and disper-
sion (TA, CA), typically a reweight for efficiency step is performed, resulting
in a set U such that the classical estimator (xU , SU) is the classical estima-
tor applied to a set U . For example, use U = {xi|D2

i (TA, CA) ≤ χ2
p,0.975}.

Then the final estimator is (TF , CF ) = (xU , aSU) where scaling is done as
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in Equation (7.15) in an attempt to make CF a good estimator of Σ if the
iid data are from a Np(µ, Σ) distribution. Then (xU , SU) can be shown to
be a

√
n consistent estimator of (µ, cUΣ) for a large class of distributions

for the RMVN set, for the RFCH set, or if (TA, CA) is an affine equivariant√
n consistent estimator of (µ, cAΣ) on a large class of distributions. The

necessary theory is not yet available for other practical robust reweighted
estimators such as OGK and Det-MCD.

Table 7.1 Average Dispersion Matrices for Near Point Mass Outliers

RMVN FMCD OGK MB[
1.002 −0.014
−0.014 2.024

] [
0.055 0.685
0.685 122.5

] [
0.185 0.089
0.089 36.24

] [
2.570 −0.082
−0.082 5.241

]

Table 7.2 Average Dispersion Matrices for Mean Shift Outliers

RMVN FMCD OGK MB[
0.990 0.004
0.004 2.014

] [
2.530 0.003
0.003 5.146

] [
19.67 12.88
12.88 39.72

] [
2.552 0.003
0.003 5.118

]

The RMVN estimator is a
√

n consistent estimator of (µ, dΣ) by Lopuhaä
(1999) where the weight function uses h2 = χ2

p,0.975 and d = u0.5/χ2
p,q where

q2 → q in probability as n → ∞. Here 0.5 ≤ q < 1 depends on the elliptically
contoured distribution, but q = 0.5 and d = 1 for multivariate normal data.

If the bulk of the data is Np(µ, Σ), the RMVN estimator can give useful
estimates of (µ, Σ) for certain types of outliers where FCH and RFCH esti-
mate (µ, dEΣ) for dE > 1. To see this claim, let 0 ≤ γ < 0.5 be the outlier

proportion. If γ = 0, then ni/n
P→ 0.975 and qi

P→ 0.5. If γ > 0, suppose
the outlier configuration is such that the D2

i (TFCH , CFCH) are roughly χ2
p

for the clean cases, and the outliers have larger D2
i than the clean cases.

Then MED(D2
i ) ≈ χ2

p,q where q = 0.5/(1 − γ). For example, if n = 100 and
γ = 0.4, then there are 60 clean cases, q = 5/6, and the quantile χ2

p,q is
being estimated instead of χ2

p,0.5. Now ni ≈ n(1 − γ)0.975, and qi estimates
q. Thus CRMV N ≈ Σ. Of course consistency cannot generally be claimed
when outliers are present.

Simulations suggested (TRMV N , CRMV N) gives useful estimates of (µ, Σ)
for a variety of outlier configurations. Using 20 runs and n = 1000, the aver-
ages of the dispersion matrices were computed when the bulk of the data are
iid N2(0, Σ) where Σ = diag(1, 2). For clean data, FCH, RFCH, and RMVN
give

√
n consistent estimators of Σ, while FMCD and the Maronna and Za-

mar (2002) OGK estimator seem to be approximately unbiased for Σ. The
median ball estimator was scaled using (7.15) and estimated diag(1.13, 1.85).

Next the data had γ = 0.4 and the outliers had x ∼ N2((0, 15)T , 0.0001I2),
a near point mass at the major axis. FCH, MB, and RFCH estimated 2.6Σ
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while RMVN estimated Σ. FMCD and OGK failed to estimate d Σ. Note
that χ2

2,5/6/χ2
2,0.5 = 2.585. See Table 7.1. The following R commands were

used where mldsim is from linmodpack.

qchisq(5/6,2)/qchisq(.5,2) = 2.584963

mldsim(n=1000,p=2,outliers=6,pm=15)

Next the data had γ = 0.4 and the outliers had x ∼ N2((20, 20)T , Σ), a
mean shift with the same covariance matrix as the clean cases. Rocke and
Woodruff (1996) suggest that outliers with mean shift are hard to detect.
FCH, FMCD, MB, and RFCH estimated 2.6Σ while RMVN estimated Σ,
and OGK failed. See Table 7.2. The R command is shown below.

mldsim(n=1000,p=2,outliers=3,pm=20)

Remark 7.5. The RFCH and RMVN estimators are recommended. If
these estimators are too slow and outlier detection is of interest, try the RMB
estimator, the reweighted MB estimator. If RMB is too slow or if n < 2(p+1),
the Euclidean distances Di(MED(W ), I) of xi from the coordinatewise me-
dian MED(W ) may be useful. A DD plot of Di(x, I) versus Di(MED(W ), I)
is also useful for outlier detection and for whether x and MED(W ) are giving
similar estimates of multivariate location. Also see Section 7.3.

Hubert et al. (2008, 2012) claim that FMCD computes the MCD estimator.
This claim is trivially shown to be false in the following theorem.

Theorem 7.12. Neither FMCD nor Det-MCD compute the MCD esti-
mator.

Proof. A necessary condition for an estimator to be the MCD estimator
is that the determinant of the covariance matrix for the estimator be the
smallest for every run in a simulation. Sometimes FMCD had the smaller
determinant and sometimes Det-MCD had the smaller determinant in the
simulations done by Hubert et al. (2012). �

Example 7.2. Tremearne (1911) recorded height = x[,1] and height while
kneeling = x[,2] of 112 people. Figure 7.1a shows a scatterplot of the data.
Case 3 has the largest Euclidean distance of 214.767 from MED(W ) =
(1680, 1240)T, but if the distances correspond to the contours of a cover-
ing ellipsoid, then case 44 has the largest distance. For k = 0, (T0,M , C0,M)
is the classical estimator applied to the “half set” of cases closest to MED(W )
in Euclidean distance. The hypersphere (circle) centered at MED(W ) that
covers half the data is small because the data density is high near MED(W ).
The median Euclidean distance is 59.661 and case 44 has Euclidean distance
77.987. Hence the intersection of the sphere and the data is a highly corre-
lated clean ellipsoidal region. Figure 7.1b shows the DD plot of the classical
distances versus the MB distances. Notice that both the classical and MB
estimators give the largest distances to cases 3 and 44. Notice that case 44
could not be detected using marginal methods.
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Fig. 7.1 Plots for Major Data

As the dimension p gets larger, outliers that can not be detected by
marginal methods (case 44 in Example 7.2) become harder to detect. When
p = 3 imagine that the clean data is a baseball bat or stick with one end
at the SW corner of the bottom of the box (corresponding to the coordinate
axes) and one end at the NE corner of the top of the box. If the outliers are
a ball, there is much more room to hide them in the box than in a covering
rectangle when p = 2.

Example 7.3. The estimators can be useful when the data is not ellipti-
cally contoured. The Gladstone (1905) data has 11 variables on 267 persons
after death. Head measurements were breadth, circumference, head height,
length, and size as well as cephalic index and brain weight. Age, height, and
two categorical variables ageclass (0: under 20, 1: 20-45, 2: over 45) and
sex were also given. Figure 7.2 shows the DD plots for the FCH, RMVN,
cov.mcd, and MB estimators. The DD plots from the DGK, MBA, and
RFCH estimators were similar, and the six outliers in Figure 7.2 correspond
to the six infants in the data set.

Section 7.3 shows that if a consistent robust estimator is scaled as in
(7.15), then the plotted points in the DD plot will cluster about the identity
line with unit slope and zero intercept if the data is multivariate normal,
and about some other line through the origin if the data is from some other
elliptically contoured distribution with a nonsingular covariance matrix. Since
multivariate procedures tend to perform well for elliptically contoured data,
the DD plot is useful even if outliers are not present.
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Fig. 7.2 DD Plots for Gladstone Data

7.2.5 Outlier Resistance and Simulations

RMVN FMCD

0.996 0.014 0.002 -0.001 0.931 0.017 0.011 0.000

0.014 2.012 -0.001 0.029 0.017 1.885 -0.003 0.022

0.002 -0.001 2.984 0.003 0.011 -0.003 2.803 0.010

-0.001 0.029 0.003 3.994 0.000 0.022 0.010 3.752

Simulations were used to compare (TFCH , CFCH), (TRFCH , CRFCH),
(TRMV N , CRMV N ), and (TFMCD , CFMCD). Shown above are the averages,
using 20 runs and n = 1000, of the dispersion matrices when the bulk of the
data are iid N4(0, Σ) where Σ = diag(1, 2, 3, 4). The first pair of matrices
used γ = 0. Here the FCH, RFCH, and RMVN estimators are

√
n consis-

tent estimators of Σ, while CFMCD seems to be approximately unbiased for
0.94Σ.

Next the data had γ = 0.4 and the outliers had x ∼ N4((0, 0, 0, 15)T ,
0.0001 I4), a near point mass at the major axis. FCH and RFCH estimated
1.93Σ while RMVN estimated Σ. The FMCD estimator failed to estimate
d Σ. Note that χ2

4,5/6/χ2
4,0.5 = 1.9276.

RMVN FMCD

0.988 -0.023 -0.007 0.021 0.227 -0.016 0.002 0.049

-0.023 1.964 -0.022 -0.002 -0.016 0.435 -0.014 0.013

-0.007 -0.022 3.053 0.007 0.002 -0.014 0.673 0.179

0.021 -0.002 0.007 3.870 0.049 0.013 0.179 55.65
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Next the data had γ = 0.4 and the outliers had x ∼ N4(15 1, Σ), a mean
shift with the same covariance matrix as the clean cases. Again FCH and
RFCH estimated 1.93Σ while RMVN and FMCD estimated Σ.

RMVN FMCD

1.013 0.008 0.006 -0.026 1.024 0.002 0.003 -0.025

0.008 1.975 -0.022 -0.016 0.002 2.000 -0.034 -0.017

0.006 -0.022 2.870 0.004 0.003 -0.034 2.931 0.005

-0.026 -0.016 0.004 3.976 -0.025 -0.017 0.005 4.046

Geometrical arguments suggest that the MB estimator has considerable
outlier resistance. Suppose the outliers are far from the bulk of the data. Let
the “median ball” correspond to the half set of data closest to MED(W ) in
Euclidean distance. If the outliers are outside of the median ball, then the
initial half set in the iteration leading to the MB estimator will be clean. Thus
the MB estimator will tend to give the outliers the largest MB distances unless
the initial clean half set has very high correlation in a direction about which
the outliers lie. This property holds for very general outlier configurations.
The FCH estimator tries to use the DGK attractor if the det(CDGK) is small
and the DGK location estimator TDGK is in the median ball. Distant outliers
that make det(CDGK) small also drag TDGK outside of the median ball. Then
FCH uses the MB attractor.

Compared to OGK and FMCD, the MB estimator is vulnerable to outliers
that lie within the median ball. If the bulk of the data is highly correlated
with the major axis of a hyperellipsoidal region, then the distances based on
the clean data can be very large for outliers that fall within the median ball.
The outlier resistance of the MB estimator decreases as p increases since the
volume of the median ball rapidly increases with p.

A simple simulation for outlier resistance is to count the number of times
the minimum distance of the outliers is larger than the maximum distance of
the clean cases. The simulation used 100 runs. If the count was 97, then in 97
data sets the outliers can be separated from the clean cases with a horizontal
line in the DD plot, but in 3 data sets the robust distances did not achieve
complete separation. In Spring 2015, Det-MCD simulated much like FMCD,
but was more likely to cause an error in R.

The clean cases had x ∼ Np(0, diag(1, 2, ..., p)). Outlier types were the
mean shift x ∼ Np(pm1, diag(1, 2, ..., p)) where 1 = (1, ..., 1)T and x ∼
Np((0, ..., 0, pm)T, 0.0001Ip), a near point mass at the major axis. Notice that
the clean data can be transformed to a Np(0, Ip) distribution by multiplying
xi by diag(1, 1/

√
2, ..., 1/

√
p), and this transformation changes the location

of the near point mass to (0, ..., 0, pm/
√

p)T .
Suppose the attractor is (xk,j, Sk,j) computed from a subset of cn cases.

The MCD(cn) criterion is the determinant det(Sk,j). The volume of the hy-
perellipsoid {z : (z − xk,j)

T S−1
k,j(z − xk,j) ≤ h2} is equal to
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Table 7.3 Number of Times Mean Shift Outliers had the Largest Distances

p γ n pm MBA FCH RFCH RMVN OGK FMCD MB
10 .1 100 4 49 49 85 84 38 76 57
10 .1 100 5 91 91 99 99 93 98 91
10 .4 100 7 90 90 90 90 0 48 100
40 .1 100 5 3 3 3 3 76 3 17
40 .1 100 8 36 36 37 37 100 49 86
40 .25 100 20 62 62 62 62 100 0 100
40 .4 100 20 20 20 20 20 0 0 100
40 .4 100 35 44 98 98 98 95 0 100
60 .1 200 10 49 49 49 52 100 30 100
60 .1 200 20 97 97 97 97 100 35 100
60 .25 200 25 60 60 60 60 100 0 100
60 .4 200 30 11 21 21 21 17 0 100
60 .4 200 40 21 100 100 100 100 0 100

2πp/2

pΓ (p/2)
hp
√

det(Sk,j), (7.16)

see Johnson and Wichern (1988, pp. 103-104).
For near point mass outliers, a hyperellipsoid with very small volume can

cover half of the data if the outliers are at one end of the hyperellipsoid and
some of the clean data are at the other end. This half set will produce a
classical estimator with very small determinant by (7.16). In the simulations
for large γ, as the near point mass is moved very far away from the bulk
of the data, only the classical, MB, and OGK estimators did not have nu-
merical difficulties. Since the MCD estimator has smaller determinant than
DGK, estimators like FMCD and MBA that use the MCD criterion without
using location information will be vulnerable to these outliers. FMCD is also
vulnerable to outliers if γ is slightly larger than γo given by (7.10).

Table 7.4 Number of Times Near Point Mass Outliers had the Largest Distances

p γ n pm MBA FCH RFCH RMVN OGK FMCD MB
10 .1 100 40 73 92 92 92 100 95 100
10 .25 100 25 0 99 99 90 0 0 99
10 .4 100 25 0 100 100 100 0 0 100
40 .1 100 80 0 0 0 0 79 0 80
40 .1 100 150 0 65 65 65 100 0 99
40 .25 100 90 0 88 87 87 0 0 88
40 .4 100 90 0 91 91 91 0 0 91
60 .1 200 100 0 0 0 0 13 0 91
60 .25 200 150 0 100 100 100 0 0 100
60 .4 200 150 0 100 100 100 0 0 100
60 .4 200 20000 0 100 100 100 64 0 100

Tables 7.3 and 7.4 help illustrate the results for the simulation. Large
counts and small pm for fixed γ suggest greater ability to detect outliers.
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Values of p were 5, 10, 15, ..., 60. First consider the mean shift outliers and
Table 7.3. For γ = 0.25 and 0.4, MB usually had the highest counts. For
5 ≤ p ≤ 20 and the mean shift, the OGK estimator often had the smallest
counts, and FMCD could not handle 40% outliers for p = 20. For 25 ≤ p ≤ 60,
OGK usually had the highest counts for γ = 0.05 and 0.1. For p ≥ 30, FMCD
could not handle 25% outliers even for enormous values of pm.

In Table 7.4, FCH greatly outperformed MBA although the only difference
between the two estimators is that FCH uses a location criterion as well as
the MCD criterion. OGK performed well for γ = 0.05 and 20 ≤ p ≤ 60 (not
tabled). For large γ, OGK often has large bias for cΣ. Then the outliers may
need to be enormous before OGK can detect them. Also see Table 7.2, where
OGK gave the outliers the largest distances for all runs, but COGK does not
give a good estimate of cΣ = c diag(1, 2).
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Fig. 7.3 The FMCD Estimator Failed

The DD plot of MDi versus RDi is useful for detecting outliers. The
resistant estimator will be useful if (T, C) ≈ (µ, cΣ) where c > 0 since scaling
by c affects the vertical labels of the RDi but not the shape of the DD plot.
For the outlier data, the MBA estimator is biased, but the mean shift outliers
in the MBA DD plot will have large RDi since CMBA ≈ 2CFMCD ≈ 2Σ.

In an older mean shift simulation, when p was 8 or larger, the cov.mcd
estimator was usually not useful for detecting the mean shift outliers. Figure
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Fig. 7.4 The Outliers are Large in the MBA DD Plot

7.3 shows that now the FMCD RDi are highly correlated with the MDi. The
DD plot based on the MBA estimator detects the outliers. See Figure 7.4.

For many data sets, Equation (7.10) gives a rough approximation for the
number of large outliers that concentration algorithms using K starts each
consisting of h cases can handle. However, if the data set is multivariate and
the bulk of the data falls in one compact hyperellipsoid while the outliers
fall in another hugely distant compact hyperellipsoid, then a concentration
algorithm using a single start can sometimes tolerate nearly 25% outliers.
For example, suppose that all p + 1 cases in the elemental start are outliers
but the covariance matrix is nonsingular so that the Mahalanobis distances
can be computed. Then the classical estimator is applied to the cn ≈ n/2
cases with the smallest distances. Suppose the percentage of outliers is less
than 25% and that all of the outliers are in this “half set.” Then the sample
mean applied to the cn cases should be closer to the bulk of the data than
to the cluster of outliers. Hence after a concentration step, the percentage
of outliers will be reduced if the outliers are very far away. After the next
concentration step the percentage of outliers will be further reduced and after
several iterations, all cn cases will be clean.

In a small simulation study, 20% outliers were planted for various values of
p. If the outliers were distant enough, then the minimum DGK distance for
the outliers was larger than the maximum DGK distance for the nonoutliers.
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Hence the outliers would be separated from the bulk of the data in a DD plot
of classical versus robust distances. For example, when the clean data comes
from the Np(0, Ip) distribution and the outliers come from the Np(2000 1, Ip)
distribution, the DGK estimator with 10 concentration steps was able to
separate the outliers in 17 out of 20 runs when n = 9000 and p = 30. With
10% outliers, a shift of 40, n = 600, and p = 50, 18 out of 20 runs worked.
Olive (2004a) showed similar results for the Rousseeuw and Van Driessen
(1999) FMCD algorithm and that the MBA estimator could often correctly
classify up to 49% distant outliers. The following theorem shows that it is
very difficult to drive the determinant of the dispersion estimator from a
concentration algorithm to zero.

Theorem 7.13. Consider the concentration and MCD estimators that
both cover cn cases. For multivariate data, if at least one of the starts is
nonsingular, then the concentration attractor CA is less likely to be singular
than the high breakdown MCD estimator CMCD.

Proof. If all of the starts are singular, then the Mahalanobis distances
cannot be computed and the classical estimator can not be applied to cn

cases. Suppose that at least one start was nonsingular. Then CA and CMCD

are both sample covariance matrices applied to cn cases, but by definition
CMCD minimizes the determinant of such matrices. Hence 0 ≤ det(CMCD) ≤
det(CA). �

Software

The robustbase library was downloaded from (www.r-project.org/#doc).∮
11.1 explains how to use the source command to get the linmodpack

functions in R and how to download a library from R. Type the commands
library(MASS) and library(robustbase) to compute the FMCD and
OGK estimators with the cov.mcd and covOGK functions. To use Det-MCD
instead of FMCD, change

out <- covMcd(x) to out <- covMcd(x,nsamp="deterministic"),

but in Spring 2015 this change was more likely to cause errors.
The linmodpack function

mldsim(n=200,p=5,gam=.2,runs=100,outliers=1,pm=15)
can be used to produce Tables 7.1–7.4. Change outliers to 0 to examine the
average of µ̂ and Σ̂. The function mldsim6 is similar but does not need the
library command since it compares the FCH, RFCH, MB estimators, and
the covmb2 estimator of Section 7.3.

The function function covfch computes FCH and RFCH, while covrmvn
computes the RMVN and MB estimators. The function covrmb computes MB
and RMB where RMB is like RMVN except the MB estimator is reweighted
instead of FCH. Functions covdgk, covmba, and rmba compute the scaled
DGK, MBA, and RMBA estimators. Better programs would use MB if
DGK causes an error.
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The concmv function described in Problem 7.6 illustrates concentration
where the start is (MED(W ), diag([MAD(Xi)]

2)). In Figures 7.5, 7.6, and
7.7, the highlighted cases are the half set with the smallest distances, and
the initial half set shown in Figure 7.5 is not clean, where n = 100 and there
are 40 outliers. The attractor shown in Figure 7.7 is clean. This type of data
set has too many outliers for DGK while the MB starts and attractors are
almost always clean.

The ddmv function in Problem 7.7 illustrates concentration for the DGK
estimator where the start is the classical estimator. Now n = 100, p = 4,
and there are 25 outliers. A DD plot of classical distances MD versus robust
distances RD is shown. See Figures 7.8, 7.9, 7.10, and 7.11. The half set of
cases with the smallest RDs is used, and the initial half set shown in Figure
7.8 is not clean. The attractor in Figure 7.11 is the DGK estimator which
uses a clean half set. The clean cases xi ∼ N4(0, diag(1, 2, 3, 4)) while the
outliers xi ∼ N4((10, 10

√
2, 10

√
3, 20)T , diag(1, 2, 3, 4)).

7.2.6 The RMVN and RFCH Sets

Both the RMVN and RFCH estimators compute the classical estimator
(xU , SU ) on some set U containing nU ≥ n/2 of the cases. Referring to Defi-
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nition 7.16, for the RFCH estimator, (xU , SU ) = (TRFCH , Σ̃2), and then SU

is scaled to form CRFCH . Referring to Definition 7.17, for the RMVN esti-
mator, (xU , SU ) = (TRMV N , Σ̃2), and then SU is scaled to form CRMV N .
See Definition 7.18.

The two main ways to handle outliers are i) apply the multivariate method
to the cleaned data, and ii) plug in robust estimators for classical estimators.
Subjectively cleaned data may work well for a single data set, but we can’t
get large sample theory since sometimes too many cases are deleted (delete
outliers and some nonoutliers) and sometimes too few (do not get all of the
outliers). Practical plug in robust estimators have rarely been shown to be√

n consistent and highly outlier resistant.
Using the RMVN or RFCH set U is simultaneously a plug in method and

an objective way to clean the data such that the resulting robust method is
often backed by theory. This result is extremely useful computationally: find
the RMVN set or RFCH set U , then apply the classical method to the cases
in the set U . This procedure is often equivalent to using (xU , SU ) as plug
in estimators. The method can be applied if n > 2(p + 1) but may not work
well unless n > 20p. The linmodpack function getu gets the RMVN set U as
well as the case numbers corresponding to the cases in U .

The set U is a small volume hyperellipsoid containing at least half of the
cases since concentration is used. The set U can also be regarded as the
“untrimmed data”: the data that was not trimmed by ellipsoidal trimming.
Theory has been proved for a large class of elliptically contoured distributions,
but it is conjectured that theory holds for a much wider class of distributions.
See Olive (2017b, pp. 127-128).

In simulations RFCH and RMVN seem to estimate cΣx if x = Az + µ

where z = (z1, ..., zp)
T and the zi are iid from a continuous distribution with

variance σ2. Here Σx = Cov(x) = σ2AAT . The bias for the MB estimator
seemed to be small. It is known that affine equivariant estimators give unbi-
ased estimators of cΣx if the distribution of zi is also symmetric. DGK is
affine equivariant and RFCH and RMVN are asymptotically equivalent to a
scaled DGK estimator. But in the simulations the results also held for skewed
distributions.

Several illustrative applications of the RMVN set U are given next, where
the theory usually assumes that the cases are iid from a large class of ellip-
tically contoured distributions.

i) The classical estimator of multivariate location and dispersion applied
to the cases in U gives (xU , SU), a

√
n consistent estimator of (µ, cΣ) for

some constant c > 0. See Remark 7.4.
ii) The classical estimator of the correlation matrix applied to the cases in

U gives RU , a consistent estimator of the population correlation matrix ρx.
iii) For multiple linear regression, let Y be the response variable, x1 = 1

and x2, ..., xp be the predictor variables. Let zi = (Yi, xi2, ..., xip)
T . Let U

be the RMVN or RFCH set formed using the zi. Then a classical regression
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estimator applied to the set U results in a robust regression estimator. For
least squares, this is implemented with the linmodpack function rmreg3.

iv) For multivariate linear regression, let Y1, ..., Ym be the response vari-
ables, x1 = 1 and x2, ..., xp be the predictor variables. Let

zi = (Yi1, ...Yim, xi2, ..., xip)
T .

Let U be the RMVN or RFCH set formed using the zi. Then a classical least
squares multivariate linear regression estimator applied to the set U results
in a robust multivariate linear regression estimator. For least squares, this is
implemented with the linmodpack function rmreg2. The method for multiple
linear regression in iii) corresponds to m = 1. See Section 8.6.

There are also several variants on the method. Suppose there are tentative
predictors Z1, ..., ZJ. After transformations assume that predictors X1, ..., Xk

are linearly related. Assume the set U used cases i1, i2, ..., inU
. To add vari-

ables like Xk+1 = X2
1 , Xk+2 = X3X4 , Xk+3 = gender, ..., Xp, augment

U with the variables Xk+1, ..., Xp corresponding to cases i1, ..., inU
. Adding

variables results in cleaned data that is more likely to contain outliers.
If there are g groups (g = G for discriminant analysis, g = 2 for binary

regression, and g = p for one way MANOVA), the function getubig gets
the RMVN set Ui for each group and combines the g RMVN sets into one
large set Ubig = U1∪U2∪· · ·∪Ug . Olive (2017b) has many more applications.

7.3 Outlier Detection for the MLD Model

Now suppose the multivariate data has been collected into an n × p matrix

W = X =




xT

1
...

xT
n



 =





x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p

...
...

. . .
...

xn,1 xn,2 . . . xn,p




=
[
v1 v2 . . . vp

]

where the ith row of W is the ith case xT
i and the jth column vj of W

corresponds to n measurements of the jth random variable Xj for j = 1, ..., p.
Hence the n rows of the data matrix W correspond to the n cases, while the
p columns correspond to measurements on the p random variables X1, ..., Xp.
For example, the data may consist of n visitors to a hospital where the p = 2
variables height and weight of each individual were measured.

Definition 7.19. The coordinatewise median MED(W ) = (MED(X1), ...,
MED(Xp))

T where MED(Xi) is the sample median of the data in column i
corresponding to variable Xi and vi.
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Example 7.4. Let the data for X1 be 1, 2, 3, 4, 5, 6, 7, 8, 9while the data for
X2 is 7, 17, 3, 8, 6, 13, 4, 2, 1. Then MED(W ) = (MED(X1), MED(X2))

T =
(5, 6)T .

Definition 7.20: Rousseeuw and Van Driessen (1999). The DD plot
is a plot of the classical Mahalanobis distances MDi versus robust Maha-
lanobis distances RDi.

The DD plot is used as a diagnostic for multivariate normality, elliptical
symmetry, and for outliers. Assume that the data set consists of iid vectors
from an ECp(µ, Σ, g) distribution with second moments. See Section 1.7 for
notation. Then the classical sample mean and covariance matrix (TM , CM) =
(x, S) is a consistent estimator for (µ, cxΣ) = (E(x), Cov(x)). Assume that
an alternative algorithm estimator (TA, CA) is a consistent estimator for
(µ, aAΣ) for some constant aA > 0. By scaling the algorithm estimator,
the DD plot can be constructed to follow the identity line with unit slope
and zero intercept. Let (TR, CR) = (TA, CA/τ2) denote the scaled algorithm
estimator where τ > 0 is a constant to be determined. Notice that (TR, CR)
is a valid estimator of location and dispersion. Hence the robust distances
used in the DD plot are given by

RDi = RDi(TR, CR) =
√

(xi − TR(W ))T [CR(W )]−1(xi − TR(W ))

= τ Di(TA, CA) for i = 1, ..., n.
The following theorem shows that if consistent estimators are used to

construct the distances, then the DD plot will tend to cluster tightly about the
line segment through (0, 0) and (MDn,α, RDn,α) where 0 < α < 1 and MDn,α

is the 100αth sample percentile of the MDi. Nevertheless, the variability in
the DD plot may increase with the distances. Let K > 0 be a constant, e.g.
the 99th percentile of the χ2

p distribution.

Theorem 7.14. Assume that x1, ..., xn are iid observations from a dis-
tribution with parameters (µ, Σ) where Σ is a symmetric positive definite

matrix. Let aj > 0 and assume that (µ̂j,n, Σ̂j,n) are consistent estimators of
(µ, ajΣ) for j = 1, 2.

a) D2
x(µ̂j , Σ̂j) − 1

aj
D2

x(µ, Σ) = oP (1).

b) Let 0 < δ ≤ 0.5. If (µ̂j , Σ̂j)−(µ, ajΣ) = Op(n
−δ) and ajΣ̂

−1

j −Σ−1 =

OP (n−δ), then

D2
x(µ̂j, Σ̂j) −

1

aj
D2

x(µ, Σ) = OP (n−δ).

c) Let Di,j ≡ Di(µ̂j,n, Σ̂j,n) be the ith Mahalanobis distance computed

from (µ̂j,n, Σ̂j,n). Consider the cases in the region R = {i|0 ≤ Di,j ≤ K, j =
1, 2}. Let rn denote the correlation between Di,1 and Di,2 for the cases in R
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(thus rn is the correlation of the distances in the “lower left corner” of the
DD plot). Then rn → 1 in probability as n → ∞.

Proof. Let Bn denote the subset of the sample space on which both Σ̂1,n

and Σ̂2,n have inverses. Then P (Bn) → 1 as n → ∞.

a) and b): D2
x(µ̂j, Σ̂j) = (x− µ̂j)

T Σ̂
−1

j (x− µ̂j) =

(x− µ̂j)
T

(
Σ−1

aj
− Σ−1

aj
+ Σ̂

−1

j

)
(x − µ̂j)

= (x− µ̂j)
T

(−Σ−1

aj
+ Σ̂

−1

j

)
(x − µ̂j) + (x − µ̂j)

T

(
Σ−1

aj

)
(x − µ̂j)

=
1

aj
(x − µ̂j)

T (−Σ−1 + aj Σ̂
−1

j )(x − µ̂j) +

(x− µ + µ − µ̂j)
T

(
Σ−1

aj

)
(x − µ + µ − µ̂j)

=
1

aj
(x − µ)T Σ−1(x − µ)

+
2

aj
(x− µ)T Σ−1(µ − µ̂j) +

1

aj
(µ− µ̂j)

T Σ−1(µ− µ̂j)

+
1

aj
(x − µ̂j)

T [ajΣ̂
−1

j − Σ−1](x− µ̂j) (7.17)

on Bn, and the last three terms are oP (1) under a) and OP (n−δ) under b).

c) Following the proof of a), D2
j ≡ D2

x(µ̂j, Σ̂j)
P→ (x−µ)T Σ−1(x−µ)/aj

for fixed x, and the result follows. �

The above result implies that a plot of the MDi versus the Di(TA, CA) ≡
Di(A) will follow a line through the origin with some positive slope since if
x = µ, then both the classical and the algorithm distances should be close to
zero. We want to find τ such that RDi = τ Di(TA, CA) and the DD plot of
MDi versus RDi follows the identity line. By Theorem 7.14, the plot of MDi

versus Di(A) will follow the line segment defined by the origin (0, 0) and the
point of observed median Mahalanobis distances, (med(MDi), med(Di(A))).
This line segment has slope

med(Di(A))/med(MDi)

which is generally not one. By taking τ = med(MDi)/med(Di(A)), the plot
will follow the identity line if (x, S) is a consistent estimator of (µ, cxΣ)
and if (TA, CA) is a consistent estimator of (µ, aAΣ). (Using the notation
from Theorem 7.14, let (a1, a2) = (cx, aA).) The classical estimator is con-
sistent if the population has a nonsingular covariance matrix. The algorithm
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estimators (TA, CA) from Theorem 7.11 are consistent on a large class of
EC distributions that have a nonsingular covariance matrix, but tend to be
biased for non–EC distributions. We recommend using RFCH or RMVN as
the robust estimators in DD plots.

By replacing the observed median med(MDi) of the classical Mahalanobis
distances with the target population analog, say MED, τ can be chosen so
that the DD plot is simultaneously a diagnostic for elliptical symmetry and a
diagnostic for the target EC distribution. That is, the plotted points follow
the identity line if the data arise from a target EC distribution such as the
multivariate normal distribution, but the points follow a line with non-unit
slope if the data arise from an alternative EC distribution. In addition the DD
plot can often detect departures from elliptical symmetry such as outliers,
the presence of two groups, or the presence of a mixture distribution.

Example 7.5. We will use the multivariate normal Np(µ, Σ) distribution
as the target. If the data are indeed iid MVN vectors, then the (MDi)

2 are

asymptotically χ2
p random variables, and MED =

√
χ2

p,0.5 where χ2
p,0.5 is the

median of the χ2
p distribution. Since the target distribution is Gaussian, let

RDi =

√
χ2

p,0.5

med(Di(A))
Di(A) so that τ =

√
χ2

p,0.5

med(Di(A))
. (7.18)

Since every nonsingular estimator of multivariate location and dispersion
defines a hyperellipsoid, the DD plot can be used to examine which points
are in the robust hyperellipsoid

{x : (x − TR)T C−1
R (x− TR) ≤ RD2

(h)} (7.19)

where RD2
(h) is the hth smallest squared robust Mahalanobis distance, and

which points are in a classical hyperellipsoid

{x : (x − x)T S−1(x− x) ≤ MD2
(h)}. (7.20)

In the DD plot, points below RD(h) correspond to cases that are in the
hyperellipsoid given by Equation (7.19) while points to the left of MD(h) are
in a hyperellipsoid determined by Equation (7.20). In particular, we can use
the DD plot to examine which points are in the nonparametric prediction
region (4.24).

Application 7.1. Consider the DD plot with RFCH or RMVN. The DD
plot can be used simultaneously as a diagnostic for whether the data arise from
a multivariate normal distribution or from another EC distribution with non-
singular covariance matrix. EC data will cluster about a straight line through
the origin; MVN data in particular will cluster about the identity line. Thus
the DD plot can be used to assess the success of numerical transformations



308 7 Robust Regression

towards elliptical symmetry. The DD plot can be used to detect multivariate
outliers. Use the DD plot to detect outliers and leverage groups if n ≥ 10p
for the predictor variables in regression.
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Fig. 7.12 4 DD Plots

For this application, the RFCH and RMVN estimators may be best. For
MVN data, the RDi from the RFCH estimator tend to have a higher correla-
tion with the MDi from the classical estimator than the RDi from the FCH
estimator, and the cov.mcd estimator may be inconsistent.

Figure 7.12 shows the DD plots for 3 artificial data sets using cov.mcd.
The DD plot for 200 N3(0, I3) points shown in Figure 7.12a resembles the
identity line. The DD plot for 200 points from the elliptically contoured
distribution 0.6N3(0, I3) + 0.4N3(0, 25 I3) in Figure 7.12b clusters about a
line through the origin with a slope close to 2.0.

A weighted DD plot magnifies the lower left corner of the DD plot by

omitting the cases with RDi ≥
√

χ2
p,.975. This technique can magnify features

that are obscured when large RDi’s are present. If the distribution of x is EC
with nonsingular Σ, Theorem 7.14 implies that the correlation of the points
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in the weighted DD plot will tend to one and that the points will cluster
about a line passing through the origin. For example, the plotted points in
the weighted DD plot (not shown) for the non-MVN EC data of Figure 7.12b
are highly correlated and still follow a line through the origin with a slope
close to 2.0.

Figures 7.12c and 7.12d illustrate how to use the weighted DD plot. The
ith case in Figure 7.12c is (exp(xi,1), exp(xi,2), exp(xi,3))

T where xi is the
ith case in Figure 7.12a; i.e. the marginals follow a lognormal distribution.
The plot does not resemble the identity line, correctly suggesting that the
distribution of the data is not MVN; however, the correlation of the plotted
points is rather high. Figure 7.12d is the weighted DD plot where cases with

RDi ≥
√

χ2
3,.975 ≈ 3.06 have been removed. Notice that the correlation of the

plotted points is not close to one and that the best fitting line in Figure 7.12d
may not pass through the origin. These results suggest that the distribution
of x is not EC.
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Fig. 7.13 DD Plots for the Buxton Data

Example 7.6. Buxton (1920, pp. 232-5) gave 20 measurements of 88 men.
We will examine whether the multivariate normal distribution is a reasonable
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model for the measurements head length, nasal height, bigonal breadth, and
cephalic index where one case has been deleted due to missing values. Figure
7.13a shows the DD plot. Five head lengths were recorded to be around 5
feet and are massive outliers. Figure 7.13b is the DD plot computed after
deleting these points and suggests that the multivariate normal distribution
is reasonable. (The recomputation of the DD plot means that the plot is not
a weighted DD plot which would simply omit the outliers and then rescale
the vertical axis.)

library(MASS)

x <- cbind(buxy,buxx)

ddplot(x,type=3) #Figure 7.13a), right click Stop

zx <- x[-c(61:65),]

ddplot(zx,type=3) #Figure 7.13b), right click Stop

7.3.1 MLD Outlier Detection if p > n

Most outlier detection methods work best if n ≥ 20p, but often data sets have
p > n, and outliers are a major problem. One of the simplest outlier detection
methods uses the Euclidean distances of the xi from the coordinatewise me-
dian Di = Di(MED(W ), Ip). Concentration type steps compute the weighted
median MEDj : the coordinatewise median computed from the “half set” of
cases xi with D2

i ≤ MED(D2
i (MEDj−1, Ip)) where MED0 = MED(W ).

We often used j = 0 (no concentration type steps) or j = 9. Let Di =
Di(MEDj, Ip). Let Wi = 1 if Di ≤ MED(D1, ..., Dn) + kMAD(D1, ..., Dn)
where k ≥ 0 and k = 5 is the default choice. Let Wi = 0, otherwise. Using
k ≥ 0 insures that at least half of the cases get weight 1. This weighting
corresponds to the weighting that would be used in a one sided metrically
trimmed mean (Huber type skipped mean) of the distances.

Application 7.2. This outlier resistant regression method uses terms from
the following definition. Let the ith case wi = (Yi, x

T
i )T where the continuous

predictors from xi are denoted by ui for i = 1, ..., n. Apply the covmb2

estimator to the ui, and then run the regression method on the m cases wi

corresponding to the covmb2 set B indices i1, ...im, where m ≥ n/2.

Definition 7.21. Let the covmb2 set B of at least n/2 cases correspond
to the cases with weight Wi = 1. The cases not in set B get weight Wi = 0.
Then the covmb2 estimator (T, C) is the sample mean and sample covariance
matrix applied to the cases in set B. Hence

T =

∑n
i=1 Wixi∑n

i=1 Wi
and C =

∑n
i=1 Wi(xi − T )(xi − T )T

∑n
i=1 Wi − 1

.
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Example 7.7. Let the clean data (nonoutliers) be i 1 for i = 1, 2, 3, 4, and
5 while the outliers are j 1 for j = 16, 17, 18, and 19. Here n = 9 and 1 is p×1.
Making a plot of the data for p = 2 may be useful. Then the coordinatewise
median MED0 = MED(W ) = 5 1. The median Euclidean distance of the data
is the Euclidean distance of 5 1 from 1 1 = the Euclidean distance of 5 1 from
9 1. The median ball is the hypersphere centered at the coordinatewise median
with radius r = MED(Di(MED(W ), Ip), i = 1, ..., n) that tends to contain
(n+1)/2 of the cases if n is odd. Hence the clean data are in the median ball
and the outliers are outside of the median ball. The coordinatewise median
of the cases with the 5 smallest distances is the coordinatewise median of
the clean data: MED1 = 3 1. Then the median Euclidean distance of the
data from MED1 is the Euclidean distance of 3 1 from 1 1 = the Euclidean
distance of 3 1 from 5 1. Again the clean cases are the cases with the 5 smallest
Euclidean distances. Hence MEDj = 3 1 for j ≥ 1. For j ≥ 1, if xi = j 1, then
Di = |j − 3|√p. Thus D(1) = 0, D(2) = D(3) =

√
p, and D(4) = D(5) = 2

√
p.

Hence MED(D1, ..., Dn) = D(5) = 2
√

p = MAD(D1, ..., Dn) since the median
distance of the Di from D(5) is 2

√
p − 0 = 2

√
p. Note that the 5 smallest

absolute distances |Di − D(5)| are 0, 0,
√

p,
√

p, and 2
√

p. Hence Wi = 1 if
Di ≤ 2

√
p + 10

√
p = 12

√
p. The clean data get weight 1 while the outliers

get weight 0 since the smallest distance Di for the outliers is the Euclidean
distance of 3 1 from 16 1 with a Di = ‖16 1 − 3 1‖ = 13

√
p. Hence the

covmb2 estimator (T, C) is the sample mean and sample covariance matrix
of the clean data. Note that the distance for the outliers to get zero
weight is proportional to the square root of the dimension

√
p.

The covmb2 estimator can also be used for n > p. The covmb2 estimator
attempts to give a robust dispersion estimator that reduces the bias by using
a big ball about MEDj instead of a ball that contains half of the cases. The
linmodpack function getB gives the set B of cases that got weight 1 along
with the index indx of the case numbers that got weight 1. The function
ddplot5 plots the Euclidean distances from the coordinatewise median ver-
sus the Euclidean distances from the covmb2 location estimator. Typically
the plotted points in this DD plot cluster about the identity line, and outliers
appear in the upper right corner of the plot with a gap between the bulk of
the data and the outliers. An alternative for outlier detection is to replace C

by Cd = diag(σ̂11, ..., σ̂pp). For example, use σ̂ii = Cii. See Ro et al. (2015)
and Tarr et al. (2016) for references.

Example 7.8. For the Buxton (1920) data with multiple linear regression,
height was the response variable while an intercept, head length, nasal height,
bigonal breadth, and cephalic index were used as predictors in the multiple
linear regression model. Observation 9 was deleted since it had missing values.
Five individuals, cases 61–65, were reported to be about 0.75 inches tall with
head lengths well over five feet! See Problem 7.11 to reproduce the following
plots.
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Fig. 7.14 Response plot for lasso and lasso applied to the covmb2 set B.

Figure 7.14a) shows the response plot for lasso. The identity line passes
right through the outliers which are obvious because of the large gap. Figure
7.14b) shows the response plot from lasso for the cases in the covmb2 set
B applied to the predictors, and the set B included all of the clean cases
and omitted the 5 outliers. The response plot was made for all of the data,
including the outliers. Prediction interval (PI) bands are also included for
both plots. Both plots are useful for outlier detection, but the method for
plot 7.14b) is better for data analysis: impossible outliers should be deleted
or given 0 weight, we do not want to predict that some people are about 0.75
inches tall, and we do want to predict that the people were about 1.6 to 1.8
meters tall. Figure 7.15 shows the DD plot made using ddplot5. The five
outliers are in the upper right corner.

Also see Problem 7.12 b) for the Gladstone (1905) data where the covmb2
set B deleted the 8 cases with the largest Di, including 5 outliers and 3 clean
cases.
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Fig. 7.15 DD plot with ddplot5.

7.4 Outlier Detection for the MLR Model

For multiple linear regression, the OLS response and residual plots are very
useful for detecting outliers. The DD plot of the continuous predictors is also
useful. Use the linmodpack functions MLRplot and ddplot4. Response and
residual plots from outlier resistant methods are also useful. See Figure 7.14.

Huber and Ronchetti (2009, p. 154) noted that efficient methods for iden-
tifying leverage groups are needed. Such groups are often difficult to detect
with regression diagnostics and residuals, but often have outlying fitted val-
ues and responses that can be detected with response and residual plots. The
following rules of thumb are useful for finding influential cases and outliers.
Look for points with large absolute residuals and for points far away from
Y . Also look for gaps separating the data into clusters. The OLS fit often
passes through a cluster of outliers, causing a large gap between a cluster
corresponding to the bulk of the data and the cluster of outliers. When such
a gap appears, it is possible that the smaller cluster corresponds to good
leverage points: the cases follow the same model as the bulk of the data. To
determine whether small clusters are outliers or good leverage points, give
zero weight to the clusters, and fit an MLR estimator such as OLS to the
bulk of the data. Denote the weighted estimator by β̂w. Then plot Ŷw versus
Y using the entire data set. If the identity line passes through the cluster,
then the cases in the cluster may be good leverage points, otherwise they
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may be outliers. The trimmed views estimator of Section 7.5 is also useful.
Dragging the plots, so that they are roughly square, can be useful.

Definition 7.22. Suppose that some analysis to detect outliers is per-
formed. Masking occurs if the analysis suggests that one or more outliers are
in fact good cases. Swamping occurs if the analysis suggests that one or more
good cases are outliers. Suppose that a subset of h cases is selected from the
n cases making up the data set. Then the subset is clean if none of the h
cases are outliers.

Influence diagnostics such as Cook’s distances CDi from Cook (1977) and
the weighted Cook’s distances WCDi from Peña (2005) are sometimes useful.
Although an index plot of Cook’s distance CDi may be useful for flagging
influential cases, the index plot provides no direct way of judging the model
against the data. As a remedy, cases in the response and residual plots with
CDi > min(0.5, 2p/n) are highlighted with open squares, and cases with
|WCDi − median(WCDi)| > 4.5MAD(WCDi) are highlighted with crosses,
where the median absolute deviation MAD(wi) = median(|wi−median(wi)|).

Example 7.9. Figure 7.16 shows the response plot and residual plot for
the Buxton (1920) data. Notice that the OLS fit passes through the outliers,
but the response plot is resistant to Y –outliers since Y is on the vertical
axis. Also notice that although the outlying cluster is far from Y , only two of
the outliers had large Cook’s distance and only one case had a large WCDi.
Hence masking occurred for the Cook’s distances, the WCDi, and for the
OLS residuals, but not for the OLS fitted values. Figure 7.16 was made with
the following R commands.

source("G:/linmodpack.txt"); source("G:/linmoddata.txt")

mlrplot4(buxx,buxy) #right click Stop twice

High leverage outliers are a particular challenge to conventional numerical
MLR diagnostics such as Cook’s distance, but can often be visualized using
the response and residual plots. (Using the trimmed views of Section 7.5
is also effective for detecting outliers and other departures from the MLR
model.)

Example 7.10. Hawkins et al. (1984) gave a well known artificial data
set where the first 10 cases are outliers while cases 11-14 are good leverage
points. Figure 7.17 shows the residual and response plots based on the OLS
estimator. The highlighted cases have Cook’s distance > min(0.5, 2p/n), and
the identity line is shown in the response plot. Since the good cases 11-14
have the largest Cook’s distances and absolute OLS residuals, swamping has
occurred. (Masking has also occurred since the outliers have small Cook’s
distances, and some of the outliers have smaller OLS residuals than clean
cases.) To determine whether both clusters are outliers or if one cluster con-
sists of good leverage points, cases in both clusters could be given weight
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zero and the resulting response plot created. (Alternatively, response plots
based on the tvreg estimator of Section 7.5 could be made where the cases
with weight one are highlighted. For high levels of trimming, the identity line
often passes through the good leverage points.)

The above example is typical of many “benchmark” outlier data sets for
MLR. In these data sets traditional OLS diagnostics such as Cook’s distance
and the residuals often fail to detect the outliers, but the combination of the
response plot and residual plot is usually able to detect the outliers. The CDi

and WCDi are the most effective when there is a single cluster about the
identity line. If there is a second cluster of outliers or good leverage points
or if there is nonconstant variance, then these numerical diagnostics tend to
fail.

7.5 Resistant Multiple Linear Regression

Consider the multiple linear regression model, written in matrix form as
Y = Xβ + e. The OLS response and residual plots are very useful for de-
tecting outliers and checking the model. Resistant estimators are useful for
detecting certain types of outliers. Some good resistant regression estimators
are rmreg2 from Section 8.6, the hbreg estimator from Section 7.7, and the
Olive (2005) MBA and trimmed views estimators described below. Also apply
a multiple linear regression method such as OLS or lasso to the cases cor-
responding to the RFCH, RMVN, or covmb2 set applied to the continuous
predictors. See Sections 7.2.6 and 7.3.1.

The L1 estimator or least absolute deviations estimator is a competitor for
OLS. The L1 estimator β̂L1

minimizes the criterion QL1
(b) =

∑n
i=1 |ri(b)|

where ri(b) = Yi − xT
i b is the ith residual corresponding to b. Response and

residual plots from these two estimators are useful for detecting outliers.
Resistant estimators are often created by computing several trial fits bi

that are estimators of β. Then a criterion is used to select the trial fit to be
used in the resistant estimator. Suppose c ≈ n/2. The LMS(c) criterion is
QLMS(b) = r2

(c)(b) where r2
(1) ≤ · · · ≤ r2

(n) are the ordered squared residu-

als, and the LTS(c) criterion is QLTS(b) =
∑c

i=1 r2
(i)(b). The LTA(c) crite-

rion is QLTA(b) =
∑c

i=1 |r(b)|(i) where |r(b)|(i) is the ith ordered absolute
residual. Three impractical high breakdown robust estimators are the Ham-
pel (1975) least median of squares (LMS) estimator, the Rousseeuw (1984)
least trimmed sum of squares (LTS) estimator, and the Hössjer (1991) least
trimmed sum of absolute deviations (LTA) estimator. Also see Hawkins and

Olive (1999ab). These estimators correspond to the β̂L ∈ R
p that minimizes

the corresponding criterion. LMS, LTA, and LTS have O(np) or O(np+1)
complexity. See Bernholt (2005), Hawkins and Olive (1999b), Klouda (2015),
and Mount et al. (2014). Estimators with O(n4) or higher complexity take
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too long to compute. LTS and LTA are
√

n consistent while LMS has the
lower n1/3 rate. See Kim and Pollard (1990), Č́ıžek (2006, 2008), and Maš̈ıček
(2004). If c = n, the LTS and LTA criteria are the OLS and L1 criteria. See
Olive (2008, 2017b: ch. 14) for more on these estimators.

A good resistant estimator is the Olive (2005) median ball algorithm (MBA
or mbareg). The Euclidean distance of the ith vector of predictors xi from
the jth vector of predictors xj is

Di(xj) = Di(xj , Ip) =
√

(xi − xj)T (xi − xj).

For a fixed xj consider the ordered distances D(1)(xj), ..., D(n)(xj). Next,

let β̂j(α) denote the OLS fit to the min(p + 3 + bαn/100c, n) cases with
the smallest distances where the approximate percentage of cases used is
α ∈ {1, 2.5, 5, 10, 20, 33, 50}. (Here bxc is the greatest integer function so
b7.7c = 7. The extra p +3 cases are added so that OLS can be computed for
small n and α.) This yields seven OLS fits corresponding to the cases with
predictors closest to xj. A fixed number of K cases are selected at random
without replacement to use as the xj . Hence 7K OLS fits are generated. We
use K = 7 as the default. A robust criterion Q is used to evaluate the 7K
fits and the OLS fit to all of the data. Hence 7K + 1 OLS fits are generated
and the MBA estimator is the fit that minimizes the criterion. The median
squared residual is a good choice for Q.

Three ideas motivate this estimator. First, x-outliers, which are outliers in
the predictor space, tend to be much more destructive than Y -outliers which
are outliers in the response variable. Suppose that the proportion of outliers
is γ and that γ < 0.5. We would like the algorithm to have at least one
“center” xj that is not an outlier. The probability of drawing a center that is
not an outlier is approximately 1−γK > 0.99 for K ≥ 7 and this result is free
of p. Secondly, by using the different percentages of coverages, for many data
sets there will be a center and a coverage that contains no outliers. Third, by
Theorem 1.21, the MBA estimator is a

√
n consistent estimator of the same

parameter vector β estimated by OLS under mild conditions.

Ellipsoidal trimming can be used to create resistant multiple linear regres-
sion (MLR) estimators. To perform ellipsoidal trimming, an estimator (T, C)
is computed and used to create the squared Mahalanobis distances D2

i for
each vector of observed predictors xi. If the ordered distance D(j) is unique,
then j of the xi’s are in the ellipsoid

{x : (x − T )T C−1(x − T ) ≤ D2
(j)}. (7.21)

The ith case (Yi, x
T
i )T is trimmed if Di > D(j). Then an estimator of β is

computed from the remaining cases. For example, if j ≈ 0.9n, then about
10% of the cases are trimmed, and OLS or L1 could be used on the cases
that remain. Ellipsoidal trimming differs from using the RFCH, RMVN, or
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covmb2 set since these sets use a random amount of trimming. (The ellip-
soidal trimming technique can also be used for other regression models, and
the theory of the regression method tends to apply to the method applied to
the cleaned data that was not trimmed since the response variables were not
used to select the cases. See Chapter 10.)

Use ellipsoidal trimming on the RFCH, RMVN, or covmb2 set applied to
the continuous predictors to get a fit β̂C . Then make a response and residual
plot using all of the data, not just the cleaned data that was not trimmed.

The resistant trimmed views estimator combines ellipsoidal trimming and
the response plot. First compute (T, C) on the xi, perhaps using the RMVN
estimator. Trim the M% of the cases with the largest Mahalanobis distances,
and then compute the MLR estimator β̂M from the remaining cases. Use
M = 0, 10, 20, 30, 40, 50, 60, 70, 80, and 90 to generate ten response plots

of the fitted values β̂
T

Mxi versus Yi using all n cases. (Fewer plots are used

for small data sets if β̂M can not be computed for large M .) These plots are
called “trimmed views.”

Definition 7.23. The trimmed views (TV) estimator β̂T,n corresponds
to the trimmed view where the bulk of the plotted points follow the identity
line with smallest variance function, ignoring any outliers.

Example 7.11. For the Buxton (1920) data, height was the response
variable while an intercept, head length, nasal height, bigonal breadth, and
cephalic index were used as predictors in the multiple linear regression model.
Observation 9 was deleted since it had missing values. Five individuals, cases
61–65, were reported to be about 0.75 inches tall with head lengths well
over five feet! OLS was used on the cases remaining after trimming, and
Figure 7.18 shows four trimmed views corresponding to 90%, 70%, 40%,
and 0% trimming. The OLS TV estimator used 70% trimming since this
trimmed view was best. Since the vertical distance from a plotted point to the
identity line is equal to the case’s residual, the outliers had massive residuals
for 90%, 70%, and 40% trimming. Notice that the OLS trimmed view with
0% trimming “passed through the outliers” since the cluster of outliers is
scattered about the identity line.

The TV estimator β̂T,n has good statistical properties if an estimator with
good statistical properties is applied to the cases (XM,n, Y M,n) that remain
after trimming. Candidates include OLS, L1, Huber’s M–estimator, Mallows’
GM–estimator, or the Wilcoxon rank estimator. See Rousseeuw and Leroy
(1987, pp. 12-13, 150). The basic idea is that if an estimator with OP (n−1/2)
convergence rate is applied to a set of nM ∝ n cases, then the resulting
estimator β̂M,n also has OP (n−1/2) rate provided that the response Y was

not used to select the nM cases in the set. If ‖β̂M,n − β‖ = OP (n−1/2) for

M = 0, ..., 90 then ‖β̂T,n − β‖ = OP (n−1/2) by Theorem 1.21.
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Fig. 7.18 4 Trimmed Views for the Buxton Data

Let Xn = X0,n denote the full design matrix. Often when proving asymp-

totic normality of an MLR estimator β̂0,n, it is assumed that

XT
nXn

n
→ W−1.

If β̂0,n has OP (n−1/2) rate and if for big enough n all of the diagonal elements
of (

XT
M,nXM,n

n

)−1

are all contained in an interval [0, B) for some B > 0, then ‖β̂M,n − β‖ =

OP (n−1/2).

The distribution of the estimator β̂M,n is especially simple when OLS is
used and the errors are iid N(0, σ2). Then

β̂M,n = (XT
M,nXM,n)−1XT

M,nY M,n ∼ Np(β, σ2(XT
M,nXM,n)−1)

and
√

n(β̂M,n−β) ∼ Np(0, σ2(XT
M,nXM,n/n)−1). This result does not imply

that β̂T,n is asymptotically normal. See the following paragraph for the large
sample theory of a modified trimmed views estimator.
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Warning: When Yi = xT
i β + e, MLR estimators tend to estimate the

same slopes β2, ..., βp, but the constant β1 tends to depend on the estimator
unless the errors are symmetric. The MBA and trimmed views estimators
do estimate the same β as OLS asymptotically, but samples may need to
be huge before the MBA and trimmed views estimates of the constant are
close to the OLS estimate of the constant. If the trimmed views estimator
is modified so that the LTS, LTA, or LMS criterion is used to select the
final estimator, then a conjecture is that the limiting distribution is similar

to that of the variable selection estimator:
√

n(β̂MTV − β)
D→
∑k

i=1 πiwi

where 0 ≤ πi ≤ 1 and
∑k

i=1 πi = 1. The index i corresponds to the fits
considered by the modified trimmed views estimator with k = 10. For the
MBA estimator and the modified trimmed views estimator, the prediction
region method, described in Section 4.5, may be useful for testing hypotheses.
Large sample sizes may be needed if the error distribution is not symmetric
since the constant β̂1 needs large samples. See Olive (2017b, p. 444) for
an explanation for why large sample sizes may be needed to estimate the
constant.

The conditions under which the rmreg2 estimator of Section 8.6 has been
shown to be

√
n consistent are quite strong, but it seems likely that the es-

timator is a
√

n consistent estimator of β under mild conditions where the
parameter vector β is not, in general, the parameter vector estimated by OLS.
For MLR, the linmodpack function rmregboot bootstraps the rmreg2 es-
timator, and the function rmregbootsim can be used to simulate rmreg2.
Both functions use the residual bootstrap where the residuals come from
OLS. See the R code below.

out<-rmregboot(belx,bely)

plot(out$betas)

ddplot4(out$betas) #right click Stop

out<-rmregboot(cbrainx,cbrainy)

ddplot4(out$betas) #right click Stop

Often practical “robust estimators” generate a sequence of K trial fits
called attractors: b1, ..., bK . Then some criterion is evaluated and the attractor
bA that minimizes the criterion is used in the final estimator.

Definition 7.24. For MLR, an elemental set J is a set of p cases drawn
with replacement from the data set of n cases. The elemental fit is the OLS
estimator β̂Ji

= (XT
Ji

XJi
)−1XT

Ji
Y Ji

= X−1
Ji

Y Ji
applied to the cases corre-

sponding to the elemental set provided that the inverse of XJi
exists. In a

concentration algorithm, let b0,j be the jth start, not necessarily elemental,
and compute all n residuals ri(b0,j) = Yi −xT

i b0,j. At the next iteration, the
OLS estimator b1,j is computed from the cn ≈ n/2 cases corresponding to
the smallest squared residuals r2

i (b0,j). This iteration can be continued for
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Fig. 7.19 The Highlighted Points are More Concentrated about the Attractor

k steps resulting in the sequence of estimators b0,j, b1,j, ..., bk,j. Then bk,j is
the jth attractor for j = 1, ..., K. Then the attractor bA that minimizes the
LTS criterion is used in the final estimator. Using k = 10 concentration steps
often works well, and the basic resampling algorithm is a special case with
k = 0, i.e., the attractors are the starts. Such an algorithm is called a CLTS
concentration algorithm or CLTS.

A CLTA concentration algorithm would replace the OLS estimator by
the L1 estimator, and the smallest cn squared residuals by the smallest cn

absolute residuals. Many other variants are possible, but obtaining theoretical
results may be difficult.

Example 7.12. As an illustration of the CLTA concentration algorithm,
consider the animal data from Rousseeuw and Leroy (1987, p. 57). The re-
sponse Y is the log brain weight and the predictor x is the log body weight
for 25 mammals and 3 dinosaurs (outliers with the highest body weight).
Suppose that the first elemental start uses cases 20 and 14, corresponding to
mouse and man. Then the start bs,1 = b0,1 = (2.952, 1.025)T and the sum of

the c = 14 smallest absolute residuals

14∑

i=1

|r|(i)(b0,1) = 12.101. Figure 7.19a

shows the scatterplot of x and y. The start is also shown and the 14 cases
corresponding to the smallest absolute residuals are highlighted. The L1 fit to
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Fig. 7.20 Starts and Attractors for the Animal Data

these c highlighted cases is b1,1 = (2.076, 0.979)T and

14∑

i=1

|r|(i)(b1,1) = 6.990.

The iteration consists of finding the cases corresponding to the c smallest
absolute residuals, obtaining the corresponding L1 fit and repeating. The
attractor ba,1 = b7,1 = (1.741, 0.821)T and the LTA(c) criterion evaluated

at the attractor is

14∑

i=1

|r|(i)(ba,1) = 2.172. Figure 7.19b shows the attractor

and that the c highlighted cases corresponding to the smallest absolute resid-
uals are much more concentrated than those in Figure 7.19a. Figure 7.20a
shows 5 randomly selected starts while Figure 7.20b shows the corresponding
attractors. Notice that the elemental starts have more variability than the
attractors, but if the start passes through an outlier, so does the attractor.

Remark 7.6. Consider drawing K elemental sets J1, ..., JK with replace-
ment to use as starts. For multivariate location and dispersion, use the attrac-
tor with the smallest MCD criterion to get the final estimator. For multiple
linear regression, use the attractor with the smallest LMS, LTA, or LTS cri-
terion to get the final estimator. For 500 ≤ K ≤ 3000 and p not much larger
than 5, the elemental set algorithm is very good for detecting certain “outlier
configurations,” including i) a mixture of two regression hyperplanes that
cross in the center of the data cloud for MLR (not an outlier configuration
since outliers are far from the bulk of the data) and ii) a cluster of outliers
that can often be placed close enough to the bulk of the data so that an MB,
RFCH, or RMVN DD plot can not detect the outliers. However, the outlier
resistance of elemental algorithms decreases rapidly as p increases.
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Suppose the data set has n cases where d are outliers and n−d are “clean”
(not outliers). The the outlier proportion γ = d/n. Suppose that K elemental
sets are chosen with replacement and that it is desired to find K such that
the probability P(that at least one of the elemental sets is clean) ≡ P1 ≈ 1−α
where α = 0.05 is a common choice. Then P1 = 1− P(none of the K elemental
sets is clean) ≈ 1− [1−(1−γ)p]K by independence. Hence α ≈ [1−(1−γ)p]K

or

K ≈ log(α)

log([1 − (1 − γ)p])
≈ log(α)

−(1 − γ)p
(7.22)

using the approximation log(1 − x) ≈ −x for small x. Since log(0.05) ≈ −3,

if α = 0.05, then K ≈ 3

(1 − γ)p
. Frequently a clean subset is wanted even if

the contamination proportion γ ≈ 0.5. Then for a 95% chance of obtaining at
least one clean elemental set, K ≈ 3 (2p) elemental sets need to be drawn. If
the start passes through an outlier, so does the attractor. For concentration
algorithms for multivariate location and dispersion, if the start passes through
a cluster of outliers, sometimes the attractor would be clean. See Figure 7.5–
7.11.

Table 7.5 Largest p for a 95% Chance of a Clean Subsample.

K

γ 500 3000 10000 105 106 107 108 109

0.01 509 687 807 1036 1265 1494 1723 1952
0.05 99 134 158 203 247 292 337 382
0.10 48 65 76 98 120 142 164 186
0.15 31 42 49 64 78 92 106 120
0.20 22 30 36 46 56 67 77 87
0.25 17 24 28 36 44 52 60 68
0.30 14 19 22 29 35 42 48 55
0.35 11 16 18 24 29 34 40 45
0.40 10 13 15 20 24 29 33 38
0.45 8 11 13 17 21 25 28 32
0.50 7 9 11 15 18 21 24 28

Notice that the number of subsets K needed to obtain a clean elemental set
with high probability is an exponential function of the number of predictors
p but is free of n. Hawkins and Olive (2002) showed that if K is fixed and
free of n, then the resulting elemental or concentration algorithm (that uses k
concentration steps), is inconsistent and zero breakdown. See Theorem 7.21.
Nevertheless, many practical estimators tend to use a value of K that is free
of both n and p (e.g. K = 500 or K = 3000). Such algorithms include ALMS
= FLMS = lmsreg and ALTS = FLTS = ltsreg. The “A” denotes that
an algorithm was used. The “F” means that a fixed number of trial fits (K
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elemental fits) was used and the criterion (LMS or LTS) was used to select
the trial fit used in the final estimator.

To examine the outlier resistance of such inconsistent zero breakdown es-
timators, fix both K and the contamination proportion γ and then find the
largest number of predictors p that can be in the model such that the proba-
bility of finding at least one clean elemental set is high. Given K and γ, P (at
least one of K subsamples is clean) = 0.95 ≈
1− [1 − (1 − γ)p]K. Thus the largest value of p satisfies

3

(1 − γ)p
≈ K, or

p ≈
⌊

log(3/K)

log(1 − γ)

⌋
(7.23)

if the sample size n is very large. Again bxc is the greatest integer function:
b7.7c = 7.

Table 7.5 shows the largest value of p such that there is a 95% chance
that at least one of K subsamples is clean using the approximation given by
Equation (7.23). Hence if p = 28, even with one billion subsamples, there
is a 5% chance that none of the subsamples will be clean if the contami-
nation proportion γ = 0.5. Since clean elemental fits have great variability,
an algorithm needs to produce many clean fits in order for the best fit to
be good. When contamination is present, all K elemental sets could contain
outliers. Hence basic resampling and concentration algorithms that only use
K elemental starts are doomed to fail if γ and p are large.

The outlier resistance of elemental algorithms that use K elemental sets
decreases rapidly as p increases. However, for p < 10, such elemental algo-
rithms are often useful for outlier detection. They can perform better than
MBA, trimmed views, and rmreg2 if p is small and the outliers are close
to the bulk of the data or if p is small and there is a mixture distribution:
the bulk of the data follows one MLR model, but “outliers” and some of the
clean data are fit well by another MLR model. For example, if there is one
nontrivial predictor, suppose the plot of x versus Y looks like the letter X.
Such a mixture distribution is not really an outlier configuration since out-
liers lie far from the bulk of the data. All practical estimators have outlier
configurations where they perform poorly. If p is small, elemental algorithms
tend to have trouble when there is a weak regression relationship for the bulk
of the data and a cluster of outliers that are not good leverage points (do
not fall near the hyperplane followed by the bulk of the data). The Buxton
(1920) data set is an example.

Theorem 7.15. Let h = p be the number of randomly selected cases in
an elemental set, and let γo be the highest percentage of massive outliers that
a resampling algorithm can detect reliably. If n is large, then

γo ≈ min

(
n − c

n
, 1 − [1 − (0.2)1/K]1/h

)
100%. (7.24)
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Proof. As in Remark 7.1, if the contamination proportion γ is fixed, then
the probability of obtaining at least one clean subset of size h with high
probability (say 1 − α = 0.8) is given by 0.8 = 1 − [1 − (1 − γ)h]K . Fix the
number of starts K and solve this equation for γ. �

The value of γo depends on c ≥ n/2 and h. To maximize γo, take c ≈ n/2
and h = p. For example, with K = 500 starts, n > 100, and h = p ≤ 20 the
resampling algorithm should be able to detect up to 24% outliers provided
every clean start is able to at least partially separate inliers (clean cases)
from outliers. However, if h = p = 50, this proportion drops to 11%.

Definition 7.25. Let b1, ..., bJ be J estimators of β. Assume that J ≥ 2
and that OLS is included. A fit-fit (FF) plot is a scatterplot matrix of the

fitted values Ŷ (b1), ..., Ŷ (bJ). Often Y is also included in the top or bottom
row of the FF plot to see the response plots. A residual-residual (RR) plot is
a scatterplot matrix of the residuals r(b1), ..., r(bJ). Often Ŷ is also included
in the top or bottom row of the RR plot to see the residual plots.

If the multiple linear regression model holds, if the predictors are bounded,
and if all J regression estimators are consistent estimators of β, then the
subplots in the FF and RR plots should be linear with a correlation tending
to one as the sample size n increases. To prove this claim, let the ith residual
from the jth fit bj be ri(bj) = Yi−xT

i bj where (Yi, x
T
i ) is the ith observation.

Similarly, let the ith fitted value from the jth fit be Ŷi(bj) = xT
i bj . Then

‖ri(b1) − ri(b2)‖ = ‖Ŷi(b1) − Ŷi(b2)‖ = ‖xT
i (b1 − b2)‖

≤ ‖xi‖ (‖b1 − β‖ + ‖b2 − β‖). (7.25)

The FF plot is a powerful way for comparing fits. The commonly suggested
alternative is to look at a table of the estimated coefficients, but coefficients
can differ greatly while yielding similar fits if some of the predictors are highly
correlated or if several of the predictors are independent of the response. See
Olive (2017b, pp. 408-412).

Table 7.6 compares the TV, MBA (for MLR), lmsreg, ltsreg, L1, and
OLS estimators on 7 data sets available from the text’s website. The column
headers give the file name while the remaining rows of the table give the
sample size n, the number of predictors p, the amount of trimming M used
by the TV estimator, the correlation of the residuals from the TV estimator
with the corresponding alternative estimator, and the cases that were out-
liers. If the correlation was greater than 0.9, then the method was effective
in detecting the outliers, and the method failed, otherwise. Sometimes the
trimming percentage M for the TV estimator was picked after fitting the
bulk of the data in order to find the good leverage points and outliers. Each
model included a constant.
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Table 7.6 Summaries for Seven Data Sets, the Correlations of the Residuals from
TV(M) and the Alternative Method are Given in the 1st 5 Rows

Method Buxton Gladstone glado hbk major nasty wood
MBA 0.997 1.0 0.455 0.960 1.0 -0.004 0.9997

LMSREG -0.114 0.671 0.938 0.977 0.981 0.9999 0.9995
LTSREG -0.048 0.973 0.468 0.272 0.941 0.028 0.214

L1 -0.016 0.983 0.459 0.316 0.979 0.007 0.178
OLS 0.011 1.0 0.459 0.780 1.0 0.009 0.227

outliers 61-65 none 115 1-10 3,44 2,6,...,30 4,6,8,19
n 87 267 267 75 112 32 20
p 5 7 7 4 6 5 6
M 70 0 30 90 0 90 20

Notice that the TV, MBA, and OLS estimators were the same for the
Gladstone (1905) data and for the Tremearne (1911) major data which had
two small Y –outliers. For the Gladstone data, there is a cluster of infants
that are good leverage points, and we attempt to predict brain weight with
the head measurements height, length, breadth, size, and cephalic index. Orig-
inally, the variable length was incorrectly entered as 109 instead of 199 for
case 115, and the glado data contains this outlier. In 1997, lmsreg was not
able to detect the outlier while ltsreg did. Due to changes in the Splus 2000
code, lmsreg detected the outlier but ltsreg did not. These two functions
change often, not always for the better.

To end this section, we describe resistant regression with the RMVN set
U or covmb2 set B in more detail. Assume that predictor transformations
have been performed to make a p × 1 vector of predictors x, and that w

consists of k ≤ p continuous predictor variables that are linearly related. Find
the RMVN set based on the w to obtain nu cases (yci, xci), and then run
the regression method on the cleaned data. Often the theory of the method
applies to the cleaned data set since y was not used to pick the subset of
the data. Efficiency can be much lower since nu cases are used where n/2 ≤
nu ≤ n, and the trimmed cases tend to be the “farthest” from the center of
w. The method will have the most outlier resistance if k = p− 1 if there is a
trivial predictor X1 ≡ 1.

In R, assume Y is the vector of response variables, x is the data matrix of
the predictors (often not including the trivial predictor), and w is the data
matrix of the wi. Then the following R commands can be used to get the
cleaned data set. We could use the covmb2 set B instead of the RMVN set
U computed from the w by replacing the command getu(w) by getB(w).

indx <- getu(w)$indx #often w = x

Yc <- Y[indx]

Xc <- x[indx,]

#example
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indx <- getu(buxx)$indx

Yc <- buxy[indx]

Xc <- buxx[indx,]

outr <- lsfit(Xc,Yc)

MLRplot(Xc,Yc) #right click Stop twice

7.6 Robust Regression

This section will consider the breakdown of a regression estimator and then
develop the practical high breakdown hbreg estimator.

7.6.1 MLR Breakdown and Equivariance

Breakdown and equivariance properties have received considerable attention
in the literature. Several of these properties involve transformations of the
data, and are discussed below. If X and Y are the original data, then the
vector of the coefficient estimates is

β̂ = β̂(X, Y ) = T (X , Y ), (7.26)

the vector of predicted values is

Ŷ = Ŷ (X, Y ) = Xβ̂(X , Y ), (7.27)

and the vector of residuals is

r = r(X , Y ) = Y − Ŷ . (7.28)

If the design matrix X is transformed into W and the vector of dependent
variables Y is transformed into Z, then (W , Z) is the new data set.

Definition 7.26. Regression Equivariance: Let u be any p×1 vector.
Then β̂ is regression equivariant if

β̂(X , Y + Xu) = T (X , Y + Xu) = T (X , Y ) + u = β̂(X , Y ) + u. (7.29)

Hence if W = X and Z = Y + Xu, then Ẑ = Ŷ + Xu and r(W , Z) =

Z − Ẑ = r(X , Y ). Note that the residuals are invariant under this type of

transformation, and note that if u = −β̂, then regression equivariance implies
that we should not find any linear structure if we regress the residuals on X .
Also see Problem 7.2.
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Definition 7.27. Scale Equivariance: Let c be any scalar. Then β̂ is
scale equivariant if

β̂(X , cY ) = T (X , cY ) = cT (X , Y ) = cβ̂(X , Y ). (7.30)

Hence if W = X and Z = cY , then Ẑ = cŶ and r(X, cY ) = c r(X , Y ).
Scale equivariance implies that if the Yi’s are stretched, then the fits and the
residuals should be stretched by the same factor.

Definition 7.28. Affine Equivariance: Let A be any p× p nonsingular
matrix. Then β̂ is affine equivariant if

β̂(XA, Y ) = T (XA, Y ) = A−1T (X , Y ) = A−1β̂(X , Y ). (7.31)

Hence if W = XA and Z = Y , then Ẑ = Wβ̂(XA, Y ) =

XAA−1β̂(X, Y ) = Ŷ , and r(XA, Y ) = Z − Ẑ = Y − Ŷ = r(X, Y ). Note
that both the predicted values and the residuals are invariant under an affine
transformation of the predictor variables.

Definition 7.29. Permutation Invariance: Let P be an n × n per-
mutation matrix. Then P T P = P P T = In where In is an n × n identity
matrix and the superscript T denotes the transpose of a matrix. Then β̂ is
permutation invariant if

β̂(PX , PY ) = T (P X, P Y ) = T (X, Y ) = β̂(X, Y ). (7.32)

Hence if W = PX and Z = P Y , then Ẑ = P Ŷ and r(P X , PY ) =
P r(X , Y ). If an estimator is not permutation invariant, then swapping
rows of the n× (p + 1) augmented matrix (X , Y ) will change the estimator.
Hence the case number is important. If the estimator is permutation invariant,
then the position of the case in the data cloud is of primary importance.
Resampling algorithms are not permutation invariant because permuting the
data causes different subsamples to be drawn.

Remark 7.7. OLS has the above invariance properties, but most Statis-
tical Learning alternatives such as lasso and ridge regression do not have all
four properties. Hence Remark 5.1 is used to fit the data with Z = Wη + e.
Then obtain β̂ from η̂.

The remainder of this subsection gives a standard definition of breakdown
and then shows that if the median absolute residual is bounded in the presence
of high contamination, then the regression estimator has a high breakdown
value. The following notation will be useful. Let W denote the data matrix
where the ith row corresponds to the ith case. For regression, W is the
n × (p + 1) matrix with ith row (xT

i , Yi). Let W n
d denote the data matrix

where any dn of the cases have been replaced by arbitrarily bad contaminated
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cases. Then the contamination fraction is γ ≡ γn = dn/n, and the breakdown

value of β̂ is the smallest value of γn needed to make ‖β̂‖ arbitrarily large.

Definition 7.30. Let 1 ≤ dn ≤ n. If T (W ) is a p× 1 vector of regression
coefficients, then the breakdown value of T is

B(T, W ) = min

{
dn

n
: sup
W n

d

‖T (W n
d)‖ = ∞

}

where the supremum is over all possible corrupted samples W n
d .

Definition 7.31. High breakdown regression estimators have γn → 0.5
as n → ∞ if the clean (uncontaminated) data are in general position: any
p clean cases give a unique estimate of β. Estimators are zero breakdown if
γn → 0 and positive breakdown if γn → γ > 0 as n → ∞.

The following result greatly simplifies some breakdown proofs and shows
that a regression estimator basically breaks down if the median absolute
residual MED(|ri|) can be made arbitrarily large. The result implies that if
the breakdown value ≤ 0.5, breakdown can be computed using the median
absolute residual MED(|ri|(Wn

d )) instead of ‖T (W n
d )‖. Similarly β̂ is high

breakdown if the median squared residual or the cnth largest absolute resid-
ual |ri|(cn) or squared residual r2

(cn) stay bounded under high contamination

where cn ≈ n/2. Note that ‖β̂‖ ≡ ‖β̂(W n
d)‖ ≤ M for some constant M that

depends on T and W but not on the outliers if the number of outliers dn is
less than the smallest number of outliers needed to cause breakdown.

Theorem 7.16. If the breakdown value ≤ 0.5, computing the break-
down value using the median absolute residual MED(|ri|(W n

d)) instead of
‖T (Wn

d )‖ is asymptotically equivalent to using Definition 7.30.

Proof. Consider any contaminated data set W n
d with ith row (wT

i , Zi)
T .

If the regression estimator T (W n
d ) = β̂ satisfies ‖β̂‖ ≤ M for some constant

M if d < dn, then the median absolute residual MED(|Zi−β̂
T
wi|) is bounded

by maxi=1,...,n |Yi − β̂
T
xi| ≤ maxi=1,...,n[|Yi| +

∑p
j=1 M |xi,j|] if dn < n/2.

If the median absolute residual is bounded by M when d < dn, then ‖β̂‖
is bounded provided fewer than half of the cases line on the hyperplane (and

so have absolute residual of 0), as shown next. Now suppose that ‖β̂‖ = ∞.
Since the absolute residual is the vertical distance of the observation from the
hyperplane, the absolute residual |ri| = 0 if the ith case lies on the regression
hyperplane, but |ri| = ∞ otherwise. Hence MED(|ri|) = ∞ if fewer than
half of the cases lie on the regression hyperplane. This will occur unless the
proportion of outliers dn/n > (n/2 − q)/n → 0.5 as n → ∞ where q is the
number of “good” cases that lie on a hyperplane of lower dimension than p.
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In the literature it is usually assumed that the original data are in general
position: q = p − 1. �

Suppose that the clean data are in general position and that the number of
outliers is less than the number needed to make the median absolute residual
and ‖β̂‖ arbitrarily large. If the xi are fixed, and the outliers are moved up
and down by adding a large positive or negative constant to the Y values
of the outliers, then for high breakdown (HB) estimators, β̂ and MED(|ri|)
stay bounded where the bounds depend on the clean data W but not on the
outliers even if the number of outliers is nearly as large as n/2. Thus if the
|Yi| values of the outliers are large enough, the |ri| values of the outliers will
be large.

If the Yi’s are fixed, arbitrarily large x-outliers tend to drive the slope
estimates to 0, not ∞. If both x and Y can be varied, then a cluster of
outliers can be moved arbitrarily far from the bulk of the data but may still
have small residuals. For example, move the outliers along the regression
hyperplane formed by the clean cases.

If the (xT
i , Yi) are in general position, then the contamination could be

such that β̂ passes exactly through p − 1 “clean” cases and dn “contam-
inated” cases. Hence dn + p − 1 cases could have absolute residuals equal
to zero with ‖β̂‖ arbitrarily large (but finite). Nevertheless, if T possesses
reasonable equivariant properties and ‖T (W n

d )‖ is replaced by the median
absolute residual in the definition of breakdown, then the two breakdown val-
ues are asymptotically equivalent. (If T (W ) ≡ 0, then T is neither regression
nor affine equivariant. The breakdown value of T is one, but the median ab-
solute residual can be made arbitrarily large if the contamination proportion
is greater than n/2.)

If the Yi’s are fixed, arbitrarily large x-outliers will rarely drive ‖β̂‖ to

∞. The x-outliers can drive ‖β̂‖ to ∞ if they can be constructed so that
the estimator is no longer defined, e.g. so that XT X is nearly singular. The
examples following some results on norms may help illustrate these points.

Definition 7.32. Let y be an n × 1 vector. Then ‖y‖ is a vector norm if
vn1) ‖y‖ ≥ 0 for every y ∈ R

n with equality iff y is the zero vector,
vn2) ‖ay‖ = |a| ‖y‖ for all y ∈ R

n and for all scalars a, and
vn3) ‖x + y‖ ≤ ‖x‖ + ‖y‖ for all x and y in R

n.

Definition 7.33. Let G be an n × p matrix. Then ‖G‖ is a matrix norm if
mn1) ‖G‖ ≥ 0 for every n×p matrix G with equality iff G is the zero matrix,
mn2) ‖aG‖ = |a| ‖G‖ for all scalars a, and
mn3) ‖G + H‖ ≤ ‖G‖ + ‖H‖ for all n × p matrices G and H .

Example 7.13. The q-norm of a vector y is ‖y‖q = (|y1|q + · · ·+ |yn|q)1/q.
In particular, ‖y‖1 = |y1|+ · · ·+ |yn|, the Euclidean norm
‖y‖2 =

√
y2
1 + · · ·+ y2

n, and ‖y‖∞ = maxi |yi|. Given a matrix G and
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a vector norm ‖y‖q the q-norm or subordinate matrix norm of matrix G is

‖G‖q = max
y 6=0

‖Gy‖q

‖y‖q
. It can be shown that the maximum column sum norm

‖G‖1 = max
1≤j≤p

n∑

i=1

|gij|, the maximum row sum norm ‖G‖∞ = max
1≤i≤n

p∑

j=1

|gij|,

and the spectral norm ‖G‖2 =

√
maximum eigenvalue of GT G. The

Frobenius norm

‖G‖F =

√√√√
p∑

j=1

n∑

i=1

|gij|2 =

√
trace(GTG).

Several useful results involving matrix norms will be used. First, for any
subordinate matrix norm, ‖Gy‖q ≤ ‖G‖q ‖y‖q. Let J = Jm = {m1, ..., mp}
denote the p cases in the mth elemental fit bJ = X−1

J Y J . Then for any
elemental fit bJ (suppressing q = 2),

‖bJ − β‖ = ‖X−1
J (XJβ + eJ) − β‖ = ‖X−1

J eJ‖ ≤ ‖X−1
J ‖ ‖eJ‖. (7.33)

The following results (Golub and Van Loan 1989, pp. 57, 80) on the Euclidean
norm are useful. Let 0 ≤ σp ≤ σp−1 ≤ · · · ≤ σ1 denote the singular values of
XJ = (xmi,j). Then

‖X−1
J ‖ =

σ1

σp‖XJ‖
, (7.34)

max
i,j

|xmi,j| ≤ ‖XJ‖ ≤ p max
i,j

|xmi,j|, and (7.35)

1

p maxi,j |xmi,j|
≤ 1

‖XJ‖
≤ ‖X−1

J ‖. (7.36)

From now on, unless otherwise stated, we will use the spectral norm as the
matrix norm and the Euclidean norm as the vector norm.

Example 7.14. Suppose the response values Y are near 0. Consider the fit
from an elemental set: bJ = X−1

J Y J and examine Equations (7.34), (7.35),
and (7.36). Now ‖bJ‖ ≤ ‖X−1

J ‖ ‖Y J‖, and since x-outliers make ‖XJ‖
large, x-outliers tend to drive ‖X−1

J ‖ and ‖bJ‖ towards zero not towards ∞.
The x-outliers may make ‖bJ‖ large if they can make the trial design ‖XJ‖
nearly singular. Notice that Euclidean norm ‖bJ‖ can easily be made large if
one or more of the elemental response variables is driven far away from zero.

Example 7.15. Without loss of generality, assume that the clean Y ’s are
contained in an interval [a, f ] for some a and f . Assume that the regression
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model contains an intercept β1. Then there exists an estimator β̂M of β such

that ‖β̂M‖ ≤ max(|a|, |f |) if dn < n/2.

Proof. Let MED(n) = MED(Y1, ..., Yn) and MAD(n) = MAD(Y1, ..., Yn).

Take β̂M = (MED(n), 0, ..., 0)T. Then ‖β̂M‖ = |MED(n)| ≤ max(|a|, |f |).
Note that the median absolute residual for the fit β̂M is equal to the median
absolute deviation MAD(n) = MED(|Yi − MED(n)|, i = 1, ..., n) ≤ f − a if
dn < b(n + 1)/2c. �

Note that β̂M is a poor high breakdown estimator of β and Ŷi(β̂M ) tracks
the Yi very poorly. If the data are in general position, a high breakdown
regression estimator is an estimator which has a bounded median absolute
residual even when close to half of the observations are arbitrary. Rousseeuw
and Leroy (1987, pp. 29, 206) conjectured that high breakdown regression
estimators can not be computed cheaply, and that if the algorithm is also
affine equivariant, then the complexity of the algorithm must be at least
O(np). The following theorem shows that these two conjectures are false.

Theorem 7.17. If the clean data are in general position and the model has
an intercept, then a scale and affine equivariant high breakdown estimator
β̂w can be found by computing OLS on the set of cases that have Yi ∈
[MED(Y1, ..., Yn) ± w MAD(Y1, ..., Yn)] where w ≥ 1 (so at least half of the
cases are used).

Proof. Note that β̂w is obtained by computing OLS on the set J of the
nj cases which have

Yi ∈ [MED(Y1, ..., Yn) ± wMAD(Y1, ..., Yn)] ≡ [MED(n) ± wMAD(n)]

where w ≥ 1 (to guarantee that nj ≥ n/2). Consider the estimator β̂M =

(MED(n), 0, ..., 0)T which yields the predicted values Ŷi ≡ MED(n). The

squared residual r2
i (β̂M ) ≤ (w MAD(n))2 if the ith case is in J . Hence the

weighted LS fit β̂w is the OLS fit to the cases in J and has

∑

i∈J

r2
i (β̂w) ≤ nj(w MAD(n))2.

Thus

MED(|r1(β̂w)|, ..., |rn(β̂w)|) ≤ √
nj w MAD(n) <

√
n w MAD(n) < ∞.

Thus the estimator β̂w has a median absolute residual bounded by√
n w MAD(Y1, ..., Yn). Hence β̂w is high breakdown, and it is affine equiv-

ariant since the design is not used to choose the observations. It is scale
equivariant since for constant c = 0, β̂w = 0, and for c 6= 0 the set of
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cases used remains the same under scale transformations and OLS is scale
equivariant. �

Note that if w is huge and MAD(n) 6= 0, then the high breakdown estima-

tor β̂w and β̂OLS will be the same for most data sets. Thus high breakdown

estimators can be very nonrobust. Even if w = 1, the HB estimator β̂w only
resists large Y outliers.

An ALTA concentration algorithm uses the L1 estimator instead of OLS
in the concentration step and uses the LTA criterion. Similarly an ALMS
concentration algorithm uses the L∞ estimator and the LMS criterion.

Theorem 7.18. If the clean data are in general position and if a high
breakdown start is added to an ALTA, ALTS, or ALMS concentration algo-
rithm, then the resulting estimator is HB.

Proof. Concentration reduces (or does not increase) the corresponding HB
criterion that is based on cn ≥ n/2 absolute residuals, so the median absolute
residual of the resulting estimator is bounded as long as the criterion applied
to the HB estimator is bounded. �

For example, consider the LTS(cn) criterion. Suppose the ordered squared
residuals from the high breakdown mth start b0m are obtained. If the data
are in general position, then QLTS(b0m) is bounded even if the number of
outliers dn is nearly as large as n/2. Then b1m is simply the OLS fit to
the cases corresponding to the cn smallest squared residuals r2

(i)(b0m) for

i = 1, ..., cn. Denote these cases by i1, ..., icn
. Then QLTS(b1m) =

cn∑

i=1

r2
(i)(b1m) ≤

cn∑

j=1

r2
ij

(b1m) ≤
cn∑

j=1

r2
ij

(b0m) =

cn∑

j=1

r2
(i)(b0m) = QLTS(b0m)

where the second inequality follows from the definition of the OLS estimator.
Hence concentration steps reduce or at least do not increase the LTS criterion.
If cn = (n+1)/2 for n odd and cn = 1+n/2 for n even, then the LTS criterion
is bounded iff the median squared residual is bounded.

Theorem 7.18 can be used to show that the following two estimators are
high breakdown. The estimator β̂B is the high breakdown attractor used by
the

√
n consistent high breakdown hbreg estimator of Definition 7.35.

Definition 7.34. Make an OLS fit to the cn ≈ n/2 cases whose Y values
are closest to the MED(Y1, ..., Yn) ≡ MED(n) and use this fit as the start

for concentration. Define β̂B to be the attractor after k concentration steps.

Define bk,B = 0.9999β̂B .

Theorem 7.19. If the clean data are in general position, then β̂B and
bk,B are high breakdown regression estimators.
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Proof. The start can be taken to be β̂w with w = 1 from Theorem 7.17.

Since the start is high breakdown, so is the attractor β̂B by Theorem 7.18.
Multiplying a HB estimator by a positive constant does not change the break-
down value, so bk,B is HB. �

The following result shows that it is easy to make a HB estimator that is
asymptotically equivalent to a consistent estimator on a large class of iid zero
mean symmetric error distributions, although the outlier resistance of the HB
estimator is poor. The following result may not hold if β̂C estimates βC and

β̂LMS estimates βLMS where βC 6= βLMS . Then bk,B could have a smaller

median squared residual than β̂C even if there are no outliers. The two param-
eter vectors could differ because the constant term is different if the error dis-
tribution is not symmetric. For a large class of symmetric error distributions,
βLMS = βOLS = βC ≡ β, then the ratio MED(r2

i (β̂))/MED(r2
i (β)) → 1 as

n → ∞ for any consistent estimator of β. The estimator below has two attrac-
tors, β̂C and bk,B, and the probability that the final estimator β̂D is equal

to β̂C goes to one under the strong assumption that the error distribution is

such that both β̂C and β̂LMS are consistent estimators of β.

Theorem 7.20. Assume the clean data are in general position, and that
the LMS estimator is a consistent estimator of β. Let β̂C be any practical con-

sistent estimator of β, and let β̂D = β̂C if MED(r2
i (β̂C)) ≤ MED(r2

i (bk,B)).

Let β̂D = bk,B, otherwise. Then β̂D is a HB estimator that is asymptotically

equivalent to β̂C .

Proof. The estimator is HB since the median squared residual of β̂D

is no larger than that of the HB estimator bk,B. Since β̂C is consistent,

MED(r2
i (β̂C)) → MED(e2) in probability where MED(e2) is the population

median of the squared error e2. Since the LMS estimator is consistent, the
probability that β̂C has a smaller median squared residual than the biased

estimator β̂k,B goes to 1 as n → ∞. Hence β̂D is asymptotically equivalent

to β̂C . �

The elemental concentration and elemental resampling algorithms use K
elemental fits where K is a fixed number that does not depend on the sample
size n, e.g. K = 500. See Definitions 7.12 and 7.24. Note that an estimator can
not be consistent for θ unless the number of randomly selected cases goes to
∞, except in degenerate situations. The following theorem shows the widely
used elemental estimators are zero breakdown estimators. (If K = Kn → ∞,
then the elemental estimator is zero breakdown if Kn = o(n). A necessary
condition for the elemental basic resampling estimator to be consistent is
Kn → ∞.)
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Theorem 7.21: a) The elemental basic resampling algorithm estimators
are inconsistent. b) The elemental concentration and elemental basic resam-
pling algorithm estimators are zero breakdown.

Proof: a) Note that you can not get a consistent estimator by using Kh
randomly selected cases since the number of cases Kh needs to go to ∞ for
consistency except in degenerate situations.

b) Contaminating all Kh cases in the K elemental sets shows that the
breakdown value is bounded by Kh/n → 0, so the estimator is zero break-
down. �

7.6.2 A Practical High Breakdown Consistent Estimator

Olive and Hawkins (2011) showed that the practical hbreg estimator is a
high breakdown

√
n consistent robust estimator that is asymptotically equiv-

alent to the least squares estimator for many error distributions. This sub-
section follows Olive (2017b, pp. 420-423).

The outlier resistance of the hbreg estimator is not very good, but roughly
comparable to the best of the practical “robust regression” estimators avail-
able in R packages as of 2019. The estimator is of some interest since it proved
that practical high breakdown consistent estimators are possible. Other prac-
tical regression estimators that claim to be high breakdown and consistent
appear to be zero breakdown because they use the zero breakdown elemental
concentration algorithm. See Theorem 7.21.

The following theorem is powerful because it does not depend on the crite-
rion used to choose the attractor. Suppose there are K consistent estimators
β̂j of β, each with the same rate nδ. If β̂A is an estimator obtained by choos-

ing one of the K estimators, then β̂A is a consistent estimator of β with rate
nδ by Pratt (1959). See Theorem 1.21.

Theorem 7.22. Suppose the algorithm estimator chooses an attractor as
the final estimator where there are K attractors and K is fixed.

i) If all of the attractors are consistent, then the algorithm estimator is
consistent.

ii) If all of the attractors are consistent with the same rate, e.g., nδ where
0 < δ ≤ 0.5, then the algorithm estimator is consistent with the same rate as
the attractors.

iii) If all of the attractors are high breakdown, then the algorithm estimator
is high breakdown.

Proof. i) Choosing from K consistent estimators results in a consistent
estimator, and ii) follows from Pratt (1959). iii) Let γn,i be the breakdown
value of the ith attractor if the clean data are in general position. The break-
down value γn of the algorithm estimator can be no lower than that of the
worst attractor: γn ≥ min(γn,1, ..., γn,K) → 0.5 as n → ∞. �
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The consistency of the algorithm estimator changes dramatically if K is
fixed but the start size h = hn = g(n) where g(n) → ∞. In particular, if
K starts with rate n1/2 are used, the final estimator also has rate n1/2. The
drawback to these algorithms is that they may not have enough outlier resis-
tance. Notice that the basic resampling result below is free of the criterion.

Theorem 7.23. Suppose Kn ≡ K starts are used and that all starts have
subset size hn = g(n) ↑ ∞ as n → ∞. Assume that the estimator applied to
the subset has rate nδ.
i) For the hn-set basic resampling algorithm, the algorithm estimator has
rate [g(n)]δ.
ii) Under regularity conditions (e.g. given by He and Portnoy 1992), the k–
step CLTS estimator has rate [g(n)]δ.

Proof. i) The hn = g(n) cases are randomly sampled without replacement.
Hence the classical estimator applied to these g(n) cases has rate [g(n)]δ. Thus
all K starts have rate [g(n)]δ, and the result follows by Pratt (1959). ii) By
He and Portnoy (1992), all K attractors have [g(n)]δ rate, and the result
follows by Pratt (1959). �

Remark 7.8. Theorem 7.16 shows that β̂ is HB if the median absolute or
squared residual (or |r(β̂)|(cn) or r2

(cn) where cn ≈ n/2) stays bounded under

high contamination. Let QL(β̂H) denote the LMS, LTS, or LTA criterion for

an estimator β̂H ; therefore, the estimator β̂H is high breakdown if and only

if QL(β̂H) is bounded for dn near n/2 where dn < n/2 is the number of out-
liers. The concentration operator refines an initial estimator by successively
reducing the LTS criterion. If β̂F refers to the final estimator (attractor) ob-

tained by applying concentration to some starting estimator β̂H that is high

breakdown, then since QLTS(β̂F ) ≤ QLTS(β̂H), applying concentration to
a high breakdown start results in a high breakdown attractor. See Theorem
7.18.

High breakdown estimators are, however, not necessarily useful for detect-
ing outliers. Suppose γn < 0.5. On the one hand, if the xi are fixed, and the
outliers are moved up and down parallel to the Y axis, then for high break-
down estimators, β̂ and MED(|ri|) will be bounded. Thus if the |Yi| values of
the outliers are large enough, the |ri| values of the outliers will be large, sug-
gesting that the high breakdown estimator is useful for outlier detection. On
the other hand, if the Yi’s are fixed at any values and the x values perturbed,
sufficiently large x-outliers tend to drive the slope estimates to 0, not ∞. For
many estimators, including LTS, LMS, and LTA, a cluster of Y outliers can
be moved arbitrarily far from the bulk of the data but still, by perturbing
their x values, have arbitrarily small residuals. See Example 7.16.
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Our practical high breakdown procedure is made up of three components.
1) A practical estimator β̂C that is consistent for clean data. Suitable choices
would include the full-sample OLS and L1 estimators.
2) A practical estimator β̂A that is effective for outlier identification. Suitable
choices include the mbareg, rmreg2, lmsreg, or FLTS estimators.
3) A practical high-breakdown estimator such as β̂B from Definition 7.34
with k = 10.

By selecting one of these three estimators according to the features each
of them uncovers in the data, we may inherit some of the good properties of
each of them.

Definition 7.35. The hbreg estimator β̂H is defined as follows. Pick a

constant a > 1 and set β̂H = β̂C . If aQL(β̂A) < QL(β̂C), set β̂H = β̂A. If

aQL(β̂B) < min[QL(β̂C), aQL(β̂A)], set β̂H = β̂B.

That is, find the smallest of the three scaled criterion values QL(β̂C),

aQL(β̂A), aQL(β̂B). According to which of the three estimators attains this

minimum, set β̂H to β̂C , β̂A, or β̂B respectively.
Large sample theory for hbreg is simple and given in the following theo-

rem. Let β̂L be the LMS, LTS, or LTA estimator that minimizes the criterion

QL. Note that the impractical estimator β̂L is never computed. The following

theorem shows that β̂H is asymptotically equivalent to β̂C on a large class

of zero mean finite variance symmetric error distributions. Thus if β̂C is
√

n

consistent or asymptotically efficient, so is β̂H . Notice that β̂A does not need
to be consistent. This point is crucial since lmsreg is not consistent and it is
not known whether FLTS is consistent. The clean data are in general position
if any p clean cases give a unique estimate of β̂.

Theorem 7.24. Assume the clean data are in general position, and sup-
pose that both β̂L and β̂C are consistent estimators of β where the regression

model contains a constant. Then the hbreg estimator β̂H is high breakdown

and asymptotically equivalent to β̂C .

Proof. Since the clean data are in general position and QL(β̂H) ≤
aQL(β̂B) is bounded for γn near 0.5, the hbreg estimator is high break-
down. Let Q∗

L = QL for LMS and Q∗
L = QL/n for LTS and LTA. As n → ∞,

consistent estimators β̂ satisfy Q∗
L(β̂) − Q∗

L(β) → 0 in probability. Since

LMS, LTS, and LTA are consistent and the minimum value is Q∗
L(β̂L), it

follows that Q∗
L(β̂C) − Q∗

L(β̂L) → 0 in probability, while Q∗
L(β̂L) < aQ∗

L(β̂)

for any estimator β̂. Thus with probability tending to one as n → ∞,
QL(β̂C) < a min(QL(β̂A), QL(β̂B)). Hence β̂H is asymptotically equivalent

to β̂C . �
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Remark 7.9. i) Let β̂C = β̂OLS . Then hbreg is asymptotically equiva-
lent to OLS when the errors ei are iid from a large class of zero mean finite
variance symmetric distributions, including the N(0, σ2) distribution, since

the probability that hbreg uses OLS instead of β̂A or β̂B goes to one as
n → ∞.

ii) The above theorem proves that practical high breakdown estimators
with 100% asymptotic Gaussian efficiency exist; however, such estimators
are not necessarily good.

iii) The theorem holds when both β̂L and β̂C are consistent estimators of
β, for example, when the iid errors come from a large class or zero mean finite
variance symmetric distributions. For asymmetric distributions, β̂C estimates

βC and β̂L estimates βL where the constants usually differ. The theorem
holds for some distributions that are not symmetric because of the penalty
a. As a → ∞, the class of asymmetric distributions where the theorem holds
greatly increases, but the outlier resistance decreases rapidly as a increases
for a > 1.4.

iv) The default hbreg estimator used OLS, mbareg, and β̂B with a = 1.4
and the LTA criterion. For the simulated data with symmetric error distri-
butions, β̂B appeared to give biased estimates of the slopes. However, for the

simulated data with right skewed error distributions, β̂B appeared to give
good estimates of the slopes but not the constant estimated by OLS, and the
probability that the hbreg estimator selected β̂B appeared to go to one.

v) Both MBA and OLS are
√

n consistent estimators of β, even for a large

class of skewed distributions. Using β̂A = β̂MBA and removing β̂B from the

hbreg estimator results in a
√

n consistent estimator of β when β̂C = OLS is
a
√

n consistent estimator of β, but massive sample sizes were still needed to
get good estimates of the constant for skewed error distributions. For skewed
distributions, if OLS needed n = 1000 to estimate the constant well, mbareg
might need n > one million to estimate the constant well.

The situation is worse for multivariate linear regression when hbreg is
used instead of OLS, since there are m constants to be estimated. If the
distribution of the iid error vectors ei is not elliptically contoured, getting
all m mbareg estimators to estimate all m constants well needs even larger
sample sizes.

vi) The outlier resistance of hbreg is not especially good.
The family of hbreg estimators is enormous and depends on i) the prac-

tical high breakdown estimator β̂B, ii) β̂C , iii) β̂A, iv) a, and v) the criterion
QL. Note that the theory needs the error distribution to be such that both
β̂C and β̂L are consistent. Sufficient conditions for LMS, LTS, and LTA to be
consistent are rather strong. To have reasonable sufficient conditions for the
hbreg estimator to be consistent, β̂C should be consistent under weak condi-
tions. Hence OLS is a good choice that results in 100% asymptotic Gaussian
efficiency.
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We suggest using the LTA criterion since in simulations, hbreg behaved
like β̂C for smaller sample sizes than those needed by the LTS and LMS

criteria. We want a near 1 so that hbreg has outlier resistance similar to β̂A,

but we want a large enough so that hbreg performs like β̂C for moderate
n on clean data. Simulations suggest that a = 1.4 is a reasonable choice.
The default hbreg program from linmodpack uses the

√
n consistent outlier

resistant estimator mbareg as β̂A.

There are at least three reasons for using β̂B as the high breakdown es-

timator. First, β̂B is high breakdown and simple to compute. Second, the

fitted values roughly track the bulk of the data. Lastly, although β̂B has

rather poor outlier resistance, β̂B does perform well on several outlier con-
figurations where some common alternatives fail.

Next we will show that the hbreg estimator implemented with a = 1.4
using QLTA, β̂C = OLS, and β̂B can greatly improve the estimator β̂A. We

will use β̂A = ltsreg in R and Splus 2000. Depending on the implemen-
tation, the ltsreg estimators use the elemental resampling algorithm, the
elemental concentration algorithm, or a genetic algorithm. Coverage is 50%,
75%, or 90%. The Splus 2000 implementation is an unusually poor genetic
algorithm with 90% coverage. The R implementation appears to be the zero
breakdown inconsistent elemental basic resampling algorithm that uses 50%
coverage. The ltsreg function changes often.

Simulations were run in R with the xij (for j > 1) and ei iid N(0, σ2)

and β = 1, the p × 1 vector of ones. Then β̂ was recorded for 100 runs. The
mean and standard deviation of the β̂j were recorded for j = 1, ..., p. For
n ≥ 10p and OLS, the vector of means should be close to 1 and the vector
of standard deviations should be close to 1/

√
n. The

√
n consistent high

breakdown hbreg estimator performed like OLS if n ≈ 35p and 2 ≤ p ≤ 6,
if n ≈ 20p and 7 ≤ p ≤ 14, or if n ≈ 15p and 15 ≤ p ≤ 40. See Table 7.7
for p = 5 and 100 runs. ALTS denotes ltsreg, HB denotes hbreg, and
BB denotes β̂B. In the simulations, hbreg estimated the slopes well for the
highly skewed lognormal data, but not the OLS constant. Use the linmodpack
function hbregsim.

As implemented in linmodpack, the hbreg estimator is a practical
√

n
consistent high breakdown estimator that appears to perform like OLS for
moderate n if the errors are unimodal and symmetric, and to have outlier
resistance comparable to competing practical “outlier resistant” estimators.

The hbreg, lmsreg, ltsreg, OLS, and β̂B estimators were compared
on the same 25 benchmark data sets. Also see Park et al. (2012). The HB

estimator β̂B was surprisingly good in that the response plots showed that it
was the best estimator for 2 data sets and that it usually tracked the data, but
it performed poorly in 7 of the 25 data sets. The hbreg estimator performed
well, but for a few data sets hbreg did not pick the attractor with the best
response plot, as illustrated in the following example.
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Table 7.7 MEAN β̂i and SD(β̂i)

n method mn or sd β̂1 β̂2 β̂3 β̂4 β̂5

25 HB mn 0.9921 0.9825 0.9989 0.9680 1.0231
sd 0.4821 0.5142 0.5590 0.4537 0.5461

OLS mn 1.0113 1.0116 0.9564 0.9867 1.0019
sd 0.2308 0.2378 0.2126 0.2071 0.2441

ALTS mn 1.0028 1.0065 1.0198 1.0092 1.0374
sd 0.5028 0.5319 0.5467 0.4828 0.5614

BB mn 1.0278 0.5314 0.5182 0.5134 0.5752
sd 0.4960 0.3960 0.3612 0.4250 0.3940

400 HB mn 1.0023 0.9943 1.0028 1.0103 1.0076
sd 0.0529 0.0496 0.0514 0.0459 0.0527

OLS mn 1.0023 0.9943 1.0028 1.0103 1.0076
sd 0.0529 0.0496 0.0514 0.0459 0.0527

ALTS mn 1.0077 0.9823 1.0068 1.0069 1.0214
sd 0.1655 0.1542 0.1609 0.1629 0.1679

BB mn 1.0184 0.8744 0.8764 0.8679 0.8794
sd 0.1273 0.1084 0.1215 0.1206 0.1269
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Fig. 7.21 Response Plots Comparing Robust Regression Estimators

Example 7.16. The LMS, LTA, and LTS estimators are determined by a
“narrowest band” covering half of the cases. Hawkins and Olive (2002) sug-
gested that the fit will pass through outliers if the band through the outliers
is narrower than the band through the clean cases. This behavior tends to
occur if the regression relationship is weak, and if there is a tight cluster
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of outliers where |Y | is not too large. As an illustration, Buxton (1920, pp.
232-5) gave 20 measurements of 88 men. Consider predicting stature using an
intercept, head length, nasal height, bigonal breadth, and cephalic index. One
case was deleted since it had missing values. Five individuals, numbers 61-65,
were reported to be about 0.75 inches tall with head lengths well over five
feet! Figure 7.21 shows the response plots for hbreg, OLS, ltsreg, and β̂B .

Notice that only the fit from β̂B (BBFIT) did not pass through the outliers,
but hbreg selected the OLS attractor. There are always outlier configura-
tions where an estimator will fail, and hbreg should fail on configurations
where LTA, LTS, and LMS would fail.

7.7 Summary

1) For the location model, the sample mean Y =

∑n
i=1 Yi

n
, the sample vari-

ance S2
n =

∑n
i=1(Yi − Y )2

n − 1
, and the sample standard deviation Sn =

√
S2

n.

If the data Y1, ..., Yn is arranged in ascending order from smallest to largest
and written as Y(1) ≤ · · · ≤ Y(n), then Y(i) is the ith order statistic and the
Y(i)’s are called the order statistics. The sample median

MED(n) = Y((n+1)/2) if n is odd,

MED(n) =
Y(n/2) + Y((n/2)+1)

2
if n is even.

The notation MED(n) = MED(Y1, ..., Yn) will also be used. The sample me-
dian absolute deviation is MAD(n) = MED(|Yi − MED(n)|, i = 1, . . . , n).

2) Suppose the multivariate data has been collected into an n × p matrix

W = X =




xT

1
...

xT
n



 .

The coordinatewise median MED(W ) = (MED(X1), ..., MED(Xp))T where
MED(Xi) is the sample median of the data in column i corresponding to

variable Xi. The sample mean x =
1

n

n∑

i=1

xi = (X1, ..., Xp)
T where Xi is

the sample mean of the data in column i corresponding to variable Xi. The
sample covariance matrix

S =
1

n − 1

n∑

i=1

(xi − x)(xi − x)T = (Sij).
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That is, the ij entry of S is the sample covariance Sij . The classical estimator
of multivariate location and dispersion is (T, C) = (x, S).

3) Let (T, C) = (T (W ), C(W )) be an estimator of multivariate location
and dispersion. The ith Mahalanobis distance Di =

√
D2

i where the ith
squared Mahalanobis distance is D2

i = D2
i (T (W ), C(W )) =

(xi − T (W ))T C−1(W )(xi − T (W )).
4) The squared Euclidean distances of the xi from the coordinatewise

median is D2
i = D2

i (MED(W ), Ip). Concentration type steps compute the
weighted median MEDj: the coordinatewise median computed from the cases
xi with D2

i ≤ MED(D2
i (MEDj−1, Ip)) where MED0 = MED(W ). Often used

j = 0 (no concentration type steps) or j = 9. Let Di = Di(MEDj , Ip). Let
Wi = 1 if Di ≤ MED(D1, ..., Dn)+kMAD(D1, ..., Dn) where k ≥ 0 and k = 5
is the default choice. Let Wi = 0, otherwise.

5) Let the covmb2 set B of at least n/2 cases correspond to the cases with
weight Wi = 1. Then the covmb2 estimator (T, C) is the sample mean and
sample covariance matrix applied to the cases in set B. Hence

T =

∑n
i=1 Wixi∑n

i=1 Wi
and C =

∑n
i=1 Wi(xi − T )(xi − T )T

∑n
i=1 Wi − 1

.

The function ddplot5 plots the Euclidean distances from the coordinatewise
median versus the Euclidean distances from the covmb2 location estimator.
Typically the plotted points in this DD plot cluster about the identity line,
and outliers appear in the upper right corner of the plot with a gap between
the bulk of the data and the outliers.

7.8 Complements

Most of this chapter was taken from Olive (2017b). See that text for references
to concepts such as breakdown. The fact that response plots are extremely
useful for model assessment and for detecting influential cases and outliers
for an enormous variety of statistical models does not seem to be well known.
Certainly in any multiple linear regression analysis, the response plot and the
residual plot of Ŷ versus r should always be made. Cook and Olive (2001)
used response plots to select a response transformation graphically. Olive
(2005) suggested using residual, response, RR, and FF plots to detect outliers
while Hawkins and Olive (2002, pp. 141, 158) suggested using the RR and
FF plots. The four plots are best for n ≥ 5p. Olive (2008:

∮
6.4, 2017a: ch.

5-9) showed that the residual and response plots are useful for experimental
design models. Park et al. (2012) showed response plots are competitive with
the best robust regression methods for outlier detection on some outlier data
sets that have appeared in the literature.
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Olive (2002) found applications for the DD plot. The TV estimator was
proposed by Olive (2002, 2005a). Although both the TV and MBA estimators
have the good OP (n−1/2) convergence rate, their efficiency under normality
may be very low. Chang and Olive (2010) suggested a method of adaptive
trimming such that the resulting estimator is asymptotically equivalent to
the OLS estimator.

If n is not much larger than p, then Hoffman et al. (2015) gave a ro-
bust Partial Least Squares–Lasso type estimator that uses a clever weighting
scheme. See Uraibi et al. (2017, 2019) for robust methods of forward selection
and least angle regression.

Robust MLD
For the FCH, RFCH, and RMVN estimators, see Olive and Hawkins

(2010), Olive (2017b, ch. 4), and Zhang et al. (2012). See Olive (2017b, p.
120) for the covmb2 estimator.

The fastest estimators of multivariate location and dispersion that have
been shown to be both consistent and high breakdown are the minimum
covariance determinant (MCD) estimator with O(nv) complexity where
v = 1 + p(p + 3)/2 and possibly an all elemental subset estimator of He
and Wang (1997). See Bernholt and Fischer (2004). The minimum volume
ellipsoid (MVE) complexity is far higher, and for p > 2 there may be no
known method for computing S, τ , projection based, and constrained M
estimators. For some depth estimators, like the Stahel-Donoho estimator, the
exact algorithm of Liu and Zuo (2014) appears to take too long if p ≥ 6 and
n ≥ 100, and simulations may need p ≤ 3. It is possible to compute the MCD
and MVE estimators for p = 4 and n = 100 in a few hours using branch
and bound algorithms (like estimators with O(1004) complexity). See Agulló
(1996, 1998) and Pesch (1999). These algorithms take too long if both p ≥ 5
and n ≥ 100. Simulations may need p ≤ 2. Two stage estimators such as
the MM estimator, that need an initial high breakdown consistent estimator,
take longer to compute than the initial estimator. Rousseeuw (1984) intro-
duced the MCD and MVE estimators. See Maronna et al. (2006, ch. 6) for
descriptions and references.

Estimators with complexity higher than O[(n3+n2p+np2+p3) log(n)] take
too long to compute and will rarely be used. Reyen et al. (2009) simulated
the OGK and the Olive (2004a) median ball algorithm (MBA) estimators for
p = 100 and n up to 50000, and noted that the OGK complexity is O[p3 +
np2 log(n)] while that of MBA is O[p3 + np2 + np log(n)]. FCH, RMBA, and
RMVN have the same complexity as MBA. FMCD has the same complexity
as FCH, but FCH is roughly 100 to 200 times faster.

Robust Regression
For the hbreg estimator, see Olive and Hawkins (2011) and Olive (2017b,

ch. 14). Robust regression estimators have unsatisfactory outlier resistance
and large sample theory. The hbreg estimator is fast and high breakdown,
but does not provide an adequate remedy for outliers, and the symmetry
condition for consistency is too strong. OLS response and residual plots, and
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RMVN or RFCH DD plots are useful for detecting multiple linear regression
outliers.

Many of the robust statistics for the location model are practical to com-
pute, outlier resistant, and backed by theory. See Huber and Ronchetti (2009).
A few estimators of multivariate location and dispersion, such as the coordi-
natewise median, are practical to compute, outlier resistant, and backed by
theory.

For practical estimators for MLR and MCD, hbreg and FCH appear to
be the only estimators proven to be consistent (for a large class of symmetric
error distributions and for a large class of EC distributions, respectively) with
some breakdown theory (TFCH is HB). Perhaps all other “robust statistics”
for MLR and MLD that have been shown to be both consistent and high
breakdown are impractical to compute for p > 4: the impractical “brand
name” estimators have at least O(np) complexity, while the practical esti-
mators used in the software for the “brand name estimators” have not been
shown to be both high breakdown and consistent. See Theorems 7.12 and
7.21, Hawkins and Olive (2002), Olive (2008, 2017b), Hubert et al. (2002),
and Maronna and Yohai (2002). Huber and Ronchetti (2009, pp. xiii, 8-9,
152-154, 196-197) suggested that high breakdown regression estimators do
not provide an adequate remedy for the ill effects of outliers, that their sta-
tistical and computational properties are not adequately understood, that
high breakdown estimators “break down for all except the smallest regres-
sion problems by failing to provide a timely answer!” and that “there are no
known high breakdown point estimators of regression that are demonstrably
stable.”

A large number of impractical high breakdown regression estimators have
been proposed, including LTS, LMS, LTA, S, LQD, τ , constrained M, re-
peated median, cross checking, one step GM, one step GR, t-type, and re-
gression depth estimators. See Rousseeuw and Leroy (1987) and Maronna et
al. (2006). The practical algorithms used in the software use a brand name
criterion to evaluate a fixed number of trial fits and should be denoted as
an F-brand name estimator such as FLTS. Two stage estimators, such as
the MM estimator, that need an initial consistent high breakdown estima-
tor often have the same breakdown value and consistency rate as the initial
estimator. These estimators are typically implemented with a zero break-
down inconsistent initial estimator and hence are zero breakdown with zero
efficiency.

Maronna and Yohai (2015) used OLS and 500 elemental sets as the 501
trial fits to produce an FS estimator used as the initial estimator for an
FMM estimator. Since the 501 trial fits are zero breakdown, so is the FS
estimator. Since the FMM estimator has the same breakdown as the initial
estimator, the FMM estimator is zero breakdown. For regression, they show
that the FS estimator is consistent on a large class of zero mean finite variance
symmetric distributions. Consistency follows since the elemental fits and OLS
are unbiased estimators of βOLS but an elemental fit is an OLS fit to p cases.
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Hence the elemental fits are very variable, and the probability that the OLS
fit has a smaller S-estimator criterion than a randomly chosen elemental
fit (or K randomly chosen elemental fits) goes to one as n → ∞. (OLS
and the S-estimator are both

√
n consistent estimators of β, so the ratio of

their criterion values goes to one, and the S-estimator minimizes the criterion
value.) Hence the FMM estimator is asymptotically equivalent to the MM
estimator that has the smallest criterion value for a large class of iid zero
mean finite variance symmetric error distributions. This FMM estimator is
asymptotically equivalent to the FMM estimator that uses OLS as the initial
estimator. When the error distribution is skewed the S-estimator and OLS
population constant are not the same, and the probability that an elemental
fit is selected is close to one for a skewed error distribution as n → ∞. (The

OLS estimator β̂ gets very close to βOLS while the elemental fits are highly
variable unbiased estimators of βOLS , so one of the elemental fits is likely to
have a constant that is closer to the S-estimator constant while still having
good slope estimators.) Hence the FS estimator is inconsistent, and the FMM
estimator is likely inconsistent for skewed distributions. No practical method
is known for computing a

√
n consistent FS or FMM estimator that has the

same breakdown and maximum bias function as the S or MM estimator that
has the smallest S or MM criterion value.

The L1 CLT is

√
n(β̂L1

− β)
D→ Np

(
0,

1

4[f(0)]2
W

)
(7.37)

when XT X/n → W−1, and when the errors ei are iid with a cdf F and a pdf
f such that the unique population median is 0 with f(0) > 0. If a constant β1

is in the model or if the column space of X contains 1, then this assumption
is mild, but if the pdf is not symmetric about 0, then the L1 β1 tends to differ
from the OLS β1. See Bassett and Koenker (1978). Estimating f(0) can be
difficult, so the residual bootstrap using OLS residuals or using êi = ri − r
where the ri are the L1 residuals with the prediction region method may be
useful.

7.9 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

7.1. Referring to Definition 7.25, let Ŷi,j = xT
i β̂j = Ŷi(β̂j) and let ri,j =

ri(β̂j). Show that ‖ri,1 − ri,2‖ = ‖Ŷi,1 − Ŷi,2‖.
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7.2. Assume that the model has a constant β1 so that the first column of
X is 1. Show that if the regression estimator is regression equivariant, then
adding 1 to Y changes β̂1 but does not change the slopes β̂2, ..., β̂p.

R Problems

Use the command source(“G:/linmodpack.txt”) to download the
functions and the command source(“G:/linmoddata.txt”) to download the
data. See Preface or Section 11.1. Typing the name of the linmodpack
function, e.g. trviews, will display the code for the function. Use the args

command, e.g. args(trviews), to display the needed arguments for the func-
tion. For some of the following problems, the R commands can be copied and
pasted from (http://parker.ad.siu.edu/Olive/mrsashw.txt) into R.

7.3. Paste the command for this problem into R to produce the second
column of Table 7.5. Include the output in Word.

7.4. a) To get an idea for the amount of contamination a basic resam-
pling or concentration algorithm for MLR can tolerate, enter or download
the gamper function (with the source(“G:/linmodpack.txt”) command) that
evaluates Equation (7.24) at different values of h = p.

b) Next enter the following commands and include the output in Word.

zh <- c(10,20,30,40,50,60,70,80,90,100)

for(i in 1:10) gamper(zh[i])

7.5∗. a) Assuming that you have done the two source commands above
Problem 7.3 (and the R command library(MASS)), type the command
ddcomp(buxx). This will make 4 DD plots based on the DGK, FCH, FMCD,
and median ball estimators. The DGK and median ball estimators are the
two attractors used by the FCH estimator. With the leftmost mouse button,
move the cursor to an outlier and click. This data is the Buxton (1920) data
and cases with numbers 61, 62, 63, 64, and 65 were the outliers with head
lengths near 5 feet. After identifying at least three outliers in each plot, hold
the rightmost mouse button down (and in R click on Stop) to advance to the
next plot. When done, hold down the Ctrl and c keys to make a copy of the
plot. Then paste the plot in Word.

b) Repeat a) but use the command ddcomp(cbrainx). This data is the
Gladstone (1905) data and some infants are multivariate outliers.

c) Repeat a) but use the command ddcomp(museum[,-1]). This data is the
Schaaffhausen (1878) skull measurements and cases 48–60 were apes while
the first 47 cases were humans.

7.6∗. (Perform the source(“G:/linmodpack.txt”) command if you have not
already done so.) The concmv function illustrates concentration with p = 2
and a scatterplot of X1 versus X2. The outliers are such that the robust
estimators can not always detect them. Type the command concmv(). Hold
the rightmost mouse button down (and in R click on Stop) to see the DD
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plot after one concentration step. The start uses the coordinatewise median
and diag([MAD(Xi)]

2). Repeat 4 more times to see the DD plot based on
the attractor. The outliers have large values of X2 and the highlighted cases
have the smallest distances. Repeat the command concmv() several times.
Sometimes the start will contain outliers but the attractor will be clean (none
of the highlighted cases will be outliers), but sometimes concentration causes
more and more of the highlighted cases to be outliers, so that the attractor
is worse than the start. Copy one of the DD plots where none of the outliers
are highlighted into Word.

7.7∗. (Perform the source(“G:/linmodpack.txt”) command if you have not
already done so.) The ddmv function illustrates concentration with the DD
plot. The outliers are highlighted. The first graph is the DD plot after one
concentration step. Hold the rightmost mouse button down (and in R click
on Stop) to see the DD plot after two concentration steps. Repeat 4 more
times to see the DD plot based on the attractor. In this problem, try to
determine the proportion of outliers gam that the DGK estimator can detect
for p = 2, 4, 10, and 20. Make a table of p and gam. For example the command
ddmv(p=2,gam=.4) suggests that the DGK estimator can tolerate nearly 40%
outliers with p = 2, but the command ddmv(p=4,gam=.4) suggest that gam
needs to be lowered (perhaps by 0.1 or 0.05). Try to make 0 < gam < 0.5 as
large as possible.

7.8∗. a) If necessary, use the commands source(“G:/linmodpack.txt”) and
source(“G:/linmoddata.txt”).

b) Enter the command mbamv(belx,bely) in R. Click on the rightmost
mouse button (and in R, click on Stop). You need to do this 7 times be-
fore the program ends. There is one predictor x and one response Y . The
function makes a scatterplot of x and Y and cases that get weight one are
shown as highlighted squares. Each MBA sphere covers half of the data.
When you find a good fit to the bulk of the data, hold down the Ctrl and c
keys to make a copy of the plot. Then paste the plot in Word.

c) Enter the command mbamv2(buxx,buxy) in R. Click on the rightmost
mouse button (and in R, click on Stop). You need to do this 14 times before
the program ends. There are four predictors x1, ..., x4 and one response Y .
The function makes the response and residual plots based on the OLS fit to
the highlighted cases. Each MBA sphere covers half of the data. When you
find a good fit to the bulk of the data, hold down the Ctrl and c keys to make
a copy of the two plots. Then paste the plots in Word.

7.9. This problem compares the MBA estimator that uses the median
squared residual MED(r2

i ) criterion with the MBA estimator that uses the
LATA criterion. On clean data, both estimators are

√
n consistent since both

use 50
√

n consistent OLS estimators. The MED(r2
i ) criterion has trouble

with data sets where the multiple linear regression relationship is weak and
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there is a cluster of outliers. The LATA criterion tries to give all x–outliers,
including good leverage points, zero weight.

a) If necessary, use the commands source(“G:/linmodpack.txt”) and
source(“G:/linmoddata.txt”). The mlrplot2 function is used to compute
both MBA estimators. Use the rightmost mouse button to advance the plot
(and in R, highlight stop).

b) Use the command mlrplot2(belx,bely) and include the resulting plot in
Word. Is one estimator better than the other, or are they about the same?

c) Use the command mlrplot2(cbrainx,cbrainy) and include the resulting
plot in Word. Is one estimator better than the other, or are they about the
same? (The infants are likely good leverage cases instead of outliers.)

d) Use the command mlrplot2(museum[,3:11],museum[,2]) and include the
resulting plot in Word. For this data set, most of the cases are based on
humans but a few are based on apes. The MBA LATA estimator will often
give the cases corresponding to apes larger absolute residuals than the MBA
estimator based on MED(r2

i ), but the apes appear to be good leverage cases.
e) Use the command mlrplot2(buxx,buxy) until the outliers are clustered

about the identity line in one of the two response plots. (This will usually
happen within 10 or fewer runs. Pressing the “up arrow” will bring the pre-
vious command to the screen and save typing.) Then include the resulting
plot in Word. Which estimator went through the outliers and which one gave
zero weight to the outliers?

f) Use the command mlrplot2(hx,hy) several times. Usually both MBA
estimators fail to find the outliers for this artificial Hawkins data set that is
also analyzed by Atkinson and Riani (2000, section 3.1). The lmsreg estimator
can be used to find the outliers. In R use the commands library(MASS) and
ffplot2(hx,hy). Include the resulting plot in Word.

7.10. a) After entering the two source commands above Problem 7.3, enter
the following command.

MLRplot(buxx,buxy)

Click the rightmost mouse button (and in R click on Stop). The response
plot should appear. Again, click the rightmost mouse button (and in R click
on Stop). The residual plot should appear. Hold down the Ctrl and c keys to
make a copy of the two plots. Then paste the plots in Word.

b) The response variable is height, but 5 cases were recorded with heights
about 0.75 inches tall. The highlighted squares in the two plots correspond
to cases with large Cook’s distances. With respect to the Cook’s distances,
what is happening, swamping or masking?

7.11. For the Buxton (1920) data with multiple linear regression, height
was the response variable while an intercept, head length, nasal height, bigonal
breadth, and cephalic index were used as predictors in the multiple linear
regression model. Observation 9 was deleted since it had missing values. Five
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individuals, cases 61–65, were reported to be about 0.75 inches tall with head
lengths well over five feet!

a) Copy and paste the commands for this problem into R. Include the lasso
response plot in Word. The identity line passes right through the outliers
which are obvious because of the large gap. Prediction interval (PI) bands
are also included in the plot.

b) Copy and paste the commands for this problem into R. Include the
lasso response plot in Word. This did lasso for the cases in the covmb2 set
B applied to the predictors which included all of the clean cases and omitted
the 5 outliers. The response plot was made for all of the data, including the
outliers.

c) Copy and paste the commands for this problem into R. Include the DD
plot in Word. The outliers are in the upper right corner of the plot.

7.12. Consider the Gladstone (1905) data set that has 12 variables on
267 persons after death. There are 5 infants in the data set. The response
variable was brain weight. Head measurements were breadth, circumference,
head height, length, and size as well as cephalic index and brain weight. Age,
height, and three categorical variables cause, ageclass (0: under 20, 1: 20-45,
2: over 45) and sex were also given. The constant x1 was the first variable.
The variables cause and ageclass were not coded as factors. Coding as factors
might improve the fit.

a) Copy and paste the commands for this problem into R. Include the
lasso response plot in Word. The identity line passes right through the infants
which are obvious because of the large gap. Prediction interval (PI) bands
are also included in the plot.

b) Copy and paste the commands for this problem into R. Include the
lasso response plot in Word. This did lasso for the cases in the covmb2 set
B applied to the nontrivial predictors which are not categorical (omit the
constant, cause, ageclass and sex) which omitted 8 cases, including the 5
infants. The response plot was made for all of the data.

c) Copy and paste the commands for this problem into R. Include the DD
plot in Word. The infants are in the upper right corner of the plot.

7.13. The linmodpack function mldsim6 compares 7 estimators: FCH,
RFCH, CMVE, RCMVE, RMVN, covmb2, and MB described in Olive
(2017b, ch. 4). Most of these estimators need n > 2p, need a nonsingu-
lar dispersion matrix, and work best with n > 10p. The function generates
data sets and counts how many times the minimum Mahalanobis distance
Di(T, C) of the outliers is larger than the maximum distance of the clean
data. The value pm controls how far the outliers need to be from the bulk of
the data, and pm roughly needs to increase with

√
p.

For data sets with p > n possible, the function mldsim7 used the Eu-
clidean distances Di(T, Ip) and the Mahalanobis distances Di(T, Cd) where
Cd is the diagonal matrix with the same diagonal entries as C where (T, C)
is the covmb2 estimator using j concentration type steps. Dispersion ma-
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trices are effected more by outliers than good robust location estimators,
so when the outlier proportion is high, it is expected that the Euclidean
distances Di(T, Ip) will outperform the Mahalanobis distance Di(T, Cd) for
many outlier configurations. Again the function counts the number of times
the minimum outlier distance is larger than the maximum distance of the
clean data.

Both functions used several outlier types. The simulations generated 100
data sets. The clean data had xi ∼ Np(0, diag(1, ..., p)). Type 1 had outliers
in a tight cluster (near point mass) at the major axis (0, ..., 0, pm)T . Type 2
had outliers in a tight cluster at the minor axis (pm, 0, ..., 0)T. Type 3 had
mean shift outliers xi ∼ Np((pm, ..., pm)T , diag(1, ..., p)). Type 4 changed
the pth coordinate of the outliers to pm. Type 5 changed the 1st coordinate
of the outliers to pm. (If the outlier xi = (x1i, ..., xpi)

T , then xi1 = pm.)

Table 7.8 Number of Times All Outlier Distances > Clean Distances, otype=1

n p γ osteps pm FCH RFCH CMVE RCMVE RMVN covmb2 MB
100 10 0.25 0 20 85 85 85 85 86 67 89

a) Table 7.8 suggests with osteps = 0, covmb2 had the worst count. When
pm is increased to 25, all counts become 100. Copy and paste the commands
for this part into R and make a table similar to Table 7.8, but now osteps=9
and p = 45 is close to n/2 for the second line where pm = 60. Your table
should have 2 lines from output.

Table 7.9 Number of Times All Outlier Distances > Clean Distances, otype=1

n p γ osteps pm covmb2 diag
100 1000 0.4 0 1000 100 41
100 1000 0.4 9 600 100 42

b) Copy and paste the commands for this part into R and make a table
similar to Table 7.9, but type 2 outliers are used.

c) When you have two reasonable outlier detectors, there are outlier con-
figurations where one will beat the other. Simulations suggest that “covmb2”
using Di(T, Ip) outperforms “diag” using Di(T, Cd) for many outlier config-
urations, but there are some exceptions. Copy and paste the commands for
this part into R and make a table similar to Table 7.9, but type 3 outliers
are used.

7.14. a) In addition to the source(“G:/linmodpack.txt”) command, also
use the source(“G:/linmoddata.txt”) command, and type the library(MASS)
command).
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b) Type the command tvreg(buxx,buxy,ii=1). Click the rightmost mouse
button and highlight Stop. The response plot should appear. Repeat 10 times
and remember which plot percentage M (say M = 0) had the best response
plot. Then type the command tvreg2(buxx,buxy, M = 0) (except use your
value of M, not 0). Again, click the rightmost mouse button (and in R, high-
light Stop). The response plot should appear. Hold down the Ctrl and c keys
to make a copy of the plot. Then paste the plot in Word.

c) The estimated coefficients β̂TV from the best plot should have appeared
on the screen. Copy and paste these coefficients into Word.

7.15. This problem is like Problem 7.11, except elastic net is used instead
of lasso.

a) Copy and paste the commands for this problem into R. Include the
elastic net response plot in Word. The identity line passes right through the
outliers which are obvious because of the large gap. Prediction interval (PI)
bands are also included in the plot.

b) Copy and paste the commands for this problem into R. Include the
elastic net response plot in Word. This did elastic net for the cases in the
covmb2 set B applied to the predictors which included all of the clean cases
and omitted the 5 outliers. The response plot was made for all of the data,
including the outliers. (Problem 7.11 c) shows the DD plot for the data.)


