
Chapter 4

Prediction Intervals and Prediction

Regions

This chapter considers prediction intervals and prediction regions for iid data.
In later chapters, prediction intervals for regression and prediction regions for
multivariate regression are derived. Inference after variable selection will con-
sider bootstrap hypothesis testing. Applying certain prediction intervals or
prediction regions to the bootstrap sample will result in confidence inter-
vals or confidence regions. The prediction intervals and regions are based on
samples of size n, while the bootstrap sample size is B = Bn . See Chapter 5.

4.1 Prediction Intervals

Notation: P (An) is “eventually bounded below” by 1− δ if P (An) gets arbi-
trarily close to or higher than 1−δ as n → ∞. Hence P (An) > 1−δ−ε for any
ε > 0 if n is large enough. If P (An) → 1−δ as n → ∞, then P (An) is eventu-
ally bounded below by 1−δ. The actual coverage is 1−γn = P (Yf ∈ [Ln, Un]),
the nominal coverage is 1−δ where 0 < δ < 1. The 90% and 95% large sample
prediction intervals and prediction regions are common.

Definition 4.1. Consider predicting a future test value Yf given training
data Y1, ..., Yn. A large sample 100(1 − δ)% prediction interval (PI) for Yf

has the form [L̂n, Ûn] where P (L̂n ≤ Yf ≤ Ûn) is eventually bounded below
by 1 − δ as the sample size n → ∞. A large sample 100(1 − δ)% PI is
asymptotically optimal if it has the shortest asymptotic length: the length
of [L̂n, Ûn] converges to Us − Ls as n → ∞ where [Ls, Us] is the population
shorth: the shortest interval covering at least 100(1 − δ)% of the mass.

If Yf has a pdf, we often want P (L̂n ≤ Yf ≤ Ûn) → 1 − δ as n → ∞. The
interpretation of a 100 (1−δ)% PI for a random variable Yf is similar to that
of a confidence interval (CI). Collect data, then form the PI, and repeat for a
total of k times where the k trials are independent from the same population.
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98 4 Prediction Intervals and Prediction Regions

If Yfi is the ith random variable and PIi is the ith PI, then the probability
that Yfi ∈ PIi for j of the PIs approximately follows a binomial(k, ρ = 1−δ)
distribution. Hence if 100 95% PIs are made, ρ = 0.95 and Yfi ∈ PIi happens
about 95 times.

There are two big differences between CIs and PIs. First, the length of the
CI goes to 0 as the sample size n goes to ∞ while the length of the PI con-
verges to some nonzero number J , say. Secondly, many confidence intervals
work well for large classes of distributions while many prediction intervals
assume that the distribution of the data is known up to some unknown pa-
rameters. Usually the N(µ, σ2) distribution is assumed, and the parametric
PI may not perform well if the normality assumption is violated.

Consider the location model, Yi = µ + ei, where Y1, ..., Yn, Yf are iid
with the same distribution as Y . Let Y(1) ≤ Y(2) ≤ · · · ≤ Y(n) be the
order statistics of the iid training data Y1, ..., Yn. Then the unknown fu-
ture value Yf is the test data. Suppose the sample percentiles [L̂n, Ûn] of
the training data Y1, ..., Yn are consistent estimators of the population per-
centiles [L, U ] of the distribution where P (Y ∈ [L, U ]) = 1 − δ. Then
P (Yf ∈ [L̂n, Ûn] → P (Yf ∈ [L, U ]) = 1 − δ as n → ∞. Three com-
mon choices are a) P (Y ≤ U) = 1 − δ/2 and P (Y ≤ L) = δ/2, b)
P (Y 2 ≤ U2) = P (|Y | ≤ U) = P (−U ≤ Y ≤ U) = 1 − δ with L = −U ,
and c) the population shorth is the shortest interval (with length U −L) such
that P (Y ∈ [L, U ]) = 1− δ. The PI c) is asymptotically optimal while a) and
b) are asymptotically optimal on the class of symmetric zero mean unimodal
error distributions.

If the cdf FY of Y has jumps, then it may not be possible to find L and U
such that P (Y ∈ [L, U ]) = 1− δ, but it is possible to find L and U such that
P (Y ∈ [L, U ]) ≥ 1 − δ for 0 < δ < 1. For example, if P (Y = c) = 1, then
P (Y ∈ [c, c]) = 1 ≥ 1−δ for 0 < δ < 1. For Y1, ..., Yn iid BIN(n = 1, ρ), useful
PIs are [0,0], [0,1], and [1,1]. Using open intervals would give 0% coverage.

Let 0 < α < 1, and let Yα be a number such that P (Y ≤ Yα) = α if Yα

is a continuity point of the cdf FY (y). Let F (y−) = P (Y < y). If Yα is not
a continuity point of FY (y), let F (Yα−) = α1 ≤ α ≤ α2 = F (Yα) where
0 ≤ α1 < α2 ≤ 1. Suppose α1 < α < α2. For example, let α1 = 0.89 <
α = 0.9 < α2 = 0.92. Let dxe be the smallest integer ≥ x. For example,
d7.7e = 8. Then

∑n
i=1 I(Yi ≤ Y(dnαe)) ≥ dnαe with equality unless there are

ties: at least two Yi = Y(dnαe). Thus if Y(dnαe) < Yα, not enough Yi ≤ Y(dnαe),
while if Y(dnαe) > Yα, too many Yi ≤ Y(dnαe). Hence P (Y(dnαe) = Yα) → 1,
P (Yf < Y(dnαe)) → α1 < α, and P (Yf ≤ Y(dnαe)) → α2 > α as n → ∞.
Similarly, if α2 = α, then P (Y(dnαe) ≥ Yα) → 1 as n → ∞. If α1 = α and
FY (y) is strictly increasing on the interval (Yα − ε, Yα] for some ε > 0, then
P (Y ≤ Y(dnαe)) gets arbitrarily close to or higher than α as n → ∞. If Ym

is the smallest value of y such that P (Y leqYm) = α, α1 = α, and Ym < Yα,
then P (Y(dnαe) ≥ Ym) → 1 as n → ∞. Hence P (Y ≤ Y(dnαe)) gets arbitrarily
close to or higher than α in all cases. Hence closed intervals have coverage
eventually bounded below by 1 − δ.
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Remark 4.1. Confidence intervals, prediction intervals, confidence re-
gions, and prediction regions should used closed sets not open sets. The closed
sets have the same volume as as the open sets, but have coverage at least as
high as the open sets with weaker regularity conditions. In particular, confi-
dence and prediction intervals should be closed intervals, not open intervals.

In the following theorem, if the ope inteval (Y(k1), Y(k2)) was used, we would
need to add the regularity condition that Yδ/2 and Y1−δ/2 are continuity
points of FY (y).

Theorem 4.1. Let Y1, ..., Yn, Yf be iid. Let Y(1) ≤ Y(2) ≤ · · · ≤ Y(n) be the
order statistics of the training data. Let k1 = dnδ/2e and k2 = dn(1 − δ/2)e
where 0 < δ < 1. The large sample 100(1− δ)% percentile prediction interval
for Yf is

[Y(k1), Y(k2)]. (4.1)

The shorth(c) estimator of the population shorth is useful for making
asymptotically optimal prediction intervals. For the uniform distribution, the
population shorth is not unique. Of course the length of the population shorth
is unique.

Definition 4.2. Let the shortest closed interval containing at least c of
the Y1, ..., Yn be

shorth(c) = [Y(s), Y(s+c−1)]. (4.2)

Theorem 4.2, Frey (2013). Let Y1, ..., Yn be iid. Let

kn = dn(1 − δ)e. (4.3)

For large nδ and iid data, the shorth(kn) prediction interval has maximum un-
dercoverage ≈ 1.12

√

δ/n. The maximum undercoverage occurs for the family
of uniform U(θ1, θ2) distributions.

Theorem 4.3, Frey (2013). Let Y1, ..., Yn, Yf be iid. Let Y(1) ≤ Y(2) ≤
· · · ≤ Y(n) be the order statistics of the training data. The large sample
100(1− δ)% shorth(c) prediction interval for Yf is

[Y(s), Y(s+c−1)] where c = min(n, dn[1 − δ + 1.12
√

δ/n ] e). (4.4)

Theorem 4.4. Let Y1, ..., Yn, Yf be iid. Let W(1) ≤ W(2) ≤ · · · ≤ W(n) be
the order statistics of the squared training data W1, ..., Wn where Wi = Y 2

i

for i = 1, ..., n. Let kn be given by Equation (4.3). Let Ln = −Un and
Un =

√

W(kn). Then [Ln, Un] is a large sample 100(1− δ)% PI for Yf .

Note that P (0 ≤ Wf ≤ U2
n) is eventually bounded below by 1 − δ as

n → ∞.
By Chebyshev’s inequality, for k > 1,
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P (µ − kσ ≤ Y ≤ µ + kσ) ≥ P (µ− kσ < Y < µ + kσ) ≥ 1 − 1

k2
. (4.5)

Note that k = 5 gives 96% asymptotic coverage. The value k = 1.96 gives
95% coverage for the N(µ, σ2) distribution, but the coverage could be as low
as 74%. Use µ̂ = Y and σ̂ = S, the square root of the unbiased sample
variance estimator.

Theorem 4.5. Let Y1, ..., Yn, Yf be iid. Suppose that E(Y ) = µ and the
standard deviation SD(Y ) = σ. Let µ̂ and σ̂ be consistent estimators of µ
and σ. Let 1− 1/k2 ≥ 1− δ. Let µ± kσ be continuity points of FY (y). Then

[Ln, Un] = [µ̂ − kσ̂, µ̂ + kσ̂]

is a large sample 100(1− δ)% Chebyshev PI for Yf .

A problem with the prediction intervals that cover ≈ 100(1 − δ)% of the
training data cases Yi (such as (4.2) using c = kn given by (4.3)), is that they
have coverage lower than the nominal coverage of 1− δ for moderate n. This
result is not surprising since empirically statistical methods perform worse
on test data than on training data. For iid data, Frey (2013) used (4.4) to
correct for undercoverage.

Remark 4.2. a) The Chebyshev PIs tend to be too long, and need second
moments. b) The shorth PI (4.4) often has good coverage for n ≥ 50 and
0.05 ≤ δ ≤ 0.1, but the convergence of Un − Ln to the population shorth
length Us −Ls can be quite slow. Under regularity conditions, Grübel (1982)
showed that for iid data, the length and center the shorth(kn) interval are

√
n

consistent and n1/3 consistent estimators of the length and center of the pop-
ulation shorth interval, respectively. The correction factor also increases the
length. For a unimodal and symmetric error distribution, the nonparametric
PI (4.1), shorth PI (4.4), and Theorem 4.4 PI are asymptotically equivalent,
but PI (4.1) can be the shortest PI. c) The nonparametric PI and Theo-
rem 4.4 PI can be much longer than the shorth PI if the data distribution
is skewed. The Theorem 4.4 PI can very long if Y is a nonnegative random
variable.

Example 4.1. Given below were votes for preseason 1A basketball poll
from Nov. 22, 2011 WSIL News where the 778 was a typo: the actual value
was 78. As shown below, finding shorth(3) from the ordered data is simple.
If the outlier was corrected, shorth(3) = [76,78].

111 89 778 78 76

order data: 76 78 89 111 778

13 = 89 - 76
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33 = 111 - 78

689 = 778 - 89

shorth(3) = [76,89]

Remark 4.3. The large sample 100(1−δ)% shorth PI (4.4) may or may not
be asymptotically optimal if the 100(1−δ)% population shorth is [Ls, Us] and
FY (y) is not strictly increasing in intervals (Ls−ε, Ls+ε) and (Us−ε, Us +ε)
for some ε > 0. To see the issue, suppose Y has probability mass function
(pmf) f(0) = 0.4, f(1) = 0.3, f(2) = 0.2, f(3) = 0.06, and f(4) = 0.04.
Then the 90% population shorth is [0,2] and the 100(1 − δ)% population
shorth is [0,3] for (1 − δ) ∈ (0.9, 0.96]. Let Wi = I(Yi ≤ y) = 1 if Yi ≤ y and
0, otherwise. The empirical cdf

F̂n(y) =
1

n

n
∑

i=1

I(Yi ≤ y) =
1

n

n
∑

i=1

I(Y(i) ≤ y)

is the sample proportion of Yi ≤ y. If Y1, ..., Yn are iid, then for fixed y,
nF̂n(y) ∼ binomial(n, F (y)). Thus F̂n(y) ∼ AN(F (y), F (y)(1−F (y))/n). For

the Y with the above pmf, F̂n(2)
P→ 0.9 as n → ∞ with P (F̂n(2) < 0.9) → 0.5

and P (F̂n(2) ≥ 0.9) → 0.5 as n → ∞. Hence the large sample 90% PI
(4.4) will be [0,2] or [0,3] with probabilities → 0.5 as n → ∞ with expected
asymptotic length of 2.5 and expected asymptotic coverage converging to
0.93. However, the large sample 100(1−δ)% PI (4.4) converges to [0,3] and is
asymptotically optimal with asymptotic coverage 0.96 for (1−δ) ∈ (0.9, 0.96).

For a random variable Y , the 100(1−δ)% highest density region is a union
of k ≥ 1 disjoint intervals such that the mass within the intervals ≥ 1 − δ
and the sum of the k interval lengths is as small as possible. Suppose that
f(z) is a unimodal pdf that has interval support, and that the pdf f(z) of Y
decreases rapidly as z moves away from the mode. Let [a, b] be the shortest
interval such that FY (b) − FY (a) = 1 − δ where the cdf FY (z) = P (Y ≤ z).
Then the interval [a, b] is the 100(1 − δ) highest density region. To find the
100(1 − δ)% highest density region of a pdf, move a horizontal line down
from the top of the pdf. The line will intersect the pdf or the boundaries of
the support of the pdf at [a1, b1], ..., [ak, bk] for some k ≥ 1. Stop moving the
line when the areas under the pdf corresponding to the intervals is equal to
1 − δ. As an example, let f(z) = e−z for z > 0. See Figure 4.1 where the
area under the pdf from 0 to 1 is 0.368. Hence [0,1] is the 36.8% highest
density region. The shorth PI estimates the highest density interval which is
the highest density region for a distribution with a unimodal pdf. Often the
highest density region is an interval [a, b] where f(a) = f(b), especially if the
support where f(z) > 0 is (−∞,∞).
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Fig. 4.1 The 36.8% Highest Density Region is [0,1]

Remark 4.4. Note that correction factors bn → 1 are used in large sample
confidence intervals and tests if the limiting distribution is N(0,1) or χ2

p, but
a tdn

or pFp,dn
cutoff is used: tdn,1−δ/z1−δ → 1 and pFp,dn,1−δ/χ2

p,1−δ → 1
if dn → ∞ as n → ∞. Using correction factors for large sample confidence
intervals, tests, prediction intervals, prediction regions, and confidence regions
improves the performance for moderate sample size n.

4.2 Prediction Regions

Consider predicting a p × 1 future test value xf , given past training data
x1, ..., xn where x1, ..., xn, xf are iid. Much as confidence regions and inter-

vals give a measure of precision for the point estimator θ̂ of the parameter
θ, prediction regions and intervals give a measure of precision of the point
estimator T = x̂f of the future random vector xf .

Definition 4.3. A large sample 100(1 − δ)% prediction region is a set
An such that P (xf ∈ An) is eventually bounded below by 1 − δ as n →
∞. A prediction region is asymptotically optimal if its volume converges in
probability to the volume of the minimum volume covering region or the
highest density region of the distribution of xf .
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If xf has a pdf, we often want P (xf ∈ An) → 1 − δ as n → ∞. A PI
is a prediction region where p = 1. Highest density regions are usually hard
to estimate for p not much larger than four, but many elliptically contoured
distributions with a nonsingular population covariance matrix, including the
multivariate normal distribution, have highest density regions that can be
estimated by the nonparametric prediction region (4.13). For more about
highest density regions, see Olive (2017b, pp. 148-155) and Hyndman (1996).

For multivariate data, sample Mahalanobis distances play a role similar to
that of residuals in multiple linear regression. Let the observed training data
be collected in an n × p matrix W . Let the p × 1 column vector T = T (W )
be a multivariate location estimator, and let the p × p symmetric positive
definite matrix C = C(W ) be a dispersion estimator.

Definition 4.4. Let x1j, ..., xnj be measurements on the jth random
variable Xj corresponding to the jth column of the data matrix W . The

jth sample mean is xj =
1

n

n
∑

k=1

xkj. The sample covariance Sij estimates

Cov(Xi, Xj) = σij = E[(Xi − E(Xi))(Xj − E(Xj))], and

Sij =
1

n − 1

n
∑

k=1

(xki − xi)(xkj − xj).

Sii = S2
i is the sample variance that estimates the population variance

σii = σ2
i . The sample correlation rij estimates the population correlation

Cor(Xi, Xj) = ρij =
σij

σiσj
, and

rij =
Sij

SiSj
=

Sij
√

SiiSjj

=

∑n
k=1(xki − xi)(xkj − xj)

√

∑n
k=1(xki − xi)2

√

∑n
k=1(xkj − xj)2

.

Definition 4.5. Let x1, ..., xn be the data where xi is a p× 1 vector. The
sample mean or sample mean vector

x =
1

n

n
∑

i=1

xi = (x1, ..., xp)T =
1

n
W T1

where 1 is the n × 1 vector of ones. The sample covariance matrix

S =
1

n − 1

n
∑

i=1

(xi − x)(xi − x)T = (Sij).

That is, the ij entry of S is the sample covariance Sij. The classical estima-
tor of multivariate location and dispersion is (T, C) = (x, S). The sample
correlation matrix
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R = (rij).

That is, the ij entry of R is the sample correlation rij.

It can be shown that (n − 1)S =
∑n

i=1 xix
T
i − x xT =

W T W − 1

n
W T11T W .

Hence if the centering matrix G = I − 1

n
11T , then (n − 1)S = W T GW .

Definition 4.6. The ith Mahalanobis distance Di =
√

D2
i where the ith

squared Mahalanobis distance is

D2
i = D2

i (T (W ), C(W )) = (xi − T (W ))T C−1(W )(xi − T (W )) (4.6)

for each point xi. Notice that D2
i is a random variable (scalar valued). Let

(T, C) = (T (W ), C(W )). Then

D2
x(T, C) = (x− T )T C−1(x− T ).

Hence D2
i uses x = xi.

See Definition 1.29 for the population mean and population covariance
matrix. The Mahalanobis distance in Definition 4.6 is a random variable that
estimates the population Mahalanobis distance of Definition 1.49. Let the
p × 1 location vector be µ, often the population mean, and let the p × p
dispersion matrix be Σ, often the population covariance matrix. Notice that
if x is a random vector, then the population squared Mahalanobis distance
from Definition 1.49 is

D2
x(µ, Σ) = (x − µ)T Σ−1(x − µ) (4.7)

and that the term Σ−1/2(x− µ) is the p−dimensional analog to the z-score
used to transform a univariate N(µ, σ2) random variable into a N(0, 1) ran-
dom variable. Hence the sample Mahalanobis distance Di =

√

D2
i is an ana-

log of the absolute value |Zi| of the sample Z-score Zi = (Xi − X)/σ̂. Also
notice that the Euclidean distance of xi from the estimate of center T (W )
is Di(T (W ), Ip) where Ip is the p × p identity matrix.

Theorem 4.6. i) Suppose
√

n(Tn − µ)
D→ Np(θ, Σ). Let A be a q × p

constant matrix. Then A
√

n(Tn−µ) =
√

n(ATn −Aµ)
D→ Nq(Aθ, AΣAT ).

ii) Let Σ > 0. If (T, C) is a consistent estimator of (µ, s Σ) where s > 0
is some constant, then D2

x(T, C) = (x− T )T C−1(x− T ) = s−1D2
x(µ, Σ) +

oP (1), so D2
x(T, C) is a consistent estimator of s−1D2

x(µ, Σ).
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iii) Let Σ > 0. If
√

n(T −µ)
D→ Np(0, Σ) and if C is a consistent estimator

of Σ, then n(T − µ)T C−1(T − µ)
D→ χ2

p. In particular,

n(x− µ)T S−1(x − µ)
D→ χ2

p.

Proof: i) AW n
D→ AW by Theorem 3.13 iii), and the result follows.

ii) D2
x(T, C) = (x − T )T C−1(x− T ) =

(x− µ + µ− T )T [C−1 − s−1Σ−1 + s−1Σ−1](x− µ + µ− T )
= (x − µ)T [s−1Σ−1](x − µ) + (x − T )T [C−1 − s−1Σ−1](x− T )
+(x − µ)T [s−1Σ−1](µ− T ) + (µ− T )T [s−1Σ−1](x − µ)
+(µ − T )T [s−1Σ−1](µ− T ) = s−1D2

x(µ, Σ) + OP (1).
(Note that D2

x(T, C) = s−1D2
x(µ, Σ) + OP (n−δ) if (T, C) is a consistent

estimator of (µ, s Σ) with rate nδ where 0 < δ ≤ 0.5 if [C−1 − s−1Σ−1] =
OP (n−δ).)

Alternatively, D2
x(T, C) is a continuous function of (T, C) if C > 0 for

n > 10p. Hence D2
x(T, C)

P→ D2
x(µ, sΣ).

iii) Note that Zn =
√

n Σ−1/2(T − µ)
D→ Np(0, Ip). Thus ZT

nZn =

n(T − µ)T Σ−1(T − µ)
D→ χ2

p. Now n(T − µ)T C−1(T − µ) =

n(T − µ)T [C−1 − Σ−1 + Σ−1](T − µ) = n(T − µ)T Σ−1(T − µ) +

n(T −µ)T [C−1 −Σ−1](T −µ) = n(T −µ)T Σ−1(T −µ)+ oP (1)
D→ χ2

p since√
n(T − µ)T [C−1 − Σ−1]

√
n(T − µ) = OP (1)oP (1)OP (1) = oP (1). �

Next, we derive a prediction region for xf if (T, C) = (x, S), µ = E(x),

and Σx = Cov(x) is nonsingular. Let D = D(µ, Σx). Then Di
D→ D and

D2
i

D→ D2 by Theorem 4.6. Hence the sample percentiles of the Di are con-
sistent estimators of the population percentiles of D at continuity points of
the cdf of D, and the sample percentiles of the D2

i are consistent estimators
of the population percentiles of D2 at continuity points of the cdf of D2. Let
c = kn = dn(1 − δ)e. Then Olive (2013b) showed that the hyperellipsoid

An = {x : D2
x(x, S) ≤ D2

(c)} = {x : Dx(x, S) ≤ D(c)} (4.8)

is a large sample 100(1 − δ)% prediction region under mild conditions, al-
though regions with smaller volumes may exist.

To improve performance, we will use a correction factor c = Un where Un

decreases to kn. Un is defined under Equation (4.10). A problem with the
prediction regions that cover ≈ 100(1 − δ)% of the training data cases xi

(such as (4.8) for c = kn), is that they have coverage lower than the nominal
coverage of 1−δ for moderate n. This result is not surprising since empirically
statistical methods perform worse on test data than on training data. Also see
Remark 4.4. Empirically for many distributions, for n = 20p, the prediction
region (4.8) applied to iid data using c = kn = dn(1 − δ)e tended to have
undercoverage as high as min(0.05, δ/2). The undercoverage decreases rapidly
as n increases. (Referring to the next paragraph, taking qn ≡ 1 − δ does not
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take into account the unknown variability of (x, S), which is another reason
for undercoverage and the need for a correction factor.)

Let qn = min(1 − δ + 0.05, 1− δ + p/n) for δ > 0.1 and

qn = min(1 − δ/2, 1− δ + 10δp/n), otherwise. (4.9)

If 1 − δ < 0.999 and qn < 1 − δ + 0.001, set qn = 1 − δ. Using

c = dnqne (4.10)

in (4.8) decreased the undercoverage. Let D(Un) be the 100qnth sample quan-
tile of the Di.

The nonparametric prediction region is due to Olive (2013b). For the clas-
sical prediction region, see Chew (1966) and Johnson and Wichern (1988, pp.
134, 151). A future observation (random vector) xf is in the region (4.11)
if Dxf

≤ D2
Un

). If x1, ..., xn and xf are iid, the nonparametric prediction
region (4.11) is asymptotically optimal for a large class of elliptically con-
toured distributions since the volume of (4.11) converges in probability to
the volume of the highest density region. (These distributions have a highest
density region which is a hyperellipsoid determined by a population Maha-
lanobis distance. See Section 1.7.) Refer to the above paragraph for D(Un).
Let P (D2 ≤ D2

1−δ) = 1 − δ if D2
1−δ is a continuity point of the cdf FD2(y)

and D2
x(x, S)

D→ D2 = (x − µ)T Σ−1
x (x− µ).

Theorem 4.7. Assume that x1, ..., xn, xf are iid from a distribution with
mean E(x) = µ and nonsingular covariance matrix Cov(x) = Σx. The large
sample 100(1− δ)% nonparametric prediction region for a future value xf is

{z : D2
z(x, S) ≤ D2

(Un)} (4.11)

if D2
1−δ is a continuity point of the cdf FD2(y).

Theorem 4.8. Assume that x1, ..., xn, xf are iid Np(µ, Σx). Then the
large sample 100(1− δ)% classical prediction region is

{z : D2
z(x, S) ≤ χ2

p,1−δ}. (4.12)

If p is small, Mahalanobis distances tend to be right skewed with a pop-
ulation shorth that discards the right tail. For p = 1 and n ≥ 20, the finite
sample correction factors c/n for c given by (4.4) and (4.10) do not differ
by much more than 3% for 0.01 ≤ δ ≤ 0.5. See Figure 4.2 where ol = (Eq.
4.10)/n is plotted versus fr = (Eq. 4.4)/n for n = 20, 21, ..., 500. The top plot
is for δ = 0.01, while the bottom plot is for δ = 0.3. The identity line is added
to each plot as a visual aid. The value of n increases from 20 to 500 from the
right of the plot to the left of the plot. Examining the axes of each plot shows
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that the correction factors do not differ greatly. R code to create Figure 4.2
is shown below.

cmar <- par("mar"); par(mfrow = c(2, 1))

par(mar=c(4.0,4.0,2.0,0.5))

frey(0.01); frey(0.3)

par(mfrow = c(1, 1)); par(mar=cmar)

0.991 0.992 0.993 0.994 0.995

0
.9

9
5

0
.9

9
7

0
.9

9
9

ol

fr

0.72 0.74 0.76 0.78 0.80 0.82 0.84

0
.7

4
0
.7

8
0
.8

2

ol

fr

Fig. 4.2 Correction Factor Comparison when δ = 0.01 (Top Plot) and δ = 0.3
(Bottom Plot)

Remark 4.5. The nonparametric prediction region (4.11) is useful if
x1, ..., xn, xf are iid from a distribution with a nonsingular covariance matrix,
and the sample size n is large enough. The distribution could be continuous,
discrete, or a mixture. The asymptotic coverage is 1 − δ if D has a pdf, al-
though prediction regions with smaller volume may exist. The nonparametric
prediction region (4.11) contains Un of the training data cases xi provided
that S is nonsingular, even if the model is wrong. For many distributions,
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the coverage started to be close to 1 − δ for n ≥ 10p where the coverage is
the simulated percentage of times that the prediction region contained xf .

Theorem 4.9, Chen (2011). Multivariate Chebyshev’s Inequality:
Let E(x) = µ, and let Σx = Cov(x) be nonsingular. Then

P (D2
x(µ, Σx) ≤ γ) ≥ 1 − p/γ > 0

for γ > p.

For more on the above theorem, see Budny (2014) and Navarro (2014,
2016). For h > 0, consider the hyperellipsoid

{z : (z − x)T S−1(z − x) ≤ h2} = {z : D2
z ≤ h2} = {z : Dz ≤ h}. (4.13)

Using γ = h2 = p/δ in (4.13) usually results in prediction regions with
volume and coverage that is too large. Using γ = h2 = χ2

p,1−δ in (4.13) gives
the classical prediction region (4.12), which usually has volume and coverage
that is too low, although bounded above 0 by Theorem 4.9 asymptotically if
0 < δ < 0.25. (The median of a chi-square χ2

p distribution is χ2
p,0.5 ≈ p−2/3.)

Using h2 = D2(Un) tends to give better volume and coverage.

Remark 4.6. The most used prediction regions assume that the error
vectors are iid from a multivariate normal distribution. It can be shown that
the ratio of the volumes of regions (4.12) and (4.11) is

(

χ2
p,1−δ

D2
(Un)

)p/2

,

which can become close to zero rapidly as p gets large if the xi are not
from the light tailed multivariate normal distribution. For example, suppose
χ2

4,0.5 ≈ 3.33 and D2
(Un) ≈ D2

x,0.5 = 6. Then the ratio is (3.33/6)2 ≈ 0.308.
Hence if the data is not multivariate normal, severe undercoverage can occur
if the classical prediction region (4.12) is used, and the undercoverage tends
to get worse as the dimension p increases.

Remark 4.7. The nonparametric prediction region (4.11) starts to have
good coverage for n ≥ 10p for a large class of distributions. Olive (2013b)
suggests n ≥ 50p may be needed for the prediction region to have a good
volume. Of course for any n there are distributions that will have severe
undercoverage.

For the multivariate lognormal distribution with n = 20p, the large sample
nonparametric 95% prediction region (4.11) had coverages 0.970, 0.959, and
0.964 for p = 100, 200, and 500. Some R code is below.

nruns=1000 #lognormal, p = 100, n = 20p = 2000
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count<-0

for(i in 1:nruns){

x <- exp(matrix(rnorm(200000),ncol=100,nrow=2000))

xff <- exp(as.vector(rnorm(100)))

count <- count + predrgn(x,xf=xff)$inr}

count #970/1000, may take a few minutes

If X and Z have dispersion matrices Σ and cΣ where c > 0, then the
dispersion matrices have the same shape. The dispersion matrices determine
the shape of the hyperellipsoid {x : (x − µ)T Σ−1(x − µ) ≤ h2}. Figure 4.3
was made with the Arc software of Cook and Weisberg (1999). The 10%,
30%, 50%, 70%, 90%, and 98% highest density regions are shown for two
multivariate normal (MVN) distributions. Both distributions have µ = 0. In
Figure 4.3a),

Σ =

(

1 0.9
0.9 4

)

.

Note that the ellipsoids are narrow with high positive correlation. In Figure
4.3b),

Σ =

(

1 −0.4
−0.4 1

)

.

Note that the ellipsoids are wide with negative correlation. The highest den-
sity ellipsoids are superimposed on a scatterplot of a sample of size 100 from
each distribution.

4.3 Prediction Regions If n/p Is Small

See Zhang and Olive (2022).

4.4 Summary

4.5 Complements

See Frey (2013) for references about nonparametric PIs. For large sample
theory for the shorth, see Chen and Shao (1999), Einmahl and Mason (1992),
and Grübel (1988). A method for obtaining an asymptotically optimal PI
from a parametric distribution, possibly with right censored data, is given by
Olive, Rathnayake, and Haile (2021).

Prediction intervals and prediction regions can be used to estimate Bayesian
credible intervals and Bayesian credible regions.
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Fig. 4.3 Highest Density Regions for 2 MVN Distributions



4.6 Problems 111

Software. The simulations were done in R. See R Core Team (2016).
The function predrgn makes the nonparametric prediction region and de-
termines whether xf is in the region. The function predreg also makes the
nonparametric prediction region, and determines if 0 is in the region. The
shorth3 function computes the shorth(c) intervals with the Frey (2013)
correction used when g = 1.

4.6 Problems

4.1. Consider the Cushny and Peebles data set (see Staudte and Sheather
1990, p. 97) listed below. Find shorth(7). Show work.

0.0 0.8 1.0 1.2 1.3 1.3 1.4 1.8 2.4 4.6

4.2. Find shorth(5) for the following data set. Show work.

6 76 90 90 94 94 95 97 97 1008

4.3. Find shorth(5) for the following data set. Show work.

66 76 90 90 94 94 95 95 97 98

4.4. The data below are a sorted residuals from a least squares regression
where n = 100 and p = 4. Find shorth(97) of the residuals.

number 1 2 3 4 ... 97 98 99 100

residual -2.39 -2.34 -2.03 -1.77 ... 1.76 1.81 1.83 2.16

R Problems
Use the command source(“G:/lsamppack.txt”) to download the

functions and the command source(“G:/lsampdata.txt”) to download the
data. See Preface. Typing the name of the lsamppack function, e.g.
predsim, will display the code for the function. Use the args command,
e.g. args(predsim), to display the needed arguments for the function. For
the following problem, the R command can be copied and pasted from
(http://parker.ad.siu.edu/Olive/lsamphw.txt) into R.

4.5. a) Type the R command predsim() and paste the output into Word.
This program computes xi ∼ N4(0, diag(1, 2, 3, 4)) for i = 1, ..., 100 and

xf = x101. One hundred such data sets are made, and ncvr, scvr, and mcvr
count the number of times xf was in the nonparametric, semiparametric,
and parametric MVN 90% prediction regions. The volumes of the prediction
regions are computed and voln, vols, and volm are the average ratio of the
volume of the ith prediction region over that of the semiparametric region.
Hence vols is always equal to 1. For multivariate normal data, these ratios
should converge to 1 as n → ∞.

b) Were the three coverages near 90%?


