
Chapter 10

Graphical Diagnostics

10.1 1D Regression

From Chapter 6, in a 1D regression model, Y is conditionally independent
of x given the sufficient predictor SP = h(x), written

Y x|SP or Y x|h(x), (10.1)

where the real valued function h : R
p → R. The estimated sufficient

predictor ESP = ĥ(x).
Definition 10.1. A response plot is a plot of the ESP versus Y . A

residual plot is a plot of the ESP versus the residuals.

A response plot is also called an estimated sufficient summary plot (ESSP).
A sufficient summary plot is a plot of SP versus Y . Hence if the ESP is a
consistent estimator of the SP, then the response plot estimates the sufficient
summary plot.

Notation: In this text, a plot of x versus Y will have x on the horizontal
axis, and Y on the vertical axis. For the additive error regression model
Y = m(x)+e, the ith residual is ri = Yi −m̂(xi) = Yi− Ŷi where Ŷi = m̂(xi)
is the ith fitted value. The additive error regression model is a 1D regression
model with sufficient predictor SP = h(x) = m(x).

For the additive error regression model, the response plot is a plot of Ŷ
versus Y where the identity line with unit slope and zero intercept is added as
a visual aid. The residual plot is a plot of Ŷ versus r. Assume the errors ei are
iid from a unimodal distribution that is not highly skewed. Then the plotted
points should scatter about the identity line and the r = 0 line (the horizontal
axis) with no other pattern if the fitted model (that produces m̂(x)) is good.
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10.2 Plots for MLR

Theorem 10.1. Suppose that the MLR estimator b of β is used to find the
residuals ri ≡ ri(b) and the fitted values Ŷi ≡ Ŷi(b) = xT

i b. Then in the

response plot of Ŷi versus Yi, the vertical deviations from the identity line
(that has unit slope and zero intercept) are the residuals ri(b).

Proof. The identity line in the response plot is Y = xT b. Hence the
vertical deviation is Yi − xT

i b = ri(b). �
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Fig. 10.1 Residual and Response Plots for the Tremearne Data

Example 10.1. Tremearne (1911) presents a data set of about 17 mea-
surements on 115 people of Hausa nationality. We deleted 3 cases because
of missing values and used height as the response variable Y . Along with a
constant xi,1 ≡ 1, the five additional predictor variables used were height
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when sitting, height when kneeling, head length, nasal breadth, and span (per-
haps from left hand to right hand). Figure 6.1 presents the (ordinary) least
squares (OLS) response and residual plots for this data set. These plots show
that an MLR model Y = xT β + e should be a useful model for the data
since the plotted points in the response plot are linear and follow the identity
line while the plotted points in the residual plot follow the r = 0 line with
no other pattern (except for a possible outlier marked 44). Note that many
important acronyms, such as OLS and MLR, appear in Table 1.1.

To use the response plot to visualize the conditional distribution of Y |xT β,

use the fact that the fitted values Ŷ = xT β̂. For example, suppose the height
given fit = 1700 is of interest. Mentally examine the plot about a narrow
vertical strip about fit = 1700, perhaps from 1685 to 1715. The cases in the
narrow strip have a mean close to 1700 since they fall close to the identity
line. Similarly, when the fit = w for w between 1500 and 1850, the cases have
heights near w, on average.

Cases 3, 44, and 63 are highlighted. The 3rd person was very tall while
the 44th person was rather short. Beginners often label too many points
as outliers: cases that lie far away from the bulk of the data. See Chapter
7. Mentally draw a box about the bulk of the data ignoring any outliers.
Double the width of the box (about the identity line for the response plot
and about the horizontal line for the residual plot). Cases outside of this
imaginary doubled box are potential outliers. Alternatively, visually estimate
the standard deviation of the residuals in both plots. In the residual plot look
for residuals that are more than 5 standard deviations from the r = 0 line.
In Figure 6.1, the standard deviation of the residuals appears to be around
10. Hence cases 3 and 44 are certainly worth examining.

The identity line can also pass through or near an outlier or a cluster
of outliers. Then the outliers will be in the upper right or lower left of the
response plot, and there will be a large gap between the cluster of outliers and
the bulk of the data. Figure 6.1 was made with the following R commands,
using lspack function MLRplot and the major.lsp data set from the text’s
webpage.

major <- matrix(scan(),nrow=112,ncol=7,byrow=T)

#copy and paste the data set, then press enter

major <- major[,-1]

X<-major[,-6]

Y <- major[,6]

MLRplot(X,Y) #left click the 3 highlighted cases,

#then right click Stop for each of the two plots
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10.2.1 Plots for Variable Selection

Two important summaries for submodel I are R2(I), the proportion of the
variability of Y explained by the nontrivial predictors in the model, and
MSE(I) = σ̂2

I , the estimated error variance. Suppose that model I contains
k predictors, including a constant. Since adding predictors does not decrease
R2, the adjusted R2

A(I) is often used, where

R2
A(I) = 1 − (1 − R2(I))

n

n − k
= 1 − MSE(I)

n

SST
.

See Seber and Lee (2003, pp. 400-401). Hence the model with the maximum
R2

A(I) is also the model with the minimum MSE(I).

For multiple linear regression, recall that if the candidate model of xI

has k terms (including the constant), then the partial F statistic for testing
whether the p − k predictor variables in xO can be deleted is

FI =
SSE(I) − SSE

(n − k) − (n − p)
/

SSE

n − p
=

n − p

p − k

[
SSE(I)

SSE
− 1

]

where SSE is the error sum of squares from the full model, and SSE(I) is the
error sum of squares from the candidate submodel. An extremely important
criterion for variable selection is the Cp criterion.

Definition 10.2.

Cp(I) =
SSE(I)

MSE
+ 2k − n = (p − k)(FI − 1) + k

where MSE is the error mean square for the full model.

Note that when H0 is true, (p−k)(FI −1)+k
D→ χ2

p−k +2k−p for a large
class of iid error distributions. Minimizing Cp(I) is equivalent to minimizing
MSE [Cp(I)] = SSE(I) + (2k − n)MSE = rT (I)r(I) + (2k − n)MSE. The
following theorem helps explain why Cp is a useful criterion and suggests that
for subsets I with k terms, submodels with Cp(I) ≤ min(2k, p) are especially
interesting. Olive and Hawkins (2005) show that this interpretation of Cp can

be generalized to 1D regression models with a linear predictor β
T
x = xT β,

such as generalized linear models. Denote the residuals and fitted values from
the full model by ri = Yi−xT

i β̂ = Yi−Ŷi and Ŷi = xT
i β̂ respectively. Similarly,

let β̂I be the estimate of βI obtained from the regression of Y on xI and

denote the corresponding residuals and fitted values by rI,i = Yi − xT
I,iβ̂I

and ŶI,i = xT
I,iβ̂I where i = 1, ..., n.
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Theorem 10.2. Suppose that a numerical variable selection method
suggests several submodels with k predictors, including a constant, where
2 ≤ k ≤ p.

a) The model I that minimizes Cp(I) maximizes corr(r, rI).

b) Cp(I) ≤ 2k implies that corr(r, rI) ≥
√

1 − p

n
.

c) As corr(r, rI) → 1,

corr(xTβ̂, xT
I β̂I) = corr(ESP, ESP(I)) = corr(Ŷ, ŶI) → 1.

Proof. These results are a corollary of Theorem 4.2 below. �

Remark 10.1. Consider the model Ii that deletes the predictor xi. Then
the model has k = p − 1 predictors including the constant, and the test
statistic is ti where

t2i = FIi
.

Using Definition 4.2 and Cp(Ifull) = p, it can be shown that

Cp(Ii) = Cp(Ifull) + (t2i − 2).

Using the screen Cp(I) ≤ min(2k, p) suggests that the predictor xi should
not be deleted if

|ti| >
√

2 ≈ 1.414.

If |ti| <
√

2 then the predictor can probably be deleted since Cp decreases.
The literature suggests using the Cp(I) ≤ k screen, but this screen eliminates
too many potentially useful submodels.

More generally, it can be shown that Cp(I) ≤ 2k iff

FI ≤ p

p − k
.

Now k is the number of terms in the model I including a constant while p−k
is the number of terms set to 0. As k → 0, the partial F test will reject Ho:
βO = 0 (i.e. say that the full model should be used instead of the submodel
I) unless FI is not much larger than 1. If p is very large and p − k is very
small, then the partial F test will tend to suggest that there is a model I
that is about as good as the full model even though model I deletes p − k
predictors.

Definition 10.3. The “fit–fit” or FF plot is a plot of ŶI,i versus Ŷi while
a “residual–residual” or RR plot is a plot rI,i versus ri. A response plot is a

plot of ŶI,i versus Yi. An EE plot is a plot of ESP(I) versus ESP. For MLR,
the EE and FF plots are equivalent.
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Six graphs will be used to compare the full model and the candidate sub-
model: the FF plot, RR plot, the response plots from the full and submodel,
and the residual plots from the full and submodel. These six plots will con-
tain a great deal of information about the candidate subset provided that
Equation (4.1) holds and that a good estimator (such as OLS) for β̂ and β̂I

is used.

Application 10.1. To visualize whether a candidate submodel using pre-
dictors xI is good, use the fitted values and residuals from the submodel and
full model to make an RR plot of the rI,i versus the ri and an FF plot of ŶI,i

versus Ŷi. Add the OLS line to the RR plot and identity line to both plots as
visual aids. The subset I is good if the plotted points cluster tightly about
the identity line in both plots. In particular, the OLS line and the identity
line should “nearly coincide” so that it is difficult to tell that the two lines
intersect at the origin in the RR plot.

To verify that the six plots are useful for assessing variable selection,
the following notation will be useful. Suppose that all submodels include
a constant and that X is the full rank n × p design matrix for the full
model. Let the corresponding vectors of OLS fitted values and residuals
be Ŷ = X(XT X)−1XT Y = HY and r = (I − H)Y , respectively.
Suppose that XI is the n × k design matrix for the candidate submodel
and that the corresponding vectors of OLS fitted values and residuals are
Ŷ I = XI(X

T
I XI)

−1X
T
I Y = HIY and rI = (I − HI)Y , respectively.

A plot can be very useful if the OLS line can be compared to a reference
line and if the OLS slope is related to some quantity of interest. Suppose that
a plot of w versus z places w on the horizontal axis and z on the vertical axis.
Then denote the OLS line by ẑ = a + bw. The following theorem shows that
the plotted points in the FF, RR, and response plots will cluster about the
identity line. Notice that the theorem is a property of OLS and holds even if
the data does not follow an MLR model. Let corr(x, y) denote the correlation
between x and y.

Theorem 10.3. Suppose that every submodel contains a constant and
that X is a full rank matrix.
Response Plot: i) If w = ŶI and z = Y then the OLS line is the identity
line.
ii) If w = Y and z = ŶI then the OLS line has slope b = [corr(Y, ŶI )]2 = R2(I)
and intercept a = Y (1 − R2(I)) where Y =

∑n
i=1 Yi/n and R2(I) is the

coefficient of multiple determination from the candidate model.
FF or EE Plot: iii) If w = ŶI and z = Ŷ then the OLS line is the identity
line. Note that ESP (I) = ŶI and ESP = Ŷ .
iv) If w = Ŷ and z = ŶI then the OLS line has slope b = [corr(Ŷ , ŶI)]

2 =
SSR(I)/SSR and intercept a = Y [1 − (SSR(I)/SSR)] where SSR is the
regression sum of squares.
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RR Plot: v) If w = r and z = rI then the OLS line is the identity line.
vi) If w = rI and z = r then a = 0 and the OLS slope b = [corr(r, rI)]

2 and

corr(r, rI) =

√
SSE

SSE(I)
=

√
n − p

Cp(I) + n − 2k
=

√
n − p

(p − k)FI + n − p
.

Proof: Recall that H and HI are symmetric idempotent matrices and
that HHI = HI . The mean of OLS fitted values is equal to Y and the
mean of OLS residuals is equal to 0. If the OLS line from regressing z on w
is ẑ = a + bw, then a = z − bw and

b =

∑
(wi − w)(zi − z)∑

(wi − w)2
=

SD(z)

SD(w)
corr(z, w).

Also recall that the OLS line passes through the means of the two variables
(w, z).

(*) Notice that the OLS slope from regressing z on w is equal to one if
and only if the OLS slope from regressing w on z is equal to [corr(z, w)]2.

i) The slope b = 1 if
∑

ŶI,iYi =
∑

Ŷ 2
I,i. This equality holds since Ŷ

T

I Y =

Y T HIY = Y T HIHIY = Ŷ
T

I Ŷ I . Since b = 1, a = Y − Y = 0.

ii) By (*), the slope

b = [corr(Y, ŶI )]2 = R2(I) =

∑
(ŶI,i − Y )2

∑
(Yi − Y )2

= SSR(I)/SSTO.

The result follows since a = Y − bY .

iii) The slope b = 1 if
∑

ŶI,iŶi =
∑

Ŷ 2
I,i. This equality holds since

Ŷ
T
Ŷ I = Y T HHIY = Y T HIY = Ŷ

T

I Ŷ I . Since b = 1, a = Y − Y = 0.

iv) From iii),

1 =
SD(Ŷ )

SD(ŶI )
[corr(Ŷ , ŶI)].

Hence

corr(Ŷ , ŶI) =
SD(ŶI )

SD(Ŷ )

and the slope

b =
SD(ŶI )

SD(Ŷ )
corr(Ŷ , ŶI) = [corr(Ŷ , ŶI)]

2.

Also the slope
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b =

∑
(ŶI,i − Y )2

∑
(Ŷi − Y )2

= SSR(I)/SSR.

The result follows since a = Y − bY .

v) The OLS line passes through the origin. Hence a = 0. The slope b =
rT rI/rT r. Since rT rI = Y T (I − H)(I − HI)Y and (I − H)(I − HI) =
I − H, the numerator rT rI = rT r and b = 1.

vi) Again a = 0 since the OLS line passes through the origin. From v),

1 =

√
SSE(I)

SSE
[corr(r, rI)].

Hence

corr(r, rI) =

√
SSE

SSE(I)

and the slope

b =

√
SSE

SSE(I)
[corr(r, rI)] = [corr(r, rI)]

2.

Algebra shows that

corr(r, rI) =

√
n − p

Cp(I) + n − 2k
=

√
n − p

(p − k)FI + n − p
. �

Remark 10.2. Let Imin be the model than minimizes Cp(I) among the
models I generated from the variable selection method such as forward se-
lection. Assuming the the full model Ip is one of the models generated, then
Cp(Imin) ≤ Cp(Ip) = p, and corr(r, rImin

) → 1 as n → ∞ by Theorem 4.2
vi). Referring to Equation (4.1), if P (S ⊆ Imin) does not go to 1 as n → ∞,
then the above correlation would not go to one. Hence P (S ⊆ Imin) → 1 as
n → ∞.
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10.2.2 Plots for Response Transformations

10.3 Plots for GLMs and GAMs

10.4 Outlier Detection for the MLD Model

Now suppose the multivariate data has been collected into an n × p matrix

W = X =




xT

1
...

xT
n



 =





x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p

...
...

. . .
...

xn,1 xn,2 . . . xn,p




=

[
v1 v2 . . . vp

]

where the ith row of W is the ith case xT
i and the jth column vj of W

corresponds to n measurements of the jth random variable Xj for j = 1, ..., p.
Hence the n rows of the data matrix W correspond to the n cases, while the
p columns correspond to measurements on the p random variables X1, ..., Xp.
For example, the data may consist of n visitors to a hospital where the p = 2
variables height and weight of each individual were measured.

Definition 10.36. The coordinatewise median MED(W ) = (MED(X1), ...,
MED(Xp))

T where MED(Xi) is the sample median of the data in column i
corresponding to variable Xi and vi.

Example 10.11. Let the data for X1 be 1, 2, 3, 4, 5, 6, 7, 8, 9 while the data
for X2 is 7, 17, 3, 8, 6, 13, 4, 2, 1.Then MED(W ) = (MED(X1), MED(X2))

T =
(5, 6)T .

Definition 10.37: Rousseeuw and Van Driessen (1999). The DD

plot is a plot of the classical Mahalanobis distances MDi versus robust Ma-
halanobis distances RDi.

The DD plot is used as a diagnostic for multivariate normality, elliptical
symmetry, and for outliers. Assume that the data set consists of iid vectors
from an ECp(µ, Σ, g) distribution with second moments. See Section 1.7 for
notation. Then the classical sample mean and covariance matrix (TM , CM) =
(x, S) is a consistent estimator for (µ, cxΣ) = (E(x), Cov(x)). Assume that
an alternative algorithm estimator (TA, CA) is a consistent estimator for
(µ, aAΣ) for some constant aA > 0. By scaling the algorithm estimator,
the DD plot can be constructed to follow the identity line with unit slope
and zero intercept. Let (TR, CR) = (TA, CA/τ2) denote the scaled algorithm
estimator where τ > 0 is a constant to be determined. Notice that (TR, CR)
is a valid estimator of location and dispersion. Hence the robust distances
used in the DD plot are given by
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RDi = RDi(TR, CR) =
√

(xi − TR(W ))T [CR(W )]−1(xi − TR(W ))

= τ Di(TA, CA) for i = 1, ..., n.
The following theorem shows that if consistent estimators are used to

construct the distances, then the DD plot will tend to cluster tightly about the
line segment through (0, 0) and (MDn,α, RDn,α) where 0 < α < 1 and MDn,α

is the 100αth sample percentile of the MDi. Nevertheless, the variability in
the DD plot may increase with the distances. Let K > 0 be a constant, e.g.
the 99th percentile of the χ2

p distribution.

Theorem 10.32. Assume that x1, ..., xn are iid observations from a dis-
tribution with parameters (µ, Σ) where Σ is a symmetric positive definite

matrix. Let aj > 0 and assume that (µ̂j,n, Σ̂j,n) are consistent estimators of
(µ, ajΣ) for j = 1, 2.

a) D2
x(µ̂j , Σ̂j) − 1

aj
D2

x(µ, Σ) = oP (1).

b) Let 0 < δ ≤ 0.5. If (µ̂j , Σ̂j)−(µ, ajΣ) = Op(n
−δ) and ajΣ̂

−1

j −Σ
−1 =

OP (n−δ), then

D2
x(µ̂j, Σ̂j) −

1

aj

D2
x(µ, Σ) = OP (n−δ).

c) Let Di,j ≡ Di(µ̂j,n, Σ̂j,n) be the ith Mahalanobis distance computed

from (µ̂j,n, Σ̂j,n). Consider the cases in the region R = {i|0 ≤ Di,j ≤ K, j =
1, 2}. Let rn denote the correlation between Di,1 and Di,2 for the cases in R
(thus rn is the correlation of the distances in the “lower left corner” of the
DD plot). Then rn → 1 in probability as n → ∞.

Proof. Let Bn denote the subset of the sample space on which both Σ̂1,n

and Σ̂2,n have inverses. Then P (Bn) → 1 as n → ∞.

a) and b): D2
x(µ̂j, Σ̂j) = (x− µ̂j)

T Σ̂
−1

j (x− µ̂j) =

(x− µ̂j)
T

(
Σ−1

aj

− Σ−1

aj

+ Σ̂
−1

j

)
(x − µ̂j)

= (x− µ̂j)
T

(−Σ−1

aj

+ Σ̂
−1

j

)
(x − µ̂j) + (x − µ̂j)

T

(
Σ−1

aj

)
(x − µ̂j)

=
1

aj

(x − µ̂j)
T (−Σ

−1 + aj Σ̂
−1

j )(x − µ̂j) +

(x− µ + µ − µ̂j)
T

(
Σ−1

aj

)
(x − µ + µ − µ̂j)

=
1

aj

(x − µ)T Σ−1(x − µ)
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+
2

aj

(x− µ)T Σ−1(µ − µ̂j) +
1

aj

(µ− µ̂j)
T Σ−1(µ− µ̂j)

+
1

aj

(x − µ̂j)
T [ajΣ̂

−1

j − Σ
−1](x− µ̂j) (10.2)

on Bn, and the last three terms are oP (1) under a) and OP (n−δ) under b).

c) Following the proof of a), D2
j ≡ D2

x(µ̂j, Σ̂j)
P→ (x−µ)T Σ−1(x−µ)/aj

for fixed x, and the result follows. �

The above result implies that a plot of the MDi versus the Di(TA, CA) ≡
Di(A) will follow a line through the origin with some positive slope since if
x = µ, then both the classical and the algorithm distances should be close to
zero. We want to find τ such that RDi = τ Di(TA, CA) and the DD plot of
MDi versus RDi follows the identity line. By Theorem 10.32, the plot of MDi

versus Di(A) will follow the line segment defined by the origin (0, 0) and the
point of observed median Mahalanobis distances, (med(MDi), med(Di(A))).
This line segment has slope

med(Di(A))/med(MDi)

which is generally not one. By taking τ = med(MDi)/med(Di(A)), the plot
will follow the identity line if (x, S) is a consistent estimator of (µ, cxΣ)
and if (TA, CA) is a consistent estimator of (µ, aAΣ). (Using the notation
from Theorem 10.32, let (a1, a2) = (cx, aA).) The classical estimator is con-
sistent if the population has a nonsingular covariance matrix. The algorithm
estimators (TA, CA) from Theorem 8.29 are consistent on a large class of
EC distributions that have a nonsingular covariance matrix, but tend to be
biased for non–EC distributions. We recommend using RFCH or RMVN as
the robust estimators in DD plots.

By replacing the observed median med(MDi) of the classical Mahalanobis
distances with the target population analog, say MED, τ can be chosen so
that the DD plot is simultaneously a diagnostic for elliptical symmetry and a
diagnostic for the target EC distribution. That is, the plotted points follow
the identity line if the data arise from a target EC distribution such as the
multivariate normal distribution, but the points follow a line with non-unit
slope if the data arise from an alternative EC distribution. In addition the DD
plot can often detect departures from elliptical symmetry such as outliers,
the presence of two groups, or the presence of a mixture distribution.

Example 10.12. We will use the multivariate normal Np(µ, Σ) distribu-
tion as the target. If the data are indeed iid MVN vectors, then the (MDi)

2

are asymptotically χ2
p random variables, and MED =

√
χ2

p,0.5 where χ2
p,0.5 is

the median of the χ2
p distribution. Since the target distribution is Gaussian,

let



298 10 Graphical Diagnostics

RDi =

√
χ2

p,0.5

med(Di(A))
Di(A) so that τ =

√
χ2

p,0.5

med(Di(A))
. (10.3)

Since every nonsingular estimator of multivariate location and dispersion
defines a hyperellipsoid, the DD plot can be used to examine which points
are in the robust hyperellipsoid

{x : (x − TR)T C−1
R (x− TR) ≤ RD2

(h)} (10.4)

where RD2
(h) is the hth smallest squared robust Mahalanobis distance, and

which points are in a classical hyperellipsoid

{x : (x − x)T S−1(x− x) ≤ MD2
(h)}. (10.5)

In the DD plot, points below RD(h) correspond to cases that are in the
hyperellipsoid given by Equation (10.19) while points to the left of MD(h)

are in a hyperellipsoid determined by Equation (10.20). In particular, we can
use the DD plot to examine which points are in the nonparametric prediction
region (4.11).

Application 10.5. Consider the DD plot with RFCH or RMVN. The
DD plot can be used simultaneously as a diagnostic for whether the data
arise from a multivariate normal distribution or from another EC distribu-
tion with nonsingular covariance matrix. EC data will cluster about a straight
line through the origin; MVN data in particular will cluster about the iden-
tity line. Thus the DD plot can be used to assess the success of numerical
transformations towards elliptical symmetry. The DD plot can be used to
detect multivariate outliers. Use the DD plot to detect outliers and leverage
groups if n ≥ 10p for the predictor variables in regression.

Fig. 10.2 4 DD Plots

For this application, the RFCH and RMVN estimators may be best. For
MVN data, the RDi from the RFCH estimator tend to have a higher correla-
tion with the MDi from the classical estimator than the RDi from the FCH
estimator, and the cov.mcd estimator may be inconsistent.

Figure 10.12 shows the DD plots for 3 artificial data sets using cov.mcd.
The DD plot for 200 N3(0, I3) points shown in Figure 10.12a resembles the
identity line. The DD plot for 200 points from the elliptically contoured
distribution 0.6N3(0, I3)+ 0.4N3(0, 25 I3) in Figure 10.12b clusters about a
line through the origin with a slope close to 2.0.
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A weighted DD plot magnifies the lower left corner of the DD plot by

omitting the cases with RDi ≥
√

χ2
p,.975. This technique can magnify features

that are obscured when large RDi’s are present. If the distribution of x is EC
with nonsingular Σ, Theorem 8.32 implies that the correlation of the points
in the weighted DD plot will tend to one and that the points will cluster
about a line passing through the origin. For example, the plotted points in
the weighted DD plot (not shown) for the non-MVN EC data of Figure 10.12b
are highly correlated and still follow a line through the origin with a slope
close to 2.0.

Figures 10.12c and 10.12d illustrate how to use the weighted DD plot. The
ith case in Figure 10.12c is (exp(xi,1), exp(xi,2), exp(xi,3))

T where xi is the
ith case in Figure 10.12a; i.e. the marginals follow a lognormal distribution.
The plot does not resemble the identity line, correctly suggesting that the
distribution of the data is not MVN; however, the correlation of the plotted
points is rather high. Figure 10.12d is the weighted DD plot where cases with

RDi ≥
√

χ2
3,.975 ≈ 3.06 have been removed. Notice that the correlation of the

plotted points is not close to one and that the best fitting line in Figure 10.12d
may not pass through the origin. These results suggest that the distribution
of x is not EC.

Fig. 10.3 DD Plots for the Buxton Data

Example 10.13. Buxton (1920, pp. 232-5) gave 20 measurements of 88
men. We will examine whether the multivariate normal distribution is a
reasonable model for the measurements head length, nasal height, bigonal

breadth, and cephalic index where one case has been deleted due to missing
values. Figure 10.13a shows the DD plot. Five head lengths were recorded to
be around 5 feet and are massive outliers. Figure 10.13b is the DD plot com-
puted after deleting these points and suggests that the multivariate normal
distribution is reasonable. (The recomputation of the DD plot means that
the plot is not a weighted DD plot which would simply omit the outliers and
then rescale the vertical axis.)

library(MASS)

x <- cbind(buxy,buxx)

ddplot(x,type=3) #Figure 7.13a), right click Stop

zx <- x[-c(61:65),]

ddplot(zx,type=3) #Figure 7.13b), right click Stop
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