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Preface

Many statistics departments offer a one semester graduate course in large
sample theory. There are several PhD level texts on large sample theory
including, in roughly increasing order of difficulty, Lehmann (1999), Ferguson
(1996), Sen and Singer (1993), and Serfling (1980). Cramér (1946) is also
an important reference, and White (1984) considers asymptotic theory for
econometric applications. The online text Hunter (2014) is useful. Also see
DasGupta (2008), Davidson (2021), Hall and Oakes (2024), Jiang (2022),
Polansky (2011), Sen, Singer, and Pedrosa De Lima (2010), and van der
Vaart (1998). A nice review of large sample theory is Chernoff (1956).

More advanced topics for large sample theory can be found in Lukacs
(1970, 1975), Petrov (1995), Pollard (1984) and Shorack and Wellner (1986).

For some roughly Master’s level large sample theory, see Bickel and Dok-
sum (1977, section 4.4), Casella and Berger (2002, section 5.5), Hoel, Port,
and Stone (1971, sections 8.2-8.4), Lehmann (1983, ch. 5), Olive (2014, ch.
8), Rohatgi (1976, ch. 6), Rohatgi (1984, ch. 9), and Woodroofe (1975, ch.
9). For some PhD level large sample theory, see Olive (2023e, ch. 4).

The prerequisite for this text is a Master’s level course in Statistics (USA)
such as Casella and Berger (2002) or Olive (2014).

Some highlights of this text follow.

• The large sample theory for the elastic net, lasso, and ridge regression is
greatly simplified.

• Large sample theory is given for many variable selection estimators, in-
cluding multiple linear regression, many GLMs, some time series models,
and some survival regression models.

• The large sample theory for the one component partial least squares es-
timator and marginal maximum likelihood estimator is greatly simplified.
Some of the hypothesis tests are valid in high dimensions.

• Large sample theory for prediction regions is given, including a predic-
tion region that works in high dimensions. This theory is used to greatly
simplify the large sample theory for some bootstrap confidence regions.
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vi Preface

• Theory for some robust statistics is given.

Downloading the book’s R functions lsamppack.txt and data files
lsampdata.txt into R: The commands

source("http://parker.ad.siu.edu/Olive/lspack.txt")

source("http://parker.ad.siu.edu/Olive/lsdata.txt")
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Chapter 1

Introduction

This chapter follows Olive (2014, ch. 1-3) closely. Much of the material can
be skimmed, and then the reader can refer back to this chapter as needed.

Often large sample theory is taught after a course in probability and mea-
sure, and a probability space (S,B, P ) is used where B is a σ-field. This text
will usually ignore measure theoretic probability. Unless told otherwise, the
notation P (A) means that A is an event.

Definition 1.1. Statistics is the science of extracting useful information
from data.

1.1 Probability, Expected Value, CDF

Definition 1.2. The sample space S is the set of all possible outcomes of an
experiment.

Definition 1.3. Let B be a special field of subsets of the sample space S
forming the class of events. Then A is an event if A ∈ B.

In the definition of an event above, the special field of subsets B of the
sample space S forming the class of events will not be formally given. How-
ever, B contains all “interesting” subsets of S and every subset that is easy
to imagine. The point is that not necessarily all subsets of S are events, but
every event A is a subset of S.

The empty set Ø is the set that contains no elements. The set A is a subset
of B, written A ⊆ B, if every element in A is in B. The union A ∪ B of A
with B is the set of all elements in A or B or in both. The intersection A∩B
of A with B is the set of all elements in A and B. The complement of A,
written A or Ac, is the set of all elements in S but not in A. If A = Ø, then A
and B are disjoint. In the following definition, disjoint events are often called
pairwise disjoint events.

1



2 1 Introduction

Definition 1.4. If A ∩ B = Ø, then A and B are mutually exclusive or
disjoint events. Events A1, A2, ... are disjoint or mutually exclusive ifAi∩Aj =
Ø for i 6= j.

Definition 1.5. Let B be the class of events of the sample space S. A
probability function P : B → [0, 1] is a set function satisfying the following
three properties:
P1) P (A) ≥ 0 for all events A,
P2) P (S) = 1, and
P3) if A1, A2, ... are disjoint events, then P (

⋃∞
i=1Ai) =

∑∞
i=1 P (Ai).

If A1, ..., An are disjoint, then P (
⋃n
i=1 Ai) =

∑n
i=1 P (Ai). This result fol-

lows from Definition 1.5 using Ai = Ø for i > n.

Theorem 1.1. DeMorgan’s Laws:
a) A ∪B = A ∩B.
b) A ∩B = A ∪B.
c) (
⋃∞
i=1Ai)

c =
⋂∞
i=1 A

c
i .

d) (
⋂∞
i=1 Ai)

c =
⋃∞
i=1 A

c
i .

Proof. The proofs of a) and b) are similar to those of c) and d), and “iff”
means “if and only if.”

c) (
⋃∞
i=1 Ai)

c occurred iff
⋃∞
i=1Ai did not occur, iff none of the Ai occurred,

iff all of the Aci occurred, iff
⋂∞
i=1 A

c
i occurred.

d) (
⋂∞
i=1 Ai)

c occurred iff not all of the Ai occurred, iff at least one of the
Aci occurred, iff

⋃∞
i=1 A

c
i occurred. �

Theorem 1.2. Let A and B be any two events of S. Then
i) 0 ≤ P (A) ≤ 1.
ii) P (Ø) = 0 where Ø is the empty set.
iii) Complement Rule: P (A) = 1 − P (A).
iv) General Addition Rule: P (A ∪B) = P (A) + P (B) − P (A ∩B).
v) If A ⊆ B, then P (A) ≤ P (B).
vi) Boole’s Inequality: P (

⋃∞
i=1 Ai) ≤

∑∞
i=1 P (Ai) for any events A1, A2, ....

vii) Bonferroni’s Inequality: P (
⋂n
i=1 Ai) ≥

∑n
i=1 P (Ai) − (n− 1) for any

events A1, A2, ..., An.

Note that A and A are disjoint and A ∪ A = S. Hence 1 = P (S) =
P (A∪A) = P (A) + P (A), proving the complement rule. Note that S and Ø
are disjoint, so 1 = P (S) = P (S ∪ Ø) = P (S) + P (Ø). Hence P (Ø) = 0. If
A ⊆ B, let C = A ∩B. Then A and C are disjoint with A ∪ C = B. Hence
P (A) + P (C) = P (B), and P (A) ≤ P (B) by i).

Following Casella and Berger (2002, p. 13), P (
⋃n
i=1 A

c
i ) = P [(

⋂n
i=1 Ai)

c] =
1 − P (

⋂n
i=1Ai) ≤ ∑n

i=1 P (Aci) =
∑n

i=1[1 − P (Ai)] = n − ∑n
i=1 P (Ai),

where the first equality follows from DeMorgan’s Laws, the second equality
holds by the complement rule, and the inequality holds by Boole’s inequality
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P (
⋃n
i=1A

c
i ) ≤

∑n
i=1 P (Aci). Hence P (

⋂n
i=1 Ai) ≥

∑n
i=1 P (Ai) − (n− 1), and

Bonferonni’s inequality holds.
If A1, A2, ... are disjoint and if

⋃∞
i=1Ai = S, then the collection of sets

A1, A2, ... is a partition of S. By taking Aj = Ø for j > k, the collection of

disjoint sets A1, A2, ..., Ak is a partition of S if
⋃k
i=1 Ai = S. The conditional

probability of A given B is

P (A|B) =
P (A ∩B)

P (B)

if P (B) > 0.

Theorem 1.3: Law of Total Probability. If A1, A2, ..., Ak form a par-
tition of S such that P (Ai) > 0 for i = 1, ..., k, then

P (B) =

k∑

j=1

P (B ∩Aj) =

k∑

j=1

P (B|Aj)P (Aj).

Definition 1.6. A random variable Y is a real valued function with a
sample space as a domain: Y : S → R where the set of real numbers R =
(−∞,∞).

Definition 1.7. The population is the entire group of objects from which
we want information. The sample is the part of the population actually ex-
amined.

For the followingdefinition, F is a right continuous function if for every real
number x, limy↓x F (y) = F (x). Also, F (∞) = limy→∞ F (y) and F (−∞) =
limy→−∞ F (y).

Definition 1.8. The cumulative distribution function (cdf) of any
random variable Y is F (y) = P (Y ≤ y) for all y ∈ R.

Cumulative distribution functions are very important for convergence in
distribution. See Chapter 2. If F (y) is a cumulative distribution function,
then i) F (−∞) = lim

y→−∞
F (y) = 0, ii) F (∞) = lim

y→∞
F (y) = 1, iii) F is

a nondecreasing function: if y1 < y2, then F (y1) ≤ F (y2), iv) F is right
continuous: lim

h↓0
F (y+ h) = F (y) for all real y. v) Since a cdf is a probability

for fixed y, 0 ≤ F (y) ≤ 1 for all real y. vi) A cdf F (y) can have at most
countably many points of discontinuity, vii) P (a < Y ≤ b) = F (b) − F (a).

Definition 1.9. A random variable is discrete if it can assume only
a finite or countable number of distinct values. The collection of these
probabilities is the probability distribution of the discrete random variable.



4 1 Introduction

The probability mass function (pmf) of a discrete random variable Y is
f(y) = P (Y = y) for all y ∈ R where 0 ≤ f(y) ≤ 1 and

∑
y:f(y)>0 f(y) = 1.

Remark 1.1. The cdf F of a discrete random variable is a step function
with a jump of height f(y) at values of y for which f(y) > 0.

Definition 1.10. A random variable Y is continuous if its distribution
function F (y) is absolutely continuous.

The notation ∀y means “for all y.”

Definition 1.11. If Y is a continuous random variable, then a probabil-
ity density function (pdf) f(y) of Y is an integrable function such that

F (y) =

∫ y

−∞
f(t)dt (1.1)

for all y ∈ R. If f(y) is a pdf, then f(y) is continuous except at most a
countable number of points, f(y) ≥ 0 ∀y, and

∫∞
−∞ f(t)dt = 1.

Theorem 1.4. If Y has pdf f(y), then f(y) = d
dy
F (y) ≡ F ′(y) wherever

the derivative exists (in this text the derivative will exist and be continuous
except for at most a finite number of points in any finite interval).

Theorem 1.5. i) P (a < Y ≤ b) = F (b) − F (a).
ii) If Y has pdf f(y), then P (a < Y < b) = P (a < Y ≤ b) = P (a ≤ Y < b) =

P (a ≤ Y ≤ b) =
∫ b
a
f(y)dy = F (b) − F (a).

iii) If Y has a probability mass function f(y), then Y is discrete and P (a <
Y ≤ b) = F (b) − F (a), but P (a ≤ Y ≤ b) 6= F (b) − F (a) if f(a) > 0.

Definition 1.12. Let Y be a discrete random variable with probability
mass function f(y). Then the mean or expected value of Y is

EY ≡ E(Y ) =
∑

y:f(y)>0

y f(y) (1.2)

if the sum exists when y is replaced by |y|. If g(Y ) is a real valued function
of Y, then g(Y ) is a random variable and

E[g(Y )] =
∑

y:f(y)>0

g(y) f(y) (1.3)

if the sum exists when g(y) is replaced by |g(y)|. If the sums are not absolutely
convergent, then E(Y ) and E[g(Y )] do not exist.

Definition 1.13. If Y has pdf f(y), then the mean or expected value
of Y is
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EY ≡ E(Y ) =

∫ ∞

−∞
yf(y)dy (1.4)

and

E[g(Y )] =

∫ ∞

−∞
g(y)f(y)dy (1.5)

provided the integrals exist when y and g(y) are replaced by |y| and |g(y)|.
If the modified integrals do not exist, then E(Y ) and E[g(Y )] do not exist.

Definition 1.14. If E(Y 2) exists, then the variance of a random variable
Y is

VAR(Y ) ≡ Var(Y) ≡ V Y ≡ V(Y) = E[(Y − E(Y))2]

and the standard deviation of Y is SD(Y ) =
√
V (Y ). If E(Y 2) does not exist,

then V (Y ) does not exist.

The notation E(Y ) = ∞ or V (Y ) = ∞ when the corresponding integral
or sum diverges to ∞ can be useful. The following theorem is also used to
find E(Y 2) = V (Y )+(E(Y ))2. The theorem is valid for all random variables
that have a variance, including continuous and discrete random variables. If
Y is a Cauchy (µ, σ) random variable, then neither E(Y ) nor V (Y ) exist.

Theorem 1.6: Short cut formula for variance.

V (Y ) = E(Y 2) − (E(Y ))2. (1.6)

If Y is a discrete random variable with sample space SY = {y1, y2, ..., yk}
then

E(Y ) =

k∑

i=1

yif(yi) = y1f(y1) + y2f(y2) + · · ·+ ykf(yk)

and E[g(Y )] =

k∑

i=1

g(yi)f(yi) = g(y1)f(y1) + g(y2)f(y2) + · · ·+ g(yk)f(yk).

In particular,

E(Y 2) = y2
1f(y1) + y2

2f(y2) + · · ·+ y2
kf(yk).

Also

V (Y ) =
k∑

i=1

(yi − E(Y ))2f(yi) =

(y1 −E(Y ))2f(y1) + (y2 − E(Y ))2f(y2) + · · ·+ (yk − E(Y ))2f(yk).

For a continuous random variable Y with pdf f(y), V (Y ) =
∫∞
−∞(y −

E[Y ])2f(y)dy. Often using V (Y ) = E(Y 2) − (E(Y ))2 is simpler.
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Theorem 1.7. Let a and b be any constants and assume all relevant
expectations exist.
i) E(a) = a.
ii) E(aY + b) = aE(Y ) + b.
iii) E(aX + bY ) = aE(X) + bE(Y ).
iv) V (aY + b) = a2V (Y ).

Definition 1.15. Random variables X and Y are identically distributed,

written X ∼ Y , X
D
= Y , or Y ∼ FX , if FX(y) = FY (y) for all real y.

Definition 1.16. i) For positive integers k, the kth moment of Y is E[Y k]
while the kth central moment is E[(Y −E[Y ])k].
ii) The moment generating function (mgf) of a random variable Y is

m(t) = mY (t) = E[etY ] (1.7)

if the expectation exists for t in some neighborhood of 0. Otherwise, the mgf
does not exist.
iii) The characteristic function of a random variable Y is c(t) = cY (t) =
E[eitY ] where the complex number i =

√−1.

More information about moment generating functions and characteristic
functions is given in Section 1.3.

Theorem 1.8. Let X and Y be random variables. Then X and Y are
identically distributed, X ∼ Y , if any of the following conditions hold.
a) FX(y) = FY (y) for all y,
b) fX(y) = fY (y) for all y,
c) cX(t) = cY (t) for all t, or
d) mX(t) = mY (t) for all t in a neighborhood of zero.

Definition 1.17. Let f(y) ≡ fY (y|θ) be the pdf or pmf of a random
variable Y . Then the set Yθ = {y|fY (y|θ) > 0} is called the sample space
or support of Y . Let the set Θ be the set of parameter values θ of interest.
Then Θ is the parameter space of Y . Use the notation Y = {y|f(y|θ) > 0}
if the support does not depend on θ. So Y is the support of Y if Yθ ≡ Y
∀θ ∈ Θ.

Definition 1.18. The indicator function IA(x) ≡ I(x ∈ A) = 1 if x ∈ A
and IA(x) = 0, otherwise. Sometimes an indicator function such as I(0,∞)(y)
will be denoted by I(y > 0).
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1.2 Multivariate Distributions

Often there are n random variables Y1, ..., Yn that are of interest. For example,
age, blood pressure, weight, gender and cholesterol level might be some of the
random variables of interest for patients suffering from heart disease.

Notation. Let R
n be the n–dimensional Euclidean space. Then the vector

y = (y1, ..., yn)
T ∈ R

n if yi is an arbitrary real number for i = 1, ..., n.
Typically y is a column vector, but when y is the argument of a pdf, pmf,
or cdf, then y is often a row vector, e.g., f(y) = f(y1 , ..., yn). We may say
y ∈ R

n or (y1, ..., yn) ∈ R
n.

Definition 1.19. If Y1, ..., Yn are discrete random variables, then the joint
pmf (probability mass function) of Y1, ..., Yn is

f(y1 , ..., yn) = P (Y1 = y1, ..., Yn = yn) (1.8)

for any (y1, ..., yn) ∈ R
n. A joint pmf f satisfies f(y) ≡ f(y1 , ..., yn) ≥ 0

∀y ∈ R
n and ∑ · · ·∑ f(y1, ..., yn) = 1.

y : f(y) > 0

For any event A ∈ R
n,

P [(Y1, ..., Yn) ∈ A] =
∑ · · ·∑ f(y1 , ..., yn).

y : y ∈ A and f(y) > 0

Definition 1.20. The joint cdf (cumulative distribution function) of
Y1, ..., Yn is F (y1, ..., yn) = P (Y1 ≤ y1, ..., Yn ≤ yn) for any (y1, ..., yn) ∈ R

n.

Definition 1.21. If Y1, ..., Yn are continuous random variables, then the
joint pdf (probability density function) of Y1, ..., Yn is a function f(y1 , ..., yn)
that satisfies F (y1, ..., yn) =

∫ yn

−∞ · · ·
∫ y1
−∞ f(t1, ..., tn)dt1 · · ·dtn where the yi

are any real numbers. A joint pdf f satisfies f(y) ≡ f(y1 , ..., yn) ≥ 0 ∀y ∈ R
n

and
∫∞
−∞ · · ·

∫∞
−∞ f(t1, ..., tn)dt1 · · ·dtn

= 1. For any event A ∈ R
n,

P [(Y1, ..., Yn) ∈ A] =
∫
· · ·
∫
f(t1, ..., tn)dt1 · · ·dtn.

A

Definition 1.22. If Y1, ..., Yn has a joint pdf or pmf f , then the sample
space or support of Y1, ..., Yn is

Y = {(y1, ..., yn) ∈ R
n : f(y1 , ..., yn) > 0}.

If Y comes from a family of distributions f(y|θ) for θ ∈ Θ, then the support
Yθ = {y : f(y|θ) > 0} may depend on θ.
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Theorem 1.9. Let Y1, ..., Yn have joint cdf F (y1, ..., yn) and joint pdf
f(y1, ..., yn). Then

f(y1 , ..., yn) =
∂n

∂y1 · · ·∂yn
F (y1, ..., yn)

wherever the partial derivative exists.

Definition 1.23. The marginal pmf of any subset Yi1, ..., Yik of the
coordinates (Y1, ..., Yn) is found by summing the joint pmf over all possible
values of the other coordinates where the values yi1, ..., yik are held fixed. For
example,

fY1,...,Yk(y1, ..., yk) =
∑

yk+1

· · ·
∑

yn

f(y1 , ..., yn)

where y1, ..., yk are held fixed. In particular, if Y1 and Y2 are discrete random
variables with joint pmf f(y1 , y2), then the marginal pmf for Y1 is

fY1(y1) =
∑

y2

f(y1, y2) (1.9)

where y1 is held fixed. The marginal pmf for Y2 is

fY2(y2) =
∑

y1

f(y1, y2) (1.10)

where y2 is held fixed.

Remark 1.2. For n = 2, double integrals are used to find marginal pdfs
(defined below) and to show that the joint pdf integrates to 1. If the region of
integration Ω is bounded on top by the function y2 = φT (y1), on the bottom
by the function y2 = φB(y1) and to the left and right by the lines y1 = a and
y1 = b then

∫ ∫
Ω
f(y1 , y2)dy1dy2 =

∫ ∫
Ω
f(y1 , y2)dy2dy1 =

∫ b

a

[∫ φT (y1)

φB(y1)

f(y1 , y2)dy2

]
dy1.

Within the inner integral, treat y2 as the variable, anything else, including
y1, is treated as a constant.

If the region of integration Ω is bounded on the left by the function
y1 = ψL(y2), on the right by the function y1 = ψR(y2) and to the top
and bottom by the lines y2 = c and y2 = d then

∫ ∫
Ω
f(y1 , y2)dy1dy2 =∫ ∫

Ω
f(y1 , y2)dy2dy1 =

∫ d

c

[∫ ψR(y2)

ψL(y2)

f(y1 , y2)dy1

]
dy2.
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Within the inner integral, treat y1 as the variable, anything else, including
y2, is treated as a constant.

Definition 1.24. The marginal pdf of any subset Yi1, ..., Yik of the co-
ordinates (Y1, ..., Yn) is found by integrating the joint pdf over all possible
values of the other coordinates where the values yi1, ..., yik are held fixed. For
example, f(y1 , ..., yk) =

∫∞
−∞ · · ·

∫∞
−∞ f(t1 , ..., tn)dtk+1 · · ·dtn where y1, ..., yk

are held fixed. In particular, if Y1 and Y2 are continuous random variables
with joint pdf f(y1 , y2), then the marginal pdf for Y1 is

fY1(y1) =

∫ ∞

−∞
f(y1 , y2)dy2 =

∫ φT (y1)

φB(y1)

f(y1 , y2)dy2 (1.11)

where y1 is held fixed (to get the region of integration, draw a line parallel to
the y2 axis and use the functions y2 = φB(y1) and y2 = φT (y1) as the lower
and upper limits of integration). The marginal pdf for Y2 is

fY2(y2) =

∫ ∞

−∞
f(y1 , y2)dy1 =

∫ ψR(y2)

ψL(y2)

f(y1, y2)dy1 (1.12)

where y2 is held fixed (to get the region of integration, draw a line parallel to
the y1 axis and use the functions y1 = ψL(y2) and y1 = ψR(y2) as the lower
and upper limits of integration).

For independent random variables, the joint cdf is the product of the
marginal cdfs, the joint pmf is the product of the marginal pmfs, and the
joint pdf is the product of the marginal pdfs. Recall that ∀ is read “for all.”

Definition 1.25. i) The random variables Y1, Y2, ..., Yn are independent
if F (y1, y2, ..., yn) = FY1(y1)FY2(y2) · · ·FYn(yn) ∀y1, y2, ..., yn.
ii) If the random variables have a joint pdf or pmf f then the random variables
Y1, Y2, ..., Yn are independent if f(y1 , y2, ..., yn) = fY1(y1)fY2(y2) · · · fYn(yn)
∀y1, y2, ..., yn.
If the random variables are not independent, then they are dependent.
In particular random variables Y1 and Y2 are independent, written Y1 Y2,
if either of the following conditions holds.
i) F (y1, y2) = FY1(y1)FY2(y2) ∀y1, y2.
ii) f(y1, y2) = fY1(y1)fY2(y2) ∀y1, y2.
Otherwise, Y1 and Y2 are dependent.

The following theorem shows that finding the marginal pdfs or pmfs is
simple if Y1, ..., Yn are independent. Also subsets of independent random
variables are independent: if Y1, ..., Yn are independent and if {i1, ..., ik} ⊆
{1, ..., n} for k ≥ 2, then Yi1 , ..., Yik are independent.

Theorem 1.10. Suppose that Y1, ..., Yn are independent random vari-
ables with joint pdf or pmf f(y1 , ..., yn). Then the marginal pdf or pmf of
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any subset Yi1 , ..., Yik is f(yi1 , ..., yik) =
∏k
j=1 fYij

(yij ). Hence Yi1 , ..., Yik are

independent random variables for k ≥ 2.

Proof. The proof for a joint pdf is given below. For a joint pmf, replace
the integrals by appropriate sums. The marginal

f(yi1 , ..., yik) =

∫ ∞

−∞
· · ·
∫ ∞

−∞




n∏

j=1

fYij
(yij)


 dyik+1 · · ·dyin

=




k∏

j=1

fYij
(yij )






n∏

j=k+1

∫ ∞

−∞
fYij

(yij ) dyij




=




k∏

j=1

fYij
(yij )


 (1)n−k =

k∏

j=1

fYij
(yij ). �

Definition 1.26. Suppose that random variables Y = (Y1, ..., Yn) have
support Y and joint pdf or pmf f . Then the expected value of the real
valued function h(Y ) = h(Y1, ..., Yn) is

E[h(Y )] =

∫ ∞

−∞
· · ·
∫ ∞

−∞
h(y)f(y) dy =

∫
· · ·
∫

Y
h(y)f(y) dy (1.13)

if f is a joint pdf and if

∫ ∞

−∞
· · ·
∫ ∞

−∞
|h(y)|f(y) dy

exists. Otherwise the expectation does not exist. The expected value is

E[h(Y )] =
∑

y1

· · ·
∑

yn

h(y)f(y) =
∑

y∈Rn

h(y)f(y) =
∑

y∈Y
h(y)f(y) (1.14)

if f is a joint pmf and if
∑

y∈Rn |h(y)|f(y) exists. Otherwise the expectation
does not exist.

The notation E[h(Y )] = ∞ can be useful when the corresponding integral
or sum diverges to ∞. The following theorem is useful since multiple inte-
grals with smaller dimension are easier to compute than those with higher
dimension.

Theorem 1.11. Suppose that Y1, ..., Yn are random variables with joint
pdf or pmf f(y1 , ..., yn). Let {i1, ..., ik} ⊂ {1, ..., n}, and let f(yi1 , ..., yik) be
the marginal pdf or pmf of Yi1 , ..., Yik with support YYi1 ,...,Yik

. Assume that
E[h(Yi1, ..., Yik)] exists. Then
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E[h(Yi1 , ..., Yik)] =

∫ ∞

−∞
· · ·
∫ ∞

−∞
h(yi1 , ..., yik) f(yi1 , ..., yik) dyi1 · · ·dyik =

∫
· · ·
∫

YYi1
,...,Yik

h(yi1 , ..., yik) f(yi1 , ..., yik) dyi1 · · ·dyik

if f is a pdf, and

E[h(Yi1, ..., Yik)] =
∑

yi1

· · ·
∑

yik

h(yi1 , ..., yik) f(yi1 , ..., yik)

=
∑

(yi1 ,...,yik
)∈YYi1

,...,Yik

h(yi1 , ..., yik) f(yi1 , ..., yik)

if f is a pmf.

Proof. The proof for a joint pdf is given below. For a joint pmf, replace
the integrals by appropriate sums. Let g(Y1, ..., Yn) = h(Yi1 , ..., Yik). Then
E[g(Y )] =

∫ ∞

−∞
· · ·
∫ ∞

−∞
h(yi1 , ..., yik)f(y1 , ..., yn) dy1 · · ·dyn =

∫ ∞

−∞
· · ·
∫ ∞

−∞
h(yi1 , ..., yik)

[∫ ∞

−∞
· · ·
∫ ∞

−∞
f(y1 , ..., yn) dyik+1 · · ·dyin

]
dyi1 · · ·dyik

=

∫ ∞

−∞
· · ·
∫ ∞

−∞
h(yi1 , ..., yik)f(yi1 , ..., yik) dyi1 · · ·dyik

since the term in the brackets gives the marginal. �

Example 1.1. Typically E(Yi), E(Y 2
i ), and E(YiYj) for i 6= j are of pri-

mary interest. Suppose that (Y1, Y2) has joint pdf f(y1 , y2). Then E[h(Y1, Y2)]

=

∫ ∞

−∞

∫ ∞

−∞
h(y1, y2)f(y1 , y2)dy2dy1 =

∫ ∞

−∞

∫ ∞

−∞
h(y1, y2)f(y1 , y2)dy1dy2

where −∞ to ∞ could be replaced by the limits of integration for dyi. In
particular,

E(Y1Y2) =

∫ ∞

−∞

∫ ∞

−∞
y1y2f(y1 , y2)dy2dy1 =

∫ ∞

−∞

∫ ∞

−∞
y1y2f(y1, y2)dy1dy2.

Since finding the marginal pdf is usually easier than doing the double
integral, if h is a function of Yi but not of Yj, find the marginal for Yi :
E[h(Y1)] =

∫∞
−∞

∫∞
−∞ h(y1)f(y1 , y2)dy2dy1 =

∫∞
−∞ h(y1)fY1(y1)dy1. Similarly,

E[h(Y2)] =
∫∞
−∞ h(y2)fY2(y2)dy2.
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In particular,E(Y1) =
∫∞
−∞ y1fY1 (y1)dy1, andE(Y2) =

∫∞
−∞ y2fY2(y2)dy2.

Suppose that (Y1, Y2) have a joint pmf f(y1 , y2). Then the expectation

E[h(Y1, Y2)] =
∑

y2

∑

y1

h(y1, y2)f(y1 , y2) =
∑

y1

∑

y2

h(y1, y2)f(y1 , y2).

In particular,

E[Y1Y2] =
∑

y1

∑

y2

y1y2f(y1 , y2).

Since finding the marginal pmf is usually easier than doing the double
summation, if h is a function of Yi but not of Yj, find the marginal for pmf
for Yi: E[h(Y1)] =

∑
y2

∑
y1
h(y1)f(y1 , y2) =

∑
y1
h(y1)fY1 (y1). Similarly,

E[h(Y2)] =
∑

y2
h(y2)fY2(y2). In particular, E(Y1) =

∑
y1
y1fY1(y1) and

E(Y2) =
∑

y2
y2fY2(y2).

For pdfs it is sometimes possible to find E[h(Yi)], but for k ≥ 2 these
expected values tend to be very difficult to compute unless f(y1 , ..., yk) =
c yi11 · · ·yikk for small integers ij on rectangular or triangular support. Inde-
pendence makes finding some expected values simple.

Theorem 1.12. Let Y1, ..., Yn be independent random variables. If hi(Yi)
is a function of Yi alone and if the relevant expected values exist, then

E[h1(Y1)h2(Y2) · · ·hn(Yn)] = E[h1(Y1)] · · ·E[hn(Yn)].

In particular, E[YiYj] = E[Yi]E[Yj] for i 6= j.

Proof. The result will be shown for the case where Y = (Y1, ..., Yn) has
a joint pdf f . For a joint pmf, replace the integrals by appropriate sums. By
independence, the support of Y is a cross product: Y = Y1 × · · ·× Yn. Since
f(y) =

∏n
i=1 fYi(yi), the expectation E[h1(Y1)h2(Y2) · · ·hn(Yn)] =

∫
· · ·
∫

Y
h1(y1)h2(y2) · · ·hn(yn) f(y1, ..., yn) dy1 · · ·dyn

=

∫

Yn

· · ·
∫

Y1

[
n∏

i=1

hi(yi)fYi(yi)

]
dy1 · · ·dyn

=
n∏

i=1

[∫

Yi

hi(yi)fYi(yi) dyi

]
=

n∏

i=1

E[hi(Yi)]. �

Theorem 1.13. Let Y1, ..., Yn be independent random variables. If hj(Yij)
is a function of Yij alone and if the relevant expected values exist, then

E[h1(Yi1) · · ·hk(Yik)] = E[h1(Yi1 )] · · ·E[hk(Yik)].
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Proof. Method 1: Take Xj = Yij for j = 1, ..., k. Then X1, ..., Xk are
independent and Theorem 1.12 applies.

Method 2: Take hj(Yij ) ≡ 1 for j = k + 1, ..., n and apply Theorem 1.12.
�

Theorem 1.14. Let Y1, ..., Yn be independent random variables. If hi(Yi)
is a function of Yi alone andXi = hi(Yi), then the random variablesX1, ..., Xn
are independent.

Definition 1.27. The covariance of Y1 and Y2 is

Cov(Y1, Y2) = E[(Y1 −E(Y1))(Y2 −E(Y2))]

provided the expectation exists. Otherwise the covariance does not exist.

Theorem 1.15: Short cut formula. If Cov(Y1, Y2) exists then
Cov(Y1, Y2) = E(Y1Y2) −E(Y1)E(Y2).

The notation Y1 Y2 means that Y1 and Y2 are independent random
variables.

Theorem 1.16. a) Let Y1 and Y2 be independent random variables.
If Cov(Y1, Y2) exists, then Cov(Y1, Y2) = 0.

b) The converse is false: Cov(Y1, Y2) = 0 does not imply Y1 Y2.

Definition 1.28. Y = (Y1, ..., Yp)
T is a p × 1 random vector if Yi is a

random variable for i = 1, ..., p. Y is a discrete random vector if each Yi is
discrete, and Y is a continuous random vector if each Yi is continuous. A
random variable Y1 is the special case of a random vector with p = 1.

In this section we will consider n random vectors Y 1, ...,Y n. Often double
subscripts will be used: Y i = (Yi,1, ..., Yi,pi)

T for i = 1, ..., n.

Notation. In this text, Y is usually a column vector, and if X and Y are
both vectors, a phrase with Y and XT means that Y is a column vector and
XT is a row vector where T stands for transpose. Arguments of pdfs, pmfs,
and cdfs, are usually taken to be row vectors in this text.

Definition 1.29. The population mean or expected value of a random
p× 1 random vector Y = (Y1, ..., Yp)

T is

E(Y ) = (E(Y1), ..., E(Yp))
T

provided that E(Yi) exists for i = 1, ..., p. Otherwise the expected value does
not exist. The p × p population covariance matrix

Cov(Y ) = E(Y −E(Y ))(Y −E(Y ))T = (σi,j)
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where the ij entry of Cov(Y ) is Cov(Yi, Yj) = σi,j provided that each σi,j
exists. Otherwise Cov(Y ) does not exist.

The covariance matrix is also called the variance–covariance matrix and
variance matrix. Sometimes the notation Var(Y ) is used. Note that Cov(Y )
is a symmetric positive semidefinite matrix. If X and Y are p × 1 random
vectors, a a conformable constant vector and A and B are conformable
constant matrices, then

E(a + X) = a +E(X) and E(X + Y ) = E(X) + E(Y ) (1.15)

and
E(AX) = AE(X) and E(AXB) = AE(X)B. (1.16)

Thus
Cov(a + AX) = Cov(AX) = ACov(X)AT . (1.17)

Definition 1.30. Let Y 1, ...,Y n be random vectors with joint pdf or pmf
f(y1, ..., yn). Let fY i

(yi) be the marginal pdf or pmf of Y i. Then Y 1, ...,Y n

are independent random vectors if

f(y1, ..., yn) = fY 1
(y1) · · ·fY n

(yn) =

n∏

i=1

fY i
(yi).

The following theorem is a useful generalization of Theorem 1.14.

Theorem 1.17. Let Y 1, ...,Y n be independent random vectors where Y i

is a pi × 1 vector for i = 1, ..., n. and let hi : R
pi → R

pji be vector valued
functions and suppose that hi(yi) is a function of yi alone for i = 1, ..., n.
Then the random vectors Xi = hi(Y i) are independent. There are three
important special cases.
i) If pji = 1 so that each hi is a real valued function, then the random
variables Xi = hi(Y i) are independent.
ii) If pi = pji = 1 so that each Yi and each Xi = h(Yi) are random variables,
then X1, ..., Xn are independent.
iii) Let Y = (Y1, ..., Yn)

T and X = (X1, .., Xm)T and assume that Y X. If
h(Y ) is a vector valued function of Y alone and if g(X) is a vector valued
function of X alone, then h(Y ) and g(X) are independent random vectors.

1.3 Characteristic Function, MGF, CGF

Definition 1.16 introduced the moment generating function and the charac-
teristic function. This section will give some more details.
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Definition 1.31. The moment generating function (mgf) of a random
variable Y is

m(t) = mY (t) = E[etY ] (1.18)

if the expectation exists for t in some neighborhood of 0. Otherwise, the
mgf does not exist. If Y is discrete, then m(t) =

∑
y e

tyf(y), and if Y is

continuous, then m(t) =
∫∞
−∞ etyf(y)dy.

Notation. The natural logarithm of y is log(y) = ln(y). If another base
is wanted, it will be given, e.g. log10(y).

Definition 1.32. If the mgf exists, then the cumulant generating func-
tion (cgf) k(t) = kY (t) = log(m(t)) for the values of t where the mgf is
defined.

Definition 1.33. The characteristic function of a random variable Y is
c(t) = cY (t) = E[eitY ] = E[cos(tY )]+iE[sin(tY )] where the complex number
i =

√
−1.

Moment generating functions do not necessarily exist in a neighborhood
of zero, but a characteristic function always exists. This text does not require
much knowledge of theory of complex variables, but know that i2 = −1,
i3 = −i and i4 = 1. Hence i4k−3 = i, i4k−2 = −1, i4k−1 = −i and i4k = 1
for k = 1, 2, 3, .... Let complex number z = a+ ib. Then the modulus of z is
|z| = |a+ ib| =

√
a2 + b2.

Remark 1.3. a) Suppose that Y is a random variable with an mgf m(t)
that exists for |t| < b for some constant b > 0. Then often the characteristic
function of Y is i) c(t) = m(it) while ii) m(t) = c(−it). If Y has a pmf
with f(yj ) = P (Y = yj) = pj), then the characteristic function of Y is
c(t) = cY (t) =

∑
j e
ityjpj while the mgf mY (t) =

∑
j e
tyjpj. Hence the two

formulas i) and ii) “hold” if Y has a pmf, at least for t such that the mgf is
defined. If Y is nonnegative then the mgf is a scaled Laplace transformation
and c(t) is a scaled Fourier transformation, and then the two formulas i) and
ii) hold by Laplace and Fourier transformation theory, at least for t such that
the mgf is defined. The Taylor series for the mgf is

mY (t) =

∞∑

k=0

tk

k!
E[Xk]

for |t| < b while the characteristic function

cY (t) =

∞∑

k=0

(it)k

k!
E[Xk]

for all real t if Y has an mgf defined for all real t. Hence if b = ∞, the two
formulas i) and ii) hold. See Billingsley (1986, pp. 285, 353).
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b) If E[Y 2] is finite, then

cY (t) = 1 + itE(Y ) − 1

2
t2E[Y 2] + o(t2) as t → 0.

In particular, if E(Y ) = 0 and E(Y 2) = V (Y ) = σ2, then

cY (t) = 1 − t2σ2

2
+ o(t2) as t → 0. (1.19)

Here a(t) = o(t2) as t → 0 if lim
t→0

a(t)

t2
= 0. See Billingsley (1986, p. 354).

c) Properties of c(t): i) c(0) = 1, ii) the modulus |c(t)| ≤ 1 for all real t,
iii) c(t) is a continuous function.

d) Let j and k be positive integers. If E(Y k) is finite, then E(Y j) is finite
for 1 ≤ j ≤ k.

e) If Y has mgf m(t), then E(Y k) is finite for each positive integer k.
f) A complex random variable Z = X + iY where X and Y are ordi-

nary random variables. Then E(Z) = E(X) + iE(Y ), and E(Z) exists if
E(|Z|) = E(

√
X2 + Y 2) < ∞. Linearity of expectation and key inequali-

ties such as |E(Z)| ≤ E(|Z|) remain valid. Also, if Z1 Z2 and gi(Zi) is a
function of the complex random variable Zi alone, then E[g1(Z1)g2(Z2)] =
E[g1(Z1)]E[g2(Z2)] if the expectations exist. Z = eitY is the main complex
random variable in this book.

g) The formula
d

dt
edt = dedt is valid for any complex constant d.

h) The fundamental theorem of calculus holds. Thus

∫ b

a

edtdt =
edb − eda

d
for any nonzero complex constant d.

Remarks 1.3 and 1.4 are often used in proofs of the Central Limit Theo-

rem. Note that by Remark 1.4a), lim
n→∞

(
1 − c ± ε

n

)n
= e−[c±ε] where ε is a

real number. By Remark 1.4c), this result holds even if ε is complex valued.
Letting positive ε→ 0 proves Remark 1.4b).

Remark 1.4. For a) and b), assume c and cn are real.

a) lim
n→∞

(
1 − c

n

)n
= e−c.

b) If cn → c as n→ ∞, then lim
n→∞

(
1 +

−cn
n

)n
= e−c.

c) If cn is a sequence of complex numbers such that cn → c as n → ∞
where c is real, then lim

n→∞

(
1 − cn

n

)n
= e−c.

In the following theorem, let the kth derivative of g(t) be g(k)(t) with
derivative g(1)(t) = g′(t) and second derivative g(2)(t) = g

′′

(t).



1.3 Characteristic Function, MGF, CGF 17

Theorem 1.18. Suppose that the mgf m(t) exists for |t| < b for some
constant b > 0, and suppose that the kth derivative m(k)(t) exists for |t| < b.
Then E[Y k] = m(k)(0) for positive integers k. In particular, E[Y ] = m′(0)
andE[Y 2] = m

′′

(0). For the cumulant generating function k(t), E(Y ) = k′(0)
and V (Y ) = k

′′

(0).

Remark 1.5. Let h(y), g(y), n(y) and d(y) be functions. Review how to
find the derivative g′(y) of g(y) and how to find the kth derivative

g(k)(y) =
dk

dyk
g(y)

for integers k ≥ 2. Recall that the product rule is

(h(y)g(y))′ = h′(y)g(y) + h(y)g′(y).

The quotient rule is

(
n(y)

d(y)

)′
=
d(y)n′(y) − n(y)d′(y)

[d(y)]2
.

The chain rule is
[h(g(y))]′ = [h′(g(y))][g′(y)].

Then given the mgf m(t), find E[Y ] = m′(0), E[Y 2] = m
′′

(0) and V (Y ) =
E[Y 2] − (E[Y ])2.

Definition 1.34. The characteristic function (cf) of a random vector
Y is

cY (t) = E(eit
T Y )

∀t ∈ R
n where the complex number i =

√
−1.

Definition 1.35. The moment generating function (mgf) of a random
vector Y is

mY (t) = E(et
T Y )

provided that the expectation exists for all t in some neighborhood of the
origin 0.

Theorem 1.19. If Y1, ..., Yn have mgf m(t), then moments of all orders
exist and for any nonnegative integers k1, ..., kj,

E(Y k1

i1
· · ·Y kj

ij
) =

∂k1+···+kj

∂tk1

i1
· · ·∂tkj

ij

m(t)

∣∣∣∣
t=0

.

In particular,

E(Yi) =
∂m(t)

∂ti

∣∣∣∣
t=0
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and

E(YiYj) =
∂2m(t)

∂ti∂tj

∣∣∣∣
t=0

.

Theorem 1.20. If Y1, ..., Yn have a cf cY (t) and mgf mY (t) then the
marginal cf and mgf for Yi1 , ..., Yik are found from the joint cf and mgf by
replacing tij by 0 for j = k + 1, ..., n. In particular, if Y = (Y T

1 ,Y
T
2 )T and

t = (tT1 , t
T
2 )T , then

cY 1
(t1) = cY ((tT1 , 0

T )T ) and mY 1
(t1) = mY ((tT

1 , 0
T)T).

Proof. Use the definition of the cf and mgf. For example, if Y 1 =
(Y1, ..., Yk)

T and s = t1, then m((tT1 , 0
T )T ) =

E[exp(t1Y1 + · · ·+ tkYk + 0Yk+1 + · · ·+ 0Yn)] = E[exp(t1Y1 + · · ·+ tkYk)] =

E[exp(sTY 1)] = mY 1
(s), which is the mgf of Y 1. �

Theorem 1.21. Partition the n× 1 vectors Y and t as Y = (Y T
1 ,Y

T
2 )T

and t = (tT1 , t
T
2 )T . Then the random vectors Y 1 and Y 2 are independent iff

their joint cf factors into the product of their marginal cfs:

cY (t) = cY 1
(t1)cY 2

(t2) ∀t ∈ R
n.

If the joint mgf exists, then the random vectors Y 1 and Y 2 are independent
iff their joint mgf factors into the product of their marginal mgfs:

mY (t) = mY 1
(t1)mY 2

(t2)

∀t in some neighborhood of 0.

Note that if the random vectors Y 1 and Y 2 are independent, written
Y 1 Y 2, then

cY (t) = E[exp(itTY )] = E[exp(itT1 Y 1+it
T
2 Y 2)] = E[exp(itT1 Y 1) exp(itT2 Y 2)]

ind
= E[exp(itT1 Y 1)]E[exp(itT2 Y 2)] = cY 1

(t1)cY 2
(t2)

for any t = (tT1 , t
T
2 )T ∈ R

n.
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1.4 Sums of Random Variables

The assumption that the data are iid or a random sample is often used. The
iid assumption is useful for finding the joint pdf or pmf, and the exact or
large sample distribution of many important statistics.

Definition 1.36. Y1, ..., Yn are a random sample or iid if Y1, ..., Yn are
independent and identically distributed (all of the Yi have the same distribu-
tion).

An important statistic is
∑n

i=1 Yi. Some properties of sums are given be-
low.

Theorem 1.22. Assume that all relevant expectations exist. Let a,
a1, ..., an and b1, ..., bm be constants. Let Y1, ..., Yn, and X1, ..., Xm be random
variables. Let g1, ..., gk be functions of Y1, ..., Yn.

i) E(a) = a.
ii) E[aY ] = aE[Y ]
iii) V (aY ) = a2V (Y ).

iv) E[g1(Y1, ..., Yn) + · · ·+ gk(Y1, ..., Yn)] =
∑k

i=1 E[gi(Y1, ..., Yn)].

Let W1 =
∑n

i=1 aiYi and W2 =
∑m

i=1 biXi.

v) E(W1) =
n∑

i=1

aiE(Yi).

vi) V (W1) = Cov(W1,W1) =
n∑

i=1

a2
iV (Yi) + 2

n−1∑

i=1

n∑

j=i+1

aiajCov(Yi, Yj).

vii) Cov(W1,W2) =

n∑

i=1

m∑

j=1

aibjCov(Yi, Xj).

viii) E(
∑n

i=1 Yi) =
n∑

i=1

E(Yi).

ix) If Y1, ..., Yn are independent, V (
∑n
i=1 Yi) =

n∑

i=1

V (Yi).

Let Y1, ..., Yn be iid random variables with E(Yi) = µ and V (Yi) = σ2,
then the

sample mean Y =
1

n

n∑

i=1

Yi. Then

x) E(Y ) = µ and
xi) V (Y ) = σ2/n.

Hence the expected value of the sum is the sum of the expected values,
the variance of the sum is the sum of the variances for independent random
variables, and the covariance of two sums is the double sum of the covariances.
Note that ix) follows from vi) with ai ≡ 1, viii) follows from iv) with gi(Y ) =
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Yi or from v) with ai ≡ 1, x) follows from v) with ai ≡ 1/n, and xi) can be
shown using iii) and ix) using Y =

∑n
i=1(Yi/n).

Example 1.2. Let Y1, ..., Yn be independent random variables withE(Yi) =
µi and V (Yi) = σ2

i . Let W =
∑n

i=1 Yi. Then
a) E(W ) = E(

∑n
i=1 Yi) =

∑n
i=1 E(Yi) =

∑n
i=1 µi, and

b) V (W ) = V (
∑n

i=1 Yi) =
∑n

i=1 V (Yi) =
∑n

i=1 σ
2
i .

A statistic is a function of the data (often a random sample) and known
constants. A statistic is a random variable and the sampling distribu-
tion of a statistic is the distribution of the statistic. Important statistics are∑n
i=1 Yi, Y = 1

n

∑n
i=1 Yi and

∑n
i=1 aiYi where a1, ..., an are constants. The

following theorem shows how to find the mgf and characteristic function of
such statistics.

Theorem 1.23. a) The characteristic function uniquely determines the
distribution.

b) If the moment generating function exists, then it uniquely determines
the distribution.

c) Assume that Y1, ..., Yn are independent with characteristic functions
cYi(t). Then the characteristic function of W =

∑n
i=1 Yi is

cW (t) =

n∏

i=1

cYi(t). (1.20)

d) Assume that Y1, ..., Yn are iid with characteristic functions cY (t). Then
the characteristic function of W =

∑n
i=1 Yi is

cW (t) = [cY (t)]n. (1.21)

e) Assume that Y1, ..., Yn are independent with mgfs mYi(t). Then the mgf
of W =

∑n
i=1 Yi is

mW (t) =

n∏

i=1

mYi(t). (1.22)

f) Assume that Y1, ..., Yn are iid with mgf mY (t). Then the mgf of W =∑n
i=1 Yi is

mW (t) = [mY (t)]n. (1.23)

g) Assume that Y1, ..., Yn are independent with characteristic functions
cYi(t). Then the characteristic function of W =

∑n
j=1(aj + bjYj) is

cW (t) = exp(it

n∑

j=1

aj)

n∏

j=1

cYj(bjt). (1.24)
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h) Assume that Y1, ..., Yn are independent with mgfsmYi (t). Then the mgf
of W =

∑n
i=1(ai + biYi) is

mW (t) = exp(t

n∑

i=1

ai)

n∏

i=1

mYi(bit). (1.25)

Partial Proof:
c)

c∑n
j=1 Yj

(t) = E[eit
∑n

j=1 Yj ] = E[eitY1+···+itYn ] = E




n∏

j=1

eitYj


 ind

=

n∏

j=1

E[eitYj ] =

n∏

j=1

cYj(t).

The proofs for d), e), and f) are similar, but for mgfs, omit the i’s and
change c to m.

g) Recall that exp(w) = ew and exp(
∑n

j=1 dj) =
∏n
j=1 exp(dj). Now

cW (t) = E(eitW ) = E(exp[it

n∑

j=1

(aj + bjYj)])

= exp(it

n∑

j=1

aj) E(exp[

n∑

j=1

itbjYj)])

= exp(it

n∑

j=1

aj) E(

n∏

i=1

exp[itbjYj)])

= exp(it
n∑

j=1

aj)
n∏

i=1

E[exp(itbjYj)]

since the expected value of a product of independent random variables is
the product of the expected values of the independent random variables.
Now in the definition of a cf, the t is a dummy variable as long as t is real.
Hence cY (t) = E[exp(itY )] and cY (s) = E[exp(isY )]. Taking s = tbj gives
E[exp(itbjYj)] = cYj(tbj). Thus

cW (t) = exp(it

n∑

j=1

aj)

n∏

i=1

cYj(tbj). �

The distribution of W =
∑n
i=1 Yi is known as the convolution of Y1, ..., Yn.

Even for n = 2, convolution formulas tend to be hard; however, the following
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two theorems suggest that to find the distribution of W =
∑n

i=1 Yi, first find
the mgf or characteristic function of W using Theorem 1.23. If the mgf or
cf is that of a brand name distribution, then W has that distribution. For
example, if the mgf of W is a normal (ν, τ2) mgf, then W has a normal (ν, τ2)
distribution, written W ∼ N(ν, τ2). This technique is useful for several brand
name distributions given in Section 1.10.

Theorem 1.24. a) If Y1, ..., Yn are independent binomial BIN(ki, ρ) ran-
dom variables, then

n∑

i=1

Yi ∼ BIN(

n∑

i=1

ki, ρ).

Thus if Y1, ..., Yn are iid BIN(k, ρ) random variables, then
∑n

i=1 Yi ∼ BIN(nk, ρ).

b) Denote a chi–square χ2
p random variable by χ2(p). If Y1, ..., Yn are in-

dependent chi–square χ2
pi

, then

n∑

i=1

Yi ∼ χ2(

n∑

i=1

pi).

Thus if Y1, ..., Yn are iid χ2
p, then

n∑

i=1

Yi ∼ χ2
np.

c) If Y1, ..., Yn are iid exponential EXP(λ), then

n∑

i=1

Yi ∼ G(n, λ).

d) If Y1, ..., Yn are independent Gamma G(νi, λ) then

n∑

i=1

Yi ∼ G(

n∑

i=1

νi, λ).

Thus if Y1, ..., Yn are iid G(ν, λ), then

n∑

i=1

Yi ∼ G(nν, λ).

e) If Y1, ..., Yn are independent normal N(µi, σ
2
i ), then

n∑

i=1

(ai + biYi) ∼ N(

n∑

i=1

(ai + biµi),

n∑

i=1

b2iσ
2
i ).
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Here ai and bi are fixed constants. Thus if Y1, ..., Yn are iid N(µ, σ2), then
Y ∼ N(µ, σ2/n).

f) If Y1, ..., Yn are independent Poisson POIS(θi), then

n∑

i=1

Yi ∼ POIS(

n∑

i=1

θi).

Thus if Y1, ..., Yn are iid POIS(θ), then

n∑

i=1

Yi ∼ POIS(nθ).

Theorem 1.25. a) If Y1, ..., Yn are independent Cauchy C(µi, σi), then

n∑

i=1

(ai + biYi) ∼ C(

n∑

i=1

(ai + biµi),

n∑

i=1

|bi|σi).

Thus if Y1, ..., Yn are iid C(µ, σ), then Y ∼ C(µ, σ).
b) If Y1, ..., Yn are iid geometric geom(p), then

n∑

i=1

Yi ∼ NB(n, p).

c) If Y1, ..., Yn are iid inverse Gaussian IG(θ, λ), then

n∑

i=1

Yi ∼ IG(nθ, n2λ).

Also
Y ∼ IG(θ, nλ).

d) If Y1, ..., Yn are independent negative binomial NB(ri, ρ), then

n∑

i=1

Yi ∼ NB(

n∑

i=1

ri, ρ).

Thus if Y1, ..., Yn are iid NB(r, ρ), then

n∑

i=1

Yi ∼ NB(nr, ρ).

Example 1.3. Suppose Y1, ..., Yn are iid IG(θ, λ) where the mgf
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mYi (t) = m(t) = exp

[
λ

θ

(
1 −

√
1 − 2θ2t

λ

)]

for t < λ/(2θ2). Then

m∑n
i=1 Yi

(t) =

n∏

i=1

mYi(t) = [m(t)]n = exp

[
nλ

θ

(
1 −

√
1 − 2θ2t

λ

)]

= exp

[
n2λ

n θ

(
1 −

√
1 − 2(nθ)2 t

n2λ

)]

which is the mgf of an IG(nθ, n2λ) random variable. The last equality was

obtained by multiplying nλ
θ

by 1 = n/n and by multiplying 2θ2t
λ

by 1 = n2/n2.
Hence

∑n
i=1 Yi ∼ IG(nθ, n2λ).

1.5 The Multivariate Normal Distribution

Definition 1.37: Rao (1965, p. 437). A p × 1 random vector X has
a p−dimensional multivariate normal distribution Np(µ,Σ) iff tTX has a
univariate normal distribution for any p× 1 vector t.

If Σ is positive definite, then X has a joint pdf

f(z) =
1

(2π)p/2|Σ|1/2 e
−(1/2)(z−µ)T Σ−1

(z−µ) (1.26)

where |Σ|1/2 is the square root of the determinant of Σ. Note that if p = 1,
then the quadratic form in the exponent is (z − µ)(σ2)−1(z − µ) and X has
the univariate N(µ, σ2) pdf. If Σ is positive semidefinite but not positive
definite, then X has a degenerate distribution. For example, the univariate
N(0, 02) distribution is degenerate (the point mass at 0).

Some important properties of MVN distributions are given in the following
three theorems. These theorems can be proved using results from Johnson
and Wichern (1988, p. 127-132).

Theorem 1.26. a) If X ∼ Np(µ,Σ), then E(X) = µ and

Cov(X) = Σ.

b) If X ∼ Np(µ,Σ), then any linear combination tTX = t1X1 + · · · +
tpXp ∼ N1(t

Tµ, tTΣt). Conversely, if tTX ∼ N1(t
Tµ, tTΣt) for every p×1

vector t, then X ∼ Np(µ,Σ).
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c) The joint distribution of independent normal random variables
is MVN. If X1, ..., Xp are independent univariate normal N(µi, σ

2
i ) random

vectors, then X = (X1 , ..., Xp)
T is Np(µ,Σ) where µ = (µ1, ..., µp)

T and
Σ = diag(σ2

1 , ..., σ
2
p) (so the off diagonal entries σi,j = 0 while the diagonal

entries of Σ are σi,i = σ2
i .)

d) If X ∼ Np(µ,Σ) and if A is a q×pmatrix, then AX ∼ Nq(Aµ,AΣAT ).
If a is a p × 1 vector of constants, then a + X ∼ Np(a + µ,Σ).

It will be useful to partition X, µ, and Σ. Let X1 and µ1 be q×1 vectors,
let X2 and µ2 be (p − q) × 1 vectors, let Σ11 be a q × q matrix, let Σ12

be a q × (p − q) matrix, let Σ21 be a (p − q) × q matrix, and let Σ22 be a
(p− q) × (p− q) matrix. Then

X =

(
X1

X2

)
, µ =

(
µ1

µ2

)
, and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

Theorem 1.27. a) All subsets of a MVN are MVN: (Xk1 , ..., Xkq)
T

∼ Nq(µ̃, Σ̃) where µ̃i = E(Xki) and Σ̃ij = Cov(Xki , Xkj). In particular,
X1 ∼ Nq(µ1,Σ11) and X2 ∼ Np−q(µ2,Σ22).

b) If X1 and X2 are independent, then Cov(X1,X2) = Σ12 =
E[(X1 −E(X1))(X2 − E(X2))

T ] = 0, a q × (p− q) matrix of zeroes.

c) If X ∼ Np(µ,Σ), then X1 and X2 are independent iff Σ12 = 0.

d) If X1 ∼ Nq(µ1,Σ11) and X2 ∼ Np−q(µ2,Σ22) are independent, then

(
X1

X2

)
∼ Np

((
µ1

µ2

)
,

(
Σ11 0
0 Σ22

))
.

Theorem 1.28. The conditional distribution of a MVN is MVN. If
X ∼ Np(µ,Σ), then the conditional distribution of X1 given that X2 = x2

is multivariate normal with mean µ1 + Σ12Σ
−1
22 (x2 − µ2) and covariance

matrix Σ11 − Σ12Σ
−1
22 Σ21. That is,

X1|X2 = x2 ∼ Nq(µ1 + Σ12Σ
−1
22 (x2 − µ2),Σ11 − Σ12Σ

−1
22 Σ21).

Example 1.4. Let p = 2 and let (Y,X)T have a bivariate normal distri-
bution. That is,

(
Y
X

)
∼ N2

((
µY
µX

)
,

(
σ2
Y Cov(Y,X)

Cov(X, Y ) σ2
X

))
.

Also recall that the population correlation between X and Y is given by

ρ(X, Y ) =
Cov(X, Y )√

VAR(X)
√

VAR(Y )
=

σX,Y
σXσY
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if σX > 0 and σY > 0. Then Y |X = x ∼ N(E(Y |X = x),VAR(Y |X = x))
where the conditional mean

E(Y |X = x) = µY + Cov(Y,X)
1

σ2
X

(x− µX) = µY + ρ(X, Y )

√
σ2
Y

σ2
X

(x− µX)

and the conditional variance

VAR(Y |X = x) = σ2
Y − Cov(X, Y )

1

σ2
X

Cov(X, Y )

= σ2
Y − ρ(X, Y )

√
σ2
Y

σ2
X

ρ(X, Y )
√
σ2
X

√
σ2
Y

= σ2
Y − ρ2(X, Y )σ2

Y = σ2
Y [1 − ρ2(X, Y )].

Also aX + bY is univariate normal with mean aµX + bµY and variance

a2σ2
X + b2σ2

Y + 2ab Cov(X, Y ).

Remark 1.6. There are several common misconceptions. First, it is not
true that every linear combination tTX of normal random variables
is a normal random variable, and it is not true that all uncorrelated
normal random variables are independent. The key condition in The-
orem 1.26b and Theorem 1.27c is that the joint distribution of X is MVN.
It is possible that X1, X2, ..., Xp each has a marginal distribution that is uni-
variate normal, but the joint distribution of X is not MVN. Examine the
following example from Rohatgi (1976, p. 229). Suppose that the joint pdf
of X and Y is a mixture of two bivariate normal distributions both with
EX = EY = 0 and VAR(X) = VAR(Y ) = 1, but Cov(X, Y ) = ±ρ. Hence

f(x, y) =
1

2

1

2π
√

1 − ρ2
exp(

−1

2(1 − ρ2)
(x2 − 2ρxy + y2)) +

1

2

1

2π
√

1 − ρ2
exp(

−1

2(1 − ρ2)
(x2 + 2ρxy + y2)) ≡ 1

2
f1(x, y) +

1

2
f2(x, y)

where x and y are real and 0 < ρ < 1. Since both marginal distributions of
fi(x, y) are N(0,1) for i = 1 and 2 by Theorem 1.27a, the marginal distribu-
tions of X and Y are N(0,1). Since

∫ ∫
xyfi(x, y)dxdy = ρ for i = 1 and −ρ

for i = 2, X and Y are uncorrelated, but X and Y are not independent since
f(x, y) 6= fX(x)fY (y).

Remark 1.7. In Theorem 1.28, suppose that X = (Y,X2, ..., Xp)
T . Let

X1 = Y and X2 = (X2, ..., Xp)
T . Then E[Y |X2] = β1 + β2X2 + · · ·+ βpXp

and VAR[Y |X2] is a constant that does not depend on X2. Hence Y |X2 =
β1 + β2X2 + · · ·+ βpXp + e follows the multiple linear regression model.
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Example 1.5. Severini (2005, p. 236): Let W ∼ N(µW , σ
2
W ) and let

X ∼ Np(µ,Σ). The characteristic function of W is

cW (y) = E(eiyW ) = exp

(
iyµW − y2

2
σ2
w

)
.

Prove that the characteristic function of X is

cX(t) = exp

(
itTµ− 1

2
tTΣt

)
.

Proof. Let W = tTX. Then W ∼ N(µW , σ
2
W ) where µW = E(tTX) =

tTµ and σ2
W = V (tTX) = Cov(tTX) = tTΣt. Then

cX(t) = E(eit
T X ) = cW (1) = exp

(
iµW − 1

2
σ2
w

)
= exp

(
itTµ − 1

2
tTΣt

)
.

1.6 Exponential Families

Suppose the data is a random sample from some parametric brand name
distribution with parameters θ. This brand name distribution comes from a
family of distributions parameterized by θ ∈ Θ. Each different value of θ in
the parameter space Θ gives a distribution that is a member of the family
of distributions. Often the brand name family of distributions is from an
exponential family.

Often a “brand name distribution” such as the normal distribution will
have three useful parameterizations: the usual parameterization with param-
eter space ΘU is simply the formula for the probability distribution or mass
function (pdf or pmf, respectively) given when the distribution is first de-
fined. The k-parameter exponential family parameterization with parameter
space Θ, given in Definition 1.38 below, provides a simple way to determine if
the distribution is an exponential family while the natural parameterization
with parameter space Ω, given in Definition 1.39 below, is used for theory
that requires a complete sufficient statistic.

Definition 1.38. A family of joint pdfs or joint pmfs {f(y|θ) : θ =
(θ1, ..., θj) ∈ Θ } for a random vector Y is an exponential family if

f(y|θ) = h(y)c(θ) exp

[
k∑

i=1

wi(θ)ti(y)

]
(1.27)

for all y where c(θ) ≥ 0 and h(y) ≥ 0. The functions c, h, ti, and wi are real
valued functions. The parameter θ can be a scalar and y can be a scalar. It
is crucial that c, w1, ..., wk do not depend on y and that h, t1, ..., tk do not
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depend on θ. The support of the distribution is Y and the parameter space
is Θ. The family is a k-parameter exponential family if k is the smallest
integer where (1.27) holds.

Notice that the distribution of Y is an exponential family if

f(y|θ) = h(y)c(θ) exp

[
k∑

i=1

wi(θ)ti(y)

]
(1.28)

and the distribution is a one parameter exponential family if

f(y|θ) = h(y)c(θ) exp[w(θ)t(y)]. (1.29)

The parameterization is not unique since, for example, wi could be multiplied
by a nonzero constant a if ti is divided by a. Many other parameterizations
are possible. If h(y) = g(y)IY (y), then usually c(θ) and g(y) are positive, so
another parameterization is

f(y|θ) = exp

[
k∑

i=1

wi(θ)ti(y) + d(θ) + S(y)

]
IY(y) (1.30)

where S(y) = log(g(y)), d(θ) = log(c(θ)), and Y does not depend on θ.

To demonstrate that {f(y|θ) : θ ∈ Θ} is an exponential family, find
h(y), c(θ), wi(θ) and ti(y) such that (1.27), (1.28), (1.29), or (1.30) holds.

Theorem 1.29. Suppose that Y 1, ...,Y n are iid random vectors from
an exponential family. Then the joint distribution of Y 1, ...,Y n follows an
exponential family.

Proof. Suppose that fY i
(yi) has the form of (1.27). Then by indepen-

dence,

f(y1, ..., yn) =

n∏

i=1

fY i
(yi) =

n∏

i=1

h(yi)c(θ) exp




k∑

j=1

wj(θ)tj(yi)




= [

n∏

i=1

h(yi)][c(θ)]n
n∏

i=1

exp




k∑

j=1

wj(θ)tj(yi)




= [

n∏

i=1

h(yi)][c(θ)]n exp




n∑

i=1




k∑

j=1

wj(θ)tj(yi)






= [

n∏

i=1

h(yi)][c(θ)]n exp




k∑

j=1

wj(θ)

(
n∑

i=1

tj(yi)

)
 .
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To see that this has the form (1.27), take h∗(y1, ..., yn) =
∏n
i=1 h(yi), c

∗(θ) =
[c(θ)]n, w∗

j (θ) = wj(θ) and t∗j (y1, ..., yn) =
∑n

i=1 tj(yi). �

The parameterization that uses the natural parameter η is especially
useful for theory. See Definition 1.40 for the natural parameter space Ω.

Definition 1.39. Let Ω be the natural parameter space for η. The nat-
ural parameterization for an exponential family is

f(y|η) = h(y)b(η) exp

[
k∑

i=1

ηiti(y)

]
(1.31)

where h(y) and ti(y) are the same as in Equation (1.27) and η ∈ Ω. The
natural parameterization for a random variable Y is

f(y|η) = h(y)b(η) exp

[
k∑

i=1

ηiti(y)

]
(1.32)

where h(y) and ti(y) are the same as in Equation (1.27) and η ∈ Ω. Again,
the parameterization is not unique. If a 6= 0, then aηi and ti(y)/a would also
work.

Notice that the natural parameterization (1.32) has the same form as (1.27)
with θ∗ = η, c∗(θ∗) = b(η) and wi(θ

∗) = wi(η) = ηi. In applications often
η and Ω are of interest while b(η) is not computed.

The next important idea is that of a regular exponential family (and of a
full exponential family). Let di(x) denote ti(y), wi(θ) or ηi. A linearity con-

straint is satisfied by d1(x), ..., dk(x) if
∑k

i=1 aidi(x) = c for some constants
ai and c and for all x (or ηi) in the sample or parameter space where not all

of the ai = 0. If
∑k
i=1 aidi(x) = c for all x only if a1 = · · · = ak = 0, then

the di(x) do not satisfy a linearity constraint. In linear algebra, we would
say that the di(x) are linearly independent if they do not satisfy a linearity
constraint.

For k = 2, a linearity constraint is satisfied if a plot of d1(x) versus d2(x)
falls on a line as x varies. If the parameter space for the η1 and η2 is a
nonempty open set, then the plot of η1 versus η2 is that nonempty open set,
and the ηi can not satisfy a linearity constraint since the plot is not a line.

Let Ω̃ be the set where the integral of the kernel function is finite:

Ω̃ = {η = (η1, ..., ηk) :
1

b(η)
≡
∫ ∞

−∞
h(y) exp[

k∑

i=1

ηiti(y)]dy <∞}. (1.33)

Replace the integral by a sum for a pmf. An interesting fact is that Ω̃ is a
convex set. If the parameter space Θ of the exponential family is not a convex
set, then the exponential family can not be regular. Example 1.7 shows that
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the χ2
p distribution is not regular since the set of positive integers is not

convex.

Definition 1.40. Condition E1: the natural parameter space Ω = Ω̃.
Condition E2: assume that in the natural parameterization, neither the ηi
nor the ti satisfy a linearity constraint.
Condition E3: Ω is a k-dimensional nonempty open set.
If conditions E1), E2) and E3) hold then the exponential family is a
k-parameter regular exponential family (REF).
If conditions E1) and E2) hold then the exponential family is a k-parameter
full exponential family.

Notation. A kP–REF is a k-parameter regular exponential family. So a
1P–REF is a 1-parameter REF and a 2P–REF is a 2-parameter REF.

Notice that every REF is full. Any k–dimensional nonempty open set
will contain a k–dimensional nonempty rectangle. A k–fold cross product
of nonempty open intervals is a k–dimensional nonempty open set. For a one
parameter exponential family, a one dimensional rectangle is just an inter-
val, and the only type of function of one variable that satisfies a linearity
constraint is a constant function. In the definition of an exponential family
and in the usual parameterization, θ is a 1 × j vector. Typically j = k if
the family is a kP–REF. If j < k and k is as small as possible, the family
will usually not be regular. For example, a N(θ, θ2) family has θ = θ with
j = 1 < 2 = k, and is not regular.

Some care has to be taken with the definitions of Θ and Ω since formulas
(1.27) and (1.32) need to hold for every θ ∈ Θ and for every η ∈ Ω. Let ΘU be
the usual parameter space given for the distribution. For a continuous random
variable or vector, the pdf needs to exist. Hence all degenerate distributions
need to be deleted from ΘU to form Θ and Ω. For continuous and discrete
distributions, the natural parameter needs to exist (and often does not exist
for discrete degenerate distributions). As a rule of thumb, remove values from
ΘU that cause the pmf to have the form 00. For example, for the binomial(k, ρ)
distribution with k known, the natural parameter η = log(ρ/(1 − ρ)). Hence
instead of using ΘU = [0, 1], use ρ ∈ Θ = (0, 1), so that η ∈ Ω = (−∞,∞).

These conditions have some redundancy. If Ω contains a k-dimensional
rectangle (e.g. if the family is a kP-REF, then Ω is a k-dimensional open
set and contains a k-dimensional open ball which contains a k-dimensional
rectangle), no ηi is completely determined by the remaining η′js. In particular,
the ηi cannot satisfy a linearity constraint. If the ηi do satisfy a linearity
constraint, then the ηi lie on a hyperplane of dimension at most k, and such
a surface cannot contain a k-dimensional rectangle. For example, if k = 2, a
line cannot contain an open box. If k = 2 and η2 = η2

1 , then the parameter
space is not a 2-dimensional open set and does not contain a 2-dimensional
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rectangle. Thus the family is not a 2P–REF although η1 and η2 do not satisfy
a linearity constraint.

The most important 1P–REFs are the binomial (k, ρ) distribution with k
known, the exponential (λ) distribution, and the Poisson (θ) distribution. A
one parameter exponential family can often be obtained from a k–parameter
exponential family by holding k− 1 of the parameters fixed. Hence a normal
(µ, σ2) distribution is a 1P–REF if σ2 is known. When data is modeled with
an exponential family, often the scale, location and shape parameters are
unknown. For example, the mean and standard deviation are usually both
unknown.

The most important 2P–REFs are the beta (δ, ν) distribution, the gamma
(ν, λ) distribution and the normal (µ, σ2) distribution. The chi (p, σ) distri-
bution, the inverted gamma (ν, λ) distribution, the log-gamma (ν, λ) distri-
bution and the lognormal (µ, σ2) distribution are also 2P-REFs. Olive (2014)
gives many other examples showing that a distribution is a 1P-REF or 2P-
REF. The two parameter Cauchy distribution is not an exponential family
because its pdf cannot be put into the form of Equation (1.27).

The natural parameterization can result in a family that is much larger
than the family defined by the usual parameterization. See the definition of
Ω = Ω̃ given by Equation (1.33). Casella and Berger (2002, p. 114) remarks
that

{η : η = (w1(θ), ..., wk(θ))|θ ∈ Θ} ⊆ Ω, (1.34)

but often Ω is a strictly larger set.

Remark 1.8. For the families in this text other than the χ2
p and inverse

Gaussian distributions, make the following assumptions if dim(Θ) = k =
dim(Ω). Assume that ηi = wi(θ). Assume the usual parameter space ΘU is
as big as possible (replace the integral by a sum for a pmf):

ΘU = {θ ∈ R
k :

∫
f(y|θ)dy = 1},

and let
Θ = {θ ∈ ΘU : w1(θ), ..., wk(θ) are defined }.

Then assume that the natural parameter space satisfies condition E1) with

Ω = {(η1, ..., ηk) : ηi = wi(θ) for θ ∈ Θ}.

In other words, simply define ηi = wi(θ). For many common distributions, η
is a one to one function of θ, and the above map is correct, especially if ΘU
is an open interval or cross product of open intervals.

Example 1.6. Let f(x|µ, σ) be the N(µ, σ2) family of pdfs. Then θ =
(µ, σ) where −∞ < µ <∞ and σ > 0. Recall that µ is the mean and σ is the
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standard deviation (SD) of the distribution. The usual parameterization is

f(x|θ) =
1√
2πσ

exp(
−(x− µ)2

2σ2
)IR(x)

where R = (−∞,∞) and the indicator IA(x) = 1 if x ∈ A and IA(x) = 0
otherwise. Notice that IR(x) = 1 ∀x. Since

f(x|µ, σ) =
1√
2πσ

exp(
−µ2

2σ2
)

︸ ︷︷ ︸
c(µ,σ)≥0

exp(
−1

2σ2︸︷︷︸
w1(θ)

x2
︸︷︷︸
t1(x)

+
µ

σ2︸︷︷︸
w2(θ)

x︸︷︷︸
t2(x)

) IR(x)︸ ︷︷ ︸
h(x)≥0

,

this family is a 2-parameter exponential family. Hence η1 = −0.5/σ2 and
η2 = µ/σ2 if σ > 0, and Ω = (−∞, 0) × (−∞,∞). Plotting η1 on the
horizontal axis and η2 on the vertical axis yields the left half plane which
certainly contains a 2-dimensional rectangle. Since t1 and t2 lie on a quadratic
rather than a line, the family is a 2P–REF. Notice that if X1, ..., Xn are iid
N(µ, σ2) random variables, then the joint pdf f(x|θ) = f(x1 , ..., xn|µ, σ) =

[
1√
2πσ

exp(
−µ2

2σ2
)]n

︸ ︷︷ ︸
C(µ,σ)≥0

exp(
−1

2σ2︸︷︷︸
w1(θ)

n∑

i=1

x2
i

︸ ︷︷ ︸
T1(x)

+
µ

σ2︸︷︷︸
w2(θ)

n∑

i=1

xi

︸ ︷︷ ︸
T2(x)

) 1︸︷︷︸
h(x)≥0

,

and is thus a 2P–REF.

Example 1.7. The χ2
p distribution is not a 1P-REF since the usual pa-

rameter space ΘU for the χ2
p distribution is the set of positive integers, which

is neither an open set nor a convex set. Nevertheless, the natural parame-
terization is the gamma(ν, λ = 2) family which is a 1P-REF. Note that this
family has uncountably many members while the χ2

p family does not.

Example 1.8. The binomial(k, ρ) pmf is

f(x|ρ) =

(
k

x

)
ρx(1 − ρ)k−x I{0,...,k}(x)

=

(
k

x

)
I{0,...,k}(x)

︸ ︷︷ ︸
h(x)≥0

(1 − ρ)k︸ ︷︷ ︸
c(ρ)≥0

exp[log(
ρ

1 − ρ
)

︸ ︷︷ ︸
w(ρ)

x︸︷︷︸
t(x)

]

where ΘU = [0, 1]. Since the pmf and η = log(ρ/(1 − ρ)) is undefined for
ρ = 0 and ρ = 1, we have Θ = (0, 1). Notice that Ω = (−∞,∞).

Example 1.9. The uniform(0,θ) family is not an exponential family since
the support Yθ = (0, θ) depends on the unknown parameter θ.
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1.6.1 Properties of (t1(Y ), ..., tk(Y ))

Write the natural parameterization for the exponential family as

f(y|η) = h(y)b(η) exp

[
k∑

i=1

ηiti(y)

]

= h(y) exp

[
k∑

i=1

ηiti(y) − a(η)

]
(1.35)

where a(η) = − log(b(η)).
Theorem 1.30. Suppose that Y comes from an exponential family (1.35)

and that g(y) is any function with Eη[|g(Y )|] < ∞. Then for any η in the
interior of Ω, the integral

∫
g(y)f(y|η)dy is continuous and has derivatives of

all orders. These derivatives can be obtained by interchanging the derivative
and integral operators. If f is a pmf, replace the integral by a sum.

Proof. See Lehmann (1986, p. 59).

Hence
∂

∂ηi

∫
g(y)f(y|η)dy =

∫
g(y)

∂

∂ηi
f(y|η)dy (1.36)

if f is a pdf and

∂

∂ηi

∑
g(y)f(y|η) =

∑
g(y)

∂

∂ηi
f(y|η) (1.37)

if f is a pmf.

Remark 1.9. If Y comes from an exponential family (1.27), then the
derivative and integral (or sum) operators can be interchanged. Hence

∂

∂θi

∫
...

∫
g(y)f(y|θ)dy =

∫
...

∫
g(y)

∂

∂θi
f(y|θ)dy

for any function g(y) with Eθ|g(Y )| <∞.

The behavior of (t1(Y ), ..., tk(Y )) will be of considerable interest in later
chapters. The following result is in Lehmann (1983, p. 29-30). Also see John-
son, Ladella, and Liu (1979).

Theorem 1.31. Suppose that Y comes from an exponential family (1.35).
Then a)

E(ti(Y )) =
∂

∂ηi
a(η) = − ∂

∂ηi
log(b(η)) (1.38)

and b)
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Cov(ti(Y ), tj(Y )) =
∂2

∂ηi∂ηj
a(η) = − ∂2

∂ηi∂ηj
log(b(η)). (1.39)

Notice that i = j gives the formula for VAR(ti(Y )).

Proof. The proof will be for pdfs. For pmfs replace the integrals by sums.
Use Theorem 1.30 with g(y) = 1 ∀y. a) Since 1 =

∫
f(y|η)dy,

0 =
∂

∂ηi
1 =

∂

∂ηi

∫
h(y) exp

[
k∑

m=1

ηmtm(y) − a(η)

]
dy

=

∫
h(y)

∂

∂ηi
exp

[
k∑

m=1

ηmtm(y) − a(η)

]
dy

=

∫
h(y) exp

[
k∑

m=1

ηmtm(y) − a(η)

]
(ti(y) −

∂

∂ηi
a(η))dy

=

∫
(ti(y) −

∂

∂ηi
a(η))f(y|η)dy

= E(ti(Y )) − ∂

∂ηi
a(η).

b) Similarly,

0 =

∫
h(y)

∂2

∂ηi∂ηj
exp

[
k∑

m=1

ηmtm(y) − a(η)

]
dy.

From the proof of a),

0 =

∫
h(y)

∂

∂ηj

[
exp

[
k∑

m=1

ηmtm(y) − a(η)

]
(ti(y) −

∂

∂ηi
a(η))

]
dy

=

∫
h(y) exp

[
k∑

m=1

ηmtm(y) − a(η)

]
(ti(y)−

∂

∂ηi
a(η))(tj(y)−

∂

∂ηj
a(η))dy

−
∫
h(y) exp

[
k∑

m=1

ηmtm(y) − a(η)

]
(

∂2

∂ηi∂ηj
a(η))dy

= Cov(ti(Y ), tj(Y )) − ∂2

∂ηi∂ηj
a(η)

since ∂
∂ηj

a(η) = E(tj(Y )) by a). �

Theorem 1.32. Suppose that Y comes from an exponential family (1.35),
and let T = (t1(Y ), ..., tk(Y )) = (T1, ..., Tk). Then the distribution of T is an
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exponential family with

f(t|η) = h∗(t) exp

[
k∑

i=1

ηiti − a(η)

]
.

Proof. See Lehmann (1986, p. 58).

The main point of this section is that T is well behaved even if Y is not.
For example, if Y follows a one sided stable distribution, then Y is from an
exponential family, but E(Y ) does not exist. However the mgf of T exists, so
all moments of T exist. If Y1, ..., Yn are iid from a one parameter exponen-
tial family, then T ≡ Tn =

∑n
i=1 t(Yi) is from a one parameter exponential

family. One way to find the distribution function of T is to find the distri-
bution of t(Y ) using the transformation method, then find the distribution
of
∑n

i=1 t(Yi) using moment generating functions or Theorems 1.24 and 1.25.
This technique results in the following two theorems. Notice that T often has
a gamma distribution.

1.7 MSE, Information Number, MLE, UMVUE

Definition 1.41. Let the sample Y = (Y1, ..., Yn) where Y has a pdf or pmf
f(y|θ) for θ ∈ Θ. Assume all relevant expectations exist. Let τ (θ) be a real
valued function of θ, and let T ≡ T (Y1, ..., Yn) be an estimator of τ (θ). The
bias of the estimator T for τ (θ) is

B(T ) ≡ Bτ(θ)(T ) ≡ Bias(T) ≡ Biasτ(θ)(T) = Eθ(T) − τ (θ). (1.40)

The mean squared error (MSE) of an estimator T for τ (θ) is

MSE(T) ≡ MSEτ(θ)(T) = Eθ [(T − τ (θ))2]

= V arθ(T ) + [Biasτ(θ)(T)]2. (1.41)

T is an unbiased estimator of τ (θ) if

Eθ(T ) = τ (θ) (1.42)

for all θ ∈ Θ. Notice that Biasτ(θ)(T) = 0 for all θ ∈ Θ if T is an unbiased

estimator of τ (θ).

Notice that the bias and MSE are functions of θ for θ ∈ Θ. If MSEτ(θ)(T1)

< MSEτ(θ)(T2) for all θ ∈ Θ, then T1 is “a better estimator” of τ (θ) than

T2. So estimators with small MSE are judged to be better than ones with
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large MSE. Often T1 has smaller MSE than T2 for some θ but larger MSE
for other values of θ. Often θ is real valued.

Example 1.10. Find the bias and MSE (as a function of n and c ) of
an estimator T = c

∑n
i=1 Yi or (T = bY ) of µ when Y1, ..., Yn are iid with

E(Y1) = µ = θ and V (Yi) = σ2.
Solution: E(T ) = c

∑n
i=1 E(Yi) = ncµ, V (T ) = c2

∑n
i=1 V (Yi) = nc2σ2,

B(T ) = E(T ) − µ and MSE(T ) = V (T ) + [B(T )]2. (For T = bY , use
c = b/n.)

In the class of unbiased estimators, the UMVUE is best since the UMVUE
has the smallest variance, hence the smallest MSE. Often the MLE and
method of moments estimator are biased but have a smaller MSE than the
UMVUE. MLEs and method of moments estimators are widely used because
they often have good statistical properties and are relatively easy to compute.
Sometimes the UMVUE, MLE and method of moments estimators for θ are
the same for a 1P-REF when θ̂ = 1

n

∑n
i=1 t(Yi) and θ = E(θ̂) = E[t(Y )].

Definition 1.42. Let the sample Y = (Y1, ..., Yn) where Y has a pdf or
pmf f(y|θ) for θ ∈ Θ. Assume all relevant expectations exist. Let τ (θ) be a
real valued function of θ, and let U ≡ U(Y1, ..., Yn) be an estimator of τ (θ).
Then U is the uniformly minimum variance unbiased estimator (UMVUE)
of τ (θ) if U is an unbiased estimator of τ (θ) and if Varθ(U) ≤ Varθ(W) for
all θ ∈ Θ where W is any other unbiased estimator of τ (θ).

Often students will be asked to compute a lower bound on the variance of
unbiased estimators of η = τ (θ) when θ is a scalar. Some preliminary results
are needed to define the lower bound, known as the FCRLB. The Fisher
information, defined below, is also useful for large sample theory in Chapter
2 since often the asymptotic variance of a good estimator of τ (θ) is 1/In(τ (θ)).
Good estimators tend to have a variance ≥ c/n, so the FCRLB should be
c/n for some positive constant c that may depend on the parameters of the
distribution. Often c = [τ ′(θ)]2/I1(θ).

Definition 1.43. Let Y = (Y1, ..., Yn) have a pdf or pmf f(y|θ). Then the
information number or Fisher Information is

IY (θ) ≡ In(θ) = Eθ

([
∂

∂θ
log(f(Y |θ))

]2)
. (1.43)

Let η = τ (θ) where τ ′(θ) 6= 0. Then

In(η) ≡ In(τ (θ)) =
In(θ)

[τ ′(θ)]2.
(1.44)
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Theorem 1.33. a) Equations (1.43) and (1.44) agree if τ ′(θ) is continuous,
τ ′(θ) 6= 0, and τ (θ) is one to one and onto so that an inverse function exists
such that θ = τ−1(η).

b) If the Y1 ≡ Y is from a 1P–REF, then the Fisher information in a
sample of size one is

I1(θ) = −Eθ
[
∂2

∂θ2
log(f(Y |θ))

]
. (1.45)

c) If the Y1, ..., Yn are iid from a 1P–REF, then

In(θ) = nI1(θ). (1.46)

Hence if τ ′(θ) exists and is continuous and if τ ′(θ) 6= 0, then

In(τ (θ)) =
nI1(θ)

[τ ′(θ)]2
. (1.47)

Proof. a) See Lehmann (1999, p. 467–468).
b) The proof will be for a pdf. For a pmf replace the integrals by sums.

By Remark 1.9, the integral and differentiation operators of all orders can be
interchanged. Note that

0 = E

[
∂

∂θ
log(f(Y |θ))

]
(1.48)

since

∂

∂θ
1 = 0 =

∂

∂θ

∫
f(y|θ)dy =

∫
∂

∂θ
f(y|θ)dy =

∫ ∂
∂θ
f(y|θ)
f(y|θ) f(y|θ)dy

or

0 =
∂

∂θ

∫
f(y|θ)dy =

∫ [
∂

∂θ
log(f(y|θ))

]
f(y|θ)dy

which is (1.48). Taking 2nd derivatives of the above expression gives

0 =
∂2

∂θ2

∫
f(y|θ)dy =

∂

∂θ

∫ [
∂

∂θ
log(f(y|θ))

]
f(y|θ)dy =

∫
∂

∂θ

([
∂

∂θ
log(f(y|θ))

]
f(y|θ)

)
dy =

∫ [
∂2

∂θ2
log(f(y|θ))

]
f(y|θ)dy +

∫ [
∂

∂θ
log(f(y|θ))

] [
∂

∂θ
f(y|θ)

]
f(y|θ)
f(y|θ) dy

=

∫ [
∂2

∂θ2
log(f(y|θ))

]
f(y|θ)dy +

∫ [
∂

∂θ
log(f(y|θ))

]2

f(y|θ)dy
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or

I1(θ) = Eθ[(
∂

∂θ
log f(Y |θ))2] = −Eθ

[
∂2

∂θ2
log(f(Y |θ))

]
.

c) By independence,

In(θ) = Eθ



(
∂

∂θ
log(

n∏

i=1

f(Yi|θ))
)2

 = Eθ



(
∂

∂θ

n∑

i=1

log(f(Yi|θ))
)2

 =

Eθ



(
∂

∂θ

n∑

i=1

log(f(Yi|θ))
)
 ∂

∂θ

n∑

j=1

log(f(Yj |θ))




 =

Eθ



(

n∑

i=1

∂

∂θ
log(f(Yi|θ))

)


n∑

j=1

∂

∂θ
log(f(Yj |θ))




 =

n∑

i=1

Eθ

[(
∂

∂θ
log(f(Yi|θ))

)2
]

+

∑

i 6=

∑

j

Eθ

[(
∂

∂θ
log(f(Yi|θ))

)(
∂

∂θ
log(f(Yj |θ))

)]
.

Hence

In(θ) = nI1(θ) +
∑

i 6=

∑

j

Eθ

[(
∂

∂θ
log(f(Yi|θ))

)]
Eθ

[(
∂

∂θ
log(f(Yj |θ))

)]

by independence. Hence

In(θ) = nI1(θ) + n(n− 1)

[
Eθ

(
∂

∂θ
log(f(Yj |θ))

)]2

since the Yi are iid. Thus In(θ) = nI1(θ) by Equation (1.48) which holds
since the Yi are iid from a 1P–REF. �

Definition 1.44. Let Y = (Y1, ..., Yn) be the data, and consider τ (θ)
where τ ′(θ) 6= 0. The quantity

FCRLBn(τ (θ)) =
[τ ′(θ)]2

In(θ)

is called the Fréchet Cramér Rao lower bound (FCRLB) for the variance
of unbiased estimators of τ (θ). In particular, if τ (θ) = θ, then FCRLBn(θ) =

1

In(θ)
. The FCRLB is often called the Cramér Rao lower bound (CRLB).
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Theorem 1.35, Fréchet Cramér Rao Lower Bound or Information
Inequality. Let Y1, ..., Yn be iid from a 1P–REF with pdf or pmf f(y|θ). Let
W (Y1, ..., Yn) = W (Y ) be any unbiased estimator of τ (θ) ≡ EθW (Y ). Then

VARθ(W (Y )) ≥ FCRLBn(τ (θ)) =
[τ ′(θ)]2

In(θ)
=

[τ ′(θ)]2

nI1(θ)
=

1

In(τ (θ))
.

Proof. See Olive (2014, pp. 164-166).

Definition 1.45. Let f(y|θ) be the pmf or pdf of a sample Y with pa-
rameter space Θ. If Y = y is observed, then the likelihood function is
L(θ) ≡ L(θ|y) = f(y|θ). For each sample point y = (y1, ..., yn), let θ̂(y) ∈ Θ
be a parameter value at which L(θ) ≡ L(θ|y) attains its maximum as a func-
tion of θ with y held fixed. Then a maximum likelihood estimator (MLE)

of the parameter θ based on the sample Y is θ̂(Y ).

The following remarks are important. I) It is crucial to observe that the
likelihood function is a function of θ (and that y1, ..., yn act as fixed con-
stants). Note that the pdf or pmf f(y|θ) is a function of n variables while
L(θ) is a function of k variables if θ is a 1 × k vector. Often k = 1 or k = 2
while n could be in the hundreds or thousands.

II) If Y1, ..., Yn is an independent sample from a population with pdf or
pmf f(y|θ), then the likelihood function

L(θ) ≡ L(θ|y1, ..., yn) =

n∏

i=1

f(yi|θ). (1.49)

L(θ) =
n∏

i=1

fi(yi|θ)

if the Yi are independent but have different pdfs or pmfs.

III) If the MLE θ̂ exists, then θ̂ ∈ Θ. Hence if θ̂ is not in the parameter

space Θ, then θ̂ is not the MLE of θ.

Theorem 1.35: Invariance Principle. If θ̂ is the MLE of θ, then h(θ̂)
is the MLE of h(θ) where h is a function with domain Θ.

Proof. When h is one to one, let η = h(θ). Then the inverse function h−1

exists and θ = h−1(η). Hence

f(x|θ) = f(x|h−1(η)) (1.50)

is the joint pdf or pmf of x. So the likelihood function of h(θ) = η is

L∗(η) ≡ K(η) = L(h−1(η)). (1.51)
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Also note that

sup
η
K(η|x) = sup

η
L(h−1(η)|x) = L(θ̂|x). (1.52)

Thus
η̂ = h(θ̂) (1.53)

is the MLE of η = h(θ) when h is one to one.

If h is not one to one, then the new parameters η = h(θ) do not give
enough information to define f(x|η). Hence we cannot define the likelihood.
That is, a N(µ, σ2) density cannot be defined by the parameter µ/σ alone.
Before concluding that the MLE does not exist if h is not one to one, note
that if X1, ..., Xn are iid N(µ, σ2) then X1, ..., Xn remain iid N(µ, σ2) even
though the investigator did not rename the parameters wisely or is interested
in a function h(µ, σ) = µ/σ that is not one to one. Berk (1967) said that if h
is not one to one, define

w(θ) = (h(θ), u(θ)) = (η, γ) = ξ (1.54)

such that w(θ) is one to one. Note that the choice

w(θ) = (h(θ), θ)

works. In other words, we can always take u to be the identity function.
The choice of w is not unique, but the inverse function

w−1(ξ) = θ

is unique. Hence the likelihood is well defined, and w(θ̂) is the MLE of ξ. �

There are four commonly used techniques for finding the MLE.

• Potential candidates can be found by differentiating log L(θ), the log like-
lihood.

• Potential candidates can be found by differentiating the likelihood L(θ).
• The MLE can sometimes be found by direct maximization of the likelihood
L(θ).

• Invariance Principle: If θ̂ is the MLE of θ, then h(θ̂) is the MLE of
h(θ).

The method of moments is another useful way for obtaining point estima-
tors. Let Y1, ..., Yn be an iid sample and let

µ̂j =
1

n

n∑

i=1

Y ji and µj ≡ µj(θ) = Eθ(Y j) (1.55)
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for j = 1, ..., k. So µ̂j is the jth sample moment and µj is the jth population
moment. Fix k and assume that µj = µj(θ1, ..., θk). Solve the system

µ̂1
set
= µ1(θ1, ..., θk)

...
...

µ̂k
set
= µk(θ1 , ..., θk)

for θ̃.

Definition 1.46. The solution θ̃ = (θ̃1, ..., θ̃k)
T is the method of mo-

ments estimator of θ. If g is a continuous function of the first k moments
and h(θ) = g(µ1(θ), ..., µk(θ)), then the method of moments estimator of
h(θ) is

g(µ̂1, ..., µ̂k).

Definition 1.46 is similar to the invariance principle for the MLE, but note
that g needs to be a continuous function, and the definition only applies to
a function of (µ̂1, ..., µ̂k) where k ≥ 1. Hence Y is the method of moments
estimator of the population mean µ, and g(Y ) is the method of moments

estimator of g(µ) if g is a continuous function. Sometimes the notation θ̂MLE

and θ̂MM will be used to denote the MLE and method of moments estimators
of θ, respectively. As with maximum likelihood estimators, not all method
of moments estimators exist in closed form, and then numerical techniques
must be used.

1.8 Mixture Distributions

Mixture distributions are useful for model and variable selection since β̂Imin,0

is a mixture distribution of β̂Ij,0, and the lasso estimator β̂L is a mixture

distribution of β̂L,λi
for i = 1, ...,M . See Chapter 6. A random vector u has

a mixture distribution if u equals a random vector uj with probability πj
for j = 1, ..., J . See Definition 1.29 for the population mean and population
covariance matrix of a random vector.

Definition 1.47. The distribution of a g×1 random vector u is a mixture
distribution if the cumulative distribution function (cdf) of u is

Fu(t) =

J∑

j=1

πjFuj (t) (1.56)
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where the probabilities πj satisfy 0 ≤ πj ≤ 1 and
∑J

j=1 πj = 1, J ≥ 2,
and Fuj (t) is the cdf of a g × 1 random vector uj . Then u has a mixture
distribution of the uj with probabilities πj.

Theorem 1.36. Suppose E(h(u)) and the E(h(uj)) exist. Then

E[h(u)] =
J∑

j=1

πjE[h(uj)]. (1.57)

Hence

E(u) =

J∑

j=1

πjE[uj ], (1.58)

and Cov(u) = E(uuT ) −E(u)E(uT ) = E(uuT ) − E(u)[E(u)]T =∑J
j=1 πjE[uju

T
j ]− E(u)[E(u)]T =

J∑

j=1

πjCov(uj) +

J∑

j=1

πjE(uj)[E(uj)]
T −E(u)[E(u)]T . (1.59)

If E(uj) = θ for j = 1, ..., J , then E(u) = θ and

Cov(u) =

J∑

j=1

πjCov(uj).

This theorem is easy to prove if the uj are continuous random vectors with
(joint) probability density functions (pdfs) fuj (t). Then u is a continuous
random vector with pdf

fu(t) =

J∑

j=1

πjfuj (t), and E[h(u)] =

∫ ∞

−∞
· · ·
∫ ∞

−∞
h(t)fu(t)dt

=

J∑

j=1

πj

∫ ∞

−∞
· · ·
∫ ∞

−∞
h(t)fuj (t)dt =

J∑

j=1

πjE[h(uj)]

where E[h(uj)] is the expectation with respect to the random vector uj . Note
that

E(u)[E(u)]T =

J∑

j=1

J∑

k=1

πjπkE(uj)[E(uk)]
T . (1.60)

Alternatively, with respect to a Riemann Stieltjes integral, E[h(u)] =∫
h(t)dF (t) provided the expected value exists, and the integral is a lin-

ear operator with respect to both h and F . Hence for a mixture distribution,
E[h(u)] =

∫
h(t)dF (t) =
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∫
h(t) d




J∑

j=1

πjFuj (t)


 =

J∑

j=1

πj

∫
h(t)dFuj(t) =

J∑

j=1

πjE[h(uj)].

1.9 Elliptically Contoured Distributions

Definition 1.48: Johnson (1987, pp. 107-108). A p×1 random vector X
has an elliptically contoured distribution, also called an elliptically symmetric
distribution, if X has joint pdf

f(z) = kp|Σ|−1/2g[(z − µ)TΣ−1(z − µ)], (1.61)

and we say X has an elliptically contoured ECp(µ,Σ, g) distribution.

If X has an elliptically contoured (EC) distribution, then the characteristic
function of X is

φX(t) = exp(itTµ)ψ(tTΣt) (1.62)

for some function ψ. If the second moments exist, then

E(X) = µ (1.63)

and
Cov(X) = cXΣ (1.64)

where
cX = −2ψ′(0).

Definition 1.49. The population squared Mahalanobis distance

U ≡ D2 = D2(µ,Σ) = (X − µ)TΣ−1(X − µ). (1.65)

For elliptically contoured distributions, U has pdf

h(u) =
πp/2

Γ (p/2)
kpu

p/2−1g(u). (1.66)

For c > 0, an ECp(µ, cI, g) distribution is spherical about µ where I is
the p×p identity matrix. The multivariate normal distribution Np(µ,Σ) has
kp = (2π)−p/2, ψ(u) = g(u) = exp(−u/2), and h(u) is the χ2

p pdf.
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1.10 Some Useful Distributions

Let the population quantile be yδ . Then P (Y ≤ yδ) = δ if Y has a pdf that
is positive at yδ.

Definition 1.50. The gamma function Γ (x) =
∫∞
0
tx−1e−tdt for x > 0.

Some properties of the gamma function follow. i) Γ (k) = (k−1)! for integer
k ≥ 1. ii) Γ (x + 1) = x Γ (x) for x > 0. iii) Γ (x) = (x − 1) Γ (x− 1) for
x > 1. iv) Γ (0.5) =

√
π.

1) Y ∼ beta(δ, ν)

f(y) =
Γ (δ + ν)

Γ (δ)Γ (ν)
yδ−1(1 − y)ν−1

where δ > 0, ν > 0 and 0 ≤ y ≤ 1.

E(Y ) =
δ

δ + ν
, V (Y ) =

δν

(δ + ν)2(δ + ν + 1)
.

2) Bernoulli(ρ) = binomial(k = 1, ρ) f(y) = ρy(1 − ρ)1−y for y = 0, 1.
E(Y ) = ρ, V (Y ) = ρ(1 − ρ).

m(t) = [(1− ρ) + ρet], c(t) = [(1− ρ) + ρeit].

3) binomial(k, ρ), Y ∼ BIN(k, ρ),

f(y) =

(
k

y

)
ρy(1 − ρ)k−y

for y = 0, 1, . . . , k where 0 < ρ < 1. E(Y ) = kρ, V (Y ) = kρ(1 − ρ).

1P-REF is k is known, and I1(ρ) =
k

ρ(1 − ρ)
. m(t) = [(1−ρ)+ρet ]k, c(t) =

[(1 − ρ) + ρeit]k. If Y1, ..., Yn are independent binomial BIN(ki, ρ) random
variables, then

n∑

i=1

Yi ∼ BIN

(
n∑

i=1

ki, ρ

)
.

Thus if Y1, ..., Yn are iid BIN(k, ρ) random variables, then
∑n

i=1 Yi ∼ BIN(nk, ρ).
4) Y ∼ Cauchy(µ, σ),

f(y) =
1

πσ[1 + (y−µσ )2]

where y and µ are real numbers and σ > 0. E(Y ) = ∞ = VAR(Y ). E(Y )
and V (Y ) do not exist. c(t) = exp(itµ − |t|σ).
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F (y) =
1

π
[arctan(

y − µ

σ
) + π/2].

5) chi-square(p) = gamma(ν = p/2, λ = 2), Y ∼ χ2
p,

f(y) =
y

p
2−1e−

y
2

2
p
2Γ (p2 )

where y > 0 and p is a positive integer. E(Y ) = p, V (Y ) = 2p.

m(t) =

(
1

1 − 2t

)p/2
= (1 − 2t)−p/2 for t < 1/2, c(t) =

(
1

1 − i2t

)p/2

.

If Y1, ..., Yn are independent chi–square χ2
pi

, then

n∑

i=1

Yi ∼ χ2(

n∑

i=1

pi).

Thus if Y1, ..., Yn are iid χ2
p, then

n∑

i=1

Yi ∼ χ2
np.

6) exponential(λ)= gamma(ν = 1, λ), Y ∼ EXP(λ)

f(y) =
1

λ
exp (−y

λ
) I(y ≥ 0)

where λ > 0. E(Y ) = λ, V (Y ) = λ2, and yδ = −λ ln(1− δ). 1P-REF and
I1(λ) = 1/λ2.

m(t) = 1/(1 − λt) for t < 1/λ, c(t) = 1/(1 − iλt).

F (y) = 1 − exp(−y/λ), y ≥ 0.

If Y1, ..., Yn are iid exponential EXP(λ), then

n∑

i=1

Yi ∼ G(n, λ).

7) gamma(ν, λ), Y ∼ G(ν, λ),

f(y) =
yν−1e−y/λ

λνΓ (ν)

where ν, λ, and y are positive. E(Y ) = νλ, V (Y ) = νλ2. 2P-REF and if ν
is known, then I1(λ) = ν/λ2.
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m(t) =

(
1

1 − λt

)ν
for t < 1/λ, c(t) =

(
1

1 − iλt

)ν
.

If Y1, ..., Yn are independent Gamma G(νi, λ) then

n∑

i=1

Yi ∼ G(

n∑

i=1

νi, λ).

Thus if Y1, ..., Yn are iid G(ν, λ), then

n∑

i=1

Yi ∼ G(nν, λ).

8) Y ∼ N(µ, σ2)

f(y) =
1√

2πσ2
exp

(−(y − µ)2

2σ2

)

where σ > 0 and µ and y are real. E(Y ) = µ, V (Y ) = σ2, and yδ = µ+σzδ .

2P-REF. If σ2 is known, then I1(µ) = 1/σ2. If µ is known, then I1(σ
2) =

1

2σ4
.

I1(µ, σ) =

(
1/σ2 0

0 2/σ2

)
, I1(µ, σ

2) =

(
1/σ2 0

0 1
2σ4

)
.

m(t) = exp(tµ+ t2σ2/2), c(t) = exp(itµ − t2σ2/2).

F (y) = Φ

(
y − µ

σ

)
.

If Y1, ..., Yn are independent normal N(µi, σ
2
i ), then

n∑

i=1

(ai + biYi) ∼ N(

n∑

i=1

(ai + biµi),

n∑

i=1

b2iσ
2
i ).

Here ai and bi are fixed constants. Thus if Y1, ..., Yn are iid N(µ, σ2), then
Y ∼ N(µ, σ2/n).

9) Poisson(θ), Y ∼ POIS(θ)

f(y) =
e−θθy

y!

for y = 0, 1, . . . , where θ > 0. E(Y ) = θ = V (Y ). 1P-REF and I1(θ) = 1/θ.

m(t) = exp(θ(et − 1)), c(t) = exp(θ(eit − 1)).

If Y1, ..., Yn are independent POIS(θi), then

n∑

i=1

Yi ∼ POIS(

n∑

i=1

θi).
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Thus if Y1, ..., Yn are iid POIS(θ), then

n∑

i=1

Yi ∼ POIS(nθ).

10) uniform(θ1, θ2), Y ∼ U(θ1 , θ2).

f(y) =
1

θ2 − θ1
I(θ1 ≤ y ≤ θ2).

F (y) = (y − θ1)/(θ2 − θ1) for θ1 ≤ y ≤ θ2. E(Y ) = (θ1 + θ2)/2. V (Y ) =
(θ2 − θ1)

2/12, and yδ = (θ2 − θ1)δ + θ1. By definition, m(0) = c(0) = 1. For
t 6= 0,

m(t) =
etθ2 − etθ1

(θ2 − θ1)t
, and c(t) =

eitθ2 − eitθ1

(θ2 − θ1)it
.

11) point mass at c: The distribution of Y is a point mass at c (or Y
is degenerate at c) if P (Y = c) = 1 with pmf f(c) = 1. Hence Y ∼ N(c, 0),
E(Y ) = c, V (Y ) = 0. m(t) = etc. c(t) = eitc. The point mass at 0 has
m(t) ≡ 1 and c(t) ≡ 1.

More Distributions:
12) If Y has a geometric distribution, Y ∼ geom(ρ) then the pmf of Y is

f(y) = P (Y = y) = ρ(1 − ρ)y

for y = 0, 1, 2, ... and 0 < ρ < 1. E(Y ) = (1 − ρ)/ρ. V (Y ) = (1 − ρ)/ρ2 .
Y ∼ NB(1, ρ). Hence the mgf of Y is

m(t) =
ρ

1 − (1 − ρ)et

for t < − log(1 − ρ).
13) If Y has an inverse Gaussian distribution, Y ∼ IG(θ, λ), then the pdf

of Y is

f(y) =

√
λ

2πy3
exp

[−λ(y − θ)2

2θ2y

]

where y, θ, λ > 0. E(Y ) = θ and

V (Y ) =
θ3

λ
.

The mgf is

m(t) = exp

[
λ

θ

(
1 −

√
1 − 2θ2t

λ

)]
t < λ/(2θ2), c(t) = exp

[
λ

θ

(
1 −

√
1 − 2θ2it

λ

)]
.
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14) If Y has a negative binomial distribution, Y ∼ NB(r, ρ), then the pmf
of Y is

f(y) = P (Y = y) =

(
r + y − 1

y

)
ρr(1 − ρ)y

for y = 0, 1, . . . where 0 < ρ < 1. E(Y ) = r(1 − ρ)/ρ, and

V (Y ) =
r(1 − ρ)

ρ2
.

The moment generating function

m(t) =

[
ρ

1 − (1 − ρ)et

]r

for t < − log(1 − ρ).
15) If Y has an F distribution, Y ∼ F (ν1, ν2), then the pdf of Y is

f(y) =
Γ (ν1+ν22 )

Γ (ν1/2)Γ (ν2/2)

(
ν1

ν2

)ν1/2 y(ν1−2)/2

(
1 + (ν1ν2 )y

)(ν1+ν2)/2

where y > 0 and ν1 and ν2 are positive integers.

E(Y ) =
ν2

ν2 − 2
, ν2 > 2

and

V (Y ) = 2

(
ν2

ν2 − 2

)2
(ν1 + ν2 − 2)

ν1(ν2 − 4)
, ν2 > 4.

16) If Y has a Student’s t distribution, Y ∼ tp, then the pdf of Y is

f(y) =
Γ (p+1

2
)

(pπ)1/2Γ (p/2)
(1 +

y2

p
)−( p+1

2 )

where p is a positive integer and y is real. This family is symmetric about
0. The t1 distribution is the Cauchy(0, 1) distribution. If Z is N(0, 1) and is
independent of W ∼ χ2

p, then
Z

(Wp )1/2

is tp. E(Y ) = 0 for p ≥ 2. V (Y ) = p/(p− 2) for p ≥ 3.

Two Multivariate Distributions:

17) point mass at c: The distribution of the p× 1 random vector Y is a
point mass at c (or Y is degenerate at c) if P (Y = c) = 1 with pmf f(c) = 1.

Hence Y ∼ Np(c, 0), E(Y ) = c, Cov(Y ) = 0, m(t) = et
T c, c(t) = eit

Tc.
The point mass at 0 has m(t) ≡ 1 and c(t) ≡ 1.
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18) MVN distribution: If Y ∼ Np(µ,Σ), then E(Y ) = µ and Cov(Y ) =
Σ.

m(t) = exp

(
tTµ +

1

2
tTΣt

)
, c(t) = exp

(
itTµ − 1

2
tTΣt

)
.

If Y ∼ Np(µ,Σ) and if A is a q×p matrix, then AY ∼ Nq(Aµ,AΣAT ).
If a is a p × 1 vector of constants, then Y + a ∼ Np(µ + a,Σ).

Let Y =

(
Y 1

Y 2

)
, µ =

(
µ1

µ2

)
, and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

All subsets of a MVN are MVN: (Yk1 , ..., Ykq)
T ∼ Nq(µ̃, Σ̃) where

µ̃i = E(Yki) and Σ̃ij = Cov(Yki , Ykj). In particular, Y 1 ∼ Nq(µ1,Σ11) and
Y 2 ∼ Np−q(µ2,Σ22). If Y ∼ Np(µ,Σ), then Y 1 and Y 2 are independent iff
Σ12 = 0.

1.11 Summary

1) See Section 1.10 for some useful distributions.

1.12 Complements

The properties of the multivariate normal distribution and convergence in
distribution to a multivariate normal distribution are rather similar, as will
be shown in Chapter 3.

1.13 Problems

1.1∗. Suppose that




X1

X2

X3

X4


 ∼ N4







49
100
17
7


 ,




3 1 −1 0
1 6 1 −1
−1 1 4 0
0 −1 0 2





 .

a) Find the distribution of X2.

b) Find the distribution of (X1, X3)
T .

c) Which pairs of random variables Xi and Xj are independent?
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d) Find the correlation ρ(X1 , X3).

1.2∗. Recall that if X ∼ Np(µ,Σ), then the conditional distribution of
X1 given that X2 = x2 is multivariate normal with mean
µ1 + Σ12Σ

−1
22 (x2 − µ2) and covariance matrix Σ11 − Σ12Σ

−1
22 Σ21.

Let σ12 = Cov(Y,X) and suppose Y and X follow a bivariate normal
distribution (

Y
X

)
∼ N2

((
49
100

)
,

(
16 σ12

σ12 25

))
.

a) If σ12 = 0, find Y |X. Explain your reasoning.

b) If σ12 = 10 find E(Y |X).

c) If σ12 = 10, find Var(Y |X).

1.3. Let σ12 = Cov(Y,X) and suppose Y and X follow a bivariate normal
distribution (

Y
X

)
∼ N2

((
15
20

)
,

(
64 σ12

σ12 81

))
.

a) If σ12 = 10 find E(Y |X).

b) If σ12 = 10, find Var(Y |X).

1.4. Suppose that




X1

X2

X3

X4


 ∼ N4







3
4
2
3


 ,




3 2 1 1
2 4 1 0
1 1 2 0
1 0 0 3





 .

a) Find the distribution of (X1, X3)
T .

b) Which pairs of random variables Xi and Xj are independent?

c) Find the correlation ρ(X1, X3).



Chapter 2

Univariate Limit Theorems

This chapter discusses the central limit theorem, the delta method, asymp-
totically efficient estimators, convergence in distribution and convergence in
probability. This chapter follows Olive (2014,

∮
8.1-8.5) closely.

Large sample theory, also called asymptotic theory, is used to approxi-
mate the distribution of an estimator when the sample size n is large. This
theory is extremely useful if the exact sampling distribution of the estimator
is complicated or unknown. To use this theory, one must determine what the
estimator is estimating, the rate of convergence, the asymptotic distribution,
and how large n must be for the approximation to be useful. Moreover, the
(asymptotic) standard error (SE), an estimator of the asymptotic standard
deviation, must be computable if the estimator is to be useful for inference.

2.1 The CLT and Delta Method

The CLT is also known as the Lindeberg-Lévy CLT.

Theorem 2.1: the Central Limit Theorem (CLT). Let Y1, ..., Yn be
iid with E(Y ) = µ and V (Y ) = σ2. Let the sample mean Y n = 1

n

∑n
i=1 Yi.

Then √
n(Y n − µ)

D→ N(0, σ2).

Note that the sample mean is estimating the population mean µ with a
√
n

convergence rate, the asymptotic distribution is normal, and the SE = S/
√
n

where S is the sample standard deviation. For many distributions the central
limit theorem provides a good approximation if the sample size n > 30. A
special case of the CLT is proven at the end of Section 2.4.

Notation. The notation X ∼ Y and X
D
= Y both mean that the random

variables X and Y have the same distribution. See Definition 1.15. The no-
tation Yn

D→ X means that for large n we can approximate the cdf of Yn by

51
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the cdf of X. See Section 2.3 for more on convergence in distribution. The
distribution of X is the limiting distribution or asymptotic distribution of
Yn, and the limiting distribution does not depend on n. For the CLT, notice
that

Zn =
√
n

(
Y n − µ

σ

)
=

(
Y n − µ

σ/
√
n

)
=

(∑n
i=1 Yi − nµ√

nσ

)

is the z–score of Y and the z–score of
∑n

i=1 Yi. Then Zn
D→ N(0, 1). If Zn

D→
N(0, 1), then the notation Zn ≈ N(0, 1), also written as Zn ∼ AN(0, 1),
means approximate the cdf of Zn by the standard normal cdf. Similarly, the
notation

Y n ≈ N(µ, σ2/n),

also written as Y n ∼ AN(µ, σ2/n), means approximate the cdf of Y n as if
Y n ∼ N(µ, σ2/n). Note that the approximate distribution, unlike the limiting
distribution, does depend on n. The standard error S/

√
n approximates the

asymptotic standard deviation
√
σ2/n of Y .

The two main applications of the CLT are to give the limiting distribution
of

√
n(Y n−µ) and the limiting distribution of

√
n(Yn/n−µX) for a random

variable Yn such that Yn =
∑n

i=1Xi where the Xi are iid with E(X) = µX
and V (X) = σ2

X .
Several of the random variables in Theorems 1.24 and 1.25 can be ap-

proximated in this way. The CLT says that Y n ∼ AN(µ, σ2/n). The delta
method says that if Tn ∼ AN(θ, σ2/n), and if g′(θ) 6= 0, then g(Tn) ∼
AN(g(θ), σ2[g′(θ)]2/n). Hence a smooth function g(Tn) of a well behaved
statistic Tn tends to be well behaved (asymptotically normal with a

√
n con-

vergence rate).
Given iid data from some distribution, a common homework problem is to

find the limiting distribution of
√
n(Y n−µ) using the CLT. You may need to

find E(Y ), E(Y 2), and V (Y ) = E(Y 2) − [E(Y )]2. A variant of this problem
gives a formula for E(Y r). Then find E(Y ) = E(Y 1) with r = 1 and E(Y 2)
with r = 2.

Example 2.1. a) Let Y1, ..., Yn be iid Ber(ρ). Then E(Y ) = ρ and V (Y ) =
ρ(1 − ρ). Hence √

n(Y n − ρ)
D→ N(0, ρ(1− ρ))

by the CLT.

b) Now suppose that Yn ∼ BIN(n, ρ). Then Yn
D
=
∑n
i=1Xi where

X1, ..., Xn are iid Ber(ρ). Hence

√
n

(
Yn
n

− ρ

)
D→ N(0, ρ(1 − ρ))

since
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√
n

(
Yn
n

− ρ

)
D
=

√
n(Xn − ρ)

D→ N(0, ρ(1 − ρ))

by a).
c) Now suppose that Yn ∼ BIN(kn , ρ) where kn → ∞ as n→ ∞. Then

√
kn

(
Yn
kn

− ρ

)
≈ N(0, ρ(1 − ρ))

or
Yn
kn

≈ N

(
ρ,
ρ(1 − ρ)

kn

)
or Yn ≈ N(knρ, knρ(1 − ρ)) .

Theorem 2.2: the Delta Method. If g′(θ) 6= 0, and

√
n(Tn − θ)

D→ N(0, σ2),

then √
n(g(Tn) − g(θ))

D→ N(0, σ2[g′(θ)]2).

Example 2.2. Let Y1, ..., Yn be iid with E(Y ) = µ and V (Y ) = σ2. Then
by the CLT, √

n(Y n − µ)
D→ N(0, σ2).

Let g(µ) = µ2. Then g′(µ) = 2µ 6= 0 for µ 6= 0. Hence

√
n((Y n)2 − µ2)

D→ N(0, 4σ2µ2)

for µ 6= 0 by the delta method.

Example 2.3. Let X ∼ Binomial(n, p) where the positive integer n is

large and 0 < p < 1. Find the limiting distribution of
√
n

[ (
X

n

)2

− p2

]
.

Solution. Example 2.1b gives the limiting distribution of
√
n(Xn − p). Let

g(p) = p2. Then g′(p) = 2p and by the delta method,

√
n

[ (
X

n

)2

− p2

]
=

√
n

(
g

(
X

n

)
− g(p)

)
D→

N(0, p(1− p)(g′(p))2) = N(0, p(1− p)4p2) = N(0, 4p3(1 − p)).

Example 2.4. Let Xn ∼ Poisson(nλ) where the positive integer n is large
and 0 < λ.

a) Find the limiting distribution of
√
n

(
Xn
n

− λ

)
.
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b) Find the limiting distribution of
√
n

[ √
Xn
n

−
√
λ

]
.

Solution. a) Xn
D
=
∑n
i=1 Yi where the Yi are iid Poisson(λ). Hence E(Y ) =

λ = V (Y ). Thus by the CLT,

√
n

(
Xn
n

− λ

)
D
=

√
n

( ∑n
i=1 Yi
n

− λ

)
D→ N(0, λ).

b) Let g(λ) =
√
λ. Then g′(λ) = 1

2
√
λ

and by the delta method,

√
n

[ √
Xn
n

−
√
λ

]
=

√
n

(
g

(
Xn
n

)
− g(λ)

)
D→

N(0, λ (g′(λ))2) = N

(
0, λ

1

4λ

)
= N

(
0,

1

4

)
.

Example 2.5. Let Y1, ..., Yn be independent and identically distributed
(iid) from a Gamma(α, β) distribution.

a) Find the limiting distribution of
√
n
(
Y − αβ

)
.

b) Find the limiting distribution of
√
n
(

(Y )2 − c
)

for appropriate con-
stant c.

Solution: a) Since E(Y ) = αβ and V (Y ) = αβ2, by the CLT√
n
(
Y − αβ

) D→ N(0, αβ2).
b) Let µ = αβ and σ2 = αβ2. Let g(µ) = µ2 so g′(µ) = 2µ and

[g′(µ)]2 = 4µ2 = 4α2β2. Then by the delta method,
√
n
(

(Y )2 − c
) D→

N(0, σ2[g′(µ)]2) = N(0, 4α3β4) where c = µ2 = α2β2 .

Remark 2.1. a) Note that if
√
n(Tn − k)

D→ N(0, σ2), then evaluate
the derivative at k. Thus use g′(k) where k = αβ in the above example. A
common error occurs when k is a simple function of θ, for example k = θ/2
with g(µ) = µ2. Thus g′(µ) = 2µ so g′(θ/2) = 2θ/2 = θ. Then the common
delta method error is to plug in g′(θ) = 2θ instead of g′(k) = θ. See Problems
2.3, 2.33, 2.35, 2.36, and 2.37.

b) For the delta method, also note that the function g can not depend
on n since then there would be a sequence of functions gn rather than one
function g. This fact also applies to several other theorems in this chapter.

The following extension of the delta method is sometimes useful.

Theorem 2.3: the Second Order Delta Method. Suppose that
g′(θ) = 0, g′′(θ) 6= 0 and

√
n(Tn − θ)

D→ N(0, τ2(θ)).
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Then

n[g(Tn) − g(θ)]
D→ 1

2
τ2(θ)g′′(θ)χ2

1.

Example 2.6. Let Xn ∼ Binomial(n, p) where the positive integer n is
large and 0 < p < 1. Let g(θ) = θ3 − θ. Find the limiting distribution of

n

[
g

(
Xn
n

)
− c

]
for appropriate constant c when p =

1√
3
.

Solution: Since Xn
D
=
∑n

i=1 Yi where Yi ∼ BIN(1, p),

√
n

(
Xn
n

− p

)
D→ N(0, p(1− p))

by the CLT. Let θ = p. Then g′(θ) = 3θ2 − 1 and g′′(θ) = 6θ. Notice that

g(1/
√

3) = (1/
√

3)3 − 1/
√

3 = (1/
√

3)(
1

3
− 1) =

−2

3
√

3
= c.

Also g′(1/
√

3) = 0 and g′′(1/
√

3) = 6/
√

3. Since τ2(p) = p(1 − p),

τ2(1/
√

3) =
1√
3
(1 − 1√

3
).

Hence

n

[
g

(
Xn
n

)
−
( −2

3
√

3

) ]
D→ 1

2

1√
3
(1 − 1√

3
)

6√
3
χ2

1 = (1 − 1√
3
) χ2

1.

Barndorff–Nielsen (1982), Casella and Berger (2002, p. 472, 515), Cox and
Hinckley (1974, p. 286), Lehmann and Casella (2003, Section 6.3), Schervish
(1995, p. 418), and many others suggest that under regularity conditions if

Y1, ..., Yn are iid from a one parameter regular exponential family, and if θ̂ is
the MLE (maximum likelihood estimator) of θ, then

√
n(τ (θ̂) − τ (θ))

D→ N

(
0,

[τ ′(θ)]2

I1(θ)

)
= N [0, FCRLB1(τ (θ))] (2.1)

where the Fréchet Cramér Rao lower bound for τ (θ) is

FCRLB1(τ (θ)) =
[τ ′(θ)]2

I1(θ)

and the Fisher information based on a sample of size one is

I1(θ) = −Eθ
[
∂2

∂θ2
log(f(X|θ))

]
.
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Hence τ (θ̂) ∼ AN [τ (θ), FCRLBn(τ (θ))] where FCRLBn(τ (θ)) =
FCRLB1(τ (θ))/n. Notice that if

√
n(θ̂ − θ)

D→ N

(
0,

1

I1(θ)

)
,

then (2.1) follows by the delta method. Also recall that τ (θ̂) is the MLE of
τ (θ) by the invariance principle and that

I1(τ (θ)) =
I1(θ)

[τ ′(θ)]2

if τ ′(θ) 6= 0 by Definition 1.43.
For a 1P–REF, Tn = 1

n

∑n
i=1 t(Yi) is the UMVUE (uniformly minimum

variance unbiased estimator) and generally the MLE of its expectation µt ≡
µT = Eθ(Tn) = Eθ[t(Y )]. Let σ2

t = Vθ[t(Y )]. These values can be found by
using the distribution of t(Y ).

Theorem 2.4. Suppose Y is a 1P–REF with pdf or pmf

f(y|θ) = h(y)c(θ) exp[w(θ)t(y)]

and natural parameterization

f(y|η) = h(y)b(η) exp[ηt(y)].

Then a)

µt = E[t(Y )] =
−c′(θ)
c(θ)w′(θ)

=
−∂
∂η

log(b(η)), (2.2)

and b)

σ2
t = V [t(Y )] =

−∂2

∂θ2 log(c(θ)) − [w′′(θ)]µt
[w′(θ)]2

=
−∂2

∂η2
log(b(η)). (2.3)

Proof. The proof will be for pdfs. For pmfs replace the integrals by sums.
By Theorem 1.31, only the middle equalities need to be shown. By Remark

1.9 the derivative and integral operators can be interchanged for a 1P–REF.
a) Since 1 =

∫
f(y|θ)dy,

0 =
∂

∂θ
1 =

∂

∂θ

∫
h(y) exp[w(θ)t(y) + log(c(θ))]dy

=

∫
h(y)

∂

∂θ
exp[w(θ)t(y) + log(c(θ))]dy
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=

∫
h(y) exp[w(θ)t(y) + log(c(θ))]

(
w′(θ)t(y) +

c′(θ)

c(θ)

)
dy

or

E[w′(θ)t(Y )] =
−c′(θ)
c(θ)

or

E[t(Y )] =
−c′(θ)
c(θ)w′(θ)

.

b) Similarly,

0 =

∫
h(y)

∂2

∂θ2
exp[w(θ)t(y) + log(c(θ))]dy.

From the proof of a) and since ∂
∂θ log(c(θ)) = c′(θ)/c(θ),

0 =

∫
h(y)

∂

∂θ

[
exp[w(θ)t(y) + log(c(θ))]

(
w′(θ)t(y) +

∂

∂θ
log(c(θ))

)]
dy

=

∫
h(y) exp[w(θ)t(y) + log(c(θ))]

(
w′(θ)t(y) +

∂

∂θ
log(c(θ))

)2

dy

+

∫
h(y) exp[w(θ)t(y) + log(c(θ))]

(
w′′(θ)t(y) +

∂2

∂θ2
log(c(θ))

)
dy.

So

E

(
w′(θ)t(Y ) +

∂

∂θ
log(c(θ))

)2

= −E
(
w′′(θ)t(Y ) +

∂2

∂θ2
log(c(θ))

)
. (2.4)

Using a) shows that the left hand side of (2.4) equals

E

(
w′(θ)

(
t(Y ) +

c′(θ)

c(θ)w′(θ)

))2

= [w′(θ)]2 V (t(Y ))

while the right hand side of (2.4) equals

−
(
w′′(θ)µt +

∂2

∂θ2
log(c(θ))

)

and the result follows. �

The simplicity of the following Olive (2014, p. 221) result is rather sur-
prising. When (as is usually the case) 1

n

∑n
i=1 t(Yi) is the MLE of µt,

η̂ = g−1( 1
n

∑n
i=1 t(Yi)) is the MLE of η by the invariance principle.

Theorem 2.5. Let Y1, ..., Yn be iid from a 1P–REF with pdf or pmf
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f(y|θ) = h(y)c(θ) exp[w(θ)t(y)]

and natural parameterization

f(y|η) = h(y)b(η) exp[ηt(y)].

Let
E(t(Y )) = µt ≡ g(η)

and V (t(Y )) = σ2
t .

a) Then

√
n[

1

n

n∑

i=1

t(Yi) − µt]
D→ N(0, I1(η))

where

I1(η) = σ2
t = g′(η) =

[g′(η)]2

I1(η)
.

b) If η = g−1(µt), η̂ = g−1( 1
n

∑n
i=1 t(Yi)), and g−1′

(µt) 6= 0 exists, then

√
n[η̂− η]

D→ N

(
0,

1

I1(η)

)
.

c) Suppose the conditions in b) hold. If θ = w−1(η), θ̂ = w−1(η̂), w−1′

exists and is continuous, and w−1′

(η) 6= 0, then

√
n[θ̂− θ]

D→ N

(
0,

1

I1(θ)

)
.

d) If the conditions in c) hold, if τ ′ is continuous and if τ ′(θ) 6= 0, then

√
n[τ (θ̂) − τ (θ)]

D→ N

(
0,

[τ ′(θ)]2

I1(θ)

)
.

Proof: a) The result follows by the central limit theorem if V (t(Y )) =
σ2
t = I1(η) = g′(η). Since log(f(y|η)) = log(h(y)) + log(b(η)) + ηt(y),

∂

∂η
log(f(y|η)) =

∂

∂η
log(b(η)) + t(y) = −µt + t(y) = −g(η) + t(y)

by Theorem 2.4 a). Hence

∂2

∂η2
log(f(y|η)) =

∂2

∂η2
log(b(η)) = −g′(η),

and thus by Theorem 2.4 b)
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I1(η) =
−∂2

∂η2
log(b(η)) = σ2

t = g′(η).

b) By the delta method,

√
n(η̂ − η)

D→ N(0, σ2
t [g

−1′

(µt)]
2),

but

g−1′

(µt) =
1

g′(g−1(µt))
=

1

g′(η)
.

Since σ2
t = I1(η) = g′(η), it follows that σ2

t = [g′(η)]2/I1(η), and

σ2
t [g

−1′

(µt)]
2 =

[g′(η)]2

I1(η)

1

[g′(η)]2
=

1

I1(η)
.

So
√
n(η̂ − η)

D→ N

(
0,

1

I1(η)

)
.

c) By the delta method,

√
n(θ̂ − θ)

D→ N

(
0,

[w−1′

(η)]2

I1(η)

)
,

but
[w−1′

(η)]2

I1(η)
=

1

I1(θ)
.

The last equality holds since by Theorem 1.33c, if θ = g(η), if g′ exists
and is continuous, and if g′(θ) 6= 0, then I1(θ) = I1(η)/[g

′(η)]2. Use η = w(θ)
so θ = g(η) = w−1(η).

d) The result follows by the delta method. �

Remark 2.2. Following DasGupta (2008, p. 241-242), let ψ(η) = − log(b(η)).
Then Eη[t(Y1)] = µt = ψ′(η) = g(η) by Theorem 2.4a, and the MLE η̂ is the

solution of 1
n

∑n
i=1 t(yi)

set
= Eη[t(Y1)] = g(η) if the MLE exists. Now g(η) =

Eη[t(Y1)] is an increasing function of η since g′(η) = ψ′′(η) = Vη(t(Y )) > 0
(1P–REFs do not contain degenerate distributions). So for large n, with
probability tending to one, the MLE η̂ exists and η̂ = g−1( 1

n

∑n
i=1 t(Yi)).

Since g′(η) exists, g(η) and g−1(η) are continuous and the delta method
can be applied to η̂ as in Theorem 2.5b. By the proof of Theorem 2.5a),
ψ′′(η) = I1(η). Notice that if η̂ is the MLE of η, then 1

n

∑n
i=1 t(Yi) is the

MLE of µt = E[t(Y1)] by invariance. Hence if n is large enough, Theorem
2.5ab is for the MLE of E[t(Y1)] and the MLE of η.
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2.2 Asymptotically Efficient Estimators

Definition 2.1. Let Y1, ..., Yn be iid random variables. Let Tn ≡ Tn(Y1, ..., Yn)
be an estimator of a parameter µT such that

√
n(Tn − µT )

D→ N(0, σ2
A).

Then the asymptotic variance of
√
n(Tn − µT ) is σ2

A and the asymptotic
variance (AV) of Tn is σ2

A/n. If S2
A is a consistent estimator of σ2

A, then the
(asymptotic) standard error (SE) of Tn is SA/

√
n. If Y1, ..., Yn are iid with

cdf F , then σ2
A ≡ σ2

A(F ) depends on F .

Remark 2.3. Consistent estimators are defined in the following section.
The parameter σ2

A is a function of both the estimator Tn and the underlying
distribution F of Y1. Frequently nV (Tn) converges in distribution to σ2

A, but
not always. See Staudte and Sheather (1990, p. 51) and Lehmann (1999, p.
232).

Example 2.7. If Y1, ..., Yn are iid from a distribution with mean µ and
variance σ2, then by the central limit theorem,

√
n(Y n − µ)

D→ N(0, σ2).

Recall that V (Y n) = σ2/n = AV (Y n) and that the standard error SE(Y n)
= Sn/

√
n where S2

n is the sample variance. Note that σ2
A(F ) = σ2. If F is

a N(µ, 1) cdf then σ2
A(F ) = 1, but if F is the G(ν = 7, λ = 1) cdf then

σ2
A(F ) = 7.

Definition 2.2. Let T1,n and T2,n be two estimators of a parameter θ such
that

nδ(T1,n − θ)
D→ N(0, σ2

1(F ))

and
nδ(T2,n − θ)

D→ N(0, σ2
2(F )),

then the asymptotic relative efficiency of T1,n with respect to T2,n is

ARE(T1,n, T2,n) =
σ2

2(F )

σ2
1(F )

.

This definition brings up several issues. First, both estimators must have
the same convergence rate nδ. Usually δ = 0.5. If Ti,n has convergence rate
nδi , then estimator T1,n is judged to be “better” than T2,n if δ1 > δ2. Secondly,
the two estimators need to estimate the same parameter θ. This condition
will often not hold unless the distribution is symmetric about µ. Then θ = µ
is a natural choice. Thirdly, estimators are often judged by their Gaussian
efficiency with respect to the sample mean (thus F is the normal distribution).
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Since the normal distribution is a location–scale family, it is often enough to
compute the ARE for the standard normal distribution. If the data come from
a distribution F and the ARE can be computed, then T1,n is judged to be a
“better” estimator (for the data distribution F ) than T2,n if the ARE > 1.
Similarly, T1,n is judged to be a “worse” estimator than T2,n if the ARE < 1.
Notice that the “better” estimator has the smaller asymptotic variance.

The population median is any value MED(Y ) such that

P (Y ≤ MED(Y )) ≥ 0.5 and P (Y ≥ MED(Y )) ≥ 0.5. (2.5)

In simulation studies, typically the underlying distribution F belongs to
a symmetric location–scale family. There are at least two reasons for using
such distributions. First, if the distribution is symmetric, then the population
median MED(Y ) is the point of symmetry and the natural parameter to
estimate. Under the symmetry assumption, there are many estimators of
MED(Y ) that can be compared via their ARE with respect to the sample
mean or the maximum likelihood estimator (MLE). Secondly, once the ARE
is obtained for one member of the family, it is typically obtained for all
members of the location–scale family. That is, suppose that Y1, ..., Yn are iid
from a location–scale family with parameters µ and σ. Then Yi = µ + σZi
where the Zi are iid from the same family with µ = 0 and σ = 1. Typically

AV [Ti,n(Y )] = σ2AV [Ti,n(Z)],

so
ARE[T1,n(Y ), T2,n(Y )] = ARE[T1,n(Z), T2,n(Z)].

Theorem 2.6. Let Y1, ..., Yn be iid with a pdf f that is positive at the
population median: f(MED(Y )) > 0. Then

√
n(MED(n) −MED(Y ))

D→ N

(
0,

1

4[f(MED(Y ))]2

)
.

Example 2.8. Let Y1, ..., Yn be iid N(µ, σ2), T1,n = Y and let T2,n =
MED(n) be the sample median. Let θ = µ = E(Y ) = MED(Y ). Find
ARE(T1,n, T2,n).

Solution: By the CLT, σ2
1(F ) = σ2 when F is the N(µ, σ2) distribution.

By Theorem 2.6,

σ2
2(F ) =

1

4[f(MED(Y ))]2
=

1

4[ 1√
2πσ2

exp( −0
2σ2 )]2

=
πσ2

2
.

Hence
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ARE(T1,n, T2,n) =
πσ2/2

σ2
=
π

2
≈ 1.571

and the sample mean Y is a “better” estimator of µ than the sample median
MED(n) for the family of normal distributions.

Recall from Definition 1.43 that I1(θ) is the information number for θ
based on a sample of size 1. Also recall that I1(τ (θ)) = I1(θ)/[τ

′(θ)]2 =
1/FCRLB1[τ (θ)]. See Definition 1.44.

The following definition says that if Tn is an asymptotically efficient esti-
mator of τ (θ), then

Tn ∼ AN [τ (θ), FCRLBn(τ (θ))].

Definition 2.3. Assume τ ′(θ) 6= 0. Then an estimator Tn of τ (θ) is
asymptotically efficient if

√
n(Tn − τ (θ))

D→ N

(
0,

[τ ′(θ)]2

I1(θ)

)
∼ N(0, FCRLB1[τ (θ)]). (2.6)

In particular, the estimator Tn of θ is asymptotically efficient if

√
n(Tn − θ)

D→ N

(
0,

1

I1(θ)

)
∼ N(0, FCRLB1[θ]). (2.7)

Following Lehmann (1999, p. 486), if T2,n is an asymptotically efficient
estimator of θ, if I1(θ) and v(θ) are continuous functions, and if T1,n is an
estimator such that √

n(T1,n − θ)
D→ N(0, v(θ)),

then under regularity conditions, v(θ) ≥ 1/I1(θ) and

ARE(T1,n, T2,n) =

1
I1(θ)

v(θ)
=

1

I1(θ)v(θ)
≤ 1.

Hence asymptotically efficient estimators are “better” than estimators of the
form T1,n. When T2,n is asymptotically efficient,

AE(T1,n) = ARE(T1,n, T2,n) =
1

I1(θ)v(θ)

is sometimes called the asymptotic efficiency of T1,n.
Notice that for a 1P–REF, Tn = 1

n

∑n
i=1 t(Yi) is an asymptotically efficient

estimator of g(η) = E(t(Y )) by Theorem 2.5. Tn is the UMVUE of E(t(Y ))
by the LSU theorem.

The following theorem suggests that MLEs and UMVUEs are often
asymptotically efficient. The theorem often holds for location families where
the support does not depend on θ. The theorem does not hold for the
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uniform (0, θ) family. For the MLE θ̂. Geisser (2006, pp. 133-134) shows
that if i) the Yi are iid with pdf f(y|θ) and likelihood function L(θ) =

∏n
i=1 f(yi |θ), ii) Eθ

[(
d log(L(θ))

dθ

)]
= 0, and iii) Eθ

[(
d log(L(θ))

dθ

)2
]

=

−Eθ
[
d2 log(L(θ))

dθ2

]
exists and is nonzero for all θ in a neighborhood of the

true value θ0, then

√
n[θ̂n − θ0]

D→ N

(
0,

1

I1(θ0)

)
.

Conditions ii) and iii) hold for a 1P-REF with a pdf by Equations (1.45)
and (1.48). See Berk (1972) and Wald (1949) for different regularity condi-

tions. Hence the following theorem holds for the MLE θ̂n computed from iid
Y1, ..., Yn if f(y|θ) is the pdf of a 1P-REF.

Theorem 2.7: a “Standard Limit Theorem”: Let θ̂n be the MLE or
UMVUE of θ. If τ ′(θ) 6= 0, then under strong regularity conditions,

√
n[τ (θ̂n) − τ (θ)]

D→ N

(
0,

[τ ′(θ)]2

I1(θ)

)
.

2.3 Modes of Convergence and Consistency

Definition 2.4. Let {Zn, n = 1, 2, ...} be a sequence of random variables with
cdfs Fn, and let X be a random variable with cdf F. Then Zn converges in
distribution to X, written

Zn
D→ X,

or Zn converges in law to X, written Zn
L→ X, if

lim
n→∞

Fn(t) = F (t)

at each continuity point t of F. The distribution of X is called the limiting
distribution or the asymptotic distribution of Zn.

Convergence in distribution is also known as weak convergence or Xn
converges weakly to X. An important fact is that the limiting distribution
does not depend on the sample size n. Notice that the CLT, delta
method and Theorem 2.5 give the limiting distributions of Zn =

√
n(Y n−µ),

Zn =
√
n(g(Tn)− g(θ)) and Zn =

√
n[ 1
n

∑n
i=1 t(Yi)−E(t(Y ))], respectively.

Remark 2.4. i) An important fact is that the limiting distribution
does not depend on the sample size n.
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ii) Warning: A common error is to get a “limiting distribution” that does
depend on n.
iii) Know: If Fn(t) → H(t) and H(t) is continuous, then for convergence in

distribution, H(t) needs to be a cdf: H(t) = FX(t) if Xn
D→ X. If H(t) is

a constant: H(t) = c ∈ [0, 1] ∀t, then H(t) is not a cdf, and Xn does not
converge in distribution to any random variable X.
iv) Since F (x) = P (X ≤ x), it follow that 0 ≤ Fn(t) ≤ 1. Thus limn→∞ Fn(t) =
H(t) has 0 ≤ H(t) ≤ 1 if the limit exists. Warning: A common error it to
get H(t) < 0 or H(t) > 1.
v) Warning: Convergence in distribution says that the cdf Fn(t) of Xn gets
close to the cdf of F(t) of X as n → ∞ provided that t is a continuity
point of F . Hence for any ε > 0 there exists Nt such that if n > Nt, then
|Fn(t) −F (t)| < ε. Notice that Nt depends on the value of t. Convergence in
distribution does not imply that the random variables Xn ≡ Xn(ω) converge
to the random variable X ≡ X(ω) for all ω.

vi) If FXn(t) → FX(t) at all continuity points of FX(t), then Xn
D→ X. If t0 is

a discontinuity point of FX(t), then the behavior of FXn(t0) is not important:
could have limn→∞ FXn(t0) = ct0 ∈ [0, 1] or that limn→∞ FXn(t0) does not
exist. Convergence in distribution does not need ct0 = FX(t0).
vii) If FXn(t) → H(t) except at discontinuity points of FX(t), still need

H(t) = FX(t) at continuity points of FX(t) for Xn
D→ X.

Convergence in distribution is useful because if the distribution of Xn is
unknown or complicated and the distribution of X is easy to use, then for
large n we can approximate the probability that Xn is in an interval by the

probability that X is in the interval. To see this, notice that if Xn
D→ X, then

P (a < Xn ≤ b) = Fn(b) − Fn(a) → F (b) − F (a) = P (a < X ≤ b) if F is
continuous at a and b. Convergence in distribution is useful for constructing
large sample confidence intervals and tests of hypotheses. See Chapter 4.

Example 2.9. Suppose that Xn ∼ U(−1/n, 1/n). Then the cdf Fn(x) of
Xn is

Fn(x) =





0, x ≤ −1
n

nx
2 + 1

2 ,
−1
n ≤ x ≤ 1

n
1, x ≥ 1

n .

Sketching Fn(x) shows that it has a line segment rising from 0 at x = −1/n
to 1 at x = 1/n and that Fn(0) = 0.5 for all n ≥ 1. Examining the cases
x < 0, x = 0 and x > 0 shows that as n→ ∞,

Fn(x) →





0, x < 0
1
2 x = 0
1, x > 0.

Notice that if X is a random variable such that P (X = 0) = 1, then X has
cdf
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FX(x) =

{
0, x < 0
1, x ≥ 0.

Since x = 0 is the only discontinuity point of FX(x) and since Fn(x) → FX(x)
for all continuity points of FX(x) (i.e. for x 6= 0),

Xn
D→ X.

Example 2.10. Suppose Yn ∼ U(0, n). Then Fn(t) = t/n for 0 < t ≤ n
and Fn(t) = 0 for t ≤ 0. Hence limn→∞ Fn(t) = 0 for t ≤ 0. If t > 0 and
n > t, then Fn(t) = t/n → 0 as n → ∞. Thus limn→∞ Fn(t) = H(t) = 0
for all t, and Yn does not converge in distribution to any random variable Y
since H(t) ≡ 0 is a continuous function but not a cdf.

Definition 2.5. A sequence of random variables Xn converges in distri-
bution to a constant τ (θ), written

Xn
D→ τ (θ), if Xn

D→ X

where P (X = τ (θ)) = 1. The distribution of the random variable X is said
to be degenerate at τ (θ) or to be a point mass at τ (θ).

See Section 1.10 for some properties of the point mass distribution, which
corresponds to a discrete random variable that only takes on exactly one
value. Using characteristic functions, it can be shown that if X has a point
mass at τ (θ), then X ∼ N(τ (θ), 0), a normal distribution with mean τ (θ) and
variance 0. A point mass at 0, where P (X = 0) = 1, is a common limiting
distribution. See Examples 2.9 and 2.11.

Example 2.11. X has a point mass distribution at c or X is degenerate
at c if P (X = c) = 1. Thus X has a probability mass function with all of the
mass at the point c. Then FX(t) = 1 for t ≥ c and FX(t) = 0 for t < c. Often

FXn(t) → FX(t) for all t 6= c where P (X = c) = 1. Then Xn
D→ X where

P (X = c) = 1. Thus FXn(t) → H(t) for all t 6= c where H(t) = FX(t) ∀t 6= c.
It is possible that limn→∞FXn(c) = H(c) ∈ [0, 1] or that limn→∞ FXn(c)
does not exist.

Example 2.12. Prove whether the following sequences of random vari-

ables Xn converge in distribution to some random variable X. If Xn
D→ X,

find the distribution ofX (for example, find FX(t) or note that P (X = c) = 1,
so X has the point mass distribution at c).
a) Xn ∼ U(−n− 1,−n)
b) Xn ∼ U(n, n+ 1)
c) Xn ∼ U(an, bn) where an → a < b and bn → b.
d) Xn ∼ U(an, bn) where an → c and bn → c.
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e) Xn ∼ U(−n, n)
f) Xn ∼ U(c− 1/n, c+ 1/n)

Solution. If Xn ∼ U(an, bn) with an < bn, then

FXn(t) =
t− an
bn − an

for an ≤ t ≤ bn, FXn(t) = 0 for t ≤ an and FXn(t) = 1 for t ≥ bn. On [an, bn],

FXn(t) is a line segment from (an, 0) to (bn, 1) with slope
1

bn − an
.

a) FXn(t) → H(t) ≡ 1 ∀t ∈ R since FXn(t) = 1 for t ≥ −n. Since H(t) is
continuous but not a cdf, Xn does not converge in distribution to any RV X.

b) FXn(t) → H(t) ≡ 0 ∀t ∈ R since FXn(t) = 0 for t < n. Since H(t) is
continuous but not a cdf, Xn does not converge in distribution to any RV X.

c)

FXn(t) → FX(t) =





0 t ≤ a
t−a
b−a a ≤ t ≤ b

1 t ≥ b.

Hence Xn
D→ X ∼ U(a, b).

d)

FXn(t) →
{

0 t < c
1 t > c.

Hence Xn
D→ X where P (X = c) = 1. Hence X has a point mass distribution

at c. (The behavior of limn→∞ FXn(c) is not important, even if the limit does
not exist.)

e)

FXn(t) =
t + n

2n
=

1

2
+

t

2n

for −n ≤ t ≤ n. Thus FXn(t) → H(t) ≡ 0.5 ∀t ∈ R. Since H(t) is continuous
but not a cdf, Xn does not converge in distribution to any RV X.

f)

FXn(t) =
t− c + 1

n
2
n

=
1

2
+
n

2
(t − c)

for c− 1/n ≤ t ≤ c+ 1/n. Thus

FXn(t) → H(t) =





0 t < c
1/2 t = c
1 t > c.

If X has the point mass at c, then

FX(t) =

{
0 t < c
1 t ≥ c.
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Hence t = c is the only discontinuity point of FX(t), and H(t) = FX(t) at all

continuity points of FX(t). Thus Xn
D→ X where P (X = c) = 1.

Definition 2.6. a) A sequence of random variables Xn converges in prob-
ability to a constant τ (θ), written

Xn
P→ τ (θ),

if for every ε > 0,

lim
n→∞

P (|Xn − τ (θ)| < ε) = 1 or, equivalently, lim
n→∞

P(|Xn − τ (θ)| ≥ ε) = 0.

b) The sequence Xn converges in probability to X, written

Xn
P→ X,

if for every ε > 0,

lim
n→∞

P (|Xn −X| < ε) = 1, or, equivalently, lim
n→∞

P(|Xn − X| ≥ ε) = 0.

Notice that Xn
P→ X if Xn −X

P→ 0.

Definition 2.7. A sequence of estimators Tn of τ (θ) is consistent for
τ (θ) if

Tn
P→ τ (θ)

for every θ ∈ Θ. If Tn is consistent for τ (θ), then Tn is a consistent esti-
mator of τ (θ).

Consistency is a weak property that is usually satisfied by good estima-
tors. Tn is a consistent estimator for τ (θ) if the probability that Tn falls
in any neighborhood of τ (θ) goes to one, regardless of the value of θ ∈ Θ.
The probability P ≡ Pθ is the “true” probability distribution or underlying
probability that depends on θ.

Definition 2.8. For a real number r > 0, Yn converges in rth mean to
a random variable Y , written Yn

r→ Y, if

E(|Yn − Y |r) → 0

as n→ ∞. In particular, if r = 2, Yn converges in quadratic mean to Y ,
written

Yn
2→ Y or Yn

qm→ Y,

if E[(Yn − Y )2] → 0 as n → ∞. We say that Xn converges in rth mean to
τ (θ), written

Xn
r→ τ (θ),
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if E(|Yn − τ (θ)|r) → 0 as n→ ∞.

Convergence in quadratic mean is also known as convergence in mean
square and as mean square convergence. From Definition 1.41, the mean
square error MSEτ(θ)(Xn) = Eθ[(Xn − τ (θ))2]. The notations Yn

r→ Y,

Yn
Lr→ Y, and Yn

Lr

→ Y are used in the literature, especially for r ≥ 1.

Theorem 2.8: Generalized Chebyshev’s Inequality or Generalized
Markov’s Inequality: Let u : R → [0,∞) be a nonnegative function. If
E[u(Y )] exists then for any c > 0,

P [u(Y ) ≥ c] ≤ E[u(Y )]

c
.

If µ = E(Y ) exists, then taking u(y) = |y− µ|r and c̃ = cr gives
Markov’s Inequality: for r > 0 with E[|Y − µ|r] finite and for any c > 0,

P (|Y − µ| ≥ c] = P (|Y − µ|r ≥ cr ] ≤ E[|Y − µ|r]
cr

.

If r = 2 and σ2 = V (Y ) exists, then we obtain
Chebyshev’s Inequality:

P (|Y − µ| ≥ c] ≤ V (Y )

c2
.

Proof. The proof is given for pdfs. For pmfs, replace the integrals by sums.
Now

E[u(Y )] =

∫

R

u(y)f(y)dy =

∫

{y:u(y)≥c}
u(y)f(y)dy +

∫

{y:u(y)<c}
u(y)f(y)dy

≥
∫

{y:u(y)≥c}
u(y)f(y)dy

since the integrand u(y)f(y) ≥ 0. Hence

E[u(Y )] ≥ c

∫

{y:u(y)≥c}
f(y)dy = cP [u(Y ) ≥ c]. �

Note: if E[|Y − µ|k] is finite and k > 0, then E[|Y − µ|r] is finite for
0 < r ≤ k. See Theorem 2.21.

The following theorem gives sufficient conditions for Tn to be a consistent
estimator of τ (θ), or for Tn to converge in probability to τ (θ). Notice that

MSEτ(θ)(Tn) → 0 for all θ ∈ Θ is equivalent to Tn
qm→ τ (θ) for all θ ∈ Θ.

Theorem 2.9. a) If
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lim
n→∞

MSEτ(θ)(Tn) = 0

for all θ ∈ Θ, then Tn is a consistent estimator of τ (θ).

b) If
lim
n→∞

Vθ(Tn) = 0 and lim
n→∞

Eθ(Tn) = τ (θ)

for all θ ∈ Θ, then Tn is a consistent estimator of τ (θ).

c) If
lim
n→∞

MSEτ(θ)(Tn) = 0,

then Tn
P→ τ (θ).

d) If
lim
n→∞

Vθ(Tn) = 0 and lim
n→∞

Eθ(Tn) = τ (θ),

then Tn
P→ τ (θ).

Proof. a) and c): Using Theorem 2.8 with Y = Tn, u(Tn) = (Tn − τ (θ))2

and c = ε2 shows that for any ε > 0,

Pθ(|Tn − τ (θ)| ≥ ε) = Pθ[(Tn − τ (θ))2 ≥ ε2] ≤ Eθ[(Tn − τ (θ))2 ]

ε2
.

Hence
lim
n→∞

Eθ[(Tn − τ (θ))2] = lim
n→∞

MSEτ(θ)(Tn) → 0

is a sufficient condition for Tn to be a consistent estimator of τ (θ), and for

Tn
P→ τ (θ).

b) and d): Referring to Definition 1.41,

MSEτ(θ)(Tn) = Vθ(Tn) + [Biasτ(θ)(Tn)]
2

where Biasτ(θ)(Tn) = Eθ(Tn)− τ (θ). Since MSEτ(θ)(Tn) → 0 if both Vθ(Tn)
→ 0 and Biasτ(θ)(Tn) = Eθ(Tn) − τ (θ) → 0, the result follows from a). �

Remark 2.5. We want conditions A ⇒ B where B is Xn
P→ X. A ⇒ B

does not mean that if A does not hold, then B does not hold. A⇒ B means
that if A holds, then B holds. A common error is for the student to say A
does not hold, so Xn does not converge in probability to X.

Theorem 2.10. a) Suppose Xn and X are RVs with the same probability

space. If Xn
P→ X, then Xn

D→ X.

b) Xn
P→ τ (θ) iff Xn

D→ τ (θ).

Theorem 2.11. If Xn
r→ X, then Xn

P→ X.
Proof.

P [|Xn−X| ≥ ε] = P [|Xn −X|r ≥ εr] ≤ E[|Xn −X|r ]
εr

→ 0
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as n → ∞ by the Generalized Chebyshev Inequality. �

The following result shows estimators that converge at a
√
n rate are con-

sistent. Use this result and the delta method to show that g(Tn) is a consistent
estimator of g(θ). Note that b) follows from a) with Xθ ∼ N(0, v(θ)). The
WLLN shows that Y is a consistent estimator of E(Y ) = µ if E(Y ) exists.

Theorem 2.12. a) Let Xθ be a random variable with a distribution de-
pending on θ, and 0 < δ ≤ 1. Suppose

nδ(Tn − τ (θ))
D→ Xθ

for all θ ∈ Θ, then Tn is a consistent estimator of τ (θ). If the convergence

holds for a fixed θ, then Tn
P→ τ (θ).

b) If √
n(Tn − τ (θ))

D→ N(0, v(θ))

for all θ ∈ Θ, then Tn is a consistent estimator of τ (θ).

Definition 2.9. a) A sequence of random variables Xn converges with
probability 1 (or almost surely, or almost everywhere) to X if

P ( lim
n→∞

Xn = X) = 1.

This type of convergence will be denoted by

Xn
wp1→ X.

b)

Xn
wp1→ τ (θ),

if P ( lim
n→∞

Xn = τ (θ)) = 1.

The convergence in Definition 2.9 is also known as strong convergence.
Notation such as “Xn converges to X wp1” will also be used. Sometimes
“wp1” will be replaced with “as” or “ae.” The notations Xn

ae→ X, Xn
as→ X,

and Xn
wp1→ X are often used.

Theorem 2.13. Let Yi be a sequence of iid random variables withE(Yi) =
µ. Then

a) Strong Law of Large Numbers (SLLN): Y n
wp1→ µ, and

b) Weak Law of Large Numbers (WLLN): Y n
P→ µ.

Proof of WLLN when V (Yi) = σ2: By Chebyshev’s inequality, for every
ε > 0,

P (|Y n − µ| ≥ ε) ≤ V (Y n)

ε2
=

σ2

nε2
→ 0
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as n → ∞. �

Remark 2.6. a) For i) Xn
P→ X, ii) Xn

r→ X, or iii) Xn
wp1→ X, the Xn

and X need to be defined on the same probability space.

b) For Xn
D→ X, the probability spaces can differ.

c) For i) Xn
P→ c, ii)Xn

wp1→ c, iii)Xn
D→ c, and iv)Xn

r→ c, the probability
spaces of the Xn can differ.

d) Warning: For the SLLN and WLLN, students often forget that V (Yi) =
σ2 is not needed. Only need the Yi iid with E(Yi) = µ.

Theorem 2.14: a) Tn
P→ τ (θ) iff Tn

D→ τ (θ).

b) If Tn
P→ θ and τ is continuous at θ, then τ (Tn)

P→ τ (θ). Hence if Tn is
a consistent estimator of θ, then τ (Tn) is a consistent estimator of τ (θ) if τ
is a continuous function on Θ.

Theorem 2.15: Suppose Xn and X are RVs with the same probability
space for b) and c). Let g : R → R be a continuous function.

a) If Xn
D→ X, then g(Xn)

D→ g(X).

b) If Xn
P→ X, then g(Xn)

P→ g(X).

c) If Xn
ae→ X, then g(Xn)

ae→ g(X).

Theorem 2.16: Suppose Xn and X are RVs with the same probability
space.

a) If Xn
wp1→ X, then Xn

P→ X and Xn
D→ X.

b) If Xn
P→ X, then Xn

D→ X.

c) If Xn
r→ X, then Xn

P→ X and Xn
D→ X.

d) Xn
P→ τ (θ) iff Xn

D→ τ (θ) where c = τ (θ) is a constant.

Theorem 2.17: a) If E[(Xn −X)2] → 0 as n→ ∞, then Xn
P→ X.

b) If E(Xn) → E(X) and V (Xn −X) → 0 as n→ ∞, then Xn
P→ X.

Note: Part a) follows from Theorem 2.16 c) with r = 2. See Theorem 2.9
if P (X = τ (θ)) = 1.

Theorem 2.18: Let Xn have pdf fXn(x), and let X have pdf fX(x). If
fXn(x) → fX(x) for all x (or for x outside of a set of Lebesgue measure 0),

then Xn
D→ X.

Theorem 2.19 is a special case of Theorem 2.15.

Theorem 2.19: Let g : R → R be continuous at constant c.

a) If Xn
D→ c, then g(Xn)

D→ g(c).

b) If Xn
P→ c, then g(Xn)

P→ g(c).

c) If Xn
ae→ c, then g(Xn)

ae→ g(c).

Theorem 2.20: Suppose Xn and X are integer valued RVs with pmfs

fXn(x) and fX(x). Then Xn
D→ X iff P (Xn = k) → P (X = k) for every

integer k iff fXn(x) → fX(x) for every real x.
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The following theorem uses the fact that E(W ) is finite iff E(|W |) is finite.

Theorem 2.21: Let k > 0. If E(Xk) is finite, then E(Xj) is finite for
0 < j ≤ k.

Proof. If |y| ≤ 1, then |yj | = |y|j ≤ 1. If |y| > 1 then |y|j ≤ |y|k. Thus
|y|j ≤ |y|k + 1 and |X|j ≤ |X|k + 1. Hence E[|X|j] ≤ E[|X|k] + 1 <∞. �

Theorem 2.22, Jensen’s Inequality:

g[E(X)] ≤ E[g(X)]

if the expected values exist and the function g is convex on an interval con-
taining the range of X.

Proof for when g is twice differentiable: Assume that g′′(x) ≥ 0 on
the interval containing the range of X. The Taylor’s series expansion of g(x)
about µ = E(X) gives (for x in the interval)

g(x) = g(µ) + g′(µ)(x − µ) +
g′′(η)(x− µ)2

2

where η is some value between x and µ. Thus g(x) ≥ g(µ)+ g′(µ)(x−µ) and
g(X) ≥ g(µ) + g′(µ)(X − µ). Taking expectations gives

E[g(X)] ≥ g(µ) + g′(µ)E(X − µ) = g(µ) = g(E[X]). �

Remark 2.7. a) Let (a, b) be an open interval where a = −∞ and b = ∞
are allowed. A sufficient condition for a function g to be convex on an open
interval (a, b) is g′′(x) ≥ 0 on (a, b). If (a, b) = (0,∞) and g is continuous on
[0,∞) and convex on (0,∞), then g is convex on [0,∞).
b) If X is a positive RV, then the range of X is (0,∞).

Theorem 2.23.: If Xn
r→ X, then Xn

k→ X where 0 < k < r.

Proof. Let Un = |Xn −X|r and Wn = |Xn −X|k. then Un = W t
n where

t = r/k > 1. The function g(x) = xt is convex on [0,∞). By Jensen’s
inequality,

E[|Xn −X|r] = E[Un] = E[W t
n] ≥ (E[Wn])

t = (E[|Xn −X|k])r/k

for r > k. Thus limn→∞E[|Xn−X|r = 0 implies that limn→∞E[|Xn−X|k =
0 for 0 < k < r. �

Example 2.13. a) Let P (Xn = n) = 1/n and P (Xn = 0) = 1 − 1/n.

Hence Xn is discrete and takes on two values with E(Xn) = n
1

n
= 1 for all

positive integers n. Hence E[|Xn − 0|] = E(Xn) = 1 ∀n and Xn does not

satisfy Xn
1→ 0. Let ε > 0. Then

P [|Xn − 0| ≥ ε] ≤ P (Xn = n) =
1

n
→ 0
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as n → ∞. Hence Xn
P→ 0 and Xn

D→ 0.

b) Let P (Xn = 0) = 1 − 1

n
and P (Xn = 1) = 1/n. Hence Xn is discrete

and takes on two values with

E[(Xn − 0)2] = E(X2
n) =

∑
x2P (Xn = x) = 02(1 − 1

n
) + 12 1

n
=

1

n
→ 0

as n → ∞. Hence Xn
2→ 0, Xn

P→ 0, and Xn
D→ 0. Note that

E[|Xn − 0|] = E(Xn) =
1

n
→ 0.

Hence Xn
1→ 0 as expected by Theorem 2.23 since Xn

2→ 0.

Theorem 2.24.: Let Xn have pdf fXn(x), and let X have pdf fX(x). If
fXn(x) → fX(x) for all x (or for x outside of a set of Lebesgue measure 0),

then Xn
D→ X.

Theorem 2.25.: Suppose Xn and X are integer valued RVs with pmfs

fXn(x) and fX(x). Then Xn
D→ X iff P (Xn = k) → P (X = k) for every

integer k iff fXn(x) → fX(x) for every real x.

2.4 Slutsky’s Theorem and Related Results

Theorem 2.26. Suppose Xn andX are RVs with the same probability space.

a) If Xn
P→ X, then Xn

D→ X.

b) If Xn
wp1→ X, then Xn

P→ X and Xn
D→ X.

c) If Xn
r→ X, then Xn

P→ X and Xn
D→ X.

d) Xn
P→ τ (θ) iff Xn

D→ τ (θ).

e) If Xn
D→ X and Xn

D→ Y , then X
D
= Y and FX(x) = FY (x) for all real x.

Partial Proof. a) See Theorem 2.10. c) See Theorem 2.11. d) See Theorem
2.10.

e) Suppose X has cdf F and Y has cdf G. Then F and G agree at their
common points of continuity. Hence F and G agree at all but countably many
points since F and G are cdfs. Hence F and G agree at all points by right
continuity. �

Note: If Xn
A→ X and Xn

A→ Y , then X
D
= Y where A is wp1, r, or P .

This result holds by Theorem 2.26 e) since if Xn
A→ X and Xn

A→ Y , then

Xn
D→ X and Xn

D→ Y .

Theorem 2.27: Slutsky’s Theorem. Suppose Yn
D→ Y and Wn

P→ w
for some constant w. Then
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a) Yn +Wn
D→ Y + w,

b) YnWn
D→ wY, and

c) Yn/Wn
D→ Y/w if w 6= 0.

Remark 2.8. Note that Yn
A→ Y implies Yn

D→ Y where A = wp1, r, or

P . Also Wn
P→ w iff Wn

D→ w. If a sequence of constants cn → c as n → ∞
(regular convergence is everywhere convergence), then cn

wp1→ c and cn
P→ c.

So Wn
P→ w can be replaced by Wn

B→ w where B = D,wp1, r, P, or regular
convergence.

i) So Slutsky’s theorem a), b), and c) hold if Yn
A→ Y and Wn

B→ w.

ii) If Y ≡ y where y is a constant, then Yn
A→ y and Wn

B→ w implies that

a), b) and c) hold with Y replaced by y, and
D→ can be replaced by

P→.

iii) If Yn
D→ Y , an

P→ a, and bn
P→ b, then an + bnYn

D→ a + bY .

Theorem 2.28. a) IfXn
P→ θ and τ is continuous at θ, then τ (Xn)

P→ τ (θ).

b) If Xn
D→ θ and τ is continuous at θ, then τ (Xn)

D→ τ (θ).

Theorem 2.28 is a special case of the continuous mapping theorem. See

Theorem 2.30. Suppose that for all θ ∈ Θ, Tn
D→ τ (θ), Tn

r→ τ (θ) or Tn
wp1→

τ (θ). Then Tn is a consistent estimator of τ (θ) by Theorem 2.26. We are
assuming that the function τ does not depend on n since we want a single
function τ (θ) rather than a sequence of functions τn(θ). See Remark 2.1 b).

Example 2.14. Let Y1, ..., Yn be iid with mean E(Yi) = µ and variance
V (Yi) = σ2. Then the sample mean Y n is a consistent estimator of µ since
i) the SLLN holds (use Theorem 2.13 and 2.26), ii) the WLLN holds and iii)
the CLT holds (use Theorem 2.12). Since

lim
n→∞

Vµ(Y n) = lim
n→∞

σ2/n = 0 and lim
n→∞

Eµ(Y n) = µ,

Y n is also a consistent estimator of µ by Theorem 2.9b. By the delta method
and Theorem 2.12b, Tn = g(Y n) is a consistent estimator of g(µ) if g′(µ) 6= 0
for all µ ∈ Θ. By Theorem 2.28a, g(Y n) is a consistent estimator of g(µ) if g
is continuous at µ for all µ ∈ Θ.

Theorem 2.29: Continuity Theorem. Let Yn be sequence of random
variables with characteristic functions φn(t). Let Y be a random variable
with cf φ(t).

a)

Yn
D→ Y iff φn(t) → φ(t) ∀t ∈ R.
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b) Also assume that Yn has mgf mn and Y has mgf m. Assume that
all of the mgfs mn and m are defined on |t| ≤ d for some d > 0. Then if

mn(t) → m(t) as n→ ∞ for all |t| < c where 0 < c < d, then Yn
D→ Y .

The following theorem is often part of the continuity theorem in the liter-
ature, and helps explain why Theorem 2.29 is called the continuity theorem.

Theorem 2.30: If limn→∞ cXn(t) = g(t) for all t where g is continuous
at t = 0, then g(t) = cX(t) is a characteristic function for some RV X, and

Xn
D→ X.

Remark 2.9. a) Continuity at t = 0 implies continuity everywhere since
g(t) = cX(t) is continuous. If g(t) is not continuous at 0, then Xn does not
converge in distribution.

b) If cYn(t) → h(t) where h(t) is not continuous, then Yn does not converge
in distribution to any RV Y , by the Continuity Theorem and a).

c) Warning: cXn(0) ≡ 1, but cXn(0) → 1 as n → ∞ does not imply that
g is continuous at t = 0 if limn→∞ cXn(t) = g(t) for all real t.

d) Let X1, ..., Xn be independent RVs with characteristic functions cXj (t).

Then the characteristic function of
∑n

j=1Xj is c∑n
j=1 Xj

(t) =
n∏

j=1

cXj (t). If

the RVs also have mgfs mXj (t), then the mgf of
∑n

j=1Xj is m∑
n
j=1Xj

(t) =
n∏

j=1

mXj (t).

Theorem 2.31, Helly-Bray-Pormanteau Theorem: Xn
D→ X iff

E[g(Xn)] → E[g(X)] for every bounded, real, continuous function g.

The above theorem is used to prove Theorem 2.32 b).

Theorem 2.32. a) Generalized Continuous Mapping Theorem: If

Xn
D→ X and the function g is such that P [X ∈ C(g)] = 1 where C(g) is the

set of points where g is continuous, then g(Xn)
D→ g(X).

b) Continuous Mapping Theorem: If Xn
D→ X and the function g is

continuous, then g(Xn)
D→ g(X).

Proof of the Continuous Mapping Theorem: If g is real and contin-
uous, then cos[tg(x)] and sin[tg(x)] are bounded real continuous functions.
Hence by the Helly-Bray-Pormanteau theorem, for each real t, the character-
istic function

cg(Xn)(t) = E[eitg(Xn)] = E(cos[tg(Xn)]) + iE(sin[tg(Xn)]) →
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E(cos[tg(X)]) + iE(sin[tg(X)]) = E[eitg(X)] = cg(X)(t).

Thus g(Xn)
D→ g(X) by the continuity theorem. �

Remark 2.10. For Theorem 2.26, a) follows from Slutsky’s Theorem by

taking Yn ≡ X = Y and Wn = Xn − X. Then Yn
D→ Y = X and Wn

P→ 0.

Hence Xn = Yn +Wn
D→ Y + 0 = X. The convergence in distribution parts

of b) and c) follow from a). Theorem 2.28b follows from Theorems 2.26d)
and 2.28a). Theorem 2.28a) implies that if Tn is a consistent estimator of θ
and τ is a continuous function, then τ (Tn) is a consistent estimator of τ (θ).
Theorem 2.32 says that convergence in distribution is preserved by continuous
functions, and even some discontinuities are allowed as long as the set of
continuity points is assigned probability 1 by the asymptotic distribution.
Equivalently, the set of discontinuity points is assigned probability 0.

Example 2.15. (Ferguson 1996, p. 40): If Xn
D→ X then 1/Xn

D→ 1/X if
X is a continuous random variable since P (X = 0) = 0 and x = 0 is the only
discontinuity point of g(x) = 1/x.

Example 2.16. Show that if Yn ∼ tn, a t distribution with n degrees of

freedom, then Yn
D→ Z where Z ∼ N(0, 1).

Solution: Yn
D
= Z/

√
Vn/n where Z Vn ∼ χ2

n. If Wn =
√
Vn/n

P→ 1,

then the result follows by Slutsky’s Theorem. But Vn
D
=
∑n

i=1Xi where the

iid Xi ∼ χ2
1. Hence Vn/n

P→ 1 by the WLLN and
√
Vn/n

P→ 1 by Theorem
2.28a.

Before reading the proof for the CLT, review Remarks 1.3 and 1.4.

Remark 2.11, Notes for Proving the CLT. a) Suppose the Yi are
iid with characteristic function cY (t). Then E(Yi − µ) = 0 and V (Yi − µ) =
E[(Yi − µ)2] = σ2. Thus by Remark 1.3,

CY−µ(t) = 1 − σ2

2
t2 + o(t2) and

CY−µ

(
t

σ
√
n

)
= 1 − t2

2n
+ o(t2/n)

where
o(t2/n)

t2/n
→ 0

as n → ∞. Hence n o(t2/n) → 0 as n→ 0.
b) Let the Z-score of Y n be

Zn =

√
n(Y − µ)

σ
=
Y − µ

σ/
√
n

=

∑n
i=1 Yi − nµ

σ
√
n

=

∑n
i=1(Yi − µ)

σ
√
n
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where the Yi− µ are iid with characteristic function cY−µ(t). Then the char-

acteristic function of
Yi − µ

σ
√
n

is cY−µ

(
t

σ
√
n

)
, and the characteristic function

of Zn is

cZn(t) =

[
cY−µ

(
t

σ
√
n

)]n
.

If cZn(t) → cZ(t), theN(0, 1) characteristic function, then σZn =
√
n(Y n−µ)

has
cσZn(t) → cσZ(t) = cZ(σt) = e−σ

2t2/2,

the N(0, σ2) characteristic function, and the CLT holds.
Proof of the CLT: Let Zn be the Z-score of Y n. By Remark 2.11,

cZn(t) =

[
1 − t2

2n
+ o(t2/n)

]n
=

[
1 −

t2

2
− n o(t2/n)

n

]n
→ e−t

2/2 = cZ(t)

for all t by Remark 1.3b). Thus Zn
D→ Z ∼ N(0, 1) and σZn =

√
n(Y n−µ)

D→
N(0, σ2). �

The next proof does not use characteristic functions, but only applies to iid
random variables Yi that have a moment distribution function. Thus E(Y ji )
exists for each positive integer j. The CLT only needs E(Y ) and E(Y 2) to
exist. In the proof, k(t) = log(m(t)) is the cumulant generating function with
k′(0) = E(X) and k′′(x) = V (X).

L’Hôspital’s Rule: Suppose functions f(x) → 0 and g(x) → 0 as x ↓ d,
x ↑ d, x→ d, x → ∞, or x → −∞. If

f ′(x)

g′(x)
→ L then

f(x)

g(x)
→ L

as x ↓ d, x ↑ d, x→ d, x→ ∞, or x→ −∞.

Proof of a Special Case of the CLT. Following Rohatgi (1984, pp.
569-9) and Tardiff (1981), let Y1, ..., Yn be iid with mean µ, variance σ2 and
mgf mY (t) for |t| < to. Then

Zi =
Yi − µ

σ

has mean 0, variance 1 and mgf mZ(t) = exp(−tµ/σ)mY (t/σ) for |t| < σto.
Want to show that

Wn =
√
n

(
Y n − µ

σ

)
D→ N(0, 1).
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Notice that Wn =

n−1/2
n∑

i=1

Zi = n−1/2
n∑

i=1

(
Yi − µ

σ

)
= n−1/2

∑n
i=1 Yi − nµ

σ
=
n−1/2

1
n

Y n − µ

σ
.

Thus

mWn(t) = E(etWn) = E[exp(tn−1/2
n∑

i=1

Zi)] = E[exp(
n∑

i=1

tZi/
√
n)]

=

n∏

i=1

E[etZi/
√
n] =

n∏

i=1

mZ(t/
√
n) = [mZ(t/

√
n)]n.

The cumulant generating function kZ(t) = log(mZ(x)). Then

kWn(t) = log[mWn(t)] = n log[mZ(t/
√
n)] = nkZ(t/

√
n) =

kZ(t/
√
n)

1
n

.

Now kZ(0) = log[mZ(0)] = log(1) = 0. Thus by L’Hôpital’s rule (where the
derivative is with respect to n), limn→∞ log[mWn(t)] =

lim
n→∞

kZ(t/
√
n )

1
n

= lim
n→∞

k′Z(t/
√
n )[−t/2

n3/2 ]

(−1
n2 )

=
t

2
lim
n→∞

k′Z(t/
√
n )

1√
n

.

Now k′Z(0) = E(Zi) = 0, so L’Hôpital’s rule can be applied again, giving
limn→∞ log[mWn(t)] =

t

2
lim
n→∞

k′′Z(t/
√
n )[ −t

2n3/2 ]

( −1
2n3/2 )

=
t2

2
lim
n→∞

k′′Z(t/
√
n ) =

t2

2
k′′Z(0).

Now k′′Z(0) = V (Zi) = 1. Hence limn→∞ log[mWn(t)] = t2/2 and

lim
n→∞

mWn(t) = exp(t2/2)

which is the N(0,1) mgf. Thus by the continuity theorem,

Wn =
√
n

(
Y n − µ

σ

)
D→ N(0, 1). �

By Theorem 2.34, dnFg,dn,1−δ → χ2
g,1−δ as dn → ∞. Here P (X ≤

χ2
g,1−δ) = 1 − δ if X ∼ χ2

g, and P (X ≤ Fg,dn,1−δ) = 1 − δ if X ∼ Fg,dn .

Theorem 2.34. If Wn ∼ Fr,dn where the positive integer dn → ∞ as

n→ ∞, then rWn
D→ χ2

r.
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Proof. If X1 ∼ χ2
d1

X2 ∼ χ2
d2
, then

X1/d1

X2/d2
∼ Fd1,d2 .

If Ui ∼ χ2
1 are iid then

∑k
i=1 Ui ∼ χ2

k. Let d1 = r and k = d2 = dn. Hence if
X2 ∼ χ2

dn
, then

X2

dn
=

∑dn

i=1 Ui

dn
= U

P→ E(Ui) = 1

by the law of large numbers. Hence if W ∼ Fr,dn , then rWn
D→ χ2

r . �

Example 2.17. a) Let Xn ∼ bin(n, pn) where npn = λ > 0 for all positive
integers n. Then the mgf mXn(t) = (1 − pn + pne

t)n for all t. Thus

mXn(t) =

(
1 − λ

n
+
λ

n
et
)n

=

(
1 +

λ(et − 1)

n

)n
→ eλ(et−1) = mX(t)

for all t where X ∼ POIS(λ). Hence Xn
D→ X ∼ POIS(λ) by the continuity

theorem.
b) Now let Xn ∼ bin(n, pn) where npn → λ > 0 as n → ∞. Thus

mXn(t) =

(
1 +

−npn + npne
t

n

)n
→ eλ(et−1) = mX(t)

for all t since (
1 +

cn
n

)n
→ ec

if cn → c. Here c = −λ+λet = λ(et− 1). See Remark 1.4. Hence Xn
D→ X ∼

POIS(λ) by the continuity theorem.

Note: In the above example, a) is easier, and making assumptions that
make the large sample theory easier is a useful techniques.

2.5 Order Relations and Convergence Rates

Definition 2.10. Lehmann (1999, p. 53-54): a) A sequence of random vari-
ables Wn is tight or bounded in probability, written Wn = OP (1), if for every
ε > 0 there exist positive constants Dε and Nε such that

P (|Wn| ≤ Dε) ≥ 1 − ε

for all n ≥ Nε. Also Wn = OP (Xn) if |Wn/Xn| = OP (1).
b) The sequence Wn = oP (n−δ) if nδWn = oP (1) which means that
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nδWn
P→ 0.

c) Wn has the same order as Xn in probability, written Wn �P Xn, if for
every ε > 0 there exist positive constants Nε and 0 < dε < Dε such that

P (dε ≤
∣∣∣∣
Wn

Xn

∣∣∣∣ ≤ Dε) ≥ 1 − ε

for all n ≥ Nε.
d) Similar notation is used for a k × r matrix An = [ai,j(n)] if each

element ai,j(n) has the desired property. For example, An = OP (n−1/2) if
each ai,j(n) = OP (n−1/2).

Definition 2.11. Let β̂n be an estimator of a p × 1 vector β, and let

Wn = ‖β̂n − β‖.
a) If Wn �P n−δ for some δ > 0, then both Wn and β̂n have (tightness)

rate nδ.
b) If there exists a constant κ such that

nδ(Wn − κ)
D→ X

for some nondegenerate random variable X, then both Wn and β̂n have
convergence rate nδ .

Theorem 2.35. Suppose there exists a constant κ such that

nδ(Wn − κ)
D→ X.

a) Then Wn = OP (n−δ).
b) If X is not degenerate, then Wn �P n−δ .

The above result implies that if Wn has convergence rate nδ, then Wn has
tightness rate nδ, and the term “tightness” will often be omitted. Part a) is
proved, for example, in Lehmann (1999, p. 67).

The following result shows that if Wn �P Xn, then Xn �P Wn, Wn =
OP (Xn) and Xn = OP (Wn). Notice that if Wn = OP (n−δ), then nδ is
a lower bound on the rate of Wn. As an example, if the CLT holds then
Y n = OP (n−1/3), but Y n �P n−1/2.

Theorem 2.36. a) If Wn �P Xn then Xn �P Wn.
b) If Wn �P Xn then Wn = OP (Xn).
c) If Wn �P Xn then Xn = OP (Wn).
d) Wn �P Xn iff Wn = OP (Xn) and Xn = OP (Wn).

Proof. a) Since Wn �P Xn,
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P (dε ≤
∣∣∣∣
Wn

Xn

∣∣∣∣ ≤ Dε) = P (
1

Dε
≤
∣∣∣∣
Xn
Wn

∣∣∣∣ ≤
1

d ε
) ≥ 1 − ε

for all n ≥ Nε. Hence Xn �P Wn.
b) Since Wn �P Xn,

P (|Wn| ≤ |XnDε|) ≥ P (dε ≤
∣∣∣∣
Wn

Xn

∣∣∣∣ ≤ Dε) ≥ 1 − ε

for all n ≥ Nε. Hence Wn = OP (Xn).
c) Follows by a) and b).
d) If Wn �P Xn, then Wn = OP (Xn) and Xn = OP (Wn) by b) and c).

Now suppose Wn = OP (Xn) and Xn = OP (Wn). Then

P (|Wn| ≤ |Xn|Dε/2) ≥ 1 − ε/2

for all n ≥ N1, and

P (|Xn| ≤ |Wn|1/dε/2) ≥ 1 − ε/2

for all n ≥ N2. Hence

P (A) ≡ P (

∣∣∣∣
Wn

Xn

∣∣∣∣ ≤ Dε/2) ≥ 1 − ε/2

and

P (B) ≡ P (dε/2 ≤
∣∣∣∣
Wn

Xn

∣∣∣∣) ≥ 1 − ε/2

for all n ≥ N = max(N1, N2). Since P (A∩B) = P (A)+P (B)−P (A∪B) ≥
P (A) + P (B) − 1,

P (A ∩B) = P (dε/2 ≤
∣∣∣∣
Wn

Xn

∣∣∣∣ ≤ Dε/2) ≥ 1 − ε/2 + 1 − ε/2− 1 = 1 − ε

for all n ≥ N. Hence Wn �P Xn. �

The following result is used to prove the following Theorem 2.38 which says
that if there are K estimators Tj,n of a parameter β, such that ‖Tj,n−β‖ =
OP (n−δ) where 0 < δ ≤ 1, and if T ∗

n picks one of these estimators, then
‖T ∗

n − β‖ = OP (n−δ).

Theorem 2.37: Pratt (1959). Let X1,n, ..., XK,n each be OP (1) where
K is fixed. Suppose Wn = Xin,n for some in ∈ {1, ..., K}. Then

Wn = OP (1). (2.8)

Proof.
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P (max{X1,n, ..., XK,n} ≤ x) = P (X1,n ≤ x, ..., XK,n ≤ x) ≤

FWn(x) ≤ P (min{X1,n, ..., XK,n} ≤ x) = 1 − P (X1,n > x, ..., XK,n > x).

SinceK is finite, there exists B > 0 andN such that P (Xi,n ≤ B) > 1−ε/2K
and P (Xi,n > −B) > 1 − ε/2K for all n > N and i = 1, ..., K. Bonferroni’s

inequality states that P (∩Ki=1Ai) ≥
∑K
i=1 P (Ai) − (K − 1). Thus

FWn(B) ≥ P (X1,n ≤ B, ..., XK,n ≤ B) ≥

K(1 − ε/2K)− (K − 1) = K − ε/2 −K + 1 = 1 − ε/2

and
−FWn(−B) ≥ −1 + P (X1,n > −B, ..., XK,n > −B) ≥

−1 +K(1 − ε/2K) − (K − 1) = −1 +K − ε/2−K + 1 = −ε/2.
Hence

FWn(B) − FWn(−B) ≥ 1 − ε for n > N. �

Theorem 2.38. Suppose ‖Tj,n − β‖ = OP (n−δ) for j = 1, ..., K where
0 < δ ≤ 1. Let T ∗

n = Tin,n for some in ∈ {1, ..., K} where, for example, Tin,n
is the Tj,n that minimized some criterion function. Then

‖T ∗
n − β‖ = OP (n−δ). (2.9)

Proof. Let Xj,n = nδ‖Tj,n−β‖. Then Xj,n = OP (1) so by Theorem 2.37,
nδ‖T ∗

n − β‖ = OP (1). Hence ‖T ∗
n − β‖ = OP (n−δ). �

2.6 More CLTs

Remark 2.12. For each positive integer n, let Wn1, ...,Wnrn be independent.
The probability space may change with n, giving a triangular array of random

variables. Let E[Wnk] = 0, V (Wnk) = E[W 2
nk] = σ2

nk, and s2n =

rn∑

k=1

σ2
nk =

V [

rn∑

k=1

Wnk]. Then

Zn =

∑rn

k=1Wnk

sn

is the z-score of
∑rn

k=1Wnk.

For the above remark, let rn = n. Then the triangular array is shown
below.
W11

W21,W22



2.6 More CLTs 83

W31,W32,W33
...
Wn1,Wn2,Wn3, ...,Wnn
...

Theorem 2.39, Lyapounov’s CLT: Under Remark 2.12, assume the
|Wnk|2+δ are integrable for some δ > 0. Assume Lyapounov’s condition:

lim
n→∞

rn∑

k=1

E[|Wnk|2+δ]

s2+δ
n

= 0. (2.10)

Then

Zn =

∑rn

k=1Wnk

sn

D→ N(0, 1).

Theorem 2.39 can be proved using Theorem 2.40. Note that Zn is the
Z-score of

∑rn

k=1Wnk.

Example 2.18. Special cases: i) rn = n and Wnk = Wk has W1, ...,Wn, ...
independent with s2n =

∑n
k=1 σ

2
k.

ii) Wnk = Xnk −E(Xnk) = Xnk − µnk has

∑rn

k=1(Xnk − µnk)

sn

D→ N(0, 1).

iii) Suppose X1, X2, ... are independent with E(Xi) = µi and V (Xi) = σ2
i .

Let

Zn =

∑n
i=1Xi −

∑n
i=1 µi

(
∑n

i=1 σ
2
i )

1/2

be the z-score of
∑n

i=1Xi. Assume E[|Xi − µi|3] <∞ for all n ∈ N and

lim
n→∞

∑n
i=1 E[|Xi − µi|3]
(
∑n

i=1 σ
2
i )

3/2
= 0. (2.11)

Then Zn
D→ N(0, 1).

Proof of iii): Take Wnk = Xk − µk, δ = 1, s2n =
∑n

k=1 σ
2
k, and apply

Lyapounov’s CLT. Note that

(
n∑

k=1

σ2
k

)3/2

= (s2n)3/2 = s3n = s2+1
n .

�

The (Lindeberg-Lévy) CLT has the Xi iid with V (Xi) = σ2 < ∞. The
Lyapounov CLT in Example 2.18 iii) has the Xi independent (not necessar-
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ily identically distributed), but needs stronger moment conditions to satisfy
Equation (2.11) or (2.12).

Theorem 2.40, Lindeberg CLT: Let the Wnk satisfy Remark 2.12 and
Lindeberg’s condition

lim
n→∞

rn∑

k=1

E(W 2
nk I[|Wnk| ≥ εsn])

s2n
= 0 (2.12)

for any ε > 0. Then

Zn =

∑rn

k=1Wnk

sn

D→ N(0, 1).

Note: The Lindeberg CLT is sometimes called the Lindeberg-Feller CLT.

Lindeberg’s condition is nearly necessary for Zn =

∑rn

k=1Wnk

sn

D→ N(0, 1).

Example 2.19. a) Special case of the Lindeberg CLT: Let rn = n and let
the Wnk = Wk be independent. If

lim
n→∞

n∑

k=1

E(W 2
k I[|Wk| ≥ εsn])

s2n
= 0

for any ε > 0. Then

Zn =

∑n
k=1Wk

sn

D→ N(0, 1).

b) uniformly bounded sequence: Let rn = n and Wnk = Wk. If there
is a constant c > 0 such that P (|Wk| < c) = 1 ∀k, and if sn → ∞ as n→ ∞,
then Lindeberg’s CLT holds.

c) Let rn = n and let the Wnk = Wk be iid with V (Wk) = σ2 ∈ (0,∞).
Then Lindeberg’s CLT holds. (Taking Wi = Xi − µ proves the usual CLT
with the Lindeberg CLT.)

d) If Lyapunov’s condition holds, then Lindeberg’s condition holds. Hence
the Lindeberg CLT proves the Lyapounov CLT.

Example 2.20. DeGroot (1975, pp. 229-230): Suppose the Xi are in-
dependent Ber(pi) ∼ bin(m = 1, pi) random variables with E(Xi) = pi,
V (Xi) = piqi, qi = 1 − pi, and

∑∞
i=1 piqi = ∞. Prove that

Zn =

∑n
i=1Xi −

∑n
i=1 pi

(
∑n

i=1 piqi)
1/2

D→ N(0, 1)

as n → ∞.
Proof. Let Yi = |Wi| = |Xi − pi|. Then P (Yi = 1 − pi) = pi and

P (Yi = qi) = qi. Thus
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E[|Xi − pi|3] = E[|Wi|3] =
∑

y

y3f(y) = (1 − pi)
3pi + p3

i qi = q3i pi + p3
i qi

= piqi(p
2
i + q2i ) ≤ piqi

since p2
i +q2i ≤ (Pi+qi)

2 = 1. Thus
∑n

i=1 E[|Xi−pi|3] ≤
∑n

i=1 piqi. Dividing
both sides by (

∑n
i=1 piqi)

3/2 gives

∑n
i=1 E[|Xi − pi|3]
(
∑n

i=1 piqi)
3/2

≤ 1

(
∑n

i=1 piqi)
1/2

→ 0

as n → ∞. Thus Equation (2.12) holds and Zn
D→ N(0, 1). �

Theorem 2.41, Hájek Šidak CLT: LetX1, ..., Xn be iid with E(Xi) = µ
and V (Xi) = σ2. Let cn = (cn1, ..., cnn)

T be a vector of constants such that

max
1≤i≤n

c2ni∑n
j=1 c

2
nj

→ 0 as n → ∞.

Then

Zn =

∑n
i=1 cni(Xi − µ)

σ
√∑n

j=1 c
2
nj

D→ N(0, 1).

Note: cni = 1/n gives the usual CLT.

Example 2.21, Simple Linear Regression. Let Yi = α + βxi + ei for
i = 1, ..., n where α and β are unknown constants, the xi are treated as
constants, the ei are unobserved random variables with mean E(ei) = 0 and
variance V (ei) = σ2. Then

β̂ =

∑n
i=1(Yi − Y n)(xi − xn)∑n

i=1(xi − xn)2
=

∑n
i=1[β(xi − xn) + ei − en](xi − xn)∑n

i=1(xi − xn)2

= β +

∑n
i=1 ei(xi − xn)∑n
i=1(xi − xn)2

.

So

β̂ − β =

∑n
i=1 cniei∑n
j=1 c

2
nj

=

∑n
i=1 cniei√∑n
j=1 c

2
nj

σ

σ

1√∑n
j=1 c

2
nj

where cni = xi − xn. So by Theorem 2.41,

√√√√
n∑

i=1

(xi − xn)2
β̂ − β

σ
=

∑n
i=1 cniei

σ
√∑n

j=1 c
2
nj

D→ N(0, 1)

if
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max
1≤i≤n

(xi − xn)2∑n
j=1(xj − xn)2

→ 0

as n → ∞. Thus

√
n

√∑n
i=1(xi − xn)2

n

σ

σ
(β̂ − β)

D→ N(0, σ2),

or

β̂ ∼ AN

(
β,
MSE S2

x

n

)
.

Note that we do not need the sample variance of the xi to satisfy S2
x
P→ σ2

x

where V (xi) = σ2
x for all i.

2.7 The Plug-In Principle

Suppose that Xn
D→ X = Xτ ∼ D(τ ) where the distribution of X depends

on unknown parameters τ . The plug-in principle says approximate the dis-
tribution of Xτ by Zn = Xτ̂ ∼ D(τ̂ ) where τ̂ is a consistent estimator of
τ . Then Zn is often used to make large sample confidence intervals and for
large sample tests of hypotheses. For example, let Xn =

√
n(Tn − θ).

The plug-in principle is also often used to get an asymptotic normal ap-
proximation for a statistic, and often the bootstrap confidence regions are
closely related to the plug-in principle. For the CLT, X ∼ N(0, σ2) and

Zn ∼ N(0, S2
n). For the MLE, X ∼ N(0, 1/I1(θ)) and Zn ∼ N(0, 1/I1(θ̂n))

where θ̂n is the MLE of θ.
It is not clear whether Zn converge in distribution to X. To see this, con-

sider X = Xθ ∼ U(0, θ) distribution. a) Let X1, ..., Xn be iid U(0, θ) and use
the plug-in estimator “Zn ∼ U(0, X(n))” where X(n) = max(X1 , ..., Xn).For
this uniform distribution, the cdf FX(t) = 0 for t < 0, FX(t) = t/θ for
0 ≤ t ≤ θ and FX(t) = 1 for t > θ. Now FZn(t) = t/X(n) for 0 ≤ t ≤ X(n).
Suppose θ = 10. For FZn(10) to converge to FX(10) = 1, for any ε > 0,
there must exist a positive integer Nε such that for n ≥ Nε, we have
|FZn(10) − 1| < ε. For 0 < ε ≤ 1, this result requires X(n) > 1 − ε,
but X(n) < 1 − ε with nonzero probability (10 − ε)n = probability that
all n of the Xi < 1 − ε. Thus U(0, X(n)) can’t converge in distribution
to X. Note that FZn(t) is a consistent estimator of FX(t) for any t. b)
On the other hand, the U(0, θ) distribution is a scale family. If we in-
terpret the “U(0, X(n))” distribution as the X(n)U(0, 1) distribution, then

Zn = X(n)U(0, 1)
D→ θU(0, 1) ∼ U(0, θ).

The problem with a) is how to interpret a distribution when a parameter
is replaced by a random variable. For a scale family, the interpretation in b)
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makes more sense, but not all distributions are scale families. Note that the
N(0, σ2) distribution is a scale family with scale parameter σ > 0.

Thus the plug-in principle approximation Zn = Xτ̂ n
∼ D(τ̂ n) for X =

Xτ ∼ D(τ ) appears to be weaker that convergence in distribution. We may

use the notation Zn
C→ X when τ̂n is a consistent estimator of τ .

2.8 Summary

1) CLT: Let Y1, ..., Yn be iid with E(Y ) = µ and V (Y ) = σ2. Then√
n(Y n − µ)

D→ N(0, σ2).

2 a) Zn =
√
n

(
Y n − µ

σ

)
=

(
Y n − µ

σ/
√
n

)
=

(∑n
i=1 Yi − nµ√

nσ

)
is the z–

score of Xn (and the z-score of
∑n
i=1 Yi), and Zn

D→ N(0, 1). b) Two appli-
cations of the CLT are to give the limiting distribution of

√
n(Y n − µ) and

the limiting distribution of
√
n(Yn/n − µY ) for a random variable Yn such

that Yn =
∑n

i=1Xi where the Xi are iid with E(X) = µX and V (X) = σ2
X .

See Section 1.4. c) The CLT is the Lindeberg-Lévy CLT.

3) Delta Method: If g′(θ) 6= 0 and
√
n(Tn − θ)

D→ N(0, σ2), then√
n(g(Tn) − g(θ))

D→ N(0, σ2[g′(θ)]2).

4) Second Order Delta Method: Suppose that g′(θ) = 0, g′′(θ) 6= 0

and
√
n(Tn − θ)

D→ N(0, τ2(θ)). Then n[g(Tn) − g(θ)]
D→ 1

2
τ2(θ)g′′(θ)χ2

1.

5) 1P–REF Limit Theorem: Let Y1, ..., Yn be iid from a 1P–REF with
pdf or pmf f(y|θ) = h(y)c(θ) exp[w(θ)t(y)] and natural parameterization
f(y|η) = h(y)b(η) exp[ηt(y)]. Let E(t(Y )) = µt ≡ g(η) and V (t(Y )) = σ2

t .

Then
√
n[ 1
n

∑n
i=1 t(Yi) − µt]

D→ N(0, I1(η)) where I1(η) = σ2
t = g′(η).

6) Limit theorem for the Sample Median:
√
n(MED(n) −MED(Y ))

D→ N
(
0, 1

4f2(MED(Y ))

)
.

7) If nδ(T1,n − θ)
D→ N(0, σ2

1(F )) and nδ(T2,n − θ)
D→ N(0, σ2

2(F )), then
the asymptotic relative efficiency of T1,n with respect to T2,n is

ARE(T1,n, T2,n) =
σ2

2(F )

σ2
1(F )

.

The “better” estimator has the smaller asymptotic variance or σ2
i (F ).

8) An estimator Tn of τ (θ) is asymptotically efficient if

√
n(Tn − τ (θ))

D→ N

(
0,

[τ ′(θ)]2

I1(θ)

)
.
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9) For a 1P–REF, 1
n

∑n
i=1 t(Yi) is an asymptotically efficient estimator of

g(η) = E(t(Y )).

10) Standard Limit Theorem: Under strong regularity conditions, if θ̂n is

the MLE or UMVUE of θ, then Tn = τ (θ̂n) is an asymptotically efficient
estimator of τ (θ). Hence if τ ′(θ) 6= 0, then

√
n[τ (θ̂n) − τ (θ)]

D→ N

(
0,

[τ ′(θ)]2

I1(θ)

)
.

11) Xn
D→ X if

lim
n→∞

Fn(t) = F (t)

at each continuity point t of F. Convergence in distribution is also known
as weak convergence and convergence in law. X is the limiting distribution
or asymptotic distribution of Xn. The limiting distribution does not

depend on the sample size n. Xn
D→ τ (θ) if Xn

D→ X where P (X = τ (θ)) =
1: hence X is degenerate at τ (θ) or the distribution of X is a point mass at
τ (θ).

12) If Xn
D→ X and Xn

D→ Y , then i) X
D
= Y and ii) FX(x) = FY (x) for

all real x.
13) Convergence in probability: a) Xn

P→ τ (θ) if for every ε > 0,

lim
n→∞

P (|Xn − τ (θ)| < ε) = 1 or, equivalently, lim
n→∞

P(|Xn − τ (θ)| ≥ ε) = 0.

b) Xn
P→ X if for every ε > 0,

lim
n→∞

P (|Xn −X| < ε) = 1, or, equivalently, lim
n→∞

P(|Xn − X| ≥ ε) = 0.

14) Tn is a consistent estimator of τ (θ) if Tn
P→ τ (θ) for every θ ∈ Θ.

15) Theorem: Tn is a consistent estimator of τ (θ) if any of the following
2 conditions holds:

i) limn→∞ Vθ(Tn) = 0 and limn→∞Eθ(Tn) = τ (θ) for all θ ∈ Θ.

ii) MSEτ(θ)(Tn) = E[(Tn − τ (θ))2] → 0 for all θ ∈ Θ.
Here

MSEτ(θ)(Tn) = Vθ(Tn) + [Biasτ(θ)(Tn)]
2

where Biasτ(θ)(Tn) = Eθ(Tn) − τ (θ).
16) Theorem: a) Let Xθ be a random variable with a distribution depend-

ing on θ, and 0 < δ ≤ 1. If

nδ(Tn − τ (θ))
D→ Xθ

for all θ ∈ Θ, then Tn
P→ τ (θ).
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b) If √
n(Tn − τ (θ))

D→ N(0, v(θ))

for all θ ∈ Θ, then Tn is a consistent estimator of τ (θ).

Note: If
√
n(Tn − θ)

D→ N(0, σ2), then Tn
P→ θ. Often Xθ ∼ N(0, v(θ)).

17) WLLN: Let Y1, ..., Yn, ... be a sequence of iid random variables with

E(Yi) = µ. Then Y n
P→ µ. Hence Y n is a consistent estimator of µ.

18) Yn converges in rth mean to a random variable Y , Yn
r→ Y, if

E(|Yn − Y |r) → 0

as n→ ∞. In particular, if r = 2, Yn converges in quadratic mean to Y ,
written

Yn
2→ Y or Yn

qm→ Y,

if E[(Yn− Y )2] → 0 as n → ∞. Yn
r→ τ (θ) if E(|Yn− τ (θ)|r) → 0 as n→ ∞.

If r ≥ 1, Yn
r→ Y is often written as Yn

Lr

→ Y or Yn
Lr→ Y .

19) A sequence of random variables Xn converges with probability 1 (or
almost surely, or almost everywhere, or strong convergence) to X if

P ( lim
n→∞

Xn = X) = 1.

This type of convergence will be denoted by Xn
wp1→ X. Notation such as “Xn

converges to X wp1” will also be used. Sometimes “wp1” will be replaced
with “as” or “ae.”

Xn
wp1→ τ (θ),

if P (limn→∞Xn = τ (θ)) = 1.

20) SLLN: If X1, ..., Xn are iid with E(Xi) = µ finite, then Xn
wp1→ µ.

21) a) For i) Xn
P→ X, ii) Xn

r→ X, or iii) Xn
wp1→ X, the Xn and X need

to be defined on the same probability space.

b) For Xn
D→ X, the probability spaces can differ.

c) For i) Xn
P→ c, ii)Xn

wp1→ c, iii)Xn
D→ c, and iv)Xn

r→ c, the probability
spaces of the Xn can differ.

22) Theorem: i) Tn
P→ τ (θ) iff Tn

D→ τ (θ).

ii) If Tn
P→ θ and τ is continuous at θ, then τ (Tn)

P→ τ (θ). Hence if Tn is
a consistent estimator of θ, then τ (Tn) is a consistent estimator of τ (θ) if τ
is a continuous function on Θ.

23) Theorem: Suppose Xn and X are RVs with the same probability space
for b) and c). Let g : R → R be a continuous function.

a) If Xn
D→ X, then g(Xn)

D→ g(X).
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b) If Xn
P→ X, then g(Xn)

P→ g(X).

c) If Xn
ae→ X, then g(Xn)

wp1→ g(X).
24) Theorem: Suppose Xn and X are RVs with the same probability space.

a) If Xn
wp1→ X, then Xn

P→ X and Xn
D→ X.

b) If Xn
P→ X, then Xn

D→ X.

c) If Xn
r→ X, then Xn

P→ X and Xn
D→ X.

d) Xn
P→ τ (θ) iff Xn

D→ τ (θ) where c is a constant.

25) Theorem: a) If E[(Xn −X)2 ] → 0 as n → ∞, then Xn
P→ X.

b) If E(Xn) → E(X) and V (Xn −X) → 0 as n→ ∞, then Xn
P→ X.

Note: See 15) if P (X = τ (θ)) = 1.

26) Theorem: If Xn
r→ X, then Xn

k→ X where 0 < k < r.
27) Theorem: Let Xn have pdf fXn(x), and let X have pdf fX(x). If

fXn(x) → fX(x) for all x (or for x outside of a set of Lebesgue measure 0),

then Xn
D→ X.

28) Theorem: Let g : R → R be continuous at constant c.

a) If Xn
D→ c, then g(Xn)

D→ g(c).

b) If Xn
P→ c, then g(Xn)

P→ g(c).

c) If Xn
wp1→ c, then g(Xn)

wp1→ g(c).

Note: If Xn
r→ c, then Xn

P→ c and g(Xn)
P→ g(c).

29) Theorem: Suppose Xn andX are integer valued RVs with pmfs fXn(x)

and fX(x). Then Xn
D→ X iff P (Xn = k) → P (X = k) for every integer k iff

fXn(x) → fX(x) for every real x.

30) Slutsky’s Theorem: If Yn
D→ Y and Wn

P→ w for some constant w,

then i) YnWn
D→ wY , ii) Yn+Wn

D→ Y +w and iii) Yn/Wn
D→ Y/w for w 6= 0.

Note that Yn
B→ Y implies Yn

D→ Y where B = wp1, r, or P . Also Wn
P→ c

iff Wn
D→ c. If a sequence of constants cn → c as n → ∞ (everywhere

convergence), then cn
wp1→ c and cn

P→ c. (So everywhere convergence is a
special case of almost everywhere convergence.)

31) The cumulative distribution function (cdf) of any random variable
Y is F (y) = P (Y ≤ y) for all y ∈ R. If F (y) is a cumulative distribution
function, then i) F (−∞) = lim

y→−∞
F (y) = 0, ii) F (∞) = lim

y→∞
F (y) = 1, iii)

F is a nondecreasing function: if y1 < y2, then F (y1) ≤ F (y2), iv) F is right
continuous: lim

h↓0
F (y+h) = F (y) for all real y. v) Since a cdf is a probability for

fixed y, 0 ≤ F (y) ≤ 1 for all real y. vi) A cdf F (y) can have at most countably
many points of discontinuity, vii) P (a < Y ≤ b) = F (b) − F (a). viii) If Y is
a random variable, then FY (y) completely determines the distribution of Y .

32) The moment generating function (mgf) of a random variable Y is

m(t) = E[etY ] (2.13)



2.8 Summary 91

if the expectation exists for t in some neighborhood of 0. Otherwise, the
mgf does not exist. If Y is discrete, then m(t) =

∑
y e

tyf(y), and if Y is

continuous, then m(t) =
∫∞
−∞ etyf(y)dy. If Y is a random variable and mY (t)

exists, then mY (t) completely determines the distribution of Y .
Notes: a) If X has mgf mX(t), then E(Xk) exists for all positive integers

k.
b) Let j and k be positive integers. If E(Xk) is finite, then E(Xj) is finite

for 1 ≤ j ≤ k.
33) The characteristic function of a random variable Y is c(t) =

E[eitY ] = E[cos(tY )] + iE[sin(tY )] where the complex number i =
√
−1.

i) c(0) = 1, ii) the modulus |c(t)| ≤ 1 for all real t, iii) c(t) is a continuous
function. iv) If E(Y ) = 0 and E(Y 2) = V (Y ) = σ2, then

cY (t) = 1 +
t2σ2

2
+ o(t2) as t → 0.

Here a(t) = o(t2) as t → 0 if lim
t→0

a(t)

t2
= 0. v) If Y is discrete with pmf fY (y),

then cY (t) =
∑

y

eityfy(y). vi) If Y is a random variable, then cY (t) always

exists, and completely determines the distribution of Y .
34) Continuity Theorem: Let Yn be sequence of random variables with

characteristic functions cYn(t). Let Y be a random variable with cf cY (t).
a)

Yn
D→ Y iff cYn(t) → cY(t) ∀t ∈ R.

b) Also assume that Yn has mgf mYn and Y has mgf mY . Assume that
all of the mgfs mYn and mY are defined on |t| ≤ d for some d > 0. Then if

mYn(t) → mY (t) as n→ ∞ for all |t| < c where 0 < c < d, then Yn
D→ Y .

35) Theorem: If limn→∞ cXn(t) = g(t) for all t where g is continuous at
t = 0, then g(t) = cX(t) is a characteristic function for some RV X, and

Xn
D→ X.

Note: Hence continuity at t = 0 implies continuity everywhere since g(t) =
ϕX(t) is continuous. If g(t) is not continuous at 0, then Xn does not converge
in distribution.

36) If cYn(t) → h(t) where h(t) is not continuous, then Yn does not con-
verge in distribution to any RV Y , by the Continuity Theorem and 35).

37) LetX1, ..., Xn be independent RVs with characteristic functions cXj (t).

Then the characteristic function of
∑n

j=1Xj is c∑n
j=1 Xj

(t) =

n∏

j=1

cXj (t). If

the RVs also have mgfs mXj (t), then the mgf of
∑n

j=1Xj is m∑
n
j=1Xj

(t) =
n∏

j=1

mXj (t).
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38) Helly-Bray-Pormanteau Theorem: Xn
D→ X iff E[g(Xn)] →

E[g(X)] for every bounded, real, continuous function g.
Note: 38) is used to prove 39 b).

39) a) Generalized Continuous Mapping Theorem: If Xn
D→ X and

the function g is such that P [X ∈ C(g)] = 1 where C(g) is the set of points

where g is continuous, then g(Xn)
D→ g(X).

Note: P [X ∈ C(g)] = 1 can be replaced by P [X ∈ D(g)] = 0 where D(g)
is the set of points where g is not continuous.

b) Continuous Mapping Theorem: If Xn
D→ X and the function g is

continuous, then g(Xn)
D→ g(X).

Note: the function g can not depend on n since gn is a seqeuce of functions
rather than a single function.

40) Generalized Chebyshev’s Inequality or Generalized Markov’s Inequal-
ity: Let u : R → [0,∞) be a nonnegative function. If E[u(Y )] exists then for
any c > 0,

P [u(Y ) ≥ c] ≤ E[u(Y )]

c
.

If µ = E(Y ) exists, then taking u(y) = |y− µ|r and c̃ = cr gives
Markov’s Inequality: for r > 0 and any c > 0,

P (|Y − µ| ≥ c] = P (|Y − µ|r ≥ cr ] ≤ E[|Y − µ|r]
cr

.

If r = 2 and σ2 = V (Y ) exists, then we obtain
Chebyshev’s Inequality:

P (|Y − µ| ≥ c] ≤ V (Y )

c2
.

41) a) lim
n→∞

(
1 − c

n

)n
= e−c.

b) If cn → c as n→ ∞, then lim
n→∞

(
1 +

−cn
n

)n
= e−c.

c) If cn is a sequence of complex numbers such that cn → c as n → ∞
where c is real, then lim

n→∞

(
1 − cn

n

)n
= e−c.

42) For each positive integer n, let Wn1, ...,Wnrn be independent. The
probability space may change with n, giving a triangular array of RVs. Let

E[Wnk] = 0, V (Wnk) = E[W 2
nk] = σ2

nk, and s2n =

rn∑

k=1

σ2
nk = V [

rn∑

k=1

Wnk].

Then

Zn =

∑rn

k=1Wnk

sn

is the z-score of
∑rn

k=1Wnk.
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43) Lyapounov’s CLT: Under 42), assume the |Wnk|2+δ are integrable
for some δ > 0. Assume Lyapounov’s condition:

lim
n→∞

rn∑

k=1

E[|Wnk|2+δ]

s2+δ
n

= 0.

Then

Zn =

∑rn

k=1Wnk

sn

D→ N(0, 1).

44) Special cases: i) rn = n and Wnk = Wk has W1, ...,Wn, ... independent.
ii) Wnk = Xnk −E(Xnk) = Xnk − µnk has

∑rn

k=1(Xnk − µnk)

sn

D→ N(0, 1).

iii) Suppose X1, X2, ... are independent with E(Xi) = µi and V (Xi) = σ2
i .

Let

Zn =

∑n
i=1Xi −

∑n
i=1 µi

(
∑n

i=1 σ
2
i )

1/2

be the z-score of
∑n

i=1Xi. Assume E[|Xi − µi|3] <∞ for all n ∈ N and

lim
n→∞

∑n
i=1E[|Xi − µi|3]
(
∑n
i=1 σ

2
i )

3/2
= 0. (∗)

Then Zn
D→ N(0, 1).

45) The (Lindeberg-Lévy) CLT has the Xi iid with V (Xi) = σ2 <∞. The
Lyapounov CLT in 43 iii) has the Xi independent (not necessarily identically
distributed), but needs stronger moment conditions to satisfy (∗).

46) Lindeberg CLT: Let the Wnk satisfy 42) and Lindeberg’s condition

lim
n→∞

rn∑

k=1

E(W 2
nk I[|Wnk| ≥ εsn])

s2n
= 0

for any ε > 0. Then

Zn =

∑rn

k=1Wnk

sn

D→ N(0, 1).

Notes: The Lindeberg CLT is sometimes called the Lindeberg-Feller CLT.

Lindeberg’s condition is nearly necessary for Zn =

∑rn

k=1Wnk

sn

D→ N(0, 1).

47) Special case of the Lindeberg CLT: Let rn = n and let the Wnk = Wk

be independent. If
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lim
n→∞

n∑

k=1

E(W 2
k I[|Wk| ≥ εsn])

s2n
= 0

for any ε > 0. Then

Zn =

∑n
k=1Wk

sn

D→ N(0, 1).

48) a) uniformly bounded sequence: Let rn = n and Wnk = Wk. If
there is a constant c > 0 such that P (|Wk| < c) = 1 ∀k, and if sn → ∞ as
n→ ∞, then Lindeberg’s CLT 46) holds.

b) Let rn = n and let the Wnk = Wk be iid with V (Wk) = σ2 ∈ (0,∞).
Then Lindeberg’s CLT 46) holds. (TakingWi = Xi−µ proves the usual CLT
with the Lindeberg CLT.)

c) If Lyapunov’s condition holds, then Lindeberg’s condition holds. Hence
the Lindeberg CLT proves the Lyapounov CLT.

2.9 Complements

In analysis, convergence in probability is a special case of convergence in
measure and convergence in distribution is a special case of weak convergence.

See Ash (1972, p. 322) and Sen and Singer (1993, p. 39). Since Y
P→ µ iff

Y
D→ µ, the WLLN refers to weak convergence. Almost sure convergence is

also called strong convergence. Hence the SLLN refers to strong convergence.
Technically the Xn and X need to share a common probability space for
convergence in probability and almost sure convergence.

Perlman (1972) and Wald (1949) give general results on the consistency of
the MLE while Berk (1972), Lehmann (1980), and Schervish (1995, p. 418)
discuss the asymptotic normality of the MLE in exponential families. The-
orem 2.5 appears in Olive (2014). Portnoy (1977) gives large sample theory
for unbiased estimators in exponential families. Although Tn is the UMVUE
of E(t(Y )) = µt, asymptotic efficiency of UMVUEs is not simple in general.
See Pfanzagl (1993).

Casella and Berger (2002, p. 112, 133) give results similar to Theorem 2.4.
Some of the order relations of Section 2.5 are discussed in Mann and Wald
(1943a). See Ver Hoef (2012) for history of the delta method.

Bickel and Doksum (1977, pp. 135-137) has a useful theorem for method
of moments estimators based on iid Y1, ..., Yn: let mk = mk(θ) = Eθ(Y k)
and let Tn = g(m̂1, ..., m̂r) be the method of moments estimator of q(θ) =
g(m) = g(m1 , ..., mr) where g : R

r → R. If m2r <∞, then

√
n(Tn − g(m))

D→ N(0, σ2
MM)
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where

σ2
MM = V (

r∑

k=1

∂

∂mk
g(m)Y k).

For the following theorem, see Proschan and Shaw (2016, p. 189). Note
that an =

√
n = n1/2 is common. If X ∼ N(0, σ2) and g′(θ) = 0, then

an[g(θ̂)−g(θ)] D→ 0 ∼ N(0, 0), the point mass at 0. Note that g′(θ)N(0, σ2) ∼
N(0, [g′(θ)]2σ2).

Theorem 2.42, Generalized Delta Method: Let an be a sequence of

constants such that an → ∞ as n → ∞. Suppose that Xn = an(θ̂− θ)
D→ X.

Let g(x) be a function with derivative g′(θ) at x = θ. Then

an[g(θ̂) − g(θ)]
D→ g′(θ)X.

There are many variants of the WLLN. The following theorem gives some
examples.

Theorem 2.43. Suppose X1, ..., Xn are jointly distributed random vari-
ables.

a) If E(Xi) ≡ µ and V (Xn) → 0 as n → ∞, then Xn
P→ µ as n→ ∞.

b) Suppose X1, ..., Xn are uncorrelated random variables with E(Xi) ≡ µ

and V (Xi) = σ2
i . If

∑n
i=1 σ

2
i /n

2 → 0 as n → ∞, then Xn
P→ µ as n→ ∞.

c) If E(Xn) → µ and V (Xn) → 0 as n → ∞, then Xn
P→ µ as n→ ∞.

Proof. By Chebyshev’s inequality, P (|Xn − µ| ≥ ε) ≤ V (Xn)/ε2 for any
ε > 0. Hence the result follows if V (Xn) → 0 as n → 0. Thus a) holds by
assumption.

b) Now V (Xn) = V (
1

n

n∑

i=1

Xi) =
1

n2
V (

n∑

i=1

Xi) =

∑n
i=1 σ

2
i

n2
→ 0 as n→ ∞.

c) This result follows by Theorem 2.9 b). Note that this result also implies

that Xn
2→ µ, and note that a) and b) follow from c).

2.10 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

Problems with a Q have appeared on Statistical Inference or Probability
and Measure qualifying exams.

Refer to Section 1.10 for the pdf or pmf of the distributions in
the problems below.

2.1∗. a) Enter the following R function that is used to illustrate the central
limit theorem when the data Y1, ..., Yn are iid from an exponential distribu-
tion. The function generates a data set of size n and computes Y 1 from the
data set. This step is repeated nruns = 100 times. The output is a vector
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(Y 1, Y 2, ..., Y 100). A histogram of these means should resemble a symmetric
normal density once n is large enough.

cltsim <- function(n=100, nruns=100){

ybar <- 1:nruns

for(i in 1:nruns){

ybar[i] <- mean(rexp(n))}

list(ybar=ybar)}

b) The following commands will plot 4 histograms with n = 1, 5, 25 and
200. Save the plot in Word.

> z1 <- cltsim(n=1)

> z5 <- cltsim(n=5)

> z25 <- cltsim(n=25)

> z200 <- cltsim(n=200)

> par(mfrow=c(2,2))

> hist(z1$ybar)

> hist(z5$ybar)

> hist(z25$ybar)

> hist(z200$ybar)

c) Explain how your plot illustrates the central limit theorem.

d) Repeat parts a), b) and c), but in part a), change rexp(n) to rnorm(n).
Then Y1, ..., Yn are iid N(0,1) and Y ∼ N(0, 1/n).

2.2∗. Let X1, ..., Xn be iid from a normal distribution with unknown mean
µ and known variance σ2. Let

X =

∑n
i=1Xi
n

Find the limiting distribution of
√
n((X)3 − c) for an appropriate constant c.

2.3∗Q. Let X1, ..., Xn be a random sample from a population with pdf

f(x) =

{
θxθ−1

3θ 0 < x < 3
0 elsewhere

The method of moments estimator for θ is Tn =
X

3 −X
.

a) Find the limiting distribution of
√
n(Tn − θ) as n → ∞.

b) Is Tn asymptotically efficient? Why?

c) Find a consistent estimator for θ and show that it is consistent.

2.4∗. From Theorems 1.24 and 1.25,
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if Yn =
∑n
i=1Xi where the Xi are iid from a nice distribution, then Yn

also has a nice distribution. If E(X) = µ and V (X) = σ2 then by the CLT

√
n(Xn − µ)

D→ N(0, σ2).

Hence √
n

(
Yn
n

− µ

)
D→ N(0, σ2).

Find µ, σ2 and the distribution of Xi if

i) Yn ∼ BIN(n, ρ) where BIN stands for binomial.

ii) Yn ∼ χ2
n.

iii) Yn ∼ G(nν, λ) where G stands for gamma.

iv) Yn ∼ NB(n, ρ) where NB stands for negative binomial.

v) Yn ∼ POIS(nθ) where POIS stands for Poisson.

vi) Yn ∼ N(nµ, nσ2).

2.5∗. Suppose that Xn ∼ U(−1/n, 1/n).
a) What is the cdf Fn(x) of Xn?
b) What does Fn(x) converge to?

(Hint: consider x < 0, x = 0 and x > 0.)

c) Xn
D→ X. What is X?

2.6. Continuity Theorem problem: LetXn be sequence of random variables
with cdfs Fn and mgfs mn. Let X be a random variable with cdf F and mgf
m. Assume that all of the mgfs mn and m are defined if |t| ≤ d for some
d > 0. Thus if mn(t) → m(t) as n → ∞ for all |t| < c where 0 < c < d, then

Xn
D→ X.

Let

mn(t) =
1

[1− (λ+ 1
n)t]

for t < 1/(λ+ 1/n). Then what is m(t) and what is X?

2.7. Let Y1, ..., Yn be iid, T1,n = Y and let T2,n = MED(n) be the sample
median. Let θ = µ.

Then

√
n(MED(n) −MED(Y ))

D→ N

(
0,

1

4f2(MED(Y ))

)

where the population median is MED(Y ) (and MED(Y ) = µ = θ for a) and
b) below).

a) Find ARE(T1,n, T2,n) if F is the cdf of the normalN(µ, σ2) distribution.
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b) Find ARE(T1,n, T2,n) if F is the cdf of the double exponential DE(θ, λ)
distribution.

2.8Q. Let X1, ..., Xn be independent identically distributed random vari-
ables with probability density function

f(x) = θxθ−1, 0 < x < 1, θ > 0.

a) Find the MLE of
1

θ
. Is it unbiased? Does it achieve the information

inequality lower bound?

b) Find the asymptotic distribution of the MLE of
1

θ
.

c) Show that Xn is unbiased for
θ

θ + 1
. Does Xn achieve the information

inequality lower bound?

d) Find an estimator of
1

θ
from part (c) above using Xn which is different

from the MLE in (a). Find the asymptotic distribution of your estimator
using the delta method.

e) Find the asymptotic relative efficiency of your estimator in (d) with
respect to the MLE in (b).

Problems from old quizzes and exams. Problems from old qual-
ifying exams are marked with a Q.

2.9. Let X1, ..., Xn be iid Bernoulli(p) random variables.

a) Find I1(p).

b) Find the FCRLB for estimating p.

c) Find the limiting distribution of
√
n( Xn − p ).

d) Find the limiting distribution of
√
n [ (Xn)2 − c ] for an appropriate

constant c.

2.10. Let X1, ..., Xn be iid Exponential(β) random variables.

a) Find the FCRLB for estimating β.

b) Find the limiting distribution of
√
n( Xn − β ).

c) Find the limiting distribution of
√
n [ (Xn)2 − c ] for an appropriate

constant c.

2.11. Let Y1, ..., Yn be iid Poisson (λ) random variables.
a) Find the limiting distribution of

√
n( Y n − λ ).

b) Find the limiting distribution of
√
n [ (Y n)2 − c ] for an appropriate

constant c.

2.12. Let Yn ∼ χ2
n.
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a) Find the limiting distribution of
√
n

(
Yn
n

− 1

)
.

b) Find the limiting distribution of
√
n

[ (
Yn
n

)3

− 1

]
.

2.13. Let X1, ..., Xn be iid with cdf F (x) = P (X ≤ x). Let Yi =
I(Xi ≤ x) where the indicator equals 1 if Xi ≤ x and 0, otherwise.

a) Find E(Yi).

b) Find V (Yi).

c) Let F̂n(x) =
1

n

n∑

i=1

I(Xi ≤ x) for some fixed real number x. Find the

limiting distribution of
√
n
(
F̂n(x) − cx

)
for an appropriate constant cx.

2.14. Suppose Xn has cdf

Fn(x) = 1 −
(
1 − x

θn

)n

for x ≥ 0 and Fn(x) = 0 for x < 0. Show that Xn
D→ X by finding the cdf of

X.

2.15. Let Xn be a sequence of random variables such that
P (Xn = 1/n) = 1. Does Xn converge in distribution? If yes, prove it by
finding X and the cdf of X. If no, prove it.

2.16. Suppose that Y1, ..., Yn are iid with E(Y ) = (1 − ρ)/ρ and V (Y ) =
(1 − ρ)/ρ2 where 0 < ρ < 1.

a) Find the limiting distribution of

√
n

(
Y n − 1 − ρ

ρ

)
.

b) Find the limiting distribution of
√
n
[
g(Y n) − ρ

]
for appropriate func-

tion g.

2.17. Let Xn ∼ Binomial(n, p) where the positive integer n is large and
0 < p < 1.

a) Find the limiting distribution of
√
n

(
Xn
n

− p

)
.

b) Find the limiting distribution of
√
n

[ (
Xn
n

)2

− p2

]
.
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c) Let g(θ) = θ3 − θ. Find the limiting distribution of n

[
g

(
Xn
n

)
− c

]

for appropriate constant c when p =
1√
3
. Hint: Use the Second Order Delta

Method.

2.18. Let Y1, ..., Yn be iid exponential (λ) so thatE(Y ) = λ and MED(Y ) =
log(2)λ.

a) Let T1,n = log(2)Y and find the limiting distribution of√
n(T1,n − log(2)λ).

b) Let T2,n = MED(n) be the sample median and find the limiting distri-
bution of

√
n(T2,n − log(2)λ).

c) Find ARE(T1,n, T2,n).

2.19. Suppose that η = g(θ), θ = g−1(η) and g′(θ) > 0 exists. If X has pdf
or pmf f(x|θ), then in terms of η, the pdf or pmf is f∗(x|η) = f(x|g−1(η)).
Now

A =
∂

∂η
log[f(x|g−1(η))] =

1

f(x|g−1(η))

∂

∂η
f(x|g−1(η)) =

[
1

f(x|g−1(η))

] [
∂

∂θ
f(x|θ)

∣∣∣∣
θ=g−1(η)

] [
∂

∂η
g−1(η)

]

using the chain rule twice. Since θ = g−1(η),

A =

[
1

f(x|θ)

] [
∂

∂θ
f(x|θ)

] [
∂

∂η
g−1(η)

]
.

Hence

A =
∂

∂η
log[f(x|g−1(η))] =

[
∂

∂θ
log[f(x|θ)]

] [
∂

∂η
g−1(η)

]
.

Now show that

I∗1 (η) =
I1(θ)

[g′(θ)]2
.

2.20. Let Y1, ..., Yn be iid exponential (1) so that P (Y ≤ y) = F (y) =
1− e−y for y ≥ 0. Let Y(n) = max(Y1, ..., Yn).

a) Show that FY(n)
(t) = P (Y(n) ≤ t) = [1 − e−t]n for t ≥ 0.

b) Show that P (Y(n)− log(n) ≤ t) → exp(−e−t) (for all t ∈ (−∞,∞) since
t+ log(n) > 0 implies t ∈ R as n → ∞).

2.21. Let Y1, ..., Yn be iid uniform (0, 2θ).

a) Let T1,n = Y and find the limiting distribution of
√
n(T1,n − θ).
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b) Let T2,n = MED(n) be the sample median and find the limiting distri-
bution of

√
n(T2,n − θ).

c) Find ARE(T1,n, T2,n). Which estimator is better, asymptotically?

2.22. Suppose that Y1, ..., Yn are iid from a distribution with pdf f(y|θ)
and that the integral and differentiation operators of all orders can be inter-
changed (e.g. the data is from a one parameter exponential family).

a) Show that 0 = E
[
∂
∂θ

log(f(Y |θ))
]

by showing that

∂

∂θ
1 = 0 =

∂

∂θ

∫
f(y|θ)dy =

∫ [
∂

∂θ
log(f(y|θ))

]
f(y|θ)dy. (∗)

b) Take 2nd derivatives of (∗) to show that

I1(θ) = Eθ[(
∂

∂θ
log f(Y |θ))2] = −Eθ

[
∂2

∂θ2
log(f(Y |θ))

]
.

2.23. Suppose that X1, ..., Xn are iid N(µ, σ2).
a) Find the limiting distribution of

√
n
(
Xn − µ

)
.

b) Let g(θ) = [log(1 + θ)]2. Find the limiting distribution of√
n
(
g(Xn) − g(µ)

)
for µ > 0.

c) Let g(θ) = [log(1 + θ)]2. Find the limiting distribution of
n
(
g(Xn) − g(µ)

)
for µ = 0. Hint: Use the Second Order Delta Method:

Theorem 2.3.

2.24. Note that E(X) = E(X1) = E[X(I(A) + I(Ac))] = E[XI(A)] +
E[XI(Ac)] ≥ E[XI(A)] if X is a nonegative random variable since then
XI(Ac) is a nonnegative random variable and E[XI(Ac)] ≥ 0.

Let Wn = Xn −X and let r > 0. Notice that for any ε > 0,

E|Xn −X|r ≥ E[|Xn −X|r I(|Xn −X| ≥ ε)] ≥ εrP (|Xn −X| ≥ ε).

Show that Wn
P→ 0 if E|Xn −X|r → 0 as n→ ∞.

2.25. Let X1, ..., Xn be iid with E(X) = µ and V (X) = σ2. What is the
limiting distribution of n[(X)2 − µ2] for the value or values of µ where the
delta method does not apply? Hint: use Theorem 2.3.

2.26Q. Let X ∼ Binomial(n, p) where the positive integer n is large and
0 < p < 1.

a) Find the limiting distribution of
√
n

(
X

n
− p

)
.

b) Find the limiting distribution of
√
n

[ (
X

n

)2

− p2

]
.
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c) Show how to find the limiting distribution of

[ (
X

n

)3

− X

n

]
when

p =
1√
3
.

(Actually want the limiting distribution of

n

([ (
X

n

)3

− X

n

]
− g(p)

)

where g(θ) = θ3 − θ.)

2.27Q. LetX1, ..., Xn be independent and identically distributed (iid) from
a Poisson(λ) distribution.

a) Find the limiting distribution of
√
n ( X − λ ).

b) Find the limiting distribution of
√
n [ (X)3 − (λ)3 ].

2.28Q. Let X1, ..., Xn be iid from a normal distribution with unknown

mean µ and known variance σ2. Let X =
∑n

i=1Xi

n and S2 = 1
n−1

∑n
i=1(Xi −

X)2.

a) Show that X and S2 are independent.

b) Find the limiting distribution of
√
n((X)3 − c) for an appropriate con-

stant c.

2.29. Suppose that Y1, ..., Yn are iid logistic(θ, 1) with pdf

f(y) =
exp (−(y − θ))

[1 + exp (−(y − θ))]2

where and y and θ are real.
a) I1(θ) = 1/3 and the family is regular so the “standard limit theorem”

for the MLE θ̂n holds. Using this standard theorem, what is the limiting
distribution of

√
n(θ̂n − θ)?

b) Find the limiting distribution of
√
n(Y n − θ).

c) Find the limiting distribution of
√
n(MED(n) − θ).

d) Consider the estimators θ̂n, Y n and MED(n). Which is the best esti-
mator and which is the worst?

2.30. Let Yn ∼ binomial(n, p). Find the limiting distribution of

√
n

(
arcsin

(√
Yn

n

)
− arcsin(

√
p)

)
.

(Hint:
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d

dx
arcsin(x) =

1√
1 − x2

.)

2.31. Suppose Yn ∼ uniform(−n, n). Let Fn(y) be the cdf of Yn.
a) Find F (y) such that Fn(y) → F (y) for all y as n → ∞.

b) Does Yn
D→ Y ? Explain briefly.

2.32. Suppose Yn ∼ uniform(0, n). Let Fn(y) be the cdf of Yn.
a) Find F (y) such that Fn(y) → F (y) for all y as n → ∞.

b) Does Yn
D→ Y ? Explain briefly.

2.33Q. Let Y1, ..., Yn be independent and identically distributed (iid)
from a distribution with probability mass function f(y) = ρ(1 − ρ)y for
y = 0, 1, 2, ... and 0 < ρ < 1. Then E(Y ) = (1− ρ)/ρ and V (Y ) = (1− ρ)/ρ2.

a) Find the limiting distribution of
√
n

(
Y − 1 − ρ

ρ

)
.

b) Show how to find the limiting distribution of g(Y ) = 1
1+Y

. Deduce

it completely. (This bad notation means find the limiting distribution of√
n(g(Y ) − c) for some constant c.)

c) Find the method of moments estimator of ρ.

d) Find the limiting distribution of
√
n
(

(1 + Y ) − d
)

for appropriate constant d.
e) Note that 1 + E(Y ) = 1/ρ. Find the method of moments estimator of

1/ρ.

2.34Q. Let X1, ..., Xn be independent identically distributed random vari-
ables from a normal distribution with mean µ and variance σ2.

a) Find the approximate distribution of 1/X̄ . Is this valid for all values of
µ?

b) Show that 1/X̄ is asymptotically efficient for 1/µ, provided µ 6= µ∗.
Identify µ∗.

2.35Q. Let Y1, ..., Yn be independent and identically distributed (iid) from
a distribution with probability density function

f(y) =
2y

θ2

for 0 < y ≤ θ and f(y) = 0, otherwise.
a) Find the limiting distribution of

√
n
(
Y − c

)
for appropriate constant

c.
b) Find the limiting distribution of

√
n
(

log( Y ) − d
)

for
appropriate constant d.

c) Find the method of moments estimator of θk.
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2.36Q. Let Y1, ..., Yn be independent identically distributed discrete ran-
dom variables with probability mass function

f(y) = P (Y = y) =

(
r + y − 1

y

)
ρr(1 − ρ)y

for y = 0, 1, . . . where positive integer r is known and 0 < ρ < 1. Then
E(Y ) = r(1 − ρ)/ρ, and V (Y ) = r(1 − ρ)/ρ2.

a) Find the limiting distribution of
√
n

(
Y − r(1 − ρ)

ρ

)
.

b) Let g(Y ) =
r

r + Y
. Find the limiting distribution of

√
n
(
g(Y ) − c

)

for appropriate constant c.

c) Find the method of moments estimator of ρ.

2.37Q. LetX1, ..., Xn be independent identically distributed uniform (0, θ)
random variables where θ > 0.

a) Find the limiting distribution of
√
n(X−cθ) for an appropriate constant

cθ that may depend on θ.
b) Find the limiting distribution of

√
n[(X)2 − kθ] for an appropriate con-

stant kθ that may depend on θ.
2.38Q. LetX1, ..., Xn be independent identically distributed (iid) beta(β, β)

random variables.

a) Find the limiting distribution of
√
n( Xn−θ ), for appropriate constant

θ.

b) Find the limiting distribution of
√
n( log(Xn) − d ), for appropriate

constant d.

2.39. Suppose that X1, ..., Xn are iid and V(X1) = σ2. Given that

σ̂2
n =

1

n

n∑

i=1

(Xi −X)2
P→ σ2,

give a very short proof that the sample variance

S2
n =

1

n− 1

n∑

i=1

(Xi −X)2
P→ σ2.

2.40. Suppose

Zn =

√
n(Xn − µ)

σ

D→ N(0, 1)

and s2n
P→ σ2 where σ > 0. Prove that

√
n(Xn − µ)

sn

D→ N(0, 1).
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2.41. If Yn
D→ Y , an

P→ a, and bn
P→ b, then an + bnYn

D→ X. Find X.
2.42. What theorem can be used to prove both the (usual) central limit

theorem and the Lyapounov CLT?
2.43. Let X1, ..., Xn be iid with mean E(X) = µ and variance V (X) =

σ2 > 0. Then n(X − µ)2 = [
√
n(X − µ)]2

D→W . What is W?
2.44. Let Y1, ..., Yn be iid gamma(ν = 2, λ) with E(Y ) = 2λ, V (Y ) = 2λ2,

and I1(λ) =
2

λ2
. The gamma(2, λ) distribution is a 1PREF. Let λ̂n be the

MLE of λ. Find the limiting distribution of
√
n(λ̂n − λ).

2.45. Let Y1, ..., Yn be iid double exponential DE(θ, λ) with E(Y ) = θ
and V (Y ) = 2λ2 where θ and y are real and λ > 0.

a) Find the limiting distribution of
√
n[ Y − c] for an appropriate constant

c.
b) Find the limiting distribution of

√
n
[
(Y )2 − d

]
for appropriate constant

d for the values of θ where the delta method applies.
c) What is the limiting distribution of n

[
(Y )2 − d

]
for the value or values

of θ where the delta method does not apply?
2.46. Let Y1, ..., Yn be iid with E(Y r) = exp(rµ+ r2σ2/2) for any real r.

Find the limiting distribution of
√
n(Y n − c) for appropriate constant c.

2.47. Let Yn ∼ Poisson(nθ). Find the limitingdistribution of
√
n

(
Yn
n

− c

)

for appropriate constant c.
More Problems:
2.48. Let Y1, ..., Yn be iid with E(Y ) = µ and V (Y ) = σ2. Let g(µ) = µ2.

For µ = 0, find the limiting distribution of n[(Y n)2 − 02] = n(Y n)
2 by using

the Second Order Delta Method.
2.49. Rohatgi (1971, p. 248): Let P (Xn = 0) = 1 − 1/nr and P (Xn =

n) = 1/nr where r > 0.
a) Prove that Xn does not converge in rth mean to 0. Hint: Find E[|Xn|r].
b) Does Xn

D→ X for some random variable X? Prove or disprove.
2.50. Suppose Yn ∼ EXP (1/n) with cdf FYn(y) = 1−exp(−ny) for y ≥ 0,

and FYn(y) = 0 for y < 0. Does Yn
D→ Y for some random variable Y ? Prove

or disprove. If Yn
D→ Y , find Y .

2.51. Suppose X1, ..., Xn are iid from a distribution with mean µ and

variance σ2.
1

n

n∑

i=1

X2
i
P→ c. What is c? Hint: Use WLLN on Wi = X2

i .

2.52. Rohatgi (1971, p. 248): Let P (Xn = 0) = 1 − 1/nr and P (Xn =
n) = 1/nr where r > 0.

a) Prove that Xn does not converge in rth mean to 0. Hint: Find E[|Xn|r].
b) Does Xn

D→ X for some random variable X? Prove or disprove.
Hint: P (|Xn − 0| ≥ ε) ≤ P (Xn = n).

2.53. Suppose Y1, ..., Yn are iid EXP(λ). Let Tn = Y(1) = Y1:n =
min(Y1, ..., Yn). It can be shown that the mgf of Tn is
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mTn(t) =
1

1 − λt
n

for t < n/λ. Show that Tn
D→ X and give the distribution of X.

2.54. Let Y1, ..., Yn be iid with

E(Y r) = 2r/2σr
Γ ( r+p2 )

Γ (p/2)

for r > −p where σ, p > 0. Find the limiting distribution of
√
n(Y n − c) for

appropriate constant c.
2.55. Suppose

FXn(x) =





0, x ≤ c− 1
n

n
2 (x− c + 1

n ), c− 1
n < x < c+ 1

n
1, x ≥ c+ 1

n .

Does Xn
D→ X for some random variableX? Prove or disprove. If Xn

D→ X,
find X.

2.56. Suppose Yn ∼ EXP (n) with cdf FYn(y) = 1− exp(−y/n) for y ≥ 0

and FYn(y) = 0 for y < 0. Does Yn
D→ Y for some random variable Y ? Prove

or disprove. If Yn
D→ Y , find Y .

2.57. Suppose Y1, ..., Yn are iid POIS(θ). Then the MLE of θ is θ̂n = Y n.
a) Find the limiting distribution of

√
n(Y n − c) for appropriate constant

c.
b) Let τ (θ) = θ2. Find the limiting distribution of

√
n[τ (θ̂n) − τ (θ)] using

the Delta Method.
2.58. Let Xn be sequence of random variables with cdfs Fn and mgfs mn.

Let X be a random variable with cdf F and mgf m. Assume that all of the
mgfs mn and m are defined to |t| ≤ d for some d > 0. Let

mn(t) =
1

[1− (λ+ 1
n)t]

for t < 1/(λ+ 1/n). Show that mn(t) → m(t) by finding m(t).

(Then Xn
D→ X where X ∼ EXP (λ) with E(X) = λ by the continuity

theorem for mgfs.)

2.59. Suppose Yn
P→ Y . Then Wn = Yn − Y

P→ 0. Define Xn = Y for all

n. Then Xn
D→ Y . Then Yn = Xn +Wn

D→ Z by Slutsky’s Theorem. What is
Z?

2.60. The method of moments estimator for Cov(X, Y ) = σX,Y is

σ̂X,Y =
1

n

n∑

i=1

(xi − x)(yi − y). Another common estimator is
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SX,Y =
1

n− 1

n∑

i=1

(xi − x)(yi − y) =
n

n− 1
σ̂X,Y . Using the fact that σ̂X,Y

P→

σX,Y when the covariance exists, prove that SX,Y
P→ σX,Y with Slutsky’s

Theorem. Hint: Zn
P→ c iff Zn

D→ c if c is a constant, and usual convergence

an → a of a sequence of constants implies an
P→ a.

2.61. Suppose that the characteristic function of Xn is

cX(t) = exp(− t
2σ2

2n
).

Then the characteristic function of
√
n Xn is c√n X(t) = cX(

√
n t). Does

√
n Xn

D→W for some random variable W? Explain.
2.62. Let X1, ..., Xn be iid with mean E(X) = µ and variance V (X) =

σ2 > 0. Then
∑n

i=1(xi−xn)2 =
∑n

i=1(Xi−µ+µ−X n)
2 =

∑n
i=1(Xi−µ)2 −

n(x− µ)2.

a)
1

n

n∑

i=1

(Xi − µ)2
P→ θ. What is θ?

b) Also, n(X − µ)2 = [
√
n(X − µ)]2

D→ W . What is W? Hint: use the
continuous mapping theorem. Note that Z ∼ N(0, σ2) ∼ σN(0, 1).

2.63. Let X1, ..., Xn be independent and identically distributed (iid) from

a Poisson(λ) distribution with E(X) = λ. Let X =
∑n

i=1 Xi

n .

a) Find the limiting distribution of
√
n ( X − λ ).

b) Find the limiting distribution of
√
n [ (X)3 − (λ)3 ].

2.64. Let X1, ..., Xn be iid from a normal distribution with unknown mean

µ and known variance σ2. Find the limiting distribution of
√
n(X

3 − c) for
an appropriate constant c.

2.65. Let Yn ∼ χ2
n.

a) Find the limiting distribution of
√
n

(
Yn
n

− 1

)
.

b) Find the limiting distribution of
√
n

[ (
Yn
n

)3

− 1

]
.

2.66. Let Y1, ..., Yn be iid with E(Y ) = µ and V (Y ) = σ2. Let g(µ) = µ2.
For µ = 0, find the limiting distribution of n[(Y n)2 − 02] = n(Y n)

2 by using
the Second Order Delta Method.

2.67. In earlier courses, you should have used moment generating functions
to show that if Yn =

∑n
i=1Xi where the Xi are iid from a nice distribution,

then Yn has a nice distribution where the nice distributions are the binomial,
chi–square, gamma, negative binomial, normal, and Poisson distributions. If
E(X) = µ and V(X) = σ2 then by the CLT

√
n(Xn − µ)

D→ N(0, σ2).
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Since
√
n(Yn

n − µ) and
√
n(Xn − µ) have the same distribution,

√
n

(
Yn
n

− µ

)
D→ N(0, σ2)

For example, if Yn ∼ N(nµ, nσ2) then Yn ∼∑n
i=1Xi where the Xi are iid

N(µ, σ2). Hence

√
n

(
Yn
n

− µ

)
∼ √

n(Xn − µ)
D→ N(0, σ2).

which should not be surprising since

√
n

(
Yn
n

− µ

)
∼ N(0, σ2).

Write down the distribution of Xi if

i) Yn ∼ BIN(n, p) where BIN stands for binomial.

ii) Yn ∼ χ2
n.

iii) Yn ∼ G(nα, β) where G stands for gamma.

iv) Yn ∼ NB(n, p) where NB stands for negative binomial.

v) Yn ∼ POIS(nθ) where POIS stands for Poisson.

(Write down the distribution if you know it or can find it. Do not use mgfs
unless you can not find the distribution.)

2.68. Suppose that Xn ∼ U(−1/n, 1/n).
a) What is the cdf Fn(x) of Xn?
b) What does Fn(x) converge to? (Hint: consider x < 0, x = 0 and

x > 0.)

c) Xn
D→ X. What is X?

2.69. Suppose Xn is a discrete random variable with P (Xn = n) = 1/n
and P (Xn = 0) = (n− 1)/n.

a) Show Xn
D→ X.

b) Does E(Xn) → E(X)? Explain briefly.
2.70. Suppose Xn has cdf

Fn(x) = 1 −
(
1 − x

θn

)n

for x ≥ 0 and Fn(x) = 0 for x < 0. Show that Xn
D→ X by finding the cdf of

X.
2.71. Let Y1, ..., Yn be iid N(µ, σ2) with µ known. Let σ̂2

n be the MLE of

σ2 with I1(σ
2) =

1

2σ4
.

a) Find the limiting distribution of
√
n(σ̂2

n − σ2).
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b) Find the limiting distribution of
√
n[
√
σ̂2
n−σ]. Note that τ (σ2) =

√
σ2.

Taking θ = σ2 could be useful.
2.72. Rohatgi (1971, p. 248): Let P (Xn = 0) = 1 − 1/nr and

P (Xn = n) = 1/nr where r > 0.
a) Prove that Xn does not converge in rth mean to 0. Hint: Find E[|Xn|r].
b) Does Xn

D→ X for some random variable X? Prove or disprove.
2.73. Suppose X1, ..., Xn are iid C(µ, σ) with characteristic function

cX(t) = exp(itµ − |t|σ) where exp(a) = ea.
a) Find the characteristic function cTn(t) of Tn =

∑n
i=1Xi.

b) Find the characteristic function of Xn = Tn/n.

c) Does Xn
D→W for some RV W? Explain.

2.74. Suppose X1, ..., Xn are iid from a distribution with mean µ and
variance σ2. The method of moments estimator for σ2 is

S2
M =

1

n

n∑

i=1

(Xi −Xn)2 =
1

n

n∑

i=1

X2
i − (Xn)

2.

a)
1

n

n∑

i=1

X2
i
P→ c. What is c? Hint: Use WLLN on Wi = X2

i .

b) (Xn)
2 P→ d. What is d? Hint: g(x) = x2 is continuous, so if Zn

P→ θ,

then g(Zn)
P→ g(θ).

c) Show S2
m

P→ σ2.

d) S2 =
n

n− 1
S2
M =

1

n− 1

n∑

i=1

(Xi −Xn)2. Prove S2 P→ σ2.

2.75. Suppose Xn are random variables with characteristic functions
cXn(t), and that cXn(t) → eitc for every t ∈ R where c is a constant. Does

Xn
D→ X for some random variable X? Explain briefly. Hint: Is the func-

tion g(t) = eitc continuous as t = 0? Is there a random variable that has
characteristic function g(t)?

2.76. The characteristic function for Y ∼ N(µ, σ2) is
cY (t) = exp(itµ − t2σ2/2). Let Xn ∼ N(0, n).

a) Prove cXn(t) → h(t) ∀t by finding h(t).
b) Use a) to prove whether Xn converges in distribution.
2.77. Suppose

Zn =

√
n(Xn − µ)

σ

D→ N(0, 1)

and s2n
P→ σ2 where σ > 0. Prove that

√
n(Xn − µ)

sn

D→ N(0, 1).
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2.78. It is true that Wn has the same order as Xn in probability, written
Wn �P Xn, iff for every ε > 0 there exist positive constants Nε and 0 < dε <
Dε such that

P (dε ≤
∣∣∣∣
Wn

Xn

∣∣∣∣ ≤ Dε) ≥ 1 − ε

for all n ≥ Nε.
a) Show that if Wn �P Xn then Xn �P Wn.
b) Show that if Wn �P Xn then Wn = OP (Xn).
c) Show that if Wn �P Xn then Xn = OP (Wn).
d) Show that if Wn = OP (Xn) and if Xn = OP (Wn), then Wn �P Xn.
2.79. This problem will prove the following Theorem which says that if

there areK estimators Tj,n of a parameter β, such that ‖Tj,n−β‖ = OP (n−δ)
where 0 < δ ≤ 1, and if T ∗

n picks one of these estimators, then ‖T ∗
n − β‖ =

OP (n−δ).

Lemma: Pratt (1959). Let X1,n, ..., XK,n each be OP (1) where K is
fixed. Suppose Wn = Xin,n for some in ∈ {1, ..., K}. Then

Wn = OP (1). (2.14)

Proof.

P (max{X1,n, ..., XK,n} ≤ x) = P (X1,n ≤ x, ..., XK,n ≤ x) ≤

FWn(x) ≤ P (min{X1,n, ..., XK,n} ≤ x) = 1 − P (X1,n > x, ..., XK,n > x).

SinceK is finite, there exists B > 0 andN such that P (Xi,n ≤ B) > 1−ε/2K
and P (Xi,n > −B) > 1 − ε/2K for all n > N and i = 1, ..., K. Bonferroni’s

inequality states that P (∩Ki=1Ai) ≥
∑K
i=1 P (Ai) − (K − 1). Thus

FWn(B) ≥ P (X1,n ≤ B, ..., XK,n ≤ B) ≥ K(1−ε/2K)−(K−1) = K−ε/2−K+1 = 1−ε/2

and
−FWn(−B) ≥ −1 + P (X1,n > −B, ..., XK,n > −B) ≥

−1 +K(1 − ε/2K) − (K − 1) = −1 +K − ε/2−K + 1 = −ε/2.
Hence

FWn(B) − FWn(−B) ≥ 1 − ε for n > N. QED

Theorem. Suppose ‖Tj,n−β‖ = OP (n−δ) for j = 1, ..., K where 0 < δ ≤
1. Let T ∗

n = Tin,n for some in ∈ {1, ..., K} where, for example, Tin,n is the
Tj,n that minimized some criterion function. Then

‖T ∗
n − β‖ = OP (n−δ). (2.15)

Prove the above theorem using the Lemma with an appropriate Xj,n.
2.80. Suppose
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FXn(x) =





0, x ≤ c− 1
n

n
2 (x− c + 1

n ), c− 1
n < x < c+ 1

n
1, x ≥ c+ 1

n .

Does Xn
D→ X for some random variableX? Prove or disprove. If Xn

D→ X,
find X.

2.81. Suppose X1, ..., Xn are iid from a distribution with E(Xk) = Γ (3−
k)/6λk for integer k < 4. Recall that Γ (n) = (n−1)! for integers n ≥ 1. Find
the limiting distribution of

√
n( Xn − c ) for appropriate constant c.

2.82. Suppose Xn is a discrete random variable with P (Xn = n) = 1/n

and P (Xn = 0) = (n− 1)/n. Does Xn
D→ X? Explain.

2.83. LetXn ∼ Poisson(nθ). Find the limiting distribution of
√
n

(
Xn
n

− θ

)
.

2.84. Let Y1, ..., Yn be iid Gamma(θ, θ) random variables with E(Yi) = θ2

and V (Yi) = θ3 where θ > 0. Find the limiting distribution of
√
n( Y n − c )

for appropriate constant c.
2.85. Let Xn =

√
n with probability 1/n and Xn = 0 with probability

1− 1/n.
(Xn =

√
nI[0,1/n] wrt U(0,1) probability.)

a) Prove that Xn
1→ 0.

b) Does Xn
2→ 0? Prove or disprove.

2.86. Suppose Xn ∼ U(c− 1/n, c+1/n). Does Xn
D→ X for some random

variable X? Prove or disprove. (If Y ∼ U(θ1, θ2), then the cdf of Y is F (y) =
(y − θ1)/(θ2 − θ1) for θ1 ≤ y ≤ θ2.)

2.87. Let Xn ∼ N(0, σ2
n) where σ2

n → ∞ as n → ∞. Let Φ(x) be the cdf
of a N(0, 1) RV. Then the cdf of Xn is Fn(x) = Φ(x/σn).

a) Find F (x) such that Fn(x) → F (x) for all real x.

b) Does Xn
D→ X? Explain briefly.

2.88. Suppose X1, ..., Xn are iid C(µ, σ) with characteristic function
ϕX(t) = exp(itµ − |t|σ) where exp(a) = ea.

a) Find the characteristic function ϕTn(t) of Tn =
∑n

i=1Xi.

b) Find the characteristic function of Xn = Tn/n.

c) Does Xn
D→W for some RV W? Explain.

2.89. Let P (Xn = 1) = 1/n and P (Xn = 0) = 1 − 1/n.
a) Find P (|Xn| ≥ ε) for 0 < ε ≤ 1.

(Note that P (|Xn| ≥ ε) = 0 for ε > 1.)

b) Does Xn converge in probability? Explain.

2.90. Let P (Xn = 0) = 1 − 1/n and P (Xn = 1) = 1/n. Prove Xn
2→ 0 by

showing E[(Xn − 0)2] → 0 as n → ∞.
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2.91. Let Yn and Y be random variables such that Yn = Y with probability
1 − pn and Yn = n with probability pn where pn → 0. Prove or disprove:

Yn
D→ Y .
2.92Q. a) Suppose that Xn ∼ U(−1/n, 1/n). Prove whether or not Xn

converges in distribution to a random variable X.
b) Suppose Yn ∼ U(0, n). Prove whether or not Xn converges in distribu-

tion to a random variable X.
2.93Q. Prove whether the following sequences of random variables Xn

converge in distribution to some random variable X. If Xn
D→ X, find the

distribution of X (for example, find FX(t) or note that P (X = c) = 1, so X
has the point mass distribution at c).
a) Xn ∼ U(−n− 1,−n)
b) Xn ∼ U(n, n+ 1)
c) Xn ∼ U(an, bn) where an → a < b and bn → b.
d) Xn ∼ U(an, bn) where an → c and bn → c.
e) Xn ∼ U(−n, n)
f) Xn ∼ U(c− 1/n, c+ 1/n)

2.94Q. a) Let P (Xn = n) = 1/n and P (Xn = 0) = 1 − 1/n.

i) Determine whether Xn
1→ 0.

ii) Determine whether Xn
P→ 0.

iii) Determine whether Xn
D→ 0.

b) Let P (Xn = 0) = 1 − 1

n
and P (Xn = 1) = 1/n.

i) Determine whether Xn
2→ 0.

ii) Determine whether Xn
1→ 0.

iii) Determine whether Xn
P→ 0.

iv) Determine whether Xn
D→ 0.

2.95Q. LetX1, ..., Xn be independent identically distributed (iid) beta(β, β)
random variables.

a) Find the limiting distribution of
√
n( Xn−θ ), for appropriate constant

θ.

b) Find the limiting distribution of
√
n( log(Xn) − d ), for appropriate

constant d.

2.96. Let X1, ..., Xn be a random sample of size n from U(θ, 2θ).
a) Find the limiting distribution of

√
n(X−c) for an appropriate constant

c.
b) Find the limiting distribution of

√
n(log(X) − d) for an appropriate

constant d.
2.97. Let Yn ∼ Poisson(n).

a) Find the limiting distribution of
√
n

(
Yn
n

− 1

)
.
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b) Find the limiting distribution of
√
n

[ (
Yn
n

)2

− 1

]
.

2.98∗. Let Y1, ..., Yn be iid uniform U(θ, 2θ) for θ > 0 and iid U(2θ, θ) for
θ < 0.

a) Find the limiting distribution of
√
n[ Y − c] for appropriate constant c.

b) Find the limiting distribution of
√
n[ (Y )2 −d] for appropriate constant

d.
2.99∗. Let x1, ...,xk be iid with E(x) = µ where x is p × 1. Let n =

floor(k/2) = bk/2c be the integer part of k/2. So floor(100/2) = floor(101/2)
= 50. Let the iid random variables Wi = xT2i−1x2i for i = 1, ..., n. Hence
W1,W2, ...,Wn = xT1 x2,x

T
3 x4, ...,x

T
2n−1x2n. Then E(Wi) = µTµ = θ ≥ 0

and V (Wi) = σ2
W .

a) Find the limiting distribution of
√
n(W − θ).

b) If θ > 0, find the limiting distribution of
√
n
(√

W −
√
θ
)
.

2.100. Suppose Xn is a sequence of random variables with P (Xn = 1/n) =
0.5 and P (Xn = −1/n) = 0.5.

a) Show whether or not Xn
1→ 0 (convergence in rth mean with r = 1).

b) Does Xn
D→ X for some random variable X? Prove or disprove.

2.101. Let Y1, ..., Yn be iid beta(δ = θ, ν = 1) with E(Y ) =
θ

θ+ 1
, V (Y ) =

θ

(θ + 1)2(θ + 2)
, and I1(θ) =

1

θ2
. The beta(θ, 1) distribution is a 1PREF. Let

θ̂n be the MLE of θ. Find the limiting distribution of
√
n(θ̂n − θ).

2.102. Let Y1, ..., Yn be iid C(µ, σ). Then the pdf of Yi is

f(y) =
1

πσ[1 + (y−µσ )2]

where y and µ are real numbers and σ > 0. Then MED(Y ) = µ. Find the
limiting distribution of

√
n(MED(n) − µ).

2.103. Let Y1, ..., Yn be independent and identically distributed (iid) from
a Gamma(α, β) distribution.

a) Find the limiting distribution of
√
n
(
Y − αβ

)
.

b) Find the limiting distribution of
√
n
(

(Y )2 − c
)

for appropriate con-
stant c.

2.104. Let X1, ..., Xn be independent and identically distributed (iid) from

a N(µ, σ2) distribution. Let X =
1

n

n∑

i=1

Xi.

a) Find the limiting distribution of
√
n ( X − µ ).

b) Find the limiting distribution of

√
n

[
1

X
− c

]
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for appropriate constant c. You may assume µ 6= 0.
2.105. Suppose Y1, ..., Yn are iid gamma(ν, λ), Y ∼ G(ν, λ), where ν is

known. Then I1(λ) = ν/λ2. Is λ̂n = Y n/ν an asymptotically efficient estima-
tor of λ? Hint: determine if

√
n(Y n/ν − λ)

D→ N

(
0,

1

I1(λ)

)
.

2.106. Let W1, . . . ,Wn be iid random variables with probability density
function (pdf)

f(w) =
3w2

λ
e−w

3/λ

if w > 0, and f(w) = 0, elsewhere, where λ > 0, and I1(λ) = 1/λ2. This

distribution is a 1PREF. Let λ̂ be the MLE of λ, Find the limiting distribution
of

√
n(λ̂ − λ).

2.107. Suppose X1, ..., Xn are iid from a distribution with E(Xk) =
2θk/(k + 2). Find the limiting distribution of

√
n( Xn − c ) for appropri-

ate constant c.
2.108. Let Y1, ..., Yn be iid from a distribution with pdf

f(y) =
θ

y2
exp

(−θ
y

)

where y > 0 and θ > 0. Then MED(Y ) = θ/ log(2). Find the limiting
distribution of

√
n(MED(n) −MED(Y )).

2.109. Let Y1, ..., Yn be iid from a 1PREF with parameter θ. Let θ̂ be the

MLE of θ with I1(θ) =
1

θ2
.

a) Find the limiting distribution of
√
n(θ̂ − θ).

b) Find the limiting distribution of
√
n[θ̂2 − θ2].

2.110. Let Xk be sequence of independent Poisson (1/2k) random vari-
ables for k =0, 1, 2, .... Let Sn =

∑n
k=0Xk. Then the characteristic function

of Sn is

cSn(t) =

n∏

k=0

cXk(t) =

n∏

k=0

exp

[
1

2k
(eit − 1)

]

= exp

[
(

n∑

k=0

1

2k
)(eit − 1)

]
∼ Pois(

n∑

k=0

1

2k
).

Using
∑∞

k=0
1
2k = 2 and the continuity theorem for characteristic functions,

find limn→∞ cSn(t) = cS(t), and thus prove Sn
D→ S. Identify the distribution

of the random variable S.
2.111. Suppose Y1, ..., Yn are iid POIS(θ). Then I1(θ) = 1/θ. Is θ̂n = Y n

an asymptotically efficient estimator of θ? Hint: determine if



2.10 Problems 115

√
n(Y n − θ)

D→ N

(
0,

1

I1(θ)

)
.

2.112. Suppose that the characteristic function of Xn ∼ N(µn, σ
2
n) is

cXn(t) = exp(itµn − t2σ2
n/2).

Suppose that µn → µ and σ2
n → σ2 as n → ∞. Does Xn

D→ X for some
random variable X? Explain. (Hint: Does cXn(t) → cX(t) as n→ ∞?)

2.113. Suppose the Zi are iid with E(Zi) = µ and V (Zi) = σ2. Let
Xi = (Zi + Zi+1)/2. Using Slutsky’s theorem ane the work below, show√
n(Xn − µ)

D→W and find the distribution of W .
It can be shown that

√
n(Xn − µ) =

√
n− 1

(
Z2 + · · ·+ Zn

n− 1
− µ

)√
n− 1

n
+
Z1 + Zn+1

2
√
n

− µ√
n

=
√
n− 1(Zn−1 − µ)

√
n− 1

n
+
Z1 + Zn+1

2
√
n

− µ√
n
.

2.114. Suppose rn
P→ 0 and Wn

D→ W . Let Zn = Wn + rn. Then Zn =

Wn + rn
D→ Z by Slutsky’s Theorem. What is Z?

2.115. Suppose Y1, ..., Yn are iid EXP (λ). Then the MLE of λ is λ̂n = Y n,
and I1(λ) = 1/λ2.

a) Find the limiting distribution of
√
n(Y n − c) for appropriate constant

c.
b) The Standard Limit Theorem for the MLE λ̂n says

√
n(λ̂n − λ)

D→ N

(
0,

1

I1(λ)

)
.

Using a), prove that the Standard Limit Theorem holds for Yi iid EXP (λ).
2.116. Suppose Y1, ..., Yn are iid and Wi = t(Yi) for a function t such

that E(Wi) = µW and V (Wi) = σ2
W . a) Find the limiting distribution of

√
n

(
1

n

n∑

i=1

t(Yi) − c

)
for appropriate constant c.

Repeat a) if Wi = t(Yi) = Y ki for positive integer k, assuming that E(Wi)
and E(W 2

i ) are finite. This part gives a limit theorem for the sample kth
moment. So give simple formulas for c, µW , and σ2

W .
2.117. Let X1, ..., Xn be iid with mean E(X) = µ and variance V (X) =

σ2 > 0. Then exp[
√
n(X − µ)]

D→ W . What is W? Hint: use the continuous

mapping theorem: if Zn
D→ Z and g is continuous, then g(Zn)

D→ g(Z).





Chapter 3

Multivariate Limit Theorems

This chapter discusses multivariate limit theorems, and follows Olive (2014,∮
8.6, 8.7) closely. Review Section 1.3 on characteristic functions and moment

generating functions.

3.1 Multivariate Limit Theorems

Many of the univariate results from Chapter 2 can be extended to random
vectors. For the limit theorems, the vector X is typically a k × 1 column
vector and XT is a row vector. Let ‖x‖ =

√
x2

1 + · · ·+ x2
k be the Euclidean

norm of x.

Definition 3.1. Let Xn be a sequence of random vectors with joint cdfs
Fn(x) and let X be a random vector with joint cdf F (x).

a) Xn converges in distribution to X, written Xn
D→ X , if Fn(x) →

F (x) as n → ∞ for all points x at which F (x) is continuous. The distribution
of X is the limiting distribution or asymptotic distribution of Xn.

b) Xn converges in probability to X, written Xn
P→ X, if for every

ε > 0, P (‖Xn − X‖ > ε) → 0 as n→ ∞.
c) Let r > 0 be a real number. Then Xn converges in rth mean to X ,

written Xn
r→ X, if E(‖Xn − X‖r) → 0 as n → ∞.

d) Xn converges almost everywhere to X , written Xn
ae→ X, if

P (limn→∞ Xn = X) = 1.

Theorems 3.1, 3.2, and 3.3 below are the multivariate extensions of the
limit theorems in Section 2.1. When the limiting distribution of Zn =√
n(g(T n) − g(θ)) is multivariate normal Nk(0,Σ), approximate the joint

cdf of Zn with the joint cdf of the Nk(0,Σ) distribution. Thus to find proba-
bilities, manipulate Zn as if Zn ≈ Nk(0,Σ). To see that the CLT is a special
case of the MCLT below, let k = 1, E(X) = µ and V (X) = Σ = σ2.

117
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Theorem 3.1: the Multivariate Central Limit Theorem (MCLT).
If X1, ...,Xn are iid k×1 random vectors with E(X) = µ and Cov(X) = Σ,
then √

n(Xn − µ)
D→ Nk(0,Σ)

where the sample mean

Xn =
1

n

n∑

i=1

X i.

The MCLT is proven after Theorem 3.8.
Remark 3.1. The behavior of convergence in distribution to a MVN

distribution in B) is much like the behavior of the MVN distributions in
A). The results in B) can be proven using the multivariate delta method. Let
A be a q× k constant matrix, b a constant, a a k× 1 constant vector, and d
a q × 1 constant vector. Note that a + bXn = a+ AXn with A = bI . Thus
i) and ii) follow from iii).

A) Suppose X ∼ Nk(µ,Σ), then
i) AX ∼ Nq(Aµ,AΣAT ).
ii) a + bX ∼ Nk(a + bµ, b2Σ).
iii) AX + d ∼ Nq(Aµ + d,AΣAT ).
(Find the mean and covariance matrix of the left hand side and plug in those
values for the right hand side. Be careful with the dimension k or q.)

B) Suppose Xn
D→ Nk(µ,Σ). Then

i) AXn
D→ Nq(Aµ,AΣAT ).

ii) a + bXn
D→ Nk(a + bµ, b2Σ).

iii) AXn + d
D→ Nq(Aµ + d,AΣAT ).

To see that the delta method is a special case of the multivariate delta
method, note that if Tn and parameter θ are real valued, then Dg(θ)

= g′(θ).

Theorem 3.2: the Multivariate Delta Method. If

√
n(T n − θ)

D→ Nk(0,Σ),

then √
n(g(T n) − g(θ))

D→ Nd(0,Dg(θ)
ΣDT

g(θ)
)

if Dg(θ)
ΣDT

g(θ)
is nonsingular, where the d× k Jacobian matrix of partial

derivatives

Dg(θ)
=




∂
∂θ1

g1(θ) . . . ∂
∂θk

g1(θ)
...

...
∂
∂θ1

gd(θ) . . . ∂
∂θk

gd(θ)


 .
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Here the mapping g : R
k → R

d needs to be differentiable in a neighborhood
of θ ∈ R

k.

Example 3.1. If Y has a Weibull distribution, Y ∼W (φ, λ), then the pdf
of Y is

f(y) =
φ

λ
yφ−1e−

yφ

λ

where λ, y, and φ are all positive. If µ = λ1/φ so µφ = λ, then the Weibull
pdf

f(y) =
φ

µ

(
y

µ

)φ−1

exp

[
−
(
y

µ

)φ]
.

Let (µ̂, φ̂) be the MLE of (µ, φ). According to Bain (1978, p. 215),

√
n

((
µ̂

φ̂

)
−
(
µ
φ

))
D→ N

((
0
0

)
,

(
1.109µ

2

φ2 0.257µ

0.257µ 0.608φ2

))

= N2(0, I
−1(θ)) where I(θ) is given in Definition 3.2.

Let column vectors θ = (µ φ)T and η = (λ φ)T . Then

η = g(θ) =

(
λ
φ

)
=

(
µφ

φ

)
=

(
g1(θ)
g2(θ)

)
.

So Dg(θ)
=




∂
∂θ1

g1(θ) ∂
∂θ2

g1(θ)

∂
∂θ1

g2(θ) ∂
∂θ2

g2(θ)


 =




∂
∂µµ

φ ∂
∂φµ

φ

∂
∂µφ

∂
∂φφ


 =



φµφ−1 µφ log(µ)

0 1


 .

Thus by the multivariate delta method,

√
n

((
λ̂

φ̂

)
−
(
λ
φ

))
D→ N2(0,Σ)

where (see Definition 3.4 below)

Σ = I(η)−1 = [I(g(θ))]−1 = Dg(θ)I
−1(θ)DT

g(θ)
=




1.109λ2(1 + 0.4635 log(λ) + 0.5482(log(λ))2) 0.257φλ+ 0.608λφ log(λ)

0.257φλ+ 0.608λφ log(λ) 0.608φ2


 .

Definition 3.2. Let X be a random variable with pdf or pmf f(x|θ). Then
the information matrix

I(θ) = [Ii,j]
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where

Ii,j = E

[
∂

∂θi
log(f(X|θ))

∂

∂θj
log(f(X|θ))

]
.

Definition 3.3. An estimator T n of θ is asymptotically efficient if

√
n(T n − θ)

D→ Nk(0, I
−1(θ)).

Following Lehmann (1999, p. 511), if T n is asymptotically efficient and if
the estimator W n satisfies

√
n(W n − θ)

D→ Nk(0,J(θ))

where J(θ) and I−1(θ) are continuous functions of θ, then under regularity
conditions, J(θ)−I−1(θ) is a positive semidefinite matrix, and T n is “better”
than W n.

Definition 3.4. Assume that η = g(θ). Then

I(η) = I(g(θ)) = [Dg(θ)I
−1(θ)DT

g(θ)
]−1.

Notice that this definition agrees with the multivariate delta method if

√
n(T n − θ)

D→ Nk(0,Σ)

where Σ = I−1(θ).

Now suppose that X1, ..., Xn are iid random variables from a k-parameter
REF

f(x|θ) = h(x)c(θ) exp

[
k∑

i=1

wi(θ)ti(x)

]
(3.1)

with natural parameterization

f(x|η) = h(x)b(η) exp

[
k∑

i=1

ηiti(x)

]
. (3.2)

Then the complete minimal sufficient statistic is

T n =
1

n
(

n∑

i=1

t1(Xi), ...,

n∑

i=1

tk(Xi))
T .

Let µT = (E(t1(X), ..., E(tk(X)))T . From Theorem 1.31, for η ∈ Ω,
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E(ti(X)) =
−∂
∂ηi

log(b(η)),

and

Cov(ti(X), tj(X)) ≡ σi,j =
−∂2

∂ηi∂ηj
log(b(η)).

Theorem 3.3. If the random variable X is a kP–REF with pmf or pdf
(3.2), then the information matrix

I(η) = [Ii,j]

where

Ii,j = E

[
∂

∂ηi
log(f(X|η))

∂

∂ηj
log(f(X|η))

]
= −E

[
∂2

∂ηi∂ηj
log(f(X|η))

]
.

Several authors, including Barndorff–Nielsen (1982), have noted that the

multivariate CLT can be used to show that
√
n(T n − µT )

D→ Nk(0,Σ). The
fact that Σ = I(η) appears in Lehmann (1983, p. 127).

Theorem 3.4. IfX1, ..., Xn are iid from a k-parameter regular exponential
family, then √

n(T n − µT )
D→ Nk(0, I(η)).

Proof. By the multivariate central limit theorem,

√
n(T n − µT )

D→ Nk(0,Σ)

where Σ = [σi,j]. Hence the result follows if σi,j = I i,j. Since

log(f(x|η)) = log(h(x)) + log(b(η)) +

k∑

l=1

ηltl(x),

∂

∂ηi
log(f(x|η)) =

∂

∂ηi
log(b(η)) + ti(X).

Hence

−Ii,j = E

[
∂2

∂ηi∂ηj
log(f(X|η))

]
=

∂2

∂ηi∂ηj
log(b(η)) = −σi,j. �

To obtain standard results, use the multivariate delta method, assume that
both θ and η are k × 1 vectors, and assume that η = g(θ) is a one to one
mapping so that the inverse mapping is θ = g−1(η). If Dg(θ)

is nonsingular,

then
D−1

g(θ)
= Dg−1(η) (3.3)
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(see Searle 1982, p. 339), and

I(η) = [Dg(θ)
I−1(θ)DT

g(θ)
]−1

= [D−1

g(θ)
]T I(θ)D−1

g(θ)
= DT

g−1(η)I(θ)Dg−1(η). (3.4)

Compare Lehmann (1999, p. 500) and Lehmann (1983, p. 127).
For example, suppose that µT and η are k × 1 vectors, and

√
n(η̂ − η)

D→ Nk(0, I
−1(η))

where µT = g(η) and η = g−1(µT ). Also assume that T n = g(η̂) and
η̂ = g−1(T n). Then by the multivariate delta method and Theorem 3.4,

√
n(T n−µT ) =

√
n(g(η̂)−g(η))

D→ Nk[0, I(η)] = Nk[0,Dg(η)I
−1(η)DT

g(η)].

Hence
I(η) = Dg(η)I

−1(η)DT
g(η).

Similarly,

√
n(g−1(T n) − g−1(µT )) =

√
n(η̂ − η)

D→ Nk[0, I
−1(η)] =

Nk[0,Dg−1(µT )I(η)DT
g−1(µ

T
)].

Thus

I−1(η) = Dg−1(µT )I(η)DT
g−1(µ

T
) = Dg−1(µT )Dg(η)I

−1(η)DT
g(η)D

T
g−1(µ

T
)

as expected by Equation (3.4). Typically θ̂ is a function of the sufficient
statistic T n and is the unique MLE of θ. Replacing η by θ in the above

discussion shows that
√
n(θ̂ − θ)

D→ Nk(0, I
−1(θ)) is equivalent to

√
n(T n−

µT )
D→ Nk(0, I(θ)) provided that Dg(θ) is nonsingular.

3.2 More Multivariate Results

Definition 3.5. If the estimator g(T n)
P→ g(θ) for all θ ∈ Θ, then g(T n) is

a consistent estimator of g(θ).

Theorem 3.5. If 0 < δ ≤ 1, X is a random vector, and

nδ(g(T n) − g(θ))
D→ X ,

then g(T n)
P→ g(θ).
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Theorem 3.6. If X1, ...,Xn are iid, E(‖X‖) <∞ and E(X) = µ, then

a) WLLN: Xn
P→ µ and

b) SLLN: Xn
ae→ µ.

Theorem 3.7: Continuity Theorem. Let Xn be a sequence of k × 1
random vectors with characteristic function cn(t) and let X be a k×1 random
vector with cf c(t). Then

Xn
D→ X iff cn(t) → c(t)

for all t ∈ R
k.

Theorem 3.8: Cramér Wold Device. Let Xn be a sequence of k × 1
random vectors and let X be a k × 1 random vector. Then

Xn
D→ X iff tTXn

D→ tTX

for all t ∈ R
k.

Proof. (Serverini (2005, p. 337)): Let Wn = tTXn and W = tTX . Note
that

cWn(y) = ctT Xn
(y) = E

[
eiyt

T Xn

]
= cXn

(yt)

where y ∈ R, and similarly

cW (y) = ctT X (y) = cX (yt)

where y ∈ R.

If Xn
D→ X, then cXn

(t) → cX (t) ∀ t ∈ R
k. Fix t. Then cXn

(yt) →
cX(yt) ∀ y ∈ R. Thus tTXn

D→ tTX.

Now assume tTXn
D→ tTX ∀ t ∈ R

k. Then cXn
(yt) → cX(yt) ∀ y ∈ R

and ∀ t ∈ R
k. Take y = 1 to get cXn

(t) → cX (t) ∀ t ∈ R
k. Hence Xn

D→ X
by the Continuity Theorem. �

Application: Proof of the MCLT Theorem 3.1. Note that for fixed
t, the tTX i are iid random variables with mean tTµ and variance tTΣt.

Hence by the CLT, tT
√
n(Xn − µ)

D→ N(0, tTΣt). The right hand side has
distribution tTX where X ∼ Nk(0,Σ). Hence by the Cramér Wold Device,√
n(Xn − µ)

D→ Nk(0,Σ). �

Theorem 3.9. a) If Xn
P→ X , then Xn

D→ X .
b)

Xn
P→ g(θ) iff Xn

D→ g(θ).



124 3 Multivariate Limit Theorems

Let g(n) ≥ 1 be an increasing function of the sample size n: g(n) ↑ ∞, e.g.
g(n) =

√
n. See White (1984, p. 15). If a k×1 random vector T n−µ converges

to a nondegenerate multivariate normal distribution with convergence rate√
n, then T n has (tightness) rate

√
n.

Definition 3.6. Let An = [ai,j(n)] be an r × c random matrix.
a) An = OP (Xn) if ai,j(n) = OP (Xn) for 1 ≤ i ≤ r and 1 ≤ j ≤ c.
b) An = op(Xn) if ai,j(n) = op(Xn) for 1 ≤ i ≤ r and 1 ≤ j ≤ c.
c) An �P (1/(g(n)) if ai,j(n) �P (1/(g(n)) for 1 ≤ i ≤ r and 1 ≤ j ≤ c.
d) Let A1,n = T n − µ and A2,n = Cn − cΣ for some constant c > 0. If
A1,n �P (1/(g(n)) and A2,n �P (1/(g(n)), then (T n,Cn) has (tightness)
rate g(n).

Theorem 3.10. Let Wn, Xn, Yn and Zn be sequences of random variables
such that Yn > 0 and Zn > 0. (Often Yn and Zn are deterministic, e.g.
Yn = n−1/2.)

a) If Wn = OP (1) and Xn = OP (1), then Wn+Xn = OP (1) and WnXn =
OP (1), thus OP (1) + OP (1) = OP (1) and OP (1)OP (1) = OP (1).

b) If Wn = OP (1) and Xn = oP (1), then Wn +Xn = OP (1) and WnXn =
oP (1), thus OP (1) + oP (1) = OP (1) and OP (1)oP (1) = oP (1).

c) If Wn = OP (Yn) and Xn = OP (Zn), then Wn+Xn = OP (max(Yn, Zn))
and WnXn = OP (YnZn), thus OP (Yn) + OP (Zn) = OP (max(Yn, Zn)) and
OP (Yn)OP (Zn) = OP (YnZn).

Recall that the smallest integer function dxe rounds up, e.g. d7.7e = 8.

Definition 3.7. The sample ρ quantile ŷn,ρ = ξ̂n,ρ = Y(dnρe). The popula-
tion quantile yρ = ξρ = Q(ρ) = inf{y : F (y) ≥ ρ}.

There are many other ways to define sample quantiles, and the different
estimators tend to be asymptotically equivalent. If the inverse F−1 of the cdf
exists, then Q(u) = F−1(u). Q(u) ≤ x iff u ≤ F (x). F (yρ) = P (Y ≤ yρ) ≥ ρ

and P (Y ≥ yρ) ≥ 1 − ρ. Let the observed data be Y1, ..., Yn, and let F̂ (y) =

1

n

n∑

i=1

I(Yi ≤ y). Then Q̂(ρ) = inf{y : F̂ (y) ≥ ρ} = ŷn,ρ = Y(dnρe). (An

alternative definition of the population quantile that is often used is that yρ
is any real number satisfying P (Y ≤ yρ) ≥ ρ and P (Y ≥ yρ) ≥ 1 − ρ. Then
yρ is not necessarily unique. Definition 3.7 makes the population quantile
unique. The regularity conditions in Theorem 3.11 make yρ unique if the
alternative definition is used.)

Theorem 3.11: Serfling (1980, p. 80). Let 0 < ρ1 < ρ2 < · · · <
ρk < 1. Suppose that F has a density f that is positive and continuous in
neighborhoods of ξρ1 , ..., ξρk. Then

√
n[(ξ̂n,ρ1, ..., ξ̂n,ρk)

T − (ξρ1 , ..., ξρk)
T ]

D→ Nk(0,Σ)
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where Σ = (σij) and

σij =
ρi(1 − ρj)

f(ξρi )f(ξρj )

for i ≤ j and σij = σji for i > j.

Theorem 3.12: Continuous Mapping Theorem. Let Xn ∈ R
k. If

Xn
D→ X and if the function g : R

k → R
j is continuous and does not depend

on n, then g(Xn)
D→ g(X).

The following theorem is an extension of Theorem 2.8.

Theorem 3.13: Generalized Chebyshev’s Inequality or General-
ized Markov’s Inequality: Let u : R

k → [0,∞) be a nonnegative function.
If E[u(X)] exists, then for any ε > 0,

P [u(X) ≥ ε] ≤ E[u(X)]

ε
.

Proof Sketch. The proof is nearly identical to that of Theorem 2.8.

Example 3.2. Let u(x) = ‖x − c‖r for some r > 0. Often c = 0 or
a = E(X) = µ. If E[u(X)] exists, then for any ε > 0,

P (‖X − c‖ ≥ ε] = P (‖X − c‖r ≥ εr ] ≤ E[‖X − c‖r ]
εr

.

Theorem 3.14. Suppose xn and x are random vectors with the same
probability space.

a) If xn
P→ x, then xn

D→ x.

b) If xn
wp1→ x, then xn

P→ x and xn
D→ x.

c) If xn
r→ x for some r > 0, then xn

P→ x and xn
D→ x.

d) xn
P→ c iff xn

D→ c where c is a constant vector.

The proof of c) follows from the Generalized Chebyshev inequality. See
Example 3.2.

Remark 3.2. Let W n be a sequence of m×m random matrices and let
C be an m×m constant matrix.

a) W n
P→ X iff aTW nb

P→ aTCb for all constant vectors a, b ∈ R
m.

b) If W n
P→ C, then the determinant det(W n) = |Wn| P→ |C| = det(C).

c) If W−1
n exists for each n and C−1 exists, then If W n

P→ C iff W−1
n

P→ C−1.

The following theorem is taken from Severini (2005, pp. 345-349).

Theorem 3.15. Let Xn = (X1n, ..., Xkn)
T be a sequence of k × 1

random vectors, let Y n be a sequence of k × 1 random vectors, and let
X = (X1 , ..., Xk)

T be a k× 1 random vector. Let W n be a sequence of k× k
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nonsingular random matrices, and let C be a k × k constant nonsingular
matrix.

a) Xn
P→ X iff Xin

P→ Xi for i = 1, ..., k.

b) Slutsky’s Theorem: If Xn
D→ X and Y n

P→ c for some constant k×1

vector c, then i) Xn + Y n
D→ X + c and

ii) Y T
nXn

D→ cTX .

c) If Xn
D→ X and W n

P→ C, then W nXn
D→ CX, XT

nW n
D→ XTC,

W−1
n Xn

D→ C−1X , and XT
nW−1

n
D→ XTC−1.

Theorem 3.16. i) Suppose
√
n(Tn − µ)

D→ Np(θ,Σ). Let A be a q × p

constant matrix. Then A
√
n(Tn−µ) =

√
n(ATn−Aµ)

D→ Nq(Aθ,AΣAT ).
ii) Let Σ > 0. If (T,C) is a consistent estimator of (µ, s Σ) where s > 0

is some constant, then D2
x(T,C) = (x− T )TC−1(x− T ) = s−1D2

x(µ,Σ) +
oP (1), so D2

x(T,C) is a consistent estimator of s−1D2
x(µ,Σ).

iii) Let Σ > 0. If
√
n(T−µ)

D→ Np(0,Σ) and if C is a consistent estimator

of Σ, then n(T − µ)TC−1(T − µ)
D→ χ2

p. In particular,

n(x− µ)TS−1(x − µ)
D→ χ2

p.

Proof: ii) D2
x(T,C) = (x − T )TC−1(x− T ) =

(x− µ + µ− T )T [C−1 − s−1Σ−1 + s−1Σ−1](x− µ + µ− T )
= (x − µ)T [s−1Σ−1](x − µ) + (x − T )T [C−1 − s−1Σ−1](x− T )
+(x − µ)T [s−1Σ−1](µ− T ) + (µ− T )T [s−1Σ−1](x − µ)
+(µ − T )T [s−1Σ−1](µ− T ) = s−1D2

x(µ,Σ) + OP (1).
(Note that D2

x(T,C) = s−1D2
x(µ,Σ) +OP (n−δ) if (T,C) is a consistent

estimator of (µ, s Σ) with rate nδ where 0 < δ ≤ 0.5 if [C−1 − s−1Σ−1] =
OP (n−δ).)

Alternatively, D2
x(T,C) is a continuous function of (T,C) if C > 0 for

n > 10p. Hence D2
x(T,C)

P→ D2
x(µ, sΣ).

iii) Note that Zn =
√
n Σ−1/2(T − µ)

D→ Np(0, Ip). Thus ZT
nZn =

n(T − µ)TΣ−1(T − µ)
D→ χ2

p. Now n(T − µ)TC−1(T − µ) =

n(T − µ)T [C−1 − Σ−1 + Σ−1](T − µ) = n(T − µ)TΣ−1(T − µ) +

n(T −µ)T [C−1 −Σ−1](T −µ) = n(T −µ)TΣ−1(T −µ)+ oP (1)
D→ χ2

p since√
n(T − µ)T [C−1 − Σ−1]

√
n(T − µ) = OP (1)oP (1)OP (1) = oP (1). �

Theorem 3.17. Let xn = (x1n, ..., xkn)
T and x = (x1, ..., xk)

T be random

vectors. Then xn
D→ x implies xin

D→ xi for i = 1, ..., k.
Proof. Use the Cramér Wold device with ti = (0, ..., 0, 1, 0, ...0)T where

the 1 is in the ith position. Thus

tTi xn = xin
D→ xi = tTi x.

�
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Joint convergence in distribution implies marginal convergence in dis-
tribution by Theorem 3.16. Typically marginal convergence in distribution

xin
D→ xi for i = 1, ..., m does not imply that




x1n

...
xmn


 D→




x1

...
xm


 .

That is marginal convergence in distribution does not imply joint conver-
gence in distribution. An exception is when the marginal random vectors are
independent.

Example 3.3. Suppose that xn yn for n = 1, 2, .... Suppose xn
D→ x,

and yn
D→ y where x y. Then

[
xn
yn

]
D→
[

x
y

]

by the continuity theorem. To see this, let t = (tT1 , t
T
2 )T , zn = (xTn , y

T
n )T ,

and z = (xT , yT )T . Since xn yn and x y, the characteristic function

φzn
(t) = φxn

(t1)φy
n
(t2) → φx(t1)φy(t2) = φz(t).

Hence zn
D→ z and g(zn)

D→ g(z) if g is continuous by the continuous
mapping theorem.

Remark 3.3. a) In the above example, we can show x y instead of
assuming x y. See Ferguson (1996, p. 42).

b) If xn
D→ x and yn

P→ c, a constant vector, then

[
xn
yn

]
D→
[

x
c

]
.

Note that a constant vector c x for any random vector x.

Example 3.4. a) Let X ∼ N(0, 1). Let Xn = X ∀n. Let

Yn =

{
X, n even
−X, n odd.

Thus Yn ∼ N(0, 1), Xn
D→ X, and Yn

D→ X. Then

(1 1)

(
Xn
Yn

)
= Xn + Yn =

{
2X, n even
0, n odd

does not converge in distribution as n → ∞ by the Cramér Wold Device with
t = (1 1)T . Thus
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(
Xn
Yn

)

does not converge in distribution.
b) Let X ∼ N(0, 1) and W ∼ N(0, 1). Let Xn = X ∀n and Yn = −X ∀n.

Then (
Xn
Yn

)
=

(
X
−X

)
∀n, and

(
Xn
Yn

)
D→
(
X
−X

)
.

Now Xn
D→W and Yn

D→W . Since

(1 1)

(
Xn
Yn

)
= Xn + Yn = 0 ∀n,

(
Xn
Yn

)

does not converge in distribution to

(
W
W

)

as n → ∞.

Example 3.5. a) Let x = (x1, ..., xk)
T and xn = (x1n, ..., xkn)

T be k × 1

random vectors. By Theorem 3.14 c), xn
2→ x implies that xn

P→ x. Now

xn
2→ x iff E(‖xn − x‖2) → 0 as n → ∞. Thus xn

2→ x iff

E[(xn − x)T (xn − x)] =
∑k

i=1E[(xin − xi)
2] → 0 as n→ ∞.

b) Let x1, ...,xn be iid with mean E(xi) = µ and covariance matrix
Cov(xi) = Σ. Assume the xi have the same distribution as (x1, ..., xk)

T with
E(xi) = µi and V (xi) = σ2

i . Then E[‖xn − µ‖2] = E[(xn − µ)T (xn − µ)] =
k∑

i=1

E[(xin − µi)
2] =

k∑

i=1

V (xin) =
k∑

i=1

σ2
i /n =

1

n
tr(Σ) → 0 as n → ∞. Thus

xn
2→ µ by a), and hence xn

P→ µ. This result proves a special case of the
WLLN.

3.3 The Plug-In Principle

Suppose that xn
D→ x = xτ ∼ D(τ ) where the distribution of x depends

on unknown parameters τ . The plug-in principle says approximate the dis-
tribution of xτ by zn = xτ̂ ∼ D(τ̂ ) where τ̂ is a consistent estimator of τ .
Then zn is often used to make large sample confidence intervals and for large
sample tests of hypotheses. For example, let xn =

√
n(Tn − θ).

The plug-in principle is also often used to get an asymptotic normal ap-
proximation for a statistic, and often the bootstrap confidence regions are
closely related to the plug-in principle. For the MCLT, x ∼ Np(0,Σ) and
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zn ∼ Np(0,Sn). For the MLE, x ∼ N(0, [I(θ)]−1) and zn ∼ N(0, [I(θ̂n)]−1)

where θ̂n is the MLE of θ.
It is not clear whether “zn ∼ D(τ̂ )” converges in distribution to x ∼ D(τ ).

See Section 2.7. Thus the plug-in principle approximation zn = xτ̂ n
∼ D(τ̂ n)

for x = xτ ∼ D(τ ) appears to weaker than convergence in distribution. We

may use the notation zn
C→ x when τ̂n is a consistent estimator of τ .

There are some exceptions. For example, interpret “zn ∼ Np(µ̂n, Σ̂n)” as

zn ∼ µ̂n + Σ̂
1/2

n Np(0, Ip)
D→ µ + Σ1/2Np(0, Ip) ∼ x ∼ Np(µ,Σ).

If xn =
√
n(Tn−θ)

D→ x ∼ Np(0,Σ) where Σ̂n is a consistent estimator of

Σ where Σ and the Σ̂n are nonsingular, then it can be shown that
√
n(Tn−

θ)T Σ̂
−1

n

√
n(Tn − θ)T

D→ xTΣ−1x ∼ χ2
p. Hence the consistent estimator Σ̂n

is useful for constructing large sample confidence regions and large sample
tests of hypotheses for θ.

3.4 Summary

1) Let Xn ∈ R
k be a sequence of random vectors with joint cdfs FXn

(x)

and let X ∈ R
k be a random vector with joint cdf FX (x).

a) Xn converges in distribution to X, written Xn
D→ X , if FXn

(x) →
FX(x) as n→ ∞ for all points x at which FX (x) is continuous. The distri-
bution of X is the limiting distribution or asymptotic distribution of
Xn, and the limiting distribution does not depend on n.

b) Xn converges in probability to X, written Xn
P→ X, if for every

ε > 0, P (‖Xn − X‖ > ε) → 0 as n→ ∞.
c) Let r > 0 be a real number. Then Xn converges in rth mean to X ,

written Xn
r→ X, if E(‖Xn − X‖r) → 0 as n → ∞.

d) Xn converges with probability one to X, written Xn
wp1→ X, if

P (limn→∞ Xn = X) = 1.

e) Replace X by c for Xn
D→ c,Xn

P→ c,Xn
r→ c, or Xn

wp1→ c.

f)
D→ =

L→ and Xn
wp1→ X = Xn

as→ X = Xn
ae→ X .

2) The Multivariate Central Limit Theorem (MCLT): If X1, ...,Xn

are iid k × 1 random vectors with E(X) = µ and Cov(X) = Σ, then

√
n(Xn − µ)

D→ Nk(0,Σ)

where the sample mean

Xn =
1

n

n∑

i=1

X i.

Note: the usual CLT is a special case with k = 1.
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3) If X1, ...,Xn are iid, E(‖X‖) <∞, and E(X) = µ, then

a) WLLN: Xn
P→ µ, and

b) SLLN: Xn
wp1→ µ.

4) Continuity Theorem: Let Xn be a sequence of k×1 random vectors
with characteristic functions cXn

(t), and let X be a k × 1 random vector
with cf cX (t). Then

Xn
D→ X iff cXn

(t) → cX (t)

for all t ∈ R
k.

5) Theorem: Cramér Wold Device: Let Xn be a sequence of k × 1
random vectors, and let X be a k × 1 random vector. Then

Xn
D→ X iff tTXn

D→ tTX

for all t ∈ R
k.

6) Theorem. a) If Xn
P→ X, then Xn

D→ X .
b)

Xn
P→ c iff Xn

D→ c.

7) Continuous Mapping Theorem. Let X,Xn ∈ R
k. If Xn

D→ X and

if the function g : R
k → R

j is continuous, then g(Xn)
D→ g(X).

This theorem also holds if C(g) is the set of points x for which g is contin-
uous and P (X ∈ C(g)) = 1. (Equivalently, D(g) is the set of discontinuity
points for g and P (X ∈ D(g)) = 0.)

8) Theorem: Let Xn = (X1n, ..., Xkn)
T be a sequence of k×1 random vec-

tors, let Y n be a sequence of k×1 random vectors, and let X = (X1, ..., Xk)
T

be a k×1 random vector. Let W n be a sequence of k×k nonsingular random
matrices, and let C be a k × k constant nonsingular matrix.

a) Xn
P→ X iff Xin

P→ Xi for i = 1, ..., k.

b) Slutsky’s Theorem: If Xn
D→ X and Y n

P→ a for some constant k×1

vector a, then i) Xn + Y n
D→ X + a and

ii) Y T
nXn

D→ aTX .

c) If Xn
D→ X and W n

P→ C, then W nXn
D→ CX , XT

nW n
D→ XTC,

W−1
n Xn

D→ C−1X , and XT
nW−1

n
D→ XTC−1.

9) If Xn
D→ X , then Xin

D→ Xi for i = 1, ..., k.

10) In general, X in
D→ Xi for i = 1, ..., m does not imply that




X1n

...
Xmn


 D→




X1

...
Xm


 .
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That is, marginal convergence in distribution does not imply joint conver-
gence in distribution.

11) Suppose that Xn Y n for n = 1, 2, .... Suppose Xn
D→ X , and

Y n
D→ Y . Then [

Xn

Y n

]
D→
[

X
Y

]

where X Y .
If the sequence {Xn} {Y n} so that X i Y j for every i and j, then

we should have X Y even if X = c = Y . Roughly, independence is an
exception to 10) since independent random vectors have a joint distribution
that does not affect the marginal distributions.

3.5 Complements

Theorems 2.5 and 3.4 appears in Olive (2014). Also see Cox (1984) and
McCulloch (1988). A similar result to Theorem 3.4 for linear exponential
families where ti(x) = xi, is given by Brown (1986, p. 172).

The multivariate delta method appears, for example, in Ferguson (1996,
p. 45), Lehmann (1999, p. 315), Mardia, Kent and Bibby (1979, p. 52), Sen
and Singer (1993, p. 136) and Serfling (1980, p. 122).

Suppose θ = g−1(η). In analysis, the fact that

D−1

g(θ)
= Dg−1(η)

is a corollary of the inverse mapping theorem (or of the inverse function
theorem). See Apostol (1957, p. 146), Bickel and Doksum (2007, p. 517),
Marsden and Hoffman (1993, p. 393 ) and Wade (2000, p. 353).

According to Rohatgi (1984, p. 616), if i) Y1, ..., Yn are iid with pdf f(y),
ii) Yrn:n is the rnth order statistic, iii) rn/n → ρ, iv) F (ξρ) = ρ and v)
f(ξρ) > 0, then

√
n(Yrn:n − ξρ)

D→ N

(
0,
ρ(1 − ρ)

[f(ξρ)]2

)
.

So there are many asymptotically equivalent ways of defining the sample ρ
quantile.

3.6 Problems

3.1. Many multiple linear regression estimators β̂ satisfy

√
n(β̂ − β)

D→ Np(0, V (β̂, F ) W ) (3.5)
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when
XTX

n

P→ W−1, (3.6)

and when the errors ei are iid with a cdf F and a unimodal pdf f that is
symmetric with a unique maximum at 0. When the variance V (ei) exists,

V (OLS, F ) = V (ei) = σ2 while V(L1,F) =
1

4[f(0)]2
.

In the multiple linear regression model,

Yi = xi,1β1 + xi,2β2 + · · ·+ xi,pβp + ei = xTi β + ei (3.7)

for i = 1, . . . , n. In matrix notation, these n equations become

Y = Xβ + e, (3.8)

where Y is an n × 1 vector of dependent variables, X is an n × p matrix
of predictors, β is a p × 1 vector of unknown coefficients, and e is an n × 1
vector of unknown errors.

a) What is the ijth element of the matrix

XTX

n
?

b) Suppose xk,1 = 1 and that xk,j ∼ Xj are iid with E(Xj) = 0 and
V (Xj) = 1 for k = 1, ..., n and j = 2, ..., p. Assume that Xi and Xj are
independent for i 6= j, i > 1 and j > 1. (Often xk,j ∼ N(0, 1) in simulations.)
Then what is W−1 for model (3.7)?

c) Suppose p = 2 and Yi = α+ βXi + ei. Show

(XTX)−1 =




∑
X2

i

n
∑

(Xi−X)2
−
∑
Xi

n
∑

(Xi−X)2

−
∑
Xi

n
∑

(Xi−X)2
n

n
∑

(Xi−X)2


 .

d) Under the conditions of c), let S2
x =

∑
(Xi −X)2/n. Show that

n(XTX)−1 =

(
XTX

n

)−1

=




1
n

∑
X2

i

S2
x

−X
S2

x

−X
S2

x

1
S2

x


 .

e) If the Xi are iid with variance V (X) then n(XTX)−1 P→ W . What is
W ?
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f) Now suppose that n is divisible by 5 and the n/5 of Xi are at 0.1, n/5
at 0.3, n/5 at 0.5, n/5 at 0.7 and n/5 at 0.9. (Hence if n = 100, 20 of the Xi
are at 0.1, 0.3, 0.5, 0.7 and 0.9.)

Find
∑
X2
i /n, X and S2

x. (Your answers should not depend on n.)

g) Under the conditions of f), estimate V (α̂) and V (β̂) if L1 is used and
if the ei are iid N(0, 0.01).

Hint: Estimate W with n(XTX)−1 and V (β̂, F ) = V (L1, F ) = 1
4[f(0)]2

.

Hence



α̂

β̂


 ≈ N2






α

β


 ,

1

n

1

4[f(0)]2




1
n

∑
X2

i

S2
x

−X
S2

x

−X
S2

x

1
S2

x





 .

You should get an answer like 0.0648/n.

3.2. Suppose X1, ...,Xn are iid p× 1 random vectors from a multivariate
t-distribution with parameters µ and Σ with d degrees of freedom. Then

E(Xi) = µ and Cov(X) =
d

d− 2
Σ for d > 2. Assuming d > 2, find the

limiting distribution of
√
n(X − c) for appropriate vector c.

3.3. Let X1, ...,Xn be iid k×1 random vectors where E(Xi) = (λ1, ..., λk)
T

and Cov(X i) = diag(λ2
1, ..., λ

2
k), a diagonal k × k matrix with jth diagonal

entry λ2
j . The nondiagonal entries are 0. Find the limiting distribution of√

n(X − c) for appropriate vector c.

3.4. Suppose x1, ...,xn are iid p× 1 random vectors where E(xi) = e0.51
and Cov(xi) = (e2 − e)Ip. Find the limiting distribution of

√
n(x − c) for

appropriate vector c.
3.5. Assume that

√
n

[(
β̂1

β̂2

)
−
(
β1

β2

)]
D→ N2

((
0
0

)
,

(
σ2

1 0
0 σ2

2

))
.

Find the limiting distribution of

√
n[(β̂1 − β̂2) − (β1 − β2)] = (1 − 1)

√
n

[(
β̂1

β̂2

)
−
(
β1

β2

)]
.

3.6. Suppose X1, ...,Xn are iid 3× 1 random vectors from a multinomial
distribution with

E(Xi) =



mρ1

mρ2

mρ3


 and Cov(Xi) =



mρ1(1 − ρ1) −mρ1ρ2 −mρ1ρ3

−mρ1ρ2 mρ2(1 − ρ2) −mρ2ρ3

−mρ1ρ3 −mρ2ρ3 mρ3(1 − ρ3)




where m is a known positive integer and 0 < ρi < 1 with ρ1 + ρ2 + ρ3 = 1.
Find the limiting distribution of

√
n(X − c) for appropriate vector c.
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3.7. Suppose Y n
P→ Y . Then W n = Y n − Y

P→ 0. Define Xn = Y for

all n. Then Xn
D→ Y . Then Y n = Xn + W n

D→ Z by Slutsky’s Theorem.
What is Z?

3.8. If X ∼ Nk(µ,Σ), then the characteristic function of X is

cX (t) = exp

(
itTµ − 1

2
tTΣt

)

for t ∈ R
k. Let a ∈ R

k and find the characteristic function of aTX =
caT X(y) = E[exp(i y aTX)] = cX(ya) for any y ∈ R. Simplify any con-
stants.

3.9. Suppose

√
n






θ̂1
...

θ̂p


−



θ1
...
θp





 D→ Np(0,Σ).

Let θ = (θ1, ..., θp)
T and let g(θ) = (eθ1 , ..., eθp)T . Find Dg(θ)

.

3.10. Let µi be the ith population mean and let Σi be the nonsingular
population covariance matrix of the ith population. Let xi,1, ...xi,ni be iid
from the ith population. Let xi be the k × 1 sample mean from the xi,j,
j = 1, ..., ni.

a) Find the limiting distribution of
√
ni(xi − µi).

b) Assume there are p populations, n =
∑p

i=1 ni, and ni/n
P→ πi where

0 < πi < 1 and 1 =
∑p

i=1 πi. Find the limiting distribution of
√
n(xi − µi).

Hint:
√
n = (

√
n/

√
ni)(

√
ni).

3.11. Suppose Zn
D→ Np(µ, I). Let a be a p× 1 constant vector. Find the

limiting distribution of aT (Zn − µ).

3.12. Suppose X1, ...,Xn are iid k × 1 random vectors where E(X i) =
(µ1, ..., µk)

T and Cov(X i) = diag(σ2
1 , ..., σ

2
k), a diagonal k × k matrix with

jth diagonal entry σ2
j . The nondiagonal entries are 0. Find the limiting dis-

tribution of
√
n(X − c) for appropriate vector c.

3.13. Suppose that β is a p× 1 vector and that
√
n(β̂n − β)

D→ Np(0,C)
where C is a p×p nonsingular matrix. Let A be a j×p matrix with full rank
j. Suppose that Aβ = 0.

a) What is the limiting distribution of
√
nAβ̂n?

b) What is the limiting distribution of Zn =
√
n[ACAT ]−1/2Aβ̂n? Hint:

for a square symmetric nonsingular matrix D, we have D1/2D1/2 = D, and
D−1/2D−1/2 = D−1, and D−1/2 and D1/2 are both symmetric.

c) What is the limiting distribution of ZT
nZn = nβ̂

T

nAT [ACAT ]−1Aβ̂n?

Hint: If Zn
D→ Z ∼ Nk(0, I) then ZT

nZn
D→ ZTZ ∼ χ2

k.
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3.14. Suppose

√
n






σ̂2

1
...
σ̂2
p


−



σ2

1
...
σ2
p





 D→ Np(0,Σ).

Let θ = (σ2
1 , ..., σ

2
p)
T and let g(θ) = (

√
σ2

1 , ...,
√
σ2
p)
T . Find Dg(θ).

3.15. Suppose

√
n






σ̂1

...
σ̂p


−



σ1

...
σp





 D→ Np(0,Σ).

Let θ = (σ1, ..., σp)
T and let g(θ) = ((σ1)

2, ..., (σp)
2)T . Find Dg(θ).

3.16. Let wB ∼ Np

(
0,

Σ

B

)
. Then wB

D→ w as B → ∞. Find w.

3.17. Suppose Zn
D→ Nk(µ, I). Let A be a constant r × k matrix. Find

the limiting distribution of A(Zn − µ).
3.18. Suppose x1, ...,xn are iid p× 1 random vectors where

xi ∼ (1 − γ)Np(µ,Σ) + γNp(µ, cΣ)

with 0 < γ < 1 and c > 0. Then E(xi) = µ and Cov(xi) = [1 + γ(c − 1)]Σ.
Find the limiting distribution of

√
n(x − d) for appropriate vector d.

3.19. Let Σi be the nonsingular population covariance matrix of the ith
treatment group or population. To simplify the large sample theory, assume
ni = πin where 0 < πi < 1 and

∑3
i=1 πi = 1. Let Ti be a multivariate location

estimator such that
√
ni(Ti − µi)

D→ Nm(0,Σi), and
√
n(Ti − µi)

D→ Nm

(
0,

Σi

πi

)
for i = 1, 2, 3.

Assume the Ti are independent.
Then

√
n



T1 − µ1

T2 − µ2

T3 − µ3


 D→ u.

a) Find the distribution of u.
b) Suggest an estimator π̂i of πi.
3.20. Suppose X1, ...,Xn are iid k × 1 random vectors where E(X i) =

(µ1, ..., µk)
T and Cov(X i) = (1 − α)I + α11T , where I is the k × k iden-

tity matrix, 1 = (1, 1, ..., 1)T , and −(k − 1)−1 < α < 1. Find the limiting
distribution of

√
n(X − c) for appropriate vector c.
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3.21. Show the usual Delta Method is a special case of the Multivariate
Delta Method if g is a real function (d = 1), Tn is a random variable, θ is a
scalar and Σ = σ2 is a scalar (k = 1).

3.22. Let X be a k × 1 random vector and Xn be a sequence of k × 1
random vectors and suppose that

tTXn
D→ tTX

for all t ∈ R
k. Does Xn

D→ X? Explain briefly.

3.23. Suppose the k×1 random vector Xn
D→ Nk(µ,Σ). Hence the asymp-

totic distribution of Xn is the multivariate normal MVN Nk(µ,Σ) distribu-
tion. Find the d, µ̃ and Σ̃ for the following problem. Let CT be the transpose
of C.

Let C be an m× k matrix, then CXn
D→ Nd(µ̃, Σ̃).

3.24. Suppose Xn are k× 1 random vectors with characteristic functions
cXn

(t). Does cXn
(0) → a for some constant a? Prove or disprove. Here 0 is

a k × 1 vector of zeroes.
3.25. Suppose

√
n

((
λ̂
η̂

)
−
(
λ
η

))
D→ Np+1

((
0
0

)
,

(
Σλ Σλη

Σηλ Ση

))
∼ Np+1(0,Σ)

where λ is a scalar and η = (η1, ..., ηp). Let

g

(
λ
η

)
= λη =

(λη1, ..., ληp)
T . Then

√
n(λ̂η̂ − λη)

D→ Np

(
0,Dg(θ)

ΣDT
g(θ)

)

by the Multivariate Delta Method.
a) Find Dg(θ).

b) Let A be a k × p full rank constant matrix with k ≤ p and 0 = Aη.
Find ADg(θ)

.

Note: then
√
n(Aλ̂η̂ − 0)

D→ Np

(
0,ADg(θ)ΣDT

g(θ)
AT
)
.

3.26. Suppose

√
n






σ̂2

1
...
σ̂2
p


−



σ2

1
...
σ2
p





 D→ Np(0,Σ).

Let θ = (σ2
1 , ..., σ

2
p)
T and let g(θ) = (log(σ2

1), ..., log(σ2
p))

T . Find Dg(θ).
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3.27. Let W ∼ N(µW , σ
2
W ) and let X ∼ Np(µ,Σ). The characteristic

function of W is

ϕW (y) = E(eiyW ) = exp

(
iyµW − y2

2
σ2
w

)
.

Suppose W = tTX . Then W ∼ N(µW , σ
2
W ). Find µW and σ2

W . Then the
characteristic function of X is

ϕX (t) = E(eit
T X ) = ϕW (1).

Use these results to find ϕX (t).
3.28. Suppose X1, ...,Xn are iid k × 1 random vectors where E(X i) =

1 = (1, ..., 1)T and Cov(X i) = Ik = diag(1, ..., 1), the k × k identity matrix.
Find the limiting distribution of

√
n(X − c) for appropriate vector c.

3.29. Suppose X1, ...,Xn are iid with E(X i) = 0 but Cov(X i) does not

exist. Does Xn
P→ c for some constant vector c? Explain briefly.

3.30. Suppose Xn
D→ X and Y n − Xn

P→ 0. Does Y n
D→ W for some

random vector W ? [Hint: Y n = Xn + (Y n − Xn).]
3.31. a) If X ∼ Nk(µ,Σ), then the characteristic function of X is

ϕX (t) = exp

(
itTµ− 1

2
tTΣt

)

for t ∈ R
k. Let a ∈ R

k and find the characteristic function of aTX =
ϕaT X (y) = E[exp(i y aTX)] = ϕX (t) for any y ∈ R and some vector
t ∈ R

k that depends on y. Simplify any constants.
b Suppose X = c for some constant vector c ∈ R

k. Prove c ∼ Nk(c, 0)
where 0 is the k × k matrix of zeroes. Hint: find the characteristic function
of X where P (X = c) = 1, and compare to the characteristic function given
in problem 3).

3.32Q. Suppose that xn yn for n = 1, 2, .... Suppose xn
D→ x, and

yn
D→ y where x y. Prove that

[
xn
yn

]
D→
[

x
y

]
.

3.33. Suppose we have random variables (x1, x2, Y ) with σ2
i = V (xi) and

σiY = Cov(xi, Y ) for i = 1, 2. Let S2
i = σ̂2

i and let σ̂iY estimate σiY . Suppose

√
n







s21
s22
σ̂1Y

σ̂2Y


−




σ2
1

σ2
2

σ1Y

σ2Y





 =

√
n(θ̂ − θ)

D→ N4(0,Σ).
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Let g(θ) =

(
σ1Y

σ2
1

,
σ2Y

σ2
2

)T
. Find Dg(θ)

.

3.34. Find the limiting distribution of

√
n
(
(ξ̂n,0.75 − ξ̂n,0.25) − (ξ0.75 − ξ0.25)

)

if the data Y1, ..., Yn are iid U(0,1). Then ξα = α and f(ξα) = 1 where
0 < α < 1.

3.35. Find the limiting distribution of

√
n
(
(ξ̂n,0.9 − ξ̂n,0.1) − (ξ0.9 − ξ0.1)

)
.

3.36. Let S2
M be the method of moments estimator of the variance σ2.

Suppose
√
n

((
X
S2
M

)
−
(
µ
σ2

))
D→ N2(0,Σ).

Let θ = (µ, σ2)T and let g(θ) = g(θ) = µ/σ. Note that if τ = σ2, then
g(θ) = µ/

√
τ . Find Dg(θ).

3.37. Suppose xn
D→ x ∼ D(τ ), a random vector with a distribution that

depends on unknown parameters τ . The plug-in principle says approximate
x by zn ∼ D(τ̂ n) where τ̂n is a consistent estimator of τ . Interpret zn ∼
Np(µ̂n, Σ̂n) as zn = µ̂n + Σ̂

1/2

n Np(0, Ip)
D→ Np(µ,Σ). If xn =

√
n(Tn −

θ)
D→ x ∼ Np(0,Σ), and if τ̂n = Σ̂n and Σ are invertible, then n(Tn −

θ)TΣ−1(Tn−θ)
D→ χ2

p and dn = xTnΣ̂
−1

n xn = n(Tn−θ)T Σ̂
−1

n (Tn−θ)
D→ χ2

p.

To help see dn
D→ χ2

p, note that dn = n(Tn−θ)T (Σ̂
−1

n −Σ−1+Σ−1)(Tn−θ) =

n(Tn−θ)TΣ−1(Tn−θ)+ terms like an =
√
n(Tn−θ)T (Σ̂

−1

n −Σ−1)
√
n(Tn−

θ). Note that xn =
√
n(Tn − θ) = OP (1) since xn

D→ Np(0,Σ), and (Σ̂
−1

n −
Σ−1) = oP (1) since Σ̂

−1

n
P→ Σ−1. Thus Σ̂

−1

n − Σ−1 P→ 0. Does an converge
in probability to c for some constant c? Explain.

3.38. Let w∗
n ∼ Np(0,Σn). If Σn

P→ Σ, then w∗
n
D→ w for large n by the

plug-in principle. Find w.
3.39. The interquartile range IQR(n) = ξ̂n,0.75 − ξ̂n,0.25 and is a popular

estimator of scale. Show that

√
n

1

2
(IQR(n) − IQR(Y ))

D→ N(0, σ2
A)

where

σ2
A =

1

64

[
3

[f(ξ0.75)]2
− 2

f(ξ0.75)f(ξ0.25)
+

3

[f(ξ0.25)]2

]
.

Hint: σ2
A = (−1/2 1/2)Σ(−1/2 1/2)T where Σ is obtained from Theorem

3.11 for the 0.25 and 0.75 quantiles.
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3.40. Suppose the p × 1 random vector un
D→ u and the p × p random

matrix C−1
n

P→ C−1. Then D2
n = uTnC−1

n un
D→ D2. Find D2.

3.41. Suppose Zn
D→ Z ∼ Np(0, Ip). Then ZT

nZn
D→ W . What is W?

Simplify if possible.





Chapter 4

Prediction Intervals and Prediction
Regions

This chapter considers prediction intervals and prediction regions for iid data.
In later chapters, prediction intervals for regression and prediction regions for
multivariate regression are derived. Inference after variable selection will con-
sider bootstrap hypothesis testing. Applying certain prediction intervals or
prediction regions to the bootstrap sample will result in confidence intervals
or confidence regions. See Chapter 5.

4.1 Prediction Intervals

Notation: P (An) is “eventually bounded below” by 1− δ if P (An) gets arbi-
trarily close to or higher than 1−δ as n→ ∞. Hence P (An) > 1−δ−ε for any
ε > 0 if n is large enough. If P (An) → 1−δ as n→ ∞, then P (An) is eventu-
ally bounded below by 1−δ. The actual coverage is 1−γn = P (Yf ∈ [Ln, Un]),
the nominal coverage is 1−δ where 0 < δ < 1. The 90% and 95% large sample
prediction intervals and prediction regions are common.

Definition 4.1. Consider predicting a future test value Yf given training
data Y1, ..., Yn. A large sample 100(1 − δ)% prediction interval (PI) for Yf
has the form [L̂n, Ûn] where P (L̂n ≤ Yf ≤ Ûn) is eventually bounded below
by 1 − δ as the sample size n → ∞. A large sample 100(1 − δ)% PI is
asymptotically optimal if it has the shortest asymptotic length: the length
of [L̂n, Ûn] converges to Us − Ls as n → ∞ where [Ls, Us] is the population
shorth: the shortest interval covering at least 100(1 − δ)% of the mass.

If Yf has a pdf, we often want P (L̂n ≤ Yf ≤ Ûn) → 1 − δ as n→ ∞. The
interpretation of a 100 (1−δ)% PI for a random variable Yf is similar to that
of a confidence interval (CI). Collect data, then form the PI, and repeat for a
total of k times where the k trials are independent from the same population.
If Yfi is the ith random variable and PIi is the ith PI, then the probability
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that Yfi ∈ PIi for j of the PIs approximately follows a binomial(k, ρ= 1−δ)
distribution. Hence if 100 95% PIs are made, ρ = 0.95 and Yfi ∈ PIi happens
about 95 times.

There are two big differences between CIs and PIs. First, the length of the
CI goes to 0 as the sample size n goes to ∞ while the length of the PI con-
verges to some nonzero number J , say. Secondly, many confidence intervals
work well for large classes of distributions while many prediction intervals
assume that the distribution of the data is known up to some unknown pa-
rameters. Usually the N(µ, σ2) distribution is assumed, and the parametric
PI may not perform well if the normality assumption is violated. This section
will give some PIs that work well for large classes of distributions.

Consider the location model, Yi = µ + ei, where Y1, ..., Yn, Yf are iid
with the same distribution as Y . Let Y(1) ≤ Y(2) ≤ · · · ≤ Y(n) be the
order statistics of the iid training data Y1, ..., Yn. Then the unknown fu-
ture value Yf is the test data. Suppose the sample percentiles [L̂n, Ûn] of
the training data Y1, ..., Yn are consistent estimators of the population per-
centiles [L, U ] of the distribution where P (Y ∈ [L, U ]) = 1 − δ. Then
P (Yf ∈ [L̂n, Ûn] → P (Yf ∈ [L, U ]) = 1 − δ as n → ∞. Three com-
mon choices are a) P (Y ≤ U) = 1 − δ/2 and P (Y ≤ L) = δ/2, b)
P (Y 2 ≤ U2) = P (|Y | ≤ U) = P (−U ≤ Y ≤ U) = 1 − δ with L = −U ,
and c) the population shorth is the shortest interval (with length U−L) such
that P (Y ∈ [L, U ]) = 1− δ. The PI c) is asymptotically optimal while a) and
b) are asymptotically optimal on the class of symmetric zero mean unimodal
error distributions.

If the cdf FY of Y has jumps, then it may not be possible to find L and U
such that P (Y ∈ [L, U ]) = 1− δ, but it is possible to find L and U such that
P (Y ∈ [L, U ]) ≥ 1 − δ for 0 < δ < 1. For example, if P (Y = c) = 1, then
P (Y ∈ [c, c]) = 1 ≥ 1−δ for 0 < δ < 1. For Y1, ..., Yn iid BIN(n = 1, ρ), useful
PIs are [0,0], [0,1], and [1,1]. Using open intervals would give 0% coverage.

Let 0 < α < 1, and let Yα be a number such that P (Y ≤ Yα) = α if Yα
is a continuity point of the cdf FY (y). Let F (y−) = P (Y < y). If Yα is not
a continuity point of FY (y), let F (Yα−) = α1 ≤ α ≤ α2 = F (Yα) where
0 ≤ α1 < α2 ≤ 1. Suppose α1 < α < α2. For example, let α1 = 0.89 <
α = 0.9 < α2 = 0.92. Let dxe be the smallest integer ≥ x. For example,
d7.7e = 8. Then

∑n
i=1 I(Yi ≤ Y(dnαe)) ≥ dnαe with equality unless there are

ties: at least two Yi = Y(dnαe). Thus if Y(dnαe) < Yα, not enough Yi ≤ Y(dnαe),
while if Y(dnαe) > Yα, too many Yi ≤ Y(dnαe). Hence P (Y(dnαe) = Yα) → 1,
P (Yf < Y(dnαe)) → α1 < α, and P (Yf ≤ Y(dnαe)) → α2 > α as n → ∞.
Similarly, if α2 = α, then P (Y(dnαe) ≥ Yα) → 1 as n → ∞. If α1 = α and
FY (y) is strictly increasing on the interval (Yα − ε, Yα] for some ε > 0, then
P (Y ≤ Y(dnαe)) gets arbitrarily close to or higher than α as n → ∞. If Ym
is the smallest value of y such that P (Y ≤ Ym) = α, α1 = α, and Ym < Yα,
then P (Y(dnαe) ≥ Ym) → 1 as n→ ∞. Hence P (Y ≤ Y(dnαe)) gets arbitrarily
close to or higher than α in all cases. Hence closed intervals have coverage
eventually bounded below by 1 − δ.
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Remark 4.1. Confidence intervals, prediction intervals, confidence re-
gions, and prediction regions should used closed sets not open sets. The closed
sets have the same volume as as the open sets, but have coverage at least as
high as the open sets with weaker regularity conditions. In particular, confi-
dence and prediction intervals should be closed intervals, not open intervals.

In the following theorem, if the open interval (Y(k1), Y(k2)) was used, we
would need to add the regularity condition that Yδ/2 and Y1−δ/2 are continuity
points of FY (y).

Theorem 4.1. Let Y1, ..., Yn, Yf be iid. Let Y(1) ≤ Y(2) ≤ · · · ≤ Y(n) be the
order statistics of the training data. Let k1 = dnδ/2e and k2 = dn(1 − δ/2)e
where 0 < δ < 1. The large sample 100(1− δ)% percentile prediction interval
for Yf is

[Y(k1), Y(k2)]. (4.1)

The shorth(c) estimator of the population shorth is useful for making
asymptotically optimal prediction intervals. For the uniform distribution,
the population shorth is not unique. Of course the length of the population
shorth is unique. For a large sample 100(1− δ)% PI, the nominal coverage is
100(1− δ)%. Undercoverage occurs if the actual coverage is below the nom-
inal coverage. For example, if the actual coverage is 0.93 for a large sample
95% PI, than the undercoverage is 0.02.

Definition 4.2. Let the shortest closed interval containing at least c of
the Y1, ..., Yn be

shorth(c) = [Y(s),Y(s+c−1)]. (4.2)

Theorem 4.2, Frey (2013). Let Y1, ..., Yn be iid. Let

kn = dn(1 − δ)e. (4.3)

For large nδ and iid data, the large sample 100(1−δ)% shorth(kn) prediction
interval has maximum undercoverage ≈ 1.12

√
δ/n. The maximum undercov-

erage occurs for the family of uniform U(θ1, θ2) distributions.

Theorem 4.3, Frey (2013). Let Y1, ..., Yn, Yf be iid. Let Y(1) ≤ Y(2) ≤
· · · ≤ Y(n) be the order statistics of the training data. The large sample
100(1− δ)% shorth(c) prediction interval for Yf is

[Y(s), Y(s+c−1)] where c = min(n, dn[1 − δ + 1.12
√
δ/n ] e). (4.4)

A problem with the prediction intervals that cover ≈ 100(1 − δ)% of the
training data cases Yi (such as (4.2) using c = kn given by (4.3)), is that they
have coverage lower than the nominal coverage of 1− δ for moderate n. This
result is not surprising since empirically statistical methods perform worse on
test data. For iid data, Frey (2013) used (4.4) to correct for undercoverage.
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Theorem 4.4. Let Y1, ..., Yn, Yf be iid. Let W(1) ≤W(2) ≤ · · · ≤W(n) be
the order statistics of the squared training data W1, ...,Wn where Wi = Y 2

i

for i = 1, ..., n. Let kn be given by Equation (4.3). Let Ln = −Un and
Un =

√
W(kn). Then [Ln, Un] is a large sample 100(1− δ)% PI for Yf .

Note that P (0 ≤ Wf ≤ U2
n) is eventually bounded below by 1 − δ as

n→ ∞.
By Chebyshev’s inequality, for k > 1,

P (µ− kσ ≤ Y ≤ µ+ kσ) ≥ P (µ− kσ < Y < µ+ kσ) ≥ 1 − 1

k2
. (4.5)

Note that k = 5 gives 96% asymptotic coverage. The value k = 1.96 gives
95% coverage for the N(µ, σ2) distribution, but the coverage could be as low
as 74%. Use µ̂ = Y and σ̂ = S, the square root of the unbiased sample
variance estimator.

Theorem 4.5. Let Y1, ..., Yn, Yf be iid. Suppose that E(Y ) = µ and the
standard deviation SD(Y ) = σ. Let µ̂ and σ̂ be consistent estimators of µ
and σ. Let 1− 1/k2 ≥ 1− δ. Let µ± kσ be continuity points of FY (y). Then

[Ln, Un] = [µ̂− kσ̂, µ̂+ kσ̂]

is a large sample 100(1− δ)% Chebyshev PI for Yf .

Remark 4.2. a) The Chebyshev PIs tend to be too long, and need second
moments. b) The shorth PI (4.4) often has good coverage for n ≥ 50 and
0.05 ≤ δ ≤ 0.1, but the convergence of Un − Ln to the population shorth
length Us−Ls can be quite slow. Under regularity conditions, Grübel (1982)
showed that for iid data, the length and center the shorth(kn) interval are√
n consistent and n1/3 consistent estimators of the length and center of the

population shorth interval, respectively. The correction factor also increases
the length. For a unimodal and symmetric error distribution, the percentile
PI (4.1), shorth PI (4.4), and Theorem 4.4 PI are asymptotically equivalent,
but PI (4.1) can be the shortest PI. c) The percentile PI (4.1) and Theorem
4.4 PI can be much longer than the shorth PI (4.4) if the data distribution
is skewed. The Theorem 4.4 PI can very long if Y is a nonnegative random
variable.

Example 4.1. Given below were votes for preseason 1A basketball poll
from Nov. 22, 2011 WSIL News where the 778 was a typo: the actual value
was 78. As shown below, finding shorth(3) from the ordered data is simple.
If the outlier was corrected, shorth(3) = [76,78].

111 89 778 78 76

order data: 76 78 89 111 778
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13 = 89 - 76

33 = 111 - 78

689 = 778 - 89

shorth(3) = [76,89]

Remark 4.3. The large sample 100(1−δ)% shorth PI (4.4) may or may not
be asymptotically optimal if the 100(1−δ)% population shorth is [Ls, Us] and
FY (y) is not strictly increasing in intervals (Ls−ε, Ls+ε) and (Us−ε, Us+ε)
for some ε > 0. To see the issue, suppose Y has probability mass function
(pmf) f(0) = 0.4, f(1) = 0.3, f(2) = 0.2, f(3) = 0.06, and f(4) = 0.04.
Then the 90% population shorth is [0,2] and the 100(1 − δ)% population
shorth is [0,3] for (1 − δ) ∈ (0.9, 0.96]. Let Wi = I(Yi ≤ y) = 1 if Yi ≤ y and
0, otherwise. The empirical cdf

F̂n(y) =
1

n

n∑

i=1

I(Yi ≤ y) =
1

n

n∑

i=1

I(Y(i) ≤ y)

is the sample proportion of Yi ≤ y. If Y1, ..., Yn are iid, then for fixed y,
nF̂n(y) ∼ binomial(n, F (y)). Thus F̂n(y) ∼ AN(F (y), F (y)(1−F (y))/n). For

the Y with the above pmf, F̂n(2)
P→ 0.9 as n→ ∞ with P (F̂n(2) < 0.9) → 0.5

and P (F̂n(2) ≥ 0.9) → 0.5 as n → ∞. Hence the large sample 90% PI
(4.4) will be [0,2] or [0,3] with probabilities → 0.5 as n → ∞ with expected
asymptotic length of 2.5 and expected asymptotic coverage converging to
0.93. However, the large sample 100(1−δ)% PI (4.4) converges to [0,3] and is
asymptotically optimal with asymptotic coverage 0.96 for (1−δ) ∈ (0.9, 0.96).

For a random variable Y , the 100(1−δ)% highest density region is a union
of k ≥ 1 disjoint intervals such that the mass within the intervals ≥ 1 − δ
and the sum of the k interval lengths is as small as possible. Suppose that
f(z) is a unimodal pdf that has interval support, and that the pdf f(z) of Y
decreases rapidly as z moves away from the mode. Let [a, b] be the shortest
interval such that FY (b) − FY (a) = 1 − δ where the cdf FY (z) = P (Y ≤ z).
Then the interval [a, b] is the 100(1 − δ)% highest density region. To find
the 100(1− δ)% highest density region of a pdf, move a horizontal line down
from the top of the pdf. The line will intersect the pdf or the boundaries of
the support of the pdf at [a1, b1], ..., [ak, bk] for some k ≥ 1. Stop moving the
line when the areas under the pdf corresponding to the intervals is equal to
1 − δ. As an example, let f(z) = e−z for z > 0. See Figure 4.1 where the
area under the pdf from 0 to 1 is 0.368. Hence [0,1] is the 36.8% highest
density region. The shorth PI estimates the highest density interval which is
the highest density region for a distribution with a unimodal pdf. Often the
highest density region is an interval [a, b] where f(a) = f(b), especially if the
support where f(z) > 0 is (−∞,∞).
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Fig. 4.1 The 36.8% Highest Density Region is [0,1]

Remark 4.4. Note that correction factors bn → 1 are used in large sample
confidence intervals and tests if the limiting distribution is N(0,1) or χ2

p, but
a tdn or pFp,dn cutoff is used: tdn,1−δ/z1−δ → 1 and pFp,dn,1−δ/χ

2
p,1−δ → 1

if dn → ∞ as n → ∞. See Example 2.16 and Theorem 2.34. Using correc-
tion factors for large sample confidence intervals, tests, prediction intervals,
prediction regions, and confidence regions improves the performance for mod-
erate sample size n.

4.2 Prediction Regions

Consider predicting a p × 1 future test value xf , given past training data
x1, ...,xn where x1, ...,xn,xf are iid. Much as confidence regions and inter-

vals give a measure of precision for the point estimator θ̂ of the parameter
θ, prediction regions and intervals give a measure of precision of the point
estimator T = x̂f of the future random vector xf .

Definition 4.3. A large sample 100(1 − δ)% prediction region is a set
An such that P (xf ∈ An) is eventually bounded below by 1 − δ as n →
∞. A prediction region is asymptotically optimal if its volume converges in
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probability to the volume of the minimum volume covering region or the
highest density region of the distribution of xf .

If xf has a pdf, we often want P (xf ∈ An) → 1 − δ as n → ∞. A PI
is a prediction region where p = 1. Highest density regions are usually hard
to estimate for p not much larger than four, but many elliptically contoured
distributions with a nonsingular population covariance matrix, including the
multivariate normal distribution, have highest density regions that can be
estimated by the nonparametric prediction region (4.11). For more about
highest density regions, see Olive (2017b, pp. 148-155) and Hyndman (1996).

For multivariate data, sample Mahalanobis distances play a role similar to
that of residuals in multiple linear regression. Let the observed training data
be collected in an n× p matrix W . Let the p× 1 column vector T = T (W )
be a multivariate location estimator, and let the p × p symmetric positive
definite matrix C = C(W ) be a dispersion estimator.

Definition 4.4. Let x1j, ..., xnj be measurements on the jth random
variable Xj corresponding to the jth column of the data matrix W . The

jth sample mean is xj =
1

n

n∑

k=1

xkj. The sample covariance Sij estimates

Cov(Xi, Xj) = σij = E[(Xi −E(Xi))(Xj − E(Xj))], and

Sij =
1

n− 1

n∑

k=1

(xki − xi)(xkj − xj).

Sii = S2
i is the sample variance that estimates the population variance

σii = σ2
i . The sample correlation rij estimates the population correlation

Cor(Xi, Xj) = ρij =
σij
σiσj

, and

rij =
Sij
SiSj

=
Sij√
SiiSjj

=

∑n
k=1(xki − xi)(xkj − xj)√∑n

k=1(xki − xi)2
√∑n

k=1(xkj − xj)2
.

Definition 4.5. Let x1, ...,xn be the data where xi is a p× 1 vector. The
sample mean or sample mean vector

x =
1

n

n∑

i=1

xi = (x1, ..., xp)
T =

1

n
W T1

where 1 is the n × 1 vector of ones. The sample covariance matrix

S =
1

n − 1

n∑

i=1

(xi − x)(xi − x)T = (Sij).
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That is, the ij entry of S is the sample covariance Sij. The classical estima-
tor of multivariate location and dispersion is (T,C) = (x,S). The sample
correlation matrix

R = (rij).

That is, the ij entry of R is the sample correlation rij.

It can be shown that (n− 1)S =
∑n

i=1 xix
T
i − x xT =

W TW − 1

n
W T11TW .

Hence if the centering matrix G = I − 1

n
11T , then (n− 1)S = W TGW .

Definition 4.6. The ith Mahalanobis distance Di =
√
D2
i where the ith

squared Mahalanobis distance is

D2
i = D2

i (T (W ),C(W )) = (xi − T (W ))TC−1(W )(xi − T (W )) (4.6)

for each point xi. Notice that D2
i is a random variable (scalar valued). Let

(T,C) = (T (W ),C(W )). Then

D2
x(T,C) = (x− T )TC−1(x− T ).

Hence D2
i uses x = xi.

See Definition 1.29 for the population mean and population covariance
matrix. The Mahalanobis distance in Definition 4.6 is a random variable that
estimates the population Mahalanobis distance of Definition 1.49. Let the
p × 1 location vector be µ, often the population mean, and let the p × p
dispersion matrix be Σ, often the population covariance matrix. Notice that
if x is a random vector, then the population squared Mahalanobis distance
from Definition 1.49 is

D2
x(µ,Σ) = (x − µ)TΣ−1(x − µ) (4.7)

and that the term Σ−1/2(x− µ) is the p−dimensional analog to the z-score
used to transform a univariate N(µ, σ2) random variable into a N(0, 1) ran-
dom variable. Hence the sample Mahalanobis distance Di =

√
D2
i is an ana-

log of the absolute value |Zi| of the sample Z-score Zi = (Xi −X)/σ̂. Also
notice that the Euclidean distance of xi from the estimate of center T (W )
is Di(T (W ), Ip) where Ip is the p× p identity matrix.

Theorem 4.6. i) Suppose
√
n(Tn − µ)

D→ Np(θ,Σ). Let A be a q × p

constant matrix. Then A
√
n(Tn−µ) =

√
n(ATn−Aµ)

D→ Nq(Aθ,AΣAT ).
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ii) Let Σ > 0. If (T,C) is a consistent estimator of (µ, s Σ) where s > 0
is some constant, then D2

x(T,C) = (x− T )TC−1(x− T ) = s−1D2
x(µ,Σ) +

oP (1), so D2
x(T,C) is a consistent estimator of s−1D2

x(µ,Σ).

iii) Let Σ > 0. If
√
n(T−µ)

D→ Np(0,Σ) and if C is a consistent estimator

of Σ, then n(T − µ)TC−1(T − µ)
D→ χ2

p. In particular,

n(x− µ)TS−1(x − µ)
D→ χ2

p.

Proof: i) AW n
D→ AW by Theorem 3.13 iii), and the result follows.

ii) D2
x(T,C) = (x − T )TC−1(x− T ) =

(x− µ + µ− T )T [C−1 − s−1Σ−1 + s−1Σ−1](x− µ + µ− T )
= (x − µ)T [s−1Σ−1](x − µ) + (x − T )T [C−1 − s−1Σ−1](x− T )
+(x − µ)T [s−1Σ−1](µ− T ) + (µ− T )T [s−1Σ−1](x − µ)
+(µ − T )T [s−1Σ−1](µ− T ) = s−1D2

x(µ,Σ) + OP (1).
(Note that D2

x(T,C) = s−1D2
x(µ,Σ) +OP (n−δ) if (T,C) is a consistent

estimator of (µ, s Σ) with rate nδ where 0 < δ ≤ 0.5 if [C−1 − s−1Σ−1] =
OP (n−δ).)

Alternatively, D2
x(T,C) is a continuous function of (T,C) if C > 0 for

n > 10p. Hence D2
x(T,C)

P→ D2
x(µ, sΣ).

iii) Note that Zn =
√
n Σ−1/2(T − µ)

D→ Np(0, Ip). Thus ZT
nZn =

n(T − µ)TΣ−1(T − µ)
D→ χ2

p. Now n(T − µ)TC−1(T − µ) =

n(T − µ)T [C−1 − Σ−1 + Σ−1](T − µ) = n(T − µ)TΣ−1(T − µ) +

n(T −µ)T [C−1 −Σ−1](T −µ) = n(T −µ)TΣ−1(T −µ)+ oP (1)
D→ χ2

p since√
n(T − µ)T [C−1 − Σ−1]

√
n(T − µ) = OP (1)oP (1)OP (1) = oP (1). �

Next, we derive a prediction region for xf if (T,C) = (x,S), µ = E(x),

and Σx = Cov(x) is nonsingular. Let D = D(µ,Σx). Then Di
D→ D and

D2
i
D→ D2 by Theorem 4.6. Hence the sample percentiles of the Di are con-

sistent estimators of the population percentiles of D at continuity points of
the cdf of D, and the sample percentiles of the D2

i are consistent estimators
of the population percentiles of D2 at continuity points of the cdf of D2. Let
c = kn = dn(1 − δ)e. Then Olive (2013b) showed that the hyperellipsoid

An = {x : D2
x(x,S) ≤ D2

(c)} = {x : Dx(x,S) ≤ D(c)} (4.8)

is a large sample 100(1 − δ)% prediction region under mild conditions, al-
though regions with smaller volumes may exist.

To improve performance, we will use a correction factor c = Un where Un
decreases to kn. Un is defined under Equation (4.10). A problem with the
prediction regions that cover ≈ 100(1 − δ)% of the training data cases xi
(such as (4.8) for c = kn), is that they have coverage lower than the nominal
coverage of 1−δ for moderate n. This result is not surprising since empirically
statistical methods perform worse on test data than on training data. Also see
Remark 4.4. Empirically for many distributions, for n = 20p, the prediction
region (4.8) applied to iid data using c = kn = dn(1 − δ)e tended to have
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undercoverage as high as min(0.05, δ/2). The undercoverage decreases rapidly
as n increases. (Referring to the next paragraph, taking qn ≡ 1 − δ does not
take into account the unknown variability of (x,S), which is another reason
for undercoverage and the need for a correction factor.)

Let qn = min(1 − δ + 0.05, 1− δ + p/n) for δ > 0.1 and

qn = min(1 − δ/2, 1− δ + 10δp/n), otherwise. (4.9)

If 1 − δ < 0.999 and qn < 1 − δ + 0.001, set qn = 1 − δ. Using

c = dnqne (4.10)

in (4.8) decreased the undercoverage. Let D(Un) be the 100qnth sample quan-
tile of the Di.

The nonparametric prediction region is due to Olive (2013b). For the clas-
sical prediction region, see Chew (1966) and Johnson and Wichern (1988, pp.
134, 151). A future observation (random vector) xf is in the region (4.11)
if Dxf ≤ D2

(Un). If x1, ...,xn and xf are iid, the nonparametric prediction

region (4.11) is asymptotically optimal for a large class of elliptically con-
toured distributions since the volume of (4.11) converges in probability to
the volume of the highest density region. (These distributions have a highest
density region which is a hyperellipsoid determined by a population Maha-
lanobis distance. See Section 1.7.) Refer to the above paragraph for D(Un).
Let P (D2 ≤ D2

1−δ) = 1 − δ if D2
1−δ is a continuity point of the cdf FD2(y)

and D2
x(x,S)

D→ D2 = (x − µ)TΣ−1
x (x− µ).

Theorem 4.7. Assume that x1, ...,xn,xf are iid from a distribution with
mean E(x) = µ and nonsingular covariance matrix Cov(x) = Σx. The large
sample 100(1− δ)% nonparametric prediction region for a future value xf is

{z : D2
z(x,S) ≤ D2

(Un)} (4.11)

if D2
1−δ is a continuity point of the cdf FD2(y).

Theorem 4.8. Assume that x1, ...,xn,xf are iid Np(µ,Σx). Then the
large sample 100(1− δ)% classical prediction region is

{z : D2
z(x,S) ≤ χ2

p,1−δ}. (4.12)

If p is small, Mahalanobis distances tend to be right skewed with a pop-
ulation shorth that discards the right tail. For p = 1 and n ≥ 20, the finite
sample correction factors c/n for c given by (4.4) and (4.10) do not differ
by much more than 3% for 0.01 ≤ δ ≤ 0.5. See Figure 4.2 where ol = (Eq.
4.10)/n is plotted versus fr = (Eq. 4.4)/n for n = 20, 21, ..., 500.The top plot
is for δ = 0.01, while the bottom plot is for δ = 0.3. The identity line is added
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to each plot as a visual aid. The value of n increases from 20 to 500 from the
right of the plot to the left of the plot. Examining the axes of each plot shows
that the correction factors do not differ greatly. R code to create Figure 4.2
is shown below.

cmar <- par("mar"); par(mfrow = c(2, 1))

par(mar=c(4.0,4.0,2.0,0.5))

frey(0.01); frey(0.3)

par(mfrow = c(1, 1)); par(mar=cmar)
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Fig. 4.2 Correction Factor Comparison when δ = 0.01 (Top Plot) and δ = 0.3
(Bottom Plot)

Remark 4.5. The nonparametric prediction region (4.11) is useful if
x1, ...,xn,xf are iid from a distribution with a nonsingular covariance matrix,
and the sample size n is large enough. The distribution could be continuous,
discrete, or a mixture. The asymptotic coverage is 1 − δ if D has a pdf, al-
though prediction regions with smaller volume may exist. The nonparametric
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prediction region (4.11) contains Un of the training data cases xi provided
that S is nonsingular, even if the model is wrong. For many distributions,
the coverage started to be close to 1 − δ for n ≥ 10p where the coverage is
the simulated percentage of times that the prediction region contained xf .

Theorem 4.9, Chen (2011). Multivariate Chebyshev’s Inequality:
Let E(x) = µ, and let Σx = Cov(x) be nonsingular. Then

P (D2
x(µ,Σx) ≤ γ) ≥ 1 − p/γ > 0

for γ > p.

For more on the above theorem, see Budny (2014) and Navarro (2014,
2016). For h > 0, consider the hyperellipsoid

{z : (z − x)TS−1(z − x) ≤ h2} = {z : D2
z ≤ h2} = {z : Dz ≤ h}. (4.13)

Using γ = h2 = p/δ in (4.13) usually results in prediction regions with
volume and coverage that is too large. Using γ = h2 = χ2

p,1−δ in (4.13) gives
the classical prediction region (4.12), which usually has volume and coverage
that is too low, although bounded above 0 by Theorem 4.9 asymptotically if
0 < δ < 0.25. (The median of a chi-square χ2

p distribution is χ2
p,0.5 ≈ p−2/3.)

Using h2 = D2(Un) tends to give better volume and coverage.

Remark 4.6. The most used prediction regions assume that the error
vectors are iid from a multivariate normal distribution. It can be shown that
the ratio of the volumes of regions (4.12) and (4.11) is

(
χ2
p,1−δ
D2

(Un)

)p/2
,

which can become close to zero rapidly as p gets large if the xi are not
from the light tailed multivariate normal distribution. For example, suppose
χ2

4,0.5 ≈ 3.33 and D2
(Un) ≈ D2

x,0.5 = 6. Then the ratio is (3.33/6)2 ≈ 0.308.
Hence if the data is not multivariate normal, severe undercoverage can occur
if the classical prediction region (4.12) is used, and the undercoverage tends
to get worse as the dimension p increases.

Remark 4.7. The nonparametric prediction region (4.11) starts to have
good coverage for n ≥ 10p for a large class of distributions. Olive (2013b)
suggests n ≥ 50p may be needed for the prediction region to have a good
volume. Of course for any n there are distributions that will have severe
undercoverage. Statisticians often say that correction factors are ad hoc, but
doing nothing is much more ad hoc than using correction factors. Section
4.3 uses data splitting to derive a prediction region that does not need a
correction factor.
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For the multivariate lognormal distribution with n = 20p, the large sample
nonparametric 95% prediction region (4.11) had coverages 0.970, 0.959, and
0.964 for p = 100, 200, and 500. Some R code is below.

nruns=1000 #lognormal, p = 100, n = 20p = 2000

count<-0

for(i in 1:nruns){

x <- exp(matrix(rnorm(200000),ncol=100,nrow=2000))

xff <- exp(as.vector(rnorm(100)))

count <- count + predrgn(x,xf=xff)$inr}

count #970/1000, may take a few minutes

If X and Z have dispersion matrices Σ and cΣ where c > 0, then the
dispersion matrices have the same shape. The dispersion matrices determine
the shape of the hyperellipsoid {x : (x − µ)TΣ−1(x − µ) ≤ h2}. Figure 4.3
was made with the Arc software of Cook and Weisberg (1999). The 10%,
30%, 50%, 70%, 90%, and 98% highest density regions are shown for two
multivariate normal (MVN) distributions. Both distributions have µ = 0. In
Figure 4.3a),

Σ =

(
1 0.9

0.9 4

)
.

Note that the ellipsoids are narrow with high positive correlation. In Figure
4.3b),

Σ =

(
1 −0.4

−0.4 1

)
.

Note that the ellipsoids are wide with negative correlation. The highest den-
sity ellipsoids are superimposed on a scatterplot of a sample of size 100 from
each distribution.

4.3 Prediction Regions If n/p Is Small

Some of the data splitting prediction regions, described in this section, can
handle xf from a distribution where the population mean does not exist.
Data splitting divides the training data x1, ...,xn into two sets: H and the
validation set V where H has nH of the cases and V has the remaining
nV = n− nH cases i1, ..., inV . A common method of data splitting randomly
divides the training data into the two sets H and V . Often nH ≈ dn/2e.

The estimator (TH ,CH) is computed using the data set H . Then the
squared validation distances D2

j = D2
xij

(TH ,CH) = (xij − TH)TC−1
H (xij −

TH) are computed for the j = 1, ..., nV cases in the validation set V . Let
D2

(UV ) be the UV th order statistic of the D2
j where

UV = min(nV , d(nV + 1)(1 − δ)e). (4.14)
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� �

� �

Fig. 4.3 Highest Density Regions for 2 MVN Distributions
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Theorem 4.10. Assume that x1, ...,xn,xf are iid and that C−1
H exists.

The large sample 100(1− δ)% data splitting prediction region for xf is

{z : D2
z(TH ,CH) ≤ D2

(UV )}. (4.15)

Proof. To show that (4.15) is a prediction region, suppose the xi are iid
for i = 1, ..., n, n+ 1 where xf = xn+1. Compute (TH ,CH) from the cases
in H . Consider the squared validation distances D2

k for k = 1, ..., nV and the
squared validation distance D2

nV +1 for case xf . Since these nV + 1 cases are
iid, the probability that D2

t has rank j for j = 1, ..., nV + 1 is 1/(nV + 1)
for each t, i.e., the ranks follow the discrete uniform distribution. Let t =
nV + 1 and let the D2

(j) be the ordered squared validation distances using
j = 1, ..., nV . That is, get the order statistics without using the unknown
squared validation distance D2

nV +1. Then D2
(i) has rank i if D2

(i) < D2
nV +1

but rank i+1 if D2
(i) > D2

nV +1. Thus D2
(UV ) has rank UV +1 if D2

xf
< D2

(UV )
and

P (xf ∈ {z : D2
z(TH ,CH) ≤ D2

(UV )}) = P (D2
xf

≤ D2
(UV )) ≥ UV /(1 + nV ) →

1− δ as nV → ∞. If there are no tied ranks, then

P (D2
xf

≤ D2
(UV )) = P (D2

xf
< D2

(UV )) = P (rank of D2
xf

≤ UV) = UV/(1+nV).

�

Note that we can get the actual coverage UV /(1 + nV ) close to 1 − δ for
nV ≥ 20 for δ = 0.05 even if (TH ,CH) is a bad estimator. The volume of the
prediction region tends to be much larger than that of the highest density
region, even if CH is well conditioned. We likely need UV ≥ 50 for D2

(UV ) to

approximate the population percentile of D2
j = (xij − TH)TC−1

H (xij − TH).
The above prediction region coverage theory did not depend on the dimen-

sion p as long as CH = C is nonsingular. If C = Ip or C = diag(S2
1 , ..., S

2
p),

then prediction region (4.15) can be used for high dimensional data where
p > n. Regularized covariance matrices or precision matrices could also be
used.

Example 4.2. The Wisseman, Hopke, and Schindler-Kaudelka (1987) pot-
tery data consists of a chemical analysis on pottery shards. The data set has
36 cases and 5 groups corresponding to types of pottery shards. The vari-
ables x1, ..., x20 correspond to the p = 20 chemicals analyzed. Consider the
n = 18 group 1 cases where the pottery shards were Arretine, a type of
Roman pottery. We randomly selected case 4 from group 1 to be xf and
computed the 88.89% data splitting prediction region with the remaining 17
cases, nV = 8, and (T,C) = (MED(W ), Ip) where MED(W ) is the coordi-
natewise median computed from the 9 cases in H . The cutoff D2

(UV ) = 612.2

and D2(xf ) = 353.8. Hence xf was in the 88.89% prediction region. Next,
we made xf equal to each of the 36 cases. Then 8 cases xf were not in the
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above prediction region, including 7 of the 18 cases that were not from group
1.

Table 4.1 Data Splitting Nominal 95% Prediction region

n p nv xtype dtype cov
50 100 20 1 1 0.9560
50 100 20 2 1 0.9466
50 100 20 3 1 0.9504
50 100 20 1 2 0.9558
50 100 20 2 2 0.9508
50 100 20 3 2 0.9522
100 100 50 1 1 0.9620
100 100 50 2 1 0.9622
100 100 50 3 1 0.9596
100 100 50 1 2 0.9638
100 100 50 2 2 0.9578
100 100 50 3 2 0.9638
100 100 25 1 1 0.9588
100 100 25 2 1 0.9658
100 100 25 3 1 0.9568
100 100 25 1 2 0.9622
100 100 25 2 2 0.9672
100 100 25 3 2 0.9662

The theory for the new prediction regions is simple, so Table 4.1 is more
of a check that the programs work than that the theory works. The output
gives cov = observed coverage, up ≈ actual coverage, and mnhsq = mean
cutoff D2

(UV ). With 5000 runs, expect observed coverage ∈ [0.94, 0.96] if the
actual coverage is close to 0.95. The random vector x = Aw where x = w ∼
Np(0, Ip) for xtype = 3, and x ∼ Np(0, diag(1, ..., p)) for xtype = 1. For
xtype = 2, w has the wi iid lognormal(0,1) with A = diag(1,

√
2, ...,

√
p).

The dispersion matrix types are dtype = 1 if (T,C) = (x, Ip) and dtype =
2 if (T,C) = (MED(W ), Ip) where MED(W ) is the coordinatewise median
of the xi.

When xtype=3 and dtype=1, (T,C) = (x, Ip) where xi ∼ Np(0, Ip).
ThenD2

(UV ) should estimate the population percentile χ2
p,0.95 if n ≥ max(20p, 200)

and nV = 100. This result did occur in the simulations.
Table 4.1 gives n, p, nV , a number xtype corresponding to the distribution

of x, and a number dtype corresponding to (T,C) used in prediction region
(4.15). High dimensional data was used since p ≥ n. With nV = 20, the actual
coverage is 20/21 = 0.9524, nV = 25 has actual coverage 25/26 = 0.9615,
and nV = 50 has actual coverage 49/51 = 0.9608. The observed coverages
were close to the actual coverages in Table 4.1.
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4.4 Summary

1) Consider predicting a future test value Yf given training data Y1, ..., Yn. A

large sample 100(1−δ)% prediction interval (PI) for Yf has the form [L̂n, Ûn]

where P (L̂n ≤ Yf ≤ Ûn) is eventually bounded below by 1− δ as the sample
size n → ∞. A large sample 100(1−δ)% PI is asymptotically optimal if it has
the shortest asymptotic length: the length of [L̂n, Ûn] converges to Us−Ls as
n→ ∞ where [Ls, Us] is the population shorth: the shortest interval covering
at least 100(1 − δ)% of the mass.

2) Let Y1, ..., Yn, Yf be iid. Let Y(1) ≤ Y(2) ≤ · · · ≤ Y(n) be the order
statistics of the training data. Let k1 = dnδ/2e and k2 = dn(1 − δ/2)e where
0 < δ < 1. The large sample 100(1− δ)% percentile prediction interval for Yf
is

[Y(k1), Y(k2)]. (4.16)

3) Let the shortest closed interval containing at least c of the Y1, ..., Yn be
shorth(c) = [Y(s),Y(s+c−1)].

4) Let Y1, ..., Yn, Yf be iid. Let Y(1) ≤ Y(2) ≤ · · · ≤ Y(n) be the order statis-
tics of the training data. The large sample 100(1 − δ)% shorth(c) prediction
interval for Yf is

[Y(s), Y(s+c−1)] where c = min(n, dn[1 − δ + 1.12
√
δ/n ] e).

5) Let Y1, ..., Yn, Yf be iid. Let W(1) ≤ W(2) ≤ · · · ≤ W(n) be the order
statistics of the squared training data W1, ...,Wn where Wi = Y 2

i for i =
1, ..., n. Let kn = dn(1 − δ)e. Let Ln = −Un and Un =

√
W(kn). Then

[Ln, Un] is a large sample 100(1 − δ)% PI for Yf .
6) Let Y1, ..., Yn, Yf be iid. Suppose that E(Y ) = µ and the standard

deviation SD(Y ) = σ. Let µ̂ and σ̂ be consistent estimators of µ and σ. Let
1− 1/k2 ≥ 1 − δ. Let µ± kσ be continuity points of FY (y). Then

[Ln, Un] = [µ̂− kσ̂, µ̂+ kσ̂]

is a large sample 100(1− δ)% Chebyshev PI for Yf .
Note often k = 1.96 is used which is good for a 95% PI for iid normal

data, but is usually too short to be a 95% PI for iid data.
7) In a simulation for a PI, prediction region, CI, or confidence region with

nominal 100(1 − δ)% coverage, let the actual coverage 1 − δn = P (an ∈ R)
be P (Yf ∈ PI), P (Y f ∈ prediction region), P (θ ∈ CI), or P (θ ∈ confidence
region). Then P (an ∈ R) ∼ bin(k, 1 − δn) ≈ bin(k, 1 − δ) where k is the
number of runs in the simulation. a) for k = 5000, simulated coverage in
[0.94,0.95] suggests the actual coverage 1−δn is close to the nominal coverage
1−δ = 0.95. b) for k = 100, simulated coverage in [0.89,1] suggests the actual
coverage 1 − δn is close to the nominal coverage 1 − δ = 0.95.
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4.5 Complements

There are many prediction intervals and regions in the literature. For ref-
erences, see Beran (1990, 1993), Fontana, Zeni, and Vantini (2023), Guan
(2023), Olive (2013b, 2018), Steinberger and Leeb (2023), and Tian, Nord-
man, and Meeker (2022).

See Frey (2013) for references about nonparametric PIs. The shorth PI
(4.1) often has good coverage for n ≥ 50 and 0.05 ≤ δ ≤ 0.1, but the
convergence of Un − Ln to the population shorth length Us − Ls can be
quite slow. Under regularity conditions, Grübel (1982) showed that for iid
data, the length and center of the shorth(kn) interval are

√
n consistent and

n1/3 consistent estimators of the length and center of the population shorth
interval, respectively. Einmahl and Mason (1992) gave large sample theory
for the shorth under slightly milder conditions than Grübel (1982). Chen and
Shao (1999) showed that the shorth PI converges to the population shorth
under mild conditions for ergodic data.

A method for obtaining an asymptotically optimal PI from a parametric
distribution, possibly with right censored data, is given by Olive, Rathnayake,
and Haile (2022). The data splitting prediction region of Section 4.3 was based
on Haile, Zhang, and Olive (2024).

Prediction intervals and prediction regions can be used to estimate Bayesian
credible intervals and Bayesian credible regions. Applying certain prediction
regions to bootstrap samples results in confidence regions. See Chapter 5 and
Welagedara and Olive (2024).

Software. The simulations were done in R. See R Core Team (2020).
The function predrgn makes the nonparametric prediction region and de-
termines whether xf is in the region. The function predreg also makes the
nonparametric prediction region, and determines if 0 is in the region. The
shorth3 function computes the shorth(c) intervals with the Frey (2013)
correction used when g = 1. The function predsim2 simulates the data
splitting prediction region for Table 4.1. The function predrgn2 computes
the prediction region (4.14) using (T,C) = (MED(W ), Ip).

4.6 Problems

4.1. Consider the Cushny and Peebles data set (see Staudte and Sheather
1990, p. 97) listed below. Find shorth(7). Show work.

0.0 0.8 1.0 1.2 1.3 1.3 1.4 1.8 2.4 4.6

4.2. Find shorth(5) for the following data set. Show work.

6 76 90 90 94 94 95 97 97 1008

4.3. Find shorth(5) for the following data set. Show work.
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66 76 90 90 94 94 95 95 97 98

4.4. The data below are a sorted residuals from a least squares regression
where n = 100 and p = 4. Find shorth(97) of the residuals.

number 1 2 3 4 ... 97 98 99 100

residual -2.39 -2.34 -2.03 -1.77 ... 1.76 1.81 1.83 2.16

R Problems
Use the command source(“G:/lsamppack.txt”) to download the

functions and the command source(“G:/lsampdata.txt”) to download the
data. See Preface. Typing the name of the lsamppack function, e.g.
predsim, will display the code for the function. Use the args command,
e.g. args(predsim), to display the needed arguments for the function. For
the following problem, the R command can be copied and pasted from
(http://parker.ad.siu.edu/Olive/lsamphw.txt) into R.

4.5. a) Type the R command predsim() and paste the output into Word.
This program computes xi ∼ N4(0, diag(1, 2, 3, 4)) for i = 1, ..., 100 and

xf = x101. One hundred such data sets are made, and ncvr, scvr, and mcvr
count the number of times xf was in the nonparametric, semiparametric,
and parametric MVN 90% prediction regions. The volumes of the prediction
regions are computed and voln, vols, and volm are the average ratio of the
volume of the ith prediction region over that of the semiparametric region.
Hence vols is always equal to 1. For multivariate normal data, these ratios
should converge to 1 as n → ∞.

b) Were the three coverages near 90%?

More problems:
4.6. For a Poisson regression model, Y |x ∼ Poisson[exp(xTβ)]. Suppose

β̂n is a
√
n consistent estimator of β. Let Wn ∼ Poisson[exp(xTf β̂n)]. Treat

xf as a known constant vector. Then Wn approximates W . What is the
distribution of W?

(Note: to get a prediction interval for Yf |xf , generate an iid sample

W1, ...,WB where Wi ∼ Poisson[exp(xTf β̂n)]. Then compute the shorth PI
from the Wi. This technique is called the parametric bootstrap. It is not

clear whether Wn
D→W .)





Chapter 5

Confidence Regions and the Bootstrap

This chapter follows Olive (2014, ch. 9; 2017b,
∮

5.3) closely. Also see Olive
(2023abcd). Sections 5.1–5.3 consider confidence intervals from asymptotic
pivots while Section 5.4 covers bootstrap confidence regions. Closed regions
are better than open regions. Again, 0 < δ < 1. Applying certain prediction
intervals or prediction regions to the bootstrap sample will result in confi-
dence intervals or confidence regions. The prediction intervals and regions are
based on samples of size n, while the bootstrap sample size is B = Bn.

Notation: As in Chapter 4, P (An) is “eventually bounded below” by 1− δ
if P (An) gets arbitrarily close to or higher than 1 − δ as n → ∞. Hence
P (An) > 1 − δ − ε for any ε > 0 if n is large enough. If P (An) → 1 − δ
as n → ∞, then P (An) is eventually bounded below by 1 − δ. The actual
coverage is 1 − γn = P (θ ∈ [Ln, Un]), the nominal coverage is 1 − δ where
0 < δ < 1. The 90% and 95% large sample confidence intervals and confidence
regions are common.

5.1 Confidence Intervals

Definition 5.1. Let the data Y = (Y1, ..., Yn)
T have joint pdf or pmf f(y|θ)

with parameter space Θ and support Y. Let Ln(Y ) and Un(Y ) be statistics
such that Ln(y) ≤ Un(y), ∀y ∈ Y. Then [Ln(y), Un(y)] is a 100 (1 − δ) %
confidence interval (CI) for θ if

Pθ(Ln(Y ) ≤ θ ≤ Un(Y )) = 1 − δ

for all θ ∈ Θ. The interval [Ln(y), Un(y)] is a large sample 100(1 − δ) % CI
for θ if

Pθ(Ln(Y ) ≤ θ ≤ Un(Y ))

is eventually bounded below by 1− δ for all θ ∈ Θ as the sample size n→ ∞.

161



162 5 Confidence Regions and the Bootstrap

Pivots and asymptotic pivots are used to make CIs. An asymptotic pivot is
a random quantity that is not a statistic since the asymptotic pivot depends
on the unknown parameters θ.

Definition 5.2. Let the data Y1, ..., Yn have joint pdf or pmf f(y|θ) with
parameter space Θ and support Y. The quantity R(Y |θ) is a pivot or piv-
otal quantity if the distribution of R(Y |θ) is independent θ. The quantity
R(Y , θ) is an asymptotic pivot or asymptotic pivotal quantity if the lim-
iting distribution of R(Y , θ) is independent of θ.

The first CI in Definition 5.1 is sometimes called an exact CI. The words
“exact” and “large sample” are often omitted. In the following definition, the
scaled asymptotic length is closely related to asymptotic relative efficiency of
an estimator and high power of a test of hypotheses.

Definition 5.3. Let [Ln, Un] be a 100 (1− δ)% CI or large sample CI for
θ. If

nτ (Un − Ln)
P→ Aδ

where 0 < τ ≤ 1, then Aδ is the scaled asymptotic length of the CI. Typically
τ = 0.5 but superefficient CIs have τ = 1. For fixed τ and fixed coverage 1−δ,
a CI with smaller Aδ is “better” than a CI with larger Aδ . If A1,δ and A2,δ

are for two competing CIs with the same τ , then (A2,δ/A1,δ)
1/τ is a measure

of “asymptotic relative efficiency.”

Definition 5.4. Suppose a nominal 100(1 − δ)% CI for θ has actual cov-
erage 1 − γ, so that Pθ(Ln(Y ) ≤ θ ≤ Un(Y )) = 1 − γ for all θ ∈ Θ. If
1 − γ > 1 − δ, then the CI is conservative. If 1 − γ < 1 − δ, then the CI
is liberal. Conservative CIs are generally considered better than liberal CIs.
Suppose a nominal 100(1 − δ)% large sample CI for θ has actual coverage
1 − γn where γn → γ as n → ∞ for all θ ∈ Θ. If 1 − γ > 1 − δ, then the
CI is asymptotically conservative. If 1 − γ < 1 − δ, then the CI is asymptot-
ically liberal. It is possible that γ ≡ γ(θ) depends on θ, and that the CI is
(asymptotically) conservative or liberal for different values of θ, in that the
(asymptotic) coverage is higher or lower than the nominal coverage, depend-
ing on θ.

Example 5.1. a) Let Y1, ..., Yn be iid N(µ, σ2) where σ2 > 0. Then

R(Y |µ, σ2) =
Y − µ

S/
√
n

∼ tn−1

is a pivot. A statistic does not depend on any unknown parameters. Hence
the above pivot is not a statistic if µ is unknown.

To use this pivot to find a CI for µ, let tp,δ be the δ percentile of the
tp distribution. Hence P (T ≤ tp,δ) = δ if T ∼ tp. Using tp,δ = −tp,1−δ for
0 < δ < 0.5, note that
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1 − δ = P (−tn−1,1−δ/2 ≤
Y − µ

S/
√
n

≤ tn−1,1−δ/2) =

P (−tn−1,1−δ/2 S/
√
n ≤ Y − µ ≤ tn−1,1−δ/2 S/

√
n) =

P (−Y − tn−1,1−δ/2 S/
√
n ≤ −µ ≤ −Y + tn−1,1−δ/2 S/

√
n) =

P (Y − tn−1,1−δ/2 S/
√
n ≤ µ ≤ Y + tn−1,1−δ/2 S/

√
n).

Thus
Y ± tn−1,1−δ/2 S/

√
n

is a 100(1− δ)% CI for µ.
b) If Y1, ..., Yn are iid with E(Y ) = µ and VAR(Y ) = σ2 > 0, then, by the

CLT and Slutsky’s Theorem,

R(Y , µ, σ2) =
Y − µ

S/
√
n

=
σ

S

Y − µ

σ/
√
n

D→ N(0, 1)

is an asymptotic pivot.
To use this asymptotic pivot to find a large sample CI for µ, let zδ be the

δ percentile of the N(0, 1) distribution. Hence P (Z ≤ zδ) = δ if Z ∼ N(0, 1).
Using zδ = −z1−δ for 0 < δ < 0.5, note that for large n,

1 − δ ≈ P (−z1−δ/2 ≤ Y − µ

S/
√
n

≤ z1−δ/2) =

P (−z1−δ/2 S/
√
n ≤ Y − µ ≤ z1−δ/2 S/

√
n) =

P (−Y − z1−δ/2 S/
√
n ≤ −µ ≤ −Y + z1−δ/2 S/

√
n) =

P (Y − z1−δ/2 S/
√
n ≤ µ ≤ Y + z1−δ/2 S/

√
n).

Thus
Y ± z1−δ/2 S/

√
n (5.1)

is a large sample 100(1− δ)% CI for µ.
Since tn−1,1−δ/2 > z1−δ/2 but tn−1,1−δ/2 → z1−δ/2 as n→ ∞,

Y ± tn−1,1−δ/2 S/
√
n (5.2)

is also a large sample 100(1 − δ)% CI for µ. This t interval is the same as
that in a), and is likely the most widely used confidence interval in statistics.
Replacing z1−δ/2 by tn−1,1−δ/2 makes the CI longer and hence less likely to
be liberal.

Remark 5.1.

Y ± tn−1,1−δ/2 S/
√
n = Y ± tn−1,1−δ/2

z1−δ/2
z1−δ/2S/

√
n
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where
tn−1,1−δ/2
z1−δ/2

→ 1

as n→ ∞ is a small sample correction factor. See Example 2.16. The CI (5.2)
should be used instead of the CI (5.1). If a large sample 100(1− δ)% CI for θ

is θ̂±z1−δ/2SE(θ̂), then the large sample 100(1−δ)% CI θ̂±tdn,1−δ/2SE(θ̂)
where dn → ∞ as n → ∞ tends to perform better for small sample sizes.
Typically the actual distribution of the asymptotic pivot has heavier tails
than the N(0,1) distribution for moderate sample sizes, and using a correction
factor improves performance.

5.2 Large Sample CIs and Tests

Large sample theory can be used to construct confidence intervals and hy-
pothesis tests. Suppose that Y = (Y1, ..., Yn)

T and that Wn ≡ Wn(Y ) is an
estimator of some parameter µW such that

√
n(Wn − µW )

D→ N(0, σ2
W )

where σ2
W /n is the asymptotic variance of the estimator Wn. The above

notation means that if n is large, then for probability calculations

Wn − µW ≈ N(0, σ2
W/n).

Suppose that S2
W is a consistent estimator of σ2

W so that the (asymptotic)
standard error of Wn is SE(Wn) = SW /

√
n. Using the notation of Example

5.1,

P

(
−z1−δ/2 ≤ Wn − µW

SE(Wn)
≤ z1−δ/2

)
→ 1 − δ

and a large sample 100(1− δ)% CI for µW is given by

[Wn − z1−δ/2SE(Wn),Wn + z1−δ/2SE(Wn)]. (5.3)

Three common approximate level δ tests of hypotheses all use the null
hypothesis Ho : µW = µo. A right tailed test uses the alternative hypothesis
HA : µW > µo, a left tailed test uses HA : µW < µo, and a two tail test uses
HA : µW 6= µo. The test statistic is

to =
Wn − µo
SE(Wn)

,
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and the (approximate) p-values are P (Z > to) for a right tail test, P (Z < to)
for a left tail test, and 2P (Z > |to|) = 2P (Z < −|to|) for a two tail test. The
null hypothesis Ho is rejected if the p-value < δ.

Remark 5.2. Frequently the large sample CIs and tests can be improved
for smaller samples by substituting a t distribution with dn degrees of freedom
for the standard normal distribution Z where dn is some increasing function
of the sample size n. Then the 100(1− δ)% CI for µW is given by

[Wn − tdn,1−δ/2SE(Wn),Wn + tdn,1−δ/2SE(Wn)]. (5.4)

The test statistic rarely has an exact tdn distribution, but CI (5.6) often
performs better than the CI (5.5) in small samples. The CI (5.6) is longer
than the CI (5.5), and H0 is less likely to be rejected. Hence the CI (5.6) is
more conservative than the CI (5.5). This book will typically use very simple
rules for dn and not investigate the exact distribution of the test statistic.
Note that the small sample correction factor

tdn,1−δ/2
z1−δ/2

→ 1

if dn ≡ pn → ∞ as n → ∞. See Example 2.16.
Paired and two sample procedures can be obtained directly from the one

sample procedures. Suppose there are two samples Y1, ..., Yn and X1, ..., Xm.
If n = m and it is known that (Yi, Xi) match up in correlated pairs, then
paired CIs and tests apply the one sample procedures to the differences Di =
Yi −Xi. Otherwise, assume the two samples are independent, that n and m
are large, and that

( √
n(Wn(Y ) − µW (Y ))√
m(Wm(X) − µW (X))

)
D→ N2

((
0
0

)
,

(
σ2
W (Y ) 0

0 σ2
W (X)

))
.

Then
(

(Wn(Y ) − µW (Y ))
(Wm(X) − µW (X))

)
≈ N2

((
0
0

)
,

(
σ2
W (Y )/n 0

0 σ2
W (X)/m

))
,

and

Wn(Y ) −Wm(X) − (µW (Y ) − µW (X)) ≈ N

(
0,
σ2
W (Y )

n
+
σ2
W (X)

m

)
.

Hence SE(Wn(Y ) −Wm(X)) =

√
S2
W (Y )

n
+
S2
W (X)

m
=
√

[SE(Wn(Y ))]2 + [SE(Wm(X))]2,

and the large sample 100(1− δ)% CI for µW (Y ) − µW (X) is given by
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(Wn(Y ) −Wm(X)) ± z1−δ/2SE(Wn(Y ) −Wm(X)).

Often approximate level δ tests of hypotheses use the null hypothesis Ho :
µW (Y ) = µW (X). A right tailed test uses the alternative hypothesis HA :
µW (Y ) > µW (X), a left tailed test uses HA : µW (Y ) < µW (X), and a two
tail test uses HA : µW (Y ) 6= µW (X). The test statistic is

to =
Wn(Y ) −Wm(X)

SE(Wn(Y ) −Wm(X))
,

and the (approximate) p-values are P (Z > to) for a right tail test, P (Z < to)
for a left tail test, and 2P (Z > |to|) = 2P (Z < −|to|) for a two tail test. The
null hypothesis Ho is rejected if the p-value < δ.

Remark 5.3. Again a tpn cutoff will often be used instead of the z cutoff.
If dn is the degrees of freedom used for a single sample procedure when the
sample size is n, use dn,m = min(dn, dm) for the two sample procedure if
a better formula is not given. Then the large sample 100(1 − δ)% CI for
µW (Y ) − µW (X) is

(Wn(Y ) −Wm(X)) ± tdn,m,1−δ/2SE(Wn(Y ) −Wm(X)). (5.5)

These CIs are known as Welch intervals. See Welch (1937) and Yuen (1974).

Example 5.2. Consider the single sample procedures where Wn = Y n.
Then µW = E(Y ), σ2

W = VAR(Y ), SW = Sn, and dn = n − 1. Then the
classical t-interval for µ ≡ E(Y ) is

Y n ± tn−1,1−δ/2
Sn√
n

and the t-test statistic is

to =
Y − µo
Sn/

√
n
.

The right tailed p-value is given by P (tn−1 > to).
Now suppose that there are two samples where Wn(Y ) = Y n and

Wm(X) = Xm. Then µW (Y ) = E(Y ) ≡ µY , µW (X) = E(X) ≡ µX ,
σ2
W (Y ) = VAR(Y ) ≡ σ2

Y , σ
2
W (X) = VAR(X) ≡ σ2

X , and dn = n − 1. Let
dn,m = min(n− 1, m− 1). Since

SE(Wn(Y ) −Wm(X)) =

√
S2
n(Y )

n
+
S2
m(X)

m
,

the two sample t-interval for µY − µX is
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(Y n −Xm) ± tdn,m,1−δ/2

√
S2
n(Y )

n
+
S2
m(X)

m

and two sample t-test statistic is

to =
Y n −Xm√

S2
n(Y )
n +

S2
m(X)
m

.

The right tailed p-value is given by P (tdn,m > to). For sample means, values
of the degrees of freedom that are more accurate than dn,m = min(n−1, m−1)
can be computed. See Moore (2007, p. 474) and Example 5.9.

5.3 Some CI Examples

Example 5.3. Suppose that Y1, ..., Yn are iid from a one parameter expo-
nential family with parameter τ . Assume that Tn =

∑n
i=1 t(Yi) is a complete

sufficient statistic. Then Olive (2014, pp. 92-93), often Tn ∼ G(na, 2b τ )
where a and b are known positive constants. Then

τ̂ =
Tn

2nab

is the UMVUE and often the MLE of τ. Since Tn/(b τ ) ∼ G(na, 2), a
100(1− δ)% confidence interval for τ is

[
Tn/b

G(na, 2, 1− δ/2)
,

Tn/b

G(na, 2, δ/2)

]
≈
[

Tn/b

χ2
d(1 − δ/2)

,
Tn/b

χ2
d(δ/2)

]
(5.6)

where d = b2nac, bxc is the greatest integer function (e.g. b7.7c = b7c = 7),
P [G ≤ G(ν, λ, δ)] = δ if G ∼ G(ν, λ), and P [X ≤ χ2

d(δ)] = δ if X has a
chi-square χ2

d distribution with d degrees of freedom.

This confidence interval can be inverted to perform two tail tests of hy-
potheses. By Olive (2014, p. 186: Theorem 7.3), if w(θ) is increasing, then
the uniformly most powerful (UMP) test of Ho : τ ≤ τo versus HA : τ > τo
rejects H0 if and only if Tn > k where P [G > k] = δ when G ∼ G(na, 2b τo).
Hence

k = G(na, 2b τo, 1 − δ). (5.7)

A good approximation to this test rejects H0 if and only if

Tn > b τoχ
2
d(1 − δ)

where d = b2nac.
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Example 5.4. Olive (2014, pp. 264-266): If Y is half normal HN(µ, σ)
then the pdf of Y is

f(y) =
2√

2π σ
exp (

−(y − µ)2

2σ2
)

where σ > 0 and y > µ and µ is real. Since

f(y) =
2√

2π σ
I[y > µ] exp

[
(
−1

2σ2
)(y − µ)2

]
,

Y is a 1P–REF if µ is known.
Since Tn =

∑
(Yi−µ)2 ∼ G(n/2, 2σ2), in Example 5.3 take a = 1/2, b = 1,

d = n and τ = σ2. Then a 100(1 − δ)% confidence interval for σ2 is

[
Tn

χ2
n(1 − δ/2)

,
Tn

χ2
n(δ/2)

]
. (5.8)

The UMP test of H0 : σ2 ≤ σ2
o versus HA : σ2 > σ2

o rejects Ho if and only
if

Tn/σ
2
o > χ2

n(1 − δ).

Now consider inference when both µ and σ are unknown. Then the family
is no longer an exponential family since the support depends on µ. Let

Dn =

n∑

i=1

(Yi − Y1:n)
2. (5.9)

Pewsey (2002) showed that (µ̂, σ̂2) = (Y1:n,
1
nDn) is the MLE of (µ, σ2),

and that
Y1:n − µ

σΦ−1(1
2

+ 1
2n

)

D→ EXP (1)

where Y1:n = Y(1) = min(Y1, ..., Yn) is the first order statistic. Since (
√
π/2)/n

is an approximation to Φ−1(1
2 + 1

2n) based on a first order Taylor series ex-
pansion such that

Φ−1(1
2 + 1

2n)

(
√
π/2)/n

→ 1,

it follows that
n(Y1:n − µ)

σ
√

π
2

D→ EXP (1). (5.10)

Using this fact, it can be shown that a large sample 100(1 − δ)% CI for µ is

[µ̂+ σ̂ log(δ) Φ−1(
1

2
+

1

2n
) (1 + 13/n2), µ̂] (5.11)
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where the term (1 + 13/n2) is a small sample correction factor.
Note that

Dn =

n∑

i=1

(Yi − Y1:n)2 =

n∑

i=1

(Yi − µ + µ− Y1:n)2 =

n∑

i=1

(Yi − µ)2 + n(µ− Y1:n)
2 + 2(µ− Y1:n)

n∑

i=1

(Yi − µ).

Hence

Dn = Tn +
1

n
[n(Y1:n − µ)]2 − 2[n(Y1:n − µ)]

∑n
i=1(Yi − µ)

n
,

or

Dn
σ2

=
Tn
σ2

+
1

n

1

σ2
[n(Y1:n − µ)]2 − 2[

n(Y1:n − µ)

σ
]

∑n
i=1(Yi − µ)

nσ
. (5.12)

Consider the three terms on the right hand side of (5.12). The middle term
converges to 0 in distribution while the third term converges in distribution
to a −2EXP (1) or −χ2

2 distribution since
∑n
i=1(Yi − µ)/(σn) is the sample

mean of HN(0,1) random variables and E(X) =
√

2/π when X ∼ HN(0, 1).

Let Tn−p =
∑n−p

i=1 (Yi − µ)2. Then

Dn = Tn−p +
n∑

i=n−p+1

(Yi − µ)2 − Vn (5.13)

where
Vn
σ2

D→ χ2
2.

Hence
Dn
Tn−p

D→ 1

and Dn/σ
2 is asymptotically equivalent to a χ2

n−p random variable where p
is an arbitrary nonnegative integer. Pewsey (2002) used p = 1.

Thus when both µ and σ2 are unknown, a large sample 100(1− δ)% con-
fidence interval for σ2 is

[
Dn

χ2
n−1(1 − δ/2)

,
Dn

χ2
n−1(δ/2)

]
. (5.14)

It can be shown that
√
n CI length converges in probability to σ2

√
2(z1−δ/2−

zδ/2) for CIs (5.8) and (5.14) while n length CI (5.11) converges in probability

to −σ log(δ)
√
π/2.
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When µ and σ2 are unknown, an approximate δ level test of Ho : σ2 ≤ σ2
o

versus HA : σ2 > σ2
o that rejects Ho if and only if

Dn/σ
2
o > χ2

n−1(1 − δ) (5.15)

has nearly as much power as the δ level UMP test when µ is known if n is
large.

Example 5.5. Let X1, ..., Xn be iid Poisson(θ) random variables. The
classical large sample 100 (1 − δ)% CI for θ is

X ± z1−δ/2

√
X/n

where P (Z ≤ z1−δ/2) = 1 − δ/2 if Z ∼ N(0, 1).

Following Byrne and Kabaila (2005), a modified large sample 100 (1−δ)%
CI for θ is [Ln, Un] where

Ln =
1

n




n∑

i=1

Xi − 0.5 + 0.5z2
1−δ/2 − z1−δ/2

√√√√
n∑

i=1

Xi − 0.5 + 0.25z2
1−δ/2




and

Un =
1

n




n∑

i=1

Xi + 0.5 + 0.5z2
1−δ/2 + z1−δ/2

√√√√
n∑

i=1

Xi + 0.5 + 0.25z2
1−δ/2


 .

Following Grosh (1989, p. 59, 197–200), let W =
∑n
i=1Xi and suppose

that W = w is observed. Let P (T < χ2
d(δ)) = δ if T ∼ χ2

d. Then an “exact”
100 (1 − δ)% CI for θ is

[
χ2

2w( δ2)

2n
,
χ2

2w+2(1 − δ
2)

2n

]

for w 6= 0 and [
0,
χ2

2(1 − δ)

2n

]

for w = 0.
The “exact” CI is conservative: the actual coverage (1 − δn) ≥ 1 − δ =

the nominal coverage. This interval performs well if θ is very close to 0. See
Problem 5.2.

Example 5.6. Let Y1, ..., Yn be iid bin(1, ρ). Let ρ̂ =
∑n

i=1 Yi/n =
number of “successes”/n. The classical large sample 100 (1− δ)% CI for ρ is
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ρ̂± z1−δ/2

√
ρ̂(1 − ρ̂)

n

where P (Z ≤ z1−δ/2) = 1 − δ/2 if Z ∼ N(0, 1).

The Agresti and Coull (1998) CI takes ñ = n+ z2
1−δ/2 and

ρ̃ =
nρ̂+ 0.5z2

1−δ/2
n + z2

1−δ/2
.

(The method “adds” 0.5z2
1−δ/2 “0’s” and 0.5z2

1−δ/2 “1’s” to the sample, so

the “sample size” increases by z2
1−δ/2.) Then the large sample 100 (1 − δ)%

Agresti Coull CI for ρ is

ρ̃± z1−δ/2

√
ρ̃(1 − ρ̃)

ñ
.

Now let Y1, ..., Yn be independent bin(mi, ρ) random variables, let W =∑n
i=1 Yi ∼ bin(

∑n
i=1 mi, ρ) and let nw =

∑n
i=1mi. Often mi ≡ 1 and then

nw = n. Let P (Fd1,d2 ≤ Fd1,d2(δ)) = δ where Fd1,d2 has an F distribution
with d1 and d2 degrees of freedom. Assume W = w is observed. Then the
Clopper Pearson “exact” 100 (1 − δ)% CI for ρ is

[
0,

1

1 + nw F2nw,2(δ)

]
for w = 0,

[
nw

nw + F2,2nw(1 − δ)
, 1

]
for w = nw,

and [ρL, ρU ] for 0 < w < nw with

ρL =
w

w + (nw − w + 1)F2(nw−w+1),2w(1 − δ/2)

and

ρU =
w + 1

w + 1 + (nw − w)F2(nw−w),2(w+1)(δ/2)
.

The “exact” CI is conservative: the actual coverage (1 − δn) ≥ 1 − δ =
the nominal coverage. This interval performs well if ρ is very close to 0 or 1.
The classical interval should only be used if it agrees with the Agresti Coull
interval. See Problem 5.3.

Example 5.7. Let ρ̂ = number of “successes”/n. Consider a taking a
simple random sample of size n from a finite population of known size N .
Then the classical finite population large sample 100 (1 − δ)% CI for ρ is



172 5 Confidence Regions and the Bootstrap

ρ̂± z1−δ/2

√
ρ̂(1 − ρ̂)

n− 1

(
N − n

N

)
= ρ̂± z1−δ/2SE(ρ̂) (5.16)

where P (Z ≤ z1−δ/2) = 1 − δ/2 if Z ∼ N(0, 1).

Following DasGupta (2008, p. 121), suppose the number of successes Y
has a hypergeometric (C,N − C, n) where p = C/N. If n/N ≈ λ ∈ (0, 1)
where n and N are both large, then

ρ̂ ≈ N

(
ρ,
ρ(1 − ρ)(1 − λ)

n

)
.

Hence CI (5.16) should be good if the above normal approximation is good.

Let ñ = n+ z2
1−δ/2 and

ρ̃ =
nρ̂+ 0.5z2

1−δ/2
n + z2

1−δ/2
.

(Heuristically, the method adds 0.5z2
1−δ/2 “0’s” and 0.5z2

1−δ/2 “1’s” to the

sample, so the “sample size” increases by z2
1−δ/2.) Then a large sample 100

(1 − δ)% Agresti Coull type (ACT) finite population CI for ρ is

ρ̃± z1−δ/2

√
ρ̃(1 − ρ̃)

ñ

(
N − n

N

)
= ρ̃± z1−δ/2SE(ρ̃). (5.17)

Notice that a 95% CI uses z1−δ/2 = 1.96 ≈ 2.
For data from a finite population, large sample theory gives useful approx-

imations as N and n → ∞ and n/N → 0. Hence theory suggests that the
ACT CI should have better coverage than the classical CI if the p is near
0 or 1, if the sample size n is moderate, and if n is small compared to the
population size N . The coverage of the classical and ACT CIs should be very
similar if n is large enough but small compared to N (which may only be
possible if N is enormous). As n increases to N , ρ̂ goes to p, SE(ρ̂) goes to 0,
and the classical CI may perform well. SE(ρ̃) also goes to 0, but ρ̃ is a biased
estimator of ρ and the ACT CI will not perform well if n/N is too large.

Want an interval that gives good coverage even if ρ is near 0 or 1 or if n/N
is large. A simple method is to combine the two intervals. Let [LC , UC] and
[LA, UA] be the classical and ACT 100(1 − δ)% intervals. Let the modified
100(1− δ)% interval be

[max[0,min(LC , LU)],min[1,max(UC , UA)]]. (5.18)

The modified interval seems to perform well. See Problem 5.4.
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Example 5.8. Assume Y1, ..., Yn are iid with mean µ and variance σ2.
Bickel and Doksum (2007, p. 279) suggest that

Wn = n−1/2

[
(n− 1)S2

σ2
− n

]

can be used as an asymptotic pivot for σ2 if E(Y 4) <∞. Notice that Wn =

n−1/2

[∑
(Yi − µ)2

σ2
− n(Y − µ)2

σ2
− n

]
=

√
n



∑(

Yi−µ
σ

)2

n
− 1


 − 1√

n
n

(
Y − µ

σ

)2

= Xn − Zn.

Since
√
nZn

D→ χ2
1, the term Zn

D→ 0. Now Xn =
√
n(U − 1)

D→ N(0, τ ) by
the CLT since Ui = [(Yi − µ)/σ]2 has mean E(Ui) = 1 and variance

V (Ui) = τ = E(U2
i ) − (E(Ui))

2 =
E[(Yi − µ)4]

σ4
− 1 = κ+ 2

where κ is the kurtosis of Yi. Thus Wn
D→ N(0, τ ).

Hence

1 − α ≈ P (−z1−α/2 <
Wn√
τ
< z1−α/2) = P (−z1−α/2

√
τ < Wn < z1−α/2

√
τ )

= P (−z1−α/2
√
nτ <

(n − 1)S2

σ2
− n < z1−α/2

√
nτ )

= P (n− z1−α/2
√
nτ <

(n − 1)S2

σ2
< n+ z1−α/2

√
nτ ).

Hence a large sample 100(1− α)% CI for σ2 is

[
(n − 1)S2

n+ z1−α/2
√
nτ̂
,

(n− 1)S2

n− z1−α/2
√
nτ̂

]

where

τ̂ =
1
n

∑n
i=1(Yi − Y )4

S4
− 1.

Notice that this CI needs n > z1−α/2
√
nτ̂ for the right endpoint to be positive.

It can be shown that
√
n (length CI) converges to 2σ2z1−α/2

√
τ in probability.

Problem 5.7 uses an asymptotically equivalent 100(1−α)% CI of the form
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[
(n − a)S2

n+ tn−1,1−α/2
√
nτ̂
,

(n + b)S2

n− tn−1,1−α/2
√
nτ̂

]

where a and b depend on τ̂ . The goal was to make a 95% CI with good
coverage for a wide variety of distributions (with 4th moments) for n ≥ 100.
The price is that the CI is too long for some of the distributions with small
kurtosis. The N(µ, σ2) distribution has τ = 2, while the EXP(λ) distribution
has σ2 = λ2 and τ = 8. The quantity τ is small for the uniform distribution
but large for the lognormal LN(0,1) distribution.

By the binomial theorem, if E(Y 4) exists and E(Y ) = µ then

E(Y − µ)4 =

4∑

j=0

(
4

j

)
E[Y j](−µ)4−j =

µ4 − 4µ3E(Y ) + 6µ2(V (Y ) + [E(Y )]2) − 4µE(Y 3) + E(Y 4).

This fact can be useful for computing

τ =
E[(Yi − µ)4]

σ4
− 1 = κ+ 2.

Example 5.9. Following DasGupta (2008, p. 402-404), consider the
pooled t CI for µ1 − µ2. Let X1, ..., Xn1 be iid with mean µ1 and vari-
ance σ2

1 . Let Y1, ..., Yn2 be iid with mean µ2 and variance σ2
2. Assume that

the two samples are independent and that ni → ∞ for i = 1, 2 in such a
way that ρ̂ = π̂1 = n1

n1+n2
→ ρ = π1 ∈ (0, 1). Let n = n1 + n2 and let

π̂2 = n2/n = 1 − π̂1. Let θ = σ2
2/σ

2
1 , and let the pooled sample variance

S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2
.

Then (√
n1(X − µ1)√
n2(Y − µ2)

)
D→ N2(0,Σ)

where Σ = diag(σ2
1, σ

2
2). Hence

√
n[(X − Y ) − (µ1 − µ2)]

D→ N(0,
σ2

1

π1
+
σ2

2

π2
).

So
X − Y − (µ1 − µ2)√

S2
1

n1
+

S2
2

n2

D→ N(0, 1).

Thus
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√
S2

1

n1
+ S2

2

n2

Sp

√
1
n1

+ 1
n2

X − Y − (µ1 − µ2)√
S2

1

n1
+ S2

2

n2

=
X − Y − (µ1 − µ2)

Sp

√
1
n1

+ 1
n2

D→ N(0, τ2)

where

σ2
1

n1
+

σ2
2

n2

( 1
n1

+ 1
n2

)
n1σ2

1+n2σ2
2

n1+n2

=

σ2
1

n1
+

σ2
2

n2

ρ̂σ2
1 + (1 − ρ̂)σ2

2

1/σ2
1

1/σ2
1

n1n2

n1 + n2

=
1
n1

+ θ
n2

ρ̂+ (1 − ρ̂)θ

n1n2

n1 + n2

D→ 1 − ρ+ ρθ

ρ+ (1 − ρ)θ
= τ2.

Now let θ̂ = S2
2/S

2
1 and

τ̂2 =
1 − ρ̂+ ρ̂ θ̂

ρ̂+ (1 − ρ̂) θ̂
.

Notice that τ̂ = 1 if ρ̂ = 1/2, and τ̂ = 1 if θ̂ = 1. Thus the following pooled t
CI often performs well if n1/n2 ≈ 1.

The usual large sample (1 − α)100% pooled t CI for (µ1 − µ2) is

X − Y ± tn1+n2−2,1−α/2 Sp

√
1

n1
+

1

n2
. (5.19)

The large sample theory says that this CI is valid if τ = 1, and that

X − Y − (µ1 − µ2)

τ̂ Sp

√
1
n1

+ 1
n2

D→ N(0, 1).

Hence a large sample (1 − α)100% CI for (µ1 − µ2) is

X − Y ± z1−α/2 τ̂ Sp

√
1

n1
+

1

n2
.

Then the large sample (1 − α)100% modified pooled t CI for (µ1 − µ2) is

X − Y ± tn1+n2−4,1−α/2 τ̂ Sp

√
1

n1
+

1

n2
. (5.20)

The large sample (1 − α)100% Welch CI for (µ1 − µ2) is

X − Y ± td,1−α/2

√
S2

1

n1
+
S2

2

n2
(5.21)

where d = max(1, bd0c), and
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d0 =
(
S2

1

n1
+

S2
2

n2
)2

1
n1−1(

S2
1

n1
)2 + 1

n2−1(
S2

2

n2
)2
.

Suppose n1/(n1 + n2) → ρ. It can be shown that if the CI length is multi-
plied by

√
n1, then the scaled length of the pooled t CI converges in probabil-

ity to 2z1−α/2
√

ρ
1−ρσ

2
1 + σ2

2 while the scaled lengths of the modified pooled

t CI and Welch CI both converge in probability to 2z1−α/2
√
σ2

1 + ρ
1−ρσ

2
2.

Results from Olive et al. (2024) can also be used to derive a CI for σ2.
Example 5.10. Hesterberg (2014) gives the following two competitors of

the t interval given by Equation (5.2): the skewness adjusted t interval is

[ Y +
S√
n

[κ̂(1+2t2n−1,1−α/2)−tn−1,1−α/2], Y+
S√
n

[κ̂(1+2t2n−1,1−α/2)+tn−1,1−α/2] ],

(5.22)
and the asymptotic percentile t CI is

[ Y +
S√
n

[κ̂(tn−1,1−α/2−1)2−tn−1,1−α/2], Y +
S√
n

[κ̂(tn−1,1−α/2−1)2+tn−1,1−α/2]

(5.23)
where

κ̂ =
γ̂

6
√
n

with γ̂ =
1

nS3

n∑

i=1

(Yi − Y)3.

Another competitor is the Johnson (1978) CI is

[ Y +
µ̂3

6S2n
− tn−1,1−α/2 S/

√
n, Y +

µ̂3

6S2n
+ tn−1,1−α/2 S/

√
n ] (5.24)

where µ3 = E[(Y − µ)3] and

µ̂3 = S3 γ̂ =
1

n

n∑

i=1

(Yi − Y )3.

The t–interval (5.2) may perform better if the distribution has second
moments but does not have third or fourth moments. McKinney (2021) gave
some more competitors. The Johnson (1978) CI (5.24) appeared to be best,
but only very slightly better than the usual t– interval (5.2).

5.4 Bootstrap Confidence Regions and Hypothesis Tests

This section shows that, under regularity conditions, applying the nonpara-
metric prediction region of Section 4.2 to a bootstrap sample results in a
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confidence region. The volume of a confidence region → 0 as n → 0, while
the volume of a prediction region goes to that of a population region that
would contain a new xf with probability 1 − δ. The nominal coverage is
100(1− δ). If the actual coverage 100(1− δn) > 100(1− δ), then the region is
conservative. If 100(1− δn) < 100(1 − δ), then the region is liberal. A region
that is 5% conservative is considered “much better” than a region that is 5%
liberal.

When teaching confidence intervals, it is often noted that by the central
limit theorem, the probability that Y n is within two standard deviations
(2SD(Y n) = 2σ/

√
n) of θ = µ is about 95%. Hence the probability that θ is

within two standard deviations of Y n is about 95%. Thus the interval [θ −
1.96S/

√
n, θ+1.96S/

√
n] is a large sample 95% prediction interval for a future

value of the sample mean Y n,f if θ is known, while [Y n − 1.96S/
√
n, Y n +

1.96S/
√
n] is a large sample 95% confidence interval for the population mean

θ. Note that the lengths of the two intervals are the same. Where the interval
is centered, at the parameter θ or the statistic Y n, determines whether the
interval is a prediction or a confidence interval. See Theorems 5.2 and 5.3 for
a similar relationship between confidence regions and prediction regions. Let
θ be a g × 1 vector of parameters.

Definition 5.5. A large sample 100(1−δ)% confidence region for a vector
of parameters θ is a set An such that P (θ ∈ An) is eventually bounded below
by 1 − δ as n → ∞.

If An is based on a squared Mahalanobis distance D2 with a limiting
distribution that has a pdf, we often want P (θ ∈ An) → 1 − δ as n→ ∞.

There are several methods for obtaining a bootstrap sample T ∗
1 , ...., T

∗
B

where the sample size n is suppressed: T ∗
i = T ∗

in. The parametric bootstrap,
nonparametric bootstrap, and residual bootstrap will be used. Applying the
nonparametric prediction region (4.11) to the bootstrap sample will result in
a confidence region for θ. When g = 1, applying the percentile PI (4.1) or
the shorth PI (4.4) to the bootstrap sample results in a confidence interval
for θ. Section 5.4.2 will help clarify ideas.

When g = 1, a confidence interval is a special case of a confidence region.
One sided confidence intervals give a lower or upper confidence bound for θ.
A large sample 100(1−δ)% lower confidence interval (−∞, Un] uses an upper

confidence bound Un and is in the lower tail of the distribution of θ̂. A large
sample 100(1−δ)% upper confidence interval [Ln,∞) uses a lower confidence

bound Ln and is in the upper tail of the distribution of θ̂. These CIs can be
useful if θ ∈ [a, b] and θ = a or θ = b is of interest for a hypothesis test. For
example, [a, b] = [0, 1] if θ = ρ2, the squared population correlation. Then use
[0, Un] and [Ln, 1] as CIs, e.g. if we expect θ = 0 we might test H0 : θ ≤ 0.05
versus H0 : θ > 0.05, and fail to reject H0 if Un < 0.05. Again we often want
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the probability to converge to 1 − δ if the confidence interval is based on a
statistic with an asymptotic distribution that has a pdf.

Definition 5.6. The interval [Ln, Un] is a large sample 100(1 − δ)% con-
fidence interval for θ if P (Ln ≤ θ ≤ Un) is eventually bounded below by
1 − δ as n → ∞. The interval (−∞, Un] is a large sample 100(1− δ)% lower
confidence interval for θ if P (θ ≤ Un) is eventually bounded below by 1 − δ
as n → ∞. The interval [Ln,∞) is large sample 100(1−δ)% upper confidence
interval for θ if P (θ ≥ Ln) is eventually bounded below by 1− δ as n→ ∞.

Next we discuss bootstrap confidence intervals that are obtained by ap-
plying prediction intervals (4.1) and (4.4) to the bootstrap sample. Some
additional bootstrap CIs are given in Definition 5.16 and are obtained from
three bootstrap confidence regions when g = 1. See Efron (1982) and Chen
(2016) for the percentile method CI. Let Tn be an estimator of a parameter θ
such as Tn = Z =

∑n
i=1 Zi/n with θ = E(Z1). Let T ∗

1 , ..., T
∗
B be a bootstrap

sample for Tn. Let T ∗
(1), ..., T

∗
(B) be the order statistics of the the bootstrap

sample. The percentile CI (5.25) is obtained by applying percentile PI (4.1)
to the bootstrap sample with B used instead of n. Hence (5.25) is also a large
sample prediction interval for a future value of T ∗

f if the T ∗
i are iid from the

empirical distribution discussed in Section 5.4.1.

Definition 5.7. The bootstrap large sample 100(1 − δ)% percentile con-
fidence interval for θ is an interval [T ∗

(kL), T
∗
(KU)] containing ≈ dB(1 − δ)e of

the T ∗
i . Let k1 = dBδ/2e and k2 = dB(1 − δ/2)e. A common choice is

[T ∗
(k1)

, T ∗
(k2)

]. (5.25)

The large sample 100(1 − δ)% lower percentile CI for θ is (−∞, T ∗
(dB(1−δ)e)].

The large sample 100(1− δ)% upper percentile CI for θ is [T ∗
(dBδe),∞).

In the next definition, the large sample 100(1 − δ)% shorth(c) CI uses
the interval [T ∗

(1), T
∗
(c)], [T

∗
(2), T

∗
(c+1)], ..., [T

∗
(B−c+1), T

∗
(B)] of shortest length, de-

noted by [T ∗
(s), T

∗
(s+c−1)]. The shorth(c) CI (5.26) is obtained by applying the

shorth(c) PI (4.4) on the bootstrap sample.

Definition 5.8. The large sample 100(1 − δ)% lower shorth CI for θ
is (−∞, T ∗

(c)], while the large sample 100(1 − δ)% upper shorth CI for θ is
[T ∗

(B−c+1),∞). The large sample 100(1− δ)% shorth(c) CI

[T ∗
(s), T

∗
(s+c−1)] where c = min(B, dB[1 − δ + 1.12

√
δ/B ] e). (5.26)

Applied to a bootstrap sample, the shorth CI can be regarded as the short-
est percentile method confidence interval, asymptotically. Hence the shorth
confidence interval is a practical implementation of the Hall (1988) shortest
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bootstrap interval based on all possible bootstrap samples. See Remark 5.8
for some theory for bootstrap CIs such as (5.25) and (5.26).

5.4.1 The Bootstrap

This subsection illustrates the nonparametric bootstrap with some examples.
Suppose a statistic Tn is computed from a data set of n cases. The nonpara-
metric bootstrap draws n cases with replacement from that data set. Then
T ∗

1 is the statistic Tn computed from the sample. This process is repeated
B times to produce the bootstrap sample T ∗

1 , ..., T
∗
B. Sampling cases with

replacement uses the empirical distribution.

Definition 5.9. Suppose that data x1, ...,xn has been collected and ob-
served. Often the data is a random sample (iid) from a distribution with
cdf F . The empirical distribution is a discrete distribution where the xi are
the possible values, and each value is equally likely. If w is a random variable
having the empirical distribution, then pi = P (w = xi) = 1/n for i = 1, ..., n.
The cdf of the empirical distribution is denoted by Fn.

Example 5.11. Let w be a random variable having the empirical distri-
bution given by Definition 5.9. Show that E(w) = x ≡ xn and Cov(w) =
n− 1

n
S ≡ n− 1

n
Sn.

Solution: Recall that for a discrete random vector, the population expected
value E(w) =

∑
xipi where xi are the values that w takes with positive

probability pi. Similarly, the population covariance matrix

Cov(w) = E[(w −E(w))(w − E(w))T ] =
∑

(xi − E(w))(xi −E(w))T pi.

Hence

E(w) =
n∑

i=1

xi
1

n
= x,

and

Cov(w) =

n∑

i=1

(xi − x)(xi − x)T
1

n
=
n− 1

n
S. �

Example 5.12. If W1, ...,Wn are iid from a distribution with cdf FW ,
then the empirical cdf Fn corresponding to FW is given by

Fn(y) =
1

n

n∑

i=1

I(Wi ≤ y)
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where the indicator I(Wi ≤ y) = 1 if Wi ≤ y and I(Wi ≤ y) = 0 if Wi > y.
Fix n and y. Then nFn(y) ∼ binomial (n, FW (y)). Thus E[Fn(y)] = FW (y)
and V [Fn(y)] = FW (y)[1 − FW (y)]/n. By the central limit theorem,

√
n(Fn(y) − FW (y))

D→ N(0, FW(y)[1 − FW (y)]).

Thus Fn(y) − FW (y) = OP (n−1/2), and Fn is a reasonable estimator of FW
if the sample size n is large.

Suppose there is data w1, ...,wn collected into an n × p matrix W . Let
the statistic Tn = t(W ) = T (Fn) be computed from the data. Suppose the
statistic estimates µ = T (F ), and let t(W ∗) = t(F ∗

n) = T ∗
n indicate that

t was computed from an iid sample from the empirical distribution Fn: a
sample w∗

1, ...,w
∗
n of size n was drawn with replacement from the observed

sample w1, ...,wn. This notation is used for von Mises differentiable statistical
functions in large sample theory. See Serfling (1980, ch. 6). The empirical
distribution is also important for the influence function (widely used in robust
statistics). The nonparametric bootstrap draws B samples of size n from the
rows of W , e.g. from the empirical distribution of w1, ...,wn. Then T ∗

jn is
computed from the jth bootstrap sample for j = 1, ..., B.

Example 5.13. Suppose the data is 1, 2, 3, 4, 5, 6, 7. Then n = 7 and the
sample median Tn is 4. Using R, we drew B = 2 bootstrap samples (samples
of size n drawn with replacement from the original data) and computed the
sample median T ∗

1,n = 3 and T ∗
2,n = 4.

b1 <- sample(1:7,replace=T)

b1

[1] 3 2 3 2 5 2 6

median(b1)

[1] 3

b2 <- sample(1:7,replace=T)

b2

[1] 3 5 3 4 3 5 7

median(b2)

[1] 4

The bootstrap has been widely used to estimate the population covariance
matrix of the statistic Cov(Tn), for testing hypotheses, and for obtaining
confidence regions (often confidence intervals). An iid sample T1n, ..., TBn of
size B of the statistic would be very useful for inference, but typically we only
have one sample of data and one value Tn = T1n of the statistic. Often Tn =
t(w1, ...,wn), and the bootstrap sample T ∗

1n, ..., T
∗
Bn is formed where T ∗

jn =

t(w∗
j1, ...,w

∗
jn). Theorem 5.1 will show that

√
B(T ∗

1n−Tn), ...,
√
B(T ∗

Bn−Tn)
is pseudodata for

√
n(T1n − θ), ...,

√
n(TBn − θ) when n and B are large in

that
√
n(Tn − θ)

D→ u and
√
B(T ∗ − Tn)

D→ u.
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Example 5.14. Suppose there is training data (yi,xi) for the model yi =
m(xi) + εi for i = 1, ..., n, and it is desired to predict a future test value yf
given xf and the training data. The model can be fit and the residual vectors
ε̂i computed for i = 1, ..., n. One method for obtaining a prediction region
for yf is to form the pseudodata ŷf + ε̂i for i = 1, ..., n, and apply the
nonparametric prediction region (4.11) to the pseudodata. See Olive (2017b,
2018). The residual bootstrap could also be used to make a bootstrap sample
ŷf + ε̂∗1, ..., ŷf + ε̂∗B where the ε̂∗j are selected with replacement from the
residual vectors ε̂i for j = 1, ..., B. As B → ∞, the bootstrap sample will
take on the n values ŷf + ε̂i (the pseudodata) with probabilities converging
to 1/n for i = 1, ..., n.

Suppose there is a statistic Tn that is a g × 1 vector. Let

T
∗

=
1

B

B∑

i=1

T ∗
i and S∗

T =
1

B − 1

B∑

i=1

(T ∗
i − T

∗
)(T ∗

i − T
∗
)T (5.27)

be the sample mean and sample covariance matrix of the bootstrap sample
T ∗

1 , ..., T
∗
B where T ∗

i = T ∗
i,n. Fix n, and let E(T ∗

i,n) = θn and Cov(T ∗
i,n) = Σn.

We will often assume that Cov(Tn) = ΣT , and
√
n(Tn − θ)

D→ Ng(0,ΣA)

where ΣA > 0 is positive definite and nonsingular. Often nΣ̂T
P→ ΣA.

For example, using least squares and the residual bootstrap for the multiple

linear regression model, Σn =
n− p

n
MSE(XTX)−1, Tn = θn = β̂, θ = β,

Σ̂T = MSE(XTX)−1, and ΣA = σ2 limn→∞(XTX/n)−1.
Suppose the T ∗

i = T ∗
i,n are iid from some distribution with cdf F̃n. For

example, if T ∗
i,n = t(F ∗

n) where iid samples from Fn are used, then F̃n is the

cdf of t(F ∗
n). With respect to F̃n, both θn and Σn are parameters, but with

respect to F , θn is a random vector and Σn is a random matrix. For fixed
n, by the multivariate central limit theorem,

√
B(T

∗ − θn)
D→ Ng(0,Σn) and B(T

∗ − θn)
T[S∗

T]−1(T
∗ − θn)

D→ χ2
r

as B → ∞.

Remark 5.4. For Examples 5.11 and 5.14, the bootstrap works but is
expensive compared to alternative methods. For Example 5.11, fix n, then

T
∗ P→ θn = x and S∗

T
P→ (n−1)S/n as B → ∞, but using (x,S) makes more

sense. For Example 5.14, use the pseudodata instead of the residual bootstrap.
For these two examples, it is known how the bootstrap sample behaves as

B → ∞. The bootstrap can be very useful when
√
n(Tn − θ)

D→ Ng(0,ΣA),
but it not known how to estimate ΣA without using a resampling method

like the bootstrap. The bootstrap may be useful when
√
n(Tn − θ)

D→ u, but
the limiting distribution (the distribution of u) is unknown.
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The following theorem shows that
√
m(T ∗

1,n − Tn), ...,
√
m(T ∗

B,n − Tn) are

pseudodata for
√
n(T1,n − θ), ...,

√
n(TB,n − θ). Here T ∗

i = T ∗
i,m with n sup-

pressed or T ∗
i,n = T ∗

i,n,m where m is the sample size of the bootstrap data
set used to compute T ∗

i . Often m = n for the nonparametric bootstrap. The
first two convergence assumptions are with respect to the data distribution,
while the third convergence assumption is with respect to the bootstrap dis-
tribution. The technique is similar to using a triangular array, except both
n→ ∞ and m→ ∞. Note that for large n, Ng(0,Σn) ≈ Ng(0,Σ), and often
the Ng(0,Σn) approximation is used to produce output since Σ is unknown.
Typically large sample theory is used to prove the three assumptions of the
following theorem.

Theorem 5.1, Bootstrap Proof Technique: Suppose
√
n(Tn − θ)

D→
Ng(0,Σ) and Σn

P→ Σ as n → ∞, and for fixed n,
√
m(T ∗

n,m − Tn)
D→

Ng(0,Σn) as m → ∞. Then a)
√
m(T ∗

n,m − Tn)
D→ Ng(0,Σ) as m, n → ∞.

Also b)
√
n(T ∗

n − Tn)
D→ Ng(0,Σ) as n → ∞ where T ∗

n = T ∗
n,n has m = n.

Proof: By the three assumptions, un =
√
n(Tn − θ)

D→ u ∼ Ng(0,Σ) as

n→ ∞, w∗
n,m =

√
m(T ∗

n,m− Tn)
D→ wn ∼ Ng(0,Σn) as m→ ∞ for fixed n,

and wn
D→ u as n → ∞. Hence w∗

n,m =
√
m(T ∗

n,m − Tn)
D→ u ∼ Ng(0,Σ)

as m, n → ∞. Since this result does not depend on m as long as m→ ∞, b)

follows. (Interpret wn ∼ Ng(0,Σn) as wn = Σ1/2
n Ng(0, Ig).) �

Example 5.15. Suppose x1, ...,xn are iid p × 1 random vectors with
E(xi) = µ and Cov(xi) = Σ. a) For the parametric bootstrap, let x∗

1, ...,x
∗
m

be iid Np(xn,Sn) where Sn
P→ Σ as n → ∞. By the multivariate central

limit theorem
√
n(xn − µ)

D→ Np(0,Σ) and for fixed n,
√
m(x∗

n,m − xn)
D→

Np(0,Sn) where x∗
n,m = 1

m

∑m
i=1 x∗

i is the sample mean of the bootstrap

data set x∗
1, ...,x

∗
m. Hence

√
m(x∗

n,m − xn)
D→ Np(0,Σ) as n,m → ∞ by

Theorem 5.1. Note that m = n can be used by Theorem 5.1 b).
b) For the nonparametric bootstrap, E(x∗

n) = E(wn) = xn, and Cov(x∗
n) =

Cov(wn)/n = (n − 1)Sn/n
2 by Example 5.11 where w = wn. The x∗

i

are iid with respect to the bootstrap distribution. If the sample mean
x∗
n,m is computed from m x∗

i selected with replacement from the xi, then
√
m(x∗

n,m−xn)
D→ Np(0,

n−1
n

Sn) for fixed n by the multivariate CLT. Then

by Theorem 5.1 b) with m = n,
√
n(x∗

n − xn)
D→ Np(0,Σ) as n → ∞.
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5.4.2 Bootstrap Confidence Regions for Hypothesis
Testing

When the bootstrap is used, a large sample 100(1 − δ)% confidence region
for a g × 1 parameter vector θ is a set An = An,B such that P (θ ∈ An,B) is
eventually bounded below by 1− δ as n, B → ∞. The B is often suppressed.
Consider testing H0 : θ = θ0 versus H1 : θ 6= θ0 where θ0 is a known
g× 1 vector. Then reject H0 if θ0 is not in the confidence region An. Let the
g× 1 vector Tn be an estimator of θ. Let T ∗

1 , ..., T
∗
B be the bootstrap sample

for Tn. Let A be a full rank g × p constant matrix. For variable selection
using notation from Chapter 6, consider testing H0 : Aβ = θ0 versus H1 :
Aβ 6= θ0 with θ = Aβ where often θ0 = 0. Then let Tn = Aβ̂Imin,0 and let

T ∗
i = Aβ̂

∗
Imin,0,i for i = 1, ..., B. The statistic β̂Imin,0 is the variable selection

estimator padded with zeroes.
Let T

∗
and S∗

T be the sample mean and sample covariance matrix of the
bootstrap sample T ∗

1 , ..., T
∗
B. See Equation (5.27). Here P (X ≤ χ2

g,1−δ) = 1−δ
if X ∼ χ2

g , and P (X ≤ Fg,dn,1−δ) = 1− δ if X ∼ Fg,dn . Let kB = dB(1− δ)e.

Definition 5.10. a) The large sample 100(1 − δ)% standard bootstrap
confidence region for θ is {w : (w − Tn)

T [S∗
T ]−1(w − Tn) ≤ D2

1−δ} =

{w : D2
w(Tn,S

∗
T ) ≤ D2

1−δ} (5.28)

where D2
1−δ = χ2

g,1−δ or D2
1−δ = dnFg,dn,1−δ where dn → ∞ as n→ ∞.

b) The large sample 100(1 − δ)% Bickel and Ren confidence region for θ is

{w : (w − Tn)T [Σ̂A/n]−1(w − Tn) ≤ D2
(kBT )} =

{w : D2
w(Tn, Σ̂A/n) ≤ D2

(kBT )} (5.29)

where the cutoff D2
(kBT ) is the 100kBth sample quantile of the

D2
i = (T ∗

i − Tn)T [Σ̂A/n]−1(T ∗
i − Tn) = n(T ∗

i − Tn)T [Σ̂A]−1(T ∗
i − Tn).

Confidence region (5.28) needs
√
n(Tn − θ)

D→ Ng(0,ΣA) and nS∗
T

P→
ΣA > 0 as n, B → ∞. See Machado and Parente (2005) for regularity con-
ditions for this assumption. Bickel and Ren (2001) have interesting sufficient

conditions for (5.29) to be a confidence region when Σ̂A is a consistent esti-
mator of positive definite ΣA. Let the vector of parameters θ = T (F ), the
statistic Tn = T (Fn), and the bootstrapped statistic T ∗ = T (F ∗

n) where F
is the cdf of iid x1, ...,xn, Fn is the empirical cdf, and F ∗

n is the empiri-
cal cdf of x∗

1, ...,x
∗
n, a sample from Fn using the nonparametric bootstrap.

If
√
n(Fn − F )

D→ zF , a Gaussian random process, and if T is sufficiently

smooth (has a Hadamard derivative Ṫ (F )), then
√
n(Tn − θ)

D→ u and
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√
n(T ∗

i −Tn)
D→ u with u = Ṫ (F )zF . Note that Fn is a perfectly good cdf “F ”

and F ∗
n is a perfectly good empirical cdf from Fn = “F .” Thus if n is fixed,

and a sample of size m is drawn with replacement from the empirical distribu-

tion, then
√
m(T (F ∗

m)−Tn)
D→ Ṫ (Fn)zFn . Now let n → ∞ with m = n. Then

bootstrap theory gives
√
n(T ∗

i − Tn)
D→ limn→∞ Ṫ (Fn)zFn = Ṫ (F )zF ∼ u.

The following three confidence regions will be used for inference after vari-
able selection. The Olive (2017ab, 2018) prediction region method confidence
region applies the nonparametric prediction region (4.11) to the bootstrap
sample. Olive (2017ab, 2018) also gave the modified Bickel and Ren confi-

dence region that uses Σ̂A = nS∗
T . The hybrid confidence region is due to

Pelawa Watagoda and Olive (2021a). Let qB = min(1− δ+0.05, 1− δ+g/B)
for δ > 0.1 and

qB = min(1 − δ/2, 1− δ + 10δg/B), otherwise. (5.30)

If 1 − δ < 0.999 and qB < 1 − δ + 0.001, set qB = 1 − δ. Let D(UB) be the
100qBth sample quantile of the Di. Use (5.30) as a correction factor for finite
B ≥ 50g.

Definition 5.11. The large sample 100(1− δ)% prediction region method

confidence region for θ is {w : (w − T
∗
)T [S∗

T ]−1(w − T
∗
) ≤ D2

(UB)} =

{w : D2
w(T

∗
,S∗

T ) ≤ D2
(UB)} (5.31)

where D2
(UB) is computed from D2

i = (T ∗
i − T

∗
)T [S∗

T ]−1(T ∗
i − T

∗
) for i =

1, ..., B. Note that the corresponding test for H0 : θ = θ0 rejects H0 if (T
∗ −

θ0)
T [S∗

T ]−1(T
∗ − θ0) > D2

(UB). (This procedure is basically the one sample

Hotelling’s T 2 test applied to the T ∗
i using S∗

T as the estimated covariance
matrix and replacing the χ2

g,1−δ cutoff by D2
(UB).)

Definition 5.12. The large sample 100(1−δ)% (modified) Bickel and Ren
confidence region is {w : (w − Tn)T [S∗

T ]−1(w − Tn) ≤ D2
(UBT )} =

{w : D2
w(Tn,S

∗
T ) ≤ D2

(UBT )} (5.32)

where the cutoff D2
(UBT ) is the 100qBth sample quantile of the D2

i = (T ∗
i −

Tn)
T [S∗

T ]−1(T ∗
i − Tn). Note that the corresponding test for H0 : θ = θ0

rejects H0 if (Tn − θ0)
T [S∗

T ]−1(Tn − θ0) > D2
(UB,T ).

Definition 5.13. Shift region (5.31) to have center Tn, or equivalently,
change the cutoff of region (5.32) toD2

(UB) to get the large sample 100(1−δ)%
hybrid confidence region: {w : (w − Tn)T [S∗

T ]−1(w − Tn) ≤ D2
(UB)} =

{w : D2
w(Tn,S

∗
T ) ≤ D2

(UB)}. (5.33)
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Note that the corresponding test for H0 : θ = θ0 rejects H0 if
(Tn − θ0)

T [S∗
T ]−1(Tn − θ0) > D2

(UB).

Rajapaksha and Olive (2024) gave the following two confidence regions.
The names of these confidence regions were chosen since they are similar to
the Bickel and Ren and prediction region method confidence regions.

Definition 5.14. The large sample 100(1− δ)% BR confidence region is

{w : n(w − Tn)TC−1
n (w − Tn) ≤ D2

(UBT )} =

{w : D2
w(Tn,Cn/n) ≤ D2

(UBT )} (5.34)

where the cutoff D2
(UBT ) is the 100qBth sample quantile of the D2

i = n(T ∗
i −

Tn)
TC−1

n (T ∗
i − Tn). Note that the corresponding test for H0 : θ = θ0 rejects

H0 if n(Tn − θ0)
TC−1

n (Tn − θ0) > D2
(UBT ).

Definition 5.15. The large sample 100(1− δ)% PR confidence region for
θ is

{w : n(w − T
∗
)TC−1

n (w − T
∗
) ≤ D2

(UB)} =

{w : D2
w(T

∗
,Cn/n) ≤ D2

(UB)} (5.35)

where D2
(UB) is computed from D2

i = n(T ∗
i − T

∗
)TC−1

n (T ∗
i − T

∗
) for i =

1, ..., B. Note that the corresponding test for H0 : θ = θ0 rejects H0 if
n(T

∗ − θ0)
TC−1

n (T
∗ − θ0) > D2

(UB).

Hyperellipsoids (5.31) and (5.33) have the same volume since they are the
same region shifted to have a different center. The ratio of the volumes of
regions (5.31) and (5.32) is

|S∗
T |1/2

|S∗
T |1/2

(
D(UB)

D(UB,T )

)g
=

(
D(UB)

D(UB ,T )

)g
. (5.36)

The volume of confidence region (5.32) tends to be greater than that of (5.31)

since the T ∗
i are closer to T

∗
than Tn on average.

If g = 1, then a hyperellipsoid is an interval, and confidence intervals are
special cases of confidence regions. Suppose the parameter of interest is θ, and
there is a bootstrap sample T ∗

1 , ..., T
∗
B where the statistic Tn is an estimator

of θ based on a sample of size n. The percentile method uses an interval that
contains UB ≈ kB = dB(1−δ)e of the T ∗

i . Let ai = |T ∗
i −T

∗|. Let T
∗

and S2∗
T

be the sample mean and variance of the T ∗
i . Then the squared Mahalanobis

distanceD2
θ = (θ−T ∗

)2/S∗2
T ≤ D2

(UB) is equivalent to θ ∈ [T
∗−S∗

TD(UB), T
∗
+

S∗
TD(UB)] = [T

∗ −a(UB), T
∗
+a(UB)], which is an interval centered at T

∗
just

long enough to cover UB of the T ∗
i . Hence the prediction region method

CI is a special case of the percentile method CI if g = 1. See Definition
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5.4. Efron (2014) used a similar large sample 100(1− δ)% confidence interval

assuming that T
∗

is asymptotically normal. The CI [Tn−a(UB,T ), Tn+a(UB,T )]
corresponding to (5.32) is defined similarly, and [Tn − a(UB), Tn + a(UB)] is
the CI for (5.33). Note that the three CIs corresponding to (5.31)–(5.33) can
be computed without finding S∗

T or D(UB) even if S∗
T = 0. The shorth(c)

CI (5.26) computed from the T ∗
i can be much shorter than the Efron (2014)

or prediction region method confidence intervals. See Remark 5.8 for some
theory for bootstrap CIs.

In the following definition, let UB and UBT be as in Definitions 5.11 to
5.15. Let ai be as in the above paragraph.

Definition 5.16. a) The large sample 100(1 − δ)% PR CI is

[T
∗ − a(UB), T

∗
+ a(UB)].

b) The large sample 100(1− δ)% BR CI is
[Tn − a(UBT ), Tn + a(UBT )].

c) The large sample 100(1 − δ)% hybrid CI is
[Tn − a(UB), Tn + a(UB)].

Remark 5.5. From Chapter 6, Cov(β̂
∗
) =

n − p

n
MSE(XTX)−1 =

n− p

n
Ĉov(β̂) where Ĉov(β̂) = MSE(XTX)−1 starts to give good estimates

of Cov(β̂) = ΣT for many error distributions if n ≥ 10p and T = β̂. For

the residual bootstrap with large B, note that S∗
T ≈ 0.95Ĉov(β̂) for n = 20p

and S∗
T ≈ 0.99Ĉov(β̂) for n = 100p. Hence we may need n >> p before the

S∗
T is a good estimator of Cov(T ) = ΣT . The distribution of

√
n(Tn − θ) is

approximated by the distribution of
√
n(T ∗ − Tn) or by the distribution of√

n(T ∗ − T
∗
), but n may need to be large before the approximation is good.

Suppose the bootstrap sample mean T
∗

estimates θ, and the bootstrap
sample covariance matrix S∗

T estimates cnĈov(Tn) ≈ cnΣT where cn in-

creases to 1 as n → ∞. Then S∗
T is not a good estimator of Ĉov(Tn) un-

til cn ≈ 1 (n ≥ 100p for OLS β̂), but the squared Mahalanobis distance

D2∗
w(T

∗
,S∗

T ) ≈ D2
w(θ,ΣT )/cn and D2∗

(UB) ≈ D2
1−δ/cn. Hence the prediction

region method has a cutoff D2∗
(UB) that estimates the cutoff D2

1−δ/cn. Thus
the prediction region method may give good results for much smaller n than
a bootstrap method that uses a χ2

g,1−δ cutoff when a cutoff χ2
g,1−δ/cn should

be used for moderate n.

Remark 5.6. For bootstrapping the p × 1 vector β̂Imin,0, we will often
want n ≥ 20p and B ≥ max(100, n, 50p). If Tn is g × 1, we might replace p
by g or replace p by d if d is the model degrees of freedom. Sometimes much
larger n is needed to avoid undercoverage. We want B ≥ 50g so that S∗

T is a
good estimator of Cov(T ∗

n). Prediction region theory uses correction factors
like (4.10) and (4.4) to compensate for finite n. The bootstrap confidence
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regions (5.31)–(5.35) and the shorth CI use the correction factors (5.30) and
(5.26) to compensate for finite B ≥ 50g. Note that the correction factors
make the volume of the confidence region larger as B decreases. Hence a test
with larger B will have more power.

5.4.3 Theory for Bootstrap Confidence Regions

Consider testing H0 : θ = θ0 versus H1 : θ 6= θ0 where θ is g × 1. This
section gives some theory for bootstrap confidence regions and for the bag-
ging estimator T

∗
, also called the smoothed bootstrap estimator. Empirically,

bootstrapping with the bagging estimator often outperforms bootstrapping
with Tn. See Breiman (1996), Yang (2003), and Efron (2014). See Büchlmann
and Yu (2002) and Friedman and Hall (2007) for theory and references for
the bagging estimator.

Remark 5.7. Some regularity conditions used for bootstrap confidence

regions are i)
√
n(Tn − θ)

D→ u, ii)
√
n(T ∗

i − Tn)
D→ u, iii)

√
n(T

∗ − θ)
D→ u,

iv)
√
n(T ∗

i − T
∗
)

D→ u, and v) nS∗
T

P→ Cov(u). Regularity condition v)
is rather strong by Machado and Parente (2005). Regularity conditions i)
and ii) are often shown using large sample theory. Since (5.32) is a large
sample confidence region by Bickel and Ren (2001), (5.31) and (5.33) are

too, provided vi)
√
n(T

∗ − Tn)
P→ 0. Also note that (5.32) is a large sample

confidence region if the standard confidence region (5.28) is a large sample
confidence region.

Olive (2017b:
∮

5.3.3, 2018) proved that the prediction region method
gives a large sample confidence region under v) from Remark 5.7 and u ∼
Ng(0,Σu), but the following Pelawa Watagoda and Olive (2021a) theorem
and proof is simpler. Since iii) and iv) hold by Theorem 5.2, the sample
percentile will be consistent under much weaker conditions than v) if Σu is
nonsingular.

Theorem 5.2. a) Suppose i)
√
n(Tn − θ)

D→ u, and ii)
√
n(T ∗

i − Tn)
D→ u

with E(u) = 0 and Cov(u) = Σu. Then iii)
√
n(T

∗ − θ)
D→ u, iv)

√
n(T ∗

i −
T

∗
)
D→ u, and vi)

√
n(T

∗ − Tn)
P→ 0.

b) Then the prediction region method gives a large sample confidence

region for θ provided that the sample percentile D̂2
1−δ of the D2

T∗

i
(T

∗
,S∗

T ) =
√
n(T ∗

i −T
∗
)T (nS∗

T )−1
√
n(T ∗

i −T
∗
) is a consistent estimator of the percentile

D2
n,1−δ of the random variable D2

θ
(T

∗
,S∗

T ) =
√
n(θ − T

∗
)T (nS∗

T )−1
√
n(θ −

T
∗
) in that D̂2

1−δ −D2
n,1−δ

P→ 0.

Proof. With respect to the bootstrap sample, Tn is a constant and the√
n(T ∗

i − Tn) are iid for i = 1, ..., B. Fix B. Then
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


√
n(T ∗

1 − Tn)
...√

n(T ∗
B − Tn)


 D→




v1

...
vB




where the vi are iid with the same distribution as u. (Use Theorems 3.7 and
3.8, and see Example 3.2.) For fixed B, the average of the

√
n(T ∗

i − Tn) is

√
n(T

∗ − Tn)
D→ 1

B

B∑

i=1

vi ∼ ANg

(
0,

Σu
B

)

by Theorem 3.12 where z ∼ ANg(0,Σ) is an asymptotic multivariate normal

approximation. Hence as B → ∞,
√
n(T

∗ − Tn)
P→ 0, and iii), iv), and vi)

hold. Hence b) follows. �

Remark 5.8. Note that if
√
n(Tn−θ) D→ U and

√
n(T ∗

i −Tn)
D→ U where

U has a unimodal probability density function symmetric about zero, then
the confidence intervals from the three confidence regions (5.31)–(5.33), the
shorth confidence interval (5.26), and the “usual” percentile method confi-
dence interval (5.25) are asymptotically equivalent (use the central proportion
of the bootstrap sample, asymptotically).

Assume nS∗
T

P→ ΣA as n, B → ∞ where ΣA and S∗
T are nonsingular g×g

matrices, and Tn is an estimator of θ such that

√
n (Tn − θ)

D→ u (5.37)

as n → ∞. Then

√
n Σ

−1/2
A (Tn − θ)

D→ Σ
−1/2
A u = z,

n (Tn − θ)T Σ̂
−1

A (Tn − θ)
D→ zTz = D2

as n → ∞ where Σ̂A is a consistent estimator of ΣA, and

(Tn − θ)T [S∗
T ]−1 (Tn − θ)

D→ D2 (5.38)

as n, B → ∞. Assume the cumulative distribution function of D2 is continu-
ous and increasing in a neighborhood ofD2

1−δ where P (D2 ≤ D2
1−δ) = 1−δ. If

the distribution ofD2 is known, then we could use the large sample confidence
region (5.28) {w : (w − Tn)T [S∗

T ]−1(w − Tn) ≤ D2
1−δ}. Often by a central

limit theorem or the multivariate delta method,
√
n(Tn − θ)

D→ Ng(0,ΣA),

and D2 ∼ χ2
g. Note that [S∗

T ]−1 could be replaced by nΣ̂
−1

A . The following
remark gives a simple technical explanation for why bootstrap confidence
regions and tests work.
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Remark 5.9. a) Assume un
D→ u where un = i)

√
n(Tn − θ), ii)√

n(T ∗
i − Tn), iii)

√
n(T ∗

i − T
∗
), or iv)

√
n(T

∗ − θ), and nS∗
T

P→ C where C
is nonsingular. Let

D2
1 = D2

T∗

i
(T

∗
,S∗

T ) =
√
n(T ∗

i − T
∗
)T (nS∗

T )−1
√
n(T ∗

i − T
∗
),

D2
2 = D2

θ(Tn,S
∗
T ) =

√
n(Tn − θ)T (nS∗

T )−1
√
n(Tn − θ),

D2
3 = D2

θ(T
∗
,S∗

T ) =
√
n(T

∗ − θ)T (nS∗
T )−1

√
n(T

∗ − θ), and

D2
4 = D2

T∗

i
(Tn,S

∗
T ) =

√
n(T ∗

i − Tn)T (nS∗
T )−1√n(T ∗

i − Tn).

Then D2
j ≈ uT (nS∗

T )−1u ≈ uTC−1u, and the percentiles of D2
1 and D2

4

can be used as cutoffs. If (nS∗
T )−1 is “not too ill conditioned” then D2

j ≈
uT (nS∗

T )−1u for large n, and the confidence regions (5.31), (5.32), and (5.33)
will have coverage near 1− δ. For confidence regions (5.34) and (5.35), want

C−1
n

P→ C−1 or C−1
n to be “not too ill conditioned.” The regularity conditions

for (5.31)–(5.35) are weaker when g = 1, since S∗
T and Cn do not need to be

computed.
b) Both I)

√
n(T ∗

1n−Tn), ...,
√
n(T ∗

Bn−Tn) and II)
√
n(T ∗

1n−T
∗
), ...,

√
n(T ∗

Bn

−T ∗
) can be used as pseudodata for III)

√
n(T1n−θ), ...,

√
n(TBn−θ) when

n is large since i), ii) and iii) hold. We can’t get the random quantities in III)
since θ is unknown, and we only have B = 1 value of the statistic Tn. Note
that i) would give an asymptotic pivot if the distribution of u was known.

The following Pelawa Watagoda and Olive (2021a) theorem is very use-
ful. The improved proof, due to Rathnayake and Olive (2023), is used. Let
(T ,ST ) be the sample mean and sample covariance matrix computed from
T1, ..., TB which have the same distribution as Tn where Ti = Tin. Let D2

(UB)

be the cutoff computed from the D2
i (T ,ST ) for i = 1, ..., B. The hyperellip-

soids corresponding to D2(Tn,C) and D2(T ,C) are centered at Tn and T ,
respectively. Note that D2

T
(Tn,C) = D2

Tn
(T ,C). Thus D2

T
(Tn,C) ≤ D2

(UB)

iff D2
Tn

(T ,C) ≤ D2
(UB). In Theorem 5.3, since Rp contains Tf with proba-

bility 1 − δB , the region Rc contains T with probability 1 − δB . Since Tn
depends on the sample size n, we need (nST )−1 to be fairly well behaved,

e.g. (nST )−1 P→ Σ−1
A . Note that Ti = Tin.

Theorem 5.3: Geometric Argument. Suppose
√
n(Tn − θ)

D→ u with
E(u) = 0 and Cov(u) = Σu 6= 0. Assume T1, ..., TB are iid with non-

singular covariance matrix ΣTn where (nST )−1 P→ Σ−1
A . Then the large

sample 100(1− δ)% prediction region Rp = {w : D2
w(T ,ST ) ≤ D2

(UB)} cen-

tered at T contains a future value of the statistic Tf with probability 1− δB
which is eventually bounded below by 1 − δ as B → ∞. Hence the region
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Fig. 5.1 Confidence Regions for 2 Statistics with MVN Distributions
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Rc = {w : D2
w(Tn,ST ) ≤ D2

(UB)} is a large sample 100(1 − δ)% confidence
region for θ where Tn is a randomly selected Ti.

Proof. The region Rc centered at a randomly selected Tn contains T with
probability 1 − δB which is eventually bounded below by 1 − δ as B → ∞.
Since the

√
n(Ti − θ) are iid,




√
n(T1 − θ)

...√
n(TB − θ)


 D→




v1

...
vB




where the vi are iid with the same distribution as u. (Use Theorems 3.7 and
3.8, and see Example 3.3.) For fixed B, the average of these random vectors
is

√
n(T − θ)

D→ 1

B

B∑

i=1

vi ∼ ANg

(
0,

Σu
B

)

by Theorem 3.12, where ANg denotes an approximate multivariate normal
distribution. Hence (T − θ) = OP ((nB)−1/2), and T gets arbitrarily close
to θ compared to Tn as B → ∞. Thus Rc is a large sample 100(1 − δ)%
confidence region for θ as n, B → ∞. �

Examining the iid data cloud T1, ..., TB and the bootstrap sample data
cloud T ∗

1 , ..., T
∗
B is often useful for understanding the bootstrap. If

√
n(Tn−θ)

and
√
n(T ∗

i − Tn) both converge in distribution to u ∼ Ng(0,Σ), say, then
the bootstrap sample data cloud of T ∗

1 , ..., T
∗
B is like the data cloud of iid

T1, ..., TB shifted to be centered at Tn. The nonparametric confidence region
(5.31) applies the prediction region to the bootstrap. Then the hybrid region
(5.33) centers that region at Tn. Hence (5.33) is a confidence region by the

geometric argument, and (5.31) is a confidence region if
√
n(T

∗ − Tn)
P→ 0.

Since the T ∗
i are closer to T

∗
than Tn on average, D2

(UBT ) tends to be greater

than D2
(UB). Hence the coverage and volume of (5.32) tend to be at least as

large as the coverage and volume of (5.31).

The hyperellipsoid corresponding to the squared Mahalanobis distance
D2(Tn,C) is centered at Tn, while the hyperellipsoid corresponding to
the squared Mahalanobis distance D2(T ,C) is centered at T . Note that
D2
T
(Tn,C) = (T −Tn)TC−1(T −Tn) = (Tn−T )TC−1(Tn−T ) = D2

Tn
(T ,C).

Thus D2
T
(Tn,C) ≤ D2

(UB) iff D2
Tn

(T ,C) ≤ D2
(UB).

The prediction region method will often simulate well even if B is rather
small. If the ellipses are centered at Tn or T

∗
, Figure 4.3 shows confidence

regions if the plotted points are T ∗
1 , ..., T

∗
B where the T ∗

i are approximately
multivariate normal. If the ellipses are centered at T , Figure 5.1 shows 10%,
30%, 50%, 70%, 90%, and 98% prediction regions for a future value of Tf for
two multivariate normal statistics. Then the plotted points are iid T1, ..., TB.
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If nCov(T )
P→ ΣA, and the T ∗

i are iid from the bootstrap distribution, then

Cov(T
∗
) ≈ Cov(T )/B ≈ ΣA/(nB). By Theorem 5.3, if T

∗
is in the 90% pre-

diction region with probability near 90%, then the confidence region should
give simulated coverage near 90% and the volume of the confidence region
should be near that of the 90% prediction region. If B = 100, then T

∗
falls

in a covering region of the same shape as the prediction region, but centered
near Tn and the lengths of the axes are divided by

√
B. Hence if B = 100,

then the axes lengths of this covering region are about one tenth of those in
Figure 5.1. Hence when Tn falls within the 70% prediction region, the prob-
ability that T

∗
falls in the 90% prediction region is near one. If Tn is just

within or just without the boundary of the 90% prediction region, T
∗

tends
to be just within or just without of the 90% prediction region. Hence the
coverage and volume of prediction region confidence region is near that of
the nominal coverage 90% and near the volume of the 90% prediction region.

Hence B does not need to be large provided that n and B are large enough
so that S∗

T ≈ Cov(T ∗) ≈ ΣA/n. If n is large, the sample covariance matrix
starts to be a good estimator of the population covariance matrix when B ≥
Jg where J = 20 or 50. For small g, using B = 1000 often led to good
simulations, but B = max(50g, 100) may work well.

Remark 5.10. Remark 5.5 suggests that even if the statistic Tn is asymp-
totically normal so the Mahalanobis distances are asymptotically χ2

g , the pre-
diction region method can give better results for moderate n by using the
cutoff D2

(UB) instead of the cutoff χ2
g,1−δ. Theorem 5.3 says that the hyper-

ellipsoidal prediction and confidence regions have exactly the same volume.
We compensate for the prediction region undercoverage when n is moderate
by using D2

(Un). If n is large, by using D2
(UB), the prediction region method

confidence region compensates for undercoverage when B is moderate, say
B ≥ Jg where J = 20 or 50. See Remark 5.9. This result can be useful if a
simulation with B = 1000 or B = 10000 is much slower than a simulation
with B = Jg. The price to pay is that the prediction region method confi-
dence region is inflated to have better coverage, so the power of the hypothesis
test is decreased if moderate B is used instead of larger B.

5.5 Summary

1) Consider testing H0 : θ = θ0 versus H1 : θ 6= θ0 where θ0 is a known g×1
vector. Make a confidence region and reject H0 if θ0 is not in the confidence
region. Let T

∗
and S∗

T be the sample mean and sample covariance matrix
of the bootstrap sample T ∗

1 , ..., T
∗
B. a) The prediction region method large

sample 100(1 − δ)% confidence region for θ is {w : (w − T
∗
)T [S∗

T ]−1(w −
T

∗
) ≤ D2

(UB)} = {w : D2
w(T

∗
,S∗

T ) ≤ D2
(UB)} where D2

(UB) is computed from

D2
i = (T ∗

i −T
∗
)T [S∗

T ]−1(T ∗
i −T

∗
) for i = 1, ..., B. Note that the corresponding
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test for H0 : θ = θ0 rejects H0 if (T
∗ − θ0)

T [S∗
T ]−1(T

∗ − θ0) > D2
(UB).

This procedure applies the nonparametric prediction region to the bootstrap
sample. b) The modified Bickel and Ren (2001) large sample 100(1 − δ)%
confidence region is {w : (w − Tn)T [S∗

T ]−1(w − Tn) ≤ D2
(UB,T )} = {w :

D2
w(Tn,S

∗
T ) ≤ D2

(UB ,T )} where the cutoff D2
(UB,T ) is the 100qBth sample

quantile of the D2
i = (T ∗

i −Tn)T [S∗
T ]−1(T ∗

i −Tn). c) The hybrid large sample
100(1− δ)% confidence region: {w : (w − Tn)T [S∗

T ]−1(w − Tn) ≤ D2
(UB)} =

{w : D2
w(Tn,S

∗
T ) ≤ D2

(UB)}.
If g = 1, confidence intervals can be computed without S∗

T or D2 for a),
b), and c).

2) Theorem 5.3: Geometric Argument. Suppose
√
n(Tn − θ)

D→ u
withE(u) = 0 and Cov(u) = Σu. Assume T1, ..., TB are iid with nonsingular
covariance matrix ΣTn . Then the large sample 100(1− δ)% prediction region
Rp = {w : D2

w(T ,ST ) ≤ D2
(UB)} centered at T contains a future value of

the statistic Tf with probability 1− δB → 1− δ as B → ∞. Hence the region
Rc = {w : D2

w(Tn,ST ) ≤ D2
(UB)} is a large sample 100(1 − δ)% confidence

region for θ.

5.6 Complements

Confidence Intervals
Guenther (1969) is a useful reference for confidence intervals. Agresti and

Coull (1998), Brown, Cai and DasGupta (2001, 2002) and Pires and Amado
(2008) discuss CIs for a binomial proportion. Agresti and Caffo (2000) discuss
CIs for the difference of two binomial proportions ρ1 − ρ2 obtained from 2
independent samples. Barker (2002), Byrne and Kabaila (2005), Garwood
(1936) and Swift (2009) discuss CIs for Poisson (θ) data. Abuhassan and
Olive (2008) and Olive (2014) consider CIs for some transformed random
variables. Also see Brownstein and Pensky (2008).

Remark 5.11: Correction Factors. Correction factors are used all the
time. Let the positive integer dn → ∞ as n → ∞. In particular, the z1−δ/2
cutoff is replaced by a tdn,1−δ/2 cutoff for confidence intervals, and the χ2

k,1−δ
cutoff is replaced by the kFk,dn,1−δ cutoff for confidence regions. These cutoffs
can be justified by large sample theory. See Example 2.16 and Theorem 2.34.
The modified confidence intervals and confidence regions tend to work better
in moderate samples because the actual distribution of the statistic tends to
have heavier tails than the N(0, 1) or χ2

k distribution. Some statistics need
even stronger correction factors. The following correction factors also tend to
be asymptotically correct.

A) Confidence intervals: Replace the cutoff tn−1,1−δ/2 by tn−1,up where
up = min(1 − δ/2 + 0.05, 1− δ/2 + 2.5/n) if δ/2 > 0.1,
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up = min(1 − δ/4, 1− δ/2 + 12.5δ/n)

if δ/2 ≤ 0.1. If up < 1− δ/2 + 0.001, then use up = 1− δ/2. For the nominal
95% CIs, this correction factor uses a cutoff that is between tn−1,0.975 and
the cutoff tn−1,0.9875 that would be used for a 97.5% CI. This technique is
like applying a 100[1− 2(1 − up)]% CI to the data. See Olive et al. (2024).

B) Confidence regions: Replace the cutoff χ2
k,1−δ by χ2

k,up where up =
min(1 − δ + 0.05, 1− δ + k/n) for δ > 0.1 and

up = min(1 − δ/2, 1− δ + 10δk/n), otherwise. (5.39)

If 1 − δ < 0.999 and up < 1 − δ + 0.001, set up = 1 − δ. The kFk,dn,1−δ
cutoff could also be replaced by kFk,dn,up. This technique is like applying a
100up% confidence region to the data. The “corrected coverage proportion”
is increased from the nominal coverage proportion by at most 5% (e.g. 90%
to 95%), and by no more than 100δ/2% if δ ≤ 0.05 (e.g. 95% to 97.5% or
98% to 99%). This correction factor is similar to that used for some of the
bootstrap confidence regions and for the nonparametric prediction region.
See Equations (5.30) and (4.9).

The Bootstrap

Rajapaksha and Olive (2022) has two more bootstrap confidence regions
which have simple large sample theory and which are quick to compute.

Good references for the bootstrap include Efron (1979, 1982), Efron and
Hastie (2016, ch. 10–11), and Efron and Tibshirani (1993). Also see Chen
(2016) and Hesterberg (2014). One of the sufficient conditions for the boot-
strap confidence region is that T has a well behaved Hadamard derivative.
Fréchet differentiability implies Hadamard differentiability, and many statis-
tics are shown to be Hadamard differentiable in Bickel and Ren (2001), Clarke
(1986, 2000), Fernholtz (1983), Gill (1989), Ren (1991), and Ren and Sen
(1995). Bickel and Ren (2001) showed that their method can work when
Hadamard differentiability fails.

The double bootstrap technique may be useful. See Hall (1986) and Chang

and Hall (2015) for references. The double bootstrap for T
∗

= T
∗
B says that

Tn = T
∗

is a statistic that can be bootstrapped. Let Bd ≥ 50gmax where
1 ≤ gmax ≤ p is the largest dimension of θ to be tested with the double
bootstrap. Draw a bootstrap sample of size B and compute T

∗
= T ∗

1 . Repeat
for a total of Bd times. Apply the confidence region (5.31), (5.32), or (5.33) to

the double bootstrap sample T ∗
1 , ..., T

∗
Bd

. If D(UBd
) ≈ D(UBd

,T ) ≈
√
χ2
g,1−δ,

then T
∗

may be approximately multivariate normal. The CI (5.31) applied
to the double bootstrap sample could be regarded as a modified Frey CI
without delta method techniques. Of course the double bootstrap tends to
be too computationally expensive to simulate.
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Warning: Much of the bootstrap theory in the literature is for when all
possible bootstrap samples are taken (the population bootstrap quantities).
This theory does not apply when B is fixed, e.g. B = 1000, and may not
apply if B = max(1000, n) → ∞ as n → ∞.

Subsampling

The nonparametric bootstrap draws a bootstrap data set x∗
1, ...,x

∗
n with

replacement from the xi and computes T ∗
1 by applying Tn on the boot-

strap data set. This process is repeated B times to get a bootstrap sam-
ple T ∗

1 , ..., T
∗
B. The nonparametric bootstrap has replicates: the proportion of

cases in the bootstrap sample that are not replicates is about 1− e1 ≈ 2/3 ≈
7/11.

The m out of n bootstrap draws a sample of size m without replacement
from the n cases. For B = 1, this is a data splitting estimator, and T ∗

m ≈
N(0, s2m) for large enough m and p. Sampling without replacement is also
known as subsampling and the delete d jackknife.

Theory for subsampling is given by Politis and Romano (1994) and Wu
(1990). Subsampling tends to work well for a large variety of statistics if
m/n→ 0 with m→ ∞. A linear statistic has the form

1

n

n∑

i=1

t(Ui)

where θ = E[t(Ui)] and the Ui are iid. For a linear statistic, subsampling
tends to work well if m/n → τ ∈ [0, 1) with m→ ∞.

Now let Wi be an indicator random variable with Wi = 1 if x∗
i is in

the sample and Wi = 0, otherwise, for i = 1, ..., n. The Wi are binary and
identically distributed, but not independent. Hence P (Wi = 1) = m/n. Let
Wij = WiWj with i 6= j. Again, the Wij are binary and identically dis-
tributed. P (Wij = 1) = P(ordered pair (xi,xj)) was selected in the sample.
Hence P (Wij = 1) = m(m− 1)/[n(n− 1)] since m(m− 1) ordered pairs were
selected out of n(n − 1) possible ordered pairs. Then

T ∗
m =

1

m(m − 1)

∑∑

k 6=d
xTikxid =

1

m(m− 1)

∑∑

i 6=j
WiWjx

T
i xj

where the xi1 , ...,xim are the m vectors xi selected in the sample. The first
double sum has m(m − 1) terms while the second double sum has n(n − 1)
terms. Hence

E(T ∗
m) =

1

m(m− 1)

∑∑

i 6=j
E[WiWj ]x

T
i xj = Tn.

See similar calculations in Buja and Stuetzle (2006). Note that V (T ∗
m) =

E([T ∗
m]2) − [Tn]

2 = Cov(T ∗
m, T

∗
m).
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Buja and Stuetzle (2006) also show that the nonparametric bootstrap and
subsampling with half samples (m = bn/2c) often produce similar results.

5.7 Problems

5.1Q. Suppose that X1, ..., Xn are iid with the Weibull distribution, that is
the common pdf is

f(x) =

{
b
ax

b−1e−
xb

a 0 < x
0 elsewhere

where a is the unknown parameter, but b(> 0) is assumed known.

a) Find a minimal sufficient statistic for a.
b) Assume n = 10. Use the Chi-Square Table and the minimal sufficient

statistic to find a 95% two sided confidence interval for a.

R Problems

Use a command like source(“G:/lspack.txt”) to download the func-
tions. See the Preface. Typing the name of the lspack function, e.g.
accisimf, will display the code for the function. Use the args command, e.g.
args(accisimf), to display the needed arguments for the function.

5.2. Let X1, ..., Xn be iid Poisson(θ) random variables.
From the website (http://parker.ad.siu.edu/Olive/lspack.txt), enter the R

function poiscisim into R. This function simulates the 3 CIs (classical,
modified and exact) from Example 5.5. To run the function for n = 100 and
θ = 5, enter the R command poiscisim(theta=5). Make a table with
header “theta ccov clen mcov mlen ecov elen.” Fill the table for theta =
0.001, 0.1, 1.0, and 5.

The “cov” is the proportion of 500 runs where the CI contained θ and
the nominal coverage is 0.95. A coverage between 0.92 and 0.98 gives little
evidence that the true coverage differs from the nominal coverage of 0.95.
A coverage greater that 0.98 suggests that the CI is conservative while a
coverage less than 0.92 suggests that the CI is liberal (too short). Typically
want the true coverage ≥ the nominal coverage, so conservative intervals are
better than liberal CIs. The “len” is the average scaled length of the CI and
for large nθ should be near 2(1.96)

√
θ for the classical and modified CIs.

From your table, is the classical CI or the modified CI or the “exact” CI
better? Explain briefly. (Warning: in a 1999 version of R, there was a bug
for the Poisson random number generator for θ ≥ 10. The 2011 version of R
seems to work.)

5.3. Let Y1, ..., Yn be iid binomial(1, ρ) random variables.
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From the website (http://parker.ad.edu/Olive/lspack.txt), enter the R
function bcisim into R. This function simulates the 3 CIs (classical, Agresti
Coull and exact) from Example 5.6, but changes the CI (L,U) to
(max(0,L),min(1,U)) to get shorter lengths.

To run the function for n = 10 and ρ ≡ p = 0.001, enter the R command
bcisim(n=10,p=0.001). Make a table with header “n p ccov clen accov
aclen ecov elen.” Fill the table for n = 10 and p = 0.001, 0.01, 0.5, 0.99, 0.999
and then repeat for n = 100. The “cov” is the proportion of 500 runs where
the CI contained p and the nominal coverage is 0.95. A coverage between
0.92 and 0.98 gives little evidence that the true coverage differs from the
nominal coverage of 0.95. A coverage greater that 0.98 suggests that the CI
is conservative while a coverage less than 0.92 suggests that the CI is liberal.
Typically want the true coverage ≥ the nominal coverage, so conservative
intervals are better than liberal CIs. The “len” is the average scaled length
of the CI and for large n should be near 2(1.96)

√
p(1 − p).

From your table, is the classical estimator or the Agresti Coull CI better?
When is the “exact” interval good? Explain briefly.

5.4. This problem simulates the CIs from Example 5.7.
a) Download the function accisimf into R.

b) The function will be used to compare the classical, ACT and modified
95% CIs when the population size N = 500 and p is close to 0.01. The
function generates such a population, then selects 5000 independent simple
random samples from the population. The 5000 CIs are made for both types
of intervals, and the number of times the true population p is in the ith CI is
counted. The simulated coverage is this count divided by 5000 (the number
of CIs). The nominal coverage is 0.95. To run the function for n = 50 and
p ≈ 0.01, enter the command accisimf(n=50,p=0.01). Make a table
with header “n p ccov clen accov aclen mcov mlen.” Fill the table for n = 50
and then repeat for n = 100, 150, 200, 250, 300, 350, 400 and 450. The “len” is√
n times the mean length from the 5000 runs. The “cov” is the proportion

of 5000 runs where the CI contained p and the nominal coverage is 0.95. For
5000 runs, an observed coverage between 0.94 and 0.96 gives little evidence
that the true coverage differs from the nominal coverage of 0.95. A coverage
greater that 0.96 suggests that the CI is conservative while a coverage less
than 0.94 suggests that the CI is liberal. Typically want the true coverage ≥
the nominal coverage, so conservative intervals are better than liberal CIs.
The “ccov” is for the classical CI, “accov” is for the Agresti Coull type (ACT)
CI and “mcov” is for the modified interval. Given good coverage > 0.94, want
short length.

c) First compare the classical and ACT intervals. From your table, for what
values of n is the ACT CI better, for what values of n are the 3 intervals about
the same, and for what values of n is the classical CI better?

d) Was the modified CI ever good?
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5.5. This problem simulates the CIs from Example 5.1.

a) Download the function hnsim into R.
The output from this function are the coverages scov, lcov and ccov of the

CI for σ2, µ and of σ2 if µ is known. The scaled average lengths of the CIs
are also given. The lengths of the CIs for σ2 are multiplied by

√
n while the

length of the CI for µ is multiplied by n.

b) The 5000 CIs are made for 3 intervals, and the number of times the true
population parameter θ = µ or σ2 is in the ith CI is counted. The simulated
coverage is this count divided by 5000 (the number of CIs). The nominal
coverage is 0.95. To run the function for n = 5, µ = 0 and σ2 = 1 enter the
command hnsim(n=5). Make a table with header
“CI for σ2 CI for µ CI for σ2, µ known.”
Then make a second header “n cov slen cov slen cov slen” where “cov slen” is
below each of the three CI headers. Fill the table for n = 5 and then repeat
for n = 10, 20, 50, 100 and 1000. The “cov” is the proportion of 5000 runs
where the CI contained θ and the nominal coverage is 0.95. For 5000 runs,
an observed coverage between 0.94 and 0.96 gives little evidence that the
true coverage differs from the nominal coverage of 0.95. A coverage greater
that 0.96 suggests that the CI is conservative while a coverage less than 0.94
suggests that the CI is liberal. As n gets large, the values of slen should get
closer to 5.5437, 3.7546 and 5.5437.

5.6. a) Download the function varcisim into R to simulate a modified
version of the CI of Example 5.8.

b) Type the command varcisim(n = 100, nruns = 1000, type

= 1) to simulate the 95% CI for the variance for iid N(0,1) data. Is the
coverage vcov close to or higher than 0.95? Is the scaled length vlen =

√
n

(CI length) = 2(1.96)σ2
√
τ = 5.554σ2 close to 5.554?

c) Type the command varcisim(n = 100, nruns = 1000, type

= 2) to simulate the 95% CI for the variance for iid EXP(1) data. Is the
coverage vcov close to or higher than 0.95? Is the scaled length vlen =

√
n

(CI length) = 2(1.96)σ2
√
τ = 2(1.96)λ2

√
8 = 11.087λ2 close to 11.087?

d) Type the command varcisim(n = 100, nruns = 1000, type

= 3) to simulate the 95% CI for the variance for iid LN(0,1) data. Is the
coverage vcov close to or higher than 0.95? Is the scaled length vlen long?

5.7. a) Download the function pcisim into R to simulate the three CIs of
Example 5.9. The modified pooled t CI is almost the same as the Welch CI,
but uses degrees of freedom = n1 + n2 − 4 instead of the more complicated
formula for the Welch CI. The pooled t CI should have coverage that is too
low if

ρ

1 − ρ
σ2

1 + σ2
2 < σ2

1 +
ρ

1 − ρ
σ2

2 .

b) Type the command pcisim(n1=100,n2=200,var1=10,var2=1)

to simulate the CIs for N(µi, σ
2
i ) data for i = 1, 2. The terms pcov, mpcov
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and wcov are the simulated coverages for the pooled, modified pooled and
Welch 95% CIs. Record these quantities. Are they near 0.95?

Problems from old qualifying exams are marked with a Q.
5.8Q. LetX1, ..., Xn be a random sample from a uniform(0, θ) distribution.

Let Y = max(X1, X2, ..., Xn).
a) Find the pdf of Y/θ.
b) To find a confidence interval for θ, can Y/θ be used as a pivot?
c) Find the shortest (1 − α)% confidence interval for θ.

5.9. Let Y1, ..., Yn be iid from a distribution with fourth moments and let
S2
n be the sample variance. Then

√
n(S2

n − σ2)
D→ N(0,M4 − σ4)

where M4 is the fourth central moment E[(Y − µ)4]. Let

M̂4,n =
1

n

n∑

i=1

(Yi − Y )4.

a) Use the asymptotic pivot

√
n(S2

n − σ2)√
M̂4,n − S4

n

D→ N(0, 1)

to find a large sample 100(1− α)% CI for σ2.
b) Use Equation (5.4) to find a large sample 100(1− α)% CI for σ2

1 − σ2
2 .

More problems:

5.10. Suppose
√
n(Tn − θ)

D→ N(0, σ2
T ) and that σ̂2

T is a consistent es-
timator of σ2

T > 0. Then a large sample 95.45% confidence interval for θ
is [Tn − 2SE(Tn), Tn + 2SE(Tn)] where SE(Tn) = σ̂T /

√
n. For the test

H0 : θ = θ0 versus HA : θ 6= θ0, fail to reject H0 if θ0 is in the CI, oth-
erwise reject H0. The power of the test = Pθ(reject H0) which goes to 1 as
n → ∞ if θ 6= θO because the length of the CI → 0 as n → ∞. The type I
error = P(CI does not contain θ0) when H0 is true, and the type I error
≈ 1 − P (−2 < Z < 2) = 1 − 0.9544 = 0.0456.

Consider the CI

[Tn − 2[log10(n)]γSE(Tn), Tn + 2[log10(n)]γSE(Tn)]

where γ is a number like 1/2, 1/3 or 1/4. Take γ = 1/2.
a) What does the power of the corresponding test converge to as n→ ∞?
b) What does the type I error converge to as n → ∞?
c) For what value of n is 2

√
log10(n) = 4?

5.11. Suppose
√
n(Tn−θ)

D→ u,
√
n(T ∗

i −Tn)
D→ u, and

√
n(T

∗−Tn)
P→ 0

where E(u) = 0 and Cov(u) = Σu > 0.

a) Prove
√
n(T

∗ − θ)
D→ u.
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b)
√
n(T ∗

i − T
∗
)
D→ u.

Hint: add a− a = 0 to the term in parentheses for a good choice of a, and
use Slutsky’s Theorem.

5.12. Suppose
√
n(Tn − θ)

D→ u and C−1
n

P→ C−1. Then n(Tn −
θ)TC−1

n (Tn − θ)
D→ D2.

a) What is D2 (e.g. is D2 = uTCu)?
b) If Cn = Ig for all positive integers n, what is D2?
5.13. Suppose that

√
n(µ̂− µ)

D→ N

(
0,

1

I1(µ)

)
.

Find a large sample 95% confidence interval for µ.
5.14. Suppose that Y1, ..., Yn are iid from a one parameter exponential

family with parameter by τ . Assume that Tn =
∑n

i=1 t(Yi) is a complete
sufficient statistics. Suppose, as is often the case, that Tn ∼ G(na, 2b τ )
where a and b are known positive constants. Then

τ̂ =
Tn

2nab

is the UMVUE and often the MLE of τ. Suggest a 100(1 − α)% confidence
interval for τ .

Hint:
Tn
bτ

∼ G(na, 2) and let P (X ≤ G(na, 2, δ/2)) = δ/2 and

P (X ≤ G(na, 2, 1− δ/2)) = 1 − δ/2 if X ∼ G(na, 2).
5.15. Suppose that ui = (xTi , Yi)

T are iid for i = 1, ..., n. Let µx =
E(x) and µY = E(Y ). Let η̃ = Σ̃xY and η = ΣxY = Cov(x, Y ). Then√
n(Σ̃xY − ΣxY ) =

√
n(η̃ − η)

D→ Np(0,Σw) where Σw = Cov(w) and
wi = (xi − µx)(Yi − µY ).

The nonparametric bootstrap samples the ui = (xTi , Yi)
T with replace-

ment. This bootstrap model has the u∗
i = (x∗T

i , Y ∗
i )T iid with respect to the

bootstrap distribution. Then E(x∗
i ) = x, E(Y ∗

i ) = Y , w∗
i = (x∗

i−x)(Y ∗
i −Y ).

Fix n. Then
√
m(Σ̃

∗
xY − Σ̃xY ) =

√
m(η̃∗ − η̃)

D→ Np(0,Σw∗). Since the
empirical distribution is used,

Σw∗ = E[(w∗ − E(w∗))(w∗ − E(w∗))T ] = E[w∗w∗T ] −E(w∗)[E(w∗)]T =

1

n

n∑

i=1

(xi−x)(Yi−Y )[(xi−x)(Yi−Y )]T−[
1

n

n∑

i=1

(xi−x)(Yi−Y )][
1

n

n∑

i=1

(xi−x)(Yi−Y )]T

= Σ̃w =
1

n

n∑

i=1

(wi−w)(wi−w)T =
1

n

n∑

i=1

wiw
T
i −

[
1

n

n∑

i=1

wi

][
1

n

n∑

i=1

wi

]T
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=
1

n

n∑

i=1

wiw
T
i −w[w]T =

1

n

n∑

i=1

ziz
T
i −z[z]T = Σ̃z =

1

n

n∑

i=1

viv
T
i −v[v]T = Σ̃v

where zi = (xi − x)Yi and vi = (xi − x)(Yi − Y ).
Use the bootstrap proof technique to find the limiting distribution of√
n(Σ̃

∗
xY − Σ̃xY ) =

√
n(η̃∗ − η̃).

5.16. The sample median absolute deviation is MAD(Yi) = MAD(n) =
MED(|Yi −MED(n)|, i = 1, . . . , n): find the sample median and go out
the distance MAD(n) that covers at least half of the cases. Then MAD(n)
estimates the population median absolute deviation MAD(Y): find the pop-
ulation median and go out the distance MAD(Y) that covers at least half of

the mass. For Y1, ..., Yn iid N(µ, σ2), a MAD(n)
P→ σ where a ≈ 1.483.

a) If X and Y are random variables, show that

Cov(X, Y ) = [V (X + Y ) − V (X − Y )]/4.

b) Suppose (Xi, Yi)
T are iid from a bivariate normal distribution. Suggest

a consistent estimator of Cov(X, Y ) that is a function of MAD(Xi +Yi) and
MAD(Xi − Yi).
Hint: Wi = Xi + Yi ∼ N(E(X) + E(Y ), V (X + Y )) and
Zi = Xi − Yi ∼ N(E(X) − E(Y ), V (X − Y )).

5.17. The plug-in principle CI technique when
√
n(Tn−θ) D→ N(0, σ2(θ)):

[
Tn − z1−δ/2

σ(θ̂)√
n
, Tn + z1−δ/2

σ(θ̂)√
n

]

is a large sample 100(1− δ)% CI for θ where σ(θ̂) is the estimator of
√
σ2(θ).

For the simple linear regression model, Yi = α+ βxi + ei for i = 1, ..., n,
it can be shown that

√
n(β̂ − β)

D→ N [0, σ2/V (x)]

where V (ei) = σ2 is estimated by the MSE and V (X) = V (xi) is estimated
by S2

x. Find a large sample 100(1 − δ)% CI for β.

5.18. Let Y1, ..., Yn be iidC(µ, σ). Then
√
n(MED(n)−µ)

D→ N(0, π2σ2/4),

and σ̂ = MAD(n)
P→ σ is a consistent estimator of σ. Find a large sample

95% confidence interval for µ. Note: P (−1.96 < Z < 1.96) = 0.95 where
Z ∼ N(0, 1).





Chapter 6

Regression: GLMs, GAMs, Statistical
Learning

This chapter considers regression models such as the multiple linear regres-
sion model, generalized linear models such as Poisson regression and binomial
regression, generalized additive models, and survival regression models such
as the Cox proportional hazards regression model. Multivariate linear regres-
sion and Statistical Learning methods, such as lasso and ridge regression,
are considered. Results for variable selection will be given. See Chapter 10
for some useful plots. Unless told otherwise, assume the number of
predictors p is fixed, while the sample size n→ ∞.

Definition 6.1. For an important class of regression models, regression
is the study of the conditional distribution Y |Ax of the response variable Y
given Ax, where the vector of predictors x = (x1, ..., xp)

T and A is a k × p
constant matrix of full rank k with 1 ≤ k ≤ p.

Remark 6.1. If A = Ip, then Y |Ax = Y |x. If β is a p × 1 coefficient

vector and A = βT , then Y |Ax = Y |βTx = Y |xTβ.

Definition 6.2. A quantitative variable takes on numerical values while
a qualitative variable takes on categorical values.

Let z = (z1, ..., zk)
T where z1, ..., zk are k random variables. Often z =

(xT , Y )T where xT = (x1, ..., xp) is the vector of predictors and Y is the
variable of interest, called a response variable. Predictor variables are also
called independent variables, covariates, or features. The response variable
is also called the dependent variable. Usually context will be used to decide
whether z is a random vector or the observed random vector.

Definition 6.3. A case or observation consists of k random variables
measured for one person or thing. The ith case zi = (zi1, ..., zik)

T . The
training data consists of z1, ..., zn. A statistical model or method is fit
(trained) on the training data. The test data consists of zn+1, ..., zn+m, and
the test data is often used to evaluate the quality of the fitted model.

203
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Definition 6.4. In a 1D regression model, regression is the study of
the conditional distribution of Y given the sufficient predictor SP = h(x),
written

Y |SP or Y|h(x), (6.1)

where the real valued function h : R
p → R. The estimated sufficient pre-

dictor ESP = ĥ(x). An important special case is a model with a linear

predictor h(x) = α+βTx where ESP = α̂+ β̂
T
x and often α = 0. This class

of models includes the generalized linear model (GLM). Another important
special case is a generalized additive model (GAM), given the additive predic-
tor AP = SP = α+

∑p
j=1 Sj(xj) for some (usually unknown) functions Sj .

The estimated additive predictor EAP = ESP = α̂+
∑p

j=1 Ŝj(xj).

Remark 6.2. The literature often claims that Y is conditionally indepen-
dent of x given the sufficient predictor SP = h(x), written

Y x|SP or Y x|h(x). (6.2)

The literature also often claims that Y |x = Y |SP or Y |x = Y |βTx. This
claim is often much too strong.

Notation. Often the conditioning and the index i will be suppressed. For
example, the multiple linear regression model

Yi = xTi β + ei (6.3)

for i = 1, ..., n where β is a p× 1 unknown vector of parameters, and ei is a
random error. This model could be written Y = xTβ + e. More accurately,
Y |βTx = xTβ + e, but the conditioning on βTx will often be suppressed.
Often the errors e1, ..., en are iid (independent and identically distributed).
Often the distribution of the errors is unknown, but often it is assumed that
the iid ei’s come from a distribution that is known except for a scale parame-
ter. For example, the ei’s might be iid from a normal (Gaussian) distribution
with mean 0 and unknown standard deviation σ. For this Gaussian model,
estimation of β and σ is important for inference and for predicting a new
future value of the response variable Yf given a new vector of predictors xf .

Statistical Learning could be defined as the statistical analysis of mul-
tivariate data. Machine learning, data mining, big data, analytics, business
analytics, data analytics, and predictive analytics are synonymous terms. The
techniques are useful for Data Science and Statistics, the science of extracting
information from data.

Following James et al. (2013, p. 30), the previously unseen test data is not
used to train the Statistical Learning method, but interest is in how well the
method performs on the test data. If the training data is (x1, Y1), ..., (xn, Yn),
and the previously unseen test data is (xf , Yf), then particular interest is in
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the accuracy of the estimator Ŷf of Yf obtained when the Statistical Learning
method is applied to the predictor xf .

6.1 Multiple Linear Regression

For multiple linear regression (MLR), it is usually useful to have a
constant in the model. Sometimes it is convenient to use Y |βTx where β =
(β1, ..., βp)

T and the constant is β1. Sometimes it is convenient to separate

the constant from the nontrivial predictors and use Y |(α+ βTx) where α is
the constant. We could also use βT = (β1 ,β

T
2 ) where β1 is the intercept and

the slopes vector β2 = (β2, ..., βp)
T , and xTi = (1,uTi ) where the nontrivial

predictors ui = (xi2, ..., xip)
T . Hence we get the following two MLR models.

The first model is often used in the theory of linear models, while the second
model is often useful for Statistical Learning, MLR with heterogeneity, and
high dimensional statistics.

Definition 6.5. Suppose that the response variable Y and at least one
predictor variable xi are quantitative.
a) Let the MLR model 1 be

Yi = β1 + xi,2β2 + · · ·+ xi,pβp + ei = xTi β + ei (6.4)

for i = 1, ..., n. Here n is the sample size and the random variable ei is the ith
error. Assume that the ei are iid with expected value E(ei) = 0 and variance
V (ei) = σ2. In matrix notation, these n equations become Y = Xβ + e
where Y is an n × 1 vector of dependent variables, X is an n × p matrix
of predictors, β is a p × 1 vector of unknown coefficients, and e is an n × 1
vector of unknown errors.

b) Let the MLR model 2 be

Yi = α+ xi,1β1 + · · ·+ xi,pβp + ei = α+ xTi β + ei (6.5)

for i = 1, ..., n. For this model, we may use φ = (α,βT )T with Y = Xφ+e.

In matrix notation, suppose the n equations are

Y = Xβ + e, (6.6)

where Y is an n × 1 vector of dependent variables, X = [v1, v2, ..., vp] is
an n × p matrix of predictors with ith column vi corresponding to the ith
predictor, β is a p×1 vector of unknown coefficients, and e is an n×1 vector
of unknown errors. Equivalently,
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


Y1

Y2

...
Yn


 =




x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p

...
...

. . .
...

xn,1 xn,2 . . . xn,p







β1

β2

...
βp


+




e1
e2
...
en


 . (6.7)

For MLR model 1, the first column of X is v1 = 1, the n× 1 vector of ones.
The ith case (xTi , Yi)

T = (xi1, xi2, ..., xip, Yi)
T corresponds to the ith row

xTi of X and the ith element of Y (if xi1 ≡ 1, then xi1 could be omitted).
In the MLR model Y = xTβ + e, the Y and e are random variables, but we
only have observed values Yi and xi. MLR is used to estimate the unknown
parameters β and σ2.

Definition 6.6. The constant variance MLR model uses the assump-
tion that the errors e1, ..., en are iid with mean E(ei) = 0 and variance
VAR(ei) = σ2 <∞. Also assume that the errors are independent of the pre-
dictor variables xi. The predictor variables xi are assumed to be fixed and
measured without error. The cases (xTi , Yi)

T are independent for i = 1, ..., n.

If the predictor variables are random variables, then the above MLR model
is conditional on the observed values of the xi. That is, observe the xi and
then act as if the observed xi are fixed.

Definition 6.7. The unimodal MLR model has the same assumptions
as the constant variance MLR model, as well as the assumption that the zero
mean constant variance errors e1, ..., en are iid from a unimodal distribution
that is not highly skewed. Note that E(ei) = 0 and V (ei) = σ2 <∞.

Definition 6.8. The normal MLR model or Gaussian MLR model has
the same assumptions as the unimodal MLR model but adds the assumption
that the errors e1, ..., en are iidN(0, σ2) random variables. That is, the ei are
iid normal random variables with zero mean and variance σ2.

The unknown coefficients for the above 3 models are usually estimated
using (ordinary) least squares (OLS).

Notation. The symbol A ≡ B = f(c) means that A and B are equivalent
and equal, and that f(c) is the formula used to compute A and B.

Definition 6.9. Given an estimate b of β, the corresponding vector of
predicted values or fitted values is Ŷ ≡ Ŷ (b) = Xb. Thus the ith fitted value

Ŷi ≡ Ŷi(b) = xTi b = xi,1b1 + · · ·+ xi,pbp.

The vector of residuals is r ≡ r(b) = Y − Ŷ (b). Thus ith residual ri ≡
ri(b) = Yi − Ŷi(b) = Yi − xi,1b1 − · · · − xi,pbp.
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6.1.1 OLS Theory

Ordinary least squares (OLS) large sample theory will be useful. Let X =
(1 X1). For model (6.4), the ith row of X is (1, xi,2, ..., xi,p) while for model
(6.5), the ith row of X is (1, xi,1, ..., xi,p), and Y = α1+X1β+e = Xφ+e.

Definition 6.10 Using the above notation for MLR model 2 (6.5), let
xTi = (xi1, ..., xip), let α be the intercept, and let the slopes vector β =
(β1, ..., βp)

T . Let the population covariance matrices

Cov(x) = E[(x− E(x))(x − E(x))T ] = Σx, and

Cov(x, Y ) = E[(x−E(x))(Y −E(Y ))] = ΣxY .

If the cases (xi, Yi) are iid from some population where ΣxY exists and Σx
is nonsingular, then the population coefficients from an OLS regression of Y
on x (even if a linear model does not hold) are

α = αOLS = E(Y ) − βTE(x) and β = βOLS = Σ−1
x ΣxY .

Definition 6.11 Let the sample covariance matrices be

Σ̂x =
1

n − 1

n∑

i=1

(xi − x)(xi − x)T and Σ̂xY =
1

n− 1

n∑

i=1

(xi − x)(Yi − Y ).

Let the method of moments estimators be Σ̃x =
1

n

n∑

i=1

(xi−x)(xi−x)T and

Σ̃xY =
1

n

n∑

i=1

(xi − x)(Yi − Y ) =
1

n

n∑

i=1

xiYi − x Y .

The method of moment estimators are often called the maximum likelihood
estimators, but are the MLE if the (Yi,x

T
i )T are iid from a multivariate

normal distribution, a very strong assumption. In Theorem 6.1, note that

D = XT
1 X1 − nx xT = (n− 1)Σ̂

−1

x .

Theorem 6.1: Seber and Lee (2003, p. 106). Let X = (1 X1). Then

XTY =

(
nY

XT
1 Y

)
=

(
nY∑n
i=1 xiYi

)
, XTX =

(
n nxT

nx XT
1 X1

)
,

and (XTX)−1 =

(
1
n + xTD−1x −xTD−1

−D−1x D−1

)

where the p× p matrix D−1 = [(n− 1)Σ̂x]−1 = Σ̂
−1

x /(n− 1).
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Under model (6.5), φ̂ = φ̂OLS = (XTX)−1XTY .

Theorem 6.2: Second way to compute φ̂:

a) If Σ̂
−1

x exists, then α̂ = Y − β̂
T
x and

β̂ =
n

n− 1
Σ̂

−1

x Σ̃xY = Σ̃
−1

x Σ̃xY = Σ̂
−1

x Σ̂xY .

b) Suppose that (Yi,x
T
i )T are iid random vectors such that σ2

Y , Σ−1
x , and

ΣxY exist. Then α̂
P→ α and

β̂
P→ β as n → ∞

where α and β are given by Definition 6.10.
Proof. Note that

Y TX1 = (Y1 · · ·Yn)




xT1
...

xTn


 =

n∑

i=1

Yix
T
i

and

XT
1 Y = [x1 · · ·xn]



Y1

...
Yn


 =

n∑

i=1

xiYi.

So [
α̂

β̂

]
=

[
1
n + xTD−1x −xTD−1

−D−1x D−1

] [
1T

XT
1

]
Y =

[
1
n + xTD−1x −xTD−1

−D−1x D−1

] [
nY

XT
1 Y

]
.

Thus β̂ = −nD−1x Y + D−1XT
1 Y = D−1(XT

1 Y − nx Y ) =

D−1

[
n∑

i=1

uiYi − nx Y

]
=

Σ̂
−1

x
n − 1

nΣ̂xY =
n

n− 1
Σ̂

−1

x Σ̂xY . Then

α̂ = Y + nxTD−1x Y − xTD−1XT
1 Y = Y + [nY xTD−1 − Y TX1D

−1]x

= Y − β̂
T
x. The convergence in probability results hold since sample means

and sample covariance matrices are consistent estimators of the population
means and population covariance matrices. �

Remark 6.3. It is important to note that the convergence in probability
results are for iid (Yi,x

T
i )T with second moments and nonsingular Σx: a

linear model Y = Xβ + e does not need to hold. When the linear model
does hold, the second method for computing β̂ is still valid even if X is a
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constant matrix, and β̂
P→ β by Theorem 6.3 b). From Theorem 6.3,

n(XTX)−1 = V̂ =

(
V̂ 11 V̂ 12

V̂ 21 V̂ 22

)
P→ V =

(
V 11 V 12

V 21 V 22

)
.

Thus Σ̂
−1

x
P→ V 22 and Σ̂x

P→ V −1
22 . Note that for Theorem 6.3 b) with iid

cases and µx = E(x),

n(XTX)−1 P→ V =

[
1 + µTxΣ−1

x µx −µTxΣ−1
x

−Σ−1
x µx Σ−1

x

]
.

Definition 6.12. For OLS and MLR model 1 from Definition 6.5, β̂ =
β̂OLS = (XTX)−1XTY . Let the hat matrix H = X(XTX)−1XT . Then

Ŷ = Ŷ OLS = HY = Xβ̂. The ith leverage hi = Hii = the ith diagonal
element of H.

There are many large sample theory results for ordinary least squares. For
Theorem 6.3, see, for example, Sen and Singer (1993, p. 280). Theorem 6.3
is analogous to the central limit theorem and the theory for the t–interval
for µ based on Y and the sample standard deviation (SD) SY . If the data
Y1, ..., Yn are iid with mean 0 and variance σ2, then Y is asymptotically
normal and the t–interval will perform well if the sample size is large enough.
The results below suggests that the OLS estimators Ŷi and β̂ are good if
the sample size is large enough. The condition maxhi → 0 in probability
usually holds if the researcher picked the design matrix X or if the xi are
iid random vectors from a well behaved population. Outliers can cause the
condition to fail. Theorem 6.3 a) implies that β̂ ≈ Np[β, σ

2(XTX)−1]. For

Theorem 6.3 a), rank(X) = p since XTX is nonsingular. For Theorem 6.3
b), rank(X) = p+ 1.

Theorem 6.3, OLS CLTs. Consider the MLR model and assume that
the zero mean errors are iid with E(ei) = 0 and VAR(ei) = σ2. If the xi are
random vectors, assume that the cases (xi, Yi) are independent, and that the
ei and xi are independent. Also assume that maxi(h1, ..., hn) → 0 and

XTX

n
→ V −1

as n→ ∞ where the convergence is in probability if the xi are random vectors
(instead of nonstochastic constant vectors).

a) For Equation (6.4), the OLS estimator β̂ satisfies

√
n(β̂ − β)

D→ Np(0, σ
2 V ). (6.8)

Equivalently,
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(XTX)1/2(β̂ − β)
D→ Np(0, σ

2 Ip). (6.9)

b) For Equation (6.5), the OLS estimator φ̂ satisfies

√
n(φ̂ − φ)

D→ Np+1(0, σ
2 V ). (6.10)

c) Suppose the cases (xi, Yi) are iid from some population and the Equa-
tion (6.5) MLR model Yi = α+xTi β+ei holds. Assume that Σ−1

x and Σx,Y
exist. Then Equation (6.10) holds and

√
n(β̂ − β)

D→ Np(0, σ
2 Σ−1

x ) (6.11)

where β = βOLS = Σ−1
x Σx,Y .

Remark 6.4. I) Consider Theorem 6.3. For a) and b), the theory acts as
if the xi are constant even if the xi are random vectors. The literature says
the xi can be constants, or condition on xi if the xi are random vectors.
The main assumptions for a) and b) are that the errors are iid with second
moments and that n(XTX)−1 is well behaved. The strong assumptions for
c) are much stronger than those for a) and b), but the assumption of iid cases
is often reasonable if the cases come from some population.
II) Suppose Yi = α + xTi β + ei where the ei are iid. Then β̂OLS ≈
Np(β,MSE Σ̂

−1

x /n) even if the cases are not iid, and Σ̂x
P→ V −1

22 , where
V −1

22 is not necessarily equal to Σx, by Remark 6.3. Thus

(β̂OLS − β)T Σ̂x(β̂OLS − β)/MSE
D→ χ2

p as n → ∞. This result is useful
since no matrix inversion is required.

Remark 6.5. Consider MLR model (6.5). Let wi = Anxi for i = 1, ..., n
where An is a full rank k × p matrix with 1 ≤ k ≤ p.

a) Let Σ∗ be Σ̂ or Σ̃. Then Σ∗
w = AnΣ

∗
xAT

n and Σ∗
wY = AnΣ∗

xY .
b) If An is a constant matrix, then Σw = AnΣxAT

n and
ΣwY = AnΣxY .

c) Let β̂(u, Y ) and β(u, Y ) be the estimator and parameter from the OLS
regression of Y on u. The constant parameter vector should not depend on
n. Suppose the cases are iid and A is a constant matrix that does not depend

on n. By Theorem 6.2, β̂(w, Y ) = Σ̂
−1

w Σ̂wY = [AnΣ̂xAn]
−1AnΣ̂xY =

[AnΣ̂xAn]−1AnΣ̂xβ̂(x, Y ). If An
P→ A, Σ̂x

P→ Σx, and β̂(x, Y )
P→

β(x, Y ), then β̂(w, Y )
P→ β(w, Y ) = [AΣxA]−1AΣxβ(x, Y ).

6.1.2 Ordinary Least Squares

In this subsection, assume MLR model 1 (6.4) from Definition 6.5 holds.

Definition 6.13. The full rank MLR model has rank(X) = p.
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Many MLR methods attempt to find an estimate β̂ of β which minimizes
some criterion function Q(b) of the residuals.

Definition 6.14. The ordinary least squares (OLS) estimator β̂OLS min-
imizes

QOLS(b) =

n∑

i=1

r2i (b), (6.12)

and β̂OLS = (XTX)−1XTY .

The vector of predicted or fitted values Ŷ OLS = Xβ̂OLS = HY where the
hat matrix H = X(XTX)−1XT provided the inverse exists. Typically the
subscript OLS is omitted, and the least squares regression equation is
Ŷ = β̂1x1 + β̂2x2 + · · ·+ β̂pxp where x1 ≡ 1 if the model contains a constant.

Definition 6.15. Let the ri be the OLS residuals and let

σ̂2 = MSE =
1

n

n∑

i=1

r2i . (6.13)

Theorem 6.4 follows from results in Su and Cook (2012). Also see Freed-
man (1981). In particular, the iid errors do not need to be from a normal
distribution.

Theorem 6.4. Let the MLR model hold and the iid errors ei satisfy
E(ei) = 0 and V (ei) = σ2. Under mild regularity conditions, σ̂2 = MSE is
a
√
n consistent estimator of σ2.

If Σ = σ2V , then Σ̂n = nMSE(XTX)−1. Hence

β̂ ∼ ANp(β,MSE(XTX)−1), and

rFR =
1

MSE
(Lβ̂ − c)T [L(XTX)−1LT ]−1(Lβ̂ − c)

D→ χ2
r (6.14)

as n → ∞ if H0 : Lβ = c is true so that
√
n(Lβ̂ − c)

D→ Nr(0, σ
2 LWLT ).

Remark 6.6. The Cauchy Schwartz inequality says |aTb| ≤ ‖a‖ ‖b‖.
Suppose

√
n(β̂ − β) = OP (1) is bounded in probability. This will occur if√

n(β̂ − β)
D→ Np(0,Σ), e.g. if β̂ is the OLS estimator. Then

|ri − ei| = |Yi − xTi β̂ − (Yi − xTi β)| = |xTi (β̂ − β)|.

Hence

√
n max
i=1,...,n

|ri − ei| ≤ ( max
i=1,...,n

‖xi‖) ‖√n(β̂ − β)‖ = OP (1)



212 6 Regression: GLMs, GAMs, Statistical Learning

since max‖xi‖ = OP (1) or there is extrapolation. Hence OLS residuals be-
have well if the zero mean error distribution of the iid ei has a finite variance
σ2.

Definition 6.16. A test with test statistic Tn is a large sample right tail
δ test if the test rejects H0 if Tn > an and P (Tn > an) = δn where δn is
eventually bounded above by δ as n → ∞ when H0 is true.

Often we want δn → δ as n → ∞. Typically we want δ ≤ 0.1, and the
values δ = 0.05 and δ = 0.01 are common. (An analogy is a large sample
100(1− δ)% confidence interval or prediction interval.)

Remark 6.7. For a test of hypotheses, the p–value ≡ pvalue is the prob-
ability of getting a test statistic as extreme as the test statistic actually
observed, and H0 is rejected if the pvalue ≤ δ. The pvalue given by output
tends to only be correct for the normal MLR model. Hence the output is
usually only giving an estimate of the pvalue, which will often be denoted by
pval. So reject H0 if pval ≤ δ. Often

pval− pvalue
P→ 0

as the sample size n → ∞. Then the computer output pval is a good estimator
of the unknown pvalue. We will use Fo ≡ F0, Ho ≡ H0, and Ha ≡ HA ≡ H1.

Remark 6.8. Suppose P (W ≤ χ2
q(1−δ)) = 1−δ and P (W > χ2

q(1−δ)) =
δ where W ∼ χ2

q . Suppose P (W ≤ Fq,dn(1 − δ)) = 1 − δ when W ∼ Fq,dn .
Also write χ2

q(1− δ) = χ2
q,1−δ and Fq,dn(1− δ) = Fq,dn,1−δ. Suppose P (W >

z1−δ) = δ when W ∼ N(0, 1), and P (W > tdn,1−δ) = δ when W ∼ tdn .
i) Theorem 6.4 is important because it can often be shown that a statistic

Tn = rWn
D→ χ2

r when H0 is true. Then tests that reject H0 when Tn >
χ2
r(1 − δ) or when Tn/r = Wn > Fr,dn(1 − δ) are both large sample right

tail δ tests if the positive integer dn → ∞ as n → ∞. Large sample F tests
and intervals are used instead of χ2 tests and intervals since the F tests and
intervals are more accurate for moderate n. See Theorem 2.34.

ii) An analogy is that if test statistic Tn
D→ N(0, 1) when H0 is true, then

tests that reject H0 if Tn > z1−δ or if Tn > tdn,1−δ are both large sample
right tail δ tests if the positive integer dn → ∞ as n → ∞. Large sample t
tests and intervals are used instead of Z tests and intervals since the t tests
and intervals are more accurate for moderate n.

iii) Often n ≥ 10p starts to give good results for the OLS output for error
distributions not too far from N(0, 1). Larger values of n tend to be needed
if the zero mean iid errors have a distribution that is far from a normal
distribution.
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The following two theorems are useful for proving Theorem 6.7, which
shows that the most used F -tests for MLR are large sample tests. The nota-
tion Σ > 0 means the p×p matrix Σ is positive definite and thus nonsingular.
Hence xTΣx > 0 unless x = 0 where x is any p× 1 constant vector. If > is
replaced by ≥, then Σ ≥ 0 is positive semidefinite. A matrix P is a projec-
tion matrix if P is symmetric and idempotent: P = P T = P P . Unless told
otherwise, assume the matrix A in a quadratic form ZTAZ is symmetric:
A = AT . The trace of a square p × p matrix A is the sum of the diago-
nal elements of A: if A = (aij) so that the ijth element of A is aij, then
trace(A) = tr(A) =

∑p
i=1 aii.

Theorem 6.5: Craig’s Theorem. Let Y ∼ Nn(µ,Σ).
a) If Σ > 0, then Y TAY Y TBY iff AΣB = 0 iff BΣA = 0.
b) If Σ ≥ 0, then Y TAY Y TBY if AΣB = 0 (or if BΣA = 0).
c) If Σ ≥ 0, then Y TAY Y TBY iff

(∗) ΣAΣBΣ = 0,ΣAΣBµ = 0,ΣBΣAµ = 0, and µTAΣBµ = 0.

Theorem 6.6. Let A = AT be symmetric.
a) If Y ∼ Nn(0,Σ) where Σ is a projection matrix, then Y TY ∼

χ2(rank(Σ)) where rank(Σ) = tr(Σ).
b) If Y ∼ Nn(0, I), then Y TAY ∼ χ2

r iff A is idempotent with rank(A) =
tr(A) = r.

c) Let Y ∼ Nn(0, σ2I). Then

Y TAY

σ2
∼ χ2

r or Y TAY ∼ σ2 χ2
r

iff A is idempotent of rank r.
d) If Y ∼ Nn(0,Σ) where Σ > 0, then Y TAY ∼ χ2

r iff AΣ is idempotent
with rank(A) = r = rank(AΣ).

e) If Y ∼ Nn(0, σ2I) then
Y TY

σ2
∼ χ2

(
n,

µTµ

2σ2

)
.

f) If Y ∼ Nn(µ, I) then Y TAY ∼ χ2(r,µTAµ/2) iff A is idempotent
with rank(A) = tr(A) = r.

g) If Y ∼ Nn(µ, σ2I) then
Y TAY

σ2
∼ χ2

(
r,

µTAµ

2σ2

)
iff A is idempotent

with rank(A) = tr(A) = r.

For the following theorem, let P = H be the projection matrix on the
column space of X. The partial F test is H0 : Lβ = 0 versus H1 : Lβ 6= 0
where L is a full rank r × p matrix with 1 ≤ r ≤ p. Let R be the reduced
model corresponding to Lβ = 0, let RSS=SSE(F) be the residual sum of
squares of the full model that uses all p predictors, and let RSS(R)=SSE(R)
be the residual sum of squares for the reduced model that uses q predictors.
This test is for whether the reduced model is good which is equivalent to the
test that the p− q predictors not in the reduced model are not needed in the
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model given the q predictors in the reduced model are in the model. Note that
L = [0 Ir ] tests whether the last r coefficients βi = 0: hence the reduced
model uses the first p − r predictors. Then r = p − 1 corresponds to the
Anova F test for whether the nontrivial predictors are needed in the model
where the first predictor x1 = 1 corresponds to a constant β1 in the model.
Also L = (0, ..., 1, ..., 0) with a 1 in the ith position tests whether βi = 0
with a reduced model that omits the ith predictor. This test corresponds to
the Wald test for whether the ith predictor is needed in the model given the
other predictors are in the model. Let FR be the test statistic for the partial
F test.

Theorem 6.7, Partial F Test Theorem. Suppose H0 : Lβ = 0 is true
for the partial F test. Under the OLS full rank model, a)

FR =
1

rMSE
(Lβ̂)T [L(XTX)−1LT ]−1(Lβ̂).

b) If e ∼ Nn(0, σ2I), then FR ∼ Fr,n−p.

c) For a large class of zero mean error distributions rFR
D→ χ2

r.
d) The partial F test that rejects H0 : Lβ = 0 if FR > Fr,n−p(1 − δ) is a
large sample right tail δ test for the OLS model for a large class of zero mean
error distributions.

Proof sketch. a) Seber and Lee (2003, p. 100) show that

RSS(R) − RSS = (Lβ̂)T [L(XTX)−1LT ]−1(Lβ̂).

b) Let the full model Y = Xβ + e with a constant β1 in the model:
1 is the 1st column of X . Let the reduced model Y = XRβR + e also
have a constant in the model where the columns of XR are a subset of
k of the columns of X . Let PR be the projection matrix on C(XR) so

PPR = PR. Then FR =
SSE(R) − SSE(F )

rMSE(F )
where r = dfR − dfF = p −

k = number of predictors in the full model but not in the reduced model.
MSE = MSE(F ) = SSE(F )/(n−p) where SSE = SSE(F ) = Y (I−P )Y .
SSE(R) − SSE(F ) = Y T (P − PR)Y where SSE(R) = Y T (I − PR)Y .

Now assume Y ∼ Nn(Xβ, σ2I), and whenH0 is true, Y ∼ Nn(XRβR, σ
2I).

Since (I − P )(P − PR) = 0, [SSE(R) − SSE(F )] MSE(F ) by Craig’s
Theorem. When H0 is true, µ = XRβR and µTAµ = 0 where A = (I − P )
or A = (P − PR). Hence the noncentrality parameter is 0, and by The-
orem 6.6 g), SSE ∼ σ2χ2

n−p and SSE(R) − SSE(F ) ∼ σ2χ2
p−k since

rank(P − PR) = tr(P − PR) = p− k. Hence under H0, FR ∼ Fp−k,n−p.

Alternatively, let Y ∼ Nn(Xβ, σ2In) where X is an n× p matrix of rank
p. Let X = [X1 X2] and β = (βT1 βT2 )T where X1 is an n × k matrix and
r = p−k. Consider testing H0 : β2 = 0. (The columns of X can be rearranged
so that H0 corresponds to the partial F test.) Let P be the projection matrix
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on C(X). Then rTr = Y T (I − P )Y = eT (I − P )e =
(Y − Xβ)T (I − P )(Y − Xβ) since P X = X and XTP = XT imply that
XT (I − P ) = 0 and (I − P )X = 0.

Suppose that H0 : β2 = 0 is true so that Y ∼ Nn(X1β1, σ
2In). Let

P 1 be the projection matrix on C(X1). By the above argument, rTRrR =
Y T (I −P 1)Y = (Y −X1β1)

T (I −P 1)(Y −X1β1) = eTR(I −P 1)eR where
eR ∼ Nn(0, σ2In) when H0 is true. Or use RHS = Y T (I − P 1)Y

−βT1 XT
1 (I − P 1)Y + βT1 XT

1 (I − P 1)X1β1 − Y T (I − P 1)X1β1,

and the last three terms equal 0 since XT
1 (I−P 1) = 0 and (I −P 1)X1 = 0.

Hence
Y T (I − P )Y

σ2
∼ χ2

n−p
Y T (P − P 1)Y

σ2
∼ χ2

r

by Theorem 6.6 c) using e and eR instead of Y , and Craig’s Theorem 6.5 b)
since n− p = rank(I −P ) = tr(I −P ), r = rank(P − P 1) = tr(P −P 1) =
p− k, and (I − P )(P − P 1) = 0.

If X1 ∼ χ2
d1

X2 ∼ χ2
d2
, then

X1/d1

X2/d2
∼ Fd1,d2 .

Hence
Y T (P − P 1)Y /r

Y T (I − P )Y /(n− p)
=

Y T (P − P 1)Y

rMSE
∼ Fr,n−p

when H0 is true. Since RSS = Y T (I −P )Y and RSS(R) = Y T (I −P 1)Y ,
RSS(R) − RSS = Y T (I − P 1 − [I − P ])Y = Y T (P − P 1)Y , and thus

FR =
Y T (P − P 1)Y

rMSE
∼ Fr,n−p.

c) Assume H0 is true. By the OLS CLT,
√
n(Lβ̂ − Lβ) =

√
nLβ̂

D→
Nr(0, σ

2 LWLT ). Thus
√
n(Lβ̂)T (σ2LWLT )−1

√
nLβ̂

D→ χ2
r. Let σ̂2 =

MSE and Ŵ = n(XTX)−1. Then

n(Lβ̂)T [MSE Ln(XTX)−1LT ]−1Lβ̂ = rFR
D→ χ2

r.

d) By Theorem 2.34, if Wn ∼ Fr,dn then rWn
D→ χ2

r as n → ∞ and
dn → ∞. Hence the result follows by c). �

Remark 6.9, Are Statisticians crazy? Courses on linear models typi-
cally assume that the ei are iid N(0, σ2) and use Theorem 6.7 b). The errors
ei rarely follow a normal distribution. Luckily, the F tests are still large
sample theory tests by Theorem 6.7 c) and d). This theory makes OLS a
nonparametric method that is widely applicable.
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An ANOVA table for the partial F test is shown below, where k = pR is
the number of predictors used by the reduced model, and r = p− pR = p− k
is the number of predictors in the full model that are not in the reduced
model.

Source df SS MS F

Reduced n− pR SSE(R) = Y T (I − PR)Y MSE(R) FR = SSE(R)−SSE
rMSE

=

Full n− p SSE = Y T (I − P )Y MSE
Y T (P − PR)Y /r

Y T (I − P )Y /(n− p)

The ANOVA F test is the special case where k = 1, XR = 1, PR = P 1,
and SSE(R) − SSE(F ) = SSTO − SSE = SSR. This test has the table
shown below.

ANOVA table: Y = Xβ + e with a constant β1 in the model: 1 is the
1st column of X . MS = SS/df .

SSTO = Y T (I − 1

n
11T )Y =

n∑

i=1

(Yi − Y )2, SSE =
∑n
i=1 r

2
i , SSR =

∑n
i=1(Ŷi − Y )2, SSTO = SSR + SSE. SSTO is the SSE (residual sum

of squares) for the location model Y = 1β1 + e that contains a con-
stant but no nontrivial predictors. The location model has projection matrix

P 1 = 1(1T1)−11T =
1

n
11T . Hence PP 1 = P 1 and P1 = P 11 = 1.

Source df SS MS F p-value

Regression p-1 SSR = Y T (P − 1

n
11T )Y MSR F0 = MSR

MSE for H0:

Residual n-p SSE = Y T (I − P )Y MSE β2 = · · · = βp = 0
The matrices in the quadratic forms for SSR and SSE are symmet-

ric and idempotent and their product is 0. Hence if e ∼ Nn(0, σ2I) so
Y ∼ Nn(Xβ, σ2I), then SSE SSR by Craig’s Theorem. If H0 is
true under normality, then Y ∼ Nn(1β1, σ

2I), and by Theorem 6.4 g),
SSE ∼ σ2χ2

n−p and SSR ∼ σ2χ2
p−1 since rank(I − P ) = tr(I − P ) = n− p

and rank(P − 1
n11T ) = tr(P − 1

n11T ) = p − 1. Hence under normality,
F0 ∼ Fp−1,n−p.

Let X ∼ tn−p. Then X2 ∼ F1,n−p. The two tail Wald t test for H0 :
βj = 0 versus H1 : βj 6= 0 is equivalent to the corresponding right tailed F
test since rejecting H0 if |X| > tn−p(1 − δ) is equivalent to rejecting H0 if
X2 > F1,n−p(1 − δ).

Theorem 6.8. Let Y = Xβ + e = Ŷ + r where X has full rank p,
E(e) = 0, and Cov(e) = σ2I. i) The least squares estimator β̂ is an unbiased

estimator of β : E(β̂) = β. ii) Cov(β̂) = σ2(XTX)−1.
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Proof. i) E(β̂) = E[(XTX)−1XTY ] = (XTX)−1XTE[Y ] =
(XTX)−1XTXβ = β.

ii) Cov(β̂) = Cov[(XTX)−1XTY ] = Cov(AY ) = ACov(Y )AT =

σ2(XTX)−1XT IX(XTX)−1 = σ2(XTX)−1. �

6.1.3 L1

Definition 6.17. Assume the MLR model holds. The L1 estimator or least
absolute deviations estimator β̂L1

minimizes the criterion

QL1(b) =

n∑

i=1

|ri(b)| =

n∑

i=1

|Yi − xTi b|.

Theorem 6.9, L1 CLT: Assume the MLR model holds and the errors
ei are iid with a pdf f such that the unique population median is 0 with
f(0) > 0. Then

√
n(β̂L1

− β)
D→ Np

(
0,

1

4[f(0)]2
V

)
(6.15)

when XTX/n→ V −1.

If a constant β1 is in the model or if the column space of X contains 1,
then the assumption on the pdf is mild, but if the pdf is not symmetric about
0, then the L1 β1 tends to differ from the OLS β1. See Bassett and Koenker
(1978) for the theorem. Pollard (1991) discusses some useful extensions. Es-
timating f(0) can be difficult.

If the pdf is also symmetric about 0 and V (ei) = σ2, then often
√
n(β̂ −

β)
D→ Np(0, V (β̂, F ) V ) where F is the cdf of the error distribution. Then

V (β̂OLS , F ) = V (ei) = σ2, and

V (β̂L1
, F ) =

1

4[f(0)]2
.

6.2 Bootstrapping OLS MLR

Suppose the full model for MLR is Y = Xβ + e. Suppose that there is a
minimal subset S such that Y = XSβS + e. Then for any subset I such
that S ⊆ I, Y = XIβI + e. Assume a constant is in the model and in any
submodel I. Then then the OLS residuals sum to 0. Let submodel I contain
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aI predictors, including a constant. If S ⊆ I, let

XT
I X

n
→ V −1

I .

Then by the OLS CLT,
√
n(β̂I − βI)

D→ NaI (0,ΣI) where ΣI = σ2V I . See
Section 6.10 for more on submodel notation.

6.2.1 The Parametric Bootstrap

The parametric bootstrap generates Y ∗
j = (Y ∗

i ) from a parametric distribu-

tion. Then regress Y ∗
j on X to get β̂

∗
j for j = 1, ..., B. Consider the paramet-

ric bootstrap for the MLR model with Y ∗ ∼ Nn(Xβ̂, σ̂2
nI) ∼ Nn(HY , σ̂2

nI)
where we are not assuming that the ei ∼ N(0, σ2), and

σ̂2
n = MSE =

1

n − p

n∑

i=1

r2i

where the residuals are from the full OLS model. Then MSE is a
√
n consis-

tent estimator of σ2 under mild conditions by Theorem 6.4 and Su and Cook
(2012). Hence

Y ∗ = Xβ̂OLS + e∗

where the e∗i are iid N(0,MSE) and β̂ = β̂OLS .

Thus β̂
∗
I = (XT

I XI)
−1XT

I Y ∗ ∼ NaI (β̂I , σ̂
2
n(X

T
I XI)

−1) since E(β̂
∗
I ) =

(XT
I XI)

−1XT
I HY = β̂I because HXI = XI , and Cov(β̂

∗
I) = σ̂2

n(X
T
I XI)

−1.
Hence √

n(β̂
∗
I − β̂I) ∼ NaI (0, nσ̂

2
n(X

T
I XI)

−1)
D→ NaI (0,ΣI)

as n → ∞ if S ⊆ I. In particular, for the full model I = F ,

√
n(β̂

∗ − β̂) ∼ Np(0, nσ̂
2
n(X

TX)−1)
D→ Np(0,Σ)

as n → ∞, where Σ = σ2V .

6.2.2 The Residual Bootstrap

The residual bootstrap is often useful for additive error regression models of
the form Yi = m(xi) + ei = m̂(xi) + ri = Ŷi + ri for i = 1, ..., n where the
ith residual ri = Yi − Ŷi. Let Y = (Y1, ..., Yn)

T , r = (r1, ..., rn)
T , and let

X be an n × p matrix with ith row xTi . Then the fitted values Ŷi = m̂(xi),
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and the residuals are obtained by regressing Y on X . Here the errors ei are
iid, and it would be useful to be able to generate B iid samples e1j , ..., enj
from the distribution of ei where j = 1, ..., B. If the m(xi) were known, then
we could form a vector Y j where the ith element Yij = m(xi) + eij for
i = 1, ..., n. Then regress Y j on X. Instead, draw samples r∗1j, ..., r

∗
nj with

replacement from the residuals, then form a vector Y ∗
j where the ith element

Y ∗
ij = m̂(xi) + r∗ij for i = 1, ..., n. Then regress Y ∗

j on X . If the residuals do
not sum to 0 and E(ei) = 0, then replace ri by εi = ri − r, and r∗ij by ε∗ij.

For multiple linear regression, Yi = xTi β + ei is written in matrix form

as Y = Xβ + e. Regress Y on X to obtain β̂, r, and Ŷ with ith element

Ŷi = m̂(xi) = xTi β̂. For j = 1, ..., B, regress Y ∗
j on X to form β̂

∗
1,n, ..., β̂

∗
B,n

using the residual bootstrap.
Now examine the OLS model with a constant in the model so the OLS

residuals sum to 0. Let Ŷ = Ŷ OLS = Xβ̂OLS = HY be the fitted val-
ues from the OLS full model. Let rW denote an n × 1 random vector of
elements selected with replacement from the OLS full model residuals. Fol-
lowing Freedman (1981) and Efron (1982, p. 36),

Y ∗ = Xβ̂OLS + rW

follows a standard linear model where the elements rWi of rW are iid from
the empirical distribution of the OLS full model residuals ri. Hence

E(rWi ) =
1

n

n∑

i=1

ri = 0, V (rWi ) = σ2
n =

1

n

n∑

i=1

r2i =
n− p

n
MSE,

E(rW ) = 0, and Cov(Y ∗) = Cov(rW) = σ2
nIn.

Let β̂ = β̂OLS . Then β̂
∗

= (XTX)−1XTY ∗ with Cov(β̂
∗
) = σ2

n(X
TX)−1 =

n− p

n
MSE(XTX)−1, and E(β̂

∗
) = (XTX)−1XTE(Y ∗) =

(XTX)−1XTHY = β̂ = β̂n since HX = X . The expectations are with

respect to the bootstrap distribution where Ŷ acts as a constant. One dif-

ference from the usual OLS MLR model is that σ2
n
P→ σ2 depends on n. The

usual model has V (ei) = σ2 which does not depend on n.

For the OLS estimator β̂ = β̂OLS , the estimated covariance matrix

of β̂OLS is Ĉov(β̂OLS) = MSE(XTX)−1. The sample covariance matrix

of the β̂
∗

is estimating Cov(β̂
∗
) as B → ∞. Hence the residual boot-

strap standard error SE(β̂∗
i ) ≈

√
n− p

n
SE(β̂i) for i = 1, ..., p where

β̂OLS = β̂ = (β̂1, ..., β̂p)
T . The OLS CLT Theorem 6.3 says

√
n(β̂ − β)

D→ Np(0, lim
n→∞

nĈov(β̂OLS)) ∼ Np(0, σ
2V )
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where n(XTX)−1 → V . Since Y ∗ = Xβ̂OLS +rW follows a standard linear
model, it may not be surprising that

√
n(β̂

∗ − β̂OLS)
D→ Np(0, lim

n→∞
nĈov(β̂

∗
)) ∼ Np(0, σ

2V ). (6.16)

Imagine for large fixed n = N we get the OLS residuals. Then we use these

residuals for n > N to get β̂
∗
n,N . Then by the OLS CLT,

√
n(β̂

∗
n,N−β̂OLS)

D→
Np(0, σ

2
NV ) as n → ∞, and Np(0, σ

2
NV )

D→ Np(0, σ
2V ) as N → ∞. Hence

Theorem 5.1 is satisfied, and Equation (6.16) holds. See Freedman (1981) for
an alternative proof.

Remark 6.10. Both the residual bootstrap and parametric bootstrap for
the OLS full model are robust to the unknown error distribution of the iid ei.
For the MLR residual bootstrap with S ⊆ I where I is not the full model, we

conjecture that
√
n(β̂

∗
I − β̂I)

D→ NaI (0,ΣI) as n → ∞ since OLS estimators
tend to be asymptotically normal with a distribution that depends on the
covariance matrix of the estimator. For the model Y = Xβ+e, the ei are iid
from a distribution that does not depend on n, and βO = 0 where O denotes

the terms in the full model that are not in I. For Y ∗ = Xβ̂ + rW , the
distribution of the rWi depends on n and β̂O 6= 0 although

√
nβ̂O = OP (1).

6.2.3 The Nonparametric Bootstrap

The nonparametric bootstrap (also called the empirical bootstrap, naive
bootstrap, the pairwise bootstrap, and the pairs bootstrap) draws a sam-
ple of n cases (Y ∗

i ,x
∗
i ) with replacement from the n cases (Yi,xi), and re-

gresses the Y ∗
i on the x∗

i to get β̂
∗
V S,1, and then draws another sample to get

β̂
∗
MIX,1. This process is repeated B times to get the two bootstrap samples

for i = 1, ..., B.
Then for the full model,

Y ∗ = X∗β̂OLS + rW

and for a submodel I,

Y ∗ = X∗
I β̂I,OLS + rWI .

Freedman (1981) showed that under regularity conditions for the OLS MLR

model,
√
n(β̂

∗ − β̂)
D→ Np(0, σ

2V ) ∼ Np(0,Σ). Hence if S ⊆ I,

√
n(β̂

∗
I − β̂I)

D→ NaI (0,ΣI)
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as n → ∞. (Treat I as if I is the full model.)
One set of regularity conditions is that the MLR model holds, and if xi =

(1 uTi )T , then the wi = (Yi uTi )T are iid from some population with a
nonsingular covariance matrix.

The nonparametric bootstrap uses w∗
1, ...,w

∗
n where the w∗

i are sampled
with replacement from w1, ...,wn. By Example 5.11, E(w∗) = w, and

Cov(w∗) =
1

n

n∑

i=1

(wi − w)(wi − w)T = Σ̃w =

[
S̃2
Y Σ̃Yu

Σ̃uY Σ̃u

]
.

Note that β̂ is a constant with respect to the bootstrap distribution. Assume
all inverse matrices exist. Then

β̂
∗

=

[
β̂∗

1

β̂
∗
u

]
=

[
Y

∗ − β̂
∗T
u u∗

Σ̃
−1∗

u Σ̃
∗
uY

]
P→
[
Y − β̂

T

uu

Σ̃
−1

u Σ̃uY

]
=

[
β̂1

β̂u

]
= β̂

as B → ∞. This result suggests that the nonparametric bootstrap for OLS
MLR might work under milder regularity conditions than the wi being iid
from some population with a nonsingular covariance matrix.

6.3 Statistical Learning Methods for MLR

There are many MLR methods, including OLS for the full model, forward se-
lection with OLS, the marginal maximum likelihood estimator (MMLE), elas-
tic net, principal components regression (PCR), partial least squares (PLS),
lasso, lasso variable selection, and ridge regression (RR). For the last six
methods, it is convenient to use centered or scaled data. Suppose U has ob-
served values U1, ..., Un. For example, if Ui = Yi then U corresponds to the
response variable Y . The observed values of a random variable V are cen-
tered if their sample mean is 0. The centered values of U are Vi = Ui −U for
i = 1, ..., n. Let g be an integer near 0. If the sample variance of the Ui is

σ̂2
g =

1

n− g

n∑

i=1

(Ui − U)2,

then the sample standard deviation of Ui is σ̂g. If the values of Ui are not all
the same, then σ̂g > 0, and the standardized values of the Ui are

Wi =
Ui − U

σ̂g
.

Typically g = 1 or g = 0 are used: g = 1 gives an unbiased estimator
of σ2 while g = 0 gives the method of moments estimator. Note that the
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standardized values are centered, W = 0, and the sample variance of the
standardized values

1

n − g

n∑

i=1

W 2
i = 1. (6.17)

Remark 6.11. Let Y = α+xTβ+e. Let wT
i = (wi,1, ..., wi,p) be the stan-

dardized vector of nontrivial predictors for the ith case. Since the standard-
ized predictors are also centered, w = 0. Let the n×p matrix of standardized
nontrivial predictors W g = (Wij) when the predictors are standardized using
σ̂g. Then the ith row of W g is wT

i . Thus,
∑n
i=1Wij = 0 and

∑n
i=1W

2
ij = n−g

for j = 1, ..., p. Hence

Wij =
xi,j − xj

σ̂j
where σ̂2

j =
1

n − g

n∑

i=1

(xi,j − xj)
2

is σ̂g for the jth variable xj. Then the sample covariance matrix of the wi is
the sample correlation matrix of the xi:

ρ̂x = Rx = (rij) =
W T

g W g

n− g

where rij is the sample correlation of xi and xj. Thus the sample correlation
matrix Rx does not depend on g. Let Z = Y −Y where Y = Y 1. Since the
R software tends to use g = 0, let W = W 0. Note that n×p matrix W does
not include a vector 1 of ones. Then regression through the origin is used for
the model

Z = Wη + ε (6.18)

where Z = (Z1, ..., Zn)
T and η = (η1, ..., ηp)

T . The vector of fitted values

Ŷ = Y + Ẑ.
Remark 6.12. i) Interest is in model (6.5): estimate Ŷf and β̂. For many

regression estimators, a method is needed so that everyone who uses the
same units of measurements for the predictors and Y gets the same (Ŷ , β̂).
Equation (6.18) is a commonly used method for achieving this goal. Suppose
g = 0. The method of moments estimator of the variance σ2

w is

σ̂2
g=0 = S2

M =
1

n

n∑

i=1

(wi −w)2.

When data xi are standardized to have w = 0 and S2
M = 1, the standardized

data wi has no units. ii) Hence the estimators Ẑ and η̂ do not depend on
the units of measurement of the xi if standardized data and Equation (6.18)
are used. Linear combinations of the wi are linear combinations of the xi.
Thus the estimators Ŷ and β̂ are obtained using Ẑ, η̂, and Y . The linear
transformation to obtain (Ŷ , β̂) from (Ẑ, η̂) is unique for a given set of units
of measurements for the xi and Y . Hence everyone using the same units of
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measurements gets the same (Ŷ , β̂). iii) Also, since W j = 0 and S2
M,j = 1, the

standardized predictor variables have similar spread, and the magnitude of
η̂i is a measure of the importance of the predictor variable Wj for predicting
Y .

Definition 6.18. Consider model (6.4) Y = xTβ + e. If Z = Wη + e,
where the n× q matrix W has full rank q = p− 1, then the OLS estimator

η̂OLS = (W TW )−1W TZ

minimizes the OLS criterion QOLS(η) = r(η)Tr(η) over all vectors η ∈
R
p−1. The vector of predicted or fitted values ẐOLS = Wη̂OLS = HZ where

H = W (W TW )−1W T . The vector of residuals r = r(Z,W ) = Z − Ẑ =
(I − H)Z.

For model (6.4) Y = xTβ + e, let x = (1 u)T , and let Z = Wη + ε.
Assume that the sample correlation matrix

Ru =
W TW

n

P→ V −1. (6.19)

Note that V −1 = ρu, the population correlation matrix of the nontrivial
predictors ui, if the ui are a random sample from a population. Let H =

W (W TW )−1W T = (hij), and assume that maxi=1,...,n hii
P→ 0 as n → ∞.

Section 6.7 examines whether the OLS estimator satisfies

un =
√
n(η̂OLS − η)

D→ Np−1(0, σ
2V ). (6.20)

Assume that the sample correlation matrix

Ru =
W TW

n

P→ V −1. (6.21)

Note that V −1 = ρu, the population correlation matrix of the nontrivial
predictors ui, if the ui are a random sample from a population. Let H =

W (W TW )−1W T = (hij), and assume that maxi=1,...,n hii
P→ 0 as n → ∞.

Then by Theorem 6.1 (the OLS CLT), the OLS estimator satisfies

√
n(η̂OLS − η)

D→ Np−1(0, σ
2V ). (6.22)

Definition 6.19. Consider the MLR model Z = Wη + e. Let b be a
(p − 1) × 1 vector. Then the fitted value Ẑi(b) = wT

i b and the residual

ri(b) = Zi − Ẑi(b). The vector of fitted values Ẑ(b) = Wb and the vector of

residuals r(b) = Z − Ẑ(b).
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6.3.1 Ridge Regression

Definition 6.20. a) Consider fitting the MLR model Y = Xβ + e. Let

λ1,n ≥ 0 be a constant. One ridge regression estimator β̂R minimizes the
ridge regression criterion

QR(β) =
1

a
(Y − Xβ)T (Y − Xβ) +

λ1,n

a

p∑

i=1

β2
i (6.23)

over all vectors β ∈ R
p. Then

β̂R = (XTX + λ1,nIp)
−1XTY . (6.24)

The residual sum of squares RSS(β) = (Y −Xβ)T (Y −Xβ), and λ1,n = 0

corresponds to the OLS estimator β̂OLS . The ridge regression vector of fitted

values is Ŷ = Ŷ R = Xβ̂R, and the ridge regression vector of residuals

rR = r(β̂R) = Y − Ŷ R.
b) Another ridge regression estimator β̃RR minimizes the ridge regression

criterion

QRR(β) =
1

a
(Y − Xβ)T (Y − Xβ) +

λ1,n

a

p∑

i=2

β2
i

over all vectors β ∈ R
p.

The following identity from Gunst and Mason (1980, p. 342) is useful for

ridge regression inference: β̂R =(XTX + λ1,nIp)
−1XTY

= (XTX + λ1,nIp)
−1XTX(XTX)−1XTY

= (XTX + λ1,nIp)
−1XTXβ̂OLS = Anβ̂OLS =

[Ip − λ1,n(X
TX + λ1,nIp)

−1]β̂OLS = Bnβ̂OLS =

β̂OLS − λ1n

n
n(XTX + λ1,nIp)

−1β̂OLS

since An − Bn = 0, where An = (XTX + λ1,nIp)
−1(XTX) = Bn

= Ip − λ1,n(X
TX + λ1,nIp)

−1. See Problem 6.3. Assume

XTX

n
→ V −1

as n → ∞. If λ1,n/n→ 0 then

XTX + λ1,nIp
n

P→ V −1, and n(XTX + λ1,nIp)−1 P→ V .
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Note that

An = An,λ =

(
XTX + λ1,nIp

n

)−1
XTX

n

P→ V V −1 = Ip

if λ1,n/n → 0 since matrix inversion is a continuous function of a positive
definite matrix. See, for example, Bhatia et al. (1990), Stewart (1969), and
Severini (2005, pp. 348-349).

For model selection, the M values of λ = λ1,n are denoted by λ1, λ2, ..., λM
where λi = λ1,n,i depends on n for i = 1, ...,M . If λs corresponds to the model

selected, then λ̂1,n = λs. The following theorem shows that ridge regression

and the OLS full model are asymptotically equivalent if λ̂1,n = oP (n1/2) so

λ̂1,n/
√
n

P→ 0.

Theorem 6.10, RR CLT (Ridge Regression Central Limit Theo-
rem. Assume p is fixed and that the conditions of the OLS CLT Theorem
Equation (6.8) hold for the model Y = Xβ + e.

a) If λ̂1,n/
√
n

P→ 0, then

√
n(β̂R − β)

D→ Np(0, σ
2V ).

b) If λ̂1,n/
√
n

P→ τ ≥ 0 then

√
n(β̂R − β)

D→ Np(−τV β, σ2V ).

Proof: If λ̂1,n/
√
n

P→ τ ≥ 0, then by the above Gunst and Mason (1980)
identity,

β̂R = [Ip − λ̂1,n(X
TX + λ̂1,nIp)

−1]β̂OLS .

Hence √
n(β̂R − β) =

√
n(β̂R − β̂OLS + β̂OLS − β) =

√
n(β̂OLS − β) −√

n
λ̂1,n

n
n(XTX + λ̂1,nIp)

−1β̂OLS

D→ Np(0, σ
2V ) − τV β ∼ Np(−τV β, σ2V ). �

For p fixed, Knight and Fu (2000) note i) that β̂R is a consistent estimator
of β if λ1,n = o(n) so λ1,n/n → 0 as n → ∞, ii) OLS and ridge regression
are asymptotically equivalent if λ1,n/

√
n → 0 as n → ∞, iii) ridge regression

is a
√
n consistent estimator of β if λ1,n = O(

√
n) (so λ1,n/

√
n is bounded),

and iv) if λ1,n/
√
n → τ ≥ 0, then

√
n(β̂R − β)

D→ Np(−τV β, σ2V ).
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Hence the bias can be considerable if τ 6= 0. If τ = 0, then OLS and ridge
regression have the same limiting distribution. The proof of the Theorem 6.10
is due Pelawa Watagoda and Olive (2021b).

Even if p is fixed, there are several problems with ridge regression infer-
ence if λ̂1,n is selected, e.g. after 10-fold cross validation. For OLS forward
selection, the probability that the model Imin underfits goes to zero, and
each model with S ⊆ I produced a

√
n consistent estimator β̂I,0 of β. Ridge

regression with 10-fold CV often shrinks β̂R too much if both i) the number
of population active predictors kS = aS − 1 in Equation (6.41) is greater
than about 20, and ii) the predictors are highly correlated. If p is fixed and
λ1,n = oP (

√
n), then the OLS full model and ridge regression are asymptoti-

cally equivalent, but much larger sample sizes may be needed for the normal
approximation to be good for ridge regression since the ridge regression es-
timator can have large bias for moderate n. Ten fold CV does not appear to

guarantee that λ̂1,n/
√
n

P→ 0 or λ̂1,n/n
P→ 0.

Ridge regression can be a lot better than the OLS full model if i) XTX is
singular or ill conditioned or ii) n/p is small. Ridge regression can be much
faster than forward selection if M = 100 and n and p are large.

Warning. The R functions glmnet and cv.glmnet do ridge regression
using Definition 6.20 b).

6.3.2 Lasso

Definition 6.21. Consider fitting the MLR model Y = Xβ + e. The lasso
estimator β̂L minimizes the lasso criterion

QL(β) =
1

a
(Y − Xβ)T (Y − Xβ) +

λ1,n

a

p∑

i=2

|βi| (6.25)

over all vectors β ∈ R
p where λ1,n ≥ 0 and a > 0 are known constants with

a = 1, 2, n, and 2n are common. The residual sum of squares RSS(β) =
(Y − Xβ)T (Y − Xβ), and λ1,n = 0 corresponds to the OLS estimator

β̂OLS = (XTX)−1XTY if X has full rank p. The lasso vector of fitted values

is Ŷ = Ŷ L = Xβ̂L, and the lasso vector of residuals r(β̂L) = Y − Ŷ L.

The following identity from Efron and Hastie (2016, p. 308), for example,
is useful for inference for the lasso estimator η̂L:

−1

n
XT (Y − Xβ̂L) +

λ1,n

2n
sn = 0 or − XT(Y − Xβ̂L) +

λ1,n

2
sn = 0

where sin ∈ [−1, 1] and sin = sign(β̂i,L) if β̂i,L 6= 0. Here sign(βi) = 1 if

βi > 0 and sign(βi) = −1 if βi < 0. Note that sn = s
n,

ˆβL

depends on β̂L.
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Thus β̂L

= (XTX)−1XTY − λ1,n

2n
n(XTX)−1 sn = β̂OLS − λ1,n

2n
n(XTX)−1 sn.

If none of the elements of β are zero, and if β̂L is a consistent estimator of β,

then sn
P→ s = sβ. If λ1,n/

√
n → 0, then OLS and lasso are asymptotically

equivalent even if sn does not converge to a vector s as n → ∞ since sn is
bounded. For model selection, the M values of λ are denoted by 0 ≤ λ1 <
λ2 < · · · < λM where λi = λ1,n,i depends on n for i = 1, ...,M . Also, λM
is the smallest value of λ such that β̂λM

= 0. Hence β̂λi
6= 0 for i < M . If

λs corresponds to the model selected, then λ̂1,n = λs. The following theorem
shows that lasso and the OLS full model are asymptotically equivalent if

λ̂1,n = oP (n1/2) so λ̂1,n/
√
n

P→ 0: thus
√
n(β̂L − β̂OLS) = op(1).

Theorem 6.11, Lasso CLT. Assume p is fixed and that the conditions
of the OLS CLT Theorem Equation (6.8) hold for the model Y = Xβ + e.

a) If λ̂1,n/
√
n

P→ 0, then

√
n(β̂L − β)

D→ Np(0, σ
2V ).

b) If λ̂1,n/
√
n

P→ τ ≥ 0 and sn
P→ s = sβ , then

√
n(β̂L − β)

D→ Np

(−τ
2

V s, σ2V

)
.

Proof. If λ̂1,n/
√
n

P→ τ ≥ 0 and sn
P→ s = sβ , then

√
n(β̂L − β) =

√
n(β̂L − β̂OLS + β̂OLS − β) =

√
n(β̂OLS − β) −√

n
λ1,n

2n
n(XTX)−1sn

D→ Np(0, σ
2V ) − τ

2
V s

∼ Np

(−τ
2

V s, σ2V

)

since under the OLS CLT, n(XTX)−1 P→ V .

Part a) does not need sn
P→ s as n→ ∞, since sn is bounded. �

Suppose p is fixed. Knight and Fu (2000) note i) that β̂L is a consistent
estimator of η if λ1,n = o(n) so λ1,n/n→ 0 as n → ∞, ii) OLS and lasso are
asymptotically equivalent if λ1,n → ∞ too slowly as n → ∞ (e.g. if λ1,n = λ
is fixed), iii) lasso is a

√
n consistent estimator of β if λ1,n = O(

√
n) (so

λ1,n/
√
n is bounded). Note that Theorem 6.11 shows that OLS and lasso are
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asymptotically equivalent if λ1,n/
√
n → 0 as n → 0. The proof of Theorem

6.11 is due Pelawa Watagoda and Olive (2021b).

6.3.3 The Elastic Net

Following Hastie et al. (2015, p. 57), let β = (β1 ,β
T
S )T , let λ1,n ≥ 0, and let

α ∈ [0, 1]. Let

RSS(β) = (Y − Xβ)T (Y − Xβ) = ‖Y − Xβ‖2
2.

For a k×1 vector η, the squared (Euclidean) L2 norm ‖η‖2
2 = ηTη =

∑k
i=1 η

2
i

and the L1 norm ‖η‖1 =
∑k

i=1 |ηi|.

Definition 6.22. The elastic net estimator β̂EN minimizes the criterion

QEN(β) =
1

2
RSS(β) + λ1,n

[
1

2
(1 − α)‖βS‖2

2 + α‖βS‖1

]
, or (6.26)

Q2(β) = RSS(β) + λ1‖βS‖2
2 + λ2‖βS‖1 (6.27)

where 0 ≤ α ≤ 1, λ1 = (1 − α)λ1,n and λ2 = 2αλ1,n.

Note that α = 1 corresponds to lasso (using λa=0.5), and α = 0 corresponds
to ridge regression. For α < 1 and λ1,n > 0, the optimization problem is
strictly convex with a unique solution. The elastic net is due to Zou and
Hastie (2005). It has been observed that the elastic net can have much better
prediction accuracy than lasso when the predictors are highly correlated.

The following theorem is probably for the elastic net estimator that uses
the usual ridge regression estimator of Definition 6.20 b), rather that the
ridge regression estimator of Definition 6.20 c). Hence Equation (6.27) would
need to be modified. Following Jia and Yu (2010), by standard Karush-Kuhn-
Tucker (KKT) conditions for convex optimality for the “modified Equation

(6.27),” β̂EN is optimal if

2XTXβ̂EN − 2XTY + 2λ1β̂EN + λ2sn = 0, or

(XTX + λ1Ip)β̂EN = XTY − λ2

2
sn, or

β̂EN = β̂R − n(XTX + λ1Ip)
−1 λ2

2n
sn. (6.28)

Hence

β̂EN = β̂OLS − λ1

n
n(XTX + λ1Ip)

−1 β̂OLS − λ2

2n
n(XTX + λ1Ip)

−1 sn
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= β̂OLS − n(XTX + λ1Ip)
−1 [

λ1

n
β̂OLS +

λ2

2n
sn].

Note that if λ̂1,n/
√
n

P→ τ and α̂
P→ ψ, then λ̂1/

√
n

P→ (1−ψ)τ and λ̂2/
√
n

P→
2ψτ. The following theorem shows elastic net is asymptotically equivalent to

the OLS full model if λ̂1,n/
√
n

P→ 0. Note that we get the RR CLT if ψ = 0

and the lasso CLT (using 2λ̂1,n/
√
n

P→ 2τ ) if ψ = 1. Under these conditions,

√
n(β̂EN −β) =

√
n(β̂OLS − β) − n(XTX + λ̂1Ip)

−1 [
λ̂1√
n

β̂OLS +
λ̂2

2
√
n

sn].

The following theorem is due to Slawski et al. (2010), and summarized in
Pelawa Watagoda and Olive (2021b).

Theorem 6.12, Elastic Net CLT. Assume p is fixed and that the con-
ditions of the OLS CLT Equation (6.8) hold for the model Y = Xβ + e.

a) If λ̂1,n/
√
n

P→ 0, then

√
n(β̂EN − β)

D→ Np(0, σ
2V ).

b) If λ̂1,n/
√
n

P→ τ ≥ 0, α̂
P→ ψ ∈ [0, 1], and sn

P→ s = sβ, then

√
n(β̂EN − β)

D→ Np
(
−V [(1 − ψ)τβ + ψτs], σ2V

)
.

Proof. By the above remarks and the RR CLT Theorem 6.10,

√
n(β̂EN −β) =

√
n(β̂EN − β̂R + β̂R −β) =

√
n(β̂R −β)+

√
n(β̂EN − β̂R)

D→ Np
(
−(1 − ψ)τV β, σ2V

)
− 2ψτ

2
V s

∼ Np
(
−V [(1 − ψ)τβ + ψτs], σ2V

)
.

The mean of the normal distribution is 0 under a) since α̂ and sn are bounded.
�

Warning. The above theorem uses the ridge regression estimator (6.23).
The R functions glmnet and cv.glmnet do ridge regression and elastic net
using Definition 6.20 b).

6.3.4 Ridge Type Regression Estimators

See Jin and Olive (2023).
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6.4 MLR with Heterogeneity

A multiple linear regression model with heterogeneity is

Yi = β1 + xi,2β2 + · · ·+ xi,pβp + ei (6.29)

for i = 1, ..., n where the ei are independent with E(ei) = 0 and V (ei) = σ2
i .

In matrix form, this model is

Y = Xβ + e,

where Y is an n × 1 vector of dependent variables, X is an n × p matrix
of predictors, β is a p × 1 vector of unknown coefficients, and e is an n × 1
vector of unknown errors. Also E(e) = 0 and Cov(e) = Σe = diag(σ2

i ) =
diag(σ2

1 , ..., σ
2
n) is an n×n positive definite matrix. In Section 2, the constant

variance assumption was used: σ2
i = σ2 for all i. Hence heterogeneity means

that the constant variance assumption does not hold. A common assumption
is that the ei = σiεi where the εi are independent and identically distributed
(iid) with V (εi) = 1. See, for example, Zhou, Cook, and Zou (2023).

Weighted least squares (WLS) would be useful if the σ2
i were known. Since

the σ2
i are not known, ordinary least squares (OLS) is often used. The OLS

theory for MLR with heterogeneity often assume iid cases. For the following
theorem, see Romano and Wolf (2017), Freedman (1981), and White (1980).

Theorem 6.13. Assume Yi = xTi β + ei for i = 1, ..., n where the cases
(Yi,x

T
i )T are iid with “fourth moments,” Y = Xβ + e, the ei = ei(xi)

are independent, E[ei|xi] = 0, V −1 = E[xix
T
i ], E[e2i |xi] = v(xi) = σ2

i ,
Cov[e|X] = diag(v(x1), ..., v(xn)) and Ω = E[v(xi)xix

T
i ] = E[e2ixix

T
i ].

Then √
n(β̂OLS − β)

D→ Np(0,V ΩV ). (6.30)

Remark 6.13. a) White (1980) showed that the iid cases assumption can
be weakened. Assume the cases are independent,

V n =
1

n

n∑

i=1

E[xix
T
i ]

P→ V −1,

and

Ωn =
1

n

n∑

i=1

E[e2ixix
T
i ]

P→ Ω.

Then √
n(β̂OLS − β)

D→ Np(0,V ΩV ).

b) Under the assumptions of Theorem 6.13,
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1

n
XTX =

1

n

n∑

i=1

xix
T
i

P→ V −1.

Let D = diag(σ2
1 , ..., σ

2
n) = Σe and D̂ = diag(r21 , ..., r

2
n) where r2i is the

ith residual from OLS regression of Y on X . Then D̂ is not a consistent
estimator of D. The following theorem, due to White (1980), shows that

D̂ can be used to get a consistent estimator of Ω. This result leads to the
sandwich estimators.

Theorem 6.14. Under strong regularity conditions,

1

n
(XT D̂X)

P→ Ω and
1

n
(XTDX)

P→ Ω.

Hence
n(XTX)−1(XT D̂X)(XTX)−1 P→ V ΩV .

Rajapaksha and Olive (2024) compare several methods for inference for
model (6.19). The nonparametric bootstrap worked well. Olive et al. (2024)
proved that the OPLS and MMLE estimators, described in the following two
sections, are also useful for model (6.29).

6.5 OPLS

Cook, Helland, and Su (2013) showed that the OPLS estimator β̂OPLS
estimates βOPLS , and that the OPLS estimator can be computed from

the OLS simple linear regression (SLR) of Y on W = Σ̂
T

xY x, giving

Ŷ = α̂OPLS + λ̂W = α̂OPLS + β̂
T

OPLSx. Also see Basa et al. (2024) and
Wold (1975). Also see Remark 6.5.

Definition 6.23. The one component partial least squares (OPLS) esti-

mator β̂OPLS = λ̂Σ̂xY estimates λΣxY = βOPLS where

λ =
ΣT

xYΣxY

ΣT
xY ΣxΣxY

and λ̂ =
Σ̂

T

xYΣ̂xY

Σ̂
T

xYΣ̂xΣ̂xY

(6.31)

for ΣxY 6= 0. If ΣxY = 0, then βOPLS = 0.

The following Olive and Zhang (2024) theorem gives some large sample

theory for η̂ = Ĉov(x, Y ). This theory needs η = ηOPLS = ΣxY to exist for

η̂ = Σ̂xY to be a consistent estimator of η. Let xi = (xi1, ..., xip)
T and let

wi and zi be defined below where

Cov(wi) = Σw = E[(xi − µx)(xi − µx)T (Yi − µY )2)] − ΣxYΣT
xY .
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Then the low order moments are needed for Σ̂z to be a consistent estimator
of Σw . The theory uses milder regularity conditions than the theory in the
previous literature. The theory can be used for testing, including some high
dimensional tests for low dimensional quantities such as HO : βi = 0 or
H0 : βi−βj = 0. These tests depended on iid cases, but not on linearity or the
constant variance assumption. Data splitting uses model selection (variable
selection is a special case) to reduce the high dimensional problem to a low
dimensional problem. Olive et al. (2024) gave alternative proofs, and showed
that the results hold for multiple linear regression with heterogeneity.

Theorem 6.15. Assume the cases (xTi , Yi)
T are iid. Assume E(xkij Y

m
i )

exist for j = 1, ..., p and k,m = 0, 1, 2. Let µx = E(x) and µY = E(Y ). Let
wi = (xi − µx)(Yi − µY ) with sample mean wn. Let η = ΣxY . Then a)

√
n(wn − η)

D→ Np(0,Σw),
√
n(η̂n − η)

D→ Np(0,Σw), (6.32)

and
√

n(η̃n − η)
D→ Np(0,Σw).

b) Let zi = xi(Yi − Y n) and vi = (xi − xn)(Yi − Y n). Then Σ̂w = Σ̂z +

OP (n−1/2) = Σ̂v + OP (n−1/2). Hence Σ̃w = Σ̃z + OP (n−1/2) = Σ̃v +
OP (n−1/2).
c) Let A be a k × p full rank constant matrix with k ≤ p, assume H0 :

AβOPLS = 0 is true, and assume λ̂
P→ λ 6= 0. Then

√
nA(β̂OPLS − βOPLS)

D→ Nk(0, λ
2AΣwAT ). (6.33)

Proof. a) Note that
√
n(wn − η)

D→ Np(0,Σw) by the multivariate cen-
tral limit theorem since the wi are iid with E(wi) = η = Cov(x, Y ) and
Cov(w) = Σw . Now nη̃n =
n∑

i=1

(xi − µx + µx − x)(Yi − µY + µY − Y ) =
∑

i

(xi − µx)(Yi − µY )

+
∑

i

(xi − µx)(µY − Y ) + (µx − x)
∑

i

(Yi − µY ) + n(µx − x)(µY − Y )

=
∑

i

wi − nan − nan + nan =
∑

i

wi − n(µx − x)(µY − Y ).

Thus
√

nη̃n =
√

n
1

n

∑

i

wi −
√

n(x − µx)
√

n(Y − µY)√
n

=
√

n wn + oP(1).

Hence
√

n(η̃n − η) =
√

n(wn − η) + oP(1).

Thus
√

n(η̃n − η)
D→ Np(0,Σw)

by Slutsky’s theorem. Now
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√
n(η̂ − η) =

√
n

(
n

n− 1
η̃ − η

)
=

√
n

(
n

n− 1
η̃ − n

n − 1
η +

n

n− 1
η − η

)

=
√
n

n

n − 1
(η̃ − η) +

√
n

(
η

n − 1

)
.

Thus
√

n(η̂n − η)
D→ Np(0,Σw).

b) See Olive et al. (2024).
c) If H0 is true, then Aη = 0, and

√
nA(β̂OPLS − βOPLS) =

√
nA(λ̂η̂ − λ̂η + λ̂η − βOPLS) =

λ̂A
√
n(η̂ − η) + A

√
n(λ̂ − λ)η = Zn + bn

D→ Nk(0, λ
2AΣwAT )

since bn = 0 when H0 is true. �

In Theorems 6.15 and 6.16, the scalars λ and λ̂ are given by Equation
(6.31), η = (η1, ..., ηp)

T , and Ση = Σw . Results from Su and Cook (2012)
and Olive et al. (2024), for example, show that elements of a sample covari-

ance matrix can be stacked to get large sample theory. Then λ̂ and η̂ can be
stacked as in Theorem 6.16 by the multivariate delta method. Theorem 6.15
c) and Theorem 6.16 c) are equivalent with different notation. Currently Σ
from Theorem 6.16 is difficult to estimate.

Theorem 6.16. Assume

√
n

((
λ̂
η̂

)
−
(
λ
η

))
D→ Np+1

((
0
0

)
,

(
Σλ Σλη

Σηλ Ση

))
∼ Np+1(0,Σ).

a)
√
n(η̂ − η)

D→ Np(0,Ση).

b)
√
n(λ̂η̂ − λη) =

√
n(β̂OPLS − βOPLS)

D→ Np

(
0,DΣDT

)
with D =

[η λIp] where Ip is the p× p identity matrix.
c) Let A be a k × p full rank constant matrix with k ≤ p and AβOPLS =

0 = Aη. Then

√
n(Aβ̂OPLS − 0)

D→ Nk

(
0, λ2AΣηAT

)
.

Proof. a) Follows by Equation (6.32) or since joint convergence in distri-
bution implies marginal convergence in distribution.

b) Follows by the Multivariate Delta Method with

g

(
λ
η

)
= λη =

(λη1, ..., ληp)
T , and the Jacobian matrix of partial derivatives D = Dg.
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c) By b),
√

n(Aβ̂OPLS − Aβ)
D→ Nk

(
0,ADΣDTAT

)
,

but AD = [0 λA]. Hence ADΣDTAT = λ2AΣηAT . �

Some additional useful OPLS and OLS formulas are derived next if the
cases are iid. Let β = βOLS. Then Σx,Y = Cov(x, Y ) = Cov(x)β = Σxβ.
Since Σx,Y = ΣxβOLS ,

βOPLS = λΣx,Y = λΣxβOLS , βOPLS = λCov(x)βOLS , and

βOLS =
1

λ
[Cov(x)]−1βOPLS .

6.6 MMLE

The marginal maximum likelihood estimator (MMLE or marginal least
squares estimator) is due to Fan and Lv (2008) and Fan and Song (2010).
This estimator computes the marginal regression of Y on xi resulting in the
estimator (α̂i,M , β̂i,M) for i = 1, ..., p. Then β̂MMLE = (β̂1,M , ..., β̂p,M)T .
For multiple linear regression, the marginal estimators are the simple linear
regression estimators, and (α̂i,M , β̂i,M ) = (α̂i,SLR, β̂i,SLR). Hence

β̂MMLE = [diag(Σ̂x)]−1Σ̂xY . (6.34)

If the ti are the predictors are scaled or standardized to have unit sample
variances, then

β̂MMLE = β̂MMLE(t, Y ) = Σ̂tY = I−1Σ̂tY = η̂OPLS(t, Y ) (6.35)

where (t, Y ) denotes that Y was regressed on t, and I is the p × p identity
matrix. Olive et al. (2024) gave some large sample theory for the MMLE.

6.7 OLS with Scaled Predictors

See Olive (2024).

6.8 GLMs and Related Regression Models

Definition 6.24. A parametric 1D regression model is Y |h(x) ∼
D(h(x), γ) or Yi|h(xi) ∼ D(h(xi), γ), where D is a parametric distribution
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that depends on the p × 1 vector of predictors x only through SP = h(x),
and γ is a q × 1 vector of parameters.

An important special case is a generalized additive model (GAM) from
Definition 6.4. Another large class of parametric 1D regression models uses
SP = h(x) = xTβ where β̂ is the MLE. Generalized linear models are a
special case. Some important 1D regression models are defined below. The
AER model is a 1D regression model that is not a not a parametric 1D
regression model.

Definition 6.25. i) The additive error regression (AER) model
Y = SP + e has conditional mean function E(Y |SP ) = SP and conditional
variance function V (Y |SP ) = σ2 = V (e). The response plot of ESP versus
Y and the residual plot of ESP versus r = Y − Ŷ are used just as for
multiple linear regression. The estimated model (conditional) mean function
is the identity line Y = ESP . The response transformation model is Y =
t(Z) = SP + e where the response transformation t(Z) can be found using a
graphical method.

ii) The binary regression model is Y ∼ binomial

(
1, ρ =

eSP

1 + eSP

)
.

This model has E(Y |SP ) = ρ = ρ(SP ) and V (Y |SP ) = ρ(SP )(1 − ρ(SP )).

Then ρ̂ =
eESP

1 + eESP
is the estimated mean function.

iii) The binomial regression model is Yi ∼ binomial

(
mi, ρ =

eSP

1 + eSP

)
.

Then E(Yi|SPi) = miρ(SPi) and V (Yi|SPi) = miρ(SPi)(1 − ρ(SPi)), and

Ê(Yi|xi) = miρ̂ =
mie

ESP

1 + eESP
is the estimated mean function.

iv) The Poisson regression (PR) model Y ∼ Poisson
(
eSP
)

has
E(Y |SP ) = V (Y |SP ) = exp(SP ). The estimated mean and variance func-
tions are Ê(Y |x) = eESP .

v) Suppose Y has a gamma G(ν, λ) distribution so that E(Y ) = νλ and
V (Y ) = νλ2. The Gamma regression model Y ∼ G (ν, λ = µ(SP )/ν)
has E(Y |SP ) = µ(SP ) and V (Y |SP ) = [µ(SP )]2/ν. The estimated mean
function is Ê(Y |x) = µ(ESP ). The choices µ(SP ) = SP , µ(SP ) = exp(SP )
and µ(SP ) = 1/SP are common. Since µ(SP ) > 0, Gamma regression mod-
els that use the identity or reciprocal link run into problems if µ(ESP ) is
negative for some of the cases.

Alternatives to the binomial and Poisson regression models are needed
because often the mean function for the model is good, but the variance
function is not: there is overdispersion.

A useful alternative to the binomial regression model is a beta–binomial
regression (BBR) model. Following Simonoff (2003, pp. 93-94) and Agresti
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(2002, pp. 554-555), let δ = ρ/θ and ν = (1 − ρ)/θ, so ρ = δ/(δ + ν) and

θ = 1/(δ+ν). Let B(δ, ν) =
Γ (δ)Γ (ν)

Γ (δ + ν)
. If Y has a beta–binomial distribution,

Y ∼ BB(m, ρ, θ), then the probability mass function of Y is P (Y = y) =(
m

y

)
B(δ + y, ν +m− y)

B(δ, ν)
for y = 0, 1, 2, ..., m where 0 < ρ < 1 and θ > 0.

Hence δ > 0 and ν > 0. Then E(Y ) = mδ/(δ + ν) = mρ and V(Y ) =
mρ(1− ρ)[1 + (m− 1)θ/(1 + θ)]. If Y |π ∼ binomial(m, π) and π ∼ beta(δ, ν),
then Y ∼ BB(m, ρ, θ). As θ → 0, it can be shown that V (π) → 0, and the
beta–binomial distribution converges to the binomial distribution.

Definition 6.26. The BBR model states that Y1, ..., Yn are independent
random variables where Yi|SPi ∼ BB(mi, ρ(SPi), θ). Hence E(Yi|SPi) =
miρ(SPi) and

V (Yi|SPi) = miρ(SPi)(1 − ρ(SPi))[1 + (mi − 1)θ/(1 + θ)].

The BBR model has the same mean function as the binomial regression
model, but allows for overdispersion. As θ → 0, it can be shown that the
BBR model converges to the binomial regression model.

A useful alternative to the PR model is a negative binomial regression
(NBR) model. If Y has a (generalized) negative binomial distribution, Y ∼
NB(µ, κ), then the probability mass function of Y is

P (Y = y) =
Γ (y+ κ)

Γ (κ)Γ (y+ 1)

(
κ

µ + κ

)κ (
1 − κ

µ+ κ

)y

for y = 0, 1, 2, ... where µ > 0 and κ > 0. Then E(Y ) = µ and V(Y ) =
µ+µ2/κ. (This distribution is a generalization of the negative binomial (κ, ρ)
distribution where ρ = κ/(µ + κ) and κ > 0 is an unknown real parameter
rather than a known integer.)

Definition 6.27. The negative binomial regression (NBR) model
is Y |SP ∼ NB(exp(SP), κ). Thus E(Y |SP ) = exp(SP ) and

V (Y |SP ) = exp(SP )

(
1 +

exp(SP )

κ

)
= exp(SP ) + τ exp(2 SP ).

The NBR model has the same mean function as the PR model but allows
for overdispersion. Following Agresti (2002, p. 560), as τ ≡ 1/κ → 0, it can
be shown that the NBR model converges to the PR model.

For GLMs, SP = xTβ, β̂ is the MLE, and the regularity conditions are
fairly reasonable because the distributions for the GLMs come from an ex-
ponential family. Overdispersion can be a problem. The assumptions on the
NBR and BBR models are stronger than those for GLMS.
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Remark 6.14. a) For binary logistic regression, the MLE does not exist
if the Yi = 0 cases and Yi = 1 cases can be separated in a plot of ESP versus
Y (on the vertical axis) by the vertical line at ESP = 0. Hence the Y values

of 0 and 1 are not nearly perfectly classified by the rule Ŷ = 1 if xTi β̂ > 0

and Ŷ = 0, otherwise.
b) For binomial regression, including binary regression, the MLE tends not

to exist if an estimated probability is 0 or one. The MLE tends to converge
if max(|xTi β̂|) = max(ESP ) ≤ 7.

c) For Poisson regression, the MLE tends to converge if max(|xTi β̂|) =
max(ESP ) ≤ 11.

For the parametric regression model Yi|xTi β ∼ D(xTi β, γ), assume
√
n(β̂−

β)
D→ Np(0,V (β)), and that V (β̂)

P→ V (β) as n → ∞. These assumptions

tend to be mild for a parametric regression model where the MLE β̂ is used.
Then V (β) = I−1(β), the inverse Fisher information matrix.

Consider a parametric regression model Yi|xTi β ∼ D(xTi β, γ), Under regu-

larity conditions,
√
n(β̂ −β)

D→ Np(0,V (β)), and V (β̂)
P→ V (β) as n→ ∞.

For the parametric regression model, we regress Y on X to obtain (β̂, γ̂)
where the n × 1 vector Y = (Yi) and the ith row of the n × p design ma-
trix X is xTi . For GLMs, see the following theorem, for example, in Sen and

Singer (1993, p. 309). Typically I(β̂) or Î(β̂) is a consistent estimator of I(β)
produced by the MLE method.

Theorem 6.17. For a parametric regression model, let β̂ be the MLE,
and let V (β) = I−1(β), the inverse Fisher information matrix. Then under

regularity conditions,
√
n(β̂ − β)

D→ Np(0,V (β)), and V (β̂)
P→ V (β) as

n→ ∞.

6.9 Survival Regression

Several important survival regression models are 1D regression models with
SP = xTβ, including the Cox (1972) proportional hazards regression model.
The following survival regression models are parametric. The accelerated fail-
ure time model has log(Y ) = α+ SPA + σe where SPA = uTβA, V (e) = 1,
and the ei are iid from a location scale family. If the Yi are lognormal, the ei
are normal. If the Yi are loglogistic, the ei are logistic. If the Yi are Weibull,
the ei are from a smallest extreme value distribution. The Weibull regression
model is a proportional hazards model using Yi and an accelerated failure
time model using log(Yi) with βP = βA/σ. Let Y hav a Weibull W (γ, λ)
distribution if the pdf of Y is

f(y) = λγyγ−1 exp[−λyγ ]
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for y > 0. Prediction intervals for parametric survival regression models are
for survival times Y , not censored survival times. See Section 6.13.

Definition 10.26. The Weibull proportional hazards regression model is

Y |SP ∼W (γ = 1/σ, λ0 exp(SP )),

where λ0 = exp(−α/σ).

In the following theorem, right censoring is allowed by the regularity condi-
tions. The Cox PH estimator is computed by maximizing a partial likelihood
and is known as a PMLE. If the Weibull regression estimator is the MLE,
Theorem 6.17 applies.

Theorem 6.18. For the Cox PH estimator β̂, under regularity conditions,√
n(β̂ − β)

D→ Np(0,V (β)), and V (β̂)
P→ V (β) as n → ∞.

6.10 Bootstrapping Some Regression Models

6.10.1 Parametric Bootstrap

For the parametric regression model Yi|xTi β ∼ D(xTi β, γ) of Definition 6.24,

assume
√
n(β̂ − β)

D→ Np(0,V (β)), and that V (β̂)
P→ V (β) as n → ∞.

These assumptions tend to be mild for a parametric regression model where
the MLE β̂ is used. Then V (β) = I−1(β), the inverse Fisher information
matrix. For GLMs, see, for example, Sen and Singer (1993, p. 309). For the

parametric regression model, we regress Y on X to obtain (β̂, γ̂) where the
n× 1 vector Y = (Yi) and the ith row of the n × p design matrix X is xTi .
See Section 6.2 for the parametric bootstrap for the OLS MLR model.

The parametric bootstrap uses Y ∗
j = (Y ∗

i ) where Y ∗
i |xi ∼ D(xTi β̂, γ̂)

for i = 1, ...., n. Regress Y ∗
j on X to get β̂

∗
j for j = 1, ..., B. The large

sample theory for β̂
∗

is simple. Note that if Y ∗
i |xi ∼ D(xTi b, γ̂) where b

does not depend on n, then (Y ∗,X) follows the parametric regression model

with parameters (b, γ̂). Hence
√
n(β̂

∗ − b)
D→ Np(0,V (b)). Now fix large

integer n0, and let b = β̂no
. Then

√
n(β̂

∗ − β̂no
)
D→ Np(0,V (β̂no

)). Since

Np(0,V (β̂))
D→ Np(0,V (β)), we have

√
n(β̂

∗ − β̂)
D→ Np(0,V (β)) (6.36)

as n → ∞. See Theorem 5.1.
Now suppose S ⊆ I. Without loss of generality, let β = (βTI ,β

T
O)T and β̂ =

(β̂(I)T , β̂(O)T )T . Then (Y ,XI) follows the parametric regression model with
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parameters (βI , γ). Hence
√
n(β̂I − βI)

D→ NaI (0,V (βI)). Now (Y ∗,XI)

only follows the parametric regression model asymptotically, since β̂(O) 6= 0.

Then showing
√
n(β̂

∗
Ij
− β̂Ij

)
D→ Naj (0,V j) is often difficult.

6.10.2 Nonparametric Bootstrap

The nonparametric bootstrap (also called the empirical bootstrap, naive
bootstrap, and the pairs bootstrap) draws a sample of n cases (Y ∗

i ,x
∗
i )

with replacement from the n cases (Yi,xi), and regresses the Y ∗
i on the

x∗
i to get β̂

∗
V S,1, and then draws another sample to get β̂

∗
MIX,1. This pro-

cess is repeated B times to get the two bootstrap samples for i = 1, ..., B. If√
n(β̂

∗−β̂)
D→ Np(0,V ) for the full model, then

√
n(β̂

∗
Ij
−β̂Ij

)
D→ Naj (0,V j)

when S ⊆ Ij: just use Ij as the new full model. The method is used for multi-
ple linear regression, Cox proportional hazards regression with right censored
Yi, and GLMs. See, for example, Burr (1994), Efron and Tibshirani (1986),
Freedman (1981), and Shao and Tu (1995, pp. 335-349).

6.11 Variable Selection

Variable selection, also called subset or model selection, is the search for a
subset of predictor variables that can be deleted with little loss of information
if n/p is large.

Consider 1D regression models that study the conditional distribution
Y |xTβ of the response variable Y given a single linear combination of the
predictors xTβ. Many important regression models satisfy this condition,
including multiple linear regression, the Nelder and Wedderburn (1972) gen-
eralized linear models (GLMs), and the Cox (1972) proportional hazards
regression model. Forward selection or backward elimination with the Akaike
(1973) AIC criterion or Schwarz (1978) BIC criterion are often used for vari-
able selection.

Sparse regression methods can also be used for variable selection even if
n/p is not large: the regression submodel, such as a Nelder and Wedderburn
(1972) generalized linear model (GLM), uses the predictors that had nonzero
sparse regression estimated coefficients. These methods include least angle re-
gression, lasso, relaxed lasso, elastic net, and sparse regression by projection.
Least angle regression variable selection is the LARS-OLS hybrid estimator
of Efron et al. (2004, p. 421). Lasso variable selection is called relaxed lasso
by Hastie, Tibshirani, and Wainwright (2015, p. 12), and the relaxed lasso
estimator with φ = 0 by Meinshausen (2007, p. 376). Also see Fan and Li
(2001), Friedman, Hastie, and Tibshirani (2010), Qi et al. (2015), Simon et
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al. (2011), Tay, Narasimhan, and Hastie (2023), Tibshirani (1996), and Zou
and Hastie (2005). The Meinshausen (2007) relaxed lasso estimator fits lasso
with penalty λn to get a subset of variables with nonzero coefficients, and
then fits lasso with a smaller penalty φn to this subset of variables where n
is the sample size.

Following Olive and Hawkins (2005), a model for variable selection can be
described by

xTβ = xTSβS + xTEβE = xTSβS (6.37)

where x = (xTS ,x
T
E)T , xS is an aS × 1 vector, and xE is a (p − aS) × 1

vector. Given that xS is in the model, βE = 0 and E denotes the subset of
terms that can be eliminated from the model given that the subset S is in
the model.

Since S is unknown, candidate subsets will be examined. Let xI be the
vector of a terms from a candidate subset indexed by I, and let xO be the
vector of the remaining predictors (out of the candidate submodel). Then

xTβ = xTI βI + xTOβO.

Suppose that S is a subset of I and that model (6.37) holds. Then

xTβ = xTSβS = xTSβS + xTI/Sβ(I/S) + xTO0 = xTI βI

where xI/S denotes the predictors in I that are not in S. Since this is true
regardless of the values of the predictors, βO = 0 and the sample correlation
corr(xTi β,xTI,iβI) = 1.0 for the population model if S ⊆ I. The estimated

sufficient predictor (ESP) is xT β̂, and a submodel I is worth considering if
the correlation corr(ESP,ESP (I)) ≥ 0.95.

To clarify notation, suppose p = 4, a constant x1 = 1 corresponding
to β1 is always in the model, and β = (β1 , β2, 0, 0)T . Then there are J =
2p−1 = 8 possible subsets of {1, 2, ..., p} that contain 1, including I1 = {1}
and S = I2 = {1, 2}. There are 2p−aS = 4 subsets such that S ⊆ Ij . Let

β̂I2 = (β̂1, β̂2)
T and xI2 = (x1, x2)

T . We may use the notation I = F for the
full model in the following definition.

Definition 6.28. The model Y |xTβ that uses all of the predictors is called
the full model. A model Y |xTI βI that uses a subset xI of the predictors is
called a submodel. The full model is always a submodel. The full model
has sufficient predictor SP = xTβ and the submodel has SP = xTI βI .

Let Imin correspond to the set of predictors selected by a variable selection
method such as forward selection or lasso variable selection. If β̂I is a×1, use

zero padding to form the p×1 vector β̂I,0 from β̂I by adding 0s corresponding

to the omitted variables. For example, if p = 4 and β̂Imin
= (β̂1, β̂3)

T , then

the observed variable selection estimator β̂V S = β̂Imin,0 = (β̂1 , 0, β̂3, 0)T . As
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a statistic, β̂V S = β̂Ik,0 with probabilities πkn = P (Imin = Ik) for k = 1, ..., J
where there are J subsets, e.g. J = 2p − 1.

The large sample theory for β̂MIX , defined below, is useful for explaining

the large sample theory of β̂V S . Review Section 1.8 for mixture distributions.

Definition 6.29. The variable selection estimator β̂V S = β̂Imin,0, and

β̂V S = β̂Ik,0 with probabilities πkn = P (Imin = Ik) for k = 1, ..., J where
there are J subsets.

Definition 6.30. Let β̂MIX be a random vector with a mixture distribu-

tion of the β̂Ik,0 with probabilities equal to πkn. Hence β̂MIX = β̂Ik,0 with

same probabilities πkn of the variable selection estimator β̂V S , but the Ik are
randomly selected.

Inference will consider bootstrap hypothesis testing with confidence inter-
vals (CIs) and regions. Consider testing H0 : θ = θ0 versus H1 : θ 6= θ0

where θ0 is a known g × 1 vector. A large sample 100(1 − δ)% confidence
region for θ is a set An such that P (θ ∈ An) is eventually bounded below by
1− δ as the sample size n→ ∞. Then reject H0 if θ0 is not in the confidence
region. Let the g × 1 vector Tn be an estimator of θ. Let T ∗

1 , ..., T
∗
B be the

bootstrap sample for Tn. Let A be a full rank g × p constant matrix. For
variable selection, test H0 : Aβ = θ0 versus H1 : Aβ 6= θ0 with θ = Aβ.

Then let Tn = Aβ̂SEL and let T ∗
i = Aβ̂

∗
SEL for i = 1, ..., B and SEL is V S

or MIX. See Section 5.4 for the bootstrap confidence regions that will be
used for variable selection inference.

6.11.1 Large Sample Theory for Variable Selection
Estimators

The Theorems 6.19 and 6.20 in this subsection are due to Rathnayake and
Olive (2023), and generalize the Pelawa Watagoda and Olive (2021ab) theory
for multiple linear regression to many other models. The theory assumes that
there is a “true model” S and that at least one subset I is considered such
that S ⊆ I. For example, with forward selection and backward elimination,
the theory assumes that the full model contains S. The theory does not hold
if the true model S is not a subset of any of the considered models. For
example, S could contain some interactions that were not included in the
“full” model. Checking that the full model is good is important.

Assume p is fixed. Suppose model (6.37) holds, and that if S ⊆ Ij where

the dimension of Ij is aj , then
√
n(β̂Ij

−βIj
)
D→ Naj (0,V j) where V j is the

covariance matrix of the asymptotic multivariate normal distribution. Then
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√
n(β̂Ij,0 − β)

D→ Np(0,V j,0) (6.38)

where V j,0 adds columns and rows of zeros corresponding to the xi not in
Ij, and V j,0 is singular unless Ij corresponds to the full model. This large
sample theory holds for many models, including multiple linear regression fit
by least squares (OLS), GLMs fit by maximum likelihood, and Cox regression
fit by maximum partial likelihood. See, for example, Sen and Singer (1993,
pp. 280, 309).

The first assumption in Theorem 6.19 is P (S ⊆ Imin) → 1 as n → ∞.
Then the variable selection estimator corresponding to Imin underfits with
probability going to zero, and the assumption holds under regularity condi-
tions if BIC or AIC is used for many parametric regression models such as
GLMs. See Charkhi and Claeskens (2018) and Claeskens and Hjort (2008, pp.
70, 101, 102, 114, 232). This assumption is a necessary condition for a vari-
able selection estimator to be a consistent estimator. See Zhao and Yu (2006).
Thus if a sparse estimator that does variable selection is a consistent estima-
tor of β, then P (S ⊆ Imin) → 1 as n → ∞. Hence Theorem 6.19c) proves
that the lasso variable selection and elastic net variable selection estimators
are

√
n consistent estimators of β if lasso and elastic net are consistent. Also

see Theorem 6.20. The assumption on ujn in Theorem 6.19 is reasonable by

(6.38) since S ⊆ Ij for each πj, and since β̂MIX uses random selection.
Consider the assumption P (S ⊆ Imin) → 1 as n → ∞ for multiple linear

regression. Charkhi and Claeskens (2018) proved the assumption holds for
AIC for a wide variety of error distributions. Shao (1993) gave similar results
for AIC, BIC, and Cp. The assumption holds for lasso variable selection and

elastic net variable selection provided that λ̂n/n → 0 as n → ∞ so lasso

and elastic net are consistent estimators. Here λ̂n is the shrinkage penalty
parameter selected after k-fold cross validation. See Theorems 6.11, 6.12,
Pelawa Watogoda and Olive (2021b) and Knight and Fu (2000).

Next we will consider P (S ⊆ Imin) → 1 for multiple linear regression with
the Mallows (1973) Cp criterion. For MLR, recall that if the candidate model
of xI has k terms (including the constant), then the partial F statistic for
testing whether the p− k predictor variables in xO can be deleted is

FI =
SSE(I) − SSE

(n− k) − (n − p)
/
SSE

n− p
=
n− p

p− k

[
SSE(I)

SSE
− 1

]

where SSE is the error sum of squares from the full model, and SSE(I) is the
error sum of squares from the candidate submodel. An important criterion
for variable selection is the Cp criterion.

Definition 6.31.

Cp(I) =
SSE(I)

MSE
+ 2k − n = (p − k)(FI − 1) + k
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where MSE is the error mean square for the full model.

Note that when H0 : βO = 0 is true, (p− k)(FI − 1) + k
D→ χ2

p−k + 2k− p
for a large class of iid error distributions. Minimizing Cp(I) is equivalent to
minimizing MSE [Cp(I)] = SSE(I) + (2k − n)MSE = rT (I)r(I) + (2k −
n)MSE.

Assume each submodel contains a constant. Let submodel I have k ≤ p
predictors including a constant. Then Cp(I) ≥ −p. Assume the full model
F is one of the submodels considered with Cp(F ) = p, e.g. forward selec-
tion, backward elimination, stepwise selection, and all subsets selection. Then
−p ≤ Cp(Imin) ≤ p. Let r be the residual vector for the full model and rI
that for the submodel. Then the correlation

corr(r, rI) =

√
n− p

Cp(I) + n− 2k

by Theorem 10.3 and Olive and Hawkins (2005). Thus corr(r, rImin) → 1 as
n→ ∞. Referring to Equation (6.37), if P (S ⊆ Imin) does not go to 1 as n →
∞, then the above correlation would not go to one. Hence P (S ⊆ Imin) → 1
as n → ∞. This result is due to Rathnayake and Olive (2023).

Theorem 6.19 a) proves that u is a mixture distribution of the uj with
probabilities πj, E(u) = 0, and Cov(u) = Σu =

∑
j πjV j,0. Some of the

submodels Ik will have πk = 0. For example, since the probability of underfit-
ting goes to zero, every submodel Ik that underfits has πk = 0. Hence S ⊆ Ij
corresponding to the πj > 0. If πd = 1, then submodel Id is picked with
probability going to 1 as n→ ∞, and Id is the only submodel with a positive
πk. Often πd = πS in the literature. For Tn = Aβ̂MIX with θ = Aβ, we have√
n(Tn − θ)

D→ v by (6.40) where E(v) = 0, and Σv =
∑

j πjAV j,0A
T .

Theorem 6.19. Assume P (S ⊆ Imin) → 1 as n → ∞, and let β̂MIX =

β̂Ik,0 with probabilities πkn where πkn → πk as n→ ∞. Denote the positive

πk by πj. Assume ujn =
√
n(β̂Ij,0 − β)

D→ uj ∼ Np(0,V j,0). a) Then

un =
√
n(β̂MIX − β)

D→ u (6.39)

where the cdf of u is Fu(t) =
∑

j πjFuj
(t). Thus u has a mixture distribution

of the uj with probabilities πj, E(u) = 0, and Cov(u) = Σu =
∑

j πjV j,0.
b) Let A be a g × p full rank matrix with 1 ≤ g ≤ p. Then

vn = Aun =
√
n(Aβ̂MIX − Aβ)

D→ Au = v (6.40)

where v has a mixture distribution of the vj = Auj ∼ Ng(0,AV j,0A
T ) with

probabilities πj .
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c) The estimator β̂V S is a
√
n consistent estimator of β:

√
n(β̂V S −β) =

OP (1).

d) If πd = 1, then
√
n(β̂SEL − β)

D→ u ∼ Np(0,V d,0) where SEL is V S
or MIX.

Proof. a) Since un has a mixture distribution of the ukn with probabilities
πkn, the cdf of un is Fun

(t) =
∑

k πknFukn
(t) → Fu(t) =

∑
j πjFuj

(t) at
continuity points of the Fuj

(t) as n→ ∞.

b) Since un
D→ u, then Aun

D→ Au.
c) The result follows since selecting from a finite number J of

√
n consistent

estimators (even on a set that goes to one in probability) results in a
√
n

consistent estimator by Pratt (1959).
d) If πd = 1, there is no selection bias, asymptotically. The result also follows
by Pötscher (1991, Lemma 1). �

The following subscript notation is useful. Subscripts before the MIX
are used for subsets of β̂MIX = (β̂1, ..., β̂p)

T . Let β̂i,MIX = β̂i. Similarly, if

I = {i1, ..., ia}, then β̂I,MIX = (β̂i1 , ..., β̂ia)
T . Subscripts after MIX denote

the ith vector from a sample β̂MIX,1, ..., β̂MIX,B . Similar notation is used for

other estimators such as β̂V S . The subscript 0 is still used for zero padding.

We may use FULL to denote the full model β̂ = β̂FULL.
Typically the mixture distribution is not asymptotically normal unless a

πd = 1 (e.g. if S is the full model), or if for each πj, Auj ∼ Ng(0,AV j,0A
T ) =

Ng(0,AΣAT ). Then
√
n(Aβ̂MIX −Aβ)

D→ Au ∼ Ng(0,AΣAT ). This spe-

cial case occurs for β̂S,MIX if
√
n(β̂ − β)

D→ Np(0,V ) where the asymptotic

covariance matrix V is diagonal and nonsingular. Then β̂S,MIX and β̂S,FULL
have the same multivariate normal limiting distribution. For several criteria,
this result should hold for β̂V S since asymptotically,

√
n(Aβ̂V S − Aβ) is

selecting from the Auj which have the same distribution. In the simulations

when V is diagonal, the confidence regions applied to Aβ̂
∗
SEL = Bβ̂

∗
S,SEL

had similar volume and cutoffs where SEL is MIX, V S, or FULL.
Theorem 6.19 can be used to justify prediction intervals after variable

selection. See Olive, Rathnayake, and Haile (2022). Theorem 6.19d) is useful
for variable selection consistency and the oracle property where πd = πS = 1 if
P (Imin = S) → 1 as n → ∞. See Claeskens and Hjort (2008, pp. 101-114) and
Fan and Li (2001) for references. A necessary condition for P (Imin = S) → 1
is that S is one of the models considered with probability going to one. This
condition holds under very strong regularity conditions for fast methods. See
Wieczorek and Lei (2022) for forward selection and Hastie, Tibshirani, and
Wainwright (2015, pp. 295-302) for lasso, where the predictors need a “near
orthogonality” condition.

Remark 6.15. If A1, A2, ..., Ak are pairwise disjoint and if ∪ki=1Ai = S,
then the collection of sets A1, A2, ..., Ak is a partition of S. Then the Law of
Total Probability states that if A1, A2, ..., Ak form a partition of S such that



6.11 Variable Selection 245

P (Ai) > 0 for i = 1, ..., k, then

P (B) =
k∑

j=1

P (B ∩Aj) =
k∑

j=1

P (B|Aj)P (Aj).

Let sets Ak+1, ..., Am satisfy P (Ai) = 0 for i = k+1, ..., m.Define P (B|Aj) =
0 if P (Aj) = 0. Then a Generalized Law of Total Probability is

P (B) =

m∑

j=1

P (B ∩Aj) =

m∑

j=1

P (B|Aj)P (Aj),

and will be used in the proof of the result in the following paragraph.

Pötscher (1991) used the conditional distribution of β̂V S |(β̂V S = β̂Ik,0
)

to find the distribution of wn =
√
n(β̂V S−β). Let β̂

C

Ik,0 be a random vector

from the conditional distribution β̂Ik,0|(β̂V S = β̂Ik,0). Let wkn =
√
n(β̂Ik,0−

β)|(β̂V S = β̂Ik,0) ∼ √
n(β̂

C

Ik,0 − β). Denote Fz(t) = P (z1 ≤ t1, ..., zp ≤ tp)
by P (z ≤ t). Then Pötscher (1991) and Pelawa Watagoda and Olive (2021b)
show

Fwn(t) = P [n1/2(β̂V S − β) ≤ t] =

J∑

k=1

Fwkn(t)πkn.

Hence β̂V S has a mixture distribution of the β̂
C

Ik,0 with probabilities πkn,
and wn has a mixture distribution of the wkn with probabilities πkn.

Proof: Let W = WV S = k if β̂V S = β̂Ik,0 where P (WV S = k) = πkn

for k = 1, ..., J. Then (β̂V S:n,WV S:n) = (β̂V S ,WV S) has a joint distribution

where the sample size n is usually suppressed. Note that β̂V S = β̂IW ,0. Then
by Remark 6.15,

Fwn(t) = P [n1/2(β̂V S − β) ≤ t] =

J∑

k=1

P [n1/2(β̂V S − β) ≤ t|(β̂V S = β̂Ik,0)]P (β̂V S = β̂Ik,0) =

J∑

k=1

P [n1/2(β̂Ik,0 − β) ≤ t|(β̂V S = β̂Ik,0)]πkn

=

J∑

k=1

P [n1/2(β̂
C

Ik,0 − β) ≤ t]πkn =

J∑

k=1

Fwkn
(t)πkn. �

Charkhi and Claeskens (2018) showed that wjn =
√
n(β̂

C

Ij,0
− β)

D→ wj

if S ⊆ Ij for the maximum likelihood estimator (MLE) with AIC, and gave
a forward selection example. They claim that wj is a multivariate truncated
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normal distribution (where no truncation is possible) that is symmetric about

0. Hence E(wj) = 0, and Cov(wj) = Σj exits. Note that both
√
n(β̂MIX−β)

and
√
n(β̂V S − β) are selecting from the ukn =

√
n(β̂Ik,0 − β) and asymp-

totically from the uj . The random selection for β̂MIX does not change the
distribution of ujn, but selection bias does change the distribution of the

selected ujn and uj to that of wjn and wj. The assumption that wjn
D→ wj

may not be mild. The proof for Equation (6.41) is the same as that for (6.39).
Theorem 6.20 proves that w is a mixture distribution of the wj with proba-
bilities πj.

Theorem 6.20. Assume P (S ⊆ Imin) → 1 as n → ∞, and let β̂V S =

β̂Ik,0 with probabilities πkn where πkn → πk as n→ ∞. Denote the positive

πk by πj. Assume wjn =
√
n(β̂

C

Ij,0
− β)

D→ wj. Then

wn =
√
n(β̂V S − β)

D→ w (6.41)

where the cdf of w is Fw(t) =
∑

j πjFwj
(t).

Proof. Since wn has a mixture distribution of the wkn with probabilities
πkn, the cdf of wn is Fwn

(t) =
∑

k πknFwkn
(t) → Fw(t) =

∑
j πjFwj

(t) at
continuity points of the Fwj (t) as n → ∞. �

Remark 6.16. If P (S ⊆ Imin) → 1 as n→ ∞, then β̂V S is a
√
n consis-

tent estimator of β since selecting from a finite number J of
√
n consistent

estimators (even on a set that goes to one in probability) results in a
√
n

consistent estimator by Pratt (1959). By both this result and Theorems 6.19
and 6.20, the lasso variable selection and elastic net variable selection esti-
mators are

√
n consistent if lasso and elastic net are consistent (which has

been shown for MLR).
Remark 6.17. It could be argued that βE = 0 in Equation (6.37) and

βO = 0 if S ⊆ I is a very strong regularity condition that is easy to simulate
but rarely holds for real data sets. Empirically, when n/p is large, good vari-

able selection methods select a subset I such that cor(xT β̂I ,x
T β̂) is quite

high. Data splitting can also be used for inference after variable selection.
See Section 6.12.

Example 6.1. This is an example where the πkn → πk as n → ∞. Assume
S ⊆ I where I has a predictors, including a constant. Then for a wide variety

of iid error distributions, FI
D→ X/(p−a) where X ∼ χ2

p−a. Let F denote the
full model, and let S = I = Ii be the model that deletes predictor xi with

a = p−1. Then from Definition 6.28, Cp(I)
D→ X+p−2 where X ∼ χ2

1. Let F
denote the full model and consider all subsets variable selection withCp. Since
only S and F do not underfit, only πS and πF are positive. Since Cp(F ) = p,
I = S is selected if Cp(I) < p. Hence πS = P (χ2

1 + p − 2 < p) = P (χ2
1 <

2) = 0.8427, and πF = 1 − πS = 0.1573. This result also holds for backward
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elimination since the probability that xi will be the first predictor deleted
goes to 1 as n → ∞ because Cp(Ii) = Cp(S) is bounded in probability while
Cp(Ij) diverges as n → ∞ for j 6= i. For forward selection with correlated
predictors, expect that πS < P (χ2

1 < 2), and hence πF > 1 − P (χ2
1 < 2).

For the R code below, β = (1, ..., 1, 0, ..., 0)T is a p×1 vector with k+1 ones
and p− k+ 1 zeroes. Hence k = p− 2 deletes the predictor xp. The function
belimsim generates 1000 data sets, performs backward elimination, and
finds the proportion of time the full model was selected, which was 0.158 ≈
0.1573.

belimsim(n=100,p=5,k=3,nruns=1000)

$fullprop

[1] 0.158

6.12 Bootstrapping Variable Selection Estimators

Obtaining the bootstrap samples for β̂V S and β̂MIX is simple. Generate Y ∗

and X∗ that would be used to produce β̂
∗

if the full model estimator β̂ was

being bootstrapped. Instead of computing β̂
∗
, compute the variable selection

estimator β̂
∗
V S,1 = β̂

∗C
Ik1 ,0

. Then generate another Y ∗ and X∗ and compute

β̂
∗
MIX,1 = β̂

∗
Ik1 ,0

(using the same subset Ik1). This process is repeated B
times to get the two bootstrap samples for i = 1, ..., B. Let the selection
probabilities for the bootstrap variable selection estimator be ρkn. Then this
bootstrap procedure bootstraps both β̂V S and β̂MIX with πkn = ρkn. Then
apply the confidence regions (5.31), (5.32), and (5.33) on the bootstrap sam-

ple T ∗
1 , ..., T

∗
B where T ∗

i = Aβ̂
∗
SEL,i where SEL is V S or MIX.

By Subsection 6.11.1, we expect the confidence regions to simulate well
(have coverage close to or higher than the nominal level so that the type I
error is close to or less than the nominal level) if πd = 1 or if the asymptotic
covariance matrix for the full model is nonsingular and diagonal, but these
conditions are very strong. In simulations for β̂V S with n ≥ 20p, if the con-
fidence regions (5.31) and (5.32) simulated well for the full model bootstrap,

then (5.31) and (5.32) also simulated well for β̂V S . The hybrid confidence re-

gion (5.33) had poorer performance, and confidence regions for β̂V S tended

to have less undercoverage than confidence regions for β̂
∗
MIX .

Undercoverage can occur if the bootstrap data cloud is less variable than
the iid data cloud, e.g., if n < 20p. Heuristically, if n ≥ 20p, then coverage can
be higher than the nominal coverage for two reasons: i) the bootstrap data
cloud T ∗

1 , ..., T
∗
B is more variable than the iid data cloud of T1, ..., TB, and

ii) zero padding. In the simulations for H0 : Aβ = BβS = θ, the simulated
coverage for confidence intervals and confidence regions (5.31) and (5.32) was
roughly 2% less than to 2% higher than the nominal 95% coverage due to
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i). In the simulations for H0 : Aβ = BβE = 0, the simulated coverage
for confidence intervals and confidence regions (5.31) and (5.32) tended to
be close to 99% when the nominal coverage was 95%, but the nominal 95%
confidence intervals tended to be shorter than those for the full model, and
the confidence region volumes were often much smaller than those for the
full model. See Pelawa Watagoda and Olive (2021a) for more on why zero
padding tends to increase the coverage while decreasing the volume of the
confidence regions and confidence intervals. The simulations also used B ≥
max(200, 50p) so that S∗

T is a good estimator of Cov(T ∗).

For H0 : βS = θ, we expect [S∗
T ]−1 and Ĉov(xS) = Σ̂xS to be close by

Remark 6.4 II).
The matrix S∗

T can be singular due to one or more columns of zeros
in the bootstrap sample for β1, ..., βp. The variables corresponding to these
columns are likely not needed in the model given that the other predictors
are in the model. A simple remedy is to add d bootstrap samples of the

full model estimator β̂
∗

= β̂
∗
FULL to the bootstrap sample. For example,

take d = dcBe with c = 0.01. A confidence interval [Ln, Un] can be com-
puted without S∗

T for (5.31), (5.32), and (5.33). Using the confidence interval
[max(Ln, T

∗
(1)),min(Un, T

∗
(B))] can give a shorter covering region.

Next we examine why the bootstrap data cloud tends to be more variable
than the iid data cloud. Let Bjn count the number of times T ∗

i = T ∗
ij in the

bootstrap sample. Then the bootstrap sample T ∗
1 , ..., T

∗
B can be written as

T ∗
1,1, ..., T

∗
B1n,1

, ..., T ∗
1,J, ..., T

∗
BJn,J

.

Denote T ∗
1j, ..., T

∗
Bjn,j

as the jth bootstrap component of the bootstrap sample

with sample mean T
∗
j and sample covariance matrix S∗

T,j. Similarly, we can
define the jth component of the iid sample T1, ..., TB to have sample mean
T j and sample covariance matrix ST,j.

Let Tn = β̂MIX . If S ⊆ Ij , assume
√
n(β̂Ij

− βIj
)
D→ Naj (0,V j) and

√
n(β̂

∗
Ij
− β̂Ij

)
D→ Naj (0,V j). Then by Equation (6.38),

√
n(β̂Ij ,0−β)

D→ Np(0,V j,0) and
√

n(β̂
∗
Ij,0−β̂Ij,0)

D→ Np(0,V j,0). (6.42)

If Equation (6.42) holds, then the component clouds have the same variability
asymptotically, and the confidence regions will shrink to a point at β as n →
∞, giving good test power, asymptotically. The iid data component clouds are
all centered at β. If the bootstrap data component clouds were all centered
at the same value β̃, then the bootstrap cloud would be like an iid data cloud
shifted to be centered at β̃, and (5.32) and (5.33) would be confidence regions
for θ = β by Theorem 5.3. Instead, the bootstrap data component clouds
are shifted slightly from a common center, and are each centered at a β̂Ij,0.
Geometrically, the shifting of the bootstrap component data clouds makes the
bootstrap data cloud more variable than the iid data cloud, asymptotically
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(we want n ≥ 20p). The shifting also makes the T ∗
i further from T

∗
than

if there is no shifting. A similar argument can be given for Tn = Aβ̂MIX

and θ = Aβ. Region (5.31) has the same volume as region (5.33), but tends

to have higher coverage since empirically, the bagging estimator T
∗

tends to
estimate θ at least as well as Tn for a mixture distribution.

The above argument is heuristic since we have not been able to prove
that the coverage is ≥ 1 − δ, asymptotically, except under strong regularity
conditions. Then the type I error ≤ δ, asymptotically. Confidence region
(5.32) rejects H0 if (Tn − θ0)

T [S∗
T ]−1(Tn − θ0) > D2

(UBT ). If an iid data

cloud was available, the cutoff D2
(UB)(Tn,S

∗
T ) could be computed from D2

i =

(Ti−θ0)
T [S∗

T ]−1(Ti−θ0) for i = 1, ..., B. Hence the type I error is controlled
if D2

(UBT ) tends to be larger than D2
(UB)(Tn,S

∗
T ).

The bootstrap component clouds for β̂
∗
V S are again separated compared

to the iid clouds for β̂V S , which are centered about β. Heuristically, most of
the selection bias is due to predictors in E, not to the predictors in S. Hence

β̂
∗
S,V S is roughly similar to β̂

∗
S,MIX . Typically the distributions of β̂

∗
E,V S and

β̂
∗
E,MIX are not similar, but use the same zero padding.
Next we will examine when Equation (6.42) holds. If S ⊆ Ij, then

√
n(β̂Ij

− βIj
)
D→ Naj (0,V j) by the large sample theory (6.38) for the es-

timator. Bootstrap theory should show that
√
n(β̂

∗ − β̂)
D→ Np(0,V ), but

showing
√
n(β̂

∗
Ij

− β̂Ij
)
D→ Naj (0,V j) is often difficult.

6.12.1 The Parametric Bootstrap

Section 6.10.1 shows that showing
√
n(β̂

∗
Ij

− β̂Ij
)

D→ Naj (0,V j) is often
difficult for the parametric bootstrap. Next, we will show that an exception
is multiple linear regression.

For the multiple linear regression model, Y = Xβ +e, assume a constant
x1 is in the model, and the zero mean ei are iid with variance V (ei) = σ2. Let
H = X(XTX)−1XT . For each I with S ⊆ I, assume the maximum leverage
maxi=1,...,nxTiI(X

T
I XI)

−1xiI → 0 in probability as n → ∞. For least squares

with S ⊆ I,
√
n(β̂I − βI)

D→ NaI (0,V I) where (XT
I XI)/(nσ

2)
P→ V −1

I . See
Theorem 6.3.

Consider the parametric bootstrap for the above model with Y ∗ ∼
Nn(Xβ̂, σ̂2

nI) ∼ Nn(HY , σ̂2
nI) where we are not assuming that the

ei ∼ N(0, σ2), and

σ̂2
n = MSE =

1

n − p

n∑

i=1

r2i
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where the residuals are from the full OLS model. Then MSE is a
√
n

consistent estimator of σ2 under mild conditions by Su and Cook (2012).

Thus β̂
∗
I = (XT

I XI)
−1XT

I Y ∗ ∼ NaI (β̂I , σ̂
2
n(X

T
I XI)

−1) since E(β̂
∗
I) =

(XT
I XI)

−1XT
I HY = β̂I because HXI = XI , and Cov(β̂

∗
I) = σ̂2

n(X
T
I XI)

−1.
Hence √

n(β̂
∗
I − β̂I) ∼ NaI (0, nσ̂

2
n(X

T
I XI)

−1)
D→ NaI (0,V I)

as n, B → ∞ if S ⊆ I. Hence Equation (6.42) holds under mild conditions.

When V is diagonal,
√
n(β̂S,full − βS)

D→ NaS (0,V S) where V S is
a diagonal matrix using the relevant diagonal elements of V . For multi-

ple linear regression with the parametric bootstrap, the full model β̂
∗ ∼

Np(β̂, σ̂
2
n(X

TX)−1) ≈ Np(β̂,V /n). If the columns of X are orthogonal

and S ⊆ I, then β̂
∗
S,I = β̂

∗
S,full and β̂S,I = β̂S,full . Hence

√
n(β̂

∗
S,MIX −

β̂S,full)
D→ NaS (0,V S). When V is diagonal, the columns of X are asymp-

totically orthogonal. Hence if S ⊆ I, β̂S,I ≈ β̂S,full ≈ T
∗
, and the bootstrap

component clouds have the same asymptotic variability as the iid data clouds.

Hence we expect the bootstrap cutoffs for Aβ̂
∗
S,MIX to be near χ2

g,1−δ. Re-
sults in Section 6.2 suggest that the residual bootstrap behaves similarly to
the parametric bootstrap, with σ̂2

n = MSE replaced by σ̃2
n = (n−p)MSE/n.

The weighted least squares formulation of the GLM maximum likelihood
estimator, given for example by Hillis and Davis (1994) and Sen and Singer
(1993, p. 307), suggests that similar results hold for the GLM when V is
diagonal.

6.12.2 The Residual Bootstrap

The residual bootstrap was described in Subsection 6.2.2. Review this subsec-

tion for MLR with OLS. For this residual bootstrap, β̂
∗
Ij

= (XT
Ij

XIj)
−1XT

Ij
Y ∗

= DjY
∗ with Cov(β̂

∗
Ij

) = σ2
n(X

T
Ij

XIj)
−1 andE(β̂

∗
Ij

) = (XT
Ij

XIj)
−1XT

Ij
E(Y ∗)

= (XT
Ij

XIj)
−1XT

Ij
HY = β̂Ij

since HXIj = XIj . The expectations are

with respect to the bootstrap distribution where Ŷ acts as a constant.
Thus for S ⊆ I and the residual bootstrap using residuals from the full

OLS model, E(β̂
∗
I ) = β̂I and nCov(β̂

∗
I) = n[(n− p)/n]σ̂2

n(X
T
I XI)

−1 P→ V I

as n → ∞ with σ̂2
n = MSE. Hence β̂

∗
I − β̂I

P→ 0 as n → ∞ by Lai et al.

(1979). Note that β̂
∗
I = β̂

∗
I,n and β̂I = β̂I,n depend on n.
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6.12.3 The Nonparametric Bootstrap

From results from Subsection 6.10.2, Equation (6.42) should hold for the
nonparametric bootstrap.

For the full MLR model with the nonparametric bootstrap,

Y ∗ = X∗β̂OLS + rW

and for a submodel I,

Y ∗ = X∗
I β̂I,OLS + rWI .

Freedman (1981) showed that under regularity conditions for the OLS MLR

model,
√
n(β̂

∗ − β̂)
D→ Np(0, σ

2W ) ∼ Np(0,V ). Hence if S ⊆ I,

√
n(β̂

∗
I − β̂I)

D→ NaI (0,V I)

as n → ∞. (Treat I as if I is the full model.)
One set of regularity conditions is that the MLR model holds, and if xi =

(1 uTi )T , then the wi = (Yi uTi )T are iid from some population with a
nonsingular covariance matrix.

The nonparametric bootstrap uses w∗
1, ...,w

∗
n where the w∗

i are sampled
with replacement from w1, ...,wn. By Example 5.11, E(w∗) = w, and

Cov(w∗) =
1

n

n∑

i=1

(wi − w)(wi − w)T = Σ̃w =

[
S̃2
Y Σ̃Yu

Σ̃uY Σ̃u

]
.

Note that β̂ is a constant with respect to the bootstrap distribution. Assume
all inverse matrices exist. Then it can be shown that

β̂
∗

=

[
β̂∗

1

β̂
∗
u

]
=

[
Y

∗ − β̂
∗T
u u∗

Σ̃
−1∗

u Σ̃
∗
uY

]
P→
[
Y − β̂

T

uu

Σ̃
−1

u Σ̃uY

]
=

[
β̂1

β̂u

]
= β̂

as B → ∞. This result suggests that the nonparametric bootstrap for OLS
MLR might work under milder regularity conditions than the wi being iid
from some population with a nonsingular covariance matrix.

6.13 Model Selection PLS and Model Selection PCR

In the fixed p setting, model selection PLS and model selection PCR can be
shown to give predictions similar to that of the OLS full model. To see this,
variable selection with the Mallows (1973) Cp(I) criterion will be useful.
Consider the OLS regression of Y on a constant and w = (W1, ...,Wp)

T
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where, for example, Wj = xj or Wj = η̂Tj x. Let I index the variables in the
model so I = {1, 2, 4} means that W1,W2, and W4 were selected. The full
model I = F uses all p predictors and the constant with βI = βF = β =
βOLS . Then by Theorem 10.3 (with p+1 parameters), suppose model I uses
k predictors including a constant with 2 ≤ k ≤ p+ 1. Then the model I with
k predictors that minimizes Cp(I) maximizes corr(r, rI), that

corr(r, rI) =

√
n− (p+ 1)

Cp(I) + n− 2k
,

and under linearity, corr(r, rI) → 1 forces

corr(α̂+ wTβ̂, α̂I + wT
I β̂I) = corr(ESP,ESP(I)) = corr(Ŷ, ŶI) → 1.

Thus Cp(I) ≤ 2k implies that corr(r, rI) ≥
√

1 − p + 1

n
. Let the model Imin

minimize the Cp criterion among the models considered with Cp(I) ≤ 2kI .
Then Cp(Imin) ≤ Cp(F ) = p + 1, and if PLS or PCR is selected using
model selection (on models I1, ..., Ip with Ij = {1, 2, ..., j} corresponding to
the j-component regression) with the Cp(I) criterion, and n ≥ 20(p + 1),

then corr(r, rI) ≥
√

19/20 = 0.974. Hence the correlation of ESP(I) and
ESP(F) will typically also be high. (For PCR, the following variant should
work better: take Uj = η̂j(PCR)Tx and W1 the Uj with the highest absolute
correlation with Y , W2 the Uj with the second highest absolute correlation,
etc.)

Good model selection criterion (such as k-fold cross validation) tend
to be similar to Cp(I), and also select model I such that corr(r, rI) and
corr(ESP,ESP (I)) are high. Hence if the full model is good and n >> p
is large, predictions from the model selection PLS and model selection PCR
will be similar to that of the full OLS model. Since PLS chooses components
that are correlated with Y , typically fewer PLS components should be needed
than PCR components, and model selection PLS will often outperform model
selection PCR.

For example, let Σx = diag(1, 2, ..., p) and β = 1 = (1, ..., 1)T. Let the

sample size n = 2000 and p = 100. Then β =
∑100

i=1 ηi(PCR), and model
selection PCR chose the k = 100 = p OLS estimator while model selection
PLS chose k = 6. Using β = (0, ..., 0, 1) = d100 corresponds to H1. Then
model selection PLS chose k = 2 components while model selection PCR
again chose k = 100 OLS. PCR and PLS were done using scaled predictors.
If unscaled predictors were used, then model selection PCR chose k = 89
components while model selection PLS chose k = 5. In all cases, the corre-
lations of the model selection residuals and OLS residuals were greater than
0.99. Computations were done in R with the Mevik, Wehrens, and Liland
(2015) pls package.
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library(pls)

set.seed(974)

n<-2000

p<- 100

A <- diag(sqrt(1:p))

beta <- 0*1:p + 1

x <- matrix(rnorm(n * p), nrow = n, ncol = p)

x <- x %*% A

SP <- x%*%beta

y <- SP + rnorm(n)

#MLRplot(x,y)

#OPLSplot(x,y)

#OPLSEEplot(x,y)

#plot(cor(x,y))

z <- as.data.frame(cbind(y,x))

out<-pcr(V1˜.,data=z,scale=T,validation="CV")

tem<-MSEP(out)

cvmse<-tem$val[,,1:(out$ncomp+1)][1,]

npcr <-max(which.min(cvmse)-1,1) #100

respcr <- out$residuals[,,npcr]

resols <- out$residuals[,,p]

out<-plsr(V1˜.,data=z,scale=T,validation="CV")

tem<-MSEP(out)

cvmse<-tem$val[,,1:(out$ncomp+1)][1,]

npls <-max(which.min(cvmse)-1,1) #6

res <- out$residuals[,,npls]

resols <- out$residuals[,,p]

cor(res,resols)

#[1] 0.9999812

plot(cvmse[2:101])

plot(cvmse[3:101])

plot(cvmse[4:101])

plot(cvmse[5:101])

plot(cvmse[6:101])

plot(cvmse[7:101])

beta <- 0*1:p

beta[p] <- 1

SP <- x%*%beta

y <- SP + rnorm(n)

z <- as.data.frame(cbind(y,x))

out<-pcr(V1˜.,data=z,scale=F,validation="CV")
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tem<-MSEP(out)

cvmse<-tem$val[,,1:(out$ncomp+1)][1,]

npcr <-max(which.min(cvmse)-1,1)

respcr <- out$residuals[,,npcr]

resols <- out$residuals[,,p]

#npcr=89

out<-plsr(V1˜.,data=z,scale=F,validation="CV")

tem<-MSEP(out)

cvmse<-tem$val[,,1:(out$ncomp+1)][1,]

npls <-max(which.min(cvmse)-1,1)

res <- out$residuals[,,npls]

resols <- out$residuals[,,p]

cor(res,resols)

#[1] 0.9974041

npls

#[1] 5

6.14 Prediction Intervals

This section follows Olive, Rathnayake, and Haile (2022) closely. For a para-

metric 1D regression model Y |h(xf ) ∼ D(h(xf ), γ), we need (ĥ(xf), γ̂) to
be a consistent estimator of (h(xf ), γ). Then draw a parametric bootstrap

sample Y ∗
1 , ..., Y

∗
B where the Y ∗

i are iid from the distribution D̂(ĥ(xf ), γ̂).
Then apply the shorth(c) prediction interval (4.3) to the bootstrap sample
to get a large sample 100(1 − δ)% prediction interval for Yf :

[Y ∗
(s), Y

∗
(s+c−1)] with c = min(B, dB[1 − δ + 1.12

√
δ/B ] e). (6.43)

The next PI is for use after variable selection. The prediction interval (6.43)
can have undercoverage if n is small compared to the number of estimated pa-
rameters. The modified shorth PI (6.44) inflates PI (6.43) to compensate for
parameter estimation and model selection. Let d be the number of variables
x∗1, ..., x

∗
d used by the full model, forward selection, backward elimination,

lasso, or lasso variable selection. (We could let d = j if j is the degrees of
freedom of the selected model if that model was chosen in advance without
model or variable selection. Hence d = j is not the model degrees of freedom
if model selection was used. For a GAM full model, suppose the “degrees
of freedom” di for S(xi) is bounded by k. We could let d = 1 +

∑p
i=2 di

with p ≤ d ≤ pk.) We want n ≥ 10d, and the prediction interval length will
be increased (penalized) if n/d is not large. For the second new prediction
interval, let qn = min(1 − δ + 0.05, 1− δ + d/n) for δ > 0.1 and
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qn = min(1 − δ/2, 1− δ + 10δd/n), otherwise.

If 1 − δ < 0.999 and qn < 1 − δ + 0.001, set qn = 1 − δ. Then compute the
shorth(cmod) PI

[Y ∗
(s), Y

∗
(s+cmod−1)] with cmod = min(B, dB[qn + 1.12

√
δ/B ] e). (6.44)

Olive (2007, 2013a, 2018) and Pelawa Watagoda and Olive (2021b) used
similar correction factors for additive error regression models Y = h(x) + e
since the maximum simulated undercoverage was about 0.05 when n = 20d.
If a q× 1 vector of parameters γ is also estimated, we may need to replace d
by dq = d+ q.

Remark 6.18. a) To show that (6.43) and (6.44) are large sample pre-
diction intervals for a parametric 1D regression model with SP = xTβ, we
need to show that (β̂Imin,0, γ̂Imin) is a consistent estimator of (β, γ) where
the full model β = βF . Hence we need P (S ⊆ Imin) → 1 as n → ∞ as in
Section 6.11.
b) Prediction intervals (6.43) and (6.44) often have higher than the nominal
coverage if n is large and Yf can only take on a few values. Consider binary
regression where Yf ∈ {0, 1} and the PIs (6.433) and (6.44) are [0,1] with
100% coverage, [0,0], or [1,1]. If [0,0] or [1,1] is the PI, coverage tends to be
higher than nominal coverage unless P (Yf = 1|xf ) is near δ or 1 − δ, e.g., if
P (Yf = 1|xf) = 0.01, then [0,0] has coverage near 99% even if 1− δ < 0.99.
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Fig. 6.1 Ceriodaphnia Data Response Plot.
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Example 6.2. For the Ceriodaphnia data of Myers et al. (2002, pp.
136-139), the response variable Y is the number of Ceriodaphnia organisms
counted in a container. The sample size was n = 70, and the predictors were
a constant (x1), seven concentrations of jet fuel (x2), and an indicator for
two strains of organism (x3). The jet fuel was believed to impair reproduc-
tion so high concentrations should have smaller counts. Figure 6.1 shows the
response plot of ESP versus Y for this data. In this plot, the lowess curve
is represented as a jagged curve to distinguish it from the estimated Poisson
regression mean function (the exponential curve). The horizontal line corre-
sponds to the sample mean Y . We also computed PI (6.44) using xf = xi for
i = 1, ..., n corresponding to the observed training data (xi, Yi). The circles
correspond to the Yi and the ×’s to the PIs (6.44) with d = 3. The n = 70
large sample 95% PIs contained 97% of the Yi. There was no evidence of
overdispersion for this example. There were 5 replications for each of the 14
strain–species combinations, which helps show the bootstrap PI variability
tracks the data variability when B = 1000. Increasing B from 1000 decreases
the average PI length slightly, but using B = 1000000 gave a plot very sim-
ilar to Figure 1 with similar coverage. Using B = 50 had longer PIs and
sometimes had undercoverage. Using B = 1000 several times gave coverage
between 97% and 100%.

This example illustrates a useful goodness of fit diagnostic: if the model
D is a useful approximation for the data and n is large enough, we expect
the coverage on the training data to be close to or higher than the nominal
coverage 1− δ. For example, there may be undercoverage if a Poisson regres-
sion model is used when a negative binomial regression model is needed, as
illustrated in the following example.

Example 6.3. For the species data of Johnson and Raven (1973), the
response variable is the total number of species recorded on each of n = 29
islands in the Galápagos Archipelago. We used a constant and the logarithm
of four predictors endem = the number of endemic species (those that were
not introduced from elsewhere), the area of the island, the distance to the
closest island, the areanear = the area of the closest island. The Poisson
regression response plot looks good, but Olive (2017b, pp. 438-440) showed
that there is overdispersion and that a negative binomial regression model
fits the data well. When the incorrect Poisson regression model was used, the
n large sample 95% PIs (6.44) contained 89.7% of the Yi.

Example 6.4. The Flury and Riedwyl (1988, pp. 5-6) banknote data con-
sists of 100 counterfeit and 100 genuine Swiss banknotes. The response vari-
able is an indicator for whether the banknote is counterfeit. The six predictors
are measurements on the banknote: bottom, diagonal, left, length, right, and
top. We used a constant, right, and bottom as predictors to get a model that
did not have perfect classification. The response plot for this model is shown
in the left plot of Figure 6.2 with Z = Zi = Yi/mi = Yi and the large sample
95% PIs for Zi = Yi. The circles correspond to the Yi and the ×’s to the
PIs (6.44) with d = 3, and 199 of the 200 PIs contain Yi. The PI [0,0] that
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Fig. 6.2 Banknote Data GLM and GAM Response Plots.

did not contain Yi corresponds to the circle in the upper left corner. The PIs
were [0,0], [0,1], or [1,1] since the data is binary. The mean function is the
smooth curve and the step function gives the sample proportion of ones in the
interval. The step function approximates the smooth curve closely, hence the
binary logistic regression model seems reasonable. The right plot of Figure
6.2 shows the GAM using right and bottom with d = 3. The coverage was
100% for the training data and the GAM had many [1,1] intervals.

6.15 Multivariate Linear Regression

Multivariate linear regression with m ≥ 2 response variables is nearly as
easy to use, at least if m is small, as multiple linear regression which has
1 response variable. For multivariate linear regression, at least one predictor
variable is quantitative. We will assume that a constant is in the model unless
told otherwise.

Definition 6.32. The response variables are the variables that you
want to predict. The predictor variables are the variables used to predict
the response variables.

Definition 6.33. The multivariate linear regression model
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yi = BTxi + εi

for i = 1, ..., n has m ≥ 2 response variables Y1, ..., Ym and p predictor
variables x1, x2, ..., xp where x1 ≡ 1 is the trivial predictor. The ith case
is (xTi , y

T
i )T = (1, xi2, ..., xip, Yi1, ..., Yim)T where the 1 could be omitted.

The model is written in matrix form as Z = XB + E where the matrices
are defined below. The model has E(εk) = 0 and Cov(εk) = Σε = (σij)
for k = 1, ..., n. Then the p×m coefficient matrix B =

[
β1 β2 . . . βm

]
and

the m × m covariance matrix Σε are to be estimated, and E(Z) = XB
while E(Yij) = xTi βj . The εi are assumed to be iid. Multiple linear regres-
sion corresponds to m = 1 response variable, and is written in matrix form
as Y = Xβ + e. Subscripts are needed for the m multiple linear regression
models Y j = Xβj+ej for j = 1, ..., mwhere E(ej) = 0. For the multivariate
linear regression model, Cov(ei, ej) = σij In for i, j = 1, ..., m where In is
the n× n identity matrix.

Notation. The multiple linear regression model uses m = 1. See
Definition 6.5. The multivariate linear model yi = BTxi + εi for i =
1, ..., n has m ≥ 2, and multivariate linear regression and MANOVA models
are special cases. This chapter will use x1 ≡ 1 for the multivariate linear
regression model. The multivariate location and dispersion model is
the special case where X = 1 and p = 1.

The data matrix W = [X Z] except usually the first column 1 of X is
omitted for software. The n×m matrix

Z =




Y1,1 Y1,2 . . . Y1,m

Y2,1 Y2,2 . . . Y2,m

...
...

. . .
...

Yn,1 Yn,2 . . . Yn,m


 =

[
Y 1 Y 2 . . . Y m

]
=




yT1
...

yTn


 .

The n× p design matrix of predictor variables is

X =




x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p

...
...

. . .
...

xn,1 xn,2 . . . xn,p


 =

[
v1 v2 . . . vp

]
=




xT1
...

xTn




where v1 = 1.
The p×m matrix

B =




β1,1 β1,2 . . . β1,m

β2,1 β2,2 . . . β2,m

...
...

. . .
...

βp,1 βp,2 . . . βp,m


 =

[
β1 β2 . . . βm

]
.
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The n×m matrix

E =




ε1,1 ε1,2 . . . ε1,m
ε2,1 ε2,2 . . . ε2,m
...

...
. . .

...
εn,1 εn,2 . . . εn,m


 =

[
e1 e2 . . . em

]
=




εT1
...

εTn


 .

Considering the ith row of Z,X, and E shows that yTi = xTi B + εTi .

Each response variable in a multivariate linear regression model follows a
multiple linear regression model Y j = Xβj + ej for j = 1, ..., m where it
is assumed that E(ej) = 0 and Cov(ej) = σjjIn. Hence the errors corre-
sponding to the jth response are uncorrelated with variance σ2

j = σjj. Notice
that the same design matrix X of predictors is used for each of the m
models, but the jth response variable vector Y j, coefficient vector βj , and
error vector ej change and thus depend on j.

Now consider the ith case (xTi , y
T
i )T which corresponds to the ith row of

Z and the ith row of X. Then



Yi1 = β11xi1 + · · ·+ βp1xip + εi1 = xTi β1 + εi1
Yi2 = β12xi1 + · · ·+ βp2xip + εi2 = xTi β2 + εi2

...
Yim = β1mxi1 + · · ·+ βpmxip + εim = xTi βm + εim




or yi = µxi
+ εi = E(yi) + εi where

E(yi) = µxi
= BTxi =




xTi β1

xTi β2
...

xTi βm


 .

The notation yi|xi and E(yi|xi) is more accurate, but usually the condi-
tioning is suppressed. Taking µxi

to be a constant (or condition on xi if the
predictor variables are random variables), yi and εi have the same covariance
matrix. In the multivariate regression model, this covariance matrix Σε does
not depend on i. Observations from different cases are uncorrelated (often
independent), but the m errors for the m different response variables for the
same case are correlated. If X is a random matrix, then assume X and E
are independent and that expectations are conditional on X .

Example 6.5. Suppose it is desired to predict the response variables Y1 =
height and Y2 = height at shoulder of a person from partial skeletal remains.
A model for prediction can be built from nearly complete skeletons or from
living humans, depending on the population of interest (e.g. ancient Egyp-
tians or modern US citizens). The predictor variables might be x1 ≡ 1, x2 =
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femur length, and x3 = ulna length. The two heights of individuals with
x2 = 200mm and x3 = 140mm should be shorter on average than the two
heights of individuals with x2 = 500mm and x3 = 350mm. In this example
Y1, Y2, x2, and x3 are quantitative variables. If x4 = gender is a predictor
variable, then gender (coded as male = 1 and female = 0) is qualitative.

Definition 6.34. Least squares is the classical method for fitting multi-
variate linear regression. The least squares estimators are

B̂ = (XTX)−1XTZ =
[
β̂1 β̂2 . . . β̂m

]
.

The predicted values or fitted values

Ẑ = XB̂ =
[
Ŷ 1 Ŷ 2 . . . Ŷ m

]
=




Ŷ1,1 Ŷ1,2 . . . Ŷ1,m

Ŷ2,1 Ŷ2,2 . . . Ŷ2,m

...
...

. . .
...

Ŷn,1 Ŷn,2 . . . Ŷn,m


 .

The residuals Ê = Z − Ẑ = Z − XB̂ =




ε̂T1
ε̂T2
...

ε̂Tn


 =

[
r1 r2 . . . rm

]
=




ε̂1,1 ε̂1,2 . . . ε̂1,m
ε̂2,1 ε̂2,2 . . . ε̂2,m
...

...
. . .

...
ε̂n,1 ε̂n,2 . . . ε̂n,m


 .

These quantities can be found from the m multiple linear regressions of Y j

on the predictors: β̂j = (XTX)−1XTY j, Ŷ j = Xβ̂j, and rj = Y j − Ŷ j

for j = 1, ..., m. Hence ε̂i,j = Yi,j − Ŷi,j where Ŷ j = (Ŷ1,j, ..., Ŷn,j)
T . Finally,

Σ̂ε,d =

(Z − Ẑ)T (Z − Ẑ)

n− d
=

(Z − XB̂)T (Z − XB̂)

n− d
=

Ê
T
Ê

n − d
=

1

n− d

n∑

i=1

ε̂iε̂
T
i .

The choices d = 0 and d = p are common. If d = 1, then Σ̂ε,d=1 = Sr, the
sample covariance matrix of the residual vectors ε̂i, since the sample mean
of the ε̂i is 0. Let Σ̂ε = Σ̂ε,p be the unbiased estimator of Σε. Also,

Σ̂ε,d = (n− d)−1ZT [I − X(XTX)−1X ]Z,

and
Ê = [I − X(XTX)−1X ]Z.
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6.15.1 Testing Hypotheses

This section considers testing a linear hypothesis H0 : LB = 0 versus
H1 : LB 6= 0 where L is a full rank r × p matrix.

Definition 6.35. Assume rank(X) = p. The total corrected (for the mean)
sum of squares and cross products matrix is

T = R + W e = ZT

(
In − 1

n
11T

)
Z.

Note that T /(n− 1) is the usual sample covariance matrix Σ̂y if all n of the
yi are iid, e.g. if B = 0. The regression sum of squares and cross products
matrix is

R = ZT

[
X(XTX)−1XT − 1

n
11T

]
Z = ZTXB̂ − 1

n
ZT11TZ.

Let H = B̂
T
LT [L(XTX)−1LT ]−1LB̂. The error or residual sum of squares

and cross products matrix is

W e = (Z − Ẑ)T (Z − Ẑ) = ZTZ − ZTXB̂ = ZT [In − X(XTX)−1XT ]Z.

Note that W e = Ê
T
Ê and W e/(n− p) = Σ̂ε.

Warning: SAS output uses E instead of W e.

The MANOVA table is shown below.

Summary MANOVA Table

Source matrix df

Regression or Treatment R p− 1
Error or Residual W e n− p

Total (corrected) T n− 1

Definition 6.36. Let λ1 ≥ λ2 ≥ · · · ≥ λm be the ordered eigenvalues of
W−1

e H. Then there are four commonly used test statistics.
The Roy’s maximum root statistic is λmax(L) = λ1.
The Wilks’ Λ statistic is Λ(L) = |(H + W e)

−1W e| = |W−1
e H + I|−1 =

m∏

i=1

(1 + λi)
−1.

The Pillai’s trace statistic is V (L) = tr[(H + W e)
−1H] =

m∑

i=1

λi
1 + λi

.
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The Hotelling-Lawley trace statistic is U(L) = tr[W−1
e H ] =

m∑

i=1

λi.

Typically some function of one of the four above statistics is used to get
pval, the estimated pvalue. Output often gives the pvals for all four test
statistics. Be cautious about inference if the last three test statistics do not
lead to the same conclusions (Roy’s test may not be trustworthy for r > 1).
Theory and simulations developed below for the four statistics will provide
more information about the sample sizes needed to use the four test statistics.
See the paragraphs after the following theorem for the notation used in that
theorem.

Theorem 6.21. The Hotelling-Lawley trace statistic

U(L) =
1

n− p
[vec(LB̂)]T [Σ̂

−1

ε ⊗ (L(XTX)−1LT )−1][vec(LB̂)]. (6.45)

Proof. Using the Searle (1982, p. 333) identity
tr(AGTDGC) = [vec(G)]T [CA ⊗ DT ][vec(G)], it follows that

(n− p)U(L) = tr[Σ̂
−1

ε B̂
T
LT [L(XTX)−1LT ]−1LB̂]

= [vec(LB̂)]T [Σ̂
−1

ε ⊗ (L(XTX)−1LT )−1][vec(LB̂)] = T where A = Σ̂
−1

ε ,

G = LB̂,D = [L(XTX)−1LT ]−1, and C = I. Hence (6.45) holds. �

Some notation is useful to show (6.45) and to show that (n−p)U(L)
D→ χ2

rm

under mild conditions if H0 is true. Following Henderson and Searle (1979),
let matrix A = [a1 a2 . . . ap]. Then the vec operator stacks the columns
of A on top of one another so

vec(A) =




a1

a2

...
ap


 .

Let A = (aij) be an m × n matrix and B a p × q matrix. Then the
Kronecker product of A and B is the mp× nq matrix

A ⊗ B =




a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
... · · ·

...
am1B am2B · · · amnB


 .

An important fact is that if A and B are nonsingular square matrices, then
[A⊗ B]−1 = A−1 ⊗ B−1. The following assumption is important.
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Assumption D1: Let hi be the ith diagonal element of X(XTX)−1XT .

Assume max1≤i≤n hi
P→ 0 as n → ∞, assume that the zero mean iid error

vectors have finite fourth moments, and assume that
1

n
XTX

P→ W−1.

Su and Cook (2012) proved a central limit type theorem for Σ̂ε and B̂ for
the partial envelopes estimator, and the least squares estimator is a special
case. These results prove the following theorem. Their theorem also shows
that for multiple linear regression (m = 1), σ̂2 = MSE is a

√
n consistent

estimator of σ2.

Theorem 6.22: Multivariate Least Squares Central Limit Theo-
rem (MLS CLT). For the least squares estimator, if assumption D1 holds,

then Σ̂ε is a
√
n consistent estimator of Σε and

√
n vec(B̂ − B)

D→ Npm(0,Σε ⊗ W ).

Theorem 6.23. If assumption D1 holds and if H0 is true, then

(n− p)U(L)
D→ χ2

rm.

Proof. By Theorem 6.22,
√
n vec(B̂−B)

D→ Npm(0,Σε⊗W ). Then un-

der H0,
√
n vec(LB̂)

D→ Nrm(0,Σε ⊗LWLT ), and n [vec(LB̂)]T [Σ−1
ε ⊗

(LWLT )−1][vec(LB̂)]
D→ χ2

rm. This result also holds if W and Σε are re-

placed by Ŵ = n(XTX)−1 and Σ̂ε. Hence under H0 and using the proof of
Theorem 6.21,

T = (n−p)U(L) = [vec(LB̂)]T [Σ̂
−1

ε ⊗(L(XTX)−1LT )−1][vec(LB̂)]
D→ χ2

rm.

�

Some more details on the above results may be useful. Consider testing a
linear hypothesis H0 : LB = 0 versus H1 : LB 6= 0 where L is a full rank
r × p matrix. For now assume the error distribution is multivariate normal
Nm(0,Σε). Then

vec(B̂ − B) =




β̂1 − β1

β̂2 − β2
...

β̂m − βm


 ∼ Npm(0,Σε ⊗ (XTX)−1)

where
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C = Σε⊗(XTX)−1 =




σ11(X
TX)−1 σ12(X

TX)−1 · · · σ1m(XTX)−1

σ21(X
TX)−1 σ22(X

TX)−1 · · · σ2m(XTX)−1

...
... · · ·

...

σm1(X
TX)−1 σm2(X

TX)−1 · · · σmm(XTX)−1


 .

Now let A be an rm×pm block diagonal matrix: A = diag(L, ...,L). Then

A vec(B̂ − B) = vec(L(B̂ − B)) =




L(β̂1 − β1)

L(β̂2 − β2)
...

L(β̂m − βm)


 ∼ Nrm(0,Σε ⊗ L(XTX)−1LT )

where D = Σε ⊗ L(XTX)−1LT = ACAT =




σ11L(XTX)−1LT σ12L(XTX)−1LT · · · σ1mL(XTX)−1LT

σ21L(XTX)−1LT σ22L(XTX)−1LT · · · σ2mL(XTX)−1LT

...
... · · ·

...

σm1L(XTX)−1LT σm2L(XTX)−1LT · · · σmmL(XTX)−1LT


 .

Under H0, vec(LB) = A vec(B) = 0, and

vec(LB̂) =




Lβ̂1

Lβ̂2
...

Lβ̂m


 ∼ Nrm(0,Σε ⊗ L(XTX)−1LT ).

Hence under H0,

[vec(LB̂)]T [Σ−1
ε ⊗ (L(XTX)−1LT )−1][vec(LB̂)] ∼ χ2

rm,

and

T = [vec(LB̂)]T [Σ̂
−1

ε ⊗ (L(XTX)−1LT )−1][vec(LB̂)]
D→ χ2

rm. (6.46)

A large sample level δ test will reject H0 if pval ≤ δ where

pval = P

(
T

rm
< Frm,n−mp

)
. (6.47)

Since least squares estimators are asymptotically normal, if the εi are iid
for a large class of distributions,
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√
n vec(B̂ − B) =

√
n




β̂1 − β1

β̂2 − β2
...

β̂m − βm




D→ Npm(0,Σε ⊗ W )

where
XTX

n

P→ W−1.

Then under H0,

√
n vec(LB̂) =

√
n




Lβ̂1

Lβ̂2
...

Lβ̂m




D→ Nrm(0,Σε ⊗ LWLT ),

and
n [vec(LB̂)]T [Σ−1

ε ⊗ (LWLT )−1][vec(LB̂)]
D→ χ2

rm.

Hence (6.46) holds, and (6.47) gives a large sample level δ test if the least
squares estimators are asymptotically normal.

Kakizawa (2009) showed, under stronger assumptions than Theorem 6.23,
that for a large class of iid error distributions, the following test statistics
have the same χ2

rm limiting distribution when H0 is true, and the same non-
central χ2

rm(ω2) limiting distribution with noncentrality parameter ω2 when
H0 is false under a local alternative. Hence the three tests are robust to the
assumption of normality. The limiting null distribution is well known when
the zero mean errors are iid from a multivariate normal distribution. See
Khattree and Naik (1999, p. 68): (n− p)U(L)

D→ χ2
rm, (n− p)V (L)

D→ χ2
rm,

and −[n − p − 0.5(m − r + 3)] log(Λ(L))
D→ χ2

rm. Results from Kshirsagar
(1972, p. 301) suggest that the third chi-square approximation is very good
if n ≥ 3(m+ p)2 for multivariate normal error vectors.

Theorems 6.21 and 6.23 are useful for relating multivariate tests with
the partial F test for multiple linear regression that tests whether a reduced
model that omits some of the predictors can be used instead of the full model
that uses all p predictors. The partial F test statistic is

FR =

[
SSE(R) − SSE(F )

dfR − dfF

]
/MSE(F )

where the residual sums of squares SSE(F ) and SSE(R) and degrees of
freedom dfF and dfr are for the full and reduced model while the mean
square error MSE(F ) is for the full model. Let the null hypothesis for the
partial F test be H0 : Lβ = 0 where L sets the coefficients of the predictors
in the full model but not in the reduced model to 0. Seber and Lee (2003, p.
100) shows that
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FR =
[Lβ̂]T (L(XTX)−1LT )−1[Lβ̂]

rσ̂2

is distributed as Fr,n−p if H0 is true and the errors are iid N(0, σ2). Note
that for multiple linear regression with m = 1, FR = (n − p)U(L)/r since

Σ̂
−1

ε = 1/σ̂2. Hence the scaled Hotelling Lawley test statistic is the partial
F test statistic extended to m > 1 predictor variables by Theorem 6.21.

By Theorem 6.23, for example, rFR
D→ χ2

r for a large class of nonnormal

error distributions. If Zn ∼ Fk,dn , then Zn
D→ χ2

k/k as dn → ∞. Hence using
the Fr,n−p approximation gives a large sample test with correct asymptotic
level, and the partial F test is robust to nonnormality.

Similarly, using an Frm,n−pm approximation for the following test statistics
gives large sample tests with correct asymptotic level by Kakizawa (2009) and
similar power for large n. The large sample test will have correct asymptotic
level as long as the denominator degrees of freedom dn → ∞ as n→ ∞, and
dn = n− pm reduces to the partial F test if m = 1 and U(L) is used. Then
the three test statistics are

−[n− p− 0.5(m− r + 3)]

rm
log(Λ(L)),

n− p

rm
V (L), and

n − p

rm
U(L).

By Berndt and Savin (1977) and Anderson (1984, pp. 333, 371),

V (L) ≤ − log(Λ(L)) ≤ U(L).

Hence the Hotelling Lawley test will have the most power and Pillai’s test
will have the least power.

Following Khattree and Naik (1999, pp. 67-68), there are several ap-
proximations used by the SAS software. For the Roy’s largest root test, if
h = max(r,m), use

n− p− h+ r

h
λmax(L) ≈ F (h, n− p− h+ r).

The simulations in Olive (2017b) suggest that this approximation is good for
r = 1 but poor for r > 1. Anderson (1984, p. 333) stated that Roy’s largest
root test has the greatest power if r = 1 but is an inferior test for r > 1. Let
g = n−p−(m−r+1)/2, u = (rm−2)/4 and t =

√
r2m2 − 4/

√
m2 + r2 − 5 for

m2+r2−5 > 0 and t = 1, otherwise. Assume H0 is true. Thus U
P→ 0, V

P→ 0,

and Λ
P→ 1 as n → ∞. Then

gt− 2u

rm

1 − Λ1/t

Λ1/t
≈ F (rm, gt− 2u) or (n − p)t

1 − Λ1/t

Λ1/t
≈ χ2

rm.

For large n and t > 0, − log(Λ) = −t log(Λ1/t) = −t log(1 + Λ1/t − 1) ≈
t(1 − Λ1/t) ≈ t(1 − Λ1/t)/Λ1/t. If it can not be shown that
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(n− p)[− log(Λ) − t(1 − Λ1/t)/Λ1/t]
P→ 0 as n → ∞,

then it is possible that the approximate χ2
rm distribution may be the limiting

distribution for only a small class of iid error distributions. When the εi are
iid Nm(0,Σε), there are some exact results. For r = 1,

n− p−m+ 1

m

1 − Λ

Λ
∼ F (m, n− p−m+ 1).

For r = 2,

2(n− p−m+ 1)

2m

1 − Λ1/2

Λ1/2
∼ F (2m, 2(n− p−m+ 1)).

For m = 2,
2(n− p)

2r

1 − Λ1/2

Λ1/2
∼ F (2r, 2(n− p)).

Let s = min(r,m), m1 = (|r −m| − 1)/2 and m2 = (n− p−m− 1)/2. Note
that s(|r −m| + s) = min(r,m)max(r,m) = rm. Then

n − p

rm

V

1 − V/s
=

n− p

s(|r −m| + s)

V

1 − V/s
≈ 2m2 + s+ 1

2m1 + s+ 1

V

s− V
≈

F (s(2m1+s+1), s(2m2+s+1)) ≈ F (s(|r−m|+s), s(n−p)) = F (rm, s(n−p)).
This approximation is asymptotically correct by Slutsky’s theorem since

1− V/s
P→ 1. Finally,

n− p

rm
U =

n− p

s(|r −m| + s)
U ≈ 2(sm2 + 1)

s2(2m1 + s+ 1)
U ≈ F (s(2m1 + s+ 1), 2(sm2 + 1))

≈ F (s(|r −m| + s), s(n − p)) = F (rm, s(n− p)).

This approximation is asymptotically correct for a wide range of iid error
distributions.

Multivariate analogs of tests for multiple linear regression can be derived
with appropriate choice of L. Assume a constant x1 = 1 is in the model. As
a textbook convention, use δ = 0.05 if δ is not given.

The four step MANOVA test of linear hypotheses is useful.
i) State the hypotheses H0 : LB = 0 and H1 : LB 6= 0.
ii) Get test statistic from output.
iii) Get pval from output.
iv) State whether you reject H0 or fail to reject H0. If pval ≤ δ, reject H0

and conclude that LB 6= 0. If pval > δ, fail to reject H0 and conclude that
LB = 0 or that there is not enough evidence to conclude that LB 6= 0.
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The MANOVA test of H0 : B = 0 versus H1 : B 6= 0 is the special case

corresponding to L = I and H = B̂
T
XTXB̂ = Ẑ

T
Ẑ, but is usually not a

test of interest.

The analog of the ANOVA F test for multiple linear regression is the
MANOVA F test that uses L = [0 Ip−1] to test whether the nontrivial
predictors are needed in the model. This test should reject H0 if the response
and residual plots look good, n is large enough, and at least one response
plot does not look like the corresponding residual plot. A response plot for
Yj will look like a residual plot if the identity line appears almost horizontal,

hence the range of Ŷj is small. Response and residual plots are often useful
for n ≥ 10p.

The 4 step MANOVA F test of hypotheses uses L = [0 Ip−1].
i) State the hypotheses H0: the nontrivial predictors are not needed in the
mreg model H1: at least one of the nontrivial predictors is needed.
ii) Find the test statistic F0 from output.
iii) Find the pval from output.
iv) If pval ≤ δ, reject H0. If pval > δ, fail to reject H0. If H0 is rejected,
conclude that there is a mreg relationship between the response variables
Y1, ..., Ym and the predictors x2, ..., xp. If you fail to reject H0, conclude
that there is a not a mreg relationship between Y1, ..., Ym and the predictors
x2, ..., xp. (Or there is not enough evidence to conclude that there is a
mreg relationship between the response variables and the predictors. Get the
variable names from the story problem.)

The Fj test of hypotheses uses Lj = [0, ..., 0, 1, 0, ..., 0], where the 1 is in
the jth position, to test whether the jth predictor xj is needed in the model
given that the other p− 1 predictors are in the model. This test is an analog
of the t tests for multiple linear regression. Note that xj is not needed in the
model corresponds to H0 : Bj = 0 while xj needed in the model corresponds

to H1 : Bj 6= 0 where BT
j is the jth row of B.

The 4 step Fj test of hypotheses uses Lj = [0, ..., 0, 1, 0, ..., 0] where the 1
is in the jth position.
i) State the hypotheses H0 : xj is not needed in the model
H1 : xj is needed.
ii) Find the test statistic Fj from output.
iii) Find pval from output.
iv) If pval ≤ δ, reject H0. If pval > δ, fail to reject H0. Give a nontechnical
sentence restating your conclusion in terms of the story problem. If H0 is
rejected, then conclude that xj is needed in the mreg model for Y1, ..., Ym
given that the other predictors are in the model. If you fail to reject H0, then
conclude that xj is not needed in the mreg model for Y1, ..., Ym given that
the other predictors are in the model. (Or there is not enough evidence to
conclude that xj is needed in the model. Get the variable names from the
story problem.)
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The Hotelling Lawley statistic

Fj =
1

dj
B̂
T

j Σ̂
−1

ε B̂j =
1

dj
(β̂j1, β̂j2, ..., β̂jm)Σ̂

−1

ε




β̂j1
β̂j2
...

β̂jm




where B̂
T

j is the jth row of B̂ and dj = (XTX)−1
jj , the jth diagonal entry of

(XTX)−1. The statistic Fj could be used for forward selection and backward
elimination in variable selection.

The 4 step MANOVA partial F test of hypotheses has a full model
using all of the variables and a reduced model where r of the variables are
deleted. The ith row of L has a 1 in the position corresponding to the ith
variable to be deleted. Omitting the jth variable corresponds to the Fj test
while omitting variables x2, ..., xp corresponds to the MANOVA F test. Using
L = [0 Ik] tests whether the last k predictors are needed in the multivariate
linear regression model given that the remaining predictors are in the model.
i) State the hypotheses H0: the reduced model is good H1: use the full
model.
ii) Find the test statistic FR from output.
iii) Find the pval from output.
iv) If pval ≤ δ, reject H0 and conclude that the full model should be used.
If pval > δ, fail to reject H0 and conclude that the reduced model is good.

The lspack function mltreg produces the m response and residual plots,
gives B̂, Σ̂ε, the MANOVA partial F test statistic and pval corresponding
to the reduced model that leaves out the variables given by indices (so x2

and x4 in the output below with F = 0.77 and pval = 0.614), Fj and the pval
for the Fj test for variables 1, 2, ..., p (where p = 4 in the output below so
F2 = 1.51 with pval = 0.284), and F0 and pval for the MANOVA F test (in
the output below F0 = 3.15 and pval= 0.06). Right click Stop on the plots
m times to advance the plots and to get the cursor back on the command
line in R.

The command out <- mltreg(x,y,indices=c(2)) would produce
a MANOVA partial F test corresponding to the F2 test while the command
out <- mltreg(x,y,indices=c(2,3,4)) would produce a MANOVA
partial F test corresponding to the MANOVA F test for a data set with
p = 4 predictor variables. The Hotelling Lawley trace statistic is used in the
tests.

out <- mltreg(x,y,indices=c(2,4))

$Bhat

[,1] [,2] [,3]

[1,] 47.96841291 623.2817463 179.8867890
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[2,] 0.07884384 0.7276600 -0.5378649

[3,] -1.45584256 -17.3872206 0.2337900

[4,] -0.01895002 0.1393189 -0.3885967

$Covhat

[,1] [,2] [,3]

[1,] 21.91591 123.2557 132.339

[2,] 123.25566 2619.4996 2145.780

[3,] 132.33902 2145.7797 2954.082

$partial

partialF Pval

[1,] 0.7703294 0.6141573

$Ftable

Fj pvals

[1,] 6.30355375 0.01677169

[2,] 1.51013090 0.28449166

[3,] 5.61329324 0.02279833

[4,] 0.06482555 0.97701447

$MANOVA

MANOVAF pval

[1,] 3.150118 0.06038742

#Output for Example 6.6

y<-marry[,c(2,3)]; x<-marry[,-c(2,3)];

mltreg(x,y,indices=c(3,4))

$partial

partialF Pval

[1,] 0.2001622 0.9349877

$Ftable

Fj pvals

[1,] 4.35326807 0.02870083

[2,] 600.57002201 0.00000000

[3,] 0.08819810 0.91597268

[4,] 0.06531531 0.93699302

$MANOVA

MANOVAF pval

[1,] 295.071 1.110223e-16

Example 6.6. The above output is for the Hebbler (1847) data from
the 1843 Prussia census. Sometimes if the wife or husband was not at the
household, then s/he would not be counted. Y1 = number of married civilian
men in the district, Y2 = number of women married to civilians in the district,
x2 = population of the district in 1843, x3 = number of married military men
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in the district, and x4 = number of women married to military men in the
district. The reduced model deletes x3 and x4. The constant uses x1 = 1.

a) Do the MANOVA F test.
b) Do the F2 test.
c) Do the F4 test.
d) Do an appropriate 4 step test for the reduced model that deletes x3

and x4.
e) The output for the reduced model that deletes x1 and x2 is shown below.

Do an appropriate 4 step test.

$partial

partialF Pval

[1,] 569.6429 0

Solution:
a) i) H0: the nontrivial predictors are not needed in the mreg model

H1: at least one of the nontrivial predictors is needed
ii) F0 = 295.071
iii) pval = 0
iv) Reject H0, the nontrivial predictors are needed in the mreg model.

b) i) H0: x2 is not needed in the model H1: x2 is needed
ii) F2 = 600.57
iii) pval = 0
iv) Reject H0, population of the district is needed in the model.

c) i) H0: x4 is not needed in the model H1: x4 is needed
ii) F4 = 0.065
iii) pval = 0.937
iv) Fail to reject H0, number of women married to military men is not

needed in the model given that the other predictors are in the model.

d) i) H0: the reduced model is good H1: use the full model.
ii) FR = 0.200
iii) pval = 0.935
iv) Fail to reject H0, so the reduced model is good.
e) i) H0: the reduced model is good H1: use the full model.
ii) FR = 569.6
iii) pval = 0.00
iv) Reject H0, so use the full model.

6.15.2 Asymptotically Optimal Prediction Regions

In this section, we will consider a more general multivariate regression model,
and then consider the multivariate linear model as a special case. Given n
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cases of training or past data (x1, y1), ..., (xn, yn) and a vector of predictors
xf , suppose it is desired to predict a future test vector yf .

Definition 6.37. A large sample 100(1−δ)% prediction region is a set An

such that P (yf ∈ An) → 1−δ as n→ ∞, and is asymptotically optimal if the
volume of the region converges in probability to the volume of the population
minimum volume covering region.

The classical large sample 100(1− δ)% prediction region for a future value
xf given iid data x1, ..., ,xn is {x : D2

x(x,S) ≤ χ2
p,1−δ}, while for multi-

variate linear regression, the classical large sample 100(1 − δ)% prediction
region for a future value yf given xf and past data (x1, yi), ..., (xn, yn) is

{y : D2
y(ŷf , Σ̂ε) ≤ χ2

m,1−δ}. See Johnson and Wichern (1988, pp. 134, 151,
312). This region may work for multivariate normal xi or εi, but otherwise
tends to have undercoverage. Section 4.2 and Olive (2013a) replaced χ2

p,1−δ
by the order statistic D2

(Un) where Un decreases to dn(1 − δ)e. This section

will use a similar technique from Olive (2018) to develop possibly the first
practical large sample prediction region for the multivariate linear model with
unknown error distribution. The following technical theorem will be needed
to prove Theorem 6.25.

Theorem 6.24. Let a > 0 and assume that (µ̂n, Σ̂n) is a consistent
estimator of (µ, aΣ).

a) D2
x(µ̂n, Σ̂n) − 1

aD
2
x(µ,Σ) = oP (1).

b) Let 0 < δ ≤ 0.5. If (µ̂n, Σ̂n)− (µ, aΣ) = Op(n
−δ) and aΣ̂

−1

n −Σ−1 =
OP (n−δ), then

D2
x(µ̂n, Σ̂n) − 1

a
D2

x(µ,Σ) = OP (n−δ).

Proof. Let Bn denote the subset of the sample space on which Σ̂n has an
inverse. Then P (Bn) → 1 as n→ ∞. Now

D2
x(µ̂n, Σ̂n) = (x − µ̂n)

T Σ̂
−1

n (x − µ̂n) =

(x− µ̂n)T
(

Σ−1

a
− Σ−1

a
+ Σ̂

−1

n

)
(x − µ̂n) =

(x− µ̂n)T
(−Σ−1

a
+ Σ̂

−1

n

)
(x − µ̂n) + (x − µ̂n)

T

(
Σ−1

a

)
(x − µ̂n) =

1

a
(x − µ̂n)

T (−Σ−1 + a Σ̂
−1

n )(x − µ̂n) +

(x− µ + µ − µ̂n)T
(

Σ−1

a

)
(x − µ + µ − µ̂n)
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=
1

a
(x − µ)TΣ−1(x − µ) +

2

a
(x − µ)TΣ−1(µ− µ̂n)+

1

a
(µ − µ̂n)

TΣ−1(µ − µ̂n) +
1

a
(x − µ̂n)

T [aΣ̂
−1

n − Σ−1](x− µ̂n)

on Bn, and the last three terms are oP (1) under a) and OP (n−δ) under b).
�

Now suppose a prediction region for an m× 1 random vector yf given a
vector of predictors xf is desired for the multivariate linear model. If we had

many cases zi = BTxf + εi, then we could use the multivariate prediction
region for m variables from Section 4.2. Instead, Theorem 6.25 will use the
nonparametric prediction region from Section 4.2 on the pseudodata ẑi =

B̂
T
xf+ε̂i = ŷf+ε̂i for i = 1, ..., n. This takes the data cloud of the n residual

vectors ε̂i and centers the cloud at ŷf . Note that ẑi = (B − B + B̂)Txf +

(εi−εi+ ε̂i) = zi+(B̂−B)Txf+ ε̂i−εi = zi+(B̂−B)Txf −(B̂−B)Txi =
zi+OP (n−1/2). Hence the distances based on the zi and the distances based
on the ẑi have the same quantiles, asymptotically (for quantiles that are
continuity points of the distribution of zi).

If the εi are iid from an ECm(0,Σ, g) distribution with continuous de-
creasing g and nonsingular covariance matrix Σε = cΣ for some con-
stant c > 0, then the population asymptotically optimal prediction region
is {y : Dy(BTxf ,Σε) ≤ D1−δ} where P (Dy(BTxf ,Σε) ≤ D1−δ) = 1 − δ.

For example, if the iid εi ∼ Nm(0,Σε), then D1−δ =
√
χ2
m,1−δ. If the er-

ror distribution is not elliptically contoured, then the above region still has
100(1− δ)% coverage, but prediction regions with smaller volume may exist.

A natural way to make a large sample prediction region is to estimate the
target population minimum volume covering region, but for moderate sam-
ples and many error distributions, the natural estimator that covers dn(1−δ)e
of the cases tends to have undercoverage as high as min(0.05, δ/2). This em-
pirical result is not too surprising since it is well known that the performance
of a prediction region on the training data is superior to the performance on
future test data, due in part to the unknown variability of the estimator. To
compensate for the undercoverage, let qn be as in Theorem 6.25.

Theorem 6.25. Suppose yi = E(yi|xi) + εi = ŷi + ε̂i where Cov(εi) =
Σε > 0, and where the zero mean εf and the εi are iid for i = 1, ..., n.

Given xf , suppose the fitted model produces ŷf and nonsingular Σ̂ε. Let
ẑi = ŷf + ε̂i and

D2
i ≡ D2

i (ŷf , Σ̂ε) = (ẑi − ŷf )
T Σ̂

−1

ε (ẑi − ŷf )

for i = 1, ..., n. Let qn = min(1 − δ + 0.05, 1− δ +m/n) for δ > 0.1 and

qn = min(1 − δ/2, 1− δ + 10δm/n), otherwise.
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If qn < 1 − δ + 0.001, set qn = 1 − δ. Let 0 < δ < 1 and h = D(Un) where
D(Un) is the 100 qnth sample quantile of the Mahalanobis distances Di. Let
the nominal 100(1 − δ)% prediction region for yf be given by

{z : (z − ŷf )
T Σ̂

−1

ε (z − ŷf ) ≤ D2
(Un)} =

{z : D2
z(ŷf , Σ̂ε) ≤ D2

(Un)} = {z : Dz (ŷf , Σ̂ε) ≤ D(Un)}. (6.48)

a) Consider the n prediction regions for the data where (yf,i,xf,i) =
(yi,xi) for i = 1, ..., n. If the order statistic D(Un) is unique, then Un of the
n prediction regions contain yi where Un/n→ 1 − δ as n → ∞.

b) If (ŷf , Σ̂ε) is a consistent estimator of (E(yf),Σε), then (6.48) is a
large sample 100(1− δ)% prediction region for yf .

c) If (ŷf , Σ̂ε) is a consistent estimator of (E(yf ),Σε), and the εi come
from an elliptically contoured distribution such that the unique highest den-
sity region is {z : Dz(0,Σε) ≤ D1−δ}, then the prediction region (6.48) is
asymptotically optimal.

Proof. a) Suppose (xf , yf ) = (xi, yi). Then

D2
yi

(ŷi, Σ̂ε) = (yi − ŷi)
T Σ̂

−1

ε (yi − ŷi) = ε̂Ti Σ̂
−1

ε ε̂i = D2
ε̂i

(0, Σ̂ε).

Hence yi is in the ith prediction region {z : Dz(ŷi, Σ̂ε) ≤ D(Un)(ŷi, Σ̂ε)}
iff ε̂i is in prediction region {z : Dz(0, Σ̂ε) ≤ D(Un)(0, Σ̂ε)}, but exactly Un
of the ε̂i are in the latter region by construction, if D(Un) is unique. Since
D(Un) is the 100(1− δ)th percentile of the Di asymptotically, Un/n→ 1− δ.

b) Let P [Dz(E(yf ),Σε) ≤ D1−δ(E(yf),Σε)] = 1 − δ. Since Σε > 0,

Theorem 6.24 shows that if (ŷf , Σ̂ε)
P→ (E(yf ),Σε) then D(ŷf , Σ̂ε)

D→
Dz(E(yf ),Σε). Hence the percentiles of the distances converge in distribu-

tion, and the probability that yf is in {z : Dz (ŷf , Σ̂ε) ≤ D1−δ(ŷf , Σ̂ε)}
converges to 1 − δ = the probability that yf is in {z : Dz(E(yf ),Σε) ≤
D1−δ(E(yf),Σε)} at continuity points D1−δ of the distribution ofD(E(yf ),
Σε).

c) The asymptotically optimal prediction region is the region with the
smallest volume (hence highest density) such that the coverage is 1 − δ, as
n → ∞. This region is {z : Dz(E(yf),Σε) ≤ D1−δ(E(yf ),Σε)} if the
asymptotically optimal region for the εi is {z : Dz(0,Σε) ≤ D1−δ(0,Σε)}.
Hence the result follows by b). �

Notice that if Σ̂
−1

ε exists, then 100qn% of the n training data yi are in their
corresponding prediction region with xf = xi, and qn → 1−δ even if (ŷi, Σ̂ε)
is not a good estimator or if the regression model is misspecified. Hence the
coverage qn of the training data is robust to model assumptions. Of course the
volume of the prediction region could be large if a poor estimator (ŷi, Σ̂ε) is
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used or if the εi do not come from an elliptically contoured distribution. The
response, residual, and DD plots can be used to check model assumptions.
If the plotted points in the RMVN DD plot cluster tightly about some line
through the origin and if n ≥ max[3(m+p)2, mp+30], we expect the volume
of the prediction region may be fairly low for the least squares estimators.

If n is too small, then multivariate data is sparse and the covering ellipsoid
for the training data may be far too small for future data, resulting in severe
undercoverage. Also notice that qn = 1−δ/2 or qn = 1−δ+0.05 for n ≤ 20p.
At the training data, the coverage qn ≥ 1 − δ, and qn converges to the
nominal coverage 1− δ as n → ∞. Suppose n ≤ 20p. Then the nominal 95%
prediction region uses qn = 0.975 while the nominal 50% prediction region
uses qn = 0.55.Prediction distributions depend both on the error distribution
and on the variability of the estimator (ŷf , Σ̂ε). This variability is typically
unknown but converges to 0 as n→ ∞. Also, residuals tend to underestimate
errors for small n. For moderate n, ignoring estimator variability and using
qn = 1 − δ resulted in undercoverage as high as min(0.05, δ/2). Letting the
“coverage” qn decrease to the nominal coverage 1 − δ inflates the volume of
the prediction region for small n, compensating for the unknown variability
of (ŷf , Σ̂ε).

Consider the multivariate linear regression model. Let Σ̂ε = Σ̂ε,d=p, ẑi =
ŷf + ε̂i, and D2

i (ŷf ,Sr) = (ẑi − ŷf )
TS−1

r (ẑi − ŷf ) for i = 1, ..., n. Then the
large sample nonparametric 100(1− δ)% prediction region is

{z : D2
z(ŷf ,Sr) ≤ D2

(Un)} = {z : Dz (ŷf ,Sr) ≤ D(Un)}. (6.49)

Theorem 6.26 will show that this prediction region (6.49) can also be found
by applying the nonparametric prediction region (4.11) on the ẑi. Recall that
Sr defined in Definition 6.34 is the sample covariance matrix of the residual
vectors ε̂i. For the multivariate linear regression model, ifD1−δ is a continuity
point of the distribution of D, Assumption D1 above Theorem 6.22 holds,
and the εi have a nonsingular covariance matrix, then (6.49) is a large sample
100(1− δ)% prediction region for yf .

Theorem 6.26. For multivariate linear regression, when least squares is
used to compute ŷf , Sr , and the pseudodata ẑi, prediction region (6.49) is
the nonparametric prediction region (4.11) applied to the ẑi.

Proof. Multivariate linear regression with least squares satisfies Theorem
6.25 by Su and Cook (2012). (See Theorem 6.22.) Let (T,C) be the sample
mean and sample covariance matrix applied to the ẑi. The sample mean and
sample covariance matrix of the residual vectors is (0,Sr) since least squares
was used. Hence the ẑi = ŷf + ε̂i have sample covariance matrix Sr , and
sample mean ŷf . Hence (T,C) = (ŷf ,Sr), and the Di(ŷf ,Sr) are used to
compute D(Un). �

The nonparametric prediction region for multivariate linear regression of
Theorem 6.26 uses (T,C) = (ŷf ,Sr) in (6.48), and has simple geometry. Let
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Rr be the nonparametric prediction region (6.49) applied to the residuals ε̂i
with ŷf = 0. Then Rr is a hyperellipsoid with center 0, and the nonparamet-
ric prediction region is the hyperellipsoid Rr translated to have center ŷf .
Hence in a DD plot, all points to the left of the line MD = D(Un) correspond
to yi that are in their prediction region, while points to the right of the line
are not in their prediction region.

The nonparametric prediction region has some interesting properties. This
prediction region is asymptotically optimal if the εi are iid for a large class
of elliptically contoured ECm(0,Σ, g) distributions. Also, if there are 100
different values (xjf , yjf) to be predicted, we only need to update ŷjf for
j = 1, ..., 100, we do not need to update the covariance matrix Sr .

It is common practice to examine how well the prediction regions work on
the training data. That is, for i = 1, ..., n, set xf = xi and see if yi is in
the region with probability near to 1 − δ with a simulation study. Note that
ŷf = ŷi if xf = xi. Simulation is not needed for the nonparametric prediction
region (6.49) for the data since the prediction region (6.49) centered at ŷi
contains yi iff Rr, the prediction region centered at 0, contains ε̂i since ε̂i =
yi− ŷi. Thus 100qn% of prediction regions corresponding to the data (yi,xi)
contain yi, and 100qn% → 100(1 − δ)%. Hence the prediction regions work
well on the training data and should work well on (xf , yf ) similar to the
training data. Of course simulation should be done for test data (xf , yf)
that are not equal to training data cases.

This training data result holds provided that the multivariate linear regres-
sion using least squares is such that the sample covariance matrix Sr of the
residual vectors is nonsingular, the multivariate regression model need
not be correct. Hence the coverage at the n training data cases (xi, yi)
is robust to model misspecification. Of course, the prediction regions may
be very large if the model is severely misspecified, but severity of misspec-
ification can be checked with the response and residual plots. Coverage for
a future value yf can also be arbitrarily bad if there is extrapolation or if
(xf , yf ) comes from a different population than that of the data.

6.16 Data Splitting

Data splitting divides the training data set of n cases into two sets: H and
the validation set V where H has nH of the cases and V has the remaining
nV = n − nH cases i1, ..., inV . An application of data splitting is to use a
variable selection method, such as forward selection or lasso, on H to get
submodel Imin with a predictors, then fit the selected model to the cases in
the validation set V using standard inference. See, for example, Rinaldo et
al. (2019).

To help understand data splitting when the cases in H are randomly se-
lected, let I denote the predictors selected using H , possibly after variable
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selection or after looking at the data and building the model. Let β̂E(xI , Y )
be the estimator obtained by regressing Y on xI using the cases in V . Then
β̂E(xI , Y ) estimates βI = βI(xI , Y ). For example, if the cases are iid with

enough low order moments, then β̂OLS(xI , Y ) estimates βI = Σ−1
xI

ΣxI ,Y

while β̂OPLS(xI , Y ) estimates βI = λIΣxI ,Y . If the model is sparse, check
the fitted model with the same checks used for low dimensional data. For
data splitting in low dimensions, if the full model is good, then often model
(6.37) works well in that we can eliminate predictors and often do nearly as
well or better than the full model. In high dimensions, we often do not know
if the full model, that regresses Y on x, is good. The data splitting and high
dimensional regression literature often claims that βI,0(xI , Y ) = βE(x, Y ).
For example, βOPLS = βOLS = βOLS(x, Y ), or model (6.37) holds with
S ⊆ Imin and βImin

a k × 1 vector with aS ≤ k ≤ n/10. While these claims
can be true, the regularity conditions often become too strong as n/p→ 0.

Table 6.1 Regression Summary

low dimensions data splitting high dim. regularity
with sparse I conditions are too strong

general: β(x, Y ) = βI,0(xI , Y ) βI (xI , Y ) β(x, Y ) = βI,0(xI , Y )
data splitting: β(x, Y ) = βI,0(xI , Y ) βI (xI , Y ) β(x, Y ) = βI,0(xI , Y )

lasso: βlasso βI (xI , Y ) β(x, Y ) = βI,0(xI , Y )
OPLS: βOP LS = λΣx,Y βI,OP LS = λIΣxI,Y βOPLS = βOLS

MMLE: βMMLE = Σu,Y βI,MMLE = ΣuI,Y βMMLE = βOLS

Table 6.1 summarizes what the regression estimators tend to estimate in
low dimensions or after data splitting with a sparse fitted model I. The
third column of Table 6 gives some results in the high dimensional literature
where the regularity conditions are often too strong. In particular, often the
regularity conditions are too strong for low dimensional results to hold in
high dimensions.

6.17 Summary

1) a) MLR model 1 is

Yi = β1 + xi,2β2 + · · ·+ xi,pβp + ei = xTi β + ei

for i = 1, ..., n. Here n is the sample size and the random variable ei is the ith
error. Assume that the ei are iid with expected value E(ei) = 0 and variance
V (ei) = σ2. In matrix notation, these n equations become Y = Xβ + e.

b) MLR model 2 is

Yi = α+ xi,1β1 + · · ·+ xi,pβp + ei = α+ xTi β + ei
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for i = 1, ..., n. For this model, we may use φ = (α,βT )T with Y = Xφ + e.
2) For MLR model 1, the ordinary least squares OLS full model estimator

β̂OLS minimizesQOLS(β) =
∑n

i=1 r
2
i (β) = RSS(β) = (Y −Xβ)T (Y −Xβ).

In the estimating equations QOLS(β), the vector β is a dummy variable.

The minimizer β̂OLS estimates the parameter vector β for the MLR model

Y = Xβ + e. Note that β̂OLS ∼ ANp(β,MSE(XTX)−1).
3) Given an estimate b of β, the corresponding vector of predicted values

or fitted values is Ŷ ≡ Ŷ (b) = Xb. Thus the ith fitted value

Ŷi ≡ Ŷi(b) = xTi b = xi,1b1 + · · ·+ xi,pbp.

The vector of residuals is r ≡ r(b) = Y − Ŷ (b). Thus ith residual ri ≡
ri(b) = Yi − Ŷi(b) = Yi − xi,1b1 − · · · − xi,pbp. A response plot for MLR is a

plot of Ŷi versus Yi. A residual plot is a plot of Ŷi versus ri. If the ei are iid
from a unimodal distribution that is not highly skewed, the plotted points
should scatter about the identity line and the r = 0 line.

4) OLS CLTs. Consider the MLR model and assume that the zero mean
errors are iid with E(ei) = 0 and VAR(ei) = σ2. If the xi are random vectors,
assume that the cases (xi, Yi) are independent, and that the ei and xi are
independent. Also assume that maxi(h1, ..., hn) → 0 and

XTX

n
→ V −1

as n→ ∞ where the convergence is in probability if the xi are random vectors
(instead of nonstochastic constant vectors).

a) For MLR model 1, the OLS estimator β̂ satisfies

√
n(β̂ − β)

D→ Np(0, σ
2 V ).

Equivalently,

(XTX)1/2(β̂ − β)
D→ Np(0, σ

2 Ip).

b) For MLR model 2, the OLS estimator φ̂ satisfies

√
n(φ̂ − φ)

D→ Np+1(0, σ
2 V ).

c) Suppose the cases (xi, Yi) are iid from some population and the MLR
model 2 Yi = α + xTi β + ei holds. Assume that Σ−1

x and Σx,Y exist. Then
4b) holds and √

n(β̂ − β)
D→ Np(0, σ

2 Σ−1
x )

where β = βOLS = Σ−1
x Σx,Y .

5) A model for variable selection is xTβ = xTSβS + xTEβE = xTSβS where
x = (xTS ,x

T
E)T is a p×1 vector of predictors, xS is an aS ×1 vector, and xE
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is a (p−aS)×1 vector. Given that xS is in the model, βE = 0. Let xI be the
vector of a terms from a candidate subset indexed by I, and let xO be the
vector of the remaining predictors (out of the candidate submodel). If S ⊆ I,
then xTβ = xTSβS = xTSβS+xTI/Sβ(I/S) +xTO0 = xTI βI where xI/S denotes
the predictors in I that are not in S. Since this is true regardless of the values
of the predictors, βO = 0 if S ⊆ I. Note that βE = 0. Let kS = aS − 1 =
the number of population active nontrivial predictors. Then k = a− 1 is the
number of active predictors in the candidate submodel I.

6) If β̂I is a × 1, form the p × 1 vector β̂I,0 from β̂I by adding 0s cor-

responding to the omitted variables. For example, if p = 4 and β̂Imin
=

(β̂1, β̂3)
T , then β̂Imin,0 = (β̂1, 0, β̂3, 0)T . For the OLS model with S ⊆ I,

√
n(β̂I − βI)

D→ NaI (0, σ
2V I ) where (XT

I XI)/n
P→ V −1

I .

7) Theorem 6.19. Assume P (S ⊆ Imin) → 1 as n → ∞, and let β̂MIX =

β̂Ik,0 with probabilities πkn where πkn → πk as n→ ∞. Denote the positive

πk by πj. Assume ujn =
√
n(β̂Ij,0 − β)

D→ uj ∼ Np(0,V j,0). a) Then

un =
√
n(β̂MIX − β)

D→ u (6.50)

where the cdf of u is Fu(t) =
∑

j πjFuj
(t). Thus u has a mixture distribution

of the uj with probabilities πj, E(u) = 0, and Cov(u) = Σu =
∑

j πjV j,0.
b) Let A be a g × p full rank matrix with 1 ≤ g ≤ p. Then

vn = Aun =
√
n(Aβ̂MIX − Aβ)

D→ Au = v (6.51)

where v has a mixture distribution of the vj = Auj ∼ Ng(0,AV j,0A
T ) with

probabilities πj .

c) The estimator β̂V S is a
√
n consistent estimator of β:

√
n(β̂V S −β) =

OP (1).

d) If πd = 1, then
√
n(β̂SEL − β)

D→ u ∼ Np(0,V d,0) where SEL is V S
or MIX.

8) Theorem 6.20. Assume P (S ⊆ Imin) → 1 as n → ∞, and let β̂V S =

β̂Ik,0
with probabilities πkn where πkn → πk as n→ ∞. Denote the positive

πk by πj. Assume wjn =
√
n(β̂

C

Ij,0 − β)
D→ wj. Then

wn =
√
n(β̂V S − β)

D→ w (6.52)

where the cdf of w is Fw(t) =
∑

j πjFwj(t).

6.18 Complements

Multiple Linear Regression
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For linear model theory based on large sample theory, see Olive (2023b).
White (1984) also has important theory. Pelawa Watagoda and Olive (2021b)
simplified the theory for ridge regression, lasso, and the elastic net.

Some OLS consistency results are given by Lai, Robbins, and Wei (1979).

For example, a sufficient condition for β̂OLS to be a consistent estimator of

β is Cov(β̂OLS) = σ2(XTX)−1 → 0 as n→ ∞.
Principal components regression (PCR) and partial least squares are MLR

estimators. PCR tends to be an inconsistent estimator of β unless the prob-
ability that the PCR estimator is equal to the OLS estimator goes to 1. PLS
may or may not give a consistent estimator of β if p/n does not go to zero:
rather strong regularity conditions have been used to prove consistency or
inconsistency if p/n does not go to zero. See Chun and Keleş (2010), Cook
(2018), Cook et al. (2013), and Cook and Forzani (2018, 2019).

Liu (1993, 2003) has some ridge type regression estimators. See Jin and
Olive (2023) for large sample theory.

Multivariate Regression
For multivariate regression with more than one response variable, envelope

methods are important. See Cook (2018) for references. The theory in Section
6.10 followed Olive (2017b) and Olive, Pelawa Watagoda, and Rupasinghe
Arachchige Don (2015) closely.

Variable Selection: An early reference for forward selection is Efroymson
(1960). The variable selection theory in this chapter followed Rathnayake and
Olive (2023), and Pelawa Watagoda and Olive (2021ab) closely.

Ridge Regression: An important ridge regression paper is Hoerl and
Kennard (1970). Also see Gruber (1998). Ridge regression is known as
Tikhonov regularization in the numerical analysis literature.

KKT conditions: For MLR, the large sample theory was often simplified
using the KKT conditions. Some papers giving KKT conditions include Sun
and Zhang (2012), Tibshirani (2013), Zhang and Cheng (2017).

Other Regression Methods
Olive (2004b) and Olive and Hawkins (2005) used 1D regression models

with h(x) = xTβ, as did Olive (2013a). Olive (2017ab) may be the first
publications using general h(x) = SP in the definition of a 1D regression
model.

Yee (2015) considers the MLE for many regression models. There are many
Econometrics regression methods. See White (1984) and Koenker (2015).

Tay, Narasimhan, and Hastie (2021) describe methods for computing lasso,
elastic net, elastic net variable selection, and lasso variable selection for many
regression models. Hastie, Tibshirani, and Tibshirani (2020) suggest that
lasso variable selection performs well.

Data Splitting
The Olive and Zhang (2023) sequential data splitting algorithm is simple.

Let bxc be the integer part of x, e.g. b7.7c = 7. Denote the ceiling function by
dxe, e.g. d7.7e = 8. Initially, randomly divide the data set into two sets: H1

with n1 ≤ n/2 cases and V1 with n−n1 cases. Apply lasso onH1 to get a set of
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a1 predictors, including a constant if a constant is in the model. If n1 ≥ 10a1,
set H = H1 and V = V1. Otherwise, randomly select n1 cases from V1 to
add to H1 to form H2. Let V2 have the remaining cases from V1. Apply lasso
on H2 to get a set of a2 predictors. If n2 ≥ 10a2, set H = H2 and V = V2.
Continue in this manner, forming sets (H1, V1), (H2, V2), ..., (Hd, Vd) where
Hi has ni = in1. Stop when nd ≥ 10ad or nd+1 > b(n − J)/2c where J = 5
was often used in the simulations. For the second case, use nd = b(n−J)/2c.
Then H = Hd and V = Vd. Use the model Id with ad predictors as the full
model for inference with the data in V = Vd.

Lasso uses up to nd active predictors and a constant. If J is an integer
between 0 and 5, set n1 = max(1, b(n−J)/2c) if n < 40. Otherwise, we often
used n1 = 30, but changed n1 to bn/2000c if initially bn/(2n1)c > 1000. If
n >> p, let n1 = Kp with K a positive integer, such as K = 10 or K = 20,
or use n1 ≈ Kp ≈ n/(2M) with M = dn/(2Kp)e. If n/p is not large, options
include M = 10 or n1 = Ka0 where a0 is, for example, a guess of a lower
bound for the number of active predictors.

6.19 Problems

Also see Problems 3.1 and 3.13.

6.1. For ridge regression, suppose V = ρ−1
u . Show that if p/n and λ/n =

λ1,n/n are both small, then

η̂R ≈ η̂OLS − λ

n
V η̂OLS .

6.2. Consider choosing η̂ to minimize the criterion

Q(η) =
1

a
(Z − Wη)T (Z − Wη) +

λ1,n

a

p−1∑

i=1

|ηi|j

where λ1,n ≥ 0, a > 0, and j > 0 are known constants. Consider the regres-
sion methods OLS, forward selection, lasso, PLS, PCR, ridge regression, and
relaxed lasso.
a) Which method corresponds to j = 1?
b) Which method corresponds to j = 2?
c) Which method corresponds to λ1,n = 0?

6.3. For ridge regression, let An = (W TW + λ1,nIp−1)
−1W TW and

Bn = [Ip−1 − λ1,n(W
TW + λ1,nIp−1)

−1]. Show An − Bn = 0.
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6.4. Suppose Ŷ = HY where H is an n × n hat matrix. Then the de-
grees of freedom df(Ŷ ) = tr(H) = sum of the diagonal elements of H. An
estimator with low degrees of freedom is inflexible while an estimator with
high degrees of freedom is flexible. If the degrees of freedom is too low, the
estimator tends to underfit while if the degrees of freedom is to high, the
estimator tends to overfit.

a) Find df(Ŷ ) if Ŷ = Y 1 which uses H = (hij) where hij ≡ 1/n for all
i and j. This inflexible estimator uses the sample mean Y of the response
variable as Ŷi for i = 1, ..., n.

b) Find df(Ŷ ) if Ŷ = Y = InY which uses H = In where hii = 1. This
bad flexible estimator interpolates the response variable.

6.5. Suppose Y = Xβ + e, Z = Wη + e, Ẑ = Wη̂, Z = Y − Y , and
Ŷ = Ẑ + Y . Let the n × p matrix W 1 = [1 W ] and the p × 1 vector
η̂1 = (Y η̂T )T where the scalar Y is the sample mean of the response

variable. Show Ŷ = W 1η̂1.

6.6. Let β = (β1,β
T
S )T . Consider choosing β̂ to minimize the criterion

Q(β) = RSS(β) + λ1‖βS‖2
2 + λ2‖βS‖1

where λi ≥ 0 for i = 1, 2.
a) Which values of λ1 and λ2 correspond to ridge regression?
b) Which values of λ1 and λ2 correspond to lasso?
c) Which values of λ1 and λ2 correspond to elastic net?
d) Which values of λ1 and λ2 correspond to the OLS full model?

6.7. Suppose that Yi = β1 + β2xi2 + β3xi3 + β4xi4 + β5xi,5 + ei.
a) Testing H0 : β2 = β4 = β5 = 0 is equivalent to testing H0 : Aβ = 0.

What is A? Hint: want Aβ = (β2, β4, β5)
T .

b) Testing H0 : β2 = β4 = β5 is equivalent to testing H0 : Aβ = 0. What
is A? Hint: want, for example, Aβ = (β2 − β4, β2 − β5)

T .
6.8. Suppose x1, ...,xn are iid 7 × 1 random vectors where E(xi) = µ

and Cov(xi) =
∑
j πjΣj. Find the limiting distribution of

√
n(x − d) for

appropriate vector d.
6.9. Let Σi be the nonsingular population covariance matrix of the ith

treatment group or population. To simplify the large sample theory, assume
ni = πin where 0 < πi < 1 and

∑2
i=1 πi = 1. Let Ti be a multivariate

location estimator such that
√
ni(Ti−µi)

D→ Nm(0,Σi), and
√
n(Ti−µi)

D→
Nm

(
0,

Σi

πi

)
for i = 1, 2. Assume T1 T2.

Then √
n

[
T1 − µ1

T2 − µ2

]
D→ u.

Find the distribution of u.
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6.10. When the errors ei are iid, a common assumption for OLS theory is

n(XTX)−1 = V̂ =

(
V̂ 11 V̂ 12

V̂ 21 V̂ 22 = nΣ̂
−1

x /(n− 1)

)
P→ V =

(
V 11 V 12

V 21 V 22

)
.

Then Σ̂
−1

x
P→ A. What is A? Hint: A is not Σ−1

x , in general.
6.11. Let Σi be the nonsingular population covariance matrix of the ith

treatment group or population. To simplify the large sample theory, assume
ni = πin where 0 < πi < 1 and

∑2
i=1 πi = 1. Let Ti be a multivariate

location estimator such that
√
ni(Ti−µi)

D→ Nm(0,Σi), and
√
n(Ti−µi)

D→
Nm

(
0,

Σi

πi

)
for i = 1, 2. Assume T1 T2.

Then
√
n

[
T1 − µ1

T2 − µ2

]
D→ u. (6.53)

You found the distribution of u in Problem 6.9.
Now √

n[T1 − T2 − (µ1 − µ2)]
D→ w.

Find the distribution of w. Hint: multiply both sides of (1) by A = [Im −Im]
and find the distribution of w = Au.

6.12. GLMs are fit by maximum likelihood. Thus
√
n(β̂−β)

D→ Np(0,Σ).
What is Σ?

6.13. Suppose Yi ∼ D(xTi β) where the Yi are independent, D is a para-
metric distribution that depends on xi only though xTi β for i = 1, ..., n, and
β contains the unknown parameters. Several GLMs have this form, e.g. Yi ∼
Poisson[exp(xTi β)]. Then the MLE β̂n satisfies

√
n(β̂n−β)

D→ Np(0, I
−1
1 (β))

where I−1
1 (β) is the inverse Fisher information matrix and the xi are treated

as constants. The MLE is obtained by regression the Yi on the xi.
The parametric bootstrap generates independent Y ∗

i ∼ D(xTi β̂n). Fix

n and generate Y ∗
i for i = 1, ..., m. Obtain the bootstrap statistic β̂

∗
by

regressing the Y ∗
i on the xi. Then the Y ∗

i with β̂n in place of β and β̂
∗

in

place of β̂n satisfy the above theory.
For fixed n, find the limiting distribution of

√
m(β̂

∗ − β̂n).

6.14. For the parametric bootstrap, Y ∗ = Xβ̂+e∗ where e∗ = (e∗1 , ..., e
∗
m)T

and the e∗i are iidN(0, σ2
n) random variables. Assume this model satisfies the

OLS CLT as m → ∞ where the OLS estimator is β̂
∗

and β is replaced by
β̂. Note that σ2 is replaced by σ2

n. Assume β̂ is a p× 1 vector and Y ∗ is an
m× 1 vector. a) Then use the OLS CLT to find the limiting distribution of√
m(β̂

∗ − β̂) as m→ ∞.
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b) In a) you should get
√
m(β̂

∗ − β̂)
D→ Np(0,Σn) where Σn

P→ Σ. The

bootstrap proof technique says that suppose
√
n(Tn − θ)

D→ Ng(0,Σ) and

Σn
P→ Σ as n → ∞, and for fixed n,

√
m(T ∗

n,m − Tn)
D→ Ng(0,Σn) as

m → ∞. Then
√
n(T ∗

n − Tn)
D→ Ng(0,Σ) as n → ∞. Find the limiting

distribution
√
n(β̂

∗− β̂) as n → ∞ where you may plug in Σ in to the result
(you do not need to compute Σ).

6.15. Use the following results. A) Suppose X ∼ Nk(µ,Σ), then
i) AX ∼ Nq(Aµ,AΣAT ).
ii) a + bX ∼ Nk(a + bµ, b2Σ).
iii) AX + d ∼ Nq(Aµ + d,AΣAT ).
(Find the mean and covariance matrix of the left hand side and plug in those
values for the right hand side. Be careful with the dimension k or q.)

B) Suppose Xn
D→ Nk(µ,Σ). Then

i) AXn
D→ Nq(Aµ,AΣAT ).

ii) a + bXn
D→ Nk(a + bµ, b2Σ).

iii) AXn + d
D→ Nq(Aµ + d,AΣAT ).

(The behavior of convergence in distribution to a MVN distribution is much
like the behavior of the MVN distributions in A).)

By the OLS CLT,
√
n(β̂ − β)

D→ Np(0, σ
2 W ). Hence the limiting distri-

bution of of
√
n(β̂−β) is the Np(0, σ

2 W ) distribution. Let A be a constant

r × p matrix. Find the limiting distribution of A
√
n(β̂ − β).

6.16. Use the following results. Suppose Xn
D→ Nk(µ,Σ). Let A be a q×k

constant matrix. Let a be a k × 1 constant vector and let b be a constant.
Let d be a q × 1 constant vector. Then

i) AXn
D→ Nq(Aµ,AΣAT ).

ii) a + bXn
D→ Nk(a + bµ, b2Σ).

iii) AXn + d
D→ Nq(Aµ + d,AΣAT ).

Suppose Xn
D→ Nk(µ,Σ).

a) Let C be a k × k constant matrix. Then find the limiting distribution

of CXn: that is, CXn
D→ Z. Find Z.

b) Suppose Cn
P→ C. Thus Cn−C = oP (1). Find the limiting distribution

of CnXn = (Cn − C + C)Xn = (Cn − C)Xn + CXn.
6.17. Let the linear model Y = Xβ+e where X has full rank p, E(e) = 0

and Cov(e) = σ2I. By the OLS CLT,
√
n(β̂ − β)

D→ Np(0, σ
2 W ). Let a be

a p× 1 constant vector. Then for a large class of iid error distributions, what
is the limiting distribution of aT

√
n(β̂ − β) =

√
n(aT β̂ − aTβ)?

6.18. Suppose that Yi = α+xTi β+ei where the ei = σiεi where the εi iid
with E(εi) = 0 and V (εi) = 1. Then the ei are independent with E(ei) = 0
and V (ei) = σ2

i . This MLR model can be written as Y = α1+Xβ+e. We will
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assume that the cases (xTi , Yi)
T are iid. Fit the model with OLS to get (α̂, β̂)

and the residuals ri. The nonparametric bootstrap samples the (xi, Yi, ri)

with replacement to form the MLR model Y ∗ = α̂1 + X∗β̂ + r∗ where
with respect to the bootstrap distribution, the r∗i are iid with E(r∗i ) = 0.
This bootstrap model has the (x∗T

i , Y ∗
i )T iid with respect to the bootstrap

distribution.
The MLR model Y ∗ = α̂1+X∗β̂+r∗ is the bootstrap data set, and OLS is

fit to the model to obtain the bootstrapped statistic (α̂∗ = Y ∗− β̂
∗T

x∗, β̂
∗

=

Σ̃
−1

x∗Σ̃x∗Y ∗).

a) By the second method to compute OLS, β̂ = Σ̃
−1

x Σ̃xY . Since the
bootstrap distribution for the nonparametric bootstrap is the empirical dis-

tribution, it can be shown that [Σ̃
∗
x]−1 P→ Σ̃

−1

x and Σ̃
∗
xY

P→ Σ̃xY . Prove

that β̂
∗

= [Σ̃
∗
x]−1Σ̃

∗
xY

P→ β̂.

b) By the second method to compute OLS, α̂ = Y − β̂
T
x. It can be shown

that Y ∗ P→ Y and x∗ P→ x. Prove that α̂∗ = Y ∗ − β̂
∗T

x∗ P→ α̂.
6.19. Suppose Y ∼ Nn(Xβ, σ2I). Find the distribution of HY if H is

an n× n constant matrix such that HX = X and H = HT = HH = H2.
Simplify.

6.20. Parametric bootstrap: With respect to the bootstrap distribution,
quantities with an asterisk are random, while quantities from the sample act
as constant scalars, vectors or matrices. Thus X , σ2

n = MSE, XI , P , β̂I , and

β̂ are not random with respect to the bootstrap distribution. An exception is
that the εi are random variables with respect to the bootstrap distribution.

Suppose Y ∗ ∼ Nn(Xβ̂, σ2
nIn). Hence Y ∗

i = xTi β̂ + εi where E(εi) = 0

and V (εi) = σ2
n. Hence AY ∗ ∼ Ng(AXβ̂, σ2

nAAT ) if A is a g × n constant
matrix. Recall that X is an n × p constant matrix. Simplify quantities
when possible.

a) What is the distribution of β̂
∗

= (XTX)−1XTY ∗?

b) Using a), what is E(β̂
∗
)?

c) Recall that Xβ̂ = PY where P = H, PX = X, PXI = XI , and

XT
I P = XT

I . What is the distribution of β̂
∗
I = (XT

I XI)
−1XT

I Y ∗ if β̂
∗
I is

k× 1? Hint: Note that β̂I = (XT
I XI)

−1XT
I Y . The mean of the distribution

is (XT
I XI)

−1XT
I E(Y ∗) = (XT

I XI)
−1XT

I P Y .
6.21. Estimating the ηi and performing the OLS regression of Y on

(η̂T1 x, η̂T2 x, ..., η̂Tk x) and a constant gives the k-component estimator, e.g.

the k-component PLS estimator β̂kPLS or the k-component PCR estimator,
for k = 1, ..., J where J ≤ p and the p-component estimator is the OLS
estimator β̂OLS .

In the fixed p setting, model selection PLS and model selection PCR can
be shown to give predictions similar to that of the OLS full model. To see
this, variable selection with the Cp(I) criterion will be useful. Consider the
OLS regression of Y on a constant and w = (W1, ...,Wp)

T where, for example,
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Wj = xj or Wj = η̂Tj x. Let I index the variables in the model so I = {1, 2, 4}
means that W1,W2, and W4 were selected. The full model I = F uses all p
predictors and the constant with βI = βF = β = βOLS. Let r be the
residuals from the full OLS model and let rI be the residuals from model I
that uses β̂I . Suppose model I uses k = kI predictors including a constant
with 2 ≤ k ≤ p + 1. It can be shown that Cp(I) ≤ 2k implies that

corr(r, rI) ≥
√

1 − p + 1

n
. (6.54)

Let the model Imin minimize the Cp criterion among the models considered
with Cp(I) ≤ 2kI. Then Cp(Imin) ≤ Cp(F ) = p+ 1.

If PLS or PCR is selected using model selection (on models I1, ..., Ip with
Ij = {1, 2, ..., j} corresponding to the j-component regression) with the Cp(I)
criterion, and n ≥ 20(p+ 1), then corr(r, rImin) ≥ √

a = b. Find a and b.
Hint: in Equation (6.54), replace n by 20(p+ 1).
6.22. Consider the MLR model Yi = α + βTxi + ei for i = 1, ..., n where

the ei are iid with E(ei) = 0 and V (ei) = σ2. Conditional on the xi, under
mild regularity conditions

√
n(β̂OLS − β) =

√
n(Σ̂

−1

x Σ̂xY − β)
D→ Np(0,V ).

Find the limiting distribution of

Σ̂x
√
n(Σ̂

−1

x Σ̂xY − β).

6.23. Consider the MLR model Yi = α + βTxi + ei for i = 1, ..., n where
the (xTi , Yi)

T are iid. Then under mild regularity conditions,

√
n(η̂ − η) =

√
n(Σ̂xY − ΣxY )

D→ Np(0,V ).

Let A be an r×p constant matrix of full rank r. Find the limiting distribution
of

A
√
n(η̂ − η) = A

√
n(Σ̂xY − ΣxY ).

(Note: the model in Problem 6.22 is not the model in problem 6.23, so the
large sample theory differs.)

6.24. Let the linear model Y = Xβ+e where X has full rank p, E(e) = 0
and Cov(e) = σ2I . Assume XTX/n → W−1 as n → ∞. Then for a large

class of iid error distributions, what is the limiting distribution of
√
n(β̂−β)?

Hint: use the least squares central limit theorem.
6.25. Let the full model Y = β0 +β1X1 +· · ·+βp−1Xp−1+e. Suppose that

a submodel I uses the constant and k−1 nontrivial predictors Xi1, ..., Xi,k−1.
Let Xi,k, Xi,k+1, ..., Xi,p−1 denote the predictors left out of the model. Then
the partial F test statistic FI tests whether submodel I is good or whether at
least one of the predictors left out of the model is needed. Let r denote the
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residuals from the full model, let rI denote the residuals from the submodel,
let Cp(I) denote the Cp criterion for the submodel I, and let n be the sample
size. Then it can be shown that

corr(r, rI) =

√
n − p

Cp(I) + n − 2k
=

√
n − p

(p − k)FI + n − p
.

Assume that −p ≤ Cp(I) ≤ k and 0 ≤ FI ≤ 1. Then what happens to
corr(r, rI) as n → ∞?

6.26. Suppose Y ∗ = Xβ̂ + rW where E(rW ) = 0 and Cov(rW ) =

Cov(Y ∗) = diag(r2i ) = diag(r21, ..., r
2
n). Then β̂

∗
= (XTX)−1XTY ∗ is the

least squares estimator from regressing Y ∗ on X, an n× p constant matrix.
This model is used for the wild bootstrap. Simplify quantities when possible.
(Can simplify a), but can’t simplify b) much. With respect to the bootstrap

distribution, Y ∗ and rW are random vectors, but Xβ̂ is a constant vector
with respect to the bootstrap distribution.)

a) What is E(β̂
∗
)?

b) What is Cov(β̂
∗
)?

6.27. Assume that

√
n

[(
β̂1

β̂2

)
−
(
β1

β2

)]
D→ N2

((
0
0

)
,

(
σ2

1 θ
θ σ2

2

))
∼ N2(µ,Σ).

Find the limiting distribution of

√
n[(β̂1 − β̂2) − (β1 − β2)] = (1 − 1)

√
n

[(
β̂1

β̂2

)
−
(
β1

β2

)]
.

Hint: A = (1 − 1). Find Aµ and AΣAT .
6.28. Suppose Y = Xβ + e satisfies the OLS CLT where X is n× p. Let

ri = Yi− Ŷi be the ith OLS residual for i = 1, ..., n where a constant is in the
model. The residual bootstrap draws the residuals with replacement to form
the model Y ∗ = Xβ̂ + r∗.

Suppose that for some large fixed m, OLS is fit to find β̂m and the m
OLS residuals. Then as n → ∞, the m residuals are drawn with replacement
to form Y ∗ = Xβ̂m + r∗ where Y ∗

i = xTi β̂m + r∗i for i = 1, ..., n. This
model satisfies the OLS CLT with the r∗i iid with respect to the bootstrap

distribution, E(r∗i ) = 0, and V (r∗i ) = σ2
m =

1

m

m∑

i=1

r2i =
m− 1

m
MSE(m)

where MSE(m)
P→ σ2 = V (ei) as m → ∞. The bootstrap estimator β̂

∗
is

found by fitting OLS to the model Y ∗ = Xβ̂m + r∗. By the OLS CLT,

√
n(β̂

∗ − β̂m)
D→ u.



288 6 Regression: GLMs, GAMs, Statistical Learning

What is the distribution of u?



Chapter 7

Experimental Design and One Way
MANOVA

7.1 Introduction

Definition 7.1. The response variables are the variables that you want
to predict. The predictor variables are the variables used to predict the
response variables.

Notation. A multivariate linear model has m ≥ 2 response variables. A
multiple linear model = univariate linear model has m = 1 response variable,
but at least two nontrivial predictors, and usually a constant (so p ≥ 3).
A simple linear model has m = 1, one nontrivial predictor, and usually a
constant (so p = 2). Multiple linear regression models and ANOVA models
are special cases of multiple linear models.

Definition 7.2. The multivariate linear model

yi = BTxi + εi

for i = 1, ..., n has m ≥ 2 response variables Y1, ..., Ym and p predictor vari-
ables x1, x2, ..., xp. The ith case is (xTi , y

T
i ) = (xi1, xi2, ..., xip, Yi1, ..., Yim).

If a constant xi1 = 1 is in the model, then xi1 could be omitted from the
case. The model is written in matrix form as Z = XB + E where the ma-
trices are the same as those in Section 6.14. The model has E(εk) = 0 and
Cov(εk) = Σε = (σij) for k = 1, ..., n. Then the p × m coefficient matrix
B =

[
β1 β2 . . . βm

]
and the m ×m covariance matrix Σε are to be esti-

mated, and E(Z) = XB while E(Yij) = xTi βj. The εi are assumed to be
iid. The univariate linear model corresponds to m = 1 response variable, and
is written in matrix form as Y = Xβ + e. Subscripts are needed for the m
univariate linear models Y j = Xβj + ej for j = 1, ..., m where E(ej) = 0.
For the multivariate linear model, Cov(ei, ej) = σij In for i, j = 1, ..., m
where In is the n× n identity matrix.

289
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Definition 7.3. The multivariate analysis of variance (MANOVA model)
yi = BTxi + εi for i = 1, ..., n has m ≥ 2 response variables Y1, ..., Ym
and p predictor variables X1, X2, ..., Xp. The MANOVA model is a special
case of the multivariate linear model. For the MANOVA model, the predic-
tors are not quantitative variables, so the predictors are indicator variables.
Sometimes the trivial predictor 1 is also in the model. In matrix form, the
MANOVA model is Z = XB +E. The model has E(εk) = 0 and Cov(εk) =
Σε = (σij) for k = 1, ..., n. Also E(ei) = 0 while Cov(ei, ej) = σijIn for
i, j = 1, ..., m. Then B and Σε are unknown matrices of parameters to be
estimated, and E(Z) = XB while E(Yij) = xTi βj.

The data matrix W d = [X Z]. If the model contains a constant, then
usually the first column of ones 1 of X is omitted from the data matrix for
software such as R and SAS.

Each response variable in a MANOVA model follows an ANOVA model
Y j = Xβj + ej for j = 1, ..., m where it is assumed that E(ej) = 0 and
Cov(ej) = σjjIn. Hence the errors corresponding to the jth response are
uncorrelated with variance σ2

j = σjj. Notice that the same design matrix
X of predictors is used for each of the mmodels, but the jth response variable
vector Y j, coefficient vector βj, and error vector ej change and thus depend
on j. Hence for a one way MANOVA model, each response variable follows a
one way ANOVA model, while for a two way MANOVA model, each response
variable follows a two way ANOVA model for j = 1, ..., m.

Once the ANOVA model is fixed, e.g. a one way ANOVA model, the de-
sign matrix X depends on the parameterization of the ANOVA model. The
fitted values and residuals are the same for each parameterization, but the
interpretation of the parameters depends on the parameterization.

Now consider the ith case (xTi , y
T
i ) which corresponds to the ith row of

X and the ith row of Z. Then yi = E(yi) + εi where

E(yi) = BTxi =




xTi β1

xTi β2
...

xTi βm


 .

The notation yi|BTxi and E(yi|BTxi) is more accurate, but usually the
conditioning is suppressed. Taking E(yi|BTxi) to be a constant, yi and εi
have the same covariance matrix. In the MANOVA model, this covariance
matrix Σε does not depend on i. Observations from different cases are un-
correlated (often independent), but the m errors for the m different response
variables for the same case are correlated.

Let B̂ be the MANOVA estimator of B. MANOVA models are often fit
by least squares. Then the least squares estimators are
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B̂ = B̂g = (XTX)−XTZ =
[
β̂1 β̂2 . . . β̂m

]

where (XTX)− is a generalized inverse of XTX. Here B̂g depends on the

generalized inverse. If X has full rank p then (XTX)− = (XTX)−1 and B̂
is unique.

Definition 7.4. The predicted values or fitted values

Ẑ = XB̂ =
[
Ŷ 1 Ŷ 2 . . . Ŷ m

]
=




Ŷ1,1 Ŷ1,2 . . . Ŷ1,m

Ŷ2,1 Ŷ2,2 . . . Ŷ2,m

...
...

. . .
...

Ŷn,1 Ŷn,2 . . . Ŷn,m


 .

The residuals Ê = Z − Ẑ = Z − XB̂ =




ε̂T1
ε̂T2
...

ε̂Tn


 =

[
r̂1 r̂2 . . . r̂m

]
=




ε̂1,1 ε̂1,2 . . . ε̂1,m
ε̂2,1 ε̂2,2 . . . ε̂2,m
...

...
. . .

...
ε̂n,1 ε̂n,2 . . . ε̂n,m


 .

These quantities can be found by fittingm ANOVA models Y j = Xβj+ej to

get β̂j, Ŷ j = Xβ̂j, and r̂j = Y j−Ŷ j for j = 1, ..., m. Hence ε̂i,j = Yi,j− Ŷi,j
where Ŷ j = (Ŷ1,j, ..., Ŷn,j)

T . Finally, Σ̂ε,d =

(Z − Ẑ)T (Z − Ẑ)

n− d
=

(Z − XB̂)T (Z − XB̂)

n− d
=

Ê
T
Ê

n − d
=

1

n− d

n∑

i=1

ε̂iε̂
T
i .

The choices d = 0 and d = p are common. Let Σ̂ε be the usual estimator
of Σε for the MANOVA model. If least squares is used with a full rank X ,
then Σ̂ε = Σ̂ε,d=p.

7.2 One Way MANOVA

Using double subscripts will be useful for describing the one way MANOVA
model. Suppose there are independent random samples of size ni from p
different populations (treatments), or ni cases are randomly assigned to p
treatment groups. Then n =

∑p
i=1 ni and the group sample sizes are ni for

i = 1, ..., p. Assume that m response variables yij = (Yij1, ..., Yijm)T are
measured for the ith treatment group and the jth case (often an individual
or thing) in the group. Hence i = 1, ..., p and j = 1, ..., ni. The Yijk follow
different one way ANOVA models for k = 1, ..., m. Assume E(yij) = µi and
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Cov(yij) = Σε. Hence the p treatments have different mean vectors µi, but
common covariance matrix Σε.

The one way MANOVA is used to test H0 : µ1 = µ2 = · · · = µp. Often
µi = µ + τ i, so H0 becomes H0 : τ 1 = · · · = τ p. If m = 1, the one
way MANOVA model is the one way ANOVA model. MANOVA is useful
since it takes into account the correlations between the m response variables.
Performing m ANOVA tests fails to account for these correlations, but can
be a useful diagnostic. The Hotelling’s T 2 test that uses a common covariance
matrix is a special case of the one way MANOVA model with p = 2.

Let µi = µ+τ i where
∑p
i=1 niτ i = 0. The jth case from the ith population

or treatment group is yij = µ+τ i+εij where εij is an error vector, i = 1, ..., p
and j = 1, ..., ni. Let y = µ̂ =

∑p
i=1

∑ni

j=1 yij/n be the overall mean. Let

yi =
∑ni

j=1 yij/ni so τ̂ i = yi − y. Let the residual vector ε̂ij = yij − yi =
yij − µ̂− τ̂ i. Then yij = y + (yi − y) + (yij − yi) = µ̂ + τ̂ i + ε̂ij.

Several m×m matrices will be useful. Let Si be the sample covariance ma-
trix corresponding to the ith treatment group. Then the within sum of squares
and cross products matrix is W = W e = (n1 − 1)S1 + · · ·+ (np − 1)Sp =∑p
i=1

∑ni

j=1(yij − yi)(yij − yi)
T . Then Σ̂ε = W /(n− p). The treatment or

between sum of squares and cross products matrix is

BT =

p∑

i=1

ni(yi − y)(yi − y)T .

The total corrected (for the mean) sum of squares and cross products matrix
is T = BT + W =

∑p
i=1

∑ni

j=1(yij −y)(yij −y)T . Note that S = T /(n− 1)
is the usual sample covariance matrix of the yij if it is assumed that all n of
the yij are iid so that the µi ≡ µ for i = 1, ..., p.

The one way MANOVA model is yij = µ + τ i + εij where the εij are iid
with E(εij) = 0 and Cov(εij) = Σε. The MANOVA table is shown below.

Summary One Way MANOVA Table

Source matrix df

Treatment or Between BT p− 1
Residual or Error or Within W n− p

Total (corrected) T n− 1

If all n of the yij are iid with E(yij) = µ and Cov(yij) = Σε, it can

be shown that A/df
P→ Σε where A = W ,BT , or T , and df is the corre-

sponding degrees of freedom. Let t0 be the test statistic. Often Pillai’s trace
statistic, the Hotelling Lawley trace statistic, or Wilks’ lambda are used.
Wilks’ lambda

Λ =
|W |

|BT + W | =
|W |
|T | =

|∑p
i=1(ni − 1)Si|
|(n− 1)S| =
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|∑p
i=1

∑ni

j=1(yij − yi)(yij − yi)
T |

|∑p
i=1

∑ni

j=1(yij − y)(yij − y)T | .

Then to = −[n− 0.5(m+ p − 2)] log(Λ) and pval = P (χ2
m(p−1) > t0). Hence

reject H0 if t0 > χ2
m(p−1)(1 − α). See Johnson and Wichern (1988, p. 238).

The four steps of the one way MANOVA test follow.
i) State the hypotheses H0 : µ1 = · · · = µp and H1 : not H0.
ii) Get t0 from output.
iii) Get pval from output.
iv) State whether you reject H0 or fail to reject H0. If pval ≤ α, reject H0

and conclude that not all of the p treatment means are equal. If pval > α, fail
to reject H0 and conclude that all p treatment means are equal or that there
is not enough evidence to conclude that not all of the p treatment means are
equal. As a textbook convention, use α = 0.05 if α is not given.

Another way to perform the one way MANOVA test is to get R output.
The default test is Pillai’s test, but other tests can be obtained with the R
output shown below.

summary(out$out) #default is Pillai’s test

summary(out$out, test = "Wilks")

summary(out$out, test = "Hotelling-Lawley")

summary(out$out, test = "Roy")

Following Mardia et al. (1979, p. 335), let λ1 ≥ λ2 · · · ≥ λm be the eigen-
values of W−1BT . Then 1 +λi for i = 1, ..., m are the eigenvalues of W−1T
and Λ =

∏m
i=1(1 + λi)

−1.
Following Fujikoshi (2002), let the Hotelling Lawley trace statistic U =

tr(BTW−1) = tr(W−1BT ) =
∑m
i=1 λi, and let Pillai’s trace statistic V =

tr(BTT−1) = tr(T−1BT ) =

m∑

i=1

λi
1 + λi

. If the yij −µj are iid with common

covariance matrix Σε, and if H0 is true, then under regularity conditions

−[n− 0.5(m+ p − 2)] log(Λ)
D→ χ2

m(p−1), (n−m− p − 1)U
D→ χ2

m(p−1), and

(n− 1)V
D→ χ2

m(p−1).

Remark 7.1, Are Statisticians crazy? Note that the common covari-
ance matrix assumption implies that each of the p treatment groups or popu-
lations has the same covariance matrix Σi = Σε for i = 1, ..., p, an extremely
strong assumption. There are several possible remedies.
i) If the ni for each group are large, use a large sample theory test. This test
may start to outperform the one way MANOVA test if n ≥ (m + p)2 and
ni ≥ 40m for i = 1, ..., p. See Section 7.2.
ii) Use the bootstrap to get better cutoffs. See Rajapaksha and Olive (2024).
iii) Adapt high dimensional analogs of the ANOVA tests to low dimensions.
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7.3 An Alternative Test Based on Large Sample Theory

Large sample theory can be also be used to derive a competing test. Let Σi

be the nonsingular population covariance matrix of the ith treatment group
or population. To simplify the large sample theory, assume ni = πin where
0 < πi < 1 and

∑p
i=1 πi = 1. Let Ti be a multivariate location estimator

such that
√
ni(Ti−µi)

D→ Nm(0,Σi), and
√
n(Ti−µi)

D→ Nm

(
0,

Σi

πi

)
. Let

T = (TT1 , T
T
2 , ..., T

T
p )T , ν = (µT1 ,µ

T
2 , ...,µ

T
p )T , and A be a full rank r ×mp

matrix with rank r, then a large sample test of the form H0 : Aν = θ0 versus
H1 : Aν 6= θ0 uses

A
√
n(T − ν)

D→ u ∼ Nr

(
0,A diag

(
Σ1

π1
,
Σ2

π2
, ...,

Σp

πp

)
AT

)
. (7.1)

Let the Wald-type statistic

t0 = [AT − θ0]
T

[
A diag

(
Σ̂1

n1
,
Σ̂2

n2
, ...,

Σ̂p

np

)
AT

]−1

[AT − θ0]. (7.2)

These results prove the following theorem.

Theorem 7.1. Under the above conditions, t0
D→ χ2

r if H0 is true.

This test is due to Rupasinghe Arachchige Don and Olive (2019), and a
special case was used by Zhang and Liu (2013) and Konietschke et al. (2015)

with Ti = yi and Σ̂i = Si. The p = 2 case gives analogs to the two sample
Hotelling’s T 2 test. See Rupasinghe Arachchige Don and Pelawa Watagoda
(2018). The m = 1 case gives analogs of the one way ANOVA test. If m = 1,
see competing tests in Brown and Forsythe (1974a,b), Olive (2017a, pp. 200-
202), and Welch (1947, 1951).

For the one way MANOVA type test, let A be the block matrix

A =




I 0 0 . . . -I
0 I 0 . . . -I
...

...
...

...
0 0 . . . I -I


 .

Let µi ≡ µ, let H0 : µ1 = · · · = µp or, equivalently, H0 : Aν = 0, and let
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w = AT =




T1 − Tp
T2 − Tp

...
Tp−2 − Tp
Tp−1 − Tp



. (7.3)

Then
√
nw

D→ Nm(p−1)(0,Σw) if H0 is true with Σw = (Σij) where Σij =
Σp

πp
for i 6= j, and Σii =

Σi

πi
+

Σp

πp
for i = j. Hence

t0 = nwT Σ̂
−1

w w = wT

(
Σ̂w
n

)−1

w
D→ χ2

m(p−1)

as the ni → ∞ if H0 is true. Here

Σ̂w
n

=




ˆΣ1

n1
+

ˆΣp

np

ˆΣp

np

ˆΣp

np
. . .

ˆΣp

np
ˆΣp

np

ˆΣ2

n2
+

ˆΣp

np

ˆΣp

np
. . .

ˆΣp

np

...
...

...
...

ˆΣp

np

ˆΣp

np

ˆΣp

np
. . .

ˆΣp−1

np−1
+

ˆΣp

np




(7.4)

is a block matrix where the off diagonal block entries equal Σ̂p/np and the

ith diagonal block entry is
Σ̂i

ni
+

Σ̂p

np
for i = 1, ..., (p− 1).

Reject H0 if
t0 > m(p − 1)Fm(p−1),dn

(1 − δ) (7.5)

where dn = min(n1, ..., np). See Theorem 2.34. It may make sense to relabel

the groups so that np is the largest ni or Σ̂p/np has the smallest general-

ized variance of the Σ̂i/ni. This test may start to outperform the one way
MANOVA test if n ≥ (m+ p)2 and ni ≥ 40m for i = 1, ..., p.

If Σi ≡ Σ and Σ̂i is replaced by Σ̂, we will show that for the one way
MANOVA test that t0 = (n − p)U where U is the Hotelling Lawley statis-
tic. See Theorem 7.2. For the proof, some results on the vec and Kronecker
product will be useful. Following Henderson and Searle (1979), vec(G) and
vec(GT ) contain the same elements in different sequences. Define the permu-
tation matrix P r,m such that

vec(G) = P r,mvec(G
T ) (7.6)

where G is r ×m. Then P T
r,m = Pm,r, and P r,mPm,r = Pm,rP r,m = Irm.

If C is s×m and D is p × r, then
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C ⊗ D = P p,s(D ⊗ C)Pm,q. (7.7)

Also
(C ⊗ D)vec(G) = vec(DGCT ) = P p,s(D ⊗ C)vec(GT ). (7.8)

If C is m×mand D is r × r, then C ⊗ D = P r,m(D ⊗ C)Pm,r , and

[vec(G)]T (C ⊗ D)vec(G) = [vec(GT )]T (D ⊗ C)vec(GT ). (7.9)

Remark 7.2. Another method for one way MANOVA is to use the model
Z = XB + E or




Y111 Y112 · · · Y11m

...
... · · ·

...
Y1,n1,1 Y1,n1,2 · · · Y1,n1,m

Y211 Y211 · · · Y21m

...
... · · ·

...
Y2,n2,1 Y2,n2,2 · · · Y2,n2,m

...
... · · ·

...
Yp,11 Yp,1m · · · Yp,1m

...
... · · ·

...
Yp,np,1 Yp,np,2 · · · Yp,np,m




=




1 1 0 . . . 0
...

...
...

...
1 1 0 . . . 0
1 0 1 . . . 0
...

...
...

...
1 0 1 . . . 0
...

...
...

...
1 0 0 . . . 1
...

...
...

...
1 0 0 . . . 1
1 0 0 . . . 0
...

...
...

...
1 0 0 . . . 0







β1,1 β1,2 . . . β1,m

β2,1 β2,2 . . . β2,m

...
...

. . .
...

βp,1 βp,2 . . . βp,m


+ E.

Then X is full rank where the ith column of X is an indicator for group i−1
for i = 2, ..., p, β̂1k = Y pok = µ̂pk for k = 1, ..., m, and

β̂ik = Y i−1,ok − Y pok = µ̂i−1,k − µ̂pk

for k = 1, ..., m and i = 2, ..., p. Thus testing H0 : µ1 = · · · = µp is equivalent
to testing H0 : LB = 0 where L = [0 Ip−1]. Then yij = µi + εij and

BT = B =




µTp
µT1 − µTp
µT2 − µTp

...
µTp−2 − µTp
µTp−1 − µTp



. (7.10)

Consider testing a linear hypothesis H0 : LB = 0 versus
H1 : LB 6= 0 where L is a full rank r × p matrix. Let
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H = B̂
T
LT [L(XTX)−1LT ]−1LB̂.

If L = (0 Ip−1) then the multivariate linear regression Hotelling Lawley test
statistic for testing H0 : LB = 0 versus H1 : LB 6= 0 is U = tr(W −1H)
while the Hotelling Lawley test statistic for the one way MANOVA test with
H0 : µ1 = µ2 = · · · = µp is U = tr(W−1BT ). Rupasinghe Arachchige Don
(2018) showed that these two test statistics are the the same for the above
X by showing that BT = H.

Theorem 7.2. For the one way MANOVA test using A as defined below
Theorem 7.1, let the Hotelling Lawley trace statistic U = tr(W−1BT ). Then

(n− p)U = t0 = [AT − θ0]
T

[
A diag

(
Σ̂

n1
,
Σ̂

n2
, ...,

Σ̂

np

)
AT

]−1

[AT − θ0].

Hence if the Σi ≡ Σ and H0 : µ1 = · · · = µp is true, then (n − p)U = t0
D→

χ2
m(p−1).

Proof. Let B and X be as in Remark 7.2. Let L = [0 Ip−1] be an s× p
matrix with s = p− 1. For this choice of X , U = tr(W−1BT ) = tr(W −1H)
by Remark 7.4. Hence by Theorem 6.21,

(n− p)U = [vec(LB̂)]T [Σ̂
−1

ε ⊗ (L(XTX)−1LT )−1][vec(LB̂)]. (7.11)

Now vec([LB̂]T ) = w = AT of Equation (7.3) with Ti = yi. Then

t0 = wT

(
Σ̂w
n

)−1

w

where
Σ̂w
n

= L(XTX)−1LT ⊗ Σ̂

is given by Equation (7.4) with each Σ̂i replaced by Σ̂. Thus t0 =

[vec([LB̂]T )]T [(L(XTX)−1LT )−1 ⊗ Σ̂
−1

ε ][vec([LB̂]T )]. (7.12)

Then t0 = (n− p)U by Equation (7.9) with G = LB̂. �

Hence the one way MANOVA test is a special case of Equation (7.2) where

θ0 = 0 and Σ̂i ≡ Σ̂, but then Theorem 7.1 only holds if H0 is true and
Σi ≡ Σ. Note that the large sample theory of Theorem 7.1 is trivial compared
to the large sample theory of (n−p)U given in Theorem 7.2. Fujikoshi (2002)

showed (n−m− p− 1)U
D→ χ2

m(p−1) while (n− p)U
D→ χ2

m(p−1) by Theorem
7.2 ifH0 is true under the common covariance matrix assumption. There is no
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contradiction since (m+1)U
P→ 0 as the ni → ∞. Note the A ism(p−1)×mp.

For tests corresponding to Theorem 7.1, we will use bootstrap with the
prediction region method confidence region of Chapter 5 to test H0 when
Σ̂w or the Σ̂i are unknown or difficult to estimate. To bootstrap the test
H0 : Aν = θ0 versus H1 : Aν 6= θ0, use Zn = AT . Take a sample of size
nj with replacement from the nj cases for each group for j = 1, 2, ..., p to
obtain T ∗

j and T ∗
1. Repeat B times to obtain T ∗

1, ...,T
∗
B . Then Z∗

i = AT ∗
i for

i = 1, ..., B. We will illustrate this method with the analog for the one way
MANOVA test for H0 : Aθ = 0 which is equivalent to H0 : µ1 = · · · = µp,
where 0 is an r× 1 vector of zeroes with r = m(p− 1). Then Zn = AT = w
given by Equation (7.3). Hence the m(p− 1)× 1 vector Z∗

i = AT ∗
i = ((T ∗

1 −
T ∗
p )T , ..., (T ∗

p−1 − T ∗
p )T )T where Tj is a multivariate location estimator (such

as the sample mean, coordinatewise median, or trimmed mean), applied to
the cases in the jth treatment group. The prediction region method fails to
reject H0 if 0 is in the resulting confidence region.

We may need B ≥ 50m(p−1), n ≥ (m+p)2, and ni ≥ 40m. If the ni are not
large, the one way MANOVA test can be regarded as a regularized estimator,
and can perform better than the tests that do not assume equal population
covariance matrices. See the simulations in Rupasinghe Arachchige Don and
Olive (2019).

If H0 : Aν = θ0 is true and if the Σi ≡ Σ for i = 1, ..., p, then

t0 = [AT − θ0]
T

[
A diag

(
Σ̂

n1
,
Σ̂

n2
, ...,

Σ̂

np

)
AT

]−1

[AT − θ0]
D→ χ2

r.

If H0 is true but the Σi are not equal, we may be able to get a bootstrap
cutoff by using

t∗0i = [AT ∗
i − AT ]T

[
A diag

(
Σ̂

n1
,
Σ̂

n2
, ...,

Σ̂

np

)
AT

]−1

[AT ∗
i − AT ] =

D2
AT ∗

i

(
AT ,A diag

(
Σ̂

n1
,
Σ̂

n2
, ...,

Σ̂

np

)
AT

)
.

7.4 Bootstrap Tests

This section follows Rajapaksha and Olive (2024) closely. Consider testing
H0 : θ = θ0 versus H1 : θ 6= θ0 where a g × 1 statistic Tn satisfies

√
n(Tn −

θ)
D→ u ∼ Ng(0,Σ). If Σ̂

−1 P→ Σ−1 and H0 is true, then
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D2
n = D2

θ0
(Tn, Σ̂/n) = n(Tn − θ0)

T Σ̂
−1

(Tn − θ0)
D→ uTΣ−1u ∼ χ2

g

as n → ∞. Then a Wald type test rejects H0 at significance level δ if D2
n >

χ2
g,1−δ where P (X ≤ χ2

g,1−δ) = 1 − δ if X ∼ χ2
g, a chi-square distribution

with g degrees of freedom.
It is common to implement a Wald type test using

D2
n = D2

θ0
(Tn,Cn/n) = n(Tn − θ0)

TC−1
n (Tn − θ0)

D→ uTC−1u

as n → ∞ if H0 is true, where the g × g symmetric positive definite matrix

Cn
P→ C 6= Σ. Hence Cn is the wrong dispersion matrix, and uTC−1u

does not have a χ2
g distribution when H0 is true. Often Cn is a regularized

estimator of Σ, or C−1
n is a regularized estimator of the precision matrix

Σ−1, such as Cn = diag(Σ̂) or Cn = Ig, the g× g identity matrix. Another
example is Cn = Sp, where Sp is a pooled covariance matrix, and it is
assumed that the p groups have the same covariance matrix Σ. When this
assumption is violated, Cn is usually not a consistent estimator of Σ. When
the bootstrap is used, often Cn = nS∗

T where S∗
T is the sample covariance

matrix of the bootstrap sample T ∗
1 , ..., T

∗
B. The assumption that nS∗

T is a
consistent estimator of Σ is strong. See, for example, Machado and Parente
(2005).

The BR and PR confidence regions can be used since if C−1
n

P→ C−1, then

D2
j
D→ D2 = uTC−1u, then and (5.34) and (5.35) are large sample confidence

regions. If C−1
n is “not too ill conditioned,” then D2

j ≈ uTC−1
n u for large n,

and the confidence regions (5.34) and (5.35) will have coverage near 1 − δ.

If H0 : Aν = θ0 is true, if the Σi ≡ Σ for i = 1, ..., p, and if Σ̂ is a
consistent estimator of Σ, then by Theorem 7.1

t0 = [AT − θ0]
T

[
A diag

(
Σ̂

n1
,
Σ̂

n2
, ...,

Σ̂

np

)
AT

]−1

[AT − θ0]
D→ χ2

r.

If H0 is true but the Σi are not equal, then we get a bootstrap cutoff by
using

t∗0i = [AT ∗
i − AT ]T

[
A diag

(
Σ̂

n1
,
Σ̂

n2
, ...,

Σ̂

np

)
AT

]−1

[AT ∗
i − AT ] =

D2
AT ∗

i

(
AT ,A diag

(
Σ̂

n1
,
Σ̂

n2
, ...,

Σ̂

np

)
AT

)
.

Let F0 = t0/r. Then we can get a bootstrap cutoff using F ∗
0i = t∗0i/r. For

Ti = yi, let Σ̂ be the usual pooled covariance matrix estimator.
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The Wald-type tests with Cn = Ig = C often performed fairly well with
the nonparametric bootstrap in that the simulated level of the test tended to
be closer to the nominal level for samller sample sizes ni than methods that
used other choices for Cn. A drawback of the tests that use Cn = Ig is that
the volume of the confidence region, which is a hypersphere, can be quite
large. Alternative choices of Cn tend to result in confidence regions (5.34)
and (5.35) that are hyperellipsoids.

Remark 7.3. It may be interesting to replace the nonparametric boot-
strap by the m out of n bootstrap = subsampling = delete d jackknife.

7.5 Summary

1) The multivariate linear model yi = BTxi+εi for i = 1, ..., n has m ≥ 2
response variables Y1, ..., Ym and p predictor variables x1, x2, ..., xp. The ith
case is (xTi , y

T
i ) = (xi1, xi2, ..., xip, Yi1, ..., Yim). If a constant xi1 = 1 is in

the model, then xi1 could be omitted from the case. The model is written
in matrix form as Z = XB + E. The model has E(εk) = 0 and Cov(εk) =
Σε = (σij) for k = 1, ..., n. Also E(ei) = 0 while Cov(ei, ej) = σijIn for
i, j = 1, ..., m. Then B and Σε are unknown matrices of parameters to be
estimated, and E(Z) = XB while E(Yij) = xTi βj.

The data matrix W = [X Z] except usually the first column 1 of X is
omitted if xi,1 ≡ 1. The n×m matrix

Z =




Y1,1 Y1,2 . . . Y1,m

Y2,1 Y2,2 . . . Y2,m

...
...

. . .
...

Yn,1 Yn,2 . . . Yn,m


 =

[
Y 1 Y 2 . . . Y m

]
=




yT1
...

yTn


 .

The n× p matrix

X =




x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p

...
...

. . .
...

xn,1 xn,2 . . . xn,p


 =

[
v1 v2 . . . vp

]
=




xT1
...

xTn




where often v1 = 1.
The p×m matrix

B =




β1,1 β1,2 . . . β1,m

β2,1 β2,2 . . . β2,m

...
...

. . .
...

βp,1 βp,2 . . . βp,m


 =

[
β1 β2 . . . βm

]
.
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The n×m matrix

E =




ε1,1 ε1,2 . . . ε1,m
ε2,1 ε2,2 . . . ε2,m
...

...
. . .

...
εn,1 εn,2 . . . εn,m


 =

[
e1 e2 . . . em

]
=




εT1
...

εTn


 .

2) The univariate linear model is Yi = xi,1β1 + xi,2β2 + · · ·+xi,pβp + ei =

xTi β + ei = βTxi + ei for i = 1, . . . , n. In matrix notation, these n equations
become Y = Xβ + e, where Y is an n× 1 vector of response variables, X
is an n× p matrix of predictors, β is a p × 1 vector of unknown coefficients,
and e is an n × 1 vector of unknown errors.

3) Each response variable in a multivariate linear model follows a univari-
ate linear model Y j = Xβj + ej for j = 1, ..., m where it is assumed that
E(ej) = 0 and Cov(ej) = σjjIn.

4) In a MANOVA model, yk = BTxk + εk for k = 1, ..., n is written in
matrix form as Z = XB+E. The model has E(εk) = 0 and Cov(εk) = Σε =
(σij) for k = 1, ..., n. Each response variable in a MANOVA model follows
an ANOVA model Y j = Xβj + ej for j = 1, ..., m where it is assumed that
E(ej) = 0 and Cov(ej) = σjjIn.

5) The one way MANOVA model is as above where Y j = Xβj + ej
is a one way ANOVA model for j = 1, ..., m. Check the model by making m
response and residual plots and a DD plot of the residual vectors ε̂i.

6) The one way MANOVA model is a generalization of the Hotelling’s
T 2 test from 2 groups to p ≥ 2 groups, assumed to have different means
but a common covariance matrix Σε. Want to test H0 : µ1 = · · · = µp.
This model is a multivariate linear model so there are m response variables
Y1, ..., Ym measured for each group. Each Yi follows a one way ANOVA model
for i = 1, ..., m.

7) For the one way MANOVA model, make a DD plot of the residual
vectors ε̂i where i = 1, ..., n. Use the plot to check whether the εi follow a
multivariate normal distribution or some other elliptically contoured distri-
bution. We want n ≥ (m+ p)2 and ni ≥ 10m.

8) For the one way MANOVA model, write the data as Yijk where i =
1, ..., p and j = 1, ..., ni. So k corresponds to the kth variable Yk for k =
1, ..., m. Then Ŷijk = µ̂ik = Y iok for i = 1, ..., p. So for the kth variable, the

means µ1k, ..., µpk are of interest. The residuals are rijk = Yijk − Ŷijk. For
each variable Yk make a response plot of Y iok versus Yijk and a residual plot
of Y iok versus rijk. Both plots will consist of p dot plots of ni cases located
at the Y iok. The dot plots should follow the identity line in the response plot
and the horizontal r = 0 line in the residual plot for each of the m response
variables Y1, ..., Ym. For each variable Yk, let Rik be the range of the ith dot
plot. If each ni ≥ 5, we want max(R1k, ..., Rpk) ≤ 2 min(R1k, ..., Rpk). The
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one way MANOVA model may be reasonable for the test in point 9) if the
m response and residual plots satisfy the above graphical checks.

9) The four steps of the one way MANOVA test follow.
i) State the hypotheses H0 : µ1 = · · · = µp and H1 : not H0.
ii) Get t0 from output.
iii) Get pval from output.
iv) State whether you reject H0 or fail to reject H0. If pval ≤ α, reject H0

and conclude that not all of the p treatment means are equal. If pval > α, fail
to reject H0 and conclude that all p treatment means are equal or that there
is not enough evidence to conclude that not all of the p treatment means
are equal. Give a nontechnical sentence as the conclusion, if possible. As a
textbook convention, use α = 0.05 if α is not given.

10) The one way MANOVA test assumes that the p treatment groups or
populations have the same covariance matrix: Σ1 = · · · = Σp, but the test
has some resistance to this assumption. See points 6) and 8).

7.6 Complements

Useful papers for one way MANOVA models include Rupasinghe Arachchige
Don and Olive (2019), Rupasinghe Arachchige Don and Pelawa Watagoda
(2018), and Rajapaksha and Olive (2024).

7.7 Problems

Also see Problems 3.10, 3.19, 6.9, and 6.11.

7.1. Let Σi be the nonsingular population covariance matrix of the ith
treatment group or population. To simplify the large sample theory, assume
ni = πin where 0 < πi < 1 and

∑3
i=1 πi = 1. Let Ti be a multivariate location

estimator such that
√
ni(Ti − µi)

D→ Nm(0,Σi), and
√
n(Ti − µi)

D→ Nm

(
0,

Σi

πi

)
for i = 1, 2, 3.

Assume the Ti are independent.
Then

√
n



T1 − µ1

T2 − µ2

T3 − µ3


 D→ u.

a) Find the distribution of u.
b) Suggest an estimator π̂i of πi.



Chapter 8

Robust Statistics

This chapter considers large sample theory for robust statistics. Robust esti-
mators of multivariate location and dispersion are useful for outlier detection
and for developing robust regression estimators. This chapter follows Olive
(2008, 2017b, 2022c) closely.

Definition 8.1 An outlier corresponds to a case that is far from the bulk
of the data.

8.1 The Location Model

The location model is

Yi = µ+ ei, i = 1, . . . , n (8.1)

where e1, ..., en are error random variables, often iid with zero mean. The
location model is used when there is one variable Y , such as height, of interest.
The location model is a special case of the multiple linear regression model
and of the multivariate location and dispersion model, where there are p
variables x1, ..., xp of interest, such as height and weight if p = 2.

The location model is often summarized by obtaining point estimates and
confidence intervals for a location parameter and a scale parameter. Assume
that there is a sample Y1, . . . , Yn of size n where the Yi are iid from a distri-
bution with median MED(Y ), mean E(Y ), and variance V (Y ) if they exist.
The location parameter µ is often the population mean or median while the
scale parameter is often the population standard deviation

√
V (Y ). The ith

case is Yi.
Four important statistics for the location model are the sample mean, me-

dian, variance, and the median absolute deviation (MAD). Let Y1, . . . , Yn
be the random sample; i.e., assume that Y1, ..., Yn are iid. The sample
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mean is a measure of location and estimates the population mean (expected

value) µ = E(Y ). The sample mean Y =

∑n
i=1 Yi
n

. The sample variance

S2
n =

∑n
i=1(Yi − Y )2

n− 1
=

∑n
i=1 Y

2
i − n(Y )2

n− 1
, and the sample standard devia-

tion Sn =
√
S2
n.

If the data set Y1, ..., Yn is arranged in ascending order from smallest to
largest and written as Y(1) ≤ · · · ≤ Y(n), then Y(i) is the ith order statistic
and the Y(i)’s are called the order statistics. If the data Y1 = 1, Y2 = 4, Y3 =

2, Y4 = 5, and Y5 = 3, then Y = 3, Y(i) = i for i = 1, ..., 5 and MED(n) = 3
where the sample size n = 5. The sample median is a measure of location
while the sample standard deviation is a measure of spread. The sample mean
and standard deviation are vulnerable to outliers, while the sample median
and MAD, defined below, are outlier resistant.

Definition 8.2. The sample median

MED(n) = Y((n+1)/2) if n is odd, (8.2)

MED(n) =
Y(n/2) + Y((n/2)+1)

2
if n is even.

The notation MED(n) = MED(n, Yi) = MED(Y1, ..., Yn) will also be used.

Definition 8.3. The sample median absolute deviation is

MAD(n) = MED(|Yi − MED(n)|, i = 1, . . . , n). (8.3)

Since MAD(n) = MAD(n, Yi) is the median of n distances, at least half of
the observations are within a distance MAD(n) of MED(n) and at least half
of the observations are a distance of MAD(n) or more away from MED(n).
Like the standard deviation, MAD(n) is a measure of spread.

Example 8.1. Let the data be 1, 2, 3, 4, 5, 6, 7, 8, 9. Then MED(n) = 5
and MAD(n) = 2 = MED{0, 1, 1, 2, 2, 3, 3, 4, 4}.

The population median MED(Y ) and the population median absolute de-
viation MAD(Y ) are important quantities of a distribution.

Definition 8.4. The population median is any value MED(Y ) such that

P (Y ≤ MED(Y )) ≥ 0.5 and P (Y ≥ MED(Y )) ≥ 0.5. (8.4)

Definition 8.5. The population median absolute deviation is

MAD(Y ) = MED(|Y − MED(Y )|). (8.5)

MED(Y ) is a measure of location while MAD(Y ) is a measure of scale.
The median is the middle value of the distribution. Since MAD(Y ) is the me-
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Table 8.1 Some commonly used notation.

population sample

E(Y ), µ, θ Y n, E(n) µ̂, θ̂

MED(Y ), M MED(n), M̂
VAR(Y ), σ2 VAR(n), S2, σ̂2

SD(Y ), σ SD(n), S, σ̂
MAD(Y ) MAD(n)
IQR(Y ) IQR(n)

dian distance from MED(Y ), at least half of the mass is inside [MED(Y ) −
MAD(Y ),MED(Y )+ MAD(Y )] and at least half of the mass of the distribu-
tion is outside of the interval (MED(Y ) − MAD(Y ),MED(Y ) + MAD(Y )).
In other words, MAD(Y ) is any value such that

P (Y ∈ [MED(Y ) − MAD(Y ),MED(Y ) + MAD(Y )]) ≥ 0.5,

and P (Y ∈ (MED(Y ) − MAD(Y ),MED(Y ) + MAD(Y )) ) ≤ 0.5.

Definition 8.6. The sample interquantile range IQR(n) = Y(d0.75ne) −
Y(d0.25ne). The population interquantile range IQR(Y ) = y0.75 − y0.25 where
P (Y ≤ yα) = α if yα is a continuity point of the cdf FY (y).

Notation is needed in order to distinguish between population quanti-
ties, random quantities, and observed quantities. For population quantities,
capital letters like E(Y ) and MAD(Y ) will often be used while the estima-
tors will often be denoted by MED(n),MAD(n), MED(Yi, i = 1, ..., n), or
MED(Y1, . . . , Yn). The random sample will be denoted by Y1, . . . , Yn. Some-
times the observed sample will be fixed and lower case letters will be used.
For example, the observed sample may be denoted by y1, ..., yn while the
estimates may be denoted by med(n),mad(n), or yn. Table 8.1 summarizes
some of this notation.

Definition 8.7. Let fY (y) be the pdf of Y. Then the family of pdfs
fW (w) = fY (w − µ) indexed by the location parameter µ, −∞ < µ < ∞, is
the location family for the random variable W = µ + Y with standard pdf
fY (y).

Definition 8.8. Let fY (y) be the pdf of Y. Then the family of pdfs
fW (w) = (1/σ)fY (w/σ) indexed by the scale parameter σ > 0, is the scale
family for the random variable W = σY with standard pdf fY (y).

Definition 8.9. Let fY (y) be the pdf of Y. Then the family of pdfs
fW (w) = (1/σ)fY ((w − µ)/σ) indexed by the location and scale parame-
ters µ, −∞ < µ <∞, and σ > 0, is the location–scale family for the random
variable W = µ+ σY with standard pdf fY (y).



306 8 Robust Statistics

Finding MED(Y ) and MAD(Y ) for symmetric distributions and location–
scale families is made easier by the following theorem. Let F (yα) = P (Y ≤
yα) = α for 0 < α < 1 where the cdf F (y) = P (Y ≤ y). Let D = MAD(Y ),
M = MED(Y ) = y0.5 and U = y0.75.

Theorem 8.1. a) If W = a + bY, then MED(W ) = a + bMED(Y ) and
MAD(W ) = |b|MAD(Y ).

b) If Y has a pdf that is continuous and positive on its support and sym-
metric about µ, then MED(Y ) = µ and MAD(Y ) = y0.75 − MED(Y ). Find
M = MED(Y ) by solving the equation F (M) = 0.5 for M , and find U by
solving F (U) = 0.75 for U . Then D = MAD(Y ) = U −M.

c) Suppose that W is from a location–scale family with standard pdf fY (y)
that is continuous and positive on its support. Then W = µ + σY where
σ > 0. First find M by solving FY (M) = 0.5. After finding M , find D by
solving FY (M + D) − FY (M − D) = 0.5. Then MED(W ) = µ + σM and
MAD(W ) = σD.

Proof sketch. a) Assume the probability density function of Y is contin-
uous and positive on its support. Assume b > 0. Then

1/2 = P [Y ≤ MED(Y )] = P [a+ bY ≤ a+ bMED(Y )] = P [W ≤ MED(W )].

1/2 = P [MED(Y ) − MAD(Y ) ≤ Y ≤ MED(Y ) + MAD(Y )]

= P [a+ bMED(Y ) − bMAD(Y ) ≤ a+ bY ≤ a+ bMED(Y ) + bMAD(Y )]

= P [MED(W ) − bMAD(Y ) ≤W ≤ MED(W ) + bMAD(Y )]

= P [MED(W ) − MAD(W ) ≤W ≤ MED(W ) + MAD(W )].

The proofs of b) and c) are similar. �

Application 8.1. The MAD Method: In analogy with the method of
moments, robust point estimators can be obtained by solving MED(n) =
MED(Y ) and MAD(n) = MAD(Y ). In particular, the location and scale
parameters of a location–scale family can often be estimated robustly using
c1MED(n) and c2MAD(n) where c1 and c2 are appropriate constants.

Estimators that use order statistics are common. The shorth estimator of
Section 4.1 was used for prediction and confidence intervals.

Definition 8.10. Consider intervals that contain cn cases: [Y(1), Y(cn)],
[Y(2), Y(cn+1)], ..., [Y(n−cn+1), Y(n)]. Denote the set of cn cases in the ith inter-
val by Ji, for i = 1, 2, ..., n− cn + 1. Often cn = bn/2c + 1.

i) Let the shorth(cn) estimator = [Y(s), Y(s+cn−1)] be the shortest such
interval. Then the least median of squares estimator LMS(cn) is (Y(s) +
Y(s+cn−1))/2, the midpoint of the shorth(cn) interval. The LMS estimator
is also called the least quantile of squares estimator LQS(cn).
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ii) Compute the sample mean and sample variance (Y Ji , S
2
Ji

) of the cn
cases in the ith interval. The minimum covariance determinant estimator
MCD(cn) estimator (Y MCD, S

2
MCD) is equal to the (Y Jj , S

2
Jj

) with the small-

est S2
Ji

. The least trimmed sum of squares estimator is LTS(cn) = YMCD.
iii) Compute the sample medianMJi of the cn cases in the ith interval. Let

QLTA(MJi ) =
∑

j∈Ji
|yj−MJi |. The least trimmed sum of absolute deviations

estimator LTA(cn) is equal to the MJj with the smallest QLTA(MJi ).

8.1.1 Robust Confidence Intervals

In this subsection, large sample confidence intervals (CIs) for the sample
median and 25% trimmed mean are given. Theory is given later in Section 8.1.
The following confidence interval provides some resistance to gross outliers
while being very simple to compute. The standard error SE(MED(n)) is due
to Bloch and Gastwirth (1968), but the degrees of freedom p ≈ d √

n e) is
motivated by the confidence interval for the trimmed mean. Let bxc denote
the “greatest integer function” (e.g., b7.7c = 7). Let dxe denote the smallest
integer greater than or equal to x (e.g., d7.7e = 8).

Warning: Closed intervals should be used instead of open intervals: a±b =
[a− b, a+ b].

Application 8.2: inference with the sample median. Let Un = n−Ln
where Ln = bn/2c − d

√
n/4 e and use

SE(MED(n)) = 0.5(Y(Un) − Y(Ln+1)).

Let p = Un−Ln−1. Then a 100(1−α)% confidence interval for the population
median is

MED(n) ± tp,1−α/2SE(MED(n)). (8.6)

Warning. This CI is easy to compute by hand, but tends to be long with
undercoverage if n < 100. See Baszczyńska and Pekasiewicz (2010) for two
competitors that work better. We recommend bootstrap confidence intervals
for the population median.

The trimmed mean is also useful, and we recommend the 25% trimmed
mean. Let bxc denote the “greatest integer function” (e.g., b7.7c = 7).

Definition 8.11. The symmetrically trimmed mean or the δ trimmed
mean

Tn = Tn(Ln, Un) =
1

Un − Ln

Un∑

i=Ln+1

Y(i) (8.7)
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where Ln = bnδc and Un = n − Ln. If δ = 0.25, say, then the δ trimmed
mean is called the 25% trimmed mean.

The (δ, 1 − γ) trimmed mean uses Ln = bnδc and Un = bnγc.

The trimmed mean is estimating a truncated mean µT . Assume that Y
has a probability density function fY (y) that is continuous and positive on
its support. Let yδ be the number satisfying P (Y ≤ yδ) = δ. Then

µT =
1

1 − 2δ

∫ y1−δ

yδ

yfY (y)dy. (8.8)

Notice that the 25% trimmed mean is estimating

µT =

∫ y0.75

y0.25

2yfY (y)dy.

To perform inference, find d1, ..., dn where

di =




Y(Ln+1), i ≤ Ln
Y(i), Ln + 1 ≤ i ≤ Un
Y(Un), i ≥ Un + 1.

Then the Winsorized variance is the sample variance S2
n(d1, ..., dn) of d1, ..., dn,

and the scaled Winsorized variance

VSW (Ln, Un) =
S2
n(d1, ..., dn)

([Un − Ln]/n)2
. (8.9)

The standard error (SE) of Tn is SE(Tn) =
√
VSW (Ln, Un)/n.

Application 8.3: inference with the δ trimmed mean. A large sam-
ple 100 (1 − α)% confidence interval (CI) for µT is

Tn ± tp,1−α
2
SE(Tn) (8.10)

where P (tp ≤ tp,1−α
2
) = 1 − α/2 if tp is from a t distribution with p =

Un−Ln− 1 degrees of freedom. This interval is the classical t–interval when
δ = 0, but δ = 0.25 gives a robust CI.

Example 8.2. Let the data be 6, 9, 9, 7, 8, 9, 9, 7. Assume the data came
from a symmetric distribution with mean µ, and find a 95% CI for µ.

Solution. When computing small examples by hand, the steps are to sort
the data from smallest to largest value, find n, Ln, Un, Y(Ln+1), Y(Un), p,
MED(n) and SE(MED(n)). After finding tp,1−α/2, plug the relevant quan-
tities into the formula for the CI. The sorted data are 6, 7, 7, 8, 9, 9, 9,
9. Thus MED(n) = (8 + 9)/2 = 8.5. Since n = 8, Ln = b4c − d

√
2e =

4 − d1.414e = 4 − 2 = 2 and Un = n − Ln = 8 − 2 = 6. Hence
SE(MED(n)) = 0.5(Y(6) − Y(3)) = 0.5 ∗ (9 − 7) = 1. The degrees of free-
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dom p = Un − Ln − 1 = 6 − 2 − 1 = 3. The cutoff t3,0.975 = 3.182. Thus the
95% CI for MED(Y ) is

MED(n) ± t3,0.975SE(MED(n))

= 8.5± 3.182(1) = [5.318, 11.682]. The classical t–interval uses Y = (6 + 7 +
7 + 8 + 9 + 9 + 9 + 9)/8 and S2

n = (1/7)[(
∑n
i=1 Y

2
i ) − 8(82)] = (1/7)[(522−

8(64)] = 10/7 ≈ 1.4286, and t7,0.975 ≈ 2.365. Hence the 95% CI for µ is

8 ± 2.365(
√

1.4286/8) = [7.001, 8.999]. Notice that the t-cutoff = 2.365 for
the classical interval is less than the t-cutoff = 3.182 for the median interval
and that SE(Y ) < SE(MED(n)). The parameter µ is between 1 and 9 since
the test scores are integers between 1 and 9. Hence for this example, the
t–interval is considerably superior to the overly long median interval.

Example 8.3. In the last example, what happens if the 6 becomes 66 and
a 9 becomes 99?

Solution. Then the ordered data are 7, 7, 8, 9, 9, 9, 66, 99. Hence
MED(n) = 9. Since Ln and Un only depend on the sample size, they
take the same values as in the previous example and SE(MED(n)) =
0.5(Y(6) − Y(3)) = 0.5 ∗ (9 − 8) = 0.5. Hence the 95% CI for MED(Y ) is
MED(n) ± t3,0.975SE(MED(n)) = 9 ± 3.182(0.5) = [7.409, 10.591]. Notice
that with discrete data, it is possible to drive SE(MED(n)) to 0 with a few
outliers if n is small. The classical confidence interval Y ± t7,0.975S/

√
n blows

up and is equal to [−2.955, 56.455].

8.1.2 Some Two Stage Trimmed Means

Robust estimators are often obtained by applying the sample mean to a
sequence of consecutive order statistics. The sample median, trimmed mean,
metrically trimmed mean, and two stage trimmed means are examples. For
the trimmed mean given in Definition 8.11 and for the Winsorized mean,
defined below, the proportion of cases trimmed and the proportion of cases
covered are fixed.

Definition 8.12. Using the same notation as in Definition 8.11, the Win-
sorized mean

Wn = Wn(Ln, Un) =
1

n
[LnY(Ln+1) +

Un∑

i=Ln+1

Y(i) + (n− Un)Y(Un)]. (8.11)

Definition 8.13. A randomly trimmed mean
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Rn = Rn(Ln, Un) =
1

Un − Ln

Un∑

i=Ln+1

Y(i) (8.12)

where Ln < Un are integer valued random variables. Un−Ln of the cases are
covered by the randomly trimmed mean while n− Un + Ln of the cases are
trimmed.

Definition 8.14. The metrically trimmed mean (also called the Huber
type skipped mean) Mn is the sample mean of the cases inside the interval

[θ̂n − k1Dn, θ̂n + k2Dn]

where θ̂n is a location estimator, Dn is a scale estimator, k1 ≥ 1, and k2 ≥ 1.

The proportions of cases covered and trimmed by randomly trimmed
means such as the metrically trimmed mean are now random. Typically
MED(n) and MAD(n) are used for θ̂n and Dn, respectively. The amount
of trimming will depend on the distribution of the data. For example, if Mn

uses k1 = k2 = 5.2 and the data is normal (Gaussian), about 1% of the data
will be trimmed while if the data is Cauchy, about 12% of the data will be
trimmed. Hence the upper and lower trimming points estimate lower and up-
per population percentiles L(F ) and U(F ) and change with the distribution
F .

Two stage estimators are frequently used in robust statistics. Often the
initial estimator used in the first stage has good resistance properties but
has a low asymptotic relative efficiency or no convenient formula for the SE.
Ideally, the estimator in the second stage will have resistance similar to the
initial estimator but will be efficient and easy to use. The metrically trimmed
mean Mn with tuning parameter k1 = k2 ≡ k = 6 will often be the initial
estimator for the two stage trimmed means. That is, retain the cases that fall
in the interval

[MED(n) − 6MAD(n),MED(n) + 6MAD(n)].

Let L(Mn) be the number of observations that fall to the left of MED(n) −
k1 MAD(n) and let n−U(Mn) be the number of observations that fall to the
right of MED(n) + k2 MAD(n). When k1 = k2 ≡ k ≥ 1, at least half of the
cases will be covered. Consider the set of 51 trimming proportions in the set
C = {0, 0.01, 0.02, ..., 0.49, 0.50}. Alternatively, the coarser set of 6 trimming
proportionsC = {0, 0.01, 0.1, 0.25, 0.40, 0.49}may be of interest. The greatest
integer function (e.g. b7.7c = 7) is used in the following definitions.

Definition 8.15. Consider the smallest proportion αo,n ∈ C such that
αo,n ≥ L(Mn)/n and the smallest proportion 1 − βo,n ∈ C such that 1 −
βo,n ≥ 1 − (U(Mn)/n). Let αM,n = max(αo,n, 1 − βo,n). Then the two stage



8.1 The Location Model 311

symmetrically trimmed mean TS,n is the αM,n trimmed mean. Hence TS,n
is a randomly trimmed mean with Ln = bn αM,nc and Un = n − Ln. If
αM,n = 0.50, then use TS,n = MED(n).

Definition 8.16. As in the previous definition, consider the smallest pro-
portion αo,n ∈ C such that αo,n ≥ L(Mn)/n and the smallest proportion
1− βo,n ∈ C such that 1− βo,n ≥ 1− (U(Mn)/n). Then the two stage asym-
metrically trimmed mean TA,n is the (αo,n, 1 − βo,n) trimmed mean. Hence
TA,n is a randomly trimmed mean with Ln = bn αo,nc and Un = bn βo,nc.
If αo,n = 1 − βo,n = 0.5, then use TA,n = MED(n).

Example 8.4. These two stage trimmed means are almost as easy to
compute as the classical trimmed mean, and no knowledge of the unknown
parameters is needed to do inference. First, order the data and find the
number of cases L(Mn) less than MED(n) − k1MAD(n) and the number
of cases n−U(Mn) greater than MED(n)+ k2MAD(n). (These are the cases
trimmed by the metrically trimmed mean Mn, but Mn need not be com-
puted.) Next, convert these two numbers into percentages and round both
percentages up to the nearest integer. For TS,n find the maximum of the two
percentages. For example, suppose that there are n = 205 cases andMn trims
the smallest 15 cases and the largest 20 cases. Then L(Mn)/n = 0.073 and
1 − (U(Mn)/n) = 0.0976. Hence Mn trimmed the 7.3% smallest cases and
the 9.76% largest cases, and TS,n is the 10% trimmed mean while TA,n is the
(0.08, 0.10) trimmed mean.

Definition 8.17. The standard error SERM for the two stage trimmed
means given in Definitions 8.11, 8.15, or 8.16 is

SERM (Ln, Un) =
√
VSW (Ln, Un)/n

where the scaled Winsorized variance VSW (Ln, Un) =

[LnY
2
(Ln+1) +

∑Un

i=Ln+1 Y
2
(i) + (n − Un)Y 2

(Un)] − n [Wn(Ln, Un)]2

(n − 1)[(Un − Ln)/n]2
. (8.13)

Remark 8.1. A simple method for computing VSW (Ln, Un) has the fol-
lowing steps. First, find d1, ..., dn where

di =




Y(Ln+1), i ≤ Ln
Y(i), Ln + 1 ≤ i ≤ Un
Y(Un), i ≥ Un + 1.

Then the Winsorized variance is the sample variance S2
n(d1, ..., dn) of d1, ..., dn,

and the scaled Winsorized variance
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VSW (Ln, Un) =
S2
n(d1, ..., dn)

([Un − Ln]/n)2
. (8.14)

Notice that the SE given in Definition 8.17 is the SE for the δ trimmed mean
where Ln and Un are fixed constants rather than random.

Application 8.4. Let Tn be the two stage (symmetrically or) asymmetri-
cally trimmed mean that trims the Ln smallest cases and the n− Un largest
cases. Then for the one and two sample procedures described in Section 5.1,
use the one sample standard error SERM (Ln, Un) given in Definition 8.17
and the tp distribution where the degrees of freedom p = Un − Ln − 1.

The CIs and tests for the δ trimmed mean and two stage trimmed means
given by Applications 8.3 and 8.4 are very similar once Ln has been computed.
For example, a large sample 100 (1 − α)% confidence interval (CI) for µT is

[Tn − tUn−Ln−1,1−α
2
SERM (Ln, Un), Tn + tUn−Ln−1,1−α

2
SERM (Ln, Un)]

(8.15)
where P (tp ≤ tp,1−α

2
) = 1−α/2 if tp is from a t distribution with p degrees of

freedom. Section 8.1.6 provides the asymptotic theory for the δ and two stage
trimmed means and shows that µT is the mean of a truncated distribution.
Next Examples 8.2 and 8.3 are repeated using the intervals based on the two
stage trimmed means instead of the median.

Example 8.5. Let the data be 6, 9, 9, 7, 8, 9, 9, 7. Assume the data came
from a symmetric distribution with mean µ, and find a 95% CI for µ.

Solution. If TA,n or TS,n is used with the metrically trimmed mean that
uses k = k1 = k2, e.g. k = 6, then µT (a, b) = µ. When computing small
examples by hand, it is convenient to sort the data:
6, 7, 7, 8, 9, 9, 9, 9.
Thus MED(n) = (8 + 9)/2 = 8.5. The ordered residuals Y(i) − MED(n) are
-2.5, -1.5, -1.5, 0.5, 0.5, 0.5, 0.5, 0.5.
Find the absolute values and sort them to get
0.5, 0.5, 0.5, 0.5, 0.5, 1.5, 1.5, 2.5.
Then MAD(n) = 0.5, MED(n)−6MAD(n) = 5.5, and MED(n)+6MAD(n)
= 11.5. Hence no cases are trimmed by the metrically trimmed mean, i.e.
L(Mn) = 0 and U(Mn) = n = 8. Thus Ln = b8(0)c = 0, and Un = n −
Ln = 8. Since no cases are trimmed by the two stage trimmed means, the
robust interval will have the same endpoints as the classical t–interval. To
see this, note that Mn = TS,n = TA,n = Y = (6 + 7 + 7 + 8 + 9 + 9 + 9 +
9)/8 = 8 = Wn(Ln, Un). Now VSW (Ln, Un) = (1/7)[

∑n
i=1 Y

2
(i) −8(82)]/[8/8]2

= (1/7)[(522− 8(64)] = 10/7 ≈ 1.4286, and t7,0.975 ≈ 2.365. Hence the 95%

CI for µ is 8 ± 2.365(
√

1.4286/8) = [7.001, 8.999].

Example 8.6. In the last example, what happens if a 6 becomes 66 and
a 9 becomes 99? Use k = 6 and TA,n. Then the ordered data are
7, 7, 8, 9, 9, 9, 66, 99.
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Thus MED(n) = 9 and MAD(n) = 1.5. With k = 6, the metrically trimmed
mean Mn trims the two values 66 and 99. Hence the left and right trimming
proportions of the metrically trimmed mean are 0.0 and 0.25 = 2/8, respec-
tively. These numbers are also the left and right trimming proportions of TA,n
since after converting these proportions into percentages, both percentages
are integers. Thus Ln = b0c = 0, Un = b0.75(8)c = 6 and the two stage
asymmetrically trimmed mean trims 66 and 99. So TA,n = 49/6 ≈ 8.1667.
To compute the scaled Winsorized variance, use Remark 8.3 to find that the
di’s are
7, 7, 8, 9, 9, 9, 9, 9
and

VSW =
S2
n(d1, ..., d8)

[(6 − 0)/8]2
≈ 0.8393

.5625
≈ 1.4921.

Hence the robust confidence interval is 8.1667±t5,0.975

√
1.4921/8 ≈ 8.1667±

1.1102 ≈ [7.057, 9.277]. The classical confidence interval Y ± tn−1,0.975S/
√
n

blows up and is equal to [−2.955, 56.455].

Example 8.7. Use k = 6 and TA,n to compute a robust CI using the 87
heights from the Buxton (1920) data that includes 5 outliers. The mean
height is Y = 1598.862 while TA,n = 1695.22. The classical 95% CI is
[1514.206,1683.518] and is more than five times as long as the robust 95%
CI which is [1679.907,1710.532]. In this example the five outliers can be cor-
rected. For the corrected data, no cases are trimmed and the robust and clas-
sical estimators have the same values. The results are Y = 1692.356 = TA,n
and the robust and classical 95% CIs are both [1678.595,1706.118]. Note that
the outliers did not have much affect on the robust confidence interval.

8.1.3 Asymptotics for Two Stage Trimmed Means

Large sample theory is very important for understanding robust statistics.
Truncated and Winsorized random variables are important because they sim-
plify the asymptotic theory of robust estimators. Let Y be a random vari-
able with continuous cdf F and let α = F (a) < F (b) = β. Thus α is the
left trimming proportion and 1 − β is the right trimming proportion. Let
F (a−) = P (Y < a). (Refer to Section 1.8 for the notation used below.)

Definition 8.18. The truncated random variable YT ≡ YT (a, b) with trun-
cation points a and b has cdf

FYT (y|a, b) = G(y) =
F (y) − F (a−)

F (b)− F (a−)
(8.16)

for a ≤ y ≤ b. Also G is 0 for y < a and G is 1 for y > b. The mean and
variance of YT are
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µT = µT (a, b) =

∫ ∞

−∞
ydG(y) =

∫ b
a
ydF (y)

β − α
(8.17)

and

σ2
T = σ2

T (a, b) =

∫ ∞

−∞
(y − µT )2dG(y) =

∫ b
a
y2dF (y)

β − α
− µ2

T .

See Cramér (1946, p. 247).

Definition 8.19. The Winsorized random variable

YW = YW (a, b) =




a, Y ≤ a
Y, a ≤ Y ≤ b
b, Y ≥ b.

If the cdf of YW (a, b) = YW is FW , then

FW (y) =





0, y < a
F (a), y = a
F (y), a < y < b

1, y ≥ b.

Since YW is a mixture distribution with a point mass at a and at b, the mean
and variance of YW are

µW = µW (a, b) = αa+ (1 − β)b+

∫ b

a

ydF (y)

and

σ2
W = σ2

W (a, b) = αa2 + (1 − β)b2 +

∫ b

a

y2dF (y) − µ2
W .

Definition 8.20. The quantile function

F−1
Q (t) = Q(t) = inf{y : F (y) ≥ t}. (8.18)

The sample ρ quantile ξ̂n,ρ = Y(dnρe) = ŷρ. The population quantile yρ = πρ =
ξρ = Q(ρ) where 0 < ρ < 1.

Warning: Software often uses a slightly different definition of the sample
quantile then the one given in Definition 8.20.

Note that Q(t) is the left continuous inverse of F and if F is strictly
increasing and continuous, then F has an inverse F−1 and F−1(t) = Q(t).
The following conditions on the cdf are used.

Regularity Conditions. (R1) Let Y1, . . . , Yn be iid with cdf F .
(R2) Let F be continuous and strictly increasing at a = Q(α) and b = Q(β).
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The following theorem is proved in Bickel (1965), Stigler (1973), and
Shorack and Wellner (1986, p. 678-679). The α trimmed mean is asymp-
totically equivalent to the (α, 1−α) trimmed mean. Let Tn be the (α, 1− β)
trimmed mean. Theorem 8.3 shows that the standard error SERM given in the
previous section is estimating the appropriate asymptotic standard deviation
of Tn.

Theorem 8.2. If conditions (R1) and (R2) hold and if 0 < α < β < 1,
then

√
n(Tn − µT (a, b))

D→ N

[
0,
σ2
W (a, b)

(β − α)2

]
. (8.19)

Theorem 8.3: Shorack and Wellner (1986, p. 680). Assume that
regularity conditions (R1) and (R2) hold and that

Ln
n

P→ α and
Un
n

P→ β. (8.20)

Then

VSW (Ln, Un)
P→ σ2

W (a, b)

(β − α)2
.

Since Ln = bnαc and Un = n−Ln (or Ln = bnαc and Un = bnβc) satisfy
the above lemma, the standard error SERM can be used for both trimmed
means and two stage trimmed means: SERM (Ln, Un) =

√
VSW (Ln, Un)/n

where the scaled Winsorized variance VSW (Ln, Un) =

[LnY
2
(Ln+1) +

∑Un

i=Ln+1 Y
2
(i) + (n − Un)Y 2

(Un)] − n [Wn(Ln, Un)]
2

(n − 1)[(Un − Ln)/n]2
.

Again Ln is the number of cases trimmed to the left and n−Un is the number
of cases trimmed to the right by the trimmed mean.

The following notation will be useful for finding the asymptotic distribu-
tion of the two stage trimmed means. Let a = MED(Y ) − kMAD(Y ) and
b = MED(Y ) + kMAD(Y ) where MED(Y ) and MAD(Y ) are the population
median and median absolute deviation respectively. Let α = F (a−) = P (Y <
a) and let αo ∈ C = {0, 0.01, 0.02, ..., 0.49, 0.50} be the smallest value in C
such that αo ≥ α. Similarly, let β = F (b) and let 1− βo ∈ C be the smallest
value in the index set C such that 1 − βo ≥ 1 − β. Let αo = F (ao−), and
let βo = F (bo). Recall that L(Mn) is the number of cases trimmed to the
left and that n− U(Mn) is the number of cases trimmed to the right by the
metrically trimmed mean Mn. Let αo,n ≡ α̂o be the smallest value in C such

that αo,n ≥ L(Mn)/n, and let 1 − βo,n ≡ 1 − β̂o be the smallest value in
C such that 1 − βo,n ≥ 1 − (U(Mn)/n). Then the robust estimator TA,n is
the (αo,n, 1− βo,n) trimmed mean while TS,n is the max(αo,n, 1− βo,n)100%
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trimmed mean. The following theorem is useful for showing that TA,n is
asymptotically equivalent to the (αo, 1− βo) trimmed mean and that TS,n is
asymptotically equivalent to the max(αo, 1 − βo) trimmed mean. One proof
of Theorem 8.5 is to show that TA,n and TS,n are model selection estimators
where the probability TA,n selects the (αo, 1 − βo) trimmed mean and the
probability that TS,n selects the max(αo, 1−βo) trimmed mean goes to one.

Theorem 8.4: Shorack and Wellner (1986, p. 682-683). Let F
have a strictly positive and continuous derivative in some neighborhood of
MED(Y ) ± kMAD(Y ). Assume that

√
n(MED(n) −MED(Y )) = OP (1) (8.21)

and √
n(MAD(n) −MAD(X)) = OP (1). (8.22)

Then √
n(
L(Mn)

n
− α) = OP (1) (8.23)

and √
n(
U(Mn)

n
− β) = OP (1). (8.24)

Theorem 8.5. Let Y1, ..., Yn be iid from a distribution with cdf F that has
a strictly positive and continuous pdf f on its support. Let αM = max(αo, 1−
βo) ≤ 0.49, βM = 1 − αM , aM = F−1(αM), and bM = F−1(βM ). Assume
that α and 1 − β are not elements of C = {0, 0.01, 0.02, ..., 0.50}. Then

√
n[TA,n − µT (ao, bo)]

D→ N

[
0,
σ2
W (ao, bo)

(βo − αo)2

]
,

and
√
n[TS,n − µT (aM , bM)]

D→ N

[
0,
σ2
W (aM , bM)

(βM − αM)2

]
.

Proof. The first result follows from Theorem 8.2 if the probability that
TA,n is the (αo, 1−βo) trimmed mean goes to one as n tends to infinity. This

condition holds if L(Mn)/n
D→ α and U(Mn)/n

D→ β. But these conditions
follow from Theorem 8.4. The proof for TS,n is similar. �

8.1.4 Asymptotic Theory for the MAD

Let MD(n) = MED(|Yi − MED(Y )|, i = 1, . . . , n). Since MD(n) is a me-
dian and convergence results for the median are well known, see for exam-
ple Serfling (1980, p. 74-77) or Theorem 2.6, it is simple to prove conver-
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gence results for MAD(n). Typically MED(n) = MED(Y ) +OP (n−1/2) and
MAD(n) = MAD(Y ) +OP (n−1/2).

Theorem 8.6. If MED(n) = MED(Y ) + OP (n−δ) and
MD(n) = MAD(Y ) +OP (n−δ), then MAD(n) = MAD(Y ) +OP (n−δ).

Proof. Let Wi = |Yi − MED(n)| and let Vi = |Yi − MED(Y )|. Then

Wi = |Yi − MED(Y ) + MED(Y ) − MED(n)| ≤ Vi + |MED(Y ) − MED(n)|,

and

MAD(n) = MED(W1, . . . ,Wn) ≤ MED(V1, . . . , Vn) + |MED(Y ) − MED(n)|.

Similarly

Vi = |Yi − MED(n) + MED(n) − MED(Y )| ≤Wi + |MED(n) − MED(Y )|

and thus

MD(n) = MED(V1, . . . , Vn) ≤ MED(W1, . . . ,Wn) + |MED(Y ) − MED(n)|.

Combining the two inequalities shows that

MD(n)−|MED(Y )−MED(n)| ≤ MAD(n) ≤ MD(n)+ |MED(Y )−MED(n)|,

or
|MAD(n) − MD(n)| ≤ |MED(n) − MED(Y )|. (8.25)

Adding and subtracting MAD(Y ) to the left hand side shows that

|MAD(n) − MAD(Y ) −OP (n−δ)| = OP (n−δ) (8.26)

and the result follows. �

The main point of the following theorem is that the joint distribution of
MED(n) and MAD(n) is asymptotically normal. Hence the limiting distribu-
tion of MED(n) + kMAD(n) is also asymptotically normal for any constant
k. The parameters of the covariance matrix are quite complex and hard to
estimate. The assumptions of f used in Theorem 8.7 guarantee that MED(Y )
and MAD(Y ) are unique.

Theorem 8.7: Falk (1997). Let the cdf F of Y be continuous near and
differentiable at MED(Y ) = F−1(1/2) and MED(Y )±MAD(Y ). Assume that
f = F ′, f(F−1(1/2)) > 0, and A ≡ f(F−1(1/2)−MAD(Y ))+ f(F−1(1/2)+
MAD(Y )) > 0. Let C ≡ f(F−1(1/2)−MAD(Y ))− f(F−1(1/2)+MAD(Y )),
and let B ≡ C2+4Cf(F−1(1/2))[1−F (F−1(1/2)−MAD(Y ))−F (F−1(1/2)+
MAD(Y ))]. Then
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√
n

((
MED(n)
MAD(n)

)
−
(

MED(Y )
MAD(Y )

))
D→

N

((
0
0

)
,

(
σ2
M σM,D

σM,D σ2
D

))
(8.27)

where

σ2
M =

1

4f2(F−1(1
2 ))

, σ2
D =

1

4A2
(1 +

B

f2(F−1(1
2 ))

),

and

σM,D =
1

4Af(F−1(1
2
))

(1 − 4F (F−1(
1

2
) + MAD(Y )) +

C

f(F−1(1
2
))

).

Determining whether the population median and mad are unique can be
useful. Recall that F (y) = P (Y ≤ y) and F (y−) = P (Y < y). The median
is unique unless there is a flat spot at F−1(0.5), that is, unless there exist a
and b with a < b such that F (a) = F (b) = 0.5. If MED(Y ) is unique, then
MAD(Y ) is unique unless F has flat spots at both F−1(MED(Y )−MAD(Y ))
and F−1(MED(Y ) + MAD(Y )). Moreover, MAD(Y ) is unique unless there
exist a1 < a2 and b1 < b2 such that F (a1) = F (a2), F (b1) = F (b2),

P (ai ≤ Y ≤ bi) = F (bi) − F (ai−) ≥ 0.5,

and
P (Y ≤ ai) + P (Y ≥ bi) = F (ai) + 1 − F (bi−) ≥ 0.5

for i = 1, 2. The following theorem gives some simple bounds for MAD(Y ).

Theorem 8.8. Assume MED(Y ) and MAD(Y ) are unique. a) Then

min{MED(Y ) − F−1(0.25), F−1(0.75) − MED(Y )} ≤ MAD(Y ) ≤

max{MED(Y ) − F−1(0.25), F−1(0.75)− MED(Y )}. (8.28)

b) If Y is symmetric about µ = F−1(0.5), then the three terms in a) are
equal.
c) If the distribution is symmetric about zero, then MAD(Y ) = F−1(0.75).
d) If Y is symmetric and continuous with a finite second moment, then

MAD(Y ) ≤
√

2VAR(Y ).

e) Suppose Y ∈ [a, b]. Then

0 ≤ MAD(Y ) ≤ m = min{MED(Y ) − a, b− MED(Y )} ≤ (b− a)/2,

and the inequalities are sharp.
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Proof. a) This result follows since half the mass is between the upper and
lower quartiles and the median is between the two quartiles.

b) and c) are corollaries of a).
d) This inequality holds by Chebyshev’s inequality, since

P ( |Y −E(Y )| ≥ MAD(Y ) ) = 0.5 ≥ P ( |Y − E(Y )| ≥
√

2VAR(Y ) ),

and E(Y ) = MED(Y ) for symmetric distributions with finite second mo-
ments.

e) Note that if MAD(Y ) > m, then either MED(Y ) − MAD(Y ) < a
or MED(Y ) + MAD(Y ) > b. Since at least half of the mass is between a
and MED(Y ) and between MED(Y ) and b, this contradicts the definition of
MAD(Y ). To see that the inequalities are sharp, note that if at least half of
the mass is at some point c ∈ [a, b], than MED(Y ) = c and MAD(Y ) = 0.
If each of the points a, b, and c has 1/3 of the mass where a < c < b, then
MED(Y ) = c and MAD(Y ) = m. �

Many other results for MAD(Y ) and MAD(n) are possible. For example,
note that Theorem 8.8 b) implies that when Y is symmetric, MAD(Y ) =
F−1(3/4)− µ and F (µ+ MAD(Y )) = 3/4. Also note that MAD(Y ) and the
interquartile range IQR(Y ) are related by

2MAD(Y ) = IQR(Y ) ≡ y0.75 − y0.25

when Y is symmetric.

8.1.5 Truncated Distributions

Truncated distributions can be used to simplify the asymptotic theory of
robust estimators of location and regression. This subsection is useful when
the underlying distribution is exponential, double exponential, normal, or
Cauchy.

Definitions 8.18 and 8.19 defined the truncated random variable YT (a, b)
and the Winsorized random variable YW (a, b). Let Y have cdf F and let the
truncated random variable YT (a, b) have the cdf FT (a,b). The following lemma
illustrates the relationship between the means and variances of YT (a, b) and
YW (a, b). Note that YW (a, b) is a mixture of YT (a, b) and two point masses
at a and b. Let c = µT (a, b)− a and d = b− µT (a, b).

Theorem 8.9. Let a = µT (a, b) − c and b = µT (a, b) + d. Then
a) µW (a, b) = µT (a, b) − αc+ (1 − β)d, and
b) σ2

W (a, b) = (β−α)σ2
T (a, b)+(α−α2)c2+[(1−β)−(1−β)2]d2+2α(1−β)cd.

c) If α = 1− β then
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σ2
W (a, b) = (1 − 2α)σ2

T (a, b) + (α− α2)(c2 + d2) + 2α2cd.

d) If c = d then

σ2
W (a, b) = (β − α)σ2

T (a, b) + [α− α2 + 1 − β − (1 − β)2 + 2α(1 − β)]d2.

e) If α = 1− β and c = d, then µW (a, b) = µT (a, b) and

σ2
W (a, b) = (1 − 2α)σ2

T (a, b) + 2αd2.

Proof. We will prove b) since its proof contains the most algebra. Now

σ2
W = α(µT − c)2 + (β − α)(σ2

T + µ2
T ) + (1 − β)(µT + d)2 − µ2

W .

Collecting terms shows that

σ2
W = (β − α)σ2

T + (β − α+ α+ 1 − β)µ2
T + 2[(1 − β)d − αc]µT

+αc2 + (1 − β)d2 − µ2
W .

From a),

µ2
W = µ2

T + 2[(1− β)d − αc]µT + α2c2 + (1 − β)2d2 − 2α(1 − β)cd,

and we find that

σ2
W = (β − α)σ2

T + (α− α2)c2 + [(1 − β) − (1 − β)2 ]d2 + 2α(1 − β)cd. �

The Truncated Exponential Distribution
Let Y be a (one sided) truncated exponential TEXP (λ, b) random vari-

able. Then the pdf of Y is

fY (y|λ, b) =
1
λ
e−y/λ

1 − exp(− b
λ )

for 0 < y ≤ b where λ > 0. Let b = kλ, and let

ck =

∫ kλ

0

1

λ
e−y/λdy = 1 − e−k.

Next we will find the first two moments of Y ∼ TEXP (λ, b = kλ) for k > 0.

Theorem 8.10. If Y is TEXP (λ, b = kλ) for k > 0, then

a) E(Y ) = λ

[
1 − (k + 1)e−k

1 − e−k

]
,

and
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b) E(Y 2) = 2λ2

[
1 − 1

2 (k2 + 2k + 2)e−k

1 − e−k

]
.

See Problem 8.6 for a related result.

Proof. a) Note that

ckE(Y ) =

∫ kλ

0

y

λ
e−y/λdy = −ye−y/λ|kλ0 +

∫ kλ

0

e−y/λdy

(use integration by parts). So

ckE(Y ) = −kλe−k + (−λe−y/λ)|kλ0 = −kλe−k + λ(1 − e−k).

Hence

E(Y ) = λ

[
1 − (k + 1)e−k

1 − e−k

]
.

b) Note that

ckE(Y 2) =

∫ kλ

0

y2

λ
e−y/λdy.

Since

d

dy
[−(y2 + 2λy + 2λ2)e−y/λ] =

1

λ
e−y/λ(y2 + 2λy + 2λ2) − e−y/λ(2y + 2λ)

= y2 1

λ
e−y/λ,

we have ckE(Y 2) = [−(y2 + 2λy + 2λ2)e−y/λ]kλ0 =
− (k2λ2 + 2λ2k + 2λ2)e−k + 2λ2. So the result follows. �

Since as k → ∞, E(Y ) → λ, and E(Y 2) → 2λ2, we have VAR(Y ) → λ2.
If k = 9 log(2) ≈ 6.24, then E(Y ) ≈ .998λ, and E(Y 2) ≈ 0.95(2λ2).

The Truncated Double Exponential Distribution
Suppose that X is a double exponential DE(µ, λ) random variable. Then

MED(X) = µ and MAD(X) = log(2)λ. Let c = k log(2), and let the trunca-
tion points a = µ−kMAD(X) = µ−cλ and b = µ+kMAD(X) = µ+cλ. Let
XT (a, b) ≡ Y be the truncated double exponential TDE(µ, λ, a, b) random
variable. Then for a ≤ y ≤ b, the pdf of Y is

fY (y|µ, λ, a, b) =
1

2λ(1 − exp(−c)) exp(−|y − µ|/λ).

Theorem 8.11. a) E(Y ) = µ.
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b) VAR(Y ) = 2λ2

[
1 − 1

2 (c2 + 2c+ 2)e−c

1 − e−c

]
.

Proof. a) follows by symmetry and b) follows from Theorem 8.10 b) since
VAR(Y ) = E[(Y − µ)2] = E(W 2

T ) where WT is TEXP (λ, b = cλ). �

As c → ∞, VAR(Y ) → 2λ2. If k = 9, then c = 9 log(2) ≈ 6.24 and
VAR(Y ) ≈ 0.95(2λ2).

The Truncated Normal Distribution
Now if X is N(µ, σ2) then let Y be a truncated normal TN(µ, σ2, a, b)

random variable. Then fY (y) =

1√
2πσ2

exp (−(y−µ)2

2σ2 )

Φ( b−µσ ) − Φ(a−µσ )
I[a,b](y) where Φ is the

standard normal cdf. The indicator function

I[a,b](y) = 1 if a ≤ y ≤ b

and is zero otherwise. Let φ be the standard normal pdf.

Theorem 8.12. E(Y ) = µ+

[
φ(a−µσ ) − φ( b−µσ )

Φ( b−µ
σ

) − Φ(a−µ
σ

)

]
σ, and

V (Y ) = σ2

[
1 +

(a−µ
σ

)φ(a−µ
σ

) − ( b−µ
σ

)φ( b−µ
σ

)

Φ( b−µσ ) − Φ(a−µσ )

]
− σ2

[
φ(a−µ

σ
) − φ( b−µ

σ
)

Φ( b−µσ ) − Φ(a−µσ )

]2

.

(See Johnson and Kotz 1970a, p. 83.)

Proof. Let c =
1

Φ( b−µσ ) − Φ(a−µσ )
.

Then E(Y ) =
∫ b
a
yfY (y)dy. Hence

1

c
E(Y ) =

∫ b

a

y√
2πσ2

exp (
−(y − µ)2

2σ2
)dy

=

∫ b

a

(
y − µ

σ
)

1√
2π

exp (
−(y − µ)2

2σ2
)dy +

µ

σ

1√
2π

∫ b

a

exp (
−(y − µ)2

2σ2
)dy

=

∫ b

a

(
y − µ

σ
)

1√
2π

exp (
−(y − µ)2

2σ2
)dy + µ

∫ b

a

1√
2πσ2

exp (
−(y − µ)2

2σ2
)dy.

Note that the integrand of the last integral is the pdf of a N(µ, σ2) distribu-
tion. Let z = (y − µ)/σ. Thus dz = dy/σ, and E(Y )/c =

∫ b−µ
σ

a−µ
σ

σ
z√
2π
e−z

2/2dz +
µ

c
=

σ√
2π

(−e−z2/2)|
b−µ

σ
a−µ

σ

+
µ

c
.



8.1 The Location Model 323

Multiplying both sides by c gives the expectation result.

E(Y 2) =

∫ b

a

y2fY (y)dy.

Hence
1

c
E(Y 2) =

∫ b

a

y2

√
2πσ2

exp (
−(y − µ)2

2σ2
)dy

= σ

∫ b

a

(
y2

σ2
− 2µy

σ2
+
µ2

σ2
)

1√
2π

exp (
−(y − µ)2

2σ2
)dy

+σ

∫ b

a

2yµ − µ2

σ2

1√
2π

exp (
−(y − µ)2

2σ2
)dy

= σ

∫ b

a

(
y − µ

σ
)2

1√
2π

exp (
−(y − µ)2

2σ2
)dy + 2

µ

c
E(Y ) − µ2

c
.

Let z = (y − µ)/σ. Then dz = dy/σ, dy = σdz, and y = σz + µ. Hence

E(Y 2)

c
= 2

µ

c
E(Y ) − µ2

c
+ σ

∫ b−µ
σ

a−µ
σ

σ
z2

√
2π
e−z

2/2dz.

Next integrate by parts with w = z and dv = ze−z
2/2dz. Then E(Y 2)/c =

2
µ

c
E(Y ) − µ2

c
+

σ2

√
2π

[(−ze−z2/2)|
b−µ

σ
a−µ

σ

+

∫ b−µ
σ

a−µ
σ

e−z
2/2dz]

= 2
µ

c
E(Y ) − µ2

c
+ σ2

[
(
a− µ

σ
)φ(

a − µ

σ
) − (

b− µ

σ
)φ(

b− µ

σ
) +

1

c

]
.

Using

VAR(Y ) = c
1

c
E(Y 2) − (E(Y ))2

gives the result. �

Theorem 8.13. Let Y be TN(µ, σ2, a = µ − kσ, b = µ + kσ). Then

E(Y ) = µ and V (Y ) = σ2

[
1 − 2kφ(k)

2Φ(k)− 1

]
.

Proof. Use the symmetry of φ, the fact that Φ(−x) = 1 − Φ(x), and the
above lemma to get the result. �

Examining V (Y ) for several values of k shows that the TN(µ, σ2, a =
µ− kσ, b = µ+ kσ) distribution does not change much for k > 3.0. See Table
8.2.

The Truncated Cauchy Distribution
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Table 8.2 Variances for Several Truncated Normal Distributions

k V (Y )
2.0 0.774σ2

2.5 0.911σ2

3.0 0.973σ2

3.5 0.994σ2

4.0 0.999σ2

If X is a Cauchy C(µ, σ) random variable, then MED(X) = µ and
MAD(X) = σ. If Y is a truncated Cauchy TC(µ, σ, µ− aσ, µ + bσ) random
variable, then

fY (y) =
1

tan−1(b) + tan−1(a)

1

σ[1 + (y−µσ )2]

for µ − aσ < y < µ + bσ. For the following theorem, see Johnson and Kotz
(1970a, p. 162) and Dahiya, Staneski and Chaganty (2001).

Theorem 8.14. a)

E(Y ) = µ+ σ

(
log(1 + b2) − log(1 + a2)

2[tan−1(b) + tan−1(a)]

)
, and

V (Y ) = σ2

[
b+ a − tan−1(b) − tan−1(a)

tan−1(b) + tan−1(a)
−
(

log(1 + b2) − log(1 + a2)

tan−1(b) + tan−1(a)

)2
]
.

b) If a = b, then E(Y ) = µ, and V (Y ) = σ2

[
b− tan−1(b)

tan−1(b)

]
.

8.1.6 Asymptotic Variances for Trimmed Means

The truncated distributions will be useful for finding the asymptotic vari-
ances of trimmed and two stage trimmed means. Assume that Y is from a
symmetric location–scale family with parameters µ and σ and that the trun-
cation points are a = µ − zσ and b = µ + zσ. Recall that for the trimmed
mean Tn,

√
n(Tn − µT (a, b))

D→ N

[
0,
σ2
W (a, b)

(β − α)2

]
.

Since the family is symmetric and the truncation is symmetric, α = F (a) =
1− β and µT (a, b) = µ.

Definition 8.21. Let Y1, ..., Yn be iid random variables and let Dn ≡
Dn(Y1, ..., Yn) be an estimator of a parameter µD such that
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√
n(Dn − µD)

D→ N(0, σ2
D).

Then the asymptotic variance of
√
n(Dn − µD) is σ2

D and the asymptotic
variance (AV) of Dn is σ2

D/n. If S
2
D is a consistent estimator of σ2

D, then the
(asymptotic) standard error (SE) of Dn is SD/

√
n.

Remark 8.2. In the literature, usually either σ2
D or σ2

D/n is called the
asymptotic variance of Dn. The parameter σ2

D is a function of both the
estimatorDn and the underlying distribution F of Y1. Frequently nVAR(Dn)
converges in distribution to σ2

D, but not always. See Staudte and Sheather
(1990, p. 51) and Lehmann (1999, p. 232).

Example 8.8. If Y1, ..., Yn are iid from a distribution with mean µ and
variance σ2, then by the central limit theorem,

√
n(Y n − µ)

D→ N(0, σ2).

Recall that VAR(Y n) = σ2/n = AV (Y n) and that the standard error
SE(Y n) = Sn/

√
n where S2

n is the sample variance.

Remark 8.3. Returning to the trimmed mean Tn where Y is from a
symmetric location–scale family, take µ = 0 since the asymptotic variance
does not depend on µ. Then

n AV (Tn) =
σ2
W (a, b)

(β − α)2
=
σ2
T (a, b)

1 − 2α
+

2α(F−1(α))2

(1 − 2α)2
.

See, for example, Bickel (1965). This formula is useful since the variance of the
truncated distribution σ2

T (a, b) has been computed for several distributions
in the previous subsection.

Definition 8.22. An estimator Dn is a location and scale equivariant
estimator if Dn(α+ βY1, ..., α+ βYn) = α+ βDn(Y1, ..., Yn) where α and β
are arbitrary real constants.

Remark 8.4. Many location estimators such as the sample mean, sample
median, trimmed mean, metrically trimmed mean, and two stage trimmed
means are equivariant. Let Y1, ..., Yn be iid from a distribution with cdf
FY (y) and suppose that Dn is an equivariant estimator of µD ≡ µD(FY ) ≡
µD(FY (y)). If Xi = α + βYi where β 6= 0, then the cdf of X is FX(y) =
FY ((y − α)/β). Suppose that

µD(FX) ≡ µD[FY (
y − α

β
)] = α+ βµD [FY (y)]. (8.29)

Let Dn(Y ) ≡ Dn(Y1, ..., Yn). If
√
n[Dn(Y ) − µD(FY (y))]

D→ N(0, σ2
D), then
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√
n[Dn(X)− µD(FX)] =

√
n[α+ βDn(Y )− (α+ βµD(FY ))]

D→ N(0, β2σ2
D).

This result is especially useful when F is a cdf from a location–scale family
with parameters µ and σ. In this case, Equation (8.29) holds when µD is the
population mean, population median, and the population truncated mean
with truncation points a = µ−z1σ and b = µ+z2σ (the parameter estimated
by trimmed and two stage trimmed means).

Refer to the notation for two stage trimmed means below Theorem 8.3.
Then from Theorem 8.5,

√
n[TA,n − µT (ao, bo)]

D→ N

[
0,
σ2
W (ao, bo)

(βo − αo)2

]
,

and
√
n[TS,n − µT (aM , bM)]

D→ N

[
0,
σ2
W (aM , bM)

(βM − αM)2

]
.

If the distribution of Y is symmetric then TA,n and TS,n are asymptotically
equivalent. It is important to note that no knowledge of the unknown distri-
bution and parameters is needed to compute the two stage trimmed means
and their standard errors.

The next three theorems find the asymptotic variance for trimmed and
two stage trimmed means when the underlying distribution is normal, double
exponential and Cauchy, respectively. Assume a = MED(Y )−kMAD(Y ) and
b = MED(Y ) + kMAD(Y ).

Theorem 8.15. Suppose that Y comes from a normal N(µ, σ2) distribu-
tion. Let Φ(x) be the cdf and let φ(x) be the density of the standard normal.
Then for the α trimmed mean,

n AV =


1 − 2zφ(z)

2Φ(z)−1

1 − 2α
+

2αz2

(1 − 2α)2


σ2 (8.30)

where α = Φ(−z), and z = kΦ−1(0.75). For the two stage estimators, round
100α up to the nearest integer J. Then use αJ = J/100 and zJ = −Φ−1(αJ)
in Equation (8.30).

Proof. If Y follows the normal N(µ, σ2) distribution, then a = µ −
kMAD(Y ) and b = µ+kMAD(Y ) where MAD(Y ) = Φ−1(0.75)σ. It is enough
to consider the standard N(0,1) distribution since n AV (Tn, N(µ, σ2)) =
σ2 n AV (Tn, N(0, 1)). If a = −z and b = z, then by Theorem 8.13,

σ2
T (a, b) = 1 − 2zφ(z)

2Φ(z) − 1
.
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Use Remark 8.3 with z = kΦ−1(0.75), and α = Φ(−z) to get Equation (8.30).

Theorem 8.16. Suppose that Y comes from a double exponential DE(0,1)
distribution. Then for the α trimmed mean,

n AV =

2−(z2+2z+2)e−z

1−e−z

1 − 2α
+

2αz2

(1 − 2α)2
(8.31)

where z = k log(2) and α = 0.5 exp(−z). For the two stage estimators,
round 100α up to the nearest integer J. Then use αJ = J/100 and let
zJ = − log(2αJ).

Proof Sketch. For the DE(0, 1) distribution, MAD(Y ) = log(2). If the
DE(0,1) distribution is truncated at −z and z, then use Remark 8.3 with

σ2
T (−z, z) =

2 − (z2 + 2z + 2)e−z

1 − e−z
.

Theorem 8.17. Suppose that Y comes from a Cauchy (0,1) distribution.
Then for the α trimmed mean,

n AV =
z − tan−1(z)

(1 − 2α) tan−1(z)
+

2α(tan[π(α− 1
2
)])2

(1 − 2α)2
(8.32)

where z = k and

α =
1

2
+

1

π
tan−1(z).

For the two stage estimators, round 100α up to the nearest integer J. Then
use αJ = J/100 and let zJ = tan[π(αJ − 0.5)].

Proof Sketch. For the C(0, 1) distribution, MAD(Y ) = 1. If the C(0,1)
distribution is truncated at −z and z, then use Remark 8.3 with

σ2
T (−z, z) =

z − tan−1(z)

tan−1(z)
.

Next we give a theorem for the metrically trimmed mean Mn. Lopuhaä
(1999) shows the following result. Suppose (µ̂n,Cn) is an estimator of mul-
tivariate location and dispersion. Suppose that the iid data follow an el-
liptically contoured ECp(µ,Σ, g) distribution. Let (xJ ,SJ) be the classical
estimator applied to the set J of cases with squared Mahalanobis distances

D2
i (µ̂n,Cn) ≤ k2. Under regularity conditions, if (µ̂n,Cn)

P→ (µ, sΣ) with

rate nδ where 0 < δ ≤ 0.5, then (xJ ,SJ)
P→ (µ, dΣ) with the same rate nδ

where s > 0 and d > 0 are some constants. See Section 8.2 for discussion of
the above quantities.
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In the univariate setting with p = 1, let θ̂n = µ̂n and let D2
n = Cn

where Dn is an estimator of scale. Suppose the classical estimator (Y J , S
2
J) ≡

(xJ ,SJ) is applied to the set J of cases with θ̂n−kDn ≤ Yi ≤ θ̂n+kDn . Hence
Y J is the metrically trimmed meanMn with k1 = k2 ≡ k. See Definition 8.14.

The population quantity estimated by (Y J , S
2
J) is the truncated mean

and variance (µT (a, b), σ2
T (a, b)) of Definition 8.18 where θ̂n − kDn

P→ a and

θ̂n + kDn
P→ b. In the theorem below, the pdf corresponds to an elliptically

contoured distribution with p = 1 and Σ = τ2. Each pdf corresponds to a
location scale family with location parameter µ and scale parameter τ. Note
that (θ̂n, Dn) = (MED(n),MAD(n)) results in a

√
n consistent estimator

(Mn, S
2
J).

Assumption E1: Suppose Y1, ..., Yn are iid from an EC1(µ, τ
2, g) distri-

bution with pdf

f(y) =
c

τ
g

[(
y − µ

τ

)2
]

where g is continuously differentiable with finite 4th moment
∫
y4g(y2)dy <

∞, c > 0 is some constant, τ > 0 where y and µ are real.

Theorem 8.18. Let Mn be the metrically trimmed mean with k1 = k2 ≡
k. Assume (E1) holds. If (θ̂n , D

2
n)

P→ (µ, sτ2) with rate nδ for some constant

s > 0 where 0 < δ ≤ 0.5, then (Mn, S
2
J)

P→ (µ, σ2
T (a, b)) with the same rate

nδ.

Proof. The result is a special case of Lopuhaä (1999) which shows that

(Mn, S
2
J)

P→ (µ, dτ2) with rate nδ. Since k1 = k2 = k, dτ2 = σ2
T (a, b). �

Note that the classical estimator applied to the set J̃ of cases Yi between
a and b is a

√
n consistent estimator of (µT (a, b), σ2

T(a, b)). Consider the set
J of cases with MED(n) − kMAD(n) ≤ Yi ≤ MED(N) + kMAD(n). By
Theorem 8.4 sets J̃ and J differ primarily in neighborhoods of a and b. This
result leads to the following conjecture.

Conjecture 8.1. If Y1, ..., Yn are iid from a distribution with a pdf that is

positive in neighborhoods of a and b, and if θ̂n−k1Dn
P→ a and θ̂n+k2Dn

P→ b

at rate n0.5, then (Mn, S
2
J)

P→ (µT (a, b), σ2
T(a, b)) with rate n0.5.

8.2 The Multivariate Location and Dispersion Model

The multivariate location and dispersion (MLD) model is a special case of the
multivariate linear model, just like the location model is a special case of the
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multiple linear regression model. Robust estimators of multivariate location
and dispersion are useful for detecting outliers in the predictor variables and
for developing an outlier resistant multiple linear regression estimator.

The practical, highly outlier resistant,
√
n consistent FCH, RFCH, and

RMVN estimators of (µ, cΣ) are developed along with proofs. The RFCH
and RMVN estimators are reweighted versions of the FCH estimator. Olive
(2017b) shows why competing “robust estimators” fail to work, are impracti-
cal, or are not yet backed by theory. The RMVN and RFCH sets are defined
and will be used for outlier detection and to create practical robust methods
of multiple linear regression and multivariate linear regression. Many more
applications are given in Olive (2017b).

Warning: This section contains many acronyms, abbreviations, and es-
timator names such as FCH, RFCH, and RMVN. Often the acronyms start
with the added letter A, C, F, or R: A stands for algorithm, C for con-
centration, F for estimators that use a fixed number of trial fits, and R for
reweighted.

Definition 8.23. The multivariate location and dispersion model is

Y i = µ + ei, i = 1, . . . , n (8.33)

where e1, ..., en are p× 1 error random vectors, often iid with zero mean and
covariance matrix Cov(e) = Cov(Y ) = ΣY = Σe.

Note that the location model is a special case of the MLD model with
p = 1. If E(e) = 0, then E(Y ) = µ. A p×p dispersion matrix is a symmetric
matrix that measures the spread of a random vector. Covariance and corre-
lation matrices are dispersion matrices. One way to get a robust estimator
of multivariate location is to stack the marginal estimators of location into
a vector. The coordinatewise median MED(W ) is an example. The sample
mean x also stacks the marginal estimators into a vector, but is not outlier
resistant.

Let µ be a p×1 location vector and Σ a p×p symmetric dispersion matrix.
Because of symmetry, the first row of Σ has p distinct unknown parameters,
the second row has p−1 distinct unknown parameters, the third row has p−2
distinct unknown parameters, ..., and the pth row has one distinct unknown
parameter for a total of 1+2+· · ·+p = p(p+1)/2 unknown parameters. Since
µ has p unknown parameters, an estimator (T,C) of multivariate location
and dispersion, needs to estimate p(p+3)/2 unknown parameters when there
are p random variables.

The sample covariance or sample correlation matrices estimate these pa-
rameters very efficiently since Σ = (σij) where σij is a population covariance
or correlation. These quantities can be estimated with the sample covariance
or correlation taking two variables Xi and Xj at a time. Note that there are
p(p+ 1)/2 pairs that can be chosen from p random variables X1, ..., Xp. See
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Definition 4.5 for the sample mean x, the sample covariance matrix S, and
the sample correlation matrix R.

Rule of thumb 8.1. For the classical estimators of multivariate location
and dispersion, (x,S) or (z = 0,R), we want n ≥ 10p. We want n ≥ 20p for
the robust MLD estimators (FCH, RFCH, or RMVN) described later in this
section.

8.2.1 Affine Equivariance

Before defining an important equivariance property, some notation is needed.
Assume that the data is collected in an n× p data matrix W . Let B = 1bT

where 1 is an n × 1 vector of ones and b is a p × 1 constant vector. Hence
the ith row of B is bTi ≡ bT for i = 1, ..., n. For such a matrix B, consider
the affine transformation Z = WAT + B where A is any nonsingular p× p
matrix. An affine transformation changes xi to zi = Axi + b for i = 1, ..., n,
and affine equivariant multivariate location and dispersion estimators change
in natural ways.

Definition 8.24. The multivariate location and dispersion estimator
(T,C) is affine equivariant if

T (Z) = T (WAT + B) = AT (W ) + b, (8.34)

and C(Z) = C(WAT + B) = AC(W )AT . (8.35)

The following theorem shows that the Mahalanobis distances are invariant
under affine transformations. See Rousseeuw and Leroy (1987, pp. 252-262)
for similar results. Thus if (T,C) is affine equivariant, so is
(T,D2

(cn)(T,C) C) where D2
(j)(T,C) is the jth order statistic of the D2

i .

Theorem 8.19. If (T,C) is affine equivariant, then

D2
i (W ) ≡ D2

i (T (W ),C(W )) = D2
i (T (Z),C(Z)) ≡ D2

i (Z). (8.36)

Proof. Since Z = WAT + B has ith row zTi = xTi AT + bT ,

D2
i (Z) = [zi − T (Z)]TC−1(Z)[zi − T (Z)]

= [A(xi − T (W ))]T [AC(W )AT ]−1[A(xi − T (W ))]

= [xi − T (W )]TC−1(W )[xi − T (W )] = D2
i (W ). �
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Definition 8.25. For MLD, an elemental set J = {m1, ..., mp+1} is a
set of p + 1 cases drawn without replacement from the data set of n cases.
The elemental fit (TJ ,CJ ) = (xJ ,SJ) is the sample mean and the sample
covariance matrix computed from the cases in the elemental set.

If the data are iid, then the elemental fit gives an unbiased but inconsistent
estimator of (E(x),Cov(x)). Note that the elemental fit uses the smallest
sample size p + 1 such that SJ is nonsingular if the data are in “general
position” defined in Definition 8.27.

8.2.2 Breakdown

This subsection gives a standard definition of breakdown for estimators of
multivariate location and dispersion. The following notation will be useful.
Let W denote the n × p data matrix with ith row xTi corresponding to the
ith case. Let w1, ...wn be the contaminated data after dn of the xi have been
replaced by arbitrarily bad contaminated cases. Let W n

d denote the n×p data
matrix with ith row wT

i . Then the contamination fraction is γn = dn/n. Let
(T (W ),C(W )) denote an estimator of multivariate location and dispersion
where the p × 1 vector T (W ) is an estimator of location and the p × p
symmetric positive semidefinite matrix C(W ) is an estimator of dispersion.

Theorem 8.20. Let B > 0 be a p × p symmetric matrix with eigenvalue
eigenvector pairs (λ1, e1), ..., (λp, ep) where λ1 ≥ λ2 · · · ≥ λp > 0 and the
orthonormal eigenvectors satisfy eTi ei = 1 while eTi ej = 0 for i 6= j. Let d
be a given p× 1 vector and let a be an arbitrary nonzero p× 1 vector.

a) max
a6=0

aTddTa

aTBa
= dTB−1d where the max is attained for a = cB−1d

for any constant c 6= 0. Note that the numerator = (aTd)2.

b) max
a6=0

aTBa

aTa
= max

‖a‖=1
aTBa = λ1 where the max is attained for a = e1.

c) min
a6=0

aTBa

aTa
= min

‖a‖=1
aTBa = λp where the min is attained for a = ep.

d) max
a⊥e1,...,ek

aTBa

aTa
= max

‖a‖=1,a⊥e1,...,ek

aTBa = λk+1 where the max is

attained for a = ek+1 for k = 1, 2, ..., p− 1.
e) Let (x,S) be the observed sample mean and sample covariance matrix

where S > 0.Then max
a6=0

naT (x − µ)(x − µ)Ta

aTSa
= n(x−µ)TS−1(x−µ) = T 2

where the max is attained for a = cS−1(x − µ) for any constant c 6= 0.
f) Let A be a p × p symmetric matrix. Let C > 0 be a p × p symmetric

matrix. Then max
a6=0

aTAa

aTCa
= λ1(C

−1A), the largest eigenvalue of C−1A. The
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value of a that achieves the max is the eigenvector g1 of C−1A corresponding

to λ1(C
−1A). Similarly min

a 6=0

aTAa

aTCa
= λp(C

−1A), the smallest eigenvalue of

C−1A. The value of a that achieves the min is the eigenvector gp of C−1A

corresponding to λp(C
−1A).

Proof Sketch. See Johnson and Wichern (1988, pp. 64-65, 184). For a),
note that rank(C−1A) = 1, where C = B and A = ddT , since rank(C−1A)
= rank(A) = rank(d) = 1. Hence C−1A has one nonzero eigenvalue eigen-
vector pair (λ1, g1). Since

(λ1 = dTB−1d, g1 = B−1d)

is a nonzero eigenvalue eigenvector pair for C−1A, and λ1 > 0, the result
follows by f).

Note that b) and c) are special cases of f) with A = B and C = I .
Note that e) is a special case of a) with d = (x− µ) and B = S.
(Also note that (λ1 = (x−µ)TS−1(x−µ), g1 = S−1(x−µ)) is a nonzero

eigenvalue eigenvector pair for the rank 1 matrix C−1A where C = S and
A = (x − µ)(x− µ)T .)

For f), see Mardia et al. (1979, p. 480). �

From Theorem 8.20, if C(W n
d) > 0, then max

‖a‖=1
aTC(W n

d )a = λ1 and

min
‖a‖=1

aTC(W n
d )a = λp. A high breakdown dispersion estimator C is positive

definite if the amount of contamination is less than the breakdown value.
Since aTCa =

∑p
i=1

∑p
j=1 cijaiaj, the largest eigenvalue λ1 is bounded as

W n
d varies iff C(W n

d ) is bounded as W n
d varies.

Definition 8.26. The breakdown value of the multivariate location esti-
mator T at W is

B(T,W ) = min

{
dn
n

: sup
W n

d

‖T (W n
d)‖ = ∞

}

where the supremum is over all possible corrupted samples W n
d and 1 ≤

dn ≤ n. Let λ1(C(W )) ≥ · · · ≥ λp(C(W )) ≥ 0 denote the eigenvalues of the
dispersion estimator applied to data W . The estimator C breaks down if the
smallest eigenvalue can be driven to zero or if the largest eigenvalue can be
driven to ∞. Hence the breakdown value of the dispersion estimator is

B(C,W ) = min

{
dn
n

: sup
W n

d

max

[
1

λp(C(W n
d ))

, λ1(C(W n
d))

]
= ∞

}
.

Definition 8.27. Let γn be the breakdown value of (T,C). High break-
down (HB) statistics have γn → 0.5 as n→ ∞ if the (uncontaminated) clean
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data are in general position: no more than p points of the clean data lie on
any (p−1)-dimensional hyperplane. Estimators are zero breakdown if γn → 0
and positive breakdown if γn → γ > 0 as n → ∞.

Note that if the number of outliers is less than the number needed to cause
breakdown, then ‖T‖ is bounded and the eigenvalues are bounded away from
0 and ∞. Also, the bounds do not depend on the outliers but do depend on
the estimator (T,C) and on the clean data W .

The following result shows that a multivariate location estimator T basi-
cally “breaks down” if the d outliers can make the median Euclidean distance
MED(‖wi−T (W n

d )‖) arbitrarily large where wT
i is the ith row of W n

d . Thus
a multivariate location estimator T will not break down if T can not be driven
out of some ball of (possibly huge) radius r about the origin. For an affine
equivariant estimator, the largest possible breakdown value is n/2 or (n+1)/2
for n even or odd, respectively. Hence in the proof of the following result, we
could replace dn < dT by dn < min(n/2, dT).

Theorem 8.21. Fix n. If nonequivariant estimators (that may have a
breakdown value of greater than 1/2) are excluded, then a multivariate loca-
tion estimator has a breakdown value of dT /n iff dT = dT,n is the smallest
number of arbitrarily bad cases that can make the median Euclidean distance
MED(‖wi − T (W n

d)‖) arbitrarily large.

Proof. Suppose the multivariate location estimator T satisfies ‖T (W n
d )‖ ≤

M for some constant M if dn < dT . Note that for a fixed data set W n
d

with ith row wi, the median Euclidean distance MED(‖wi − T (W n
d)‖) ≤

maxi=1,...,n ‖xi − T (W n
d )‖ ≤ maxi=1,...,n ‖xi‖ + M if dn < dT . Similarly,

suppose MED(‖wi − T (W n
d)‖) ≤ M for some constant M if dn < dT , then

‖T (Wn
d )‖ is bounded if dn < dT . �

Since the coordinatewise median MED(W ) is a HB estimator of multi-
variate location, it is also true that a multivariate location estimator T will
not break down if T can not be driven out of some ball of radius r about
MED(W ). Hence (MED(W ), Ip) is a HB estimator of MLD.

If a high breakdown estimator (T,C) ≡ (T (W n
d ),C(W n

d )) is evaluated
on the contaminated data W n

d , then the location estimator T is contained in
some ball about the origin of radius r, and 0 < a < λp ≤ λ1 < b where the
constants a, r, and b depend on the clean data and (T,C), but not on W n

d if
the number of outliers dn satisfies 0 ≤ dn < nγn < n/2 where the breakdown
value γn → 0.5 as n → ∞.

The following theorem will be used to show that if the classical estimator
(XB ,SB) is applied to cn ≈ n/2 cases contained in a ball about the origin of
radius r where r depends on the clean data but not on W n

d , then (XB,SB)
is a high breakdown estimator.
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Theorem 8.22. If the classical estimator (XB ,SB) is applied to cn cases
that are contained in some bounded region where p + 1 ≤ cn ≤ n, then the
maximum eigenvalue λ1 of SB is bounded.

Proof. The largest eigenvalue of a p × p matrix A is bounded above by
pmax |ai,j| where ai,j is the (i, j) entry of A. See Datta (1995, p. 403). Denote
the cn cases by z1, ..., zcn . Then the (i, j)th element ai,j of A = SB is

ai,j =
1

cn − 1

cn∑

m=1

(zi,m − zi)(zj,m − zj).

Hence the maximum eigenvalue λ1 is bounded. �

The determinant det(S) = |S| of S is known as the generalized sample
variance. Consider the hyperellipsoid

{z : (z − T )TC−1(z − T ) ≤ D2
(cn)} (8.37)

where D2
(cn) is the cnth smallest squared Mahalanobis distance based on

(T,C). This hyperellipsoid contains the cn cases with the smallest D2
i . Sup-

pose (T,C) = (xM , b SM ) is the sample mean and scaled sample covariance
matrix applied to some subset of the data where b > 0. The classical, RFCH,
and RMVN estimators satisfy this assumption. For h > 0, the hyperellipsoid

{z : (z − T )TC−1(z − T ) ≤ h2} = {z : D2
z ≤ h2} = {z : Dz ≤ h}

has volume equal to

2πp/2

pΓ (p/2)
hp
√
det(C) =

2πp/2

pΓ (p/2)
hpbp/2

√
det(SM).

If h2 = D2
(cn), then the volume is proportional to the square root of the deter-

minant |SM |1/2, and this volume will be positive unless extreme degeneracy
is present among the cn cases. See Johnson and Wichern (1988, pp. 103-104).

8.2.3 The Concentration Algorithm

Concentration algorithms are widely used since impractical brand name es-
timators, such as the MCD estimator given in Definition 8.28, take too long
to compute. The concentration algorithm, defined in Definition 8.29, use K
starts and attractors. A start is an initial estimator, and an attractor is an
estimator obtained by refining the start. For example, let the start be the
classical estimator (x,S). Then the attractor could be the classical estima-
tor (T1,C1) applied to the half set of cases with the smallest Mahalanobis
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distances. This concentration algorithm uses one concentration step, but the
process could be iterated for k concentration steps, producing an estimator
(Tk,Ck)

If more than one attractor is used, then some criterion is needed to select
which of the K attractors is to be used in the final estimator. If each attractor
(Tk,j,Ck,j) is the classical estimator applied to cn ≈ n/2 cases, then the
minimum covariance determinant (MCD) criterion is often used: choose the
attractor that has the minimum value of det(Ck,j) where j = 1, ..., K.

The remainder of this section will explain the concentration algorithm,
explain why the MCD criterion is useful but can be improved, provide some
theory for practical robust multivariate location and dispersion estimators,
and show how the set of cases used to compute the recommended RMVN or
RFCH estimator can be used to create outlier resistant regression estimators.
The RMVN and RFCH estimators are reweighted versions of the practical
FCH estimator, given in Definition 8.32.

Definition 8.28. Consider the subset Jo of cn ≈ n/2 observations whose
sample covariance matrix has the lowest determinant among all C(n, cn) sub-
sets of size cn. Let TMCD and CMCD denote the sample mean and sample
covariance matrix of the cn cases in Jo. Then the minimum covariance de-
terminant MCD(cn) estimator is (TMCD(W ),CMCD(W )).

Here

C(n, i) =

(
n

i

)
=

n!

i! (n− i)!

is the binomial coefficient.
The MCD estimator is a high breakdown (HB) estimator, and the value

cn = b(n + p+ 1)/2c is often used as the default. The MCD estimator is the
pair

(β̂LTS , QLTS(β̂LTS)/(cn − 1))

in the location model where LTS stands for the least trimmed sum of squares
estimator. See Definition 8.10. The population analog of the MCD estimator
is closely related to the hyperellipsoid of highest concentration that contains
cn/n ≈ half of the mass. The MCD estimator is a

√
n consistent HB asymp-

totically normal estimator for (µ, aMCDΣ) where aMCD is some positive
constant when the data xi are iid from a large class of distributions. See
Cator and Lopuhaä (2010, 2012) who extended some results of Butler et al.
(1993).

Computing robust covariance estimators can be very expensive. For exam-
ple, to compute the exact MCD(cn) estimator (TMCD, CMCD), we need to
consider the C(n, cn) subsets of size cn. Woodruff and Rocke (1994, p. 893)
noted that if 1 billion subsets of size 101 could be evaluated per second, it
would require 1033 millenia to search through all C(200, 101) subsets if the
sample size n = 200. See Section 8.8 for the MCD complexity.
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Hence algorithm estimators will be used to approximate the robust esti-
mators. Elemental sets are the key ingredient for both basic resampling and
concentration algorithms.

Definition 8.29. Suppose that x1, ...,xn are p × 1 vectors of observed
data. For the multivariate location and dispersion model, an elemental set J
is a set of p + 1 cases. An elemental start is the sample mean and sample
covariance matrix of the data corresponding to J. In a concentration algo-
rithm, let (T−1,j ,C−1,j) be the jth start (not necessarily elemental) and
compute all n Mahalanobis distances Di(T−1,j,C−1,j). At the next iter-
ation, the classical estimator (T0,j ,C0,j) = (x0,j,S0,j) is computed from
the cn ≈ n/2 cases corresponding to the smallest distances. This itera-
tion can be continued for k concentration steps resulting in the sequence
of estimators (T−1,j,C−1,j), (T0,j,C0,j), ..., (Tk,j,Ck,j). The result of the it-
eration (Tk,j,Ck,j) is called the jth attractor. If Kn starts are used, then
j = 1, ..., Kn. The concentration attractor, (TA,CA), is the attractor chosen
by the algorithm. The attractor is used to obtain the final estimator. A com-
mon choice is the attractor that has the smallest determinant det(Ck,j). The
basic resampling algorithm estimator is a special case where k = −1 so that
the attractor is the start: (xk,j,Sk,j) = (x−1,j,S−1,j).

This concentration algorithm is a simplified version of the algorithms given
by Rousseeuw and Van Driessen (1999) and Hawkins and Olive (1999a). Using
k = 10 concentration steps often works well. The following proposition is
useful and shows that det(S0,j) tends to be greater than the determinant of
the attractor det(Sk,j).

Theorem 8.23: Rousseeuw and Van Driessen (1999, p. 214). Sup-
pose that the classical estimator (xt,j,St,j) is computed from cn cases and
that the n Mahalanobis distances Di ≡ Di(xt,j,St,j) are computed. If
(xt+1,j,St+1,j) is the classical estimator computed from the cn cases with
the smallest Mahalanobis distances Di, then det(St+1,j) ≤ det(St,j) with
equality iff (xt+1,j,St+1,j) = (xt,j,St,j).

Starts that use a consistent initial estimator could be used. Kn is the
number of starts and k is the number of concentration steps used in the
algorithm. Suppose the algorithm estimator uses some criterion to choose an
attractor as the final estimator where there are K attractors and K is fixed,
e.g. K = 500, so K does not depend on n. A crucial observation is that the
theory of the algorithm estimator depends on the theory of the attractors,
not on the estimator corresponding to the criterion.

For example, let (0, Ip) and (1, diag(1, 3, ..., p)) be the high breakdown
attractors where 0 and 1 are the p × 1 vectors of zeroes and ones. If the
minimum determinant criterion is used, then the final estimator is (0, Ip).
Although the MCD criterion is used, the algorithm estimator does not have
the same properties as the MCD estimator.
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Hawkins and Olive (2002) showed that if K randomly selected elemental
starts are used with concentration to produce the attractors, then the result-
ing estimator is inconsistent and zero breakdown if K and k are fixed and free
of n. Note that each elemental start can be made to breakdown by changing
one case. Hence the breakdown value of the final estimator is bounded by
K/n → 0 as n → ∞. Note that the classical estimator computed from hn
randomly drawn cases is an inconsistent estimator unless hn → ∞ as n→ ∞.
Thus the classical estimator applied to a randomly drawn elemental set of
hn ≡ p + 1 cases is an inconsistent estimator, so the K starts and the K
attractors are inconsistent.

This theory shows that the Maronna et al. (2006, pp. 198-199) estimators
that use K = 500 and one concentration step (k = 0) are inconsistent and
zero breakdown. The following theorem is useful because it does not depend
on the criterion used to choose the attractor.

Suppose there are K consistent estimators (Tj ,Cj) of (µ, a Σ) for some
constant a > 0, each with the same rate nδ. If (TA,CA) is an estimator
obtained by choosing one of the K estimators, then (TA,CA) is a consistent
estimator of (µ, a Σ) with rate nδ by Pratt (1959). See Theorem 2.18.

Theorem 8.24. Suppose the algorithm estimator chooses an attractor as
the final estimator where there are K attractors and K is fixed.

i) If all of the attractors are consistent estimators of (µ, a Σ), then the
algorithm estimator is a consistent estimator of (µ, a Σ).

ii) If all of the attractors are consistent estimators of (µ, a Σ) with the
same rate, e.g. nδ where 0 < δ ≤ 0.5, then the algorithm estimator is a
consistent estimator of (µ, a Σ) with the same rate as the attractors.

iii) If all of the attractors are high breakdown, then the algorithm estimator
is high breakdown.

iv) Suppose the data x1, ...,xn are iid and P (xi = µ) < 1. The elemental
basic resampling algorithm estimator (k = −1) is inconsistent.

v) The elemental concentration algorithm is zero breakdown.

Proof. i) Choosing from K consistent estimators for (µ, a Σ) results in a
consistent estimator for of (µ, aΣ), and ii) follows from Pratt (1959). iii) Let
γn,i be the breakdown value of the ith attractor if the clean data x1, ...,xn are
in general position. The breakdown value γn of the algorithm estimator can
be no lower than that of the worst attractor: γn ≥ min(γn,1, ..., γn,K) → 0.5
as n → ∞.

iv) Let (x−1,j,S−1,j) be the classical estimator applied to a randomly
drawn elemental set. Then x−1,j is the sample mean applied to p + 1 iid
cases. Hence E(Sj) = Σx, E[x−1,j] = E(x) = µ, and Cov(x−1,j) =
Cov(x)/(p+1) = Σx/(p+1) assuming second moments. So the (x−1,j,S−1,j)
are identically distributed and inconsistent estimators of (µ,Σx). Even with-
out second moments, there exists ε > 0 such that P (‖x−1,j−µ‖ > ε) = δε > 0
where the probability, ε, and δε do not depend on n since the distribution
of x−1,j only depends on the distribution of the iid xi, not on n. Then
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P (minj ‖x−1,j − µ‖ > ε) = P (all ‖x−1,j − µ‖ > ε) → δKε > 0 as n → ∞
where equality would hold if the x−1,j were iid. Hence the “best start” that
minimizes ‖x−1,j − µ‖ is inconsistent.

v) The classical estimator with breakdown 1/n is applied to each elemental
start. Hence γn ≤ K/n→ 0 as n → ∞. �

Since the FMCD estimator is a zero breakdown elemental concentration
algorithm, the Hubert et al. (2008) claim that “MCD can be efficiently com-
puted with the FAST-MCD estimator” is false. Suppose K is fixed, but at
least one randomly drawn start is iterated to convergence so that k is not
fixed. Then it is not known whether the attractors are inconsistent or consis-
tent estimators, so it is not known whether FMCD is consistent. It is possible
to produce consistent estimators if K ≡ Kn is allowed to increase to ∞.

Remark 8.5. Let γo be the highest percentage of large outliers that an
elemental concentration algorithm can detect reliably. For many data sets,

γo ≈ min

(
n− cn
n

, 1 − [1 − (0.2)1/K]1/h
)

100% (8.38)

if n is large, cn ≥ n/2 and h = p+ 1.

Proof. Suppose that the data set contains n cases with d outliers and
n − d clean cases. Suppose K elemental sets are chosen with replacement.
If Wi is the number of outliers in the ith elemental set, then the Wi are
iid hypergeometric(d, n − d, h) random variables. Suppose that it is desired
to find K such that the probability P(that at least one of the elemental
sets is clean) ≡ P1 ≈ 1 − α where 0 < α < 1. Then P1 = 1− P(none of
the K elemental sets is clean) ≈ 1 − [1− (1 − γ)h]K by independence. If the
contamination proportion γ is fixed, then the probability of obtaining at least
one clean subset of size h with high probability (say 1− α = 0.8) is given by
0.8 = 1− [1− (1−γ)h ]K . Fix the number of starts K and solve this equation
for γ. �

8.2.4 Theory for Practical Estimators

It is convenient to let the xi be random vectors for large sample theory,
but the xi are fixed clean observed data vectors when discussing breakdown.
This subsection presents the FCH estimator to be used along with the classi-
cal estimator. Recall from Definition 8.29 that a concentration algorithm uses
Kn starts (T−1,j ,C−1,j). After finding (T0,j,C0,j), each start is refined with
k concentration steps, resulting in Kn attractors (Tk,j,Ck,j), and the con-
centration attractor (TA,CA) is the attractor that optimizes the criterion.
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Concentration algorithms include the basic resampling algorithm as a spe-
cial case with k = −1. Using k = 10 concentration steps works well, and
iterating until convergence is usually fast. The DGK estimator (Devlin et
al. 1975, 1981) defined below is one example. The DGK estimator is affine
equivariant since the classical estimator is affine equivariant and Mahalanobis
distances are invariant under affine transformations by Theorem 8.19. This
subsection will show that the Olive (2004a) MB estimator is a high break-
down estimator and that the DGK estimator is a

√
n consistent estimator

of (µ, aMCDΣ), the same quantity estimated by the MCD estimator. Both
estimators use the classical estimator computed from cn ≈ n/2 cases. The
breakdown point of the DGK estimator has been conjectured to be “at most
1/p.” See Rousseeuw and Leroy (1987, p. 254).

Definition 8.30. The DGK estimator (Tk,D,Ck,D) = (TDGK ,CDGK)
uses the classical estimator (T−1,D,C−1,D) = (x,S) as the only start.

Definition 8.31. The median ball (MB) estimator (Tk,M ,Ck,M) =
(TMB,CMB) uses (T−1,M ,C−1,M) = (MED(W ), Ip) as the only start where
MED(W ) is the coordinatewise median. So (T0,M ,C0,M) is the classical es-
timator applied to the “half set” of data closest to MED(W ) in Euclidean
distance.

The proof of the following theorem implies that a high breakdown estima-
tor (T,C) has MED(D2

i ) ≤ V and that the hyperellipsoid {x|D2
x ≤ D2

(cn)}
that contains cn ≈ n/2 of the cases is in some ball about the origin of ra-
dius r, where V and r do not depend on the outliers even if the number of
outliers is close to n/2. Also the attractor of a high breakdown estimator is
a high breakdown estimator if the number of concentration steps k is fixed,
e.g. k = 10. The theorem implies that the MB estimator (TMB ,CMB) is high
breakdown.

Theorem 8.25. Suppose (T,C) is a high breakdown estimator where C
is a symmetric, positive definite p×p matrix if the contamination proportion
dn/n is less than the breakdown value. Then the concentration attractor
(Tk,Ck) is a high breakdown estimator if the coverage cn ≈ n/2 and the
data are in general position.

Proof. Following Leon (1986, p. 280), if A is a symmetric positive definite
matrix with eigenvalues τ1 ≥ · · · ≥ τp, then for any nonzero vector x,

0 < ‖x‖2 τp ≤ xTAx ≤ ‖x‖2 τ1. (8.39)

Let λ1 ≥ · · · ≥ λp be the eigenvalues of C. By (8.39),

1

λ1
‖x− T‖2 ≤ (x − T )TC−1(x − T ) ≤ 1

λp
‖x − T‖2. (8.40)
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By (8.40), if the D2
(i) are the order statistics of the D2

i (T,C), then D2
(i) < V

for some constant V that depends on the clean data but not on the outliers
even if i and dn are near n/2. (Note that 1/λp and MED(‖xi−T‖2) are both
bounded for high breakdown estimators even for dn near n/2.)

Following Johnson and Wichern (1988, pp. 50, 103), the boundary of
the set {x|D2

x ≤ h2} = {x|(x − T )TC−1(x − T ) ≤ h2} is a hyperellip-
soid centered at T with axes of length 2h

√
λi. Hence {x|D2

x ≤ D2
(cn)} is

contained in some ball about the origin of radius r where r does not de-
pend on the number of outliers even for dn near n/2. This is the set con-
taining the cases used to compute (T0,C0). Since the set is bounded, T0

is bounded and the largest eigenvalue λ1,0 of C0 is bounded by Theorem
8.22. The determinant det(CMCD) of the HB minimum covariance deter-
minant estimator satisfies 0 < det(CMCD) ≤ det(C0) = λ1,0 · · ·λp,0, and

λp,0 > inf det(CMCD)/λp−1
1,0 > 0 where the infimum is over all possible data

sets with n−dn clean cases and dn outliers. Since these bounds do not depend
on the outliers even for dn near n/2, (T0,C0) is a high breakdown estimator.
Now repeat the argument with (T0,C0) in place of (T,C) and (T1,C1) in
place of (T0,C0). Then (T1,C1) is high breakdown. Repeating the argument
iteratively shows (Tk,Ck) is high breakdown. �

The following corollary shows that it is easy to find a subset J of cn ≈ n/2
cases such that the classical estimator (xJ ,SJ ) applied to J is a HB estimator
of MLD.

Theorem 8.26. Let J consist of the cn cases xi such that
‖xi − MED(W )‖ ≤ MED(‖xi − MED(W )‖). Then the classical estimator
(xJ ,SJ) applied to J is a HB estimator of MLD.

To investigate the consistency and rate of robust estimators of multivariate
location and dispersion, review Definitions 3.5 and 3.6.

The following assumption (E1) gives a class of distributions where we can
prove that the new robust estimators are

√
n consistent. Cator and Lop-

uhaä (2010, 2012) showed that MCD is consistent provided that the MCD
functional is unique. Distributions where the functional is unique are called
“unimodal,” and rule out, for example, a spherically symmetric uniform dis-
tribution. Theorem 8.27 is crucial for theory and Theorem 8.28 shows that
under (E1), both MCD and DGK are estimating (µ, aMCDΣ).

Assumption (E1): The x1, ...,xn are iid from a “unimodal” ellipti-
cally contoured ECp(µ,Σ, g) distribution with nonsingular covariance ma-
trix Cov(xi) where g is continuously differentiable with finite 4th moment:∫
(xTx)2g(xTx)dx <∞.

Lopuhaä (1999) showed that if a start (T,C) is a consistent affine equiv-
ariant estimator of (µ, sΣ), then the classical estimator applied to the cases
with D2

i (T,C) ≤ h2 is a consistent estimator of (µ, aΣ) where a, s > 0 are
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some constants. Affine equivariance is not used for Σ = Ip. Also, the attrac-
tor and the start have the same rate. If the start is inconsistent, then so is
the attractor. The weight function I(D2

i (T,C) ≤ h2) is an indicator that is
1 if D2

i (T,C) ≤ h2 and 0 otherwise.

Theorem 8.27, Lopuhaä (1999). Assume the number of concentration
steps k is fixed. a) If the start (T,C) is inconsistent, then so is the attractor.

b) Suppose (T,C) is a consistent estimator of (µ, sIp) with rate nδ where
s > 0 and 0 < δ ≤ 0.5. Assume (E1) holds and Σ = Ip. Then the classical
estimator (T0,C0) applied to the cases with D2

i (T,C) ≤ h2 is a consistent
estimator of (µ, aIp) with the same rate nδ where a > 0.

c) Suppose (T,C) is a consistent affine equivariant estimator of (µ, sΣ)
with rate nδ where s > 0 and 0 < δ ≤ 0.5. Assume (E1) holds. Then the
classical estimator (T0,C0) applied to the cases with D2

i (T,C) ≤ h2 is a
consistent affine equivariant estimator of (µ, aΣ) with the same rate nδ where
a > 0. The constant a depends on the positive constants s, h, p, and the
elliptically contoured distribution, but does not otherwise depend on the
consistent start (T,C).

Let δ = 0.5. Applying Theorem 8.27c) iteratively for a fixed number k of
steps produces a sequence of estimators (T0,C0), ..., (Tk,Ck) where (Tj ,Cj)
is a

√
n consistent affine equivariant estimator of (µ, ajΣ) where the con-

stants aj > 0 depend on s, h, p, and the elliptically contoured distribution,
but do not otherwise depend on the consistent start (T,C) ≡ (T−1,C−1).

The 4th moment assumption was used to simplify theory, but likely holds
under 2nd moments. Affine equivariance is needed so that the attractor is
affine equivariant, but probably is not needed to prove consistency.

Conjecture 8.2. Change the finite 4th moments assumption to a finite
2nd moments in assumption E1). Suppose (T,C) is a consistent estimator
of (µ, sΣ) with rate nδ where s > 0 and 0 < δ ≤ 0.5. Then the classical
estimator applied to the cases with D2

i (T,C) ≤ h2 is a consistent estimator
of (µ, aΣ) with the same rate nδ where a > 0.

Remark 8.6. To see that the Lopuhaä (1999) theory extends to con-
centration where the weight function uses h2 = D2

(cn)(T,C), note that

(T, C̃) ≡ (T,D2
(cn)(T,C) C) is a consistent estimator of (µ, bΣ) where b > 0

is derived in (8.42), and weight function I(D2
i (T, C̃) ≤ 1) is equivalent to the

concentration weight function I(D2
i (T,C) ≤ D2

(cn)(T,C)). As noted above

Theorem 8.19, (T, C̃) is affine equivariant if (T,C) is affine equivariant. Hence
Lopuhaä (1999) theory applied to (T, C̃) with h = 1 is equivalent to theory
applied to affine equivariant (T,C) with h2 = D2

(cn)(T,C).

If (T,C) is a consistent estimator of (µ, s Σ) with rate nδ where 0 < δ ≤
0.5, then D2(T,C) = (x − T )TC−1(x − T ) =
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(x − µ + µ− T )T [C−1 − s−1Σ−1 + s−1Σ−1](x− µ + µ − T )

= s−1D2(µ,Σ) +OP (n−δ). (8.41)

Thus the sample percentiles of D2
i (T,C) are consistent estimators of the per-

centiles of s−1D2(µ,Σ). Suppose cn/n → ξ ∈ (0, 1) as n → ∞, and let
D2
ξ (µ,Σ) be the 100ξth percentile of the population squared distances. Then

D2
(cn)(T,C)

P→ s−1D2
ξ (µ,Σ) and bΣ = s−1D2

ξ (µ,Σ)sΣ = D2
ξ (µ,Σ)Σ.

Thus
b = D2

ξ (µ,Σ) (8.42)

does not depend on s > 0 or δ ∈ (0, 0.5]. �

Concentration applies the classical estimator to cases with D2
i (T,C) ≤

D2
(cn)(T,C). Let cn ≈ n/2 and

b = D2
0.5(µ,Σ)

be the population median of the population squared distances. By Remark
8.6, if (T,C) is a

√
n consistent affine equivariant estimator of (µ, sΣ) then

(T, C̃) ≡ (T,D2
(cn)(T,C) C) is a

√
n consistent affine equivariant estimator

of (µ, bΣ), and D2
i (T, C̃) ≤ 1 is equivalent to D2

i (T,C) ≤ D2
(cn)(T,C)).

Hence Lopuhaä (1999) theory applied to (T, C̃) with h = 1 is equivalent
to theory applied to the concentration estimator using the affine equivariant
estimator (T,C) ≡ (T−1,C−1) as the start. Since b does not depend on s,
concentration produces a sequence of estimators (T0,C0), ..., (Tk,Ck) where
(Tj,Cj) is a

√
n consistent affine equivariant estimator of (µ, aΣ) where the

constant a > 0 is the same for j = 0, 1, ..., k.
Theorem 8.28 shows that a = aMCD where ξ = 0.5. Hence concentration

with a consistent affine equivariant estimator of (µ, sΣ) with rate nδ as a start
results in a consistent affine equivariant estimator of (µ, aMCDΣ) with rate
nδ. This result can be applied iteratively for a finite number of concentration
steps. Hence DGK is a

√
n consistent affine equivariant estimator of the

same quantity that MCD is estimating. It is not known if the results hold
if concentration is iterated to convergence. For multivariate normal data,
D2(µ,Σ) ∼ χ2

p.

Theorem 8.28. Assume that (E1) holds and that (T,C) is a consistent
affine equivariant estimator of (µ, sΣ) with rate nδ where the constants s > 0
and 0 < δ ≤ 0.5. Then the classical estimator (xt,j,St,j) computed from the
cn ≈ n/2 of cases with the smallest distances Di(T,C) is a consistent affine
equivariant estimator of (µ, aMCDΣ) with the same rate nδ.

Proof. By Remark 8.6, the estimator is a consistent affine equivariant es-
timator of (µ, aΣ) with rate nδ. By the remarks above, a will be the same for
any consistent affine equivariant estimator of (µ, sΣ) and a does not depend
on s > 0 or δ ∈ (0, 0.5]. Hence the result follows if a = aMCD. The MCD
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estimator is a
√
n consistent affine equivariant estimator of (µ, aMCDΣ) by

Cator and Lopuhaä (2010, 2012). If the MCD estimator is the start, then it
is also the attractor by Theorem 8.23 which shows that concentration does
not increase the MCD criterion. Hence a = aMCD. �

Next we define the easily computed robust
√
n consistent FCH estima-

tor, so named since it is fast, consistent, and uses a high breakdown attrac-
tor. The FCH and MBA estimators use the

√
n consistent DGK estimator

(TDGK ,CDGK) and the high breakdown MB estimator (TMB ,CMB) as at-
tractors.

Definition 8.32. Let the “median ball” be the hypersphere containing the
“half set” of data closest to MED(W ) in Euclidean distance. The FCH esti-
mator uses the MB attractor if the DGK location estimator TDGK is outside
of the median ball, and the attractor with the smallest determinant, other-
wise. Let (TA,CA) be the attractor used. Then the estimator (TFCH ,CFCH)
takes TFCH = TA and

CFCH =
MED(D2

i (TA,CA))

χ2
p,0.5

CA (8.43)

where χ2
p,0.5 is the 50th percentile of a chi–square distribution with p degrees

of freedom.

Remark 8.7. The MBA estimator (TMBA,CMBA) uses the attractor
(TA,CA) with the smallest determinant. Hence the DGK estimator is used
as the attractor if det(CDGK) ≤ det(CMB), and the MB estimator is used
as the attractor, otherwise. Then TMBA = TA and CMBA is computed using
the right hand side of (8.43). The difference between the FCH and MBA
estimators is that the FCH estimator also uses a location criterion to choose
the attractor: if the DGK location estimator TDGK has a greater Euclidean
distance from MED(W ) than half the data, then FCH uses the MB attractor.
The FCH estimator only uses the attractor with the smallest determinant if
‖TDGK − MED(W )‖ ≤ MED(Di(MED(W ), Ip)). Using the location crite-
rion increases the outlier resistance of the FCH estimator for certain types of
outliers. See Olive (2017b).

The following theorem shows the FCH estimator has good statistical prop-
erties. We conjecture that FCH is high breakdown. Note that the location
estimator TFCH is high breakdown and that det(CFCH) is bounded away
from 0 and ∞ if the data is in general position, even if nearly half of the
cases are outliers.

Theorem 8.29. TFCH is high breakdown if the clean data are in gen-
eral position. Suppose (E1) holds. If (TA,CA) is the DGK or MB attractor
with the smallest determinant, then (TA,CA) is a

√
n consistent estimator

of (µ, aMCDΣ). Hence the MBA and FCH estimators are outlier resistant
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√
n consistent estimators of (µ, cΣ) where c = u0.5/χ

2
p,0.5, and c = 1 for

multivariate normal data.

Proof. TFCH is high breakdown since it is a bounded distance from
MED(W ) even if the number of outliers is close to n/2. Under (E1) the
FCH and MBA estimators are asymptotically equivalent since ‖TDGK −
MED(W )‖ → 0 in probability. The estimator satisfies 0 < det(CMCD) ≤
det(CA) ≤ det(C0,M) <∞ by Theorem 8.25 if up to nearly 50% of the cases
are outliers. If the distribution is spherical about µ, then the result follows
from Pratt (1959) and Theorem 8.23 since both starts are

√
n consistent.

Otherwise, the MB estimator CMB is a biased estimator of aMCDΣ. But
the DGK estimator CDGK is a

√
n consistent estimator of aMCDΣ by The-

orem 8.28 and ‖CMCD − CDGK‖ = OP (n−1/2). Thus the probability that
the DGK attractor minimizes the determinant goes to one as n → ∞, and
(TA,CA) is asymptotically equivalent to the DGK estimator (TDGK ,CDGK).

Let CF = CFCH or CF = CMBA. Let P (U ≤ uα) = α where U is given
by (1.62). Then the scaling in (8.43) makes CF a consistent estimator of cΣ
where c = u0.5/χ

2
p,0.5, and c = 1 for multivariate normal data. �

A standard method of reweighting can be used to produce the RMBA and
RFCH estimators. RMVN uses a slightly modified method of reweighting so
that RMVN gives good estimates of (µ,Σ) for multivariate normal data,
even when certain types of outliers are present.

Definition 8.33. The RFCH estimator uses two standard reweighting
steps. Let (µ̂1, Σ̃1) be the classical estimator applied to the n1 cases with
D2
i (TFCH ,CFCH) ≤ χ2

p,0.975, and let

Σ̂1 =
MED(D2

i (µ̂1, Σ̃1))

χ2
p,0.5

Σ̃1.

Then let (TRFCH , Σ̃2) be the classical estimator applied to the cases with

D2
i (µ̂1, Σ̂1) ≤ χ2

p,0.975, and let

CRFCH =
MED(D2

i (TRFCH , Σ̃2))

χ2
p,0.5

Σ̃2.

RMBA and RFCH are
√
n consistent estimators of (µ, cΣ) by Lopuhaä

(1999) where the weight function uses h2 = χ2
p,0.975, but the two estimators

use nearly 97.5% of the cases if the data is multivariate normal.

Definition 8.34. The RMVN estimator uses (µ̂1, Σ̃1) and n1 as above.
Let q1 = min{0.5(0.975)n/n1, 0.995}, and

Σ̂1 =
MED(D2

i (µ̂1, Σ̃1))

χ2
p,q1

Σ̃1.
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Then let (TRMVN , Σ̃2) be the classical estimator applied to the n2 cases with

D2
i (µ̂1, Σ̂1)) ≤ χ2

p,0.975. Let q2 = min{0.5(0.975)n/n2, 0.995}, and

CRMVN =
MED(D2

i (TRMVN , Σ̃2))

χ2
p,q2

Σ̃2.

The RMVN estimator is a
√
n consistent estimator of (µ, dΣ) by Lopuhaä

(1999) where the weight function uses h2 = χ2
p,0.975 and d = u0.5/χ

2
p,q where

q2 → q in probability as n → ∞. Here 0.5 ≤ q < 1 depends on the elliptically
contoured distribution, but q = 0.5 and d = 1 for multivariate normal data.

Hubert et al. (2008, 2012) claim that FMCD computes the MCD estimator.
This claim is trivially shown to be false in the following theorem.

Theorem 8.30. Neither FMCD nor Det-MCD compute the MCD esti-
mator.

Proof. A necessary condition for an estimator to be the MCD estimator
is that the determinant of the covariance matrix for the estimator be the
smallest for every run in a simulation. Sometimes FMCD had the smaller
determinant and sometimes Det-MCD had the smaller determinant in the
simulations done by Hubert et al. (2012). �

The following theorem shows that it is very difficult to drive the deter-
minant of the dispersion estimator from a concentration algorithm to zero.

Theorem 8.31. Consider the concentration and MCD estimators that
both cover cn cases. For multivariate data, if at least one of the starts is
nonsingular, then the concentration attractor CA is less likely to be singular
than the high breakdown MCD estimator CMCD.

Proof. If all of the starts are singular, then the Mahalanobis distances
cannot be computed and the classical estimator can not be applied to cn
cases. Suppose that at least one start was nonsingular. Then CA and CMCD

are both sample covariance matrices applied to cn cases, but by definition
CMCD minimizes the determinant of such matrices. Hence 0 ≤ det(CMCD) ≤
det(CA). �

Software

The robustbase library was downloaded from (www.r-project.org/#doc).
The preface explains how to use the source command to get the lspack
functions in R and how to download a library from R. Type the commands
library(MASS) and library(robustbase) to compute the FMCD and
OGK estimators with the cov.mcd and covOGK functions. To use Det-MCD
instead of FMCD, change

out <- covMcd(x) to out <- covMcd(x,nsamp="deterministic"),
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but in Spring 2015 this change was more likely to cause errors.
The function function covfch computes FCH and RFCH, while covrmvn

computes the RMVN and MB estimators. The function covrmb computes MB
and RMB where RMB is like RMVN except the MB estimator is reweighted
instead of FCH. Functions covdgk, covmba, and rmba compute the scaled
DGK, MBA, and RMBA estimators. Better programs would use MB if
DGK causes an error.

8.2.5 The RMVN and RFCH Sets

Both the RMVN and RFCH estimators compute the classical estimator
(xU ,SU ) on some set U containing nU ≥ n/2 of the cases. Referring to Defi-
nition 8.33, for the RFCH estimator, (xU ,SU ) = (TRFCH , Σ̃2), and then SU

is scaled to form CRFCH . Referring to Definition 8.34, for the RMVN esti-
mator, (xU ,SU ) = (TRMVN , Σ̃2), and then SU is scaled to form CRMVN .
See Definition 8.35. The RFCH set can be defined similarly.

Definition 8.35. Let the n2 cases in Definition 8.34 be known as the
RMVN set U . Hence (TRMVN , Σ̃2) = (xU ,SU ) is the classical estimator
applied to the RMVN set U , which can be regarded as the untrimmed data
(the data not trimmed by ellipsoidal trimming) or the cleaned data. Also
SU is the unscaled estimated dispersion matrix while CRMVN is the scaled
estimated dispersion matrix.

Remark 8.8. Classical methods can be applied to the RMVN subset U to
make robust methods. Under (E1), (xU ,SU ) is a

√
n consistent estimator of

(µ, cUΣ) for some constant cU > 0 that depends on the underlying distribu-
tion of the iid xi. For a general estimator of multivariate location and disper-
sion (TA,CA), typically a reweight for efficiency step is performed, resulting
in a set U such that the classical estimator (xU ,SU) is the classical estima-
tor applied to a set U . For example, use U = {xi|D2

i (TA,CA) ≤ χ2
p,0.975}.

Then the final estimator is (TF ,CF ) = (xU , aSU) where scaling is done as
in Equation (8.43) in an attempt to make CF a good estimator of Σ if the
iid data are from a Np(µ,Σ) distribution. Then (xU ,SU) can be shown to
be a

√
n consistent estimator of (µ, cUΣ) for a large class of distributions for

the RMVN set, for the RFCH set, or if (TA,CA) is an affine equivariant
√
n

consistent estimator of (µ, cAΣ) on a large class of distributions.

The two main ways to handle outliers are i) apply the multivariate method
to the cleaned data, and ii) plug in robust estimators for classical estimators.
Practical plug in robust estimators have rarely been shown to be

√
n consis-

tent and highly outlier resistant.
Using the RMVN or RFCH set U is simultaneously a plug in method and

an objective way to clean the data such that the resulting robust method is
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often backed by theory. This result is extremely useful computationally: find
the RMVN set or RFCH set U , then apply the classical method to the cases
in the set U . This procedure is often equivalent to using (xU ,SU ) as plug
in estimators. The method can be applied if n > 2(p+ 1) but may not work
well unless n > 20p. The lspack function getu gets the RMVN set U as well
as the case numbers corresponding to the cases in U .

The set U is a small volume hyperellipsoid containing at least half of the
cases since concentration is used. The set U can also be regarded as the
“untrimmed data”: the data that was not trimmed by ellipsoidal trimming.
Theory has been proved for a large class of elliptically contoured distributions,
but it is conjectured that theory holds for a much wider class of distributions.
See Olive (2017b, pp. 127-128).

Application 8.6. Outlier resistant regression: Let the ith case wi =
(Yi,x

T
i )T where the continuous predictors from xi are denoted by ui for

i = 1, ..., n. Find the RFCH or RMVN set from the ui, and then run the
regression method on the nU cases wi corresponding to the set U indices
i1, ...inU , where nU ≥ n/2. Since the response variable was not used to pick
the cases, this regression method, conditional on nU and on the nU selected
cases, has similar large sample theory to the classical regression method that
uses all n cases. A similar technique can be used if there is more than one
response variable.

Often the theory of the method applies to the cleaned data set since y was
not used to pick the subset of the data. Efficiency can be much lower since
nu cases are used where n/2 ≤ nu ≤ n, and the trimmed cases tend to be
the “farthest” from the center of w.

In R, assume Y is the vector of response variables, x is the data matrix of
the predictors (often not including the trivial predictor), and w is the data
matrix of the wi. Then the following R commands can be used to get the
cleaned data set. We could use the covmb2 set B instead of the RMVN set
U computed from the w by replacing the command getu(w) by getB(w).

indx <- getu(w)$indx #often w = x

Yc <- Y[indx]

Xc <- x[indx,]

#example

indx <- getu(buxx)$indx

Yc <- buxy[indx]

Xc <- buxx[indx,]

outr <- lsfit(Xc,Yc)

MLRplot(Xc,Yc) #right click Stop twice
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8.2.6 MLD Outlier Detection if p > n

Most outlier detection methods work best if n ≥ 20p, but often data sets have
p > n, and outliers are a major problem. One of the simplest outlier detection
methods uses the Euclidean distances of the xi from the coordinatewise me-
dianDi = Di(MED(W ), Ip). Concentration type steps compute the weighted
median MEDj : the coordinatewise median computed from the “half set” of
cases xi with D2

i ≤ MED(D2
i (MEDj−1, Ip)) where MED0 = MED(W ).

We often used j = 0 (no concentration type steps) or j = 9. Let Di =
Di(MEDj, Ip). Let Wi = 1 if Di ≤ MED(D1, ..., Dn) + kMAD(D1, ..., Dn)
where k ≥ 0 and k = 5 is the default choice. Let Wi = 0, otherwise. Using
k ≥ 0 insures that at least half of the cases get weight 1. This weighting
corresponds to the weighting that would be used in a one sided metrically
trimmed mean (Huber type skipped mean) of the distances.

Definition 8.36. Let the covmb2 set B of at least n/2 cases correspond
to the cases with weight Wi = 1. The cases not in set B get weight Wi = 0.
Then the covmb2 estimator (T,C) is the sample mean and sample covariance
matrix applied to the cases in set B. Hence

T =

∑n
i=1Wixi∑n
i=1Wi

and C =

∑n
i=1Wi(xi − T )(xi − T )T∑n

i=1Wi − 1
.

Example 8.9. Let the clean data (nonoutliers) be i 1 for i = 1, 2, 3, 4, and
5 while the outliers are j 1 for j = 16, 17, 18, and 19. Here n = 9 and 1 is p×1.
Making a plot of the data for p = 2 may be useful. Then the coordinatewise
median MED0 = MED(W ) = 5 1. The median Euclidean distance of the data
is the Euclidean distance of 5 1 from 1 1 = the Euclidean distance of 5 1 from
9 1. The median ball is the hypersphere centered at the coordinatewise median
with radius r = MED(Di(MED(W ), Ip), i = 1, ..., n) that tends to contain
(n+1)/2 of the cases if n is odd. Hence the clean data are in the median ball
and the outliers are outside of the median ball. The coordinatewise median
of the cases with the 5 smallest distances is the coordinatewise median of
the clean data: MED1 = 3 1. Then the median Euclidean distance of the
data from MED1 is the Euclidean distance of 3 1 from 1 1 = the Euclidean
distance of 3 1 from 5 1. Again the clean cases are the cases with the 5 smallest
Euclidean distances. Hence MEDj = 3 1 for j ≥ 1. For j ≥ 1, if xi = j 1, then
Di = |j − 3|√p. Thus D(1) = 0, D(2) = D(3) =

√
p, and D(4) = D(5) = 2

√
p.

Hence MED(D1, ..., Dn) = D(5) = 2
√
p = MAD(D1, ..., Dn) since the median

distance of the Di from D(5) is 2
√
p − 0 = 2

√
p. Note that the 5 smallest

absolute distances |Di − D(5)| are 0, 0,
√
p,
√
p, and 2

√
p. Hence Wi = 1 if

Di ≤ 2
√
p + 10

√
p = 12

√
p. The clean data get weight 1 while the outliers

get weight 0 since the smallest distance Di for the outliers is the Euclidean
distance of 3 1 from 16 1 with a Di = ‖16 1 − 3 1‖ = 13

√
p. Hence the

covmb2 estimator (T,C) is the sample mean and sample covariance matrix
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of the clean data. Note that the distance for the outliers to get zero
weight is proportional to the square root of the dimension

√
p.

Application 8.7. Outlier resistant regression: Let the ith case wi =
(Yi,x

T
i )T where the continuous predictors from xi are denoted by ui for

i = 1, ..., n. Apply the covmb2 estimator to the ui, and then run the regres-
sion method on the m cases wi corresponding to the covmb2 set B indices
i1, ...im, where m ≥ n/2.

The covmb2 estimator can also be used for n > p. The covmb2 estimator
attempts to give a robust dispersion estimator that reduces the bias by using
a big ball about MEDj instead of a ball that contains half of the cases. The
lspack function getB gives the set B of cases that got weight 1 along with
the index indx of the case numbers that got weight 1.

8.3 Resistant Multiple Linear Regression

Consider the multiple linear regression model, written in matrix form as
Y = Xβ + e. Some good outlier resistant regression estimators are rmreg2
from Section 8.5, the hbreg estimator from Section 8.4, and the Olive (2005)
MBA and trimmed views estimators described below. Also apply a multiple
linear regression method such as OLS or lasso to the cases corresponding to
the RFCH, RMVN, or covmb2 set applied to the continuous predictors. See
Applications 8.6 and 8.7.

Resistant estimators are often created by computing several trial fits bi
that are estimators of β. Then a criterion is used to select the trial fit to be
used in the resistant estimator. Suppose c ≈ n/2. The LMS(c) criterion is
QLMS(b) = r2(c)(b) where r2(1) ≤ · · · ≤ r2(n) are the ordered squared residu-

als, and the LTS(c) criterion is QLTS(b) =
∑c

i=1 r
2
(i)(b). The LTA(c) crite-

rion is QLTA(b) =
∑c

i=1 |r(b)|(i) where |r(b)|(i) is the ith ordered absolute
residual. Three impractical high breakdown robust estimators are the Ham-
pel (1975) least median of squares (LMS) estimator, the Rousseeuw (1984)
least trimmed sum of squares (LTS) estimator, and the Hössjer (1991) least
trimmed sum of absolute deviations (LTA) estimator. Also see Hawkins and

Olive (1999ab). These estimators correspond to the β̂L ∈ R
p that minimizes

the corresponding criterion. LMS, LTA, and LTS have O(np) or O(np+1)
complexity. See Bernholt (2005), Hawkins and Olive (1999b), Klouda (2015),
and Mount et al. (2014). Estimators with O(n4) or higher complexity take
too long to compute. LTS and LTA are

√
n consistent while LMS has the

lower n1/3 rate. See Kim and Pollard (1990), Č́ıžek (2006, 2008), and Maš̈ıček
(2004). If c = n, the LTS and LTA criteria are the OLS and L1 criteria. See
Olive (2008, 2017b: ch. 14) for more on these estimators.
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A good resistant estimator is the Olive (2005) median ball algorithm (MBA
or mbareg). The Euclidean distance of the ith vector of predictors xi from
the jth vector of predictors xj is

Di(xj) = Di(xj , Ip) =
√

(xi − xj)T (xi − xj).

For a fixed xj consider the ordered distances D(1)(xj), ..., D(n)(xj). Next,

let β̂j(α) denote the OLS fit to the min(p + 3 + bαn/100c, n) cases with
the smallest distances where the approximate percentage of cases used is
α ∈ {1, 2.5, 5, 10, 20, 33, 50}. (Here bxc is the greatest integer function so
b7.7c = 7. The extra p+3 cases are added so that OLS can be computed for
small n and α.) This yields seven OLS fits corresponding to the cases with
predictors closest to xj. A fixed number of K cases are selected at random
without replacement to use as the xj . Hence 7K OLS fits are generated. We
use K = 7 as the default. A robust criterion Q is used to evaluate the 7K
fits and the OLS fit to all of the data. Hence 7K + 1 OLS fits are generated
and the MBA estimator is the fit that minimizes the criterion. The median
squared residual is a good choice for Q.

Three ideas motivate this estimator. First, x-outliers, which are outliers in
the predictor space, tend to be much more destructive than Y -outliers which
are outliers in the response variable. Suppose that the proportion of outliers
is γ and that γ < 0.5. We would like the algorithm to have at least one
“center” xj that is not an outlier. The probability of drawing a center that is
not an outlier is approximately 1−γK > 0.99 for K ≥ 7 and this result is free
of p. Secondly, by using the different percentages of coverages, for many data
sets there will be a center and a coverage that contains no outliers. Third, by
Theorem 2.28, the MBA estimator is a

√
n consistent estimator of the same

parameter vector β estimated by OLS under mild conditions.

Ellipsoidal trimming can be used to create resistant multiple linear regres-
sion (MLR) estimators. To perform ellipsoidal trimming, an estimator (T,C)
is computed and used to create the squared Mahalanobis distances D2

i for
each vector of observed predictors xi. If the ordered distance D(j) is unique,
then j of the xi’s are in the ellipsoid

{x : (x − T )TC−1(x − T ) ≤ D2
(j)}. (8.44)

The ith case (Yi,x
T
i )T is trimmed if Di > D(j). Then an estimator of β is

computed from the remaining cases. For example, if j ≈ 0.9n, then about
10% of the cases are trimmed, and OLS or L1 could be used on the cases
that remain. Ellipsoidal trimming differs from using the RFCH, RMVN, or
covmb2 set since these sets use a random amount of trimming. (The ellip-
soidal trimming technique can also be used for other regression models, and
the theory of the regression method tends to apply to the method applied to
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the cleaned data that was not trimmed since the response variables were not
used to select the cases.)

Use ellipsoidal trimming on the RFCH, RMVN, or covmb2 set applied to
the continuous predictors to get a fit β̂C . Then make a response and residual
plot using all of the data, not just the cleaned data that was not trimmed.

The resistant trimmed views estimator combines ellipsoidal trimming and
the response plot. First compute (T,C) on the xi, perhaps using the RMVN
estimator. Trim the M% of the cases with the largest Mahalanobis distances,
and then compute the MLR estimator β̂M from the remaining cases. Use
M = 0, 10, 20, 30, 40, 50, 60, 70, 80, and 90 to generate ten response plots

of the fitted values β̂
T

Mxi versus Yi using all n cases. (Fewer plots are used

for small data sets if β̂M can not be computed for large M .) These plots are
called “trimmed views.”

Definition 8.37. The trimmed views (TV) estimator β̂T,n corresponds
to the trimmed view where the bulk of the plotted points follow the identity
line with smallest variance function, ignoring any outliers.

Example 8.10. For the Buxton (1920) data, height was the response
variable while an intercept, head length, nasal height, bigonal breadth, and
cephalic index were used as predictors in the multiple linear regression model.
Observation 9 was deleted since it had missing values. Five individuals, cases
61–65, were reported to be about 0.75 inches tall with head lengths well
over five feet! OLS was used on the cases remaining after trimming, and
Figure 7.18 shows four trimmed views corresponding to 90%, 70%, 40%,
and 0% trimming. The OLS TV estimator used 70% trimming since this
trimmed view was best. Since the vertical distance from a plotted point to the
identity line is equal to the case’s residual, the outliers had massive residuals
for 90%, 70%, and 40% trimming. Notice that the OLS trimmed view with
0% trimming “passed through the outliers” since the cluster of outliers is
scattered about the identity line.

The TV estimator β̂T,n has good statistical properties if an estimator with
good statistical properties is applied to the cases (XM,n,Y M,n) that remain
after trimming. Candidates include OLS, L1, Huber’s M–estimator, Mallows’
GM–estimator, or the Wilcoxon rank estimator. See Rousseeuw and Leroy
(1987, pp. 12-13, 150). The basic idea is that if an estimator with OP (n−1/2)
convergence rate is applied to a set of nM ∝ n cases, then the resulting
estimator β̂M,n also has OP (n−1/2) rate provided that the response Y was

not used to select the nM cases in the set. If ‖β̂M,n − β‖ = OP (n−1/2) for

M = 0, ..., 90 then ‖β̂T,n − β‖ = OP (n−1/2) by Theorem 2.28.
Let Xn = X0,n denote the full design matrix. Often when proving asymp-

totic normality of an MLR estimator β̂0,n, it is assumed that
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Fig. 8.1 4 Trimmed Views for the Buxton Data

XT
nXn

n
→ W−1.

If β̂0,n has OP (n−1/2) rate and if for big enough n all of the diagonal elements
of (

XT
M,nXM,n

n

)−1

are all contained in an interval [0, B) for some B > 0, then ‖β̂M,n − β‖ =

OP (n−1/2).

The distribution of the estimator β̂M,n is especially simple when OLS is
used and the errors are iid N(0, σ2). Then

β̂M,n = (XT
M,nXM,n)−1XT

M,nY M,n ∼ Np(β, σ
2(XT

M,nXM,n)−1)

and
√
n(β̂M,n−β) ∼ Np(0, σ

2(XT
M,nXM,n/n)−1). This result does not imply

that β̂T,n is asymptotically normal.

Warning: When Yi = xTi β + e, MLR estimators tend to estimate the
same slopes β2, ..., βp, but the constant β1 tends to depend on the estimator
unless the errors are symmetric. The MBA and trimmed views estimators do
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estimate the same β as OLS asymptotically, but samples may need to be huge
before the MBA and trimmed views estimates of the constant are close to the
OLS estimate of the constant. See Olive (2017b, p. 444) for an explanation
for why large sample sizes may be needed to estimate the constant.

Often practical “robust estimators” generate a sequence of K trial fits
called attractors: b1, ..., bK . Then some criterion is evaluated and the attractor
bA that minimizes the criterion is used in the final estimator.

Definition 8.38. For MLR, an elemental set J is a set of p cases drawn
with replacement from the data set of n cases. The elemental fit is the OLS
estimator β̂Ji

= (XT
Ji

XJi)
−1XT

Ji
Y Ji = X−1

Ji
Y Ji applied to the cases corre-

sponding to the elemental set provided that the inverse of XJi exists. In a
concentration algorithm, let b0,j be the jth start, not necessarily elemental,
and compute all n residuals ri(b0,j) = Yi−xTi b0,j. At the next iteration, the
OLS estimator b1,j is computed from the cn ≈ n/2 cases corresponding to
the smallest squared residuals r2i (b0,j). This iteration can be continued for
k steps resulting in the sequence of estimators b0,j, b1,j, ..., bk,j. Then bk,j is
the jth attractor for j = 1, ..., K. Then the attractor bA that minimizes the
LTS criterion is used in the final estimator. Using k = 10 concentration steps
often works well, and the basic resampling algorithm is a special case with
k = 0, i.e., the attractors are the starts. Such an algorithm is called a CLTS
concentration algorithm or CLTS.

Remark 8.9. Consider drawing K elemental sets J1, ..., JK with replace-
ment to use as starts. For multivariate location and dispersion, use the attrac-
tor with the smallest MCD criterion to get the final estimator. For multiple
linear regression, use the attractor with the smallest LMS, LTA, or LTS cri-
terion to get the final estimator. For 500 ≤ K ≤ 3000 and p not much larger
than 5, the elemental set algorithm is very good for detecting certain “outlier
configurations,” including i) a mixture of two regression hyperplanes that
cross in the center of the data cloud for MLR (not an outlier configuration
since outliers are far from the bulk of the data) and ii) a cluster of outliers
that can often be placed close enough to the bulk of the data so that an MB,
RFCH, or RMVN DD plot can not detect the outliers. However, the outlier
resistance of elemental algorithms decreases rapidly as p increases.

Suppose the data set has n cases where d are outliers and n−d are “clean”
(not outliers). The the outlier proportion γ = d/n. Suppose that K elemental
sets are chosen with replacement and that it is desired to find K such that
the probability P(that at least one of the elemental sets is clean) ≡ P1 ≈ 1−α
where α = 0.05 is a common choice. Then P1 = 1− P(none of theK elemental
sets is clean) ≈ 1− [1−(1−γ)p]K by independence. Hence α ≈ [1−(1−γ)p]K
or

K ≈ log(α)

log([1 − (1 − γ)p])
≈ log(α)

−(1 − γ)p
(8.45)
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using the approximation log(1 − x) ≈ −x for small x. Since log(0.05) ≈ −3,

if α = 0.05, then K ≈ 3

(1 − γ)p
. Frequently a clean subset is wanted even if

the contamination proportion γ ≈ 0.5. Then for a 95% chance of obtaining at
least one clean elemental set, K ≈ 3 (2p) elemental sets need to be drawn. If
the start passes through an outlier, so does the attractor. For concentration
algorithms for multivariate location and dispersion, if the start passes through
a cluster of outliers, sometimes the attractor would be clean. See Olive (2017b:
pp. 114-117).

Notice that the number of subsets K needed to obtain a clean elemental set
with high probability is an exponential function of the number of predictors
p but is free of n. Hawkins and Olive (2002) showed that if K is fixed and
free of n, then the resulting elemental or concentration algorithm (that uses k
concentration steps), is inconsistent and zero breakdown. See Theorem 8.39.
Nevertheless, many practical estimators tend to use a value of K that is free
of both n and p (e.g. K = 500 or K = 3000). Such algorithms include ALMS
= FLMS = lmsreg and ALTS = FLTS = ltsreg. The “A” denotes that
an algorithm was used. The “F” means that a fixed number of trial fits (K
elemental fits) was used and the criterion (LMS or LTS) was used to select
the trial fit used in the final estimator.

To examine the outlier resistance of such inconsistent zero breakdown es-
timators, fix both K and the contamination proportion γ and then find the
largest number of predictors p that can be in the model such that the proba-
bility of finding at least one clean elemental set is high. Given K and γ, P (at
least one of K subsamples is clean) = 0.95 ≈
1− [1 − (1 − γ)p]K. Thus the largest value of p satisfies

3

(1 − γ)p
≈ K, or

p ≈
⌊

log(3/K)

log(1 − γ)

⌋
(8.46)

if the sample size n is very large. Again bxc is the greatest integer function:
b7.7c = 7.

Theorem 8.32. Let h = p be the number of randomly selected cases in
an elemental set, and let γo be the highest percentage of massive outliers that
a resampling algorithm can detect reliably. If n is large, then

γo ≈ min

(
n − c

n
, 1 − [1 − (0.2)1/K]1/h

)
100%. (8.47)

Proof. As in Remark 8.5, if the contamination proportion γ is fixed, then
the probability of obtaining at least one clean subset of size h with high
probability (say 1 − α = 0.8) is given by 0.8 = 1 − [1 − (1 − γ)h]K . Fix the
number of starts K and solve this equation for γ. �
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The value of γo depends on c ≥ n/2 and h. To maximize γo, take c ≈ n/2
and h = p. For example, with K = 500 starts, n > 100, and h = p ≤ 20 the
resampling algorithm should be able to detect up to 24% outliers provided
every clean start is able to at least partially separate inliers (clean cases)
from outliers. However, if h = p = 50, this proportion drops to 11%.

8.4 Robust Regression

This section will consider the breakdown of a regression estimator and then
develop the practical high breakdown hbreg estimator.

8.4.1 MLR Breakdown and Equivariance

Breakdown and equivariance properties have received considerable attention
in the literature. Several of these properties involve transformations of the
data, and are discussed below. If X and Y are the original data, then the
vector of the coefficient estimates is

β̂ = β̂(X,Y ) = T (X ,Y ), (8.48)

the vector of predicted values is

Ŷ = Ŷ (X,Y ) = Xβ̂(X ,Y ), (8.49)

and the vector of residuals is

r = r(X ,Y ) = Y − Ŷ . (8.50)

If the design matrix X is transformed into W and the vector of dependent
variables Y is transformed into Z, then (W ,Z) is the new data set.

Definition 8.39. Regression Equivariance: Let u be any p×1 vector.
Then β̂ is regression equivariant if

β̂(X ,Y + Xu) = T (X ,Y + Xu) = T (X ,Y ) + u = β̂(X ,Y ) + u. (8.51)

Hence if W = X and Z = Y + Xu, then Ẑ = Ŷ + Xu and r(W ,Z) =

Z − Ẑ = r(X ,Y ). Note that the residuals are invariant under this type of

transformation, and note that if u = −β̂, then regression equivariance implies
that we should not find any linear structure if we regress the residuals on X .



356 8 Robust Statistics

Definition 8.40. Scale Equivariance: Let c be any scalar. Then β̂ is
scale equivariant if

β̂(X , cY ) = T (X , cY ) = cT (X ,Y ) = cβ̂(X ,Y ). (8.52)

Hence if W = X and Z = cY , then Ẑ = cŶ and r(X, cY ) = c r(X ,Y ).
Scale equivariance implies that if the Yi’s are stretched, then the fits and the
residuals should be stretched by the same factor.

Definition 8.41. Affine Equivariance: Let A be any p× p nonsingular
matrix. Then β̂ is affine equivariant if

β̂(XA,Y ) = T (XA,Y ) = A−1T (X ,Y ) = A−1β̂(X ,Y ). (8.53)

Hence if W = XA and Z = Y , then Ẑ = Wβ̂(XA,Y ) =

XAA−1β̂(X,Y ) = Ŷ , and r(XA,Y ) = Z − Ẑ = Y − Ŷ = r(X,Y ). Note
that both the predicted values and the residuals are invariant under an affine
transformation of the predictor variables.

Definition 8.42. Permutation Invariance: Let P be an n × n per-
mutation matrix. Then P TP = P P T = In where In is an n × n identity
matrix and the superscript T denotes the transpose of a matrix. Then β̂ is
permutation invariant if

β̂(PX ,PY ) = T (P X,P Y ) = T (X,Y ) = β̂(X,Y ). (8.54)

Hence if W = PX and Z = P Y , then Ẑ = P Ŷ and r(P X ,PY ) =
P r(X ,Y ). If an estimator is not permutation invariant, then swapping
rows of the n× (p+ 1) augmented matrix (X ,Y ) will change the estimator.
Hence the case number is important. If the estimator is permutation invariant,
then the position of the case in the data cloud is of primary importance.
Resampling algorithms are not permutation invariant because permuting the
data causes different subsamples to be drawn.

Remark 8.10. OLS has the above invariance properties, but most Statis-
tical Learning alternatives such as lasso and ridge regression do not have all
four properties. Hence Remark 6.2 is used to fit the data with Z = Wη + e.
Then obtain β̂ from η̂.

The remainder of this subsection gives a standard definition of breakdown
and then shows that if the median absolute residual is bounded in the presence
of high contamination, then the regression estimator has a high breakdown
value. The following notation will be useful. Let W denote the data matrix
where the ith row corresponds to the ith case. For regression, W is the
n × (p + 1) matrix with ith row (xTi , Yi). Let W n

d denote the data matrix
where any dn of the cases have been replaced by arbitrarily bad contaminated
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cases. Then the contamination fraction is γ ≡ γn = dn/n, and the breakdown

value of β̂ is the smallest value of γn needed to make ‖β̂‖ arbitrarily large.

Definition 8.43. Let 1 ≤ dn ≤ n. If T (W ) is a p× 1 vector of regression
coefficients, then the breakdown value of T is

B(T,W ) = min

{
dn
n

: sup
W n

d

‖T (W n
d)‖ = ∞

}

where the supremum is over all possible corrupted samples W n
d .

Definition 8.44. High breakdown regression estimators have γn → 0.5
as n → ∞ if the clean (uncontaminated) data are in general position: any
p clean cases give a unique estimate of β. Estimators are zero breakdown if
γn → 0 and positive breakdown if γn → γ > 0 as n → ∞.

The following result greatly simplifies some breakdown proofs and shows
that a regression estimator basically breaks down if the median absolute
residual MED(|ri|) can be made arbitrarily large. The result implies that if
the breakdown value ≤ 0.5, breakdown can be computed using the median
absolute residual MED(|ri|(Wn

d )) instead of ‖T (W n
d )‖. Similarly β̂ is high

breakdown if the median squared residual or the cnth largest absolute resid-
ual |ri|(cn) or squared residual r2(cn) stay bounded under high contamination

where cn ≈ n/2. Note that ‖β̂‖ ≡ ‖β̂(W n
d)‖ ≤M for some constant M that

depends on T and W but not on the outliers if the number of outliers dn is
less than the smallest number of outliers needed to cause breakdown.

Theorem 8.33. If the breakdown value ≤ 0.5, computing the break-
down value using the median absolute residual MED(|ri|(W n

d)) instead of
‖T (Wn

d )‖ is asymptotically equivalent to using Definition 8.43.

Proof. Consider any contaminated data set W n
d with ith row (wT

i , Zi)
T .

If the regression estimator T (W n
d ) = β̂ satisfies ‖β̂‖ ≤M for some constant

M if d < dn, then the median absolute residual MED(|Zi−β̂
T
wi|) is bounded

by maxi=1,...,n |Yi − β̂
T
xi| ≤ maxi=1,...,n[|Yi| +

∑p
j=1M |xi,j|] if dn < n/2.

If the median absolute residual is bounded by M when d < dn, then ‖β̂‖
is bounded provided fewer than half of the cases line on the hyperplane (and

so have absolute residual of 0), as shown next. Now suppose that ‖β̂‖ = ∞.
Since the absolute residual is the vertical distance of the observation from the
hyperplane, the absolute residual |ri| = 0 if the ith case lies on the regression
hyperplane, but |ri| = ∞ otherwise. Hence MED(|ri|) = ∞ if fewer than
half of the cases lie on the regression hyperplane. This will occur unless the
proportion of outliers dn/n > (n/2 − q)/n → 0.5 as n → ∞ where q is the
number of “good” cases that lie on a hyperplane of lower dimension than p.
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In the literature it is usually assumed that the original data are in general
position: q = p− 1. �

Suppose that the clean data are in general position and that the number of
outliers is less than the number needed to make the median absolute residual
and ‖β̂‖ arbitrarily large. If the xi are fixed, and the outliers are moved up
and down by adding a large positive or negative constant to the Y values
of the outliers, then for high breakdown (HB) estimators, β̂ and MED(|ri|)
stay bounded where the bounds depend on the clean data W but not on the
outliers even if the number of outliers is nearly as large as n/2. Thus if the
|Yi| values of the outliers are large enough, the |ri| values of the outliers will
be large.

If the Yi’s are fixed, arbitrarily large x-outliers tend to drive the slope
estimates to 0, not ∞. If both x and Y can be varied, then a cluster of
outliers can be moved arbitrarily far from the bulk of the data but may still
have small residuals. For example, move the outliers along the regression
hyperplane formed by the clean cases.

If the (xTi , Yi) are in general position, then the contamination could be

such that β̂ passes exactly through p − 1 “clean” cases and dn “contam-
inated” cases. Hence dn + p − 1 cases could have absolute residuals equal
to zero with ‖β̂‖ arbitrarily large (but finite). Nevertheless, if T possesses
reasonable equivariant properties and ‖T (W n

d )‖ is replaced by the median
absolute residual in the definition of breakdown, then the two breakdown val-
ues are asymptotically equivalent. (If T (W ) ≡ 0, then T is neither regression
nor affine equivariant. The breakdown value of T is one, but the median ab-
solute residual can be made arbitrarily large if the contamination proportion
is greater than n/2.)

If the Yi’s are fixed, arbitrarily large x-outliers will rarely drive ‖β̂‖ to

∞. The x-outliers can drive ‖β̂‖ to ∞ if they can be constructed so that
the estimator is no longer defined, e.g. so that XTX is nearly singular. The
examples following some results on norms may help illustrate these points.

Definition 8.45. Let y be an n× 1 vector. Then ‖y‖ is a vector norm if
vn1) ‖y‖ ≥ 0 for every y ∈ R

n with equality iff y is the zero vector,
vn2) ‖ay‖ = |a| ‖y‖ for all y ∈ R

n and for all scalars a, and
vn3) ‖x + y‖ ≤ ‖x‖ + ‖y‖ for all x and y in R

n.

Definition 8.46. Let G be an n× p matrix. Then ‖G‖ is a matrix norm if
mn1) ‖G‖ ≥ 0 for every n×p matrix G with equality iff G is the zero matrix,
mn2) ‖aG‖ = |a| ‖G‖ for all scalars a, and
mn3) ‖G + H‖ ≤ ‖G‖ + ‖H‖ for all n× p matrices G and H .

Example 8.11. The q-norm of a vector y is ‖y‖q = (|y1|q+ · · ·+ |yn|q)1/q.
In particular, ‖y‖1 = |y1|+ · · ·+ |yn|, the Euclidean norm
‖y‖2 =

√
y2
1 + · · ·+ y2

n, and ‖y‖∞ = maxi |yi|. Given a matrix G and
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a vector norm ‖y‖q the q-norm or subordinate matrix norm of matrix G is

‖G‖q = max
y 6=0

‖Gy‖q
‖y‖q

. It can be shown that the maximum column sum norm

‖G‖1 = max
1≤j≤p

n∑

i=1

|gij|, the maximum row sum norm ‖G‖∞ = max
1≤i≤n

p∑

j=1

|gij|,

and the spectral norm ‖G‖2 =

√
maximum eigenvalue of GTG. The

Frobenius norm

‖G‖F =

√√√√
p∑

j=1

n∑

i=1

|gij|2 =

√
trace(GTG).

Several useful results involving matrix norms will be used. First, for any
subordinate matrix norm, ‖Gy‖q ≤ ‖G‖q ‖y‖q. Let J = Jm = {m1, ..., mp}
denote the p cases in the mth elemental fit bJ = X−1

J Y J . Then for any
elemental fit bJ (suppressing q = 2),

‖bJ − β‖ = ‖X−1
J (XJβ + eJ) − β‖ = ‖X−1

J eJ‖ ≤ ‖X−1
J ‖ ‖eJ‖. (8.55)

The following results (Golub and Van Loan 1989, pp. 57, 80) on the Euclidean
norm are useful. Let 0 ≤ σp ≤ σp−1 ≤ · · · ≤ σ1 denote the singular values of
XJ = (xmi,j). Then

‖X−1
J ‖ =

σ1

σp‖XJ‖
, (8.56)

max
i,j

|xmi,j| ≤ ‖XJ‖ ≤ p max
i,j

|xmi,j|, and (8.57)

1

p maxi,j |xmi,j|
≤ 1

‖XJ‖
≤ ‖X−1

J ‖. (8.58)

From now on, unless otherwise stated, we will use the spectral norm as the
matrix norm and the Euclidean norm as the vector norm.

Example 8.12. Suppose the response values Y are near 0. Consider the fit
from an elemental set: bJ = X−1

J Y J and examine Equations (8.56), (8.57),
and (8.58). Now ‖bJ‖ ≤ ‖X−1

J ‖ ‖Y J‖, and since x-outliers make ‖XJ‖
large, x-outliers tend to drive ‖X−1

J ‖ and ‖bJ‖ towards zero not towards ∞.
The x-outliers may make ‖bJ‖ large if they can make the trial design ‖XJ‖
nearly singular. Notice that Euclidean norm ‖bJ‖ can easily be made large if
one or more of the elemental response variables is driven far away from zero.

Example 8.13. Without loss of generality, assume that the clean Y ’s are
contained in an interval [a, f ] for some a and f . Assume that the regression
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model contains an intercept β1. Then there exists an estimator β̂M of β such

that ‖β̂M‖ ≤ max(|a|, |f |) if dn < n/2.

Proof. Let MED(n) = MED(Y1, ..., Yn) and MAD(n) = MAD(Y1, ..., Yn).

Take β̂M = (MED(n), 0, ..., 0)T. Then ‖β̂M‖ = |MED(n)| ≤ max(|a|, |f |).
Note that the median absolute residual for the fit β̂M is equal to the median
absolute deviation MAD(n) = MED(|Yi − MED(n)|, i = 1, ..., n) ≤ f − a if
dn < b(n + 1)/2c. �

Note that β̂M is a poor high breakdown estimator of β and Ŷi(β̂M ) tracks
the Yi very poorly. If the data are in general position, a high breakdown
regression estimator is an estimator which has a bounded median absolute
residual even when close to half of the observations are arbitrary. Rousseeuw
and Leroy (1987, pp. 29, 206) conjectured that high breakdown regression
estimators can not be computed cheaply, and that if the algorithm is also
affine equivariant, then the complexity of the algorithm must be at least
O(np). The following theorem shows that these two conjectures are false.

Theorem 8.34. If the clean data are in general position and the model has
an intercept, then a scale and affine equivariant high breakdown estimator
β̂w can be found by computing OLS on the set of cases that have Yi ∈
[MED(Y1, ..., Yn) ± w MAD(Y1, ..., Yn)] where w ≥ 1 (so at least half of the
cases are used).

Proof. Note that β̂w is obtained by computing OLS on the set J of the
nj cases which have

Yi ∈ [MED(Y1, ..., Yn) ± wMAD(Y1, ..., Yn)] ≡ [MED(n) ± wMAD(n)]

where w ≥ 1 (to guarantee that nj ≥ n/2). Consider the estimator β̂M =

(MED(n), 0, ..., 0)T which yields the predicted values Ŷi ≡ MED(n). The

squared residual r2i (β̂M ) ≤ (w MAD(n))2 if the ith case is in J . Hence the

weighted LS fit β̂w is the OLS fit to the cases in J and has

∑

i∈J
r2i (β̂w) ≤ nj(w MAD(n))2.

Thus

MED(|r1(β̂w)|, ..., |rn(β̂w)|) ≤ √
nj w MAD(n) <

√
n w MAD(n) <∞.

Thus the estimator β̂w has a median absolute residual bounded by√
n w MAD(Y1, ..., Yn). Hence β̂w is high breakdown, and it is affine equiv-

ariant since the design is not used to choose the observations. It is scale
equivariant since for constant c = 0, β̂w = 0, and for c 6= 0 the set of
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cases used remains the same under scale transformations and OLS is scale
equivariant. �

Note that if w is huge and MAD(n) 6= 0, then the high breakdown estima-

tor β̂w and β̂OLS will be the same for most data sets. Thus high breakdown

estimators can be very nonrobust. Even if w = 1, the HB estimator β̂w only
resists large Y outliers.

An ALTA concentration algorithm uses the L1 estimator instead of OLS
in the concentration step and uses the LTA criterion. Similarly an ALMS
concentration algorithm uses the L∞ estimator and the LMS criterion.

Theorem 8.35. If the clean data are in general position and if a high
breakdown start is added to an ALTA, ALTS, or ALMS concentration algo-
rithm, then the resulting estimator is HB.

Proof. Concentration reduces (or does not increase) the corresponding HB
criterion that is based on cn ≥ n/2 absolute residuals, so the median absolute
residual of the resulting estimator is bounded as long as the criterion applied
to the HB estimator is bounded. �

For example, consider the LTS(cn) criterion. Suppose the ordered squared
residuals from the high breakdown mth start b0m are obtained. If the data
are in general position, then QLTS(b0m) is bounded even if the number of
outliers dn is nearly as large as n/2. Then b1m is simply the OLS fit to
the cases corresponding to the cn smallest squared residuals r2(i)(b0m) for

i = 1, ..., cn. Denote these cases by i1, ..., icn. Then QLTS(b1m) =

cn∑

i=1

r2(i)(b1m) ≤
cn∑

j=1

r2ij(b1m) ≤
cn∑

j=1

r2ij (b0m) =

cn∑

j=1

r2(i)(b0m) = QLTS(b0m)

where the second inequality follows from the definition of the OLS estimator.
Hence concentration steps reduce or at least do not increase the LTS criterion.
If cn = (n+1)/2 for n odd and cn = 1+n/2 for n even, then the LTS criterion
is bounded iff the median squared residual is bounded.

Theorem 8.35 can be used to show that the following two estimators are
high breakdown. The estimator β̂B is the high breakdown attractor used by
the

√
n consistent high breakdown hbreg estimator of Definition 8.48.

Definition 8.47. Make an OLS fit to the cn ≈ n/2 cases whose Y values
are closest to the MED(Y1, ..., Yn) ≡ MED(n) and use this fit as the start

for concentration. Define β̂B to be the attractor after k concentration steps.

Define bk,B = 0.9999β̂B .

Theorem 8.36. If the clean data are in general position, then β̂B and
bk,B are high breakdown regression estimators.
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Proof. The start can be taken to be β̂w with w = 1 from Theorem 8.34.

Since the start is high breakdown, so is the attractor β̂B by Theorem 8.35.
Multiplying a HB estimator by a positive constant does not change the break-
down value, so bk,B is HB. �

The following result shows that it is easy to make a HB estimator that is
asymptotically equivalent to a consistent estimator on a large class of iid zero
mean symmetric error distributions, although the outlier resistance of the HB
estimator is poor. The following result may not hold if β̂C estimates βC and

β̂LMS estimates βLMS where βC 6= βLMS . Then bk,B could have a smaller

median squared residual than β̂C even if there are no outliers. The two param-
eter vectors could differ because the constant term is different if the error dis-
tribution is not symmetric. For a large class of symmetric error distributions,
βLMS = βOLS = βC ≡ β, then the ratio MED(r2i (β̂))/MED(r2i (β)) → 1 as
n→ ∞ for any consistent estimator of β. The estimator below has two attrac-
tors, β̂C and bk,B, and the probability that the final estimator β̂D is equal

to β̂C goes to one under the strong assumption that the error distribution is

such that both β̂C and β̂LMS are consistent estimators of β.

Theorem 8.37. Assume the clean data are in general position, and that
the LMS estimator is a consistent estimator of β. Let β̂C be any practical con-

sistent estimator of β, and let β̂D = β̂C if MED(r2i (β̂C)) ≤ MED(r2i (bk,B)).

Let β̂D = bk,B, otherwise. Then β̂D is a HB estimator that is asymptotically

equivalent to β̂C .

Proof. The estimator is HB since the median squared residual of β̂D
is no larger than that of the HB estimator bk,B. Since β̂C is consistent,

MED(r2i (β̂C)) → MED(e2) in probability where MED(e2) is the population
median of the squared error e2. Since the LMS estimator is consistent, the
probability that β̂C has a smaller median squared residual than the biased

estimator β̂k,B goes to 1 as n → ∞. Hence β̂D is asymptotically equivalent

to β̂C . �

The elemental concentration and elemental resampling algorithms use K
elemental fits where K is a fixed number that does not depend on the sample
size n, e.g.K = 500. See Definitions 8.29 and 8.38. Note that an estimator can
not be consistent for θ unless the number of randomly selected cases goes to
∞, except in degenerate situations. The following theorem shows the widely
used elemental estimators are zero breakdown estimators. (If K = Kn → ∞,
then the elemental estimator is zero breakdown if Kn = o(n). A necessary
condition for the elemental basic resampling estimator to be consistent is
Kn → ∞.)
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Theorem 8.38: a) The elemental basic resampling algorithm estimators
are inconsistent. b) The elemental concentration and elemental basic resam-
pling algorithm estimators are zero breakdown.

Proof: a) Note that you can not get a consistent estimator by using Kh
randomly selected cases since the number of cases Kh needs to go to ∞ for
consistency except in degenerate situations.

b) Contaminating all Kh cases in the K elemental sets shows that the
breakdown value is bounded by Kh/n → 0, so the estimator is zero break-
down. �

8.4.2 A Practical High Breakdown Consistent Estimator

Olive and Hawkins (2011) showed that the practical hbreg estimator is a
high breakdown

√
n consistent robust estimator that is asymptotically equiv-

alent to the least squares estimator for many error distributions. This sub-
section follows Olive (2017b, pp. 420-423).

The outlier resistance of the hbreg estimator is not very good, but roughly
comparable to the best of the practical “robust regression” estimators avail-
able in R packages as of 2022. The estimator is of some interest since it proved
that practical high breakdown consistent estimators are possible. Other prac-
tical regression estimators that claim to be high breakdown and consistent
appear to be zero breakdown because they use the zero breakdown elemental
concentration algorithm. See Theorem 8.38.

The following theorem is powerful because it does not depend on the crite-
rion used to choose the attractor. Suppose there are K consistent estimators
β̂j of β, each with the same rate nδ. If β̂A is an estimator obtained by choos-

ing one of the K estimators, then β̂A is a consistent estimator of β with rate
nδ by Pratt (1959). See Theorem 2.18.

Theorem 8.39. Suppose the algorithm estimator chooses an attractor as
the final estimator where there are K attractors and K is fixed.

i) If all of the attractors are consistent, then the algorithm estimator is
consistent.

ii) If all of the attractors are consistent with the same rate, e.g., nδ where
0 < δ ≤ 0.5, then the algorithm estimator is consistent with the same rate as
the attractors.

iii) If all of the attractors are high breakdown, then the algorithm estimator
is high breakdown.

Proof. i) Choosing from K consistent estimators results in a consistent
estimator, and ii) follows from Pratt (1959). iii) Let γn,i be the breakdown
value of the ith attractor if the clean data are in general position. The break-
down value γn of the algorithm estimator can be no lower than that of the
worst attractor: γn ≥ min(γn,1, ..., γn,K) → 0.5 as n→ ∞. �
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The consistency of the algorithm estimator changes dramatically if K is
fixed but the start size h = hn = g(n) where g(n) → ∞. In particular, if
K starts with rate n1/2 are used, the final estimator also has rate n1/2. The
drawback to these algorithms is that they may not have enough outlier resis-
tance. Notice that the basic resampling result below is free of the criterion.

Theorem 8.40. Suppose Kn ≡ K starts are used and that all starts have
subset size hn = g(n) ↑ ∞ as n → ∞. Assume that the estimator applied to
the subset has rate nδ.
i) For the hn-set basic resampling algorithm, the algorithm estimator has
rate [g(n)]δ.
ii) Under regularity conditions (e.g. given by He and Portnoy 1992), the k–
step CLTS estimator has rate [g(n)]δ.

Proof. i) The hn = g(n) cases are randomly sampled without replacement.
Hence the classical estimator applied to these g(n) cases has rate [g(n)]δ. Thus
all K starts have rate [g(n)]δ, and the result follows by Pratt (1959). ii) By
He and Portnoy (1992), all K attractors have [g(n)]δ rate, and the result
follows by Pratt (1959). �

Remark 8.11. Theorem 8.33 shows that β̂ is HB if the median absolute or
squared residual (or |r(β̂)|(cn) or r2(cn) where cn ≈ n/2) stays bounded under

high contamination. Let QL(β̂H) denote the LMS, LTS, or LTA criterion for

an estimator β̂H ; therefore, the estimator β̂H is high breakdown if and only

if QL(β̂H) is bounded for dn near n/2 where dn < n/2 is the number of out-
liers. The concentration operator refines an initial estimator by successively
reducing the LTS criterion. If β̂F refers to the final estimator (attractor) ob-

tained by applying concentration to some starting estimator β̂H that is high

breakdown, then since QLTS(β̂F ) ≤ QLTS(β̂H), applying concentration to
a high breakdown start results in a high breakdown attractor. See Theorem
8.35.

High breakdown estimators are, however, not necessarily useful for detect-
ing outliers. Suppose γn < 0.5. On the one hand, if the xi are fixed, and the
outliers are moved up and down parallel to the Y axis, then for high break-
down estimators, β̂ and MED(|ri|) will be bounded. Thus if the |Yi| values
of the outliers are large enough, the |ri| values of the outliers will be large,
suggesting that the high breakdown estimator is useful for outlier detection.
On the other hand, if the Yi’s are fixed at any values and the x values per-
turbed, sufficiently large x-outliers tend to drive the slope estimates to 0,
not ∞. For many estimators, including LTS, LMS, and LTA, a cluster of Y
outliers can be moved arbitrarily far from the bulk of the data but still, by
perturbing their x values, have arbitrarily small residuals.
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Our practical high breakdown procedure is made up of three components.
1) A practical estimator β̂C that is consistent for clean data. Suitable choices
would include the full-sample OLS and L1 estimators.
2) A practical estimator β̂A that is effective for outlier identification. Suitable
choices include the mbareg, rmreg2, lmsreg, or FLTS estimators.
3) A practical high-breakdown estimator such as β̂B from Definition 8.47
with k = 10.

By selecting one of these three estimators according to the features each
of them uncovers in the data, we may inherit some of the good properties of
each of them.

Definition 8.48. The hbreg estimator β̂H is defined as follows. Pick a

constant a > 1 and set β̂H = β̂C . If aQL(β̂A) < QL(β̂C), set β̂H = β̂A. If

aQL(β̂B) < min[QL(β̂C), aQL(β̂A)], set β̂H = β̂B.

That is, find the smallest of the three scaled criterion values QL(β̂C),

aQL(β̂A), aQL(β̂B). According to which of the three estimators attains this

minimum, set β̂H to β̂C , β̂A, or β̂B respectively.
Large sample theory for hbreg is simple and given in the following theo-

rem. Let β̂L be the LMS, LTS, or LTA estimator that minimizes the criterion

QL. Note that the impractical estimator β̂L is never computed. The following

theorem shows that β̂H is asymptotically equivalent to β̂C on a large class

of zero mean finite variance symmetric error distributions. Thus if β̂C is
√
n

consistent or asymptotically efficient, so is β̂H . Notice that β̂A does not need
to be consistent. This point is crucial since lmsreg is not consistent and it is
not known whether FLTS is consistent. The clean data are in general position
if any p clean cases give a unique estimate of β̂.

Theorem 8.41. Assume the clean data are in general position, and sup-
pose that both β̂L and β̂C are consistent estimators of β where the regression

model contains a constant. Then the hbreg estimator β̂H is high breakdown

and asymptotically equivalent to β̂C .

Proof. Since the clean data are in general position and QL(β̂H) ≤
aQL(β̂B) is bounded for γn near 0.5, the hbreg estimator is high break-
down. Let Q∗

L = QL for LMS and Q∗
L = QL/n for LTS and LTA. As n→ ∞,

consistent estimators β̂ satisfy Q∗
L(β̂) − Q∗

L(β) → 0 in probability. Since

LMS, LTS, and LTA are consistent and the minimum value is Q∗
L(β̂L), it

follows that Q∗
L(β̂C) −Q∗

L(β̂L) → 0 in probability, while Q∗
L(β̂L) < aQ∗

L(β̂)

for any estimator β̂. Thus with probability tending to one as n → ∞,
QL(β̂C) < amin(QL(β̂A), QL(β̂B)). Hence β̂H is asymptotically equivalent

to β̂C . �
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Remark 8.12. i) Let β̂C = β̂OLS . Then hbreg is asymptotically equiv-
alent to OLS when the errors ei are iid from a large class of zero mean finite
variance symmetric distributions, including the N(0, σ2) distribution, since

the probability that hbreg uses OLS instead of β̂A or β̂B goes to one as
n→ ∞.

ii) The above theorem proves that practical high breakdown estimators
with 100% asymptotic Gaussian efficiency exist; however, such estimators
are not necessarily good.

iii) The theorem holds when both β̂L and β̂C are consistent estimators of
β, for example, when the iid errors come from a large class or zero mean finite
variance symmetric distributions. For asymmetric distributions, β̂C estimates

βC and β̂L estimates βL where the constants usually differ. The theorem
holds for some distributions that are not symmetric because of the penalty
a. As a → ∞, the class of asymmetric distributions where the theorem holds
greatly increases, but the outlier resistance decreases rapidly as a increases
for a > 1.4.

iv) The default hbreg estimator used OLS, mbareg, and β̂B with a = 1.4
and the LTA criterion. For the simulated data with symmetric error distri-
butions, β̂B appeared to give biased estimates of the slopes. However, for the

simulated data with right skewed error distributions, β̂B appeared to give
good estimates of the slopes but not the constant estimated by OLS, and the
probability that the hbreg estimator selected β̂B appeared to go to one.

v) Both MBA and OLS are
√
n consistent estimators of β, even for a large

class of skewed distributions. Using β̂A = β̂MBA and removing β̂B from the

hbreg estimator results in a
√
n consistent estimator of β when β̂C = OLS is

a
√
n consistent estimator of β, but massive sample sizes were still needed to

get good estimates of the constant for skewed error distributions. For skewed
distributions, if OLS needed n = 1000 to estimate the constant well, mbareg
might need n > one million to estimate the constant well.

vi) The outlier resistance of hbreg is not especially good.
The family of hbreg estimators is enormous and depends on i) the prac-

tical high breakdown estimator β̂B, ii) β̂C , iii) β̂A, iv) a, and v) the criterion
QL. Note that the theory needs the error distribution to be such that both
β̂C and β̂L are consistent. Sufficient conditions for LMS, LTS, and LTA to be
consistent are rather strong. To have reasonable sufficient conditions for the
hbreg estimator to be consistent, β̂C should be consistent under weak condi-
tions. Hence OLS is a good choice that results in 100% asymptotic Gaussian
efficiency.

We suggest using the LTA criterion since in simulations, hbreg behaved
like β̂C for smaller sample sizes than those needed by the LTS and LMS

criteria. We want a near 1 so that hbreg has outlier resistance similar to β̂A,

but we want a large enough so that hbreg performs like β̂C for moderate
n on clean data. Simulations suggest that a = 1.4 is a reasonable choice.
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The default hbreg program from linmodpack uses the
√
n consistent outlier

resistant estimator mbareg as β̂A.

There are at least three reasons for using β̂B as the high breakdown es-

timator. First, β̂B is high breakdown and simple to compute. Second, the

fitted values roughly track the bulk of the data. Lastly, although β̂B has

rather poor outlier resistance, β̂B does perform well on several outlier con-
figurations where some common alternatives fail.

As implemented in lspack, the hbreg estimator is a practical
√
n consistent

high breakdown estimator that appears to perform like OLS for moderate n
if the errors are unimodal and symmetric, and to have outlier resistance
comparable to competing practical “outlier resistant” estimators.

8.5 The Robust rmreg2 Estimator

The robust multivariate linear regression estimator rmreg2 is the classi-
cal multivariate linear regression estimator applied to the RMVN set when
RMVN is computed from the vectors ui = (xi2, ..., xip, Yi1, ..., Yim)T for
i = 1, ..., n. Hence ui is the ith case with xi1 = 1 deleted. This regression
estimator has considerable outlier resistance, and is one of the most outlier
resistant practical robust regression estimator for the m = 1 multiple linear
regression case. The rmreg2 estimator has been shown to be consistent if
the ui are iid from a large class of elliptically contoured distributions, which
is a much stronger assumption than having iid error vectors εi.

Let x = (1,uT )T and let β = (β1 ,β
T
2 )T = (α,ηT )T . Now for multivariate

linear regression, β̂j = (α̂j, η̂
T
j )T where α̂j = Y j− η̂Tj u and η̂j = Σ̂

−1

u Σ̂uYj .

Let Σ̂uy = 1
n−1

∑n
i=1(wi − w)(yi − y)T which has jth column Σ̂wYj for

j = 1, ..., m. Let

v =

(
u
y

)
, E(v) = µv =

(
E(u)
E(y)

)
=

(
µu
µy

)
, and Cov(v) = Σv =

(
Σuu Σuy
Σyu Σyy

)
.

Let the vector of constants be αT = (α1, ..., αm) and the matrix of slope
vectors BS =

[
η1 η2 . . . ηm

]
. Then the population least squares coefficient

matrix is

B =

(
αT

BS

)

where α = µy − BT
Sµu and BS = Σ−1

u Σuy where Σu = Σuu.
If the ui are iid with nonsingular covariance matrix Cov(u), the least

squares estimator
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B̂ =

(
α̂T

B̂S

)

where α̂ = y − B̂
T

Su and B̂S = Σ̂
−1

u Σ̂uy . The least squares multivariate
linear regression estimator can be calculated by computing the classical esti-
mator (v,Sv) = (v, Σ̂v) of multivariate location and dispersion on the vi,

and then plug in the results into the formulas for α̂ and B̂S .
Let (T,C) = (µ̃v , Σ̃v) be a robust estimator of multivariate location and

dispersion. If µ̃v is a consistent estimator of µv and Σ̃v is a consistent
estimator of c Σv for some constant c > 0, then a robust estimator of mul-

tivariate linear regression is the plug in estimator α̃ = µ̃y − B̃
T

S µ̃u and

B̃S = Σ̃
−1

u Σ̃uy .
For the rmreg2 estimator, (T,C) is the classical estimator applied to

the RMVN set when RMVN is applied to vectors vi for i = 1, ..., n (could
use (T,C) = RMVN estimator since the scaling does not matter for this
application). Then (T,C) is a

√
n consistent estimator of (µv , cΣv) if the vi

are iid from a large class of ECd(µv ,Σv , g) distributions where d = m+p−1.
Thus the classical and robust estimators of multivariate linear regression
are both

√
n consistent estimators of B if the vi are iid from a large class

of elliptically contoured distributions. This assumption is very strong, but
the robust estimator is useful for detecting outliers. It seems likely that the
estimator is a

√
n consistent estimator of β under mild conditions where

the parameter vector β is not, in general, the parameter vector estimated
by OLS. When there are categorical predictors or the joint distribution of v
is not elliptically contoured, it is possible that the robust estimator is bad
and very different from the good classical least squares estimator. The lspack
function rmreg2 computes the rmreg2 estimator and produces the response
and residual plots.

8.6 Summary

1) For the location model, the sample mean Y =

∑n
i=1 Yi
n

, the sample vari-

ance S2
n =

∑n
i=1(Yi − Y )2

n− 1
, and the sample standard deviation Sn =

√
S2
n.

If the data Y1, ..., Yn is arranged in ascending order from smallest to largest
and written as Y(1) ≤ · · · ≤ Y(n), then Y(i) is the ith order statistic and the
Y(i)’s are called the order statistics. The sample median

MED(n) = Y((n+1)/2) if n is odd,

MED(n) =
Y(n/2) + Y((n/2)+1)

2
if n is even.
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The notation MED(n) = MED(Y1, ..., Yn) will also be used. The sample me-
dian absolute deviation is MAD(n) = MED(|Yi − MED(n)|, i = 1, . . . , n).

2) Suppose the multivariate data has been collected into an n × p matrix

W = X =




xT1
...

xTn


 .

The coordinatewise median MED(W ) = (MED(X1), ...,MED(Xp))
T where

MED(Xi) is the sample median of the data in column i corresponding to

variable Xi. The sample mean x =
1

n

n∑

i=1

xi = (X1, ..., Xp)
T where Xi is

the sample mean of the data in column i corresponding to variable Xi. The
sample covariance matrix

S =
1

n − 1

n∑

i=1

(xi − x)(xi − x)T = (Sij).

That is, the ij entry of S is the sample covariance Sij . The classical estimator
of multivariate location and dispersion is (T,C) = (x,S).

3) Let (T,C) = (T (W ),C(W )) be an estimator of multivariate location
and dispersion. The ith Mahalanobis distance Di =

√
D2
i where the ith

squared Mahalanobis distance is D2
i = D2

i (T (W ),C(W )) =
(xi − T (W ))TC−1(W )(xi − T (W )).

4) The squared Euclidean distances of the xi from the coordinatewise
median is D2

i = D2
i (MED(W ), Ip). Concentration type steps compute the

weighted median MEDj: the coordinatewise median computed from the cases
xi withD2

i ≤ MED(D2
i (MEDj−1, Ip)) where MED0 = MED(W ). Often used

j = 0 (no concentration type steps) or j = 9. Let Di = Di(MEDj , Ip). Let
Wi = 1 if Di ≤ MED(D1, ..., Dn)+kMAD(D1, ..., Dn) where k ≥ 0 and k = 5
is the default choice. Let Wi = 0, otherwise.

5) Let the covmb2 set B of at least n/2 cases correspond to the cases with
weight Wi = 1. Then the covmb2 estimator (T,C) is the sample mean and
sample covariance matrix applied to the cases in set B. Hence

T =

∑n
i=1Wixi∑n
i=1Wi

and C =

∑n
i=1Wi(xi − T )(xi − T )T∑n

i=1Wi − 1
.

The function ddplot5 plots the Euclidean distances from the coordinatewise
median versus the Euclidean distances from the covmb2 location estimator.
Typically the plotted points in this DD plot cluster about the identity line,
and outliers appear in the upper right corner of the plot with a gap between
the bulk of the data and the outliers.
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8.7 Complements

Nearly all of the literature for high breakdown regression and high
breakdown multivariate location and dispersion has massive errors:
i) the estimators that have large sample theory tend to be impractical to com-
pute, while ii) estimators that are practical to compute tend to be inconsistent
and zero breakdown, or have no proven large sample theory. See Hawkins and
Olive (2002). Read Olive (2008, 2017b, 2022c) for practical robust statistics
backed by some large sample theory. Sections 8.2 and 8.4 showed that getting
large sample theory for practical estimators is very difficult.

Location Model: The two stage trimmed means are due to Olive (2001).
The confidence interval for the population median appears in Olive (2017b).
Huber and Ronchetti (2009) is useful for other estimators.

Robust MLD
For the FCH, RFCH, and RMVN estimators, see Olive and Hawkins

(2010), Olive (2017b, ch. 4), and Zhang et al. (2012). See Olive (2017b, p.
120) for the covmb2 estimator.

The fastest estimators of multivariate location and dispersion that have
been shown to be both consistent and high breakdown are the minimum
covariance determinant (MCD) estimator with O(nv) complexity where
v = 1 + p(p + 3)/2 and possibly an all elemental subset estimator of He
and Wang (1997). See Bernholt and Fischer (2004). The minimum volume
ellipsoid (MVE) complexity is far higher, and for p > 2 there may be no
known method for computing S, τ , projection based, and constrained M
estimators. For some depth estimators, like the Stahel-Donoho estimator, the
exact algorithm of Liu and Zuo (2014) appears to take too long if p ≥ 6 and
n ≥ 100, and simulations may need p ≤ 3. It is possible to compute the MCD
and MVE estimators for p = 4 and n = 100 in a few hours using branch
and bound algorithms (like estimators with O(1004) complexity). See Agulló
(1996, 1998) and Pesch (1999). These algorithms take too long if both p ≥ 5
and n ≥ 100. Simulations may need p ≤ 2. Two stage estimators such as
the MM estimator, that need an initial high breakdown consistent estimator,
take longer to compute than the initial estimator. Rousseeuw (1984) intro-
duced the MCD and MVE estimators. See Maronna et al. (2006, ch. 6) for
descriptions and references.

Estimators with complexity higher than O[(n3+n2p+np2+p3) log(n)] take
too long to compute and will rarely be used. Reyen et al. (2009) simulated
the OGK and the Olive (2004a) median ball algorithm (MBA) estimators for
p = 100 and n up to 50000, and noted that the OGK complexity is O[p3 +
np2 log(n)] while that of MBA is O[p3 + np2 + np log(n)]. FCH, RMBA, and
RMVN have the same complexity as MBA. FMCD has the same complexity
as FCH, but FCH is roughly 100 to 200 times faster.

Robust Regression
For the hbreg estimator, see Olive and Hawkins (2011) and Olive (2017b,

ch. 14). Robust regression estimators have unsatisfactory outlier resistance
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and large sample theory. The hbreg estimator is fast and high breakdown,
but does not provide an adequate remedy for outliers, and the symmetry
condition for consistency is too strong. OLS response and residual plots are
useful for detecting multiple linear regression outliers.

Many of the robust statistics for the location model are practical to com-
pute, outlier resistant, and backed by theory. See Huber and Ronchetti (2009).
A few estimators of multivariate location and dispersion, such as the coordi-
natewise median, are practical to compute, outlier resistant, and backed by
theory.

For practical estimators for MLR and MCD, hbreg and FCH appear to
be the only estimators proven to be consistent (for a large class of symmetric
error distributions and for a large class of EC distributions, respectively) with
some breakdown theory (TFCH is HB). Perhaps all other “robust statistics”
for MLR and MLD that have been shown to be both consistent and high
breakdown are impractical to compute for p > 4: the impractical “brand
name” estimators have at least O(np) complexity, while the practical esti-
mators used in the software for the “brand name estimators” have not been
shown to be both high breakdown and consistent. See Theorems 8.30 and
8.38, Hawkins and Olive (2002), Olive (2008, 2017b), Hubert et al. (2002),
and Maronna and Yohai (2002). Huber and Ronchetti (2009, pp. xiii, 8-9,
152-154, 196-197) suggested that high breakdown regression estimators do
not provide an adequate remedy for the ill effects of outliers, that their sta-
tistical and computational properties are not adequately understood, that
high breakdown estimators “break down for all except the smallest regres-
sion problems by failing to provide a timely answer!” and that “there are no
known high breakdown point estimators of regression that are demonstrably
stable.”

A large number of impractical high breakdown regression estimators have
been proposed, including LTS, LMS, LTA, S, LQD, τ , constrained M, re-
peated median, cross checking, one step GM, one step GR, t-type, and re-
gression depth estimators. See Rousseeuw and Leroy (1987) and Maronna et
al. (2019). The practical algorithms used in the software use a brand name
criterion to evaluate a fixed number of trial fits and should be denoted as
an F-brand name estimator such as FLTS. Two stage estimators, such as
the MM estimator, that need an initial consistent high breakdown estima-
tor often have the same breakdown value and consistency rate as the initial
estimator. These estimators are typically implemented with a zero break-
down inconsistent initial estimator and hence are zero breakdown with zero
efficiency.

Maronna and Yohai (2015) used OLS and 500 elemental sets as the 501
trial fits to produce an FS estimator used as the initial estimator for an
FMM estimator. Since the 501 trial fits are zero breakdown, so is the FS
estimator. Since the FMM estimator has the same breakdown as the initial
estimator, the FMM estimator is zero breakdown. For regression, they show
that the FS estimator is consistent on a large class of zero mean finite variance
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symmetric distributions. Consistency follows since the elemental fits and OLS
are unbiased estimators of βOLS but an elemental fit is an OLS fit to p cases.
Hence the elemental fits are very variable, and the probability that the OLS
fit has a smaller S-estimator criterion than a randomly chosen elemental
fit (or K randomly chosen elemental fits) goes to one as n → ∞. (OLS
and the S-estimator are both

√
n consistent estimators of β, so the ratio of

their criterion values goes to one, and the S-estimator minimizes the criterion
value.) Hence the FMM estimator is asymptotically equivalent to the MM
estimator that has the smallest criterion value for a large class of iid zero
mean finite variance symmetric error distributions. This FMM estimator is
asymptotically equivalent to the FMM estimator that uses OLS as the initial
estimator. When the error distribution is skewed the S-estimator and OLS
population constant are not the same, and the probability that an elemental
fit is selected is close to one for a skewed error distribution as n→ ∞. (The

OLS estimator β̂ gets very close to βOLS while the elemental fits are highly
variable unbiased estimators of βOLS , so one of the elemental fits is likely to
have a constant that is closer to the S-estimator constant while still having
good slope estimators.) Hence the FS estimator is inconsistent, and the FMM
estimator is likely inconsistent for skewed distributions. No practical method
is known for computing a

√
n consistent FS or FMM estimator that has the

same breakdown and maximum bias function as the S or MM estimator that
has the smallest S or MM criterion value.

8.8 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

8.1. Use Theorem 2.6 to find the limiting distribution of
√
n(MED(n) −

MED(Y )).

8.2. The interquartile range IQR(n) = ξ̂n,0.75 − ξ̂n,0.25 and is a popular
estimator of scale. Use Theorem 3.11 to show that

√
n

1

2
(IQR(n) − IQR(Y ))

D→ N(0, σ2
A)

where

σ2
A =

1

64

[
3

[f(ξ3/4)]2
− 2

f(ξ3/4)f(ξ1/4)
+

3

[f(ξ1/4)]2

]
.

8.3∗. Let F be the N(0, 1) cdf. Show that the ARE of the sample median
MED(n) with respect to the sample mean Y n is ARE ≈ 0.64.
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8.4∗. Let F be the DE(0, 1) cdf. Show that the ARE of the sample median
MED(n) with respect to the sample mean Y n is ARE ≈ 2.0.

8.5. If Y is TEXP (λ, b = kλ) for k > 0, show that

a) E(Y ) = λ

[
1 − k

ek − 1

]
.

b) E(Y 2) = 2λ2

[
1 − (0.5k2 + k)

ek − 1

]
.





Chapter 9

Time Series

9.1 ARMA Time Series

This section reviews ARMA time series models. We will use the R software
notation and write a moving average parameter θ with a positive sign. Many
references and software will write the model with a negative sign for the
moving average parameters.

Definition 9.1. a) A moving average MA(q) times series is

Yt = τ + θ1et−1 + θ2et−2 + · · ·+ θqet−q + et

where θq 6= 0.
b) An autoregressive AR(p) times series is

Yt = τ + φ1Yt−1 + φ2Yt−2 + · · ·+ φpYt−p + et

where φp 6= 0.
c) An autoregressive moving average ARMA(p, q) times series is

Yt = τ + φ1Yt−1 + φ2Yt−2 + · · ·+φpYt−p+ θ1et−1 + θ2et−2 + · · ·+ θqet−q + et
(9.1)

where θq 6= 0 and φp 6= 0.
The results in this chapter also apply to a time series Xt that follows

an ARIMA(p, d, q) model with known d if the differenced time series model
Yt follows an ARMA(p, q) model. See Box and Jenkins (1976) for more on
these models. We will assume that the et are independent and identically
distributed (iid) with zero mean and variance σ2. The observed time series
is {Yt} = Y1, ..., Yn.

We usually want the ARMA(p, q) model to be weakly stationary, causal,
and invertible. Let Zt = Yt − µ where µ = E(Yt) if {Yt} is weakly station-
ary. Then the causal property implies that Zt =

∑∞
j=1 ψjet−j + et, which is

an MA(∞) representation, where the ψj → 0 rapidly as j → ∞. Invertibil-

375
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ity implies that Zt =
∑∞

j=1 χjZt−j + et, which is an AR(∞) representation,
where the χj → 0 rapidly as j → ∞. We will make the usual assumption
that the AR(∞) and MA(∞) parameters are square summable. Thus if the
ARMA(p, q) model is weakly stationary, causal, and invertible, then Yt de-
pends almost entirely on nearby lags of Yt and et, not on the distant past.

9.2 Large Sample theory

Some notation and preliminary results are needed. The Gaussian maximum
likelihood estimator (GMLE) will be used. The Yule Walker and least squares
estimators will also be used for AR(p) models. Let the ri be the m (one step
ahead) residuals where oftenm = n orm = n−p. Under regularity conditions,

σ̃2 =

∑m
i=1 r

2
i

m− p − q − c
(9.2)

is a consistent estimator of σ2 where often c = 0 or c = 1. See Granger and
Newbold (1977, p. 85) and Pankratz (1983, p. 206). Let σ̂2 be the estimator
of σ2 produced by the time series model, and let γk = Cov(Yt, Yt−k). Let

Γ n =




γ0 γ1 . . . γn−1

γ1 γ0 . . . γn−2

...
...

. . .
...

γn−1 γn−2 . . . γ0


 .

The following large sample theorem for the AR(p) model is due to Mann
and Wald (1943). Also see McElroy and Politis (2020, p. 333) and Anderson
(1971, pp. 210-217). For large sample theory for MA and ARMA models, see
Hannan (1973), Kreiss (1985), and Yao and Brockwell (2006).

Remark 9.1. There is a strong regularity condition for the GMLE of the
ARMA(p, q) model. Assume the ARMA(pS , qS) model is the true model.
a) If both p > pS and q > qS , then the GMLE is not a consistent estimator.
See Chan, Ling, and Yau (2020) and Hannan (1980).
b) The GMLE for the ARMA(p, q) model needs to satisfy p ≥ pS and q ≥ qS
with either p = pS or q = qS for the model β̂ to be a consistent estimator of
β. Pötscher (1990) showed how to estimate max(pS , qS) consistently.

Theorem 9.1 Let the iid zero mean ei have variance σ2, and let the time
series have mean E(Yt) = µ.

a) Let Y1, ..., Yn be a weakly stationary and invertible AR(p) time series,

and let β = (φ1, ..., φp). Let β̂ be the Yule Walker estimator of β. Then

√
n(β̂ − β)

D→ Np(0,V ) (9.3)
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where V = V (β) = σ2Γ−1
p . Equation (9.3) also holds under mild regularity

conditions for the least squares estimator, and the GMLE of β.
b) Let Y1, ..., Yn be a weakly stationary, causal, and invertible MA(q) time

series, and let β = (θ1, ..., θq). Let β̂ be the GMLE. Under regularity condi-
tions, √

n(β̂ − β)
D→ Nq(0,V ) (9.4)

where V is given, for example, by McElroy and Politis (2022, pp. 340-341).
c) Let Y1, ..., Yn be a weakly stationary, causal, and invertible ARMA(p, q)

time series, and let β = (φ1, ..., φp, θ1, ..., θq) with g = p + q. Let β̂ be the
GMLE. Under regularity conditions,

√
n(β̂ − β)

D→ Ng(0,V ) (9.5)

where V depends on the autocorrelation function and σ2.

The main point of Theorem 9.1 is that the theory can hold even if the et are
not iidN(0, σ2). The basic idea for the GMLE is that {Yt} satisfies an AR(∞)
model which is approximately an AR(py) model, and the large sample theory
for the AR(py) model depends on the zero mean error distribution through
σ2 by Theorem 9.1 a). See Anderson (1971: ch. 5, 1977). When the et are iid
N(0, σ2), V = V (β) = I−1

1 (β), the inverse information matrix. Then for the
AR(p) model, V (φ) = σ2Γ−1

p (φ) = I−1
1 (φ). See Box and Jenkins (1976, p.

241) and McElroy and Politis (2020, pp. 340-344).

9.3 Inference after Model Selection

This section considers model selection where it is assumed that it is known
that the model is ARMA, AR, or MA, but the order needs to be determined.
For ARMA model selection, let the full model be an ARMA(pmax, qmax)
model. For AR model selection qmax = 0, while for MA model selection
pmax = 0. Granger and Newbold (1977, p. 178) suggested using pmax = 13
for AR model selection, and we may use pmax = qmax = 5 for ARMA model
selection, and qmax = 13 for MA model selection. For ARMA model selection,
there are J = (pmax + 1)(qmax + 1) ARMA(p, q) submodels where p ranges
from 0 to pmax and q ranges from 0 to qmax. For AR and MA model selection
there are J = pmax + 1 and J = qmax + 1 submodels, respectively. Assume
the true (optimal) model is an ARMA(pS , qS) model with pS ≤ pmax and
qS ≤ qmax. Let the selected model I be an ARMA(pI , qI) model. Then the
model underfits unless pI ≥ pS and qI ≥ qS. For AR model selection, the
probability of underfitting goes to 0 if the Akaike (1973) AIC, Schwartz (1978)
BIC, or Hurvich and Tsai (1989) AICC criterion are used. See Hannan and
Quinn (1979) and Shibata (1976).
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Remark 9.2: Are Statisticians crazy? Similar results for ARMA mod-
els were given by Hannan (1980) and Hannan and Kavalieris (1984). Also
see Huang et al. (2022). However, in simulations with (kmax + 1)2 possible
ARMA(p, q) models where p, q = 0, 1, ..., kmax, ARMA model selection with
AIC, BIC, and AICC was unable to select models satisfying Remark 9.1 (and
Remark 9.3) with probability close to 1. Underfitting was common for BIC.
AIC and AICC often underfit for n ≤ 500, and often failed to satisfy Remark
9.1 for n > 5000. The Pötscher (1990) model selection procedure restricted
the search to ARMA(k, k) models for k = 0, 1, ..., kmax with a BIC type cri-
terion, and this procedure worked fairly well for n ≥ 600 (Chan, Ling, and
Yau (2020) suggested n ≥ 1000).

More notation is needed for model selection. Let the full model be the
AR(pmax), MA(qmax), or ARMA(pmax, qmax) model. Let β be a b×1 vector.
For ARMA model selection, let β = (φT , θT )T = (φ1, ..., φpmax, θ1, ..., θqmax)T

with b = pmax + qmax. For AR model selection, let β = (φ1, ..., φpmax)
T

with b = pmax, and for MA model selection, let β = (θ1, ..., θqmax)T

with b = qmax. Hence β = (β1, ..., βpmax, βpmax+1, ..., βpmax+qmax )T . Let
S = {1, ..., pS, pmax+1, ..., pmax+qS} index the true ARMA(pS , qS) model. If
S = ∅ is the empty set, then the time series random variables Y1, ..., Yn are iid.
Let I = {1, ..., pI, pmax+1, ..., pmax+qI} index the ARMA(pI , qI) model. Let

β̂I,0 be a b×1 estimator of β which is a obtained by padding β̂I with zeroes. If

βI = (φ1, ..., φpI, θ1, ..., θqI)
T , then β̂I,0 = (φ̂1, ..., φ̂pI, 0, .., 0, θ̂1, ..., θ̂qI , 0, ..., 0)T.

If qI = 0, then β̂I,0 = (φ̂1, ..., φ̂pI, 0, .., 0)T. If pI = 0 then β̂I,0 =

(0, ..., .., 0, θ̂1, ..., θ̂qI , 0, ..., 0)T. If I = ∅ with pI = qI = 0, then define β̂I,0 = 0,
the b× 1 vector of zeroes. The submodel I underfits unless S ⊆ I.

For example, if pmax = qmax = 5, then S = {1, 6, 7} corresponds to the
ARMA(1,2) model, and I = {1, 6, 7, 8} corresponds to the ARMA(1,3) model.

Then β̂S = (φ̂1, θ̂1, θ̂2)
T , β̂S,0 = (φ̂1, 0, 0, 0, 0, θ̂1, θ̂2, 0, 0, 0)T , and β̂I,0 =

(φ̂1, 0, 0, 0, 0, θ̂1, θ̂2, θ̂3, 0, 0)T .
The model Imin corresponds to the model that minimizes the AIC, AICC ,

or BIC criterion. Then the model selection estimator β̂MS = β̂Imin,0. With
this notation, the ARMA time series model selection theory developed in this
chapter is very similar to the variable selection theory for regression models,
such as multiple linear regression and generalized linear models, developed
in Chapter 6.

Assume β̂MS = β̂Ik,0 with probabilities πkn = P (Imin = Ik) for

k = 1, ..., J . Let β̂MIX be a random vector with a mixture distribution of

the β̂Ik,0 with probabilities equal to πkn. Hence β̂MIX = β̂Ik,0 with the

same probabilities πkn of the model selection estimator β̂MS, but the Ik are

randomly selected. The large sample theory for β̂MIX is useful for explain-

ing that of β̂MS and for bootstrap confidence regions. Note that β̂MIX can
not be computed since the πkn are unknown. For mixture distributions, see
Section 1.8.
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Inference will consider bootstrap hypothesis testing with confidence inter-
vals (CIs) and regions. Consider testing H0 : θ = θ0 versus H1 : θ 6= θ0

where θ0 is a known g × 1 vector.
Next we extend the Chapter 6 theory for variable selection estimators to

time series model selection estimators. Suppose the full model is as in Section

9.1 and that if S ⊆ Ij where the dimension of Ij is aj, then
√
n(β̂Ij

−βIj
)
D→

Naj(0,V j) where V j is the covariance matrix of the asymptotic multivariate
normal distribution. Then

√
n(β̂Ij ,0 − β)

D→ Nb(0,V j,0) (9.6)

where V j,0 adds columns and rows of zeros corresponding to the βi not
indexed by Ij, and V j,0 is singular unless Ij corresponds to the full model.

The first assumption in Theorem 9.2 is P (S ⊆ Imin) → 1 as n → ∞.
Then the model selection estimator corresponding to Imin underfits with
probability going to zero. The assumption also requires pS ≤ pmax and qS ≤
qmax. Then the assumption on ujn in Theorem 9.2 may be reasonable by

(9.6) since S ⊆ Ij for each πj, and since β̂MIX uses random selection. These
two assumption may be reasonable if the Pötscher (1990) model selection
procedure is used. (Need P [Imin satisfies Remark 9.1 b) ] → 1 as n → ∞.)
The proofs of Theorems 9.2 and 9.3 are the same as those of Theorems 6.19
and 6.20.

Theorem 9.2 Assume P (S ⊆ Imin) → 1 as n → ∞, and let β̂MIX = β̂Ik,0

with probabilities πkn where πkn → πk as n→ ∞. Denote the positive πk by

πj. Assume ujn =
√
n(β̂Ij,0

− β)
D→ uj ∼ Nb(0,V j,0). a) Then

un =
√
n(β̂MIX − β)

D→ u (9.7)

where the cdf of u is Fu(t) =
∑

j πjFuj
(t). Thus u is a mixture distribution

of the uj with probabilities πj, E(u) = 0, and Cov(u) = Σu =
∑

j πjV j,0.
b) Let A be a g × b full rank matrix with 1 ≤ g ≤ b. Then

vn = Aun =
√
n(Aβ̂MIX − Aβ)

D→ Au = v (9.8)

where v has a mixture distribution of the vj = Auj ∼ Ng(0,AV j,0A
T ) with

probabilities πj .

c) The estimator β̂MS is a
√
n consistent estimator of β. Hence√

n(β̂MS − β) = OP (1).

d) If πa = 1, then
√
n(β̂SEL − β)

D→ u ∼ Nb(0,V a,0) where SEL is MS
or MIX.

Proof. a) Since un has a mixture distribution of the ukn with probabilities
πkn, the cdf of un is Fun

(t) =
∑

k πknFukn
(t) → Fu(t) =

∑
j πjFuj

(t) at
continuity points of the Fuj (t) as n→ ∞.
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b) Since un
D→ u, then Aun

D→ Au.
c) The result follows since selecting from a finite number K of

√
n consistent

estimators (even on a set that goes to one in probability) results in a
√
n

consistent estimator by Pratt (1959).
d) If πa = 1, there is no selection bias, asymptotically. The result also follows
by Pötscher (1991, Lemma 1). �

Theorem 9.2 can be used to justify prediction intervals after model selec-
tion. See Section 9.4. Typically the mixture distribution is not asymptotically
normal unless a πa = 1 (e.g. if S is the full model). Theorem 9.2d) is useful
for model selection consistency where πa = πS = 1 if P (Imin = S) → 1 as
n→ ∞. See Hannan (1980) and Claeskens and Hjort (2008) for references.

The following subscript notation is useful. Subscripts before the MIX
are used for subsets of β̂MIX = (β̂1, ..., β̂b)

T . Let β̂i,MIX = β̂i. Similarly, if

I = {i1, ..., ia}, then β̂I,MIX = (β̂i1 , ..., β̂ia)
T . Subscripts after MIX denote

the ith vector from a sample β̂MIX,1, ..., β̂MIX,B . Similar notation is used for

other estimators such as β̂MS . The subscript 0 is still used for zero padding.

We may use FULL to denote the full model β̂ = β̂FULL.

Note that both
√
n(β̂MIX − β) and

√
n(β̂MS − β) are selecting from the

ukn =
√
n(β̂Ik,0 −β) and asymptotically from the uj. The random selection

for β̂MIX does not change the distribution of ujn, but selection bias does
change the distribution of the selected ujn and uj to that of wjn and wj .

The assumption that wjn
D→ wj may not be mild. The proof for Equation

(9.9) is the same as that for (9.8).

Theorem 9.3 Assume P (S ⊆ Imin) → 1 as n→ ∞, and let β̂MS = β̂Ik,0

with probabilities πkn where πkn → πk as n→ ∞. Denote the positive πk by

πj. Assume wjn =
√
n(β̂

C

Ij ,0 − β)
D→ wj. Then

wn =
√
n(β̂MS − β)

D→ w (9.9)

where the cdf of w is Fw(t) =
∑

j πjFwj
(t). Thus w is a mixture distribution

of the wj with probabilities πj.

9.4 Bootstrapping ARMA time series model selection
estimators

Remark 9.3. If the true model is the ARMA(pS , qS) model, then the
ARMA(pF , qF ) full model needs to satisfy pF ≥ pS and qF ≥ qS with ei-

ther pF = pS or qF = qS for the full model β̂F to be a consistent estimator
of βF .

For the bootstrap, we will ignore τ and build the bootstrap time series
data set {Y ∗

t } sequentially. Assume the full model satisfies Remark 9.3. Fit
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the full model to get the φ̂k and θ̂j . Let

Y ∗
t =

pmax∑

k=1

φ̂kY
∗
t−k + e∗t ,

Y ∗
t =

qmax∑

k=1

θ̂ke
∗
t−k + e∗t ,

or

Y ∗
t =

pmax∑

k=1

φ̂kY
∗
t−k +

qmax∑

k=1

θ̂ke
∗
t−k + e∗t

for t = 1, ..., n. The ARMA and AR bootstrap may use a block of initial values
(Y ∗

−p+1, ..., Y
∗
0 )T = (Yj+1, Yj+2, ..., Yj+p)

T randomly selected from Y1, ..., Yn.
For the parametric bootstrap, the e∗t are iid N(0, σ̂2) where σ̂2 is the esti-
mate from fitting the full model with (pmax, qmax). For the residual boot-
strap, assume the full model produces m residuals r1, ..., rm. Often m = n or
m = n − pmax. Refer to Equation (9.2) with (p, q) replaced by (pmax, qmax)
and b = pmax + qmax. Let

êj =

√
m

m− b− c
(rj − r)

for j = 1, ..., m. Let the e∗t be obtained by sampling with replacement from the
êj. With respect to this bootstrap distribution, the e∗t are iid with E(e∗t ) = 0
and V (e∗t ) ≈ σ̃2.

The following bootstrap algorithm produces pairs (β̂
∗
MS,i, β̂

∗
MIX,i) for

i = 1, ..., B where the possible submodels Ik are selected with probabilities
ρkn by the bootstrap model selection estimator. Then this bootstrap algo-
rithm bootstraps both β̂MS and β̂MIX with πkn = ρkn.
1) Generate a bootstrap time series data set {Y ∗

i }1,1 = {Y ∗
1 , ..., Y

∗
n}1,1. In-

stead of computing the full model, use model selection to compute β̂
∗
MS,1 =

β̂
∗
I1,0 = β̂

∗
I1,0({Y ∗

i }1,1).
2) Draw another bootstrap data set {Y ∗

i }1,2 and fit model I1 from step 1) to

get β̂
∗
MIX,1 = β̂

∗
I1,0({Y ∗

i }1,2). (Selection bias is avoided since I1 is selected
before generating {Y ∗

i }1,2.)

3) Repeat B times to get the bootstrap samples β̂
∗
MS,1, ..., β̂

∗
MS,B and

β̂
∗
MIX,1, ..., β̂

∗
MIX,B.

Following McElroy and Politis (2020, pp. 438-439), consider a weakly sta-
tionary and invertible time series Y1, ..., Yn where the et are iid with mean 0
and variance σ2. A companion process uses εt that are iid with mean 0 and
variance σ̂2. Both the residual bootstrap and parametric bootstrap produce
companion processes {Y ∗

t }. The residual bootstrap for an AR(pmax) model
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is closely related to the sieve bootstrap for AR(p) and AR(∞) models. See
McElroy and Politis (2020, pp. 430, 434).

It is important to note that for the parametric bootstrap, we are not as-
suming that the et are iid N(0, σ2). The following theorem is for bootstrap-
ping the ARMA(pF , qF ) full model. Assume the full model satisfies Remark
9.3.

Theorem 9.4 Assume the time series is such that Theorem 9.1 holds.
Then

√
n(β̂

∗ − β̂)
D→ Nb(0,V (β)) if the GMLE is used with the parametric

bootstrap. This result also holds for the AR(p) model if the Yule Walker or
least squares estimator is used with the parametric bootstrap or the residual
bootstrap.

Proof. On a set A of probability going to one as n → ∞, Y ∗
1 , ..., Y

∗
n

with β̂ = β̂n satisfies Theorem 9.1. Hence if n is fixed and the time series

Y ∗
1 , ..., Y

∗
m is generated with β̂n, then on the set A the estimator β̂

∗
satisfies√

m(β̂
∗ − β̂n)

D→ Nb(0,V (β̂n)) as m → ∞. Since V (β̂)
P→ V (β) if β̂n

P→ β

as n → ∞, it follows that
√
n(β̂

∗ − β̂n)
D→ Nb(0,V (β)) as n → ∞. �

The basic idea is that for the parametric bootstrap, Y ∗
1 , ..., Y

∗
n satisfies

the Gaussian time series model with β̂n as the parameter vector and β̂n is a√
n consistent estimator of β. Hence the Gaussian time series Y ∗

1 , ..., Y
∗
n with

β̂n will be weakly stationary, causal, and invertible on a set A going to one

in probability. Since β̂n depends on n, convergence along a triangular array
needs to be used. Bootstrap results such as Theorem 9.4 are rather rare in
the time series literature. Bühlmann (1994) has such a result for the AR(p)
model.

9.5 Prediction Intervals

See Welagedara, Haile, and Olive (2024).

9.6 The Random Walk

A random walk (with drift) Yt = Yt−1 + et where the et are independent
and identically distributed (iid). Suppose there is a sample Y1, ..., Yn and we
want a prediction interval (PI) for Yn+h. Then Yt = Yt−2 + et−1 + et =
Yt−h + et−h+1 + · · · + et = Y0 + e1 + · · · + et, or Yn+h = Yn + en+1 +
en+2 + · · · + en+h = Yn + εn,h. Let ej = Yj − Yj−1 for j = 2, ..., n. Divide
e2, ..., en into blocks of length h and let εi be the sum of the ei in each block.
Hence ε1 = e2 + · · · + eh+1 , ε2 = eh+2 + · · · + e2h+1, and εi = e(i−1)h+2 +
e(i−1)h+3 + · · ·+ e(i−1)h+h+1 for i = 1, ..., m = bn/hc. These εi are iid from
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the same distribution as εn,h. The same decomposition can be made for a
vector valued random walk, Y t = Y t−1 + et, where the vectors are p × 1.
Thus εi = e(i−1)h+2 + e(i−1)h+3 + · · ·+ e(i−1)h+h+1 for i = 1, ..., m.

The random walk can be written as Yt = Y0 +
∑t

i=1 ei where Y0 = y0 is
often a constant. A stochastic process {N(t) : t ≥ 0} is a counting process
if N(t) counts the total number of events that occurred in time interval
(0, t]. Let en be the interarrival time or waiting time between the (n − 1)th
and nth events counted by the process, n ≥ 1. If the nonnegative ei are
iid with P (ei = 0) < 1, then {N(t), t ≥ 0} is a renewal process. Let Yn =∑n
i=1 ei = the time of occurrence of the nth event = waiting time until the

nth event. Then Yn is a random walk with Y0 = y0 = 0. Let the expected
value E(ei) = µ > 0. Then E(Yn) = nµ and the variance V (Yn) = nV (ei) if
V (ei) exists. A Poisson process with rate λ is a renewal process where the ei
are iid exponential EXP(λ) with E(ei) = 1/λ. See Ross (2014) for the Poisson
process and renewal process. Given Y1, ..., Yn, then n events have occurred,
and the 1-step ahead PI is for the time until the next event, the 2-step ahead
PI is for the time until the next 2 events, and the h-step ahead PI is for the
time for the next h events.

For forecasting, predict the test data Yn+1, ..., Yn+L given the past training
data Y1, ..., Yn. A large sample 100(1 − δ)% prediction interval for Yn+h is
[Ln, Un] where the coverage P (Ln ≤ Yn+h ≤ Un) = 1 − δn is eventually
bounded below by 1− δ as n → ∞. We often want 1− δn → 1− δ as n→ ∞.
A large sample 100(1−δ)% PI is asymptotically optimal if it has the shortest
asymptotic length: the length of [Ln, Un] converges to Us − Ls as n → ∞
where [Ls, Us] is the population shorth: the shortest interval covering at least
100(1− δ)% of the mass.

For a large sample 100(1 − δ)% PI, the nominal coverage is 100(1 − δ)%.
Undercoverage occurs if the actual coverage is below the nominal coverage.
For example, if the actual coverage is 0.93 when n = 100, then for a large
sample 95% PI, the undercoverage is 0.02 =2%.

The prediction intervals and regions for the random walks are simple. First
consider the random walk Yt = Yt−1 + et where the et are iid. Find the εi
for i = 1, ..., m = bn/hc. Assume n ≥ 50h and let [L, U ] be the shorth(c)
PI (4.4) for a future value of εf based on ε1, ..., εm with m ≥ 50. Then the
large sample 100(1 − δ)% PI for Yn+h is [Yn + L, Yn + U ]. This PI tends to
be asymptotically optimal as along as the et are iid. This PI is equivalent
to applying the shorth(c) PI (4.4) on Yn + ε1, ..., Yn + εm. Other PIs can be
used.

For the vector valued random walk Y t = Y t−1 + et, find ε1,h, ..., εm,h.
The large sample 100(1 − δ)% nonparametric prediction region (4.11) for a
future value εf,h is

{z : (z − ε)TS−1
h (z − ε) ≤ D2

(Um)} = {z : D2
z(ε,Sh) ≤ D2

(Um)} (9.10)
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where Sh is the sample covariance matrix of the εi,h and D2
i = (εi,h −

ε)TS−1
h (εi,h − ε). This prediction region is a hyperellipsoid centered at the

sample mean ε. The following large sample 100(1− δ)% prediction region for
Y n+h shifts the hyperellipsoid (9.10) to be centered at Y n + ε:

{z : [z − (Y n + ε)]TS−1
h [z − (Y n + ε)] ≤ D2

(Um)}. (9.11)

Since Y n+h has the same distribution as Y n + εf,h, P (Y n+h ∈ (9.11)) =
P (εf,h ∈ (9.10)) = 1 − δn which is bounded below by 1 − δ, asymptotically.
The prediction region (9.11) is equivalent to applying the nonparametric
prediction region (4.11) to Y n + ε1,h, ...,Y n + εm,h. The prediction region
(9.11) is similar to the Olive (2018) prediction region for the multivariate
regression model.

Since the εi = εi,h are iid, alternative prediction intervals and regions,
such as those in Chapter 4, could be used.

9.7 Summary

9.8 Complements

Theorems 9.2 and 9.3 are from Haile and Olive (2023). The random walk
material is from Haile, Zhang, and Olive (2024).

9.9 Problems

9.1. A moving average MA(q) times series is

Yt = τ + θ1et−1 + θ2et−2 + · · ·+ θqet−q + et

where θq 6= 0. Assume that the et are independent and identically distributed
(iid) with zero mean and variance σ2. Here τ, and the θi are unknown pa-
rameters. The Yt are identically distributed. Yk, Yq+k+1, Y2q+k+3, Y3q+k+4, ...,
are iid. That is, there are blocks of iid data in the time series starting at
k = 1, ..., q, q+ 1.

a) Find E(Yt).

b) Suppose the time series is Y1, Y2, ..., Yn=m(q+1). Consider the first iid
block,

Y1, Yq+2, Y2q+3, Y3q+4, ..., Y(m−1)q+m = Z1, Z2, ..., Zm.

What does Z estimate?
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c) Similarly, it can be shown that the sample percentile of each iid block
estimates the “population percentile.” Hence the sample percentile of the
entire time series is a consistent estimator of the population percentile, and
the sample shorth of the entire time series is a consistent estimator of the
“population shorth.” Suppose the sample variance of each iid block estimates
σ2
Y . What does

∑n
i=1(Yi − Y )2/n estimate?

9.2. Suppose X1, ..., Xn1 are iid, Z1, ..., Zn2 are iid, and that the Xi and
Zi are identically distributed but not necessarily independent. (The random
variables do need have the same probability space.) Assume ni/n → πi
where 0 < πi < 1, π1 + π2 = 1 and n1 + n2 = n. Assume the kth mo-
ment E(Xk

i ) = E(Zki ) = E(Y k) exists for k = 1, ..., m for some integer

m ≥ 2. Then
∑n1

i=1X
k
i /n1

P→ E(Y k) and
∑n2

i=1Z
k
i /n2

P→ E(Y k). (For exam-
ple, Y1, ..., Yn could follow an MA(1) time series, the Xi = Yi for i odd, and
the Zi = Yi for i even.)

a)
∑n1

i=1X
k
i /n

P→ a. Find a.

b)
∑n2

i=1 Z
k
i /n

P→ b. Find b.

c) (
∑n1

i=1X
k
i +

∑n2

i=1 Z
k
i )/n

P→ c. Find c.





Chapter 10

Graphical Diagnostics

10.1 1D Regression

From Chapter 6, in a 1D regression model, Y is conditionally independent
of x given the sufficient predictor SP = h(x), written

Y x|SP or Y x|h(x), (10.1)

where the real valued function h : R
p → R. The estimated sufficient

predictor ESP = ĥ(x).
Definition 10.1. A response plot is a plot of the ESP versus Y . A

residual plot is a plot of the ESP versus the residuals.

A response plot is also called an estimated sufficient summary plot (ESSP).
A sufficient summary plot is a plot of SP versus Y . Hence if the ESP is a
consistent estimator of the SP, then the response plot estimates the sufficient
summary plot.

Notation: In this text, a plot of x versus Y will have x on the horizontal
axis, and Y on the vertical axis. For the additive error regression model
Y = m(x)+e, the ith residual is ri = Yi−m̂(xi) = Yi− Ŷi where Ŷi = m̂(xi)
is the ith fitted value. The additive error regression model is a 1D regression
model with sufficient predictor SP = h(x) = m(x).

For the additive error regression model, the response plot is a plot of Ŷ
versus Y where the identity line with unit slope and zero intercept is added as
a visual aid. The residual plot is a plot of Ŷ versus r. Assume the errors ei are
iid from a unimodal distribution that is not highly skewed. Then the plotted
points should scatter about the identity line and the r = 0 line (the horizontal
axis) with no other pattern if the fitted model (that produces m̂(x)) is good.

387
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10.2 Plots for MLR

Theorem 10.1. Suppose that the MLR estimator b of β is used to find the
residuals ri ≡ ri(b) and the fitted values Ŷi ≡ Ŷi(b) = xTi b. Then in the

response plot of Ŷi versus Yi, the vertical deviations from the identity line
(that has unit slope and zero intercept) are the residuals ri(b).

Proof. The identity line in the response plot is Y = xTb. Hence the
vertical deviation is Yi − xTi b = ri(b). �
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Fig. 10.1 Residual and Response Plots for the Tremearne Data

Example 10.1. Tremearne (1911) presents a data set of about 17 mea-
surements on 115 people of Hausa nationality. We deleted 3 cases because
of missing values and used height as the response variable Y . Along with a
constant xi,1 ≡ 1, the five additional predictor variables used were height
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when sitting, height when kneeling, head length, nasal breadth, and span (per-
haps from left hand to right hand). Figure 6.1 presents the (ordinary) least
squares (OLS) response and residual plots for this data set. These plots show
that an MLR model Y = xTβ + e should be a useful model for the data
since the plotted points in the response plot are linear and follow the identity
line while the plotted points in the residual plot follow the r = 0 line with
no other pattern (except for a possible outlier marked 44). Note that many
important acronyms, such as OLS and MLR, appear in Table 1.1.

To use the response plot to visualize the conditional distribution of Y |xTβ,

use the fact that the fitted values Ŷ = xT β̂. For example, suppose the height
given fit = 1700 is of interest. Mentally examine the plot about a narrow
vertical strip about fit = 1700, perhaps from 1685 to 1715. The cases in the
narrow strip have a mean close to 1700 since they fall close to the identity
line. Similarly, when the fit = w for w between 1500 and 1850, the cases have
heights near w, on average.

Cases 3, 44, and 63 are highlighted. The 3rd person was very tall while
the 44th person was rather short. Beginners often label too many points
as outliers: cases that lie far away from the bulk of the data. See Chapter
7. Mentally draw a box about the bulk of the data ignoring any outliers.
Double the width of the box (about the identity line for the response plot
and about the horizontal line for the residual plot). Cases outside of this
imaginary doubled box are potential outliers. Alternatively, visually estimate
the standard deviation of the residuals in both plots. In the residual plot look
for residuals that are more than 5 standard deviations from the r = 0 line.
In Figure 6.1, the standard deviation of the residuals appears to be around
10. Hence cases 3 and 44 are certainly worth examining.

The identity line can also pass through or near an outlier or a cluster
of outliers. Then the outliers will be in the upper right or lower left of the
response plot, and there will be a large gap between the cluster of outliers and
the bulk of the data. Figure 6.1 was made with the following R commands,
using lspack function MLRplot and the major.lsp data set from the text’s
webpage.

major <- matrix(scan(),nrow=112,ncol=7,byrow=T)

#copy and paste the data set, then press enter

major <- major[,-1]

X<-major[,-6]

Y <- major[,6]

MLRplot(X,Y) #left click the 3 highlighted cases,

#then right click Stop for each of the two plots
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10.2.1 Plots for Variable Selection

Two important summaries for submodel I are R2(I), the proportion of the
variability of Y explained by the nontrivial predictors in the model, and
MSE(I) = σ̂2

I , the estimated error variance. Suppose that model I contains
k predictors, including a constant. Since adding predictors does not decrease
R2, the adjusted R2

A(I) is often used, where

R2
A(I) = 1 − (1 − R2(I))

n

n − k
= 1 −MSE(I)

n

SST
.

See Seber and Lee (2003, pp. 400-401). Hence the model with the maximum
R2
A(I) is also the model with the minimum MSE(I).

For multiple linear regression, recall that if the candidate model of xI
has k terms (including the constant), then the partial F statistic for testing
whether the p− k predictor variables in xO can be deleted is

FI =
SSE(I) − SSE

(n− k) − (n − p)
/
SSE

n− p
=
n− p

p− k

[
SSE(I)

SSE
− 1

]

where SSE is the error sum of squares from the full model, and SSE(I) is the
error sum of squares from the candidate submodel. An extremely important
criterion for variable selection is the Cp criterion.

Definition 10.2.

Cp(I) =
SSE(I)

MSE
+ 2k − n = (p − k)(FI − 1) + k

where MSE is the error mean square for the full model.

Note that when H0 is true, (p−k)(FI −1)+k
D→ χ2

p−k +2k−p for a large
class of iid error distributions. Minimizing Cp(I) is equivalent to minimizing
MSE [Cp(I)] = SSE(I) + (2k− n)MSE = rT (I)r(I) + (2k− n)MSE. The
following theorem helps explain why Cp is a useful criterion and suggests that
for subsets I with k terms, submodels with Cp(I) ≤ min(2k, p) are especially
interesting. Olive and Hawkins (2005) show that this interpretation of Cp can

be generalized to 1D regression models with a linear predictor βTx = xTβ,
such as generalized linear models. Denote the residuals and fitted values from
the full model by ri = Yi−xTi β̂ = Yi−Ŷi and Ŷi = xTi β̂ respectively. Similarly,

let β̂I be the estimate of βI obtained from the regression of Y on xI and

denote the corresponding residuals and fitted values by rI,i = Yi − xTI,iβ̂I
and ŶI,i = xTI,iβ̂I where i = 1, ..., n.



10.2 Plots for MLR 391

Theorem 10.2. Suppose that a numerical variable selection method
suggests several submodels with k predictors, including a constant, where
2 ≤ k ≤ p.

a) The model I that minimizes Cp(I) maximizes corr(r, rI).

b) Cp(I) ≤ 2k implies that corr(r, rI) ≥
√

1 − p

n
.

c) As corr(r, rI) → 1,

corr(xTβ̂,xT
I β̂I) = corr(ESP,ESP(I)) = corr(Ŷ, ŶI) → 1.

Proof. These results are a corollary of Theorem 4.2 below. �

Remark 10.1. Consider the model Ii that deletes the predictor xi. Then
the model has k = p − 1 predictors including the constant, and the test
statistic is ti where

t2i = FIi.

Using Definition 4.2 and Cp(Ifull) = p, it can be shown that

Cp(Ii) = Cp(Ifull) + (t2i − 2).

Using the screen Cp(I) ≤ min(2k, p) suggests that the predictor xi should
not be deleted if

|ti| >
√

2 ≈ 1.414.

If |ti| <
√

2 then the predictor can probably be deleted since Cp decreases.
The literature suggests using the Cp(I) ≤ k screen, but this screen eliminates
too many potentially useful submodels.

More generally, it can be shown that Cp(I) ≤ 2k iff

FI ≤
p

p− k
.

Now k is the number of terms in the model I including a constant while p−k
is the number of terms set to 0. As k → 0, the partial F test will reject Ho:
βO = 0 (i.e. say that the full model should be used instead of the submodel
I) unless FI is not much larger than 1. If p is very large and p − k is very
small, then the partial F test will tend to suggest that there is a model I
that is about as good as the full model even though model I deletes p − k
predictors.

Definition 10.3. The “fit–fit” or FF plot is a plot of ŶI,i versus Ŷi while
a “residual–residual” or RR plot is a plot rI,i versus ri. A response plot is a

plot of ŶI,i versus Yi. An EE plot is a plot of ESP(I) versus ESP. For MLR,
the EE and FF plots are equivalent.
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Six graphs will be used to compare the full model and the candidate sub-
model: the FF plot, RR plot, the response plots from the full and submodel,
and the residual plots from the full and submodel. These six plots will con-
tain a great deal of information about the candidate subset provided that
Equation (4.1) holds and that a good estimator (such as OLS) for β̂ and β̂I
is used.

Application 10.1. To visualize whether a candidate submodel using pre-
dictors xI is good, use the fitted values and residuals from the submodel and
full model to make an RR plot of the rI,i versus the ri and an FF plot of ŶI,i
versus Ŷi. Add the OLS line to the RR plot and identity line to both plots as
visual aids. The subset I is good if the plotted points cluster tightly about
the identity line in both plots. In particular, the OLS line and the identity
line should “nearly coincide” so that it is difficult to tell that the two lines
intersect at the origin in the RR plot.

To verify that the six plots are useful for assessing variable selection,
the following notation will be useful. Suppose that all submodels include
a constant and that X is the full rank n × p design matrix for the full
model. Let the corresponding vectors of OLS fitted values and residuals
be Ŷ = X(XTX)−1XTY = HY and r = (I − H)Y , respectively.
Suppose that XI is the n × k design matrix for the candidate submodel
and that the corresponding vectors of OLS fitted values and residuals are
Ŷ I = XI(X

T
I XI)

−1XT
I Y = HIY and rI = (I − HI)Y , respectively.

A plot can be very useful if the OLS line can be compared to a reference
line and if the OLS slope is related to some quantity of interest. Suppose that
a plot of w versus z places w on the horizontal axis and z on the vertical axis.
Then denote the OLS line by ẑ = a+ bw. The following theorem shows that
the plotted points in the FF, RR, and response plots will cluster about the
identity line. Notice that the theorem is a property of OLS and holds even if
the data does not follow an MLR model. Let corr(x, y) denote the correlation
between x and y.

Theorem 10.3. Suppose that every submodel contains a constant and
that X is a full rank matrix.
Response Plot: i) If w = ŶI and z = Y then the OLS line is the identity
line.
ii) If w = Y and z = ŶI then the OLS line has slope b = [corr(Y, ŶI )]

2 = R2(I)
and intercept a = Y (1 − R2(I)) where Y =

∑n
i=1 Yi/n and R2(I) is the

coefficient of multiple determination from the candidate model.
FF or EE Plot: iii) If w = ŶI and z = Ŷ then the OLS line is the identity
line. Note that ESP (I) = ŶI and ESP = Ŷ .
iv) If w = Ŷ and z = ŶI then the OLS line has slope b = [corr(Ŷ , ŶI)]

2 =
SSR(I)/SSR and intercept a = Y [1 − (SSR(I)/SSR)] where SSR is the
regression sum of squares.
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RR Plot: v) If w = r and z = rI then the OLS line is the identity line.
vi) If w = rI and z = r then a = 0 and the OLS slope b = [corr(r, rI)]

2 and

corr(r, rI) =

√
SSE

SSE(I)
=

√
n− p

Cp(I) + n − 2k
=

√
n− p

(p− k)FI + n− p
.

Proof: Recall that H and HI are symmetric idempotent matrices and
that HHI = HI . The mean of OLS fitted values is equal to Y and the
mean of OLS residuals is equal to 0. If the OLS line from regressing z on w
is ẑ = a+ bw, then a = z − bw and

b =

∑
(wi −w)(zi − z)∑

(wi −w)2
=
SD(z)

SD(w)
corr(z, w).

Also recall that the OLS line passes through the means of the two variables
(w, z).

(*) Notice that the OLS slope from regressing z on w is equal to one if
and only if the OLS slope from regressing w on z is equal to [corr(z, w)]2.

i) The slope b = 1 if
∑
ŶI,iYi =

∑
Ŷ 2
I,i. This equality holds since Ŷ

T

I Y =

Y THIY = Y THIHIY = Ŷ
T

I Ŷ I . Since b = 1, a = Y − Y = 0.

ii) By (*), the slope

b = [corr(Y, ŶI )]
2 = R2(I) =

∑
(ŶI,i − Y )2∑
(Yi − Y )2

= SSR(I)/SSTO.

The result follows since a = Y − bY .

iii) The slope b = 1 if
∑
ŶI,iŶi =

∑
Ŷ 2
I,i. This equality holds since

Ŷ
T
Ŷ I = Y THHIY = Y THIY = Ŷ

T

I Ŷ I . Since b = 1, a = Y − Y = 0.

iv) From iii),

1 =
SD(Ŷ )

SD(ŶI )
[corr(Ŷ , ŶI)].

Hence

corr(Ŷ , ŶI) =
SD(ŶI )

SD(Ŷ )

and the slope

b =
SD(ŶI )

SD(Ŷ )
corr(Ŷ , ŶI) = [corr(Ŷ , ŶI)]

2.

Also the slope
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b =

∑
(ŶI,i − Y )2∑
(Ŷi − Y )2

= SSR(I)/SSR.

The result follows since a = Y − bY .

v) The OLS line passes through the origin. Hence a = 0. The slope b =
rTrI/r

Tr. Since rTrI = Y T (I − H)(I − HI)Y and (I − H)(I − HI) =
I − H, the numerator rTrI = rTr and b = 1.

vi) Again a = 0 since the OLS line passes through the origin. From v),

1 =

√
SSE(I)

SSE
[corr(r, rI)].

Hence

corr(r, rI) =

√
SSE

SSE(I)

and the slope

b =

√
SSE

SSE(I)
[corr(r, rI)] = [corr(r, rI)]

2.

Algebra shows that

corr(r, rI) =

√
n − p

Cp(I) + n− 2k
=

√
n− p

(p− k)FI + n− p
. �

Remark 10.2. Let Imin be the model than minimizes Cp(I) among the
models I generated from the variable selection method such as forward se-
lection. Assuming the the full model Ip is one of the models generated, then
Cp(Imin) ≤ Cp(Ip) = p, and corr(r, rImin) → 1 as n → ∞ by Theorem 4.2
vi). Referring to Equation (4.1), if P (S ⊆ Imin) does not go to 1 as n→ ∞,
then the above correlation would not go to one. Hence P (S ⊆ Imin) → 1 as
n→ ∞.
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10.2.2 Plots for Response Transformations

10.3 Plots for GLMs and GAMs

10.4 Outlier Detection for the MLD Model

Now suppose the multivariate data has been collected into an n× p matrix

W = X =




xT1
...

xTn


 =




x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p

...
...

. . .
...

xn,1 xn,2 . . . xn,p


 =

[
v1 v2 . . . vp

]

where the ith row of W is the ith case xTi and the jth column vj of W
corresponds to n measurements of the jth random variableXj for j = 1, ..., p.
Hence the n rows of the data matrix W correspond to the n cases, while the
p columns correspond to measurements on the p random variables X1, ..., Xp.
For example, the data may consist of n visitors to a hospital where the p = 2
variables height and weight of each individual were measured.

Definition 10.36. The coordinatewise median MED(W ) = (MED(X1), ...,
MED(Xp))

T where MED(Xi) is the sample median of the data in column i
corresponding to variable Xi and vi.

Example 10.11. Let the data forX1 be 1, 2, 3, 4, 5, 6, 7, 8, 9 while the data
forX2 is 7, 17, 3, 8, 6, 13, 4, 2, 1.Then MED(W ) = (MED(X1),MED(X2))

T =
(5, 6)T .

Definition 10.37: Rousseeuw and Van Driessen (1999). The DD
plot is a plot of the classical Mahalanobis distances MDi versus robust Ma-
halanobis distances RDi.

The DD plot is used as a diagnostic for multivariate normality, elliptical
symmetry, and for outliers. Assume that the data set consists of iid vectors
from an ECp(µ,Σ, g) distribution with second moments. See Section 1.7 for
notation. Then the classical sample mean and covariance matrix (TM ,CM) =
(x,S) is a consistent estimator for (µ, cxΣ) = (E(x),Cov(x)). Assume that
an alternative algorithm estimator (TA,CA) is a consistent estimator for
(µ, aAΣ) for some constant aA > 0. By scaling the algorithm estimator,
the DD plot can be constructed to follow the identity line with unit slope
and zero intercept. Let (TR,CR) = (TA,CA/τ

2) denote the scaled algorithm
estimator where τ > 0 is a constant to be determined. Notice that (TR,CR)
is a valid estimator of location and dispersion. Hence the robust distances
used in the DD plot are given by
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RDi = RDi(TR,CR) =
√

(xi − TR(W ))T [CR(W )]−1(xi − TR(W ))

= τ Di(TA,CA) for i = 1, ..., n.
The following theorem shows that if consistent estimators are used to

construct the distances, then the DD plot will tend to cluster tightly about the
line segment through (0, 0) and (MDn,α,RDn,α) where 0 < α < 1 and MDn,α

is the 100αth sample percentile of the MDi. Nevertheless, the variability in
the DD plot may increase with the distances. Let K > 0 be a constant, e.g.
the 99th percentile of the χ2

p distribution.

Theorem 10.32. Assume that x1, ...,xn are iid observations from a dis-
tribution with parameters (µ,Σ) where Σ is a symmetric positive definite

matrix. Let aj > 0 and assume that (µ̂j,n, Σ̂j,n) are consistent estimators of
(µ, ajΣ) for j = 1, 2.

a) D2
x(µ̂j , Σ̂j) − 1

aj
D2

x(µ,Σ) = oP (1).

b) Let 0 < δ ≤ 0.5. If (µ̂j , Σ̂j)−(µ, ajΣ) = Op(n
−δ) and ajΣ̂

−1

j −Σ−1 =

OP (n−δ), then

D2
x(µ̂j, Σ̂j) −

1

aj
D2

x(µ,Σ) = OP (n−δ).

c) Let Di,j ≡ Di(µ̂j,n, Σ̂j,n) be the ith Mahalanobis distance computed

from (µ̂j,n, Σ̂j,n). Consider the cases in the region R = {i|0 ≤ Di,j ≤ K, j =
1, 2}. Let rn denote the correlation between Di,1 and Di,2 for the cases in R
(thus rn is the correlation of the distances in the “lower left corner” of the
DD plot). Then rn → 1 in probability as n → ∞.

Proof. Let Bn denote the subset of the sample space on which both Σ̂1,n

and Σ̂2,n have inverses. Then P (Bn) → 1 as n→ ∞.

a) and b): D2
x(µ̂j, Σ̂j) = (x− µ̂j)

T Σ̂
−1

j (x− µ̂j) =

(x− µ̂j)
T

(
Σ−1

aj
− Σ−1

aj
+ Σ̂

−1

j

)
(x − µ̂j)

= (x− µ̂j)
T

(−Σ−1

aj
+ Σ̂

−1

j

)
(x − µ̂j) + (x − µ̂j)

T

(
Σ−1

aj

)
(x − µ̂j)

=
1

aj
(x − µ̂j)

T (−Σ−1 + aj Σ̂
−1

j )(x − µ̂j) +

(x− µ + µ − µ̂j)
T

(
Σ−1

aj

)
(x − µ + µ − µ̂j)

=
1

aj
(x − µ)TΣ−1(x − µ)
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+
2

aj
(x− µ)TΣ−1(µ − µ̂j) +

1

aj
(µ− µ̂j)

TΣ−1(µ− µ̂j)

+
1

aj
(x − µ̂j)

T [ajΣ̂
−1

j − Σ−1](x− µ̂j) (10.2)

on Bn, and the last three terms are oP (1) under a) and OP (n−δ) under b).

c) Following the proof of a), D2
j ≡ D2

x(µ̂j, Σ̂j)
P→ (x−µ)TΣ−1(x−µ)/aj

for fixed x, and the result follows. �

The above result implies that a plot of the MDi versus the Di(TA,CA) ≡
Di(A) will follow a line through the origin with some positive slope since if
x = µ, then both the classical and the algorithm distances should be close to
zero. We want to find τ such that RDi = τ Di(TA,CA) and the DD plot of
MDi versus RDi follows the identity line. By Theorem 10.32, the plot of MDi

versus Di(A) will follow the line segment defined by the origin (0, 0) and the
point of observed median Mahalanobis distances, (med(MDi),med(Di(A))).
This line segment has slope

med(Di(A))/med(MDi)

which is generally not one. By taking τ = med(MDi)/med(Di(A)), the plot
will follow the identity line if (x,S) is a consistent estimator of (µ, cxΣ)
and if (TA,CA) is a consistent estimator of (µ, aAΣ). (Using the notation
from Theorem 10.32, let (a1, a2) = (cx, aA).) The classical estimator is con-
sistent if the population has a nonsingular covariance matrix. The algorithm
estimators (TA,CA) from Theorem 8.29 are consistent on a large class of
EC distributions that have a nonsingular covariance matrix, but tend to be
biased for non–EC distributions. We recommend using RFCH or RMVN as
the robust estimators in DD plots.

By replacing the observed median med(MDi) of the classical Mahalanobis
distances with the target population analog, say MED, τ can be chosen so
that the DD plot is simultaneously a diagnostic for elliptical symmetry and a
diagnostic for the target EC distribution. That is, the plotted points follow
the identity line if the data arise from a target EC distribution such as the
multivariate normal distribution, but the points follow a line with non-unit
slope if the data arise from an alternative EC distribution. In addition the DD
plot can often detect departures from elliptical symmetry such as outliers,
the presence of two groups, or the presence of a mixture distribution.

Example 10.12. We will use the multivariate normal Np(µ,Σ) distribu-
tion as the target. If the data are indeed iid MVN vectors, then the (MDi)

2

are asymptotically χ2
p random variables, and MED =

√
χ2
p,0.5 where χ2

p,0.5 is

the median of the χ2
p distribution. Since the target distribution is Gaussian,

let
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RDi =

√
χ2
p,0.5

med(Di(A))
Di(A) so that τ =

√
χ2

p,0.5

med(Di(A))
. (10.3)

Since every nonsingular estimator of multivariate location and dispersion
defines a hyperellipsoid, the DD plot can be used to examine which points
are in the robust hyperellipsoid

{x : (x − TR)TC−1
R (x− TR) ≤ RD2

(h)} (10.4)

where RD2
(h) is the hth smallest squared robust Mahalanobis distance, and

which points are in a classical hyperellipsoid

{x : (x − x)TS−1(x− x) ≤MD2
(h)}. (10.5)

In the DD plot, points below RD(h) correspond to cases that are in the
hyperellipsoid given by Equation (10.19) while points to the left of MD(h)

are in a hyperellipsoid determined by Equation (10.20). In particular, we can
use the DD plot to examine which points are in the nonparametric prediction
region (4.11).

Application 10.5. Consider the DD plot with RFCH or RMVN. The
DD plot can be used simultaneously as a diagnostic for whether the data
arise from a multivariate normal distribution or from another EC distribu-
tion with nonsingular covariance matrix. EC data will cluster about a straight
line through the origin; MVN data in particular will cluster about the iden-
tity line. Thus the DD plot can be used to assess the success of numerical
transformations towards elliptical symmetry. The DD plot can be used to
detect multivariate outliers. Use the DD plot to detect outliers and leverage
groups if n ≥ 10p for the predictor variables in regression.

Fig. 10.2 4 DD Plots

For this application, the RFCH and RMVN estimators may be best. For
MVN data, the RDi from the RFCH estimator tend to have a higher correla-
tion with the MDi from the classical estimator than the RDi from the FCH
estimator, and the cov.mcd estimator may be inconsistent.

Figure 10.12 shows the DD plots for 3 artificial data sets using cov.mcd.
The DD plot for 200 N3(0, I3) points shown in Figure 10.12a resembles the
identity line. The DD plot for 200 points from the elliptically contoured
distribution 0.6N3(0, I3)+ 0.4N3(0, 25 I3) in Figure 10.12b clusters about a
line through the origin with a slope close to 2.0.
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A weighted DD plot magnifies the lower left corner of the DD plot by

omitting the cases with RDi ≥
√
χ2
p,.975. This technique can magnify features

that are obscured when large RDi’s are present. If the distribution of x is EC
with nonsingular Σ, Theorem 8.32 implies that the correlation of the points
in the weighted DD plot will tend to one and that the points will cluster
about a line passing through the origin. For example, the plotted points in
the weighted DD plot (not shown) for the non-MVN EC data of Figure 10.12b
are highly correlated and still follow a line through the origin with a slope
close to 2.0.

Figures 10.12c and 10.12d illustrate how to use the weighted DD plot. The
ith case in Figure 10.12c is (exp(xi,1), exp(xi,2), exp(xi,3))

T where xi is the
ith case in Figure 10.12a; i.e. the marginals follow a lognormal distribution.
The plot does not resemble the identity line, correctly suggesting that the
distribution of the data is not MVN; however, the correlation of the plotted
points is rather high. Figure 10.12d is the weighted DD plot where cases with

RDi ≥
√
χ2

3,.975 ≈ 3.06 have been removed. Notice that the correlation of the

plotted points is not close to one and that the best fitting line in Figure 10.12d
may not pass through the origin. These results suggest that the distribution
of x is not EC.

Fig. 10.3 DD Plots for the Buxton Data

Example 10.13. Buxton (1920, pp. 232-5) gave 20 measurements of 88
men. We will examine whether the multivariate normal distribution is a
reasonable model for the measurements head length, nasal height, bigonal
breadth, and cephalic index where one case has been deleted due to missing
values. Figure 10.13a shows the DD plot. Five head lengths were recorded to
be around 5 feet and are massive outliers. Figure 10.13b is the DD plot com-
puted after deleting these points and suggests that the multivariate normal
distribution is reasonable. (The recomputation of the DD plot means that
the plot is not a weighted DD plot which would simply omit the outliers and
then rescale the vertical axis.)

library(MASS)

x <- cbind(buxy,buxx)

ddplot(x,type=3) #Figure 7.13a), right click Stop

zx <- x[-c(61:65),]

ddplot(zx,type=3) #Figure 7.13b), right click Stop
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10.5 Summary

10.6 Complements

10.7 Problems



Chapter 11

More Results

11.1 Martingales

Martingales use conditional expectation.
Remark 11.1. It can be shown that E(Zn) ∈ R for each n iffE(|Xn|) <∞

for each n. Technically, the inequalities in a), b), and c) hold with probability
one or ae, but this is always understood and usually omitted in this Section.
In the following definition, Zn = gn(X1, ..., Xn) where the function gn can
depend on n.

Definition 11.1. Let Z1, Z2, ... be a sequence of random variables such
that Zn is a function of the random variables X1, ..., Xn. Assume E(Zn) ∈ R

for each n ≥ 1.
a) The sequence {Zn} is a martingale if E(Zn+1|X1, ..., Xn) = Zn.
b) The sequence {Zn} is a submartingale if E(Zn+1|X1, ..., Xn) ≥ Zn.
c) The sequence {Zn} is a supermartingale if E(Zn+1|X1, ..., Xn) ≤ Zn.

Example 11.1. Note that Zn = Xn is a function of X1, ..., Xn. Assume
E(Xn) ∈ R for each n.
a) The sequence {Xn} is a martingale if E(Xn+1|X1, ..., Xn) = Xn.
b) The sequence {Xn} is a submartingale if E(Xn+1 |X1, ..., Xn) ≥ Xn.
c) The sequence {Xn} is a supermartingale if E(Xn+1 |X1, ..., Xn) ≤ Xn.

Remark 11.2. a) Try to write Zn+1 as a function of Zn and Xn+1 to
show that Definition 11.1 a) holds.
b) If Zn = g(X1, ..., Xn) where g is a function, then E(ZnW |X1, ...., Xn) =
ZnE(W |X1, ..., Xn).
c) If E(W ) exists andW is independent ofX1, ..., Xn, then E(W |X1, ..., Xn) =
E(W ).

Example 11.2. Note that a martingale is both a submartingale and a
supermartingale.

401
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Remark 11.3. If {Zn} is a martingale, then E(Zn+k|X1, ..., Xn) = Zn for
n, k = 1, 2, ... with corresponding results for sub- and supermartingales.

Theorem 11.1. Submartingale Convergence Theorem. Let {Zn}
be a submartingale. If K = supn E[|Zn|] ≤ ∞, then Zn

ae→ Z where Z is a
random variable with E[|X|] ≤ Z.

Example 11.3. a) Let X1, X2, ... be independent random variables with
E(Xk) = 0 for k = 1, 2, .... Let the sum Sn =

∑n
i=1Xi = X1 +X2 + · · ·+Xn.

Show that {Sn} is a martingale.
Proof. E(Sn) = 0 for each n. Now E(Sn+1 |Fn) = E(Sn+1|X1, ..., Xn) =

E(Sn +Xn+1|X1, ..., Xn) = E(Sn|X1, ..., Xn) + E(Xn+1|X1, ..., Xn) = Sn +
E(Xn+1) = Sn for each n since Sn is a function of X1, ..., Xn and Xn+1 is
independent of X1, ..., Xn.

b) Let X1, X2, ... be independent random variables with E(Xk) = 0 and
finite variances σ2

k = E(X2
k) for k = 1, 2, .... Let s2n = σ2

1 + · · · + σ2
n. Then

s2n = V (Sn) where Sn is given in a). Let Yn = S2
n − s2n. Show that {Yn} is a

martingale.
Proof. E(|Yn|) ≤ E(S2

n) + s2n = 2s2n < ∞ for each n. Hence E(Yn) ∈ R

by Remark 11.1. Now E(S2
n+1|X1, ..., Xn) = E[(Sn + Xn+1)

2|X1, ..., Xn) =
E(S2

n+2SnXn+1+X
2
n+1|X1, ..., Xn) = E(S2

n|X1, ..., Xn)+2SnE(Xn+1|X1, ..., Xn)+
E(X2

n+1|X1, ..., Xn) = S2
n + 2SnE(Xn+1) + E(X2

n+1) = S2
n + σ2

n+1. Thus
E(Yn+1|X1, ..., Xn) = E(S2

n+1 − s2n+1|X1, ..., Xn) = E(S2
n+1|X1, ..., Xn) −

s2n+1 = S2
n + σ2

n+1 − (s2n + σ2
n+1) = S2

n − s2n = Yn for each n.
c) LetX1, X2... be independent nonnegative random variables withE(Xk) =

1 for k = 1, 2, ..... Let Yn =
∏n
i=1Xi. i) Show that {Yn} is a martingale. ii)

Is there a random variable Y such that Yn
ae→ Y ?

Proof. i)E(Yn) =
∏n
i=1 E(Xn) = 1.NowE(Yn+1|X1, ..., Xn) = E(YnXn+1|X1, ..., Xn) =

YnE(Xn+1|X1, ..., Xn) = YnE(Xn+1) = Yn for each n.
ii) Since the Xi are nonnegative, E(|Yn|) = E(Yn) =

∏n
i=1 E(Xi) = 1 = K.

Thus by Theorem 11.1, there does exist RV Y such that Yn
ae→ Y .

d) Let X1, X2, ... be independent random variables with E(Xk) = µk for
k = 1, 2, ..... Let Tn =

∑n
k=1(Xk − µk). Show that {Tn} is a martingale.

Proof. E(Tn) = 0. NowE(Tn+1|X1, ..., Xn) = E(Tn+Xn+1−µn+1|X1, ..., Xn) =
Tn +E(Xn+1|X1, ..., Xn) − µn+1 = Tn + E(Xn+1) − µn+1 = Tn.

The following result is useful for proving Theorem 11.2. Let g be a one to
one and onto function so that the inverse function g−1 exists. For example,
g could be increasing, decreasing, convex, or concave (some texts add the
adjective “strictly”). Then E(W |X1, ..., Xn) = E(W |g(X1), ..., g(Xn)) since
Xi is known iff g(Xi) is known.

Theorem 11.2. Suppose {Xn} is a martingale.
a) If g is convex, then {Zn = g(Xn)} is a submartingale.
b) If g is concave, then {Zn = g(Xn)} is a supermartingale.

Proof. a) Using a version of Jensen’s Inequality adapted to conditional
expectations, E(Zn+1|Z1, ..., Zn) = E[g(Xn+1)|g(X1), ..., g(Xn)] =
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E[g(Xn+1)|X1, ..., Xn] ≥ g(E[Xn+1|X1, ..., Xn]) = g(Xn) = Zn.
b) Note that g is concave iff h = −g is convex. By a),
E(−Zn+1|−Z1, ...,−Zn) = E(−Zn+1|Z1, ..., Zn) = E(−g(Xn+1)|X1, ..., Xn) ≥
−g(E[Xn+1|X1, ..., Xn]) = −g(Xn). Thus −E(Zn+1|Z1, ..., Zn) ≥ −g(Xn)
implies E(Zn+1 |Z1, ..., Zn) ≤ g(Xn) = Zn. �

The following theorem is taken from Sen and Singer (1993, p. 120). The
Xi need not be independent and {Tn} can be show to be a martingale with
E(Tn) = 0 and V (Tn) = E(T 2

n) = s2n. Thus Zn = Tn/sn is the zscore of Tn.
The Lindeberg CLT of Theorem 2.40 needed rowwise independence in the
triangular array. The v2

k are random variables that depend on X1, ..., Xk−1.

Theorem 11.3, Martingale CLT: Let X1, X2, ... be a sequence of
random variables with E(Xk) = 0, V (Xk) = E(X2

k ) = σ2
k < ∞, and

E(Xk|X1, ..., Xk−1) = 0 with X0 = 0. Let Tn =
∑n

k=1Xk, s
2
n =

∑n
k=1 σ

2
k,

v2
k = E(X2

k |X1, ..., Xk−1), and w2
n =

∑n
k=1 v

2
k. If

a) w2
n/s

2
n
P→ 1 as n→ ∞, and

b) (Lindeberg’s condition)

lim
n→∞

n∑

k=1

E(X2
k I[|Xk| ≥ εsn])

s2n
= 0 (11.1)

for any ε > 0, then

Zn = Tn/sn
D→ N(0, 1).

The sequence {Tn} is a martingale since E(Tn+1|X1, ..., Xn) = E(Tn +
Xn+1|X1, ..., Xn) = Tn since E(Xn+1|X1, ..., Xn) = 0 by assumption with
k = n+ 1.

Remark 11.4. Let Tn =
∑n

k=1Xk. Then E(Tn+1|X1, ..., Xn) =
E(Tn+1|T1, ..., Tn). To see that this result holds, note that if X1, ..., Xn are
known, then T1, ..., Tn are known. If T1, ..., Tn are known then T1 = X1 and
Tk − Tk−1 = Xk are known for k = 2, ..., n.

11.2 Hints and Solutions to Selected Problems

1.1. a) X2 ∼ N(100, 6).

b) (
X1

X3

)
∼ N2

((
49
17

)
,

(
3 −1
−1 4

))
.

c) X1 X4 and X3 X4.

d)

ρ(X1 , X2) =
Cov(X1 , X3)√

VAR(X1)VAR(X3)
=

−1√
3
√

4
= −0.2887.
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1.2. a) Y |X ∼ N(49, 16) since Y X. (Or use E(Y |X) = µY +
Σ12Σ

−1
22 (X − µx) = 49 + 0(1/25)(X − 100) = 49 and VAR(Y |X) =

Σ11 −Σ12Σ
−1
22 Σ21 = 16− 0(1/25)0 = 16.)

b) E(Y |X) = µY +Σ12Σ
−1
22 (X−µx) = 49+10(1/25)(X−100) = 9+0.4X.

c) VAR(Y |X) = Σ11 −Σ12Σ
−1
22 Σ21 = 16 − 10(1/25)10 = 16 − 4 = 12.

1.4 a)

N2

((
3
2

)
,

(
3 1
1 2

))
.

b) X2 X4 and X3 X4.

c)
σ12√
σ11σ33

=
1√
2
√

3
= 1/

√
6 = 0.4082.

2.1. c) The histograms should become more like a normal distribution as
n increases from 1 to 200. In particular, when n = 1 the histogram should be
right skewed while for n = 200 the histogram should be nearly symmetric.
Also the scale on the horizontal axis should decrease as n increases.

d) Now Y ∼ N(0, 1/n). Hence the histograms should all be roughly sym-
metric, but the scale on the horizontal axis should be from about −3/

√
n to

3/
√
n.

2.3. a) E(X) = 3θ
θ+1 , thus

√
n(X − E(X))

D→ N(0, V (X)), where
V (X) = 9θ

(θ+2)(θ+1)2 . Let g(y) = y
3−y , thus g′(y) = 3

(3−y)2 . Using the delta

method,
√
n(Tn − θ)

D→ N(0, θ(θ+1)2

θ+2
).

b) It is asymptotically efficient if
√
n(Tn − θ)

D→ N(0, ν(θ)), where

ν(θ) =
d
dθ

(θ)

−E( d
2

dθ2
lnf(x|θ))

.

But, E(( d
2

dθ2 lnf(x|θ)) = 1
θ2 . Thus ν(θ) = θ2 6= θ(θ+1)2

θ+2 .

c) X → 3θ
θ+1

in probability. Thus Tn → θ in probability.

2.5. See Example 2.9.

2.7. a) See Example 2.8.

2.12. a) Yn
D
=
∑n

i=1Xi where the Xi are iid χ2
1. Hence E(Xi) = 1 and

Var(Xi) = 2. Thus by the CLT,

√
n

(
Yn
n

− 1

)
D
=

√
n

( ∑n
i=1Xi

n
− 1

)
D→ N(0, 2).
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b) Let g(θ) = θ3 . Then g′(θ) = 3θ2, g′(1) = 3, and by the delta method,

√
n

[ (
Yn
n

)3

− 1

]
D→ N(0, 2(g′(1))2) = N(0, 18).

2.13. Yi ∼ bin(n = 1, F (x)) since an indicator random variable Yi takes
on values 0 and 1, so Yi ∼ bin(n = 1, p) with p = to the probability of the
indicator event: p = P (Xi ≤ x) = F (x).

a) E(Yi) = np = 1F (x) = F (X)
b) V (Yi) = p(1 − p) = F (x)[1− F (x)]
c) Then √

n
(
F̂n(x) − F (x)

)
D→ N(0, F (x)[1− F (x)])

by the CLT since F̂n(x) = Y n and the Yi are iid.
2.22. See the proof of Theorem 1.33.

2.26. a) See Example 2.1b.
b) See Example 2.3.

c) See Example 2.6.

2.27. a) By the CLT,
√
n(X − λ)/

√
λ

D→ N(0, 1). Hence
√
n(X − λ)

D→
N(0, λ).

b) Let g(λ) = λ3 so that g′(λ) = 3λ2 then
√
n[(X)3−(λ)3]

D→ N(0, λ[g′(λ)]2) =
N(0, 9λ5).

2.28. a)X is a complete sufficient statistic. Also, we have (n−1)S2

σ2 has a chi
square distribution with df = n − 1, thus since σ2 is known the distribution
of S2 does not depend on µ, so S2 is ancillary. Thus, by Basu’s Theorem X
and S2 are independent.

b) by CLT (n is large )
√
n(X−µ) has approximately normal distribution

with mean 0 and variance σ2. Let g(x) = x3, thus, g
′

(x) = 3x2. Using
delta method

√
n(g(X) − g(µ)) goes in distribution to N(0, σ2(g

′

(µ))2) or√
n(X

3 − µ3) goes in distribution to N(0, σ2(3µ2)2).

2.29. a) According to the standard theorem,
√
n(θ̂n − θ) → N(0, 3).

b) E(Y ) = θ, V ar(Y ) = π2

3
, according to CLT we have

√
n(Y n − θ) →

N(0, π
2

3 ).

c) MED(Y ) = θ, then
√
n(MED(n) − θ) → N(0, 1

4 f2(MED(Y ))) and

f(MED(Y )) = exp (−(θ−θ))
[1+exp (−(θ−θ))]2 = 1

4
. Thus

√
n(MED(n)−θ) → N(0, 1

4 1
16

) →
√
n(MED(n) − θ) → N(0, 4).

d) All three estimators are consistent, but 3 < π2

3 < 4, therefore the

estimator θ̂n is the best, and the estimator MED(n) is the worst.

2.31. a) Fn(y) = 0.5 + 0.5y/n for −n < y < n, so F (y) ≡ 0.5.
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b) No, since F (y) is not a cdf.

2.32. a) Fn(y) = y/n for 0 < y < n, so F (y) ≡ 0.
b) No, since F (y) is not a cdf.

2.33. a)
√
n

(
Y − 1 − ρ

ρ

)
D→ N

(
0,

1 − ρ

ρ2

)

by the CLT.
c) The method of moments estimator of ρ is ρ̂ = 1

1+Y
.

d) Let g(θ) = 1 + θ so g′(θ) = 1. Then by the delta method,

√
n

(
g(Y ) − g(

1 − ρ

ρ
)

)
D→ N

(
0,

1 − ρ

ρ2
12

)

or
√
n

(
(1 + Y ) − 1

ρ

)
D→ N

(
0,

1 − ρ

ρ2

)
.

This result could also be found with algebra since 1+Y − 1
ρ = Y +1− 1

ρ =

Y + ρ−1
ρ = Y − 1−ρ

ρ .

e) Y is the method of moments estimator of E(Y ) = (1 − ρ)/ρ, so 1 + Y
is the method of moments estimator of 1 +E(Y ) = 1/ρ.

2.34. a)
√
n(X̄ − µ) is approximately N(0, σ2). Define g(x) = 1

x , g′(x) =
−1
x2 . Using delta method,

√
n( 1

X̄
− 1

µ
) is approximately N(0, σ

2

µ4 ). Thus 1/X

is approximately N( 1
µ ,

σ2

nµ4 ), provided µ 6= 0.

b) Using part a)
1

X
is asymptotically efficient for

1

µ
if
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σ2

µ4
=




(
τ ′(µ)

)2

Eµ

(
∂

∂µ
lnf(X/µ)

)2




τ (µ) =
1

µ

τ ′(µ) =
−1

µ2

ln f(x|µ) =
−1

2
ln 2πσ2 − (x− µ)2

2σ2

E

[
∂

∂µ
ln f(X/µ)

]2

=
E(X − µ)2

σ4

=
1

σ2

Thus (
τ ′(µ)

)2

Eµ

[
∂

∂µ
lnf(X/µ)

]2 =
σ2

µ4
.

2.35. a) E(Y k) = 2θk/(k+2) so E(Y ) = 2θ/3, E(Y 2) = θ2/2 and V (Y ) =

θ2/18. So
√
n

(
Y − 2θ

3

)
D→ N

(
0,
θ2

18

)
by the CLT.

b) Let g(τ ) = log(τ ) so [g′(τ )]2 = 1/τ2 where τ = 2θ/3. Then by the delta
method,
√
n

(
log(Y ) − log

(
2θ

3

) )
D→ N

(
0,

1

8

)
.

c) θ̂k = k+2
2n

∑
Y ki .

2.36. a)
√
n

(
Y − r(1 − ρ)

ρ

)
D→ N

(
0,
r(1 − ρ)

ρ2

)
by the CLT.

b) Let θ = r(1 − ρ)/ρ. Then

g(θ) =
r

r +
r(1−ρ)
ρ

=
rρ

rρ+ r(1 − ρ)
= ρ = c.

Now

g′(θ) =
−r

(r + θ)2
=

−r
(r + r(1−ρ)

ρ )2
=

−rρ2

r2
.

So

[g′(θ)]2 =
r2ρ4

r4
=
ρ4

r2
.

Hence by the delta method



408 11 More Results

√
n ( g(Y ) − ρ )

D→ N

(
0,
r(1 − ρ)

ρ2

ρ4

r2

)
= N

(
0,
ρ2(1 − ρ)

r

)
.

c) Y
set
= r(1 − ρ)/ρ or ρY = r − rρ or ρY + rρ = r or ρ̂ = r/(r + Y ).

2.37. a) By the CLT,

√
n

(
X − θ

2

)
D→ N

(
0,
θ2

12

)
.

b) Let g(y) = y2. Then g′(y) = 2y and by the delta method,

√
n

(
X

2 − (
θ

2
)2
)

=
√
n

(
X

2 − θ2

4

)
=

√
n

(
g(X) − g(

θ

2
)

)
D→

N

(
0,
θ2

12
[g′(

θ

2
)]2
)

= N

(
0,
θ2

12

4θ2

4

)
= N

(
0,
θ4

12

)
.

2.38. a) E(Xi) = β/(β + β) = 1/2 and V (Xi) =
β2

(2β)2(2β + 1)
=

1

4(2β + 1)
=

1

8β + 4
. So

√
n

(
Xn − 1

2

)
D→ N

(
0,

1

8β + 4

)

by the CLT.
b) Let g(x) = log(x). So d = g(1/2) = log(1/2). Now g′(x) = 1/x and

(g′(x))2 = 1/x2. So (g′(1/2))2 = 4. So

√
n( log(Xn) − log(1/2) )

D→ N

(
0,

1

8β + 4
4

)
= N

(
0,

1

2β + 1

)

by the delta method.
2.92. a) The cdf Fn(x) of Xn is

Fn(x) =





0, x ≤ −1
n

nx
2

+ 1
2
, −1
n

≤ x ≤ 1
n

1, x ≥ 1
n
.

Sketching Fn(x) shows that it has a line segment rising from 0 at x = −1/n
to 1 at x = 1/n and that Fn(0) = 0.5 for all n ≥ 1. Examining the cases
x < 0, x = 0 and x > 0 shows that as n→ ∞,

Fn(x) →





0, x < 0
1
2
x = 0

1, x > 0.
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Notice that if X is a random variable such that P (X = 0) = 1, then X has
cdf

FX(x) =

{
0, x < 0
1, x ≥ 0.

Since x = 0 is the only discontinuity point of FX(x) and since Fn(x) → FX(x)
for all continuity points of FX(x) (i.e. for x 6= 0),

Xn
D→ X.

b) Fn(t) = t/n for 0 < t ≤ n and Fn(t) = 0 for t ≤ 0. Hence
limn→∞ Fn(t) = 0 for t ≤ 0. If t > 0 and n > t, then Fn(t) = t/n → 0
as n → ∞. Thus limn→∞Fn(t) = H(t) = 0 for all t, and Yn does not con-
verge in distribution to any random variable Y since H(t) ≡ 0 is a continuous
function but not a cdf.

2.93. If Xn ∼ U(an, bn) with an < bn, then

FXn(t) =
t− an
bn − an

for an ≤ t ≤ bn, FXn(t) = 0 for t ≤ an and FXn(t) = 1 for t ≥ bn. On [an, bn],

FXn(t) is a line segment from (an, 0) to (bn, 1) with slope
1

bn − an
.

a) FXn(t) → H(t) ≡ 1 ∀t ∈ R. Since H(t) is continuous but not a cdf, Xn
does not converge in distribution to any RV X.

b) FXn(t) → H(t) ≡ 0 ∀t ∈ R. Since H(t) is continuous but not a cdf,
Xn does not converge in distribution to any RV X.

c)

FXn(t) → FX(t) =





0 t ≤ a
t−a
b−a a ≤ t ≤ b

1 t ≥ b.

Hence Xn
D→ X ∼ U(a, b).

d)

FXn(t) →
{

0 t < c
1 t > c.

Hence Xn
D→ X where P (X = c) = 1. Hence X has a point mass distribution

at c. (The behavior of limn→∞ FXn(c) is not important, even if the limit does
not exist.)

e)

FXn(t) =
t + n

2n
=

1

2
+

t

2n

for −n ≤ t ≤ n. Thus FXn(t) → H(t) ≡ 0.5 ∀t ∈ R. Since H(t) is continuous
but not a cdf, Xn does not converge in distribution to any RV X.

f)
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FXn(t) =
t− c + 1

n
2
n

=
1

2
+
n

2
(t − c)

for c− 1/n ≤ t ≤ c+ 1/n. Thus

FXn(t) → H(t) =





0 t < c
1/2 t = c
1 t > c.

If X has the point mass at c, then

FX(t) =

{
0 t < c
1 t ≥ c.

Hence t = c is the only discontinuity point of FX(t), and H(t) = FX(t) at all

continuity points of FX(t). Thus Xn
D→ X where P (X = c) = 1.

2.94. a) i) Xn is discrete and takes on two values with E(Xn) = n
1

n
for

all positive integers n. Hence E[|Xn − 0|] = E(Xn) = 1 ∀n and Xn does

not satisfy Xn
1→ 0.

ii) Let ε > 0. Then

P [|Xn − 0| ≥ ε] ≤ P (Xn = n) =
1

n
→ 0

as n → ∞. Hence Xn
P→ 0.

iii) By ii) Xn
D→ 0.

b) i) Xn is discrete and takes on two values with

E[(Xn − 0)2] = E(X2
n) =

∑
x2P (Xn = x) = 02(1 − 1

n
) + 12 1

n
=

1

n
→ 0

as n → ∞. Hence Xn
2→ 0.

Since i) holds, so do ii), iii) and iv).
(Also note that

E[|Xn − 0|] = E(Xn) =
1

n
→ 0 ∀n.

Hence Xn
1→ 0.)

2.95. a) E(Xi) = β/(β + β) = 1/2 and V (Xi) =
β2

(2β)2(2β + 1)
=

1

4(2β + 1)
=

1

8β + 4
. So

√
n

(
Xn − 1

2

)
D→ N

(
0,

1

8β + 4

)



11.2 Hints and Solutions to Selected Problems 411

by the CLT.
b) Let g(x) = log(x). So d = g(1/2) = log(1/2). Now g′(x) = 1/x and

(g′(x))2 = 1/x2. So (g′(1/2))2 = 4. So

√
n( log(Xn) − log(1/2) )

D→ N

(
0,

1

8β + 4
4

)
= N

(
0,

1

2β + 1

)

by the delta method.

2.96. a) We have E[X] = 3θ
2

and V ar(X) = θ2

12
.

Therefore
√
n(X − 3θ

2
)
D−→ N(0, θ

2

12
) by the CLT.

b) Let g(x) = log(x) so (g′(x))2 = 1/x2 where x = 3θ
2

. Then by using the
delta method we have

√
n
(
log(X) − log(

3θ

2
)
) D−→ N(0,

1

27
).

2.97. a) Let Yn
D
=

n∑
i=1

Xi, where Xi are iid Poisson(1), then by central

limit theorem, we have

√
n

(
Yn
n

− 1

)
D→ N(0, 1).

b) Let g(t) = t2, g′(t) = 2t 6= 0. Using the Delta method, we have

√
n

[ (
Yn
n

)2

− 1

]
D→ N(0, 1(2 · 1)2) ∼ N(0, 4).

2.98. E(Y ) = 3θ/2 and V (Y ) = θ2/12.

a)
√
n(Y − 3θ/2)

D→ N(0, θ2/12) by the CLT
b) Let g(µ) = µ2, g′(µ) = 2µ, and g′(3θ/2) = 3θ. Then by the delta

method, √
n[ (Y )2 − g(3θ/2)]

D→ N(0, [g′(3θ/2)]2θ2/12), or

√
n

[
(Y )2 − 9θ2

4

]
D→ N

(
0,

9θ2θ2

12

)
∼ N

(
0,

9θ4

12

)
∼ N

(
0,

3θ4

4

)
.

2.99. a)
√
n(W − θ)

D→ N(0, σ2
W) by the CLT.

b) Let g(θ) =
√
θ with g′(θ) = 0.5θ−0.5. Then

√
n(
√
W −

√
θ)

D→
N(0, σ2

W [g′(θ)]2) ∼ N(0, 0.25σ2
W/θ) by the delta method provided θ > 0.
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11.3 Tables

Tabled values are F(0.95,k,d) where P (F < F (0.95, k, d)) = 0.95.
00 stands for ∞. Entries produced with the qf(.95,k,d) command in R.
The numerator degrees of freedom are k while the denominator degrees of
freedom are d.

k 1 2 3 4 5 6 7 8 9 00

d

1 161 200 216 225 230 234 237 239 241 254

2 18.5 19.0 19.2 19.3 19.3 19.3 19.4 19.4 19.4 19.5

3 10.1 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.53

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.63

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.37

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 3.67

7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.23

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 2.93

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 2.71

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.54

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.41

12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.30

13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.21

14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.13

15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.07

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.01

17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 1.96

18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 1.92

19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 1.88

20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 1.84

25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 1.71

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 1.62

00 3.84 3.00 2.61 2.37 2.21 2.10 2.01 1.94 1.88 1.00
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Tabled values are tα,d where P (t < tα,d) = α where t has a t distribution
with d degrees of freedom. If d > 29 use the N(0, 1) cutoffs d = Z = ∞.

alpha pvalue

d 0.005 0.01 0.025 0.05 0.5 0.95 0.975 0.99 0.995 left tail

1 -63.66 -31.82 -12.71 -6.314 0 6.314 12.71 31.82 63.66

2 -9.925 -6.965 -4.303 -2.920 0 2.920 4.303 6.965 9.925

3 -5.841 -4.541 -3.182 -2.353 0 2.353 3.182 4.541 5.841

4 -4.604 -3.747 -2.776 -2.132 0 2.132 2.776 3.747 4.604

5 -4.032 -3.365 -2.571 -2.015 0 2.015 2.571 3.365 4.032

6 -3.707 -3.143 -2.447 -1.943 0 1.943 2.447 3.143 3.707

7 -3.499 -2.998 -2.365 -1.895 0 1.895 2.365 2.998 3.499

8 -3.355 -2.896 -2.306 -1.860 0 1.860 2.306 2.896 3.355

9 -3.250 -2.821 -2.262 -1.833 0 1.833 2.262 2.821 3.250

10 -3.169 -2.764 -2.228 -1.812 0 1.812 2.228 2.764 3.169

11 -3.106 -2.718 -2.201 -1.796 0 1.796 2.201 2.718 3.106

12 -3.055 -2.681 -2.179 -1.782 0 1.782 2.179 2.681 3.055

13 -3.012 -2.650 -2.160 -1.771 0 1.771 2.160 2.650 3.012

14 -2.977 -2.624 -2.145 -1.761 0 1.761 2.145 2.624 2.977

15 -2.947 -2.602 -2.131 -1.753 0 1.753 2.131 2.602 2.947

16 -2.921 -2.583 -2.120 -1.746 0 1.746 2.120 2.583 2.921

17 -2.898 -2.567 -2.110 -1.740 0 1.740 2.110 2.567 2.898

18 -2.878 -2.552 -2.101 -1.734 0 1.734 2.101 2.552 2.878

19 -2.861 -2.539 -2.093 -1.729 0 1.729 2.093 2.539 2.861

20 -2.845 -2.528 -2.086 -1.725 0 1.725 2.086 2.528 2.845

21 -2.831 -2.518 -2.080 -1.721 0 1.721 2.080 2.518 2.831

22 -2.819 -2.508 -2.074 -1.717 0 1.717 2.074 2.508 2.819

23 -2.807 -2.500 -2.069 -1.714 0 1.714 2.069 2.500 2.807

24 -2.797 -2.492 -2.064 -1.711 0 1.711 2.064 2.492 2.797

25 -2.787 -2.485 -2.060 -1.708 0 1.708 2.060 2.485 2.787

26 -2.779 -2.479 -2.056 -1.706 0 1.706 2.056 2.479 2.779

27 -2.771 -2.473 -2.052 -1.703 0 1.703 2.052 2.473 2.771

28 -2.763 -2.467 -2.048 -1.701 0 1.701 2.048 2.467 2.763

29 -2.756 -2.462 -2.045 -1.699 0 1.699 2.045 2.462 2.756

Z -2.576 -2.326 -1.960 -1.645 0 1.645 1.960 2.326 2.576

CI 90% 95% 99%

0.995 0.99 0.975 0.95 0.5 0.05 0.025 0.01 0.005 right tail

0.01 0.02 0.05 0.10 1 0.10 0.05 0.02 0.01 two tail
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11.4 Summary

11.5 Complements

Sen and Singer (1993) and Woodroofe (1975) are good references for martin-
gales. Ash (1972) and Billinglsey (1986) define martingales using σ-fields.

11.6 Problems
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