
Chapter 8

Robust Statistics

This chapter considers large sample theory for robust statistics. Robust esti-
mators of multivariate location and dispersion are useful for outlier detection
and for developing robust regression estimators. This chapter follows Olive
(2008, 2017b, 2022c) closely.

Definition 8.1 An outlier corresponds to a case that is far from the bulk
of the data.

8.1 The Location Model

The location model is

Yi = µ + ei, i = 1, . . . , n (8.1)

where e1, ..., en are error random variables, often iid with zero mean. The
location model is used when there is one variable Y , such as height, of interest.
The location model is a special case of the multiple linear regression model
and of the multivariate location and dispersion model, where there are p
variables x1, ..., xp of interest, such as height and weight if p = 2.

The location model is often summarized by obtaining point estimates and
confidence intervals for a location parameter and a scale parameter. Assume
that there is a sample Y1, . . . , Yn of size n where the Yi are iid from a distri-
bution with median MED(Y ), mean E(Y ), and variance V (Y ) if they exist.
The location parameter µ is often the population mean or median while the
scale parameter is often the population standard deviation

√
V (Y ). The ith

case is Yi.
Four important statistics for the location model are the sample mean, me-

dian, variance, and the median absolute deviation (MAD). Let Y1, . . . , Yn

be the random sample; i.e., assume that Y1, ..., Yn are iid. The sample
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mean is a measure of location and estimates the population mean (expected

value) µ = E(Y ). The sample mean Y =

∑n
i=1 Yi

n
. The sample variance

S2
n =

∑n
i=1(Yi − Y )2

n − 1
=

∑n
i=1 Y 2

i − n(Y )2

n − 1
, and the sample standard devia-

tion Sn =
√

S2
n.

If the data set Y1, ..., Yn is arranged in ascending order from smallest to
largest and written as Y(1) ≤ · · · ≤ Y(n), then Y(i) is the ith order statistic
and the Y(i)’s are called the order statistics. If the data Y1 = 1, Y2 = 4, Y3 =

2, Y4 = 5, and Y5 = 3, then Y = 3, Y(i) = i for i = 1, ..., 5 and MED(n) = 3
where the sample size n = 5. The sample median is a measure of location
while the sample standard deviation is a measure of spread. The sample mean
and standard deviation are vulnerable to outliers, while the sample median
and MAD, defined below, are outlier resistant.

Definition 8.2. The sample median

MED(n) = Y((n+1)/2) if n is odd, (8.2)

MED(n) =
Y(n/2) + Y((n/2)+1)

2
if n is even.

The notation MED(n) = MED(Y1, ..., Yn) will also be used.

Definition 8.3. The sample median absolute deviation is

MAD(n) = MED(|Yi − MED(n)|, i = 1, . . . , n). (8.3)

Since MAD(n) is the median of n distances, at least half of the observations
are within a distance MAD(n) of MED(n) and at least half of the observations
are a distance of MAD(n) or more away from MED(n). Like the standard
deviation, MAD(n) is a measure of spread.

Example 8.1. Let the data be 1, 2, 3, 4, 5, 6, 7, 8, 9. Then MED(n) = 5
and MAD(n) = 2 = MED{0, 1, 1, 2, 2, 3, 3, 4, 4}.

The population median MED(Y ) and the population median absolute de-
viation MAD(Y ) are important quantities of a distribution.

Definition 8.4. The population median is any value MED(Y ) such that

P (Y ≤ MED(Y )) ≥ 0.5 and P (Y ≥ MED(Y )) ≥ 0.5. (8.4)

Definition 8.5. The population median absolute deviation is

MAD(Y ) = MED(|Y − MED(Y )|). (8.5)

MED(Y ) is a measure of location while MAD(Y ) is a measure of scale.
The median is the middle value of the distribution. Since MAD(Y ) is the me-
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Table 8.1 Some commonly used notation.

population sample

E(Y ), µ, θ Y n, E(n) µ̂, θ̂

MED(Y ), M MED(n), M̂
VAR(Y ), σ2 VAR(n), S2, σ̂2

SD(Y ), σ SD(n), S, σ̂

MAD(Y ) MAD(n)
IQR(Y ) IQR(n)

dian distance from MED(Y ), at least half of the mass is inside [MED(Y ) −
MAD(Y ), MED(Y )+ MAD(Y )] and at least half of the mass of the distribu-
tion is outside of the interval (MED(Y ) − MAD(Y ), MED(Y ) + MAD(Y )).
In other words, MAD(Y ) is any value such that

P (Y ∈ [MED(Y ) − MAD(Y ), MED(Y ) + MAD(Y )]) ≥ 0.5,

and P (Y ∈ (MED(Y ) − MAD(Y ), MED(Y ) + MAD(Y )) ) ≤ 0.5.

Definition 8.6. The sample interquantile range IQR(n) = Y(d0.75ne) −
Y(d0.25ne). The population interquantile range IQR(Y ) = y0.75 − y0.25 where
P (Y ≤ yα) = α if yα is a continuity point of the cdf FY (y).

Notation is needed in order to distinguish between population quanti-
ties, random quantities, and observed quantities. For population quantities,
capital letters like E(Y ) and MAD(Y ) will often be used while the estima-
tors will often be denoted by MED(n), MAD(n), MED(Yi, i = 1, ..., n), or
MED(Y1, . . . , Yn). The random sample will be denoted by Y1, . . . , Yn. Some-
times the observed sample will be fixed and lower case letters will be used.
For example, the observed sample may be denoted by y1, ..., yn while the
estimates may be denoted by med(n), mad(n), or yn. Table 8.1 summarizes
some of this notation.

Definition 8.7. Let fY (y) be the pdf of Y. Then the family of pdfs
fW (w) = fY (w − µ) indexed by the location parameter µ, −∞ < µ < ∞, is
the location family for the random variable W = µ + Y with standard pdf
fY (y).

Definition 8.8. Let fY (y) be the pdf of Y. Then the family of pdfs
fW (w) = (1/σ)fY (w/σ) indexed by the scale parameter σ > 0, is the scale
family for the random variable W = σY with standard pdf fY (y).

Definition 8.9. Let fY (y) be the pdf of Y. Then the family of pdfs
fW (w) = (1/σ)fY ((w − µ)/σ) indexed by the location and scale parame-
ters µ, −∞ < µ < ∞, and σ > 0, is the location–scale family for the random
variable W = µ + σY with standard pdf fY (y).
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Finding MED(Y ) and MAD(Y ) for symmetric distributions and location–
scale families is made easier by the following theorem. Let F (yα) = P (Y ≤
yα) = α for 0 < α < 1 where the cdf F (y) = P (Y ≤ y). Let D = MAD(Y ),
M = MED(Y ) = y0.5 and U = y0.75.

Theorem 8.1. a) If W = a + bY, then MED(W ) = a + bMED(Y ) and
MAD(W ) = |b|MAD(Y ).

b) If Y has a pdf that is continuous and positive on its support and sym-
metric about µ, then MED(Y ) = µ and MAD(Y ) = y0.75 − MED(Y ). Find
M = MED(Y ) by solving the equation F (M) = 0.5 for M , and find U by
solving F (U) = 0.75 for U . Then D = MAD(Y ) = U − M.

c) Suppose that W is from a location–scale family with standard pdf fY (y)
that is continuous and positive on its support. Then W = µ + σY where
σ > 0. First find M by solving FY (M) = 0.5. After finding M , find D by
solving FY (M + D) − FY (M − D) = 0.5. Then MED(W ) = µ + σM and
MAD(W ) = σD.

Proof sketch. a) Assume the probability density function of Y is contin-
uous and positive on its support. Assume b > 0. Then

1/2 = P [Y ≤ MED(Y )] = P [a + bY ≤ a + bMED(Y )] = P [W ≤ MED(W )].

1/2 = P [MED(Y ) − MAD(Y ) ≤ Y ≤ MED(Y ) + MAD(Y )]

= P [a + bMED(Y ) − bMAD(Y ) ≤ a + bY ≤ a + bMED(Y ) + bMAD(Y )]

= P [MED(W ) − bMAD(Y ) ≤ W ≤ MED(W ) + bMAD(Y )]

= P [MED(W ) − MAD(W ) ≤ W ≤ MED(W ) + MAD(W )].

The proofs of b) and c) are similar. �

Application 8.1. The MAD Method: In analogy with the method of
moments, robust point estimators can be obtained by solving MED(n) =
MED(Y ) and MAD(n) = MAD(Y ). In particular, the location and scale
parameters of a location–scale family can often be estimated robustly using
c1MED(n) and c2MAD(n) where c1 and c2 are appropriate constants.

Estimators that use order statistics are common. The shorth estimator of
Section 4.1 was used for prediction and confidence intervals.

Definition 8.10. Consider intervals that contain cn cases: [Y(1), Y(cn)],
[Y(2), Y(cn+1)], ..., [Y(n−cn+1), Y(n)]. Denote the set of cn cases in the ith inter-
val by Ji, for i = 1, 2, ..., n− cn + 1. Often cn = bn/2c + 1.

i) Let the shorth(cn) estimator = [Y(s), Y(s+cn−1)] be the shortest such
interval. Then the least median of squares estimator LMS(cn) is (Y(s) +
Y(s+cn−1))/2, the midpoint of the shorth(cn) interval. The LMS estimator
is also called the least quantile of squares estimator LQS(cn).
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ii) Compute the sample mean and sample variance (Y Ji
, S2

Ji
) of the cn

cases in the ith interval. The minimum covariance determinant estimator
MCD(cn) estimator (Y MCD, S2

MCD) is equal to the (Y Jj
, S2

Jj
) with the small-

est S2
Ji

. The least trimmed sum of squares estimator is LTS(cn) = Y MCD.
iii) Compute the sample median MJi

of the cn cases in the ith interval. Let
QLTA(MJi

) =
∑

j∈Ji
|yj−MJi

|. The least trimmed sum of absolute deviations
estimator LTA(cn) is equal to the MJj

with the smallest QLTA(MJi
).

8.1.1 Robust Confidence Intervals

In this subsection, large sample confidence intervals (CIs) for the sample
median and 25% trimmed mean are given. Theory is given later in Section 8.1.
The following confidence interval provides some resistance to gross outliers
while being very simple to compute. The standard error SE(MED(n)) is due
to Bloch and Gastwirth (1968), but the degrees of freedom p ≈ d √

n e) is
motivated by the confidence interval for the trimmed mean. Let bxc denote
the “greatest integer function” (e.g., b7.7c = 7). Let dxe denote the smallest
integer greater than or equal to x (e.g., d7.7e = 8).

Warning: Closed intervals should be used instead of open intervals: a±b =
[a− b, a + b].

Application 8.2: inference with the sample median. Let Un = n−Ln

where Ln = bn/2c − d
√

n/4 e and use

SE(MED(n)) = 0.5(Y(Un) − Y(Ln+1)).

Let p = Un−Ln−1. Then a 100(1−α)% confidence interval for the population
median is

MED(n) ± tp,1−α/2SE(MED(n)). (8.6)

Warning. This CI is easy to compute by hand, but tends to be long with
undercoverage if n < 100. See Baszczyńska and Pekasiewicz (2010) for two
competitors that work better. We recommend bootstrap confidence intervals
for the population median.

The trimmed mean is also useful, and we recommend the 25% trimmed
mean. Let bxc denote the “greatest integer function” (e.g., b7.7c = 7).

Definition 8.11. The symmetrically trimmed mean or the δ trimmed
mean

Tn = Tn(Ln, Un) =
1

Un − Ln

Un∑

i=Ln+1

Y(i) (8.7)
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where Ln = bnδc and Un = n − Ln. If δ = 0.25, say, then the δ trimmed
mean is called the 25% trimmed mean.

The (δ, 1 − γ) trimmed mean uses Ln = bnδc and Un = bnγc.

The trimmed mean is estimating a truncated mean µT . Assume that Y
has a probability density function fY (y) that is continuous and positive on
its support. Let yδ be the number satisfying P (Y ≤ yδ) = δ. Then

µT =
1

1 − 2δ

∫ y1−δ

yδ

yfY (y)dy. (8.8)

Notice that the 25% trimmed mean is estimating

µT =

∫ y0.75

y0.25

2yfY (y)dy.

To perform inference, find d1, ..., dn where

di =






Y(Ln+1), i ≤ Ln

Y(i), Ln + 1 ≤ i ≤ Un

Y(Un), i ≥ Un + 1.

Then the Winsorized variance is the sample variance S2
n(d1, ..., dn) of d1, ..., dn,

and the scaled Winsorized variance

VSW (Ln, Un) =
S2

n(d1, ..., dn)

([Un − Ln]/n)2
. (8.9)

The standard error (SE) of Tn is SE(Tn) =
√

VSW (Ln, Un)/n.

Application 8.3: inference with the δ trimmed mean. A large sam-
ple 100 (1 − α)% confidence interval (CI) for µT is

Tn ± tp,1−α
2
SE(Tn) (8.10)

where P (tp ≤ tp,1−α
2
) = 1 − α/2 if tp is from a t distribution with p =

Un −Ln − 1 degrees of freedom. This interval is the classical t–interval when
δ = 0, but δ = 0.25 gives a robust CI.

Example 8.2. Let the data be 6, 9, 9, 7, 8, 9, 9, 7. Assume the data came
from a symmetric distribution with mean µ, and find a 95% CI for µ.

Solution. When computing small examples by hand, the steps are to sort
the data from smallest to largest value, find n, Ln, Un, Y(Ln+1), Y(Un), p,
MED(n) and SE(MED(n)). After finding tp,1−α/2, plug the relevant quan-
tities into the formula for the CI. The sorted data are 6, 7, 7, 8, 9, 9, 9,
9. Thus MED(n) = (8 + 9)/2 = 8.5. Since n = 8, Ln = b4c − d

√
2e =

4 − d1.414e = 4 − 2 = 2 and Un = n − Ln = 8 − 2 = 6. Hence
SE(MED(n)) = 0.5(Y(6) − Y(3)) = 0.5 ∗ (9 − 7) = 1. The degrees of free-
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dom p = Un − Ln − 1 = 6 − 2 − 1 = 3. The cutoff t3,0.975 = 3.182. Thus the
95% CI for MED(Y ) is

MED(n) ± t3,0.975SE(MED(n))

= 8.5± 3.182(1) = [5.318, 11.682]. The classical t–interval uses Y = (6 + 7 +
7 + 8 + 9 + 9 + 9 + 9)/8 and S2

n = (1/7)[(
∑n

i=1 Y 2
i ) − 8(82)] = (1/7)[(522−

8(64)] = 10/7 ≈ 1.4286, and t7,0.975 ≈ 2.365. Hence the 95% CI for µ is

8 ± 2.365(
√

1.4286/8) = [7.001, 8.999]. Notice that the t-cutoff = 2.365 for
the classical interval is less than the t-cutoff = 3.182 for the median interval
and that SE(Y ) < SE(MED(n)). The parameter µ is between 1 and 9 since
the test scores are integers between 1 and 9. Hence for this example, the
t–interval is considerably superior to the overly long median interval.

Example 8.3. In the last example, what happens if the 6 becomes 66 and
a 9 becomes 99?

Solution. Then the ordered data are 7, 7, 8, 9, 9, 9, 66, 99. Hence
MED(n) = 9. Since Ln and Un only depend on the sample size, they
take the same values as in the previous example and SE(MED(n)) =
0.5(Y(6) − Y(3)) = 0.5 ∗ (9 − 8) = 0.5. Hence the 95% CI for MED(Y ) is
MED(n) ± t3,0.975SE(MED(n)) = 9 ± 3.182(0.5) = [7.409, 10.591]. Notice
that with discrete data, it is possible to drive SE(MED(n)) to 0 with a few
outliers if n is small. The classical confidence interval Y ± t7,0.975S/

√
n blows

up and is equal to [−2.955, 56.455].

8.1.2 Some Two Stage Trimmed Means

Robust estimators are often obtained by applying the sample mean to a
sequence of consecutive order statistics. The sample median, trimmed mean,
metrically trimmed mean, and two stage trimmed means are examples. For
the trimmed mean given in Definition 8.11 and for the Winsorized mean,
defined below, the proportion of cases trimmed and the proportion of cases
covered are fixed.

Definition 8.12. Using the same notation as in Definition 8.11, the Win-
sorized mean

Wn = Wn(Ln, Un) =
1

n
[LnY(Ln+1) +

Un∑

i=Ln+1

Y(i) + (n − Un)Y(Un)]. (8.11)

Definition 8.13. A randomly trimmed mean
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Rn = Rn(Ln, Un) =
1

Un − Ln

Un∑

i=Ln+1

Y(i) (8.12)

where Ln < Un are integer valued random variables. Un−Ln of the cases are
covered by the randomly trimmed mean while n − Un + Ln of the cases are
trimmed.

Definition 8.14. The metrically trimmed mean (also called the Huber
type skipped mean) Mn is the sample mean of the cases inside the interval

[θ̂n − k1Dn, θ̂n + k2Dn]

where θ̂n is a location estimator, Dn is a scale estimator, k1 ≥ 1, and k2 ≥ 1.

The proportions of cases covered and trimmed by randomly trimmed
means such as the metrically trimmed mean are now random. Typically
MED(n) and MAD(n) are used for θ̂n and Dn, respectively. The amount
of trimming will depend on the distribution of the data. For example, if Mn

uses k1 = k2 = 5.2 and the data is normal (Gaussian), about 1% of the data
will be trimmed while if the data is Cauchy, about 12% of the data will be
trimmed. Hence the upper and lower trimming points estimate lower and up-
per population percentiles L(F ) and U(F ) and change with the distribution
F .

Two stage estimators are frequently used in robust statistics. Often the
initial estimator used in the first stage has good resistance properties but
has a low asymptotic relative efficiency or no convenient formula for the SE.
Ideally, the estimator in the second stage will have resistance similar to the
initial estimator but will be efficient and easy to use. The metrically trimmed
mean Mn with tuning parameter k1 = k2 ≡ k = 6 will often be the initial
estimator for the two stage trimmed means. That is, retain the cases that fall
in the interval

[MED(n) − 6MAD(n), MED(n) + 6MAD(n)].

Let L(Mn) be the number of observations that fall to the left of MED(n) −
k1 MAD(n) and let n−U(Mn) be the number of observations that fall to the
right of MED(n) + k2 MAD(n). When k1 = k2 ≡ k ≥ 1, at least half of the
cases will be covered. Consider the set of 51 trimming proportions in the set
C = {0, 0.01, 0.02, ..., 0.49, 0.50}. Alternatively, the coarser set of 6 trimming
proportions C = {0, 0.01, 0.1, 0.25, 0.40, 0.49}may be of interest. The greatest
integer function (e.g. b7.7c = 7) is used in the following definitions.

Definition 8.15. Consider the smallest proportion αo,n ∈ C such that
αo,n ≥ L(Mn)/n and the smallest proportion 1 − βo,n ∈ C such that 1 −
βo,n ≥ 1 − (U(Mn)/n). Let αM,n = max(αo,n, 1 − βo,n). Then the two stage
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symmetrically trimmed mean TS,n is the αM,n trimmed mean. Hence TS,n

is a randomly trimmed mean with Ln = bn αM,nc and Un = n − Ln. If
αM,n = 0.50, then use TS,n = MED(n).

Definition 8.16. As in the previous definition, consider the smallest pro-
portion αo,n ∈ C such that αo,n ≥ L(Mn)/n and the smallest proportion
1− βo,n ∈ C such that 1− βo,n ≥ 1− (U(Mn)/n). Then the two stage asym-
metrically trimmed mean TA,n is the (αo,n, 1 − βo,n) trimmed mean. Hence
TA,n is a randomly trimmed mean with Ln = bn αo,nc and Un = bn βo,nc.
If αo,n = 1 − βo,n = 0.5, then use TA,n = MED(n).

Example 8.4. These two stage trimmed means are almost as easy to
compute as the classical trimmed mean, and no knowledge of the unknown
parameters is needed to do inference. First, order the data and find the
number of cases L(Mn) less than MED(n) − k1MAD(n) and the number
of cases n−U(Mn) greater than MED(n)+ k2MAD(n). (These are the cases
trimmed by the metrically trimmed mean Mn, but Mn need not be com-
puted.) Next, convert these two numbers into percentages and round both
percentages up to the nearest integer. For TS,n find the maximum of the two
percentages. For example, suppose that there are n = 205 cases and Mn trims
the smallest 15 cases and the largest 20 cases. Then L(Mn)/n = 0.073 and
1 − (U(Mn)/n) = 0.0976. Hence Mn trimmed the 7.3% smallest cases and
the 9.76% largest cases, and TS,n is the 10% trimmed mean while TA,n is the
(0.08, 0.10) trimmed mean.

Definition 8.17. The standard error SERM for the two stage trimmed
means given in Definitions 8.11, 8.15, or 8.16 is

SERM (Ln, Un) =
√

VSW (Ln, Un)/n

where the scaled Winsorized variance VSW (Ln, Un) =

[LnY 2
(Ln+1) +

∑Un

i=Ln+1 Y 2
(i) + (n − Un)Y 2

(Un)] − n [Wn(Ln, Un)]2

(n − 1)[(Un − Ln)/n]2
. (8.13)

Remark 8.1. A simple method for computing VSW (Ln, Un) has the fol-
lowing steps. First, find d1, ..., dn where

di =






Y(Ln+1), i ≤ Ln

Y(i), Ln + 1 ≤ i ≤ Un

Y(Un), i ≥ Un + 1.

Then the Winsorized variance is the sample variance S2
n(d1, ..., dn) of d1, ..., dn,

and the scaled Winsorized variance
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VSW (Ln, Un) =
S2

n(d1, ..., dn)

([Un − Ln]/n)2
. (8.14)

Notice that the SE given in Definition 8.17 is the SE for the δ trimmed mean
where Ln and Un are fixed constants rather than random.

Application 8.4. Let Tn be the two stage (symmetrically or) asymmetri-
cally trimmed mean that trims the Ln smallest cases and the n− Un largest
cases. Then for the one and two sample procedures described in Section 5.1,
use the one sample standard error SERM (Ln, Un) given in Definition 8.17
and the tp distribution where the degrees of freedom p = Un − Ln − 1.

The CIs and tests for the δ trimmed mean and two stage trimmed means
given by Applications 8.3 and 8.4 are very similar once Ln has been computed.
For example, a large sample 100 (1 − α)% confidence interval (CI) for µT is

[Tn − tUn−Ln−1,1−α
2
SERM (Ln, Un), Tn + tUn−Ln−1,1−α

2
SERM (Ln, Un)]

(8.15)
where P (tp ≤ tp,1−α

2
) = 1−α/2 if tp is from a t distribution with p degrees of

freedom. Section 8.1.6 provides the asymptotic theory for the δ and two stage
trimmed means and shows that µT is the mean of a truncated distribution.
Next Examples 8.2 and 8.3 are repeated using the intervals based on the two
stage trimmed means instead of the median.

Example 8.5. Let the data be 6, 9, 9, 7, 8, 9, 9, 7. Assume the data came
from a symmetric distribution with mean µ, and find a 95% CI for µ.

Solution. If TA,n or TS,n is used with the metrically trimmed mean that
uses k = k1 = k2, e.g. k = 6, then µT (a, b) = µ. When computing small
examples by hand, it is convenient to sort the data:
6, 7, 7, 8, 9, 9, 9, 9.
Thus MED(n) = (8 + 9)/2 = 8.5. The ordered residuals Y(i) − MED(n) are
-2.5, -1.5, -1.5, 0.5, 0.5, 0.5, 0.5, 0.5.
Find the absolute values and sort them to get
0.5, 0.5, 0.5, 0.5, 0.5, 1.5, 1.5, 2.5.
Then MAD(n) = 0.5, MED(n)−6MAD(n) = 5.5, and MED(n)+6MAD(n)
= 11.5. Hence no cases are trimmed by the metrically trimmed mean, i.e.
L(Mn) = 0 and U(Mn) = n = 8. Thus Ln = b8(0)c = 0, and Un = n −
Ln = 8. Since no cases are trimmed by the two stage trimmed means, the
robust interval will have the same endpoints as the classical t–interval. To
see this, note that Mn = TS,n = TA,n = Y = (6 + 7 + 7 + 8 + 9 + 9 + 9 +
9)/8 = 8 = Wn(Ln, Un). Now VSW (Ln, Un) = (1/7)[

∑n
i=1 Y 2

(i) −8(82)]/[8/8]2

= (1/7)[(522− 8(64)] = 10/7 ≈ 1.4286, and t7,0.975 ≈ 2.365. Hence the 95%

CI for µ is 8 ± 2.365(
√

1.4286/8) = [7.001, 8.999].

Example 8.6. In the last example, what happens if a 6 becomes 66 and
a 9 becomes 99? Use k = 6 and TA,n. Then the ordered data are
7, 7, 8, 9, 9, 9, 66, 99.
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Thus MED(n) = 9 and MAD(n) = 1.5. With k = 6, the metrically trimmed
mean Mn trims the two values 66 and 99. Hence the left and right trimming
proportions of the metrically trimmed mean are 0.0 and 0.25 = 2/8, respec-
tively. These numbers are also the left and right trimming proportions of TA,n

since after converting these proportions into percentages, both percentages
are integers. Thus Ln = b0c = 0, Un = b0.75(8)c = 6 and the two stage
asymmetrically trimmed mean trims 66 and 99. So TA,n = 49/6 ≈ 8.1667.
To compute the scaled Winsorized variance, use Remark 8.3 to find that the
di’s are
7, 7, 8, 9, 9, 9, 9, 9
and

VSW =
S2

n(d1, ..., d8)

[(6 − 0)/8]2
≈ 0.8393

.5625
≈ 1.4921.

Hence the robust confidence interval is 8.1667±t5,0.975

√
1.4921/8 ≈ 8.1667±

1.1102 ≈ [7.057, 9.277]. The classical confidence interval Y ± tn−1,0.975S/
√

n
blows up and is equal to [−2.955, 56.455].

Example 8.7. Use k = 6 and TA,n to compute a robust CI using the 87
heights from the Buxton (1920) data that includes 5 outliers. The mean
height is Y = 1598.862 while TA,n = 1695.22. The classical 95% CI is
[1514.206,1683.518] and is more than five times as long as the robust 95%
CI which is [1679.907,1710.532]. In this example the five outliers can be cor-
rected. For the corrected data, no cases are trimmed and the robust and clas-
sical estimators have the same values. The results are Y = 1692.356 = TA,n

and the robust and classical 95% CIs are both [1678.595,1706.118]. Note that
the outliers did not have much affect on the robust confidence interval.

8.1.3 Asymptotics for Two Stage Trimmed Means

Large sample theory is very important for understanding robust statistics.
Truncated and Winsorized random variables are important because they sim-
plify the asymptotic theory of robust estimators. Let Y be a random vari-
able with continuous cdf F and let α = F (a) < F (b) = β. Thus α is the
left trimming proportion and 1 − β is the right trimming proportion. Let
F (a−) = P (Y < a). (Refer to Section 1.8 for the notation used below.)

Definition 8.18. The truncated random variable YT ≡ YT (a, b) with trun-
cation points a and b has cdf

FYT
(y|a, b) = G(y) =

F (y) − F (a−)

F (b)− F (a−)
(8.16)

for a ≤ y ≤ b. Also G is 0 for y < a and G is 1 for y > b. The mean and
variance of YT are
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µT = µT (a, b) =

∫ ∞

−∞
ydG(y) =

∫ b

a
ydF (y)

β − α
(8.17)

and

σ2
T = σ2

T (a, b) =

∫ ∞

−∞
(y − µT )2dG(y) =

∫ b

a
y2dF (y)

β − α
− µ2

T .

See Cramér (1946, p. 247).

Definition 8.19. The Winsorized random variable

YW = YW (a, b) =






a, Y ≤ a
Y, a ≤ Y ≤ b
b, Y ≥ b.

If the cdf of YW (a, b) = YW is FW , then

FW (y) =






0, y < a
F (a), y = a
F (y), a < y < b

1, y ≥ b.

Since YW is a mixture distribution with a point mass at a and at b, the mean
and variance of YW are

µW = µW (a, b) = αa + (1 − β)b +

∫ b

a

ydF (y)

and

σ2
W = σ2

W (a, b) = αa2 + (1 − β)b2 +

∫ b

a

y2dF (y) − µ2
W .

Definition 8.20. The quantile function

F−1
Q (t) = Q(t) = inf{y : F (y) ≥ t}. (8.18)

The sample ρ quantile ξ̂n,ρ = Y(dnρe) = ŷρ. The population quantile yρ = πρ =
ξρ = Q(ρ) where 0 < ρ < 1.

Warning: Software often uses a slightly different definition of the sample
quantile then the one given in Definition 8.20.

Note that Q(t) is the left continuous inverse of F and if F is strictly
increasing and continuous, then F has an inverse F−1 and F−1(t) = Q(t).
The following conditions on the cdf are used.

Regularity Conditions. (R1) Let Y1, . . . , Yn be iid with cdf F .
(R2) Let F be continuous and strictly increasing at a = Q(α) and b = Q(β).
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The following theorem is proved in Bickel (1965), Stigler (1973), and
Shorack and Wellner (1986, p. 678-679). The α trimmed mean is asymp-
totically equivalent to the (α, 1−α) trimmed mean. Let Tn be the (α, 1− β)
trimmed mean. Theorem 8.3 shows that the standard error SERM given in the
previous section is estimating the appropriate asymptotic standard deviation
of Tn.

Theorem 8.2. If conditions (R1) and (R2) hold and if 0 < α < β < 1,
then

√
n(Tn − µT (a, b))

D→ N

[
0,

σ2
W (a, b)

(β − α)2

]
. (8.19)

Theorem 8.3: Shorack and Wellner (1986, p. 680). Assume that
regularity conditions (R1) and (R2) hold and that

Ln

n

P→ α and
Un

n

P→ β. (8.20)

Then

VSW (Ln, Un)
P→ σ2

W (a, b)

(β − α)2
.

Since Ln = bnαc and Un = n−Ln (or Ln = bnαc and Un = bnβc) satisfy
the above lemma, the standard error SERM can be used for both trimmed
means and two stage trimmed means: SERM (Ln, Un) =

√
VSW (Ln, Un)/n

where the scaled Winsorized variance VSW (Ln, Un) =

[LnY 2
(Ln+1) +

∑Un

i=Ln+1 Y 2
(i) + (n − Un)Y 2

(Un)] − n [Wn(Ln, Un)]2

(n − 1)[(Un − Ln)/n]2
.

Again Ln is the number of cases trimmed to the left and n−Un is the number
of cases trimmed to the right by the trimmed mean.

The following notation will be useful for finding the asymptotic distribu-
tion of the two stage trimmed means. Let a = MED(Y ) − kMAD(Y ) and
b = MED(Y ) + kMAD(Y ) where MED(Y ) and MAD(Y ) are the population
median and median absolute deviation respectively. Let α = F (a−) = P (Y <
a) and let αo ∈ C = {0, 0.01, 0.02, ..., 0.49, 0.50} be the smallest value in C
such that αo ≥ α. Similarly, let β = F (b) and let 1− βo ∈ C be the smallest
value in the index set C such that 1 − βo ≥ 1 − β. Let αo = F (ao−), and
let βo = F (bo). Recall that L(Mn) is the number of cases trimmed to the
left and that n − U(Mn) is the number of cases trimmed to the right by the
metrically trimmed mean Mn. Let αo,n ≡ α̂o be the smallest value in C such

that αo,n ≥ L(Mn)/n, and let 1 − βo,n ≡ 1 − β̂o be the smallest value in
C such that 1 − βo,n ≥ 1 − (U(Mn)/n). Then the robust estimator TA,n is
the (αo,n, 1− βo,n) trimmed mean while TS,n is the max(αo,n, 1− βo,n)100%
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trimmed mean. The following theorem is useful for showing that TA,n is
asymptotically equivalent to the (αo, 1− βo) trimmed mean and that TS,n is
asymptotically equivalent to the max(αo, 1 − βo) trimmed mean. One proof
of Theorem 8.5 is to show that TA,n and TS,n are model selection estimators
where the probability TA,n selects the (αo, 1 − βo) trimmed mean and the
probability that TS,n selects the max(αo, 1−βo) trimmed mean goes to one.

Theorem 8.4: Shorack and Wellner (1986, p. 682-683). Let F
have a strictly positive and continuous derivative in some neighborhood of
MED(Y ) ± kMAD(Y ). Assume that

√
n(MED(n) − MED(Y )) = OP (1) (8.21)

and √
n(MAD(n) − MAD(X)) = OP (1). (8.22)

Then
√

n(
L(Mn)

n
− α) = OP (1) (8.23)

and √
n(

U(Mn)

n
− β) = OP (1). (8.24)

Theorem 8.5. Let Y1, ..., Yn be iid from a distribution with cdf F that has
a strictly positive and continuous pdf f on its support. Let αM = max(αo, 1−
βo) ≤ 0.49, βM = 1 − αM , aM = F−1(αM), and bM = F−1(βM ). Assume
that α and 1 − β are not elements of C = {0, 0.01, 0.02, ..., 0.50}. Then

√
n[TA,n − µT (ao, bo)]

D→ N

[
0,

σ2
W (ao, bo)

(βo − αo)2

]
,

and
√

n[TS,n − µT (aM , bM)]
D→ N

[
0,

σ2
W (aM , bM)

(βM − αM)2

]
.

Proof. The first result follows from Theorem 8.2 if the probability that
TA,n is the (αo, 1−βo) trimmed mean goes to one as n tends to infinity. This

condition holds if L(Mn)/n
D→ α and U(Mn)/n

D→ β. But these conditions
follow from Theorem 8.4. The proof for TS,n is similar. �

8.1.4 Asymptotic Theory for the MAD

Let MD(n) = MED(|Yi − MED(Y )|, i = 1, . . . , n). Since MD(n) is a me-
dian and convergence results for the median are well known, see for exam-
ple Serfling (1980, p. 74-77) or Theorem 2.6, it is simple to prove conver-
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gence results for MAD(n). Typically MED(n) = MED(Y ) + OP (n−1/2) and
MAD(n) = MAD(Y ) + OP (n−1/2).

Theorem 8.6. If MED(n) = MED(Y ) + OP (n−δ) and
MD(n) = MAD(Y ) + OP (n−δ), then MAD(n) = MAD(Y ) + OP (n−δ).

Proof. Let Wi = |Yi − MED(n)| and let Vi = |Yi − MED(Y )|. Then

Wi = |Yi − MED(Y ) + MED(Y ) − MED(n)| ≤ Vi + |MED(Y ) − MED(n)|,

and

MAD(n) = MED(W1, . . . , Wn) ≤ MED(V1, . . . , Vn) + |MED(Y ) − MED(n)|.

Similarly

Vi = |Yi − MED(n) + MED(n) − MED(Y )| ≤ Wi + |MED(n) − MED(Y )|

and thus

MD(n) = MED(V1, . . . , Vn) ≤ MED(W1, . . . , Wn) + |MED(Y ) − MED(n)|.

Combining the two inequalities shows that

MD(n)−|MED(Y )−MED(n)| ≤ MAD(n) ≤ MD(n)+ |MED(Y )−MED(n)|,

or
|MAD(n) − MD(n)| ≤ |MED(n) − MED(Y )|. (8.25)

Adding and subtracting MAD(Y ) to the left hand side shows that

|MAD(n) − MAD(Y ) − OP (n−δ)| = OP (n−δ) (8.26)

and the result follows. �

The main point of the following theorem is that the joint distribution of
MED(n) and MAD(n) is asymptotically normal. Hence the limiting distribu-
tion of MED(n) + kMAD(n) is also asymptotically normal for any constant
k. The parameters of the covariance matrix are quite complex and hard to
estimate. The assumptions of f used in Theorem 8.7 guarantee that MED(Y )
and MAD(Y ) are unique.

Theorem 8.7: Falk (1997). Let the cdf F of Y be continuous near and
differentiable at MED(Y ) = F−1(1/2) and MED(Y )±MAD(Y ). Assume that
f = F ′, f(F−1(1/2)) > 0, and A ≡ f(F−1(1/2)−MAD(Y ))+ f(F−1(1/2)+
MAD(Y )) > 0. Let C ≡ f(F−1(1/2)−MAD(Y ))− f(F−1(1/2)+MAD(Y )),
and let B ≡ C2+4Cf(F−1(1/2))[1−F (F−1(1/2)−MAD(Y ))−F (F−1(1/2)+
MAD(Y ))]. Then
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√
n

((
MED(n)
MAD(n)

)
−
(

MED(Y )
MAD(Y )

))
D→

N

((
0
0

)
,

(
σ2

M σM,D

σM,D σ2
D

))
(8.27)

where

σ2
M =

1

4f2(F−1(1
2 ))

, σ2
D =

1

4A2
(1 +

B

f2(F−1(1
2 ))

),

and

σM,D =
1

4Af(F−1(1
2
))

(1 − 4F (F−1(
1

2
) + MAD(Y )) +

C

f(F−1(1
2
))

).

Determining whether the population median and mad are unique can be
useful. Recall that F (y) = P (Y ≤ y) and F (y−) = P (Y < y). The median
is unique unless there is a flat spot at F−1(0.5), that is, unless there exist a
and b with a < b such that F (a) = F (b) = 0.5. If MED(Y ) is unique, then
MAD(Y ) is unique unless F has flat spots at both F−1(MED(Y )−MAD(Y ))
and F−1(MED(Y ) + MAD(Y )). Moreover, MAD(Y ) is unique unless there
exist a1 < a2 and b1 < b2 such that F (a1) = F (a2), F (b1) = F (b2),

P (ai ≤ Y ≤ bi) = F (bi) − F (ai−) ≥ 0.5,

and
P (Y ≤ ai) + P (Y ≥ bi) = F (ai) + 1 − F (bi−) ≥ 0.5

for i = 1, 2. The following theorem gives some simple bounds for MAD(Y ).

Theorem 8.8. Assume MED(Y ) and MAD(Y ) are unique. a) Then

min{MED(Y ) − F−1(0.25), F−1(0.75) − MED(Y )} ≤ MAD(Y ) ≤

max{MED(Y ) − F−1(0.25), F−1(0.75)− MED(Y )}. (8.28)

b) If Y is symmetric about µ = F−1(0.5), then the three terms in a) are
equal.
c) If the distribution is symmetric about zero, then MAD(Y ) = F−1(0.75).
d) If Y is symmetric and continuous with a finite second moment, then

MAD(Y ) ≤
√

2VAR(Y ).

e) Suppose Y ∈ [a, b]. Then

0 ≤ MAD(Y ) ≤ m = min{MED(Y ) − a, b − MED(Y )} ≤ (b − a)/2,

and the inequalities are sharp.
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Proof. a) This result follows since half the mass is between the upper and
lower quartiles and the median is between the two quartiles.

b) and c) are corollaries of a).
d) This inequality holds by Chebyshev’s inequality, since

P ( |Y − E(Y )| ≥ MAD(Y ) ) = 0.5 ≥ P ( |Y − E(Y )| ≥
√

2VAR(Y ) ),

and E(Y ) = MED(Y ) for symmetric distributions with finite second mo-
ments.

e) Note that if MAD(Y ) > m, then either MED(Y ) − MAD(Y ) < a
or MED(Y ) + MAD(Y ) > b. Since at least half of the mass is between a
and MED(Y ) and between MED(Y ) and b, this contradicts the definition of
MAD(Y ). To see that the inequalities are sharp, note that if at least half of
the mass is at some point c ∈ [a, b], than MED(Y ) = c and MAD(Y ) = 0.
If each of the points a, b, and c has 1/3 of the mass where a < c < b, then
MED(Y ) = c and MAD(Y ) = m. �

Many other results for MAD(Y ) and MAD(n) are possible. For example,
note that Theorem 8.8 b) implies that when Y is symmetric, MAD(Y ) =
F−1(3/4)− µ and F (µ + MAD(Y )) = 3/4. Also note that MAD(Y ) and the
interquartile range IQR(Y ) are related by

2MAD(Y ) = IQR(Y ) ≡ y0.75 − y0.25

when Y is symmetric.

8.1.5 Truncated Distributions

Truncated distributions can be used to simplify the asymptotic theory of
robust estimators of location and regression. This subsection is useful when
the underlying distribution is exponential, double exponential, normal, or
Cauchy.

Definitions 8.18 and 8.19 defined the truncated random variable YT (a, b)
and the Winsorized random variable YW (a, b). Let Y have cdf F and let the
truncated random variable YT (a, b) have the cdf FT (a,b). The following lemma
illustrates the relationship between the means and variances of YT (a, b) and
YW (a, b). Note that YW (a, b) is a mixture of YT (a, b) and two point masses
at a and b. Let c = µT (a, b)− a and d = b − µT (a, b).

Theorem 8.9. Let a = µT (a, b) − c and b = µT (a, b) + d. Then
a) µW (a, b) = µT (a, b) − αc + (1 − β)d, and
b) σ2

W (a, b) = (β−α)σ2
T (a, b)+(α−α2)c2+[(1−β)−(1−β)2]d2+2α(1−β)cd.

c) If α = 1− β then
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σ2
W (a, b) = (1 − 2α)σ2

T (a, b) + (α − α2)(c2 + d2) + 2α2cd.

d) If c = d then

σ2
W (a, b) = (β − α)σ2

T (a, b) + [α − α2 + 1 − β − (1 − β)2 + 2α(1 − β)]d2.

e) If α = 1− β and c = d, then µW (a, b) = µT (a, b) and

σ2
W (a, b) = (1 − 2α)σ2

T (a, b) + 2αd2.

Proof. We will prove b) since its proof contains the most algebra. Now

σ2
W = α(µT − c)2 + (β − α)(σ2

T + µ2
T ) + (1 − β)(µT + d)2 − µ2

W .

Collecting terms shows that

σ2
W = (β − α)σ2

T + (β − α + α + 1 − β)µ2
T + 2[(1 − β)d − αc]µT

+αc2 + (1 − β)d2 − µ2
W .

From a),

µ2
W = µ2

T + 2[(1− β)d − αc]µT + α2c2 + (1 − β)2d2 − 2α(1 − β)cd,

and we find that

σ2
W = (β − α)σ2

T + (α − α2)c2 + [(1 − β) − (1 − β)2 ]d2 + 2α(1 − β)cd. �

The Truncated Exponential Distribution
Let Y be a (one sided) truncated exponential TEXP (λ, b) random vari-

able. Then the pdf of Y is

fY (y|λ, b) =
1
λ
e−y/λ

1 − exp(− b
λ )

for 0 < y ≤ b where λ > 0. Let b = kλ, and let

ck =

∫ kλ

0

1

λ
e−y/λdy = 1 − e−k.

Next we will find the first two moments of Y ∼ TEXP (λ, b = kλ) for k > 0.

Theorem 8.10. If Y is TEXP (λ, b = kλ) for k > 0, then

a) E(Y ) = λ

[
1 − (k + 1)e−k

1 − e−k

]
,

and
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b) E(Y 2) = 2λ2

[
1 − 1

2 (k2 + 2k + 2)e−k

1 − e−k

]
.

See Problem 8.6 for a related result.

Proof. a) Note that

ckE(Y ) =

∫ kλ

0

y

λ
e−y/λdy = −ye−y/λ|kλ

0 +

∫ kλ

0

e−y/λdy

(use integration by parts). So

ckE(Y ) = −kλe−k + (−λe−y/λ)|kλ
0 = −kλe−k + λ(1 − e−k).

Hence

E(Y ) = λ

[
1 − (k + 1)e−k

1 − e−k

]
.

b) Note that

ckE(Y 2) =

∫ kλ

0

y2

λ
e−y/λdy.

Since

d

dy
[−(y2 + 2λy + 2λ2)e−y/λ] =

1

λ
e−y/λ(y2 + 2λy + 2λ2) − e−y/λ(2y + 2λ)

= y2 1

λ
e−y/λ,

we have ckE(Y 2) = [−(y2 + 2λy + 2λ2)e−y/λ]kλ
0 =

− (k2λ2 + 2λ2k + 2λ2)e−k + 2λ2. So the result follows. �

Since as k → ∞, E(Y ) → λ, and E(Y 2) → 2λ2, we have VAR(Y ) → λ2.
If k = 9 log(2) ≈ 6.24, then E(Y ) ≈ .998λ, and E(Y 2) ≈ 0.95(2λ2).

The Truncated Double Exponential Distribution
Suppose that X is a double exponential DE(µ, λ) random variable. Then

MED(X) = µ and MAD(X) = log(2)λ. Let c = k log(2), and let the trunca-
tion points a = µ−kMAD(X) = µ−cλ and b = µ+kMAD(X) = µ+cλ. Let
XT (a, b) ≡ Y be the truncated double exponential TDE(µ, λ, a, b) random
variable. Then for a ≤ y ≤ b, the pdf of Y is

fY (y|µ, λ, a, b) =
1

2λ(1 − exp(−c))
exp(−|y − µ|/λ).

Theorem 8.11. a) E(Y ) = µ.
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b) VAR(Y ) = 2λ2

[
1 − 1

2 (c2 + 2c + 2)e−c

1 − e−c

]
.

Proof. a) follows by symmetry and b) follows from Theorem 8.10 b) since
VAR(Y ) = E[(Y − µ)2] = E(W 2

T ) where WT is TEXP (λ, b = cλ). �

As c → ∞, VAR(Y ) → 2λ2. If k = 9, then c = 9 log(2) ≈ 6.24 and
VAR(Y ) ≈ 0.95(2λ2).

The Truncated Normal Distribution
Now if X is N(µ, σ2) then let Y be a truncated normal TN(µ, σ2, a, b)

random variable. Then fY (y) =

1√
2πσ2

exp (−(y−µ)2

2σ2 )

Φ( b−µ
σ ) − Φ(a−µ

σ )
I[a,b](y) where Φ is the

standard normal cdf. The indicator function

I[a,b](y) = 1 if a ≤ y ≤ b

and is zero otherwise. Let φ be the standard normal pdf.

Theorem 8.12. E(Y ) = µ +

[
φ(a−µ

σ ) − φ( b−µ
σ )

Φ( b−µ
σ

) − Φ(a−µ
σ

)

]
σ, and

V (Y ) = σ2

[
1 +

(a−µ
σ

)φ(a−µ
σ

) − ( b−µ
σ

)φ( b−µ
σ

)

Φ( b−µ
σ ) − Φ(a−µ

σ )

]
− σ2

[
φ(a−µ

σ
) − φ( b−µ

σ
)

Φ( b−µ
σ ) − Φ(a−µ

σ )

]2

.

(See Johnson and Kotz 1970a, p. 83.)

Proof. Let c =
1

Φ( b−µ
σ ) − Φ(a−µ

σ )
.

Then E(Y ) =
∫ b

a
yfY (y)dy. Hence

1

c
E(Y ) =

∫ b

a

y√
2πσ2

exp (
−(y − µ)2

2σ2
)dy

=

∫ b

a

(
y − µ

σ
)

1√
2π

exp (
−(y − µ)2

2σ2
)dy +

µ

σ

1√
2π

∫ b

a

exp (
−(y − µ)2

2σ2
)dy

=

∫ b

a

(
y − µ

σ
)

1√
2π

exp (
−(y − µ)2

2σ2
)dy + µ

∫ b

a

1√
2πσ2

exp (
−(y − µ)2

2σ2
)dy.

Note that the integrand of the last integral is the pdf of a N(µ, σ2) distribu-
tion. Let z = (y − µ)/σ. Thus dz = dy/σ, and E(Y )/c =

∫ b−µ
σ

a−µ
σ

σ
z√
2π

e−z2/2dz +
µ

c
=

σ√
2π

(−e−z2/2)|
b−µ

σ
a−µ

σ

+
µ

c
.
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Multiplying both sides by c gives the expectation result.

E(Y 2) =

∫ b

a

y2fY (y)dy.

Hence
1

c
E(Y 2) =

∫ b

a

y2

√
2πσ2

exp (
−(y − µ)2

2σ2
)dy

= σ

∫ b

a

(
y2

σ2
− 2µy

σ2
+

µ2

σ2
)

1√
2π

exp (
−(y − µ)2

2σ2
)dy

+σ

∫ b

a

2yµ − µ2

σ2

1√
2π

exp (
−(y − µ)2

2σ2
)dy

= σ

∫ b

a

(
y − µ

σ
)2

1√
2π

exp (
−(y − µ)2

2σ2
)dy + 2

µ

c
E(Y ) − µ2

c
.

Let z = (y − µ)/σ. Then dz = dy/σ, dy = σdz, and y = σz + µ. Hence

E(Y 2)

c
= 2

µ

c
E(Y ) − µ2

c
+ σ

∫ b−µ
σ

a−µ
σ

σ
z2

√
2π

e−z2/2dz.

Next integrate by parts with w = z and dv = ze−z2/2dz. Then E(Y 2)/c =

2
µ

c
E(Y ) − µ2

c
+

σ2

√
2π

[(−ze−z2/2)|
b−µ

σ
a−µ

σ

+

∫ b−µ
σ

a−µ
σ

e−z2/2dz]

= 2
µ

c
E(Y ) − µ2

c
+ σ2

[
(
a − µ

σ
)φ(

a − µ

σ
) − (

b − µ

σ
)φ(

b − µ

σ
) +

1

c

]
.

Using

VAR(Y ) = c
1

c
E(Y 2) − (E(Y ))2

gives the result. �

Theorem 8.13. Let Y be TN(µ, σ2, a = µ − kσ, b = µ + kσ). Then

E(Y ) = µ and V (Y ) = σ2

[
1 − 2kφ(k)

2Φ(k)− 1

]
.

Proof. Use the symmetry of φ, the fact that Φ(−x) = 1 − Φ(x), and the
above lemma to get the result. �

Examining V (Y ) for several values of k shows that the TN(µ, σ2, a =
µ− kσ, b = µ + kσ) distribution does not change much for k > 3.0. See Table
8.2.

The Truncated Cauchy Distribution
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Table 8.2 Variances for Several Truncated Normal Distributions

k V (Y )
2.0 0.774σ2

2.5 0.911σ2

3.0 0.973σ2

3.5 0.994σ2

4.0 0.999σ2

If X is a Cauchy C(µ, σ) random variable, then MED(X) = µ and
MAD(X) = σ. If Y is a truncated Cauchy TC(µ, σ, µ− aσ, µ + bσ) random
variable, then

fY (y) =
1

tan−1(b) + tan−1(a)

1

σ[1 + (y−µ
σ )2]

for µ − aσ < y < µ + bσ. For the following theorem, see Johnson and Kotz
(1970a, p. 162) and Dahiya, Staneski and Chaganty (2001).

Theorem 8.14. a)

E(Y ) = µ + σ

(
log(1 + b2) − log(1 + a2)

2[tan−1(b) + tan−1(a)]

)
, and

V (Y ) = σ2

[
b + a − tan−1(b) − tan−1(a)

tan−1(b) + tan−1(a)
−
(

log(1 + b2) − log(1 + a2)

tan−1(b) + tan−1(a)

)2
]

.

b) If a = b, then E(Y ) = µ, and V (Y ) = σ2

[
b − tan−1(b)

tan−1(b)

]
.

8.1.6 Asymptotic Variances for Trimmed Means

The truncated distributions will be useful for finding the asymptotic vari-
ances of trimmed and two stage trimmed means. Assume that Y is from a
symmetric location–scale family with parameters µ and σ and that the trun-
cation points are a = µ − zσ and b = µ + zσ. Recall that for the trimmed
mean Tn,

√
n(Tn − µT (a, b))

D→ N

[
0,

σ2
W (a, b)

(β − α)2

]
.

Since the family is symmetric and the truncation is symmetric, α = F (a) =
1− β and µT (a, b) = µ.

Definition 8.21. Let Y1, ..., Yn be iid random variables and let Dn ≡
Dn(Y1, ..., Yn) be an estimator of a parameter µD such that
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√
n(Dn − µD)

D→ N(0, σ2
D).

Then the asymptotic variance of
√

n(Dn − µD) is σ2
D and the asymptotic

variance (AV) of Dn is σ2
D/n. If S2

D is a consistent estimator of σ2
D, then the

(asymptotic) standard error (SE) of Dn is SD/
√

n.

Remark 8.2. In the literature, usually either σ2
D or σ2

D/n is called the
asymptotic variance of Dn. The parameter σ2

D is a function of both the
estimator Dn and the underlying distribution F of Y1. Frequently nVAR(Dn)
converges in distribution to σ2

D, but not always. See Staudte and Sheather
(1990, p. 51) and Lehmann (1999, p. 232).

Example 8.8. If Y1, ..., Yn are iid from a distribution with mean µ and
variance σ2, then by the central limit theorem,

√
n(Y n − µ)

D→ N(0, σ2).

Recall that VAR(Y n) = σ2/n = AV (Y n) and that the standard error
SE(Y n) = Sn/

√
n where S2

n is the sample variance.

Remark 8.3. Returning to the trimmed mean Tn where Y is from a
symmetric location–scale family, take µ = 0 since the asymptotic variance
does not depend on µ. Then

n AV (Tn) =
σ2

W (a, b)

(β − α)2
=

σ2
T (a, b)

1 − 2α
+

2α(F−1(α))2

(1 − 2α)2
.

See, for example, Bickel (1965). This formula is useful since the variance of the
truncated distribution σ2

T (a, b) has been computed for several distributions
in the previous subsection.

Definition 8.22. An estimator Dn is a location and scale equivariant
estimator if Dn(α + βY1, ..., α + βYn) = α + βDn(Y1, ..., Yn) where α and β
are arbitrary real constants.

Remark 8.4. Many location estimators such as the sample mean, sample
median, trimmed mean, metrically trimmed mean, and two stage trimmed
means are equivariant. Let Y1, ..., Yn be iid from a distribution with cdf
FY (y) and suppose that Dn is an equivariant estimator of µD ≡ µD(FY ) ≡
µD(FY (y)). If Xi = α + βYi where β 6= 0, then the cdf of X is FX(y) =
FY ((y − α)/β). Suppose that

µD(FX) ≡ µD[FY (
y − α

β
)] = α + βµD [FY (y)]. (8.29)

Let Dn(Y ) ≡ Dn(Y1, ..., Yn). If
√

n[Dn(Y ) − µD(FY (y))]
D→ N(0, σ2

D), then
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√
n[Dn(X)− µD(FX)] =

√
n[α + βDn(Y )− (α + βµD(FY ))]

D→ N(0, β2σ2
D).

This result is especially useful when F is a cdf from a location–scale family
with parameters µ and σ. In this case, Equation (8.29) holds when µD is the
population mean, population median, and the population truncated mean
with truncation points a = µ−z1σ and b = µ+z2σ (the parameter estimated
by trimmed and two stage trimmed means).

Refer to the notation for two stage trimmed means below Theorem 8.3.
Then from Theorem 8.5,

√
n[TA,n − µT (ao, bo)]

D→ N

[
0,

σ2
W (ao, bo)

(βo − αo)2

]
,

and
√

n[TS,n − µT (aM , bM)]
D→ N

[
0,

σ2
W (aM , bM)

(βM − αM)2

]
.

If the distribution of Y is symmetric then TA,n and TS,n are asymptotically
equivalent. It is important to note that no knowledge of the unknown distri-
bution and parameters is needed to compute the two stage trimmed means
and their standard errors.

The next three theorems find the asymptotic variance for trimmed and
two stage trimmed means when the underlying distribution is normal, double
exponential and Cauchy, respectively. Assume a = MED(Y )−kMAD(Y ) and
b = MED(Y ) + kMAD(Y ).

Theorem 8.15. Suppose that Y comes from a normal N(µ, σ2) distribu-
tion. Let Φ(x) be the cdf and let φ(x) be the density of the standard normal.
Then for the α trimmed mean,

n AV =




1 − 2zφ(z)

2Φ(z)−1

1 − 2α
+

2αz2

(1 − 2α)2



σ2 (8.30)

where α = Φ(−z), and z = kΦ−1(0.75). For the two stage estimators, round
100α up to the nearest integer J. Then use αJ = J/100 and zJ = −Φ−1(αJ)
in Equation (8.30).

Proof. If Y follows the normal N(µ, σ2) distribution, then a = µ −
kMAD(Y ) and b = µ+kMAD(Y ) where MAD(Y ) = Φ−1(0.75)σ. It is enough
to consider the standard N(0,1) distribution since n AV (Tn, N(µ, σ2)) =
σ2 n AV (Tn, N(0, 1)). If a = −z and b = z, then by Theorem 8.13,

σ2
T (a, b) = 1 − 2zφ(z)

2Φ(z) − 1
.
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Use Remark 8.3 with z = kΦ−1(0.75), and α = Φ(−z) to get Equation (8.30).

Theorem 8.16. Suppose that Y comes from a double exponential DE(0,1)
distribution. Then for the α trimmed mean,

n AV =

2−(z2+2z+2)e−z

1−e−z

1 − 2α
+

2αz2

(1 − 2α)2
(8.31)

where z = k log(2) and α = 0.5 exp(−z). For the two stage estimators,
round 100α up to the nearest integer J. Then use αJ = J/100 and let
zJ = − log(2αJ).

Proof Sketch. For the DE(0, 1) distribution, MAD(Y ) = log(2). If the
DE(0,1) distribution is truncated at −z and z, then use Remark 8.3 with

σ2
T (−z, z) =

2 − (z2 + 2z + 2)e−z

1 − e−z
.

Theorem 8.17. Suppose that Y comes from a Cauchy (0,1) distribution.
Then for the α trimmed mean,

n AV =
z − tan−1(z)

(1 − 2α) tan−1(z)
+

2α(tan[π(α − 1
2
)])2

(1 − 2α)2
(8.32)

where z = k and

α =
1

2
+

1

π
tan−1(z).

For the two stage estimators, round 100α up to the nearest integer J. Then
use αJ = J/100 and let zJ = tan[π(αJ − 0.5)].

Proof Sketch. For the C(0, 1) distribution, MAD(Y ) = 1. If the C(0,1)
distribution is truncated at −z and z, then use Remark 8.3 with

σ2
T (−z, z) =

z − tan−1(z)

tan−1(z)
.

Next we give a theorem for the metrically trimmed mean Mn. Lopuhaä
(1999) shows the following result. Suppose (µ̂n, Cn) is an estimator of mul-
tivariate location and dispersion. Suppose that the iid data follow an el-
liptically contoured ECp(µ, Σ, g) distribution. Let (xJ , SJ) be the classical
estimator applied to the set J of cases with squared Mahalanobis distances

D2
i (µ̂n, Cn) ≤ k2. Under regularity conditions, if (µ̂n, Cn)

P→ (µ, sΣ) with

rate nδ where 0 < δ ≤ 0.5, then (xJ , SJ)
P→ (µ, dΣ) with the same rate nδ

where s > 0 and d > 0 are some constants. See Section 8.2 for discussion of
the above quantities.
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In the univariate setting with p = 1, let θ̂n = µ̂n and let D2
n = Cn

where Dn is an estimator of scale. Suppose the classical estimator (Y J , S2
J) ≡

(xJ , SJ) is applied to the set J of cases with θ̂n−kDn ≤ Yi ≤ θ̂n+kDn . Hence
Y J is the metrically trimmed mean Mn with k1 = k2 ≡ k. See Definition 8.14.

The population quantity estimated by (Y J , S2
J) is the truncated mean

and variance (µT (a, b), σ2
T (a, b)) of Definition 8.18 where θ̂n − kDn

P→ a and

θ̂n + kDn
P→ b. In the theorem below, the pdf corresponds to an elliptically

contoured distribution with p = 1 and Σ = τ2. Each pdf corresponds to a
location scale family with location parameter µ and scale parameter τ. Note
that (θ̂n, Dn) = (MED(n), MAD(n)) results in a

√
n consistent estimator

(Mn, S2
J).

Assumption E1: Suppose Y1, ..., Yn are iid from an EC1(µ, τ2, g) distri-
bution with pdf

f(y) =
c

τ
g

[(
y − µ

τ

)2
]

where g is continuously differentiable with finite 4th moment
∫

y4g(y2)dy <
∞, c > 0 is some constant, τ > 0 where y and µ are real.

Theorem 8.18. Let Mn be the metrically trimmed mean with k1 = k2 ≡
k. Assume (E1) holds. If (θ̂n , D2

n)
P→ (µ, sτ2) with rate nδ for some constant

s > 0 where 0 < δ ≤ 0.5, then (Mn, S2
J)

P→ (µ, σ2
T (a, b)) with the same rate

nδ.

Proof. The result is a special case of Lopuhaä (1999) which shows that

(Mn, S2
J)

P→ (µ, dτ2) with rate nδ. Since k1 = k2 = k, dτ2 = σ2
T (a, b). �

Note that the classical estimator applied to the set J̃ of cases Yi between
a and b is a

√
n consistent estimator of (µT (a, b), σ2

T(a, b)). Consider the set
J of cases with MED(n) − kMAD(n) ≤ Yi ≤ MED(N) + kMAD(n). By
Theorem 8.4 sets J̃ and J differ primarily in neighborhoods of a and b. This
result leads to the following conjecture.

Conjecture 8.1. If Y1, ..., Yn are iid from a distribution with a pdf that is

positive in neighborhoods of a and b, and if θ̂n−k1Dn
P→ a and θ̂n+k2Dn

P→ b

at rate n0.5, then (Mn, S2
J)

P→ (µT (a, b), σ2
T(a, b)) with rate n0.5.

8.2 The Multivariate Location and Dispersion Model

The multivariate location and dispersion (MLD) model is a special case of the
multivariate linear model, just like the location model is a special case of the
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multiple linear regression model. Robust estimators of multivariate location
and dispersion are useful for detecting outliers in the predictor variables and
for developing an outlier resistant multiple linear regression estimator.

The practical, highly outlier resistant,
√

n consistent FCH, RFCH, and
RMVN estimators of (µ, cΣ) are developed along with proofs. The RFCH
and RMVN estimators are reweighted versions of the FCH estimator. Olive
(2017b) shows why competing “robust estimators” fail to work, are impracti-
cal, or are not yet backed by theory. The RMVN and RFCH sets are defined
and will be used for outlier detection and to create practical robust methods
of multiple linear regression and multivariate linear regression. Many more
applications are given in Olive (2017b).

Warning: This section contains many acronyms, abbreviations, and es-
timator names such as FCH, RFCH, and RMVN. Often the acronyms start
with the added letter A, C, F, or R: A stands for algorithm, C for con-
centration, F for estimators that use a fixed number of trial fits, and R for
reweighted.

Definition 8.23. The multivariate location and dispersion model is

Y i = µ + ei, i = 1, . . . , n (8.33)

where e1, ..., en are p× 1 error random vectors, often iid with zero mean and
covariance matrix Cov(e) = Cov(Y ) = ΣY = Σe.

Note that the location model is a special case of the MLD model with
p = 1. If E(e) = 0, then E(Y ) = µ. A p×p dispersion matrix is a symmetric
matrix that measures the spread of a random vector. Covariance and corre-
lation matrices are dispersion matrices. One way to get a robust estimator
of multivariate location is to stack the marginal estimators of location into
a vector. The coordinatewise median MED(W ) is an example. The sample
mean x also stacks the marginal estimators into a vector, but is not outlier
resistant.

Let µ be a p×1 location vector and Σ a p×p symmetric dispersion matrix.
Because of symmetry, the first row of Σ has p distinct unknown parameters,
the second row has p−1 distinct unknown parameters, the third row has p−2
distinct unknown parameters, ..., and the pth row has one distinct unknown
parameter for a total of 1+2+· · ·+p = p(p+1)/2 unknown parameters. Since
µ has p unknown parameters, an estimator (T, C) of multivariate location
and dispersion, needs to estimate p(p+3)/2 unknown parameters when there
are p random variables.

The sample covariance or sample correlation matrices estimate these pa-
rameters very efficiently since Σ = (σij) where σij is a population covariance
or correlation. These quantities can be estimated with the sample covariance
or correlation taking two variables Xi and Xj at a time. Note that there are
p(p + 1)/2 pairs that can be chosen from p random variables X1, ..., Xp. See
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Definition 4.5 for the sample mean x, the sample covariance matrix S, and
the sample correlation matrix R.

Rule of thumb 8.1. For the classical estimators of multivariate location
and dispersion, (x, S) or (z = 0, R), we want n ≥ 10p. We want n ≥ 20p for
the robust MLD estimators (FCH, RFCH, or RMVN) described later in this
section.

8.2.1 Affine Equivariance

Before defining an important equivariance property, some notation is needed.
Assume that the data is collected in an n × p data matrix W . Let B = 1bT

where 1 is an n × 1 vector of ones and b is a p × 1 constant vector. Hence
the ith row of B is bT

i ≡ bT for i = 1, ..., n. For such a matrix B, consider
the affine transformation Z = WAT + B where A is any nonsingular p × p
matrix. An affine transformation changes xi to zi = Axi + b for i = 1, ..., n,
and affine equivariant multivariate location and dispersion estimators change
in natural ways.

Definition 8.24. The multivariate location and dispersion estimator
(T, C) is affine equivariant if

T (Z) = T (WAT + B) = AT (W ) + b, (8.34)

and C(Z) = C(WAT + B) = AC(W )AT . (8.35)

The following theorem shows that the Mahalanobis distances are invariant
under affine transformations. See Rousseeuw and Leroy (1987, pp. 252-262)
for similar results. Thus if (T, C) is affine equivariant, so is
(T, D2

(cn)(T, C) C) where D2
(j)(T, C) is the jth order statistic of the D2

i .

Theorem 8.19. If (T, C) is affine equivariant, then

D2
i (W ) ≡ D2

i (T (W ), C(W )) = D2
i (T (Z), C(Z)) ≡ D2

i (Z). (8.36)

Proof. Since Z = WAT + B has ith row zT
i = xT

i AT + bT ,

D2
i (Z) = [zi − T (Z)]T C−1(Z)[zi − T (Z)]

= [A(xi − T (W ))]T [AC(W )AT ]−1[A(xi − T (W ))]

= [xi − T (W )]T C−1(W )[xi − T (W )] = D2
i (W ). �
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Definition 8.25. For MLD, an elemental set J = {m1, ..., mp+1} is a
set of p + 1 cases drawn without replacement from the data set of n cases.
The elemental fit (TJ , CJ ) = (xJ , SJ) is the sample mean and the sample
covariance matrix computed from the cases in the elemental set.

If the data are iid, then the elemental fit gives an unbiased but inconsistent
estimator of (E(x), Cov(x)). Note that the elemental fit uses the smallest
sample size p + 1 such that SJ is nonsingular if the data are in “general
position” defined in Definition 8.27.

8.2.2 Breakdown

This subsection gives a standard definition of breakdown for estimators of
multivariate location and dispersion. The following notation will be useful.
Let W denote the n × p data matrix with ith row xT

i corresponding to the
ith case. Let w1, ...wn be the contaminated data after dn of the xi have been
replaced by arbitrarily bad contaminated cases. Let W n

d denote the n×p data
matrix with ith row wT

i . Then the contamination fraction is γn = dn/n. Let
(T (W ), C(W )) denote an estimator of multivariate location and dispersion
where the p × 1 vector T (W ) is an estimator of location and the p × p
symmetric positive semidefinite matrix C(W ) is an estimator of dispersion.

Theorem 8.20. Let B > 0 be a p × p symmetric matrix with eigenvalue
eigenvector pairs (λ1, e1), ..., (λp, ep) where λ1 ≥ λ2 · · · ≥ λp > 0 and the
orthonormal eigenvectors satisfy eT

i ei = 1 while eT
i ej = 0 for i 6= j. Let d

be a given p × 1 vector and let a be an arbitrary nonzero p × 1 vector.

a) max
a6=0

aT ddT a

aT Ba
= dT B−1d where the max is attained for a = cB−1d

for any constant c 6= 0. Note that the numerator = (aT d)2.

b) max
a6=0

aT Ba

aT a
= max

‖a‖=1
aT Ba = λ1 where the max is attained for a = e1.

c) min
a6=0

aT Ba

aT a
= min

‖a‖=1
aT Ba = λp where the min is attained for a = ep.

d) max
a⊥e1,...,ek

aT Ba

aT a
= max

‖a‖=1,a⊥e1,...,ek

aT Ba = λk+1 where the max is

attained for a = ek+1 for k = 1, 2, ..., p− 1.
e) Let (x, S) be the observed sample mean and sample covariance matrix

where S > 0. Then max
a6=0

naT (x − µ)(x − µ)T a

aT Sa
= n(x−µ)T S−1(x−µ) = T 2

where the max is attained for a = cS−1(x − µ) for any constant c 6= 0.
f) Let A be a p × p symmetric matrix. Let C > 0 be a p × p symmetric

matrix. Then max
a6=0

aT Aa

aT Ca
= λ1(C

−1A), the largest eigenvalue of C−1A. The
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value of a that achieves the max is the eigenvector g1 of C−1A corresponding

to λ1(C
−1A). Similarly min

a 6=0

aT Aa

aT Ca
= λp(C

−1A), the smallest eigenvalue of

C−1A. The value of a that achieves the min is the eigenvector gp of C−1A

corresponding to λp(C
−1A).

Proof Sketch. See Johnson and Wichern (1988, pp. 64-65, 184). For a),
note that rank(C−1A) = 1, where C = B and A = ddT , since rank(C−1A)
= rank(A) = rank(d) = 1. Hence C−1A has one nonzero eigenvalue eigen-
vector pair (λ1, g1). Since

(λ1 = dT B−1d, g1 = B−1d)

is a nonzero eigenvalue eigenvector pair for C−1A, and λ1 > 0, the result
follows by f).

Note that b) and c) are special cases of f) with A = B and C = I .
Note that e) is a special case of a) with d = (x− µ) and B = S.
(Also note that (λ1 = (x−µ)T S−1(x−µ), g1 = S−1(x−µ)) is a nonzero

eigenvalue eigenvector pair for the rank 1 matrix C−1A where C = S and
A = (x − µ)(x− µ)T .)

For f), see Mardia et al. (1979, p. 480). �

From Theorem 8.20, if C(W n
d) > 0, then max

‖a‖=1
aT C(W n

d )a = λ1 and

min
‖a‖=1

aT C(W n
d )a = λp. A high breakdown dispersion estimator C is positive

definite if the amount of contamination is less than the breakdown value.
Since aT Ca =

∑p
i=1

∑p
j=1 cijaiaj, the largest eigenvalue λ1 is bounded as

W n
d varies iff C(W n

d ) is bounded as W n
d varies.

Definition 8.26. The breakdown value of the multivariate location esti-
mator T at W is

B(T, W ) = min

{
dn

n
: sup
W n

d

‖T (W n
d)‖ = ∞

}

where the supremum is over all possible corrupted samples W n
d and 1 ≤

dn ≤ n. Let λ1(C(W )) ≥ · · · ≥ λp(C(W )) ≥ 0 denote the eigenvalues of the
dispersion estimator applied to data W . The estimator C breaks down if the
smallest eigenvalue can be driven to zero or if the largest eigenvalue can be
driven to ∞. Hence the breakdown value of the dispersion estimator is

B(C, W ) = min

{
dn

n
: sup
W n

d

max

[
1

λp(C(W n
d ))

, λ1(C(W n
d))

]
= ∞

}
.

Definition 8.27. Let γn be the breakdown value of (T, C). High break-
down (HB) statistics have γn → 0.5 as n → ∞ if the (uncontaminated) clean
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data are in general position: no more than p points of the clean data lie on
any (p−1)-dimensional hyperplane. Estimators are zero breakdown if γn → 0
and positive breakdown if γn → γ > 0 as n → ∞.

Note that if the number of outliers is less than the number needed to cause
breakdown, then ‖T‖ is bounded and the eigenvalues are bounded away from
0 and ∞. Also, the bounds do not depend on the outliers but do depend on
the estimator (T, C) and on the clean data W .

The following result shows that a multivariate location estimator T basi-
cally “breaks down” if the d outliers can make the median Euclidean distance
MED(‖wi−T (W n

d )‖) arbitrarily large where wT
i is the ith row of W n

d . Thus
a multivariate location estimator T will not break down if T can not be driven
out of some ball of (possibly huge) radius r about the origin. For an affine
equivariant estimator, the largest possible breakdown value is n/2 or (n+1)/2
for n even or odd, respectively. Hence in the proof of the following result, we
could replace dn < dT by dn < min(n/2, dT).

Theorem 8.21. Fix n. If nonequivariant estimators (that may have a
breakdown value of greater than 1/2) are excluded, then a multivariate loca-
tion estimator has a breakdown value of dT /n iff dT = dT,n is the smallest
number of arbitrarily bad cases that can make the median Euclidean distance
MED(‖wi − T (W n

d)‖) arbitrarily large.

Proof. Suppose the multivariate location estimator T satisfies ‖T (W n
d )‖ ≤

M for some constant M if dn < dT . Note that for a fixed data set W n
d

with ith row wi, the median Euclidean distance MED(‖wi − T (W n
d)‖) ≤

maxi=1,...,n ‖xi − T (W n
d )‖ ≤ maxi=1,...,n ‖xi‖ + M if dn < dT . Similarly,

suppose MED(‖wi − T (W n
d)‖) ≤ M for some constant M if dn < dT , then

‖T (Wn
d )‖ is bounded if dn < dT . �

Since the coordinatewise median MED(W ) is a HB estimator of multi-
variate location, it is also true that a multivariate location estimator T will
not break down if T can not be driven out of some ball of radius r about
MED(W ). Hence (MED(W ), Ip) is a HB estimator of MLD.

If a high breakdown estimator (T, C) ≡ (T (W n
d ), C(W n

d )) is evaluated
on the contaminated data W n

d , then the location estimator T is contained in
some ball about the origin of radius r, and 0 < a < λp ≤ λ1 < b where the
constants a, r, and b depend on the clean data and (T, C), but not on W n

d if
the number of outliers dn satisfies 0 ≤ dn < nγn < n/2 where the breakdown
value γn → 0.5 as n → ∞.

The following theorem will be used to show that if the classical estimator
(XB , SB) is applied to cn ≈ n/2 cases contained in a ball about the origin of
radius r where r depends on the clean data but not on W n

d , then (XB, SB)
is a high breakdown estimator.
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Theorem 8.22. If the classical estimator (XB , SB) is applied to cn cases
that are contained in some bounded region where p + 1 ≤ cn ≤ n, then the
maximum eigenvalue λ1 of SB is bounded.

Proof. The largest eigenvalue of a p × p matrix A is bounded above by
p max |ai,j| where ai,j is the (i, j) entry of A. See Datta (1995, p. 403). Denote
the cn cases by z1, ..., zcn

. Then the (i, j)th element ai,j of A = SB is

ai,j =
1

cn − 1

cn∑

m=1

(zi,m − zi)(zj,m − zj).

Hence the maximum eigenvalue λ1 is bounded. �

The determinant det(S) = |S| of S is known as the generalized sample
variance. Consider the hyperellipsoid

{z : (z − T )T C−1(z − T ) ≤ D2
(cn)} (8.37)

where D2
(cn) is the cnth smallest squared Mahalanobis distance based on

(T, C). This hyperellipsoid contains the cn cases with the smallest D2
i . Sup-

pose (T, C) = (xM , b SM ) is the sample mean and scaled sample covariance
matrix applied to some subset of the data where b > 0. The classical, RFCH,
and RMVN estimators satisfy this assumption. For h > 0, the hyperellipsoid

{z : (z − T )T C−1(z − T ) ≤ h2} = {z : D2
z ≤ h2} = {z : Dz ≤ h}

has volume equal to

2πp/2

pΓ (p/2)
hp
√

det(C) =
2πp/2

pΓ (p/2)
hpbp/2

√
det(SM).

If h2 = D2
(cn), then the volume is proportional to the square root of the deter-

minant |SM |1/2, and this volume will be positive unless extreme degeneracy
is present among the cn cases. See Johnson and Wichern (1988, pp. 103-104).

8.2.3 The Concentration Algorithm

Concentration algorithms are widely used since impractical brand name es-
timators, such as the MCD estimator given in Definition 8.28, take too long
to compute. The concentration algorithm, defined in Definition 8.29, use K
starts and attractors. A start is an initial estimator, and an attractor is an
estimator obtained by refining the start. For example, let the start be the
classical estimator (x, S). Then the attractor could be the classical estima-
tor (T1, C1) applied to the half set of cases with the smallest Mahalanobis
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distances. This concentration algorithm uses one concentration step, but the
process could be iterated for k concentration steps, producing an estimator
(Tk, Ck)

If more than one attractor is used, then some criterion is needed to select
which of the K attractors is to be used in the final estimator. If each attractor
(Tk,j, Ck,j) is the classical estimator applied to cn ≈ n/2 cases, then the
minimum covariance determinant (MCD) criterion is often used: choose the
attractor that has the minimum value of det(Ck,j) where j = 1, ..., K.

The remainder of this section will explain the concentration algorithm,
explain why the MCD criterion is useful but can be improved, provide some
theory for practical robust multivariate location and dispersion estimators,
and show how the set of cases used to compute the recommended RMVN or
RFCH estimator can be used to create outlier resistant regression estimators.
The RMVN and RFCH estimators are reweighted versions of the practical
FCH estimator, given in Definition 8.32.

Definition 8.28. Consider the subset Jo of cn ≈ n/2 observations whose
sample covariance matrix has the lowest determinant among all C(n, cn) sub-
sets of size cn. Let TMCD and CMCD denote the sample mean and sample
covariance matrix of the cn cases in Jo. Then the minimum covariance de-
terminant MCD(cn) estimator is (TMCD(W ), CMCD(W )).

Here

C(n, i) =

(
n

i

)
=

n!

i! (n − i)!

is the binomial coefficient.
The MCD estimator is a high breakdown (HB) estimator, and the value

cn = b(n + p + 1)/2c is often used as the default. The MCD estimator is the
pair

(β̂LTS , QLTS(β̂LTS)/(cn − 1))

in the location model where LTS stands for the least trimmed sum of squares
estimator. See Definition 8.10. The population analog of the MCD estimator
is closely related to the hyperellipsoid of highest concentration that contains
cn/n ≈ half of the mass. The MCD estimator is a

√
n consistent HB asymp-

totically normal estimator for (µ, aMCDΣ) where aMCD is some positive
constant when the data xi are iid from a large class of distributions. See
Cator and Lopuhaä (2010, 2012) who extended some results of Butler et al.
(1993).

Computing robust covariance estimators can be very expensive. For exam-
ple, to compute the exact MCD(cn) estimator (TMCD, CMCD), we need to
consider the C(n, cn) subsets of size cn. Woodruff and Rocke (1994, p. 893)
noted that if 1 billion subsets of size 101 could be evaluated per second, it
would require 1033 millenia to search through all C(200, 101) subsets if the
sample size n = 200. See Section 8.8 for the MCD complexity.
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Hence algorithm estimators will be used to approximate the robust esti-
mators. Elemental sets are the key ingredient for both basic resampling and
concentration algorithms.

Definition 8.29. Suppose that x1, ..., xn are p × 1 vectors of observed
data. For the multivariate location and dispersion model, an elemental set J
is a set of p + 1 cases. An elemental start is the sample mean and sample
covariance matrix of the data corresponding to J. In a concentration algo-
rithm, let (T−1,j , C−1,j) be the jth start (not necessarily elemental) and
compute all n Mahalanobis distances Di(T−1,j, C−1,j). At the next iter-
ation, the classical estimator (T0,j , C0,j) = (x0,j, S0,j) is computed from
the cn ≈ n/2 cases corresponding to the smallest distances. This itera-
tion can be continued for k concentration steps resulting in the sequence
of estimators (T−1,j, C−1,j), (T0,j, C0,j), ..., (Tk,j, Ck,j). The result of the it-
eration (Tk,j, Ck,j) is called the jth attractor. If Kn starts are used, then
j = 1, ..., Kn. The concentration attractor, (TA, CA), is the attractor chosen
by the algorithm. The attractor is used to obtain the final estimator. A com-
mon choice is the attractor that has the smallest determinant det(Ck,j). The
basic resampling algorithm estimator is a special case where k = −1 so that
the attractor is the start: (xk,j, Sk,j) = (x−1,j, S−1,j).

This concentration algorithm is a simplified version of the algorithms given
by Rousseeuw and Van Driessen (1999) and Hawkins and Olive (1999a). Using
k = 10 concentration steps often works well. The following proposition is
useful and shows that det(S0,j) tends to be greater than the determinant of
the attractor det(Sk,j).

Theorem 8.23: Rousseeuw and Van Driessen (1999, p. 214). Sup-
pose that the classical estimator (xt,j, St,j) is computed from cn cases and
that the n Mahalanobis distances Di ≡ Di(xt,j, St,j) are computed. If
(xt+1,j, St+1,j) is the classical estimator computed from the cn cases with
the smallest Mahalanobis distances Di, then det(St+1,j) ≤ det(St,j) with
equality iff (xt+1,j, St+1,j) = (xt,j, St,j).

Starts that use a consistent initial estimator could be used. Kn is the
number of starts and k is the number of concentration steps used in the
algorithm. Suppose the algorithm estimator uses some criterion to choose an
attractor as the final estimator where there are K attractors and K is fixed,
e.g. K = 500, so K does not depend on n. A crucial observation is that the
theory of the algorithm estimator depends on the theory of the attractors,
not on the estimator corresponding to the criterion.

For example, let (0, Ip) and (1, diag(1, 3, ..., p)) be the high breakdown
attractors where 0 and 1 are the p × 1 vectors of zeroes and ones. If the
minimum determinant criterion is used, then the final estimator is (0, Ip).
Although the MCD criterion is used, the algorithm estimator does not have
the same properties as the MCD estimator.
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Hawkins and Olive (2002) showed that if K randomly selected elemental
starts are used with concentration to produce the attractors, then the result-
ing estimator is inconsistent and zero breakdown if K and k are fixed and free
of n. Note that each elemental start can be made to breakdown by changing
one case. Hence the breakdown value of the final estimator is bounded by
K/n → 0 as n → ∞. Note that the classical estimator computed from hn

randomly drawn cases is an inconsistent estimator unless hn → ∞ as n → ∞.
Thus the classical estimator applied to a randomly drawn elemental set of
hn ≡ p + 1 cases is an inconsistent estimator, so the K starts and the K
attractors are inconsistent.

This theory shows that the Maronna et al. (2006, pp. 198-199) estimators
that use K = 500 and one concentration step (k = 0) are inconsistent and
zero breakdown. The following theorem is useful because it does not depend
on the criterion used to choose the attractor.

Suppose there are K consistent estimators (Tj , Cj) of (µ, a Σ) for some
constant a > 0, each with the same rate nδ. If (TA, CA) is an estimator
obtained by choosing one of the K estimators, then (TA, CA) is a consistent
estimator of (µ, a Σ) with rate nδ by Pratt (1959). See Theorem 2.18.

Theorem 8.24. Suppose the algorithm estimator chooses an attractor as
the final estimator where there are K attractors and K is fixed.

i) If all of the attractors are consistent estimators of (µ, a Σ), then the
algorithm estimator is a consistent estimator of (µ, a Σ).

ii) If all of the attractors are consistent estimators of (µ, a Σ) with the
same rate, e.g. nδ where 0 < δ ≤ 0.5, then the algorithm estimator is a
consistent estimator of (µ, a Σ) with the same rate as the attractors.

iii) If all of the attractors are high breakdown, then the algorithm estimator
is high breakdown.

iv) Suppose the data x1, ..., xn are iid and P (xi = µ) < 1. The elemental
basic resampling algorithm estimator (k = −1) is inconsistent.

v) The elemental concentration algorithm is zero breakdown.

Proof. i) Choosing from K consistent estimators for (µ, a Σ) results in a
consistent estimator for of (µ, a Σ), and ii) follows from Pratt (1959). iii) Let
γn,i be the breakdown value of the ith attractor if the clean data x1, ..., xn are
in general position. The breakdown value γn of the algorithm estimator can
be no lower than that of the worst attractor: γn ≥ min(γn,1, ..., γn,K) → 0.5
as n → ∞.

iv) Let (x−1,j, S−1,j) be the classical estimator applied to a randomly
drawn elemental set. Then x−1,j is the sample mean applied to p + 1 iid
cases. Hence E(Sj) = Σx, E[x−1,j] = E(x) = µ, and Cov(x−1,j) =
Cov(x)/(p+1) = Σx/(p+1) assuming second moments. So the (x−1,j, S−1,j)
are identically distributed and inconsistent estimators of (µ, Σx). Even with-
out second moments, there exists ε > 0 such that P (‖x−1,j−µ‖ > ε) = δε > 0
where the probability, ε, and δε do not depend on n since the distribution
of x−1,j only depends on the distribution of the iid xi, not on n. Then
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P (minj ‖x−1,j − µ‖ > ε) = P (all ‖x−1,j − µ‖ > ε) → δK
ε > 0 as n → ∞

where equality would hold if the x−1,j were iid. Hence the “best start” that
minimizes ‖x−1,j − µ‖ is inconsistent.

v) The classical estimator with breakdown 1/n is applied to each elemental
start. Hence γn ≤ K/n → 0 as n → ∞. �

Since the FMCD estimator is a zero breakdown elemental concentration
algorithm, the Hubert et al. (2008) claim that “MCD can be efficiently com-
puted with the FAST-MCD estimator” is false. Suppose K is fixed, but at
least one randomly drawn start is iterated to convergence so that k is not
fixed. Then it is not known whether the attractors are inconsistent or consis-
tent estimators, so it is not known whether FMCD is consistent. It is possible
to produce consistent estimators if K ≡ Kn is allowed to increase to ∞.

Remark 8.5. Let γo be the highest percentage of large outliers that an
elemental concentration algorithm can detect reliably. For many data sets,

γo ≈ min

(
n − cn

n
, 1 − [1 − (0.2)1/K]1/h

)
100% (8.38)

if n is large, cn ≥ n/2 and h = p + 1.

Proof. Suppose that the data set contains n cases with d outliers and
n − d clean cases. Suppose K elemental sets are chosen with replacement.
If Wi is the number of outliers in the ith elemental set, then the Wi are
iid hypergeometric(d, n − d, h) random variables. Suppose that it is desired
to find K such that the probability P(that at least one of the elemental
sets is clean) ≡ P1 ≈ 1 − α where 0 < α < 1. Then P1 = 1− P(none of
the K elemental sets is clean) ≈ 1 − [1− (1 − γ)h]K by independence. If the
contamination proportion γ is fixed, then the probability of obtaining at least
one clean subset of size h with high probability (say 1− α = 0.8) is given by
0.8 = 1− [1− (1−γ)h ]K . Fix the number of starts K and solve this equation
for γ. �

8.2.4 Theory for Practical Estimators

It is convenient to let the xi be random vectors for large sample theory,
but the xi are fixed clean observed data vectors when discussing breakdown.
This subsection presents the FCH estimator to be used along with the classi-
cal estimator. Recall from Definition 8.29 that a concentration algorithm uses
Kn starts (T−1,j , C−1,j). After finding (T0,j, C0,j), each start is refined with
k concentration steps, resulting in Kn attractors (Tk,j, Ck,j), and the con-
centration attractor (TA, CA) is the attractor that optimizes the criterion.
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Concentration algorithms include the basic resampling algorithm as a spe-
cial case with k = −1. Using k = 10 concentration steps works well, and
iterating until convergence is usually fast. The DGK estimator (Devlin et
al. 1975, 1981) defined below is one example. The DGK estimator is affine
equivariant since the classical estimator is affine equivariant and Mahalanobis
distances are invariant under affine transformations by Theorem 8.19. This
subsection will show that the Olive (2004a) MB estimator is a high break-
down estimator and that the DGK estimator is a

√
n consistent estimator

of (µ, aMCDΣ), the same quantity estimated by the MCD estimator. Both
estimators use the classical estimator computed from cn ≈ n/2 cases. The
breakdown point of the DGK estimator has been conjectured to be “at most
1/p.” See Rousseeuw and Leroy (1987, p. 254).

Definition 8.30. The DGK estimator (Tk,D, Ck,D) = (TDGK , CDGK)
uses the classical estimator (T−1,D, C−1,D) = (x, S) as the only start.

Definition 8.31. The median ball (MB) estimator (Tk,M , Ck,M) =
(TMB, CMB) uses (T−1,M , C−1,M) = (MED(W ), Ip) as the only start where
MED(W ) is the coordinatewise median. So (T0,M , C0,M) is the classical es-
timator applied to the “half set” of data closest to MED(W ) in Euclidean
distance.

The proof of the following theorem implies that a high breakdown estima-
tor (T, C) has MED(D2

i ) ≤ V and that the hyperellipsoid {x|D2
x ≤ D2

(cn)}
that contains cn ≈ n/2 of the cases is in some ball about the origin of ra-
dius r, where V and r do not depend on the outliers even if the number of
outliers is close to n/2. Also the attractor of a high breakdown estimator is
a high breakdown estimator if the number of concentration steps k is fixed,
e.g. k = 10. The theorem implies that the MB estimator (TMB , CMB) is high
breakdown.

Theorem 8.25. Suppose (T, C) is a high breakdown estimator where C

is a symmetric, positive definite p×p matrix if the contamination proportion
dn/n is less than the breakdown value. Then the concentration attractor
(Tk, Ck) is a high breakdown estimator if the coverage cn ≈ n/2 and the
data are in general position.

Proof. Following Leon (1986, p. 280), if A is a symmetric positive definite
matrix with eigenvalues τ1 ≥ · · · ≥ τp, then for any nonzero vector x,

0 < ‖x‖2 τp ≤ xT Ax ≤ ‖x‖2 τ1. (8.39)

Let λ1 ≥ · · · ≥ λp be the eigenvalues of C. By (8.39),

1

λ1
‖x− T‖2 ≤ (x − T )T C−1(x − T ) ≤ 1

λp
‖x − T‖2. (8.40)
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By (8.40), if the D2
(i) are the order statistics of the D2

i (T, C), then D2
(i) < V

for some constant V that depends on the clean data but not on the outliers
even if i and dn are near n/2. (Note that 1/λp and MED(‖xi−T‖2) are both
bounded for high breakdown estimators even for dn near n/2.)

Following Johnson and Wichern (1988, pp. 50, 103), the boundary of
the set {x|D2

x ≤ h2} = {x|(x − T )T C−1(x − T ) ≤ h2} is a hyperellip-
soid centered at T with axes of length 2h

√
λi. Hence {x|D2

x ≤ D2
(cn)} is

contained in some ball about the origin of radius r where r does not de-
pend on the number of outliers even for dn near n/2. This is the set con-
taining the cases used to compute (T0, C0). Since the set is bounded, T0

is bounded and the largest eigenvalue λ1,0 of C0 is bounded by Theorem
8.22. The determinant det(CMCD) of the HB minimum covariance deter-
minant estimator satisfies 0 < det(CMCD) ≤ det(C0) = λ1,0 · · ·λp,0, and

λp,0 > inf det(CMCD)/λp−1
1,0 > 0 where the infimum is over all possible data

sets with n−dn clean cases and dn outliers. Since these bounds do not depend
on the outliers even for dn near n/2, (T0, C0) is a high breakdown estimator.
Now repeat the argument with (T0, C0) in place of (T, C) and (T1, C1) in
place of (T0, C0). Then (T1, C1) is high breakdown. Repeating the argument
iteratively shows (Tk, Ck) is high breakdown. �

The following corollary shows that it is easy to find a subset J of cn ≈ n/2
cases such that the classical estimator (xJ , SJ ) applied to J is a HB estimator
of MLD.

Theorem 8.26. Let J consist of the cn cases xi such that
‖xi − MED(W )‖ ≤ MED(‖xi − MED(W )‖). Then the classical estimator
(xJ , SJ) applied to J is a HB estimator of MLD.

To investigate the consistency and rate of robust estimators of multivariate
location and dispersion, review Definitions 3.5 and 3.6.

The following assumption (E1) gives a class of distributions where we can
prove that the new robust estimators are

√
n consistent. Cator and Lop-

uhaä (2010, 2012) showed that MCD is consistent provided that the MCD
functional is unique. Distributions where the functional is unique are called
“unimodal,” and rule out, for example, a spherically symmetric uniform dis-
tribution. Theorem 8.27 is crucial for theory and Theorem 8.28 shows that
under (E1), both MCD and DGK are estimating (µ, aMCDΣ).

Assumption (E1): The x1, ..., xn are iid from a “unimodal” ellipti-
cally contoured ECp(µ, Σ, g) distribution with nonsingular covariance ma-
trix Cov(xi) where g is continuously differentiable with finite 4th moment:∫
(xT x)2g(xT x)dx < ∞.

Lopuhaä (1999) showed that if a start (T, C) is a consistent affine equiv-
ariant estimator of (µ, sΣ), then the classical estimator applied to the cases
with D2

i (T, C) ≤ h2 is a consistent estimator of (µ, aΣ) where a, s > 0 are
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some constants. Affine equivariance is not used for Σ = Ip. Also, the attrac-
tor and the start have the same rate. If the start is inconsistent, then so is
the attractor. The weight function I(D2

i (T, C) ≤ h2) is an indicator that is
1 if D2

i (T, C) ≤ h2 and 0 otherwise.

Theorem 8.27, Lopuhaä (1999). Assume the number of concentration
steps k is fixed. a) If the start (T, C) is inconsistent, then so is the attractor.

b) Suppose (T, C) is a consistent estimator of (µ, sIp) with rate nδ where
s > 0 and 0 < δ ≤ 0.5. Assume (E1) holds and Σ = Ip. Then the classical
estimator (T0, C0) applied to the cases with D2

i (T, C) ≤ h2 is a consistent
estimator of (µ, aIp) with the same rate nδ where a > 0.

c) Suppose (T, C) is a consistent affine equivariant estimator of (µ, sΣ)
with rate nδ where s > 0 and 0 < δ ≤ 0.5. Assume (E1) holds. Then the
classical estimator (T0, C0) applied to the cases with D2

i (T, C) ≤ h2 is a
consistent affine equivariant estimator of (µ, aΣ) with the same rate nδ where
a > 0. The constant a depends on the positive constants s, h, p, and the
elliptically contoured distribution, but does not otherwise depend on the
consistent start (T, C).

Let δ = 0.5. Applying Theorem 8.27c) iteratively for a fixed number k of
steps produces a sequence of estimators (T0, C0), ..., (Tk, Ck) where (Tj , Cj)
is a

√
n consistent affine equivariant estimator of (µ, ajΣ) where the con-

stants aj > 0 depend on s, h, p, and the elliptically contoured distribution,
but do not otherwise depend on the consistent start (T, C) ≡ (T−1, C−1).

The 4th moment assumption was used to simplify theory, but likely holds
under 2nd moments. Affine equivariance is needed so that the attractor is
affine equivariant, but probably is not needed to prove consistency.

Conjecture 8.2. Change the finite 4th moments assumption to a finite
2nd moments in assumption E1). Suppose (T, C) is a consistent estimator
of (µ, sΣ) with rate nδ where s > 0 and 0 < δ ≤ 0.5. Then the classical
estimator applied to the cases with D2

i (T, C) ≤ h2 is a consistent estimator
of (µ, aΣ) with the same rate nδ where a > 0.

Remark 8.6. To see that the Lopuhaä (1999) theory extends to con-
centration where the weight function uses h2 = D2

(cn)(T, C), note that

(T, C̃) ≡ (T, D2
(cn)(T, C) C) is a consistent estimator of (µ, bΣ) where b > 0

is derived in (8.42), and weight function I(D2
i (T, C̃) ≤ 1) is equivalent to the

concentration weight function I(D2
i (T, C) ≤ D2

(cn)(T, C)). As noted above

Theorem 8.19, (T, C̃) is affine equivariant if (T, C) is affine equivariant. Hence
Lopuhaä (1999) theory applied to (T, C̃) with h = 1 is equivalent to theory
applied to affine equivariant (T, C) with h2 = D2

(cn)(T, C).

If (T, C) is a consistent estimator of (µ, s Σ) with rate nδ where 0 < δ ≤
0.5, then D2(T, C) = (x − T )T C−1(x − T ) =
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(x − µ + µ− T )T [C−1 − s−1Σ−1 + s−1Σ−1](x− µ + µ − T )

= s−1D2(µ, Σ) + OP (n−δ). (8.41)

Thus the sample percentiles of D2
i (T, C) are consistent estimators of the per-

centiles of s−1D2(µ, Σ). Suppose cn/n → ξ ∈ (0, 1) as n → ∞, and let
D2

ξ (µ, Σ) be the 100ξth percentile of the population squared distances. Then

D2
(cn)(T, C)

P→ s−1D2
ξ (µ, Σ) and bΣ = s−1D2

ξ (µ, Σ)sΣ = D2
ξ (µ, Σ)Σ.

Thus
b = D2

ξ (µ, Σ) (8.42)

does not depend on s > 0 or δ ∈ (0, 0.5]. �

Concentration applies the classical estimator to cases with D2
i (T, C) ≤

D2
(cn)(T, C). Let cn ≈ n/2 and

b = D2
0.5(µ, Σ)

be the population median of the population squared distances. By Remark
8.6, if (T, C) is a

√
n consistent affine equivariant estimator of (µ, sΣ) then

(T, C̃) ≡ (T, D2
(cn)(T, C) C) is a

√
n consistent affine equivariant estimator

of (µ, bΣ), and D2
i (T, C̃) ≤ 1 is equivalent to D2

i (T, C) ≤ D2
(cn)(T, C)).

Hence Lopuhaä (1999) theory applied to (T, C̃) with h = 1 is equivalent
to theory applied to the concentration estimator using the affine equivariant
estimator (T, C) ≡ (T−1, C−1) as the start. Since b does not depend on s,
concentration produces a sequence of estimators (T0, C0), ..., (Tk, Ck) where
(Tj, Cj) is a

√
n consistent affine equivariant estimator of (µ, aΣ) where the

constant a > 0 is the same for j = 0, 1, ..., k.
Theorem 8.28 shows that a = aMCD where ξ = 0.5. Hence concentration

with a consistent affine equivariant estimator of (µ, sΣ) with rate nδ as a start
results in a consistent affine equivariant estimator of (µ, aMCDΣ) with rate
nδ. This result can be applied iteratively for a finite number of concentration
steps. Hence DGK is a

√
n consistent affine equivariant estimator of the

same quantity that MCD is estimating. It is not known if the results hold
if concentration is iterated to convergence. For multivariate normal data,
D2(µ, Σ) ∼ χ2

p.

Theorem 8.28. Assume that (E1) holds and that (T, C) is a consistent
affine equivariant estimator of (µ, sΣ) with rate nδ where the constants s > 0
and 0 < δ ≤ 0.5. Then the classical estimator (xt,j, St,j) computed from the
cn ≈ n/2 of cases with the smallest distances Di(T, C) is a consistent affine
equivariant estimator of (µ, aMCDΣ) with the same rate nδ.

Proof. By Remark 8.6, the estimator is a consistent affine equivariant es-
timator of (µ, aΣ) with rate nδ. By the remarks above, a will be the same for
any consistent affine equivariant estimator of (µ, sΣ) and a does not depend
on s > 0 or δ ∈ (0, 0.5]. Hence the result follows if a = aMCD. The MCD
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estimator is a
√

n consistent affine equivariant estimator of (µ, aMCDΣ) by
Cator and Lopuhaä (2010, 2012). If the MCD estimator is the start, then it
is also the attractor by Theorem 8.23 which shows that concentration does
not increase the MCD criterion. Hence a = aMCD. �

Next we define the easily computed robust
√

n consistent FCH estima-
tor, so named since it is fast, consistent, and uses a high breakdown attrac-
tor. The FCH and MBA estimators use the

√
n consistent DGK estimator

(TDGK , CDGK) and the high breakdown MB estimator (TMB , CMB) as at-
tractors.

Definition 8.32. Let the “median ball” be the hypersphere containing the
“half set” of data closest to MED(W ) in Euclidean distance. The FCH esti-
mator uses the MB attractor if the DGK location estimator TDGK is outside
of the median ball, and the attractor with the smallest determinant, other-
wise. Let (TA, CA) be the attractor used. Then the estimator (TFCH , CFCH)
takes TFCH = TA and

CFCH =
MED(D2

i (TA, CA))

χ2
p,0.5

CA (8.43)

where χ2
p,0.5 is the 50th percentile of a chi–square distribution with p degrees

of freedom.

Remark 8.7. The MBA estimator (TMBA, CMBA) uses the attractor
(TA, CA) with the smallest determinant. Hence the DGK estimator is used
as the attractor if det(CDGK) ≤ det(CMB), and the MB estimator is used
as the attractor, otherwise. Then TMBA = TA and CMBA is computed using
the right hand side of (8.43). The difference between the FCH and MBA
estimators is that the FCH estimator also uses a location criterion to choose
the attractor: if the DGK location estimator TDGK has a greater Euclidean
distance from MED(W ) than half the data, then FCH uses the MB attractor.
The FCH estimator only uses the attractor with the smallest determinant if
‖TDGK − MED(W )‖ ≤ MED(Di(MED(W ), Ip)). Using the location crite-
rion increases the outlier resistance of the FCH estimator for certain types of
outliers. See Olive (2017b).

The following theorem shows the FCH estimator has good statistical prop-
erties. We conjecture that FCH is high breakdown. Note that the location
estimator TFCH is high breakdown and that det(CFCH) is bounded away
from 0 and ∞ if the data is in general position, even if nearly half of the
cases are outliers.

Theorem 8.29. TFCH is high breakdown if the clean data are in gen-
eral position. Suppose (E1) holds. If (TA, CA) is the DGK or MB attractor
with the smallest determinant, then (TA, CA) is a

√
n consistent estimator

of (µ, aMCDΣ). Hence the MBA and FCH estimators are outlier resistant
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√
n consistent estimators of (µ, cΣ) where c = u0.5/χ2

p,0.5, and c = 1 for
multivariate normal data.

Proof. TFCH is high breakdown since it is a bounded distance from
MED(W ) even if the number of outliers is close to n/2. Under (E1) the
FCH and MBA estimators are asymptotically equivalent since ‖TDGK −
MED(W )‖ → 0 in probability. The estimator satisfies 0 < det(CMCD) ≤
det(CA) ≤ det(C0,M) < ∞ by Theorem 8.25 if up to nearly 50% of the cases
are outliers. If the distribution is spherical about µ, then the result follows
from Pratt (1959) and Theorem 8.23 since both starts are

√
n consistent.

Otherwise, the MB estimator CMB is a biased estimator of aMCDΣ. But
the DGK estimator CDGK is a

√
n consistent estimator of aMCDΣ by The-

orem 8.28 and ‖CMCD − CDGK‖ = OP (n−1/2). Thus the probability that
the DGK attractor minimizes the determinant goes to one as n → ∞, and
(TA, CA) is asymptotically equivalent to the DGK estimator (TDGK , CDGK).

Let CF = CFCH or CF = CMBA. Let P (U ≤ uα) = α where U is given
by (1.62). Then the scaling in (8.43) makes CF a consistent estimator of cΣ
where c = u0.5/χ2

p,0.5, and c = 1 for multivariate normal data. �

A standard method of reweighting can be used to produce the RMBA and
RFCH estimators. RMVN uses a slightly modified method of reweighting so
that RMVN gives good estimates of (µ, Σ) for multivariate normal data,
even when certain types of outliers are present.

Definition 8.33. The RFCH estimator uses two standard reweighting
steps. Let (µ̂1, Σ̃1) be the classical estimator applied to the n1 cases with
D2

i (TFCH , CFCH) ≤ χ2
p,0.975, and let

Σ̂1 =
MED(D2

i (µ̂1, Σ̃1))

χ2
p,0.5

Σ̃1.

Then let (TRFCH , Σ̃2) be the classical estimator applied to the cases with

D2
i (µ̂1, Σ̂1) ≤ χ2

p,0.975, and let

CRFCH =
MED(D2

i (TRFCH , Σ̃2))

χ2
p,0.5

Σ̃2.

RMBA and RFCH are
√

n consistent estimators of (µ, cΣ) by Lopuhaä
(1999) where the weight function uses h2 = χ2

p,0.975, but the two estimators
use nearly 97.5% of the cases if the data is multivariate normal.

Definition 8.34. The RMVN estimator uses (µ̂1, Σ̃1) and n1 as above.
Let q1 = min{0.5(0.975)n/n1, 0.995}, and

Σ̂1 =
MED(D2

i (µ̂1, Σ̃1))

χ2
p,q1

Σ̃1.
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Then let (TRMV N , Σ̃2) be the classical estimator applied to the n2 cases with

D2
i (µ̂1, Σ̂1)) ≤ χ2

p,0.975. Let q2 = min{0.5(0.975)n/n2, 0.995}, and

CRMV N =
MED(D2

i (TRMV N , Σ̃2))

χ2
p,q2

Σ̃2.

The RMVN estimator is a
√

n consistent estimator of (µ, dΣ) by Lopuhaä
(1999) where the weight function uses h2 = χ2

p,0.975 and d = u0.5/χ2
p,q where

q2 → q in probability as n → ∞. Here 0.5 ≤ q < 1 depends on the elliptically
contoured distribution, but q = 0.5 and d = 1 for multivariate normal data.

Hubert et al. (2008, 2012) claim that FMCD computes the MCD estimator.
This claim is trivially shown to be false in the following theorem.

Theorem 8.30. Neither FMCD nor Det-MCD compute the MCD esti-
mator.

Proof. A necessary condition for an estimator to be the MCD estimator
is that the determinant of the covariance matrix for the estimator be the
smallest for every run in a simulation. Sometimes FMCD had the smaller
determinant and sometimes Det-MCD had the smaller determinant in the
simulations done by Hubert et al. (2012). �

The following theorem shows that it is very difficult to drive the deter-
minant of the dispersion estimator from a concentration algorithm to zero.

Theorem 8.31. Consider the concentration and MCD estimators that
both cover cn cases. For multivariate data, if at least one of the starts is
nonsingular, then the concentration attractor CA is less likely to be singular
than the high breakdown MCD estimator CMCD.

Proof. If all of the starts are singular, then the Mahalanobis distances
cannot be computed and the classical estimator can not be applied to cn

cases. Suppose that at least one start was nonsingular. Then CA and CMCD

are both sample covariance matrices applied to cn cases, but by definition
CMCD minimizes the determinant of such matrices. Hence 0 ≤ det(CMCD) ≤
det(CA). �

Software

The robustbase library was downloaded from (www.r-project.org/#doc).
The preface explains how to use the source command to get the lspack
functions in R and how to download a library from R. Type the commands
library(MASS) and library(robustbase) to compute the FMCD and
OGK estimators with the cov.mcd and covOGK functions. To use Det-MCD
instead of FMCD, change

out <- covMcd(x) to out <- covMcd(x,nsamp="deterministic"),
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but in Spring 2015 this change was more likely to cause errors.
The function function covfch computes FCH and RFCH, while covrmvn

computes the RMVN and MB estimators. The function covrmb computes MB
and RMB where RMB is like RMVN except the MB estimator is reweighted
instead of FCH. Functions covdgk, covmba, and rmba compute the scaled
DGK, MBA, and RMBA estimators. Better programs would use MB if
DGK causes an error.

8.2.5 The RMVN and RFCH Sets

Both the RMVN and RFCH estimators compute the classical estimator
(xU , SU ) on some set U containing nU ≥ n/2 of the cases. Referring to Defi-
nition 8.33, for the RFCH estimator, (xU , SU ) = (TRFCH , Σ̃2), and then SU

is scaled to form CRFCH . Referring to Definition 8.34, for the RMVN esti-
mator, (xU , SU ) = (TRMV N , Σ̃2), and then SU is scaled to form CRMV N .
See Definition 8.35. The RFCH set can be defined similarly.

Definition 8.35. Let the n2 cases in Definition 8.34 be known as the
RMVN set U . Hence (TRMV N , Σ̃2) = (xU , SU ) is the classical estimator
applied to the RMVN set U , which can be regarded as the untrimmed data
(the data not trimmed by ellipsoidal trimming) or the cleaned data. Also
SU is the unscaled estimated dispersion matrix while CRMV N is the scaled
estimated dispersion matrix.

Remark 8.8. Classical methods can be applied to the RMVN subset U to
make robust methods. Under (E1), (xU , SU ) is a

√
n consistent estimator of

(µ, cUΣ) for some constant cU > 0 that depends on the underlying distribu-
tion of the iid xi. For a general estimator of multivariate location and disper-
sion (TA, CA), typically a reweight for efficiency step is performed, resulting
in a set U such that the classical estimator (xU , SU) is the classical estima-
tor applied to a set U . For example, use U = {xi|D2

i (TA, CA) ≤ χ2
p,0.975}.

Then the final estimator is (TF , CF ) = (xU , aSU) where scaling is done as
in Equation (8.43) in an attempt to make CF a good estimator of Σ if the
iid data are from a Np(µ, Σ) distribution. Then (xU , SU) can be shown to
be a

√
n consistent estimator of (µ, cUΣ) for a large class of distributions for

the RMVN set, for the RFCH set, or if (TA, CA) is an affine equivariant
√

n
consistent estimator of (µ, cAΣ) on a large class of distributions.

The two main ways to handle outliers are i) apply the multivariate method
to the cleaned data, and ii) plug in robust estimators for classical estimators.
Practical plug in robust estimators have rarely been shown to be

√
n consis-

tent and highly outlier resistant.
Using the RMVN or RFCH set U is simultaneously a plug in method and

an objective way to clean the data such that the resulting robust method is
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often backed by theory. This result is extremely useful computationally: find
the RMVN set or RFCH set U , then apply the classical method to the cases
in the set U . This procedure is often equivalent to using (xU , SU ) as plug
in estimators. The method can be applied if n > 2(p + 1) but may not work
well unless n > 20p. The lspack function getu gets the RMVN set U as well
as the case numbers corresponding to the cases in U .

The set U is a small volume hyperellipsoid containing at least half of the
cases since concentration is used. The set U can also be regarded as the
“untrimmed data”: the data that was not trimmed by ellipsoidal trimming.
Theory has been proved for a large class of elliptically contoured distributions,
but it is conjectured that theory holds for a much wider class of distributions.
See Olive (2017b, pp. 127-128).

Application 8.6. Outlier resistant regression: Let the ith case wi =
(Yi, x

T
i )T where the continuous predictors from xi are denoted by ui for

i = 1, ..., n. Find the RFCH or RMVN set from the ui, and then run the
regression method on the nU cases wi corresponding to the set U indices
i1, ...inU

, where nU ≥ n/2. Since the response variable was not used to pick
the cases, this regression method, conditional on nU and on the nU selected
cases, has similar large sample theory to the classical regression method that
uses all n cases. A similar technique can be used if there is more than one
response variable.

Often the theory of the method applies to the cleaned data set since y was
not used to pick the subset of the data. Efficiency can be much lower since
nu cases are used where n/2 ≤ nu ≤ n, and the trimmed cases tend to be
the “farthest” from the center of w.

In R, assume Y is the vector of response variables, x is the data matrix of
the predictors (often not including the trivial predictor), and w is the data
matrix of the wi. Then the following R commands can be used to get the
cleaned data set. We could use the covmb2 set B instead of the RMVN set
U computed from the w by replacing the command getu(w) by getB(w).

indx <- getu(w)$indx #often w = x

Yc <- Y[indx]

Xc <- x[indx,]

#example

indx <- getu(buxx)$indx

Yc <- buxy[indx]

Xc <- buxx[indx,]

outr <- lsfit(Xc,Yc)

MLRplot(Xc,Yc) #right click Stop twice
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8.2.6 MLD Outlier Detection if p > n

Most outlier detection methods work best if n ≥ 20p, but often data sets have
p > n, and outliers are a major problem. One of the simplest outlier detection
methods uses the Euclidean distances of the xi from the coordinatewise me-
dian Di = Di(MED(W ), Ip). Concentration type steps compute the weighted
median MEDj : the coordinatewise median computed from the “half set” of
cases xi with D2

i ≤ MED(D2
i (MEDj−1, Ip)) where MED0 = MED(W ).

We often used j = 0 (no concentration type steps) or j = 9. Let Di =
Di(MEDj, Ip). Let Wi = 1 if Di ≤ MED(D1, ..., Dn) + kMAD(D1, ..., Dn)
where k ≥ 0 and k = 5 is the default choice. Let Wi = 0, otherwise. Using
k ≥ 0 insures that at least half of the cases get weight 1. This weighting
corresponds to the weighting that would be used in a one sided metrically
trimmed mean (Huber type skipped mean) of the distances.

Definition 8.36. Let the covmb2 set B of at least n/2 cases correspond
to the cases with weight Wi = 1. The cases not in set B get weight Wi = 0.
Then the covmb2 estimator (T, C) is the sample mean and sample covariance
matrix applied to the cases in set B. Hence

T =

∑n
i=1 Wixi∑n

i=1 Wi
and C =

∑n
i=1 Wi(xi − T )(xi − T )T

∑n
i=1 Wi − 1

.

Example 8.9. Let the clean data (nonoutliers) be i 1 for i = 1, 2, 3, 4, and
5 while the outliers are j 1 for j = 16, 17, 18, and 19. Here n = 9 and 1 is p×1.
Making a plot of the data for p = 2 may be useful. Then the coordinatewise
median MED0 = MED(W ) = 5 1. The median Euclidean distance of the data
is the Euclidean distance of 5 1 from 1 1 = the Euclidean distance of 5 1 from
9 1. The median ball is the hypersphere centered at the coordinatewise median
with radius r = MED(Di(MED(W ), Ip), i = 1, ..., n) that tends to contain
(n+1)/2 of the cases if n is odd. Hence the clean data are in the median ball
and the outliers are outside of the median ball. The coordinatewise median
of the cases with the 5 smallest distances is the coordinatewise median of
the clean data: MED1 = 3 1. Then the median Euclidean distance of the
data from MED1 is the Euclidean distance of 3 1 from 1 1 = the Euclidean
distance of 3 1 from 5 1. Again the clean cases are the cases with the 5 smallest
Euclidean distances. Hence MEDj = 3 1 for j ≥ 1. For j ≥ 1, if xi = j 1, then
Di = |j − 3|√p. Thus D(1) = 0, D(2) = D(3) =

√
p, and D(4) = D(5) = 2

√
p.

Hence MED(D1, ..., Dn) = D(5) = 2
√

p = MAD(D1, ..., Dn) since the median
distance of the Di from D(5) is 2

√
p − 0 = 2

√
p. Note that the 5 smallest

absolute distances |Di − D(5)| are 0, 0,
√

p,
√

p, and 2
√

p. Hence Wi = 1 if
Di ≤ 2

√
p + 10

√
p = 12

√
p. The clean data get weight 1 while the outliers

get weight 0 since the smallest distance Di for the outliers is the Euclidean
distance of 3 1 from 16 1 with a Di = ‖16 1 − 3 1‖ = 13

√
p. Hence the

covmb2 estimator (T, C) is the sample mean and sample covariance matrix
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of the clean data. Note that the distance for the outliers to get zero
weight is proportional to the square root of the dimension

√
p.

Application 8.7. Outlier resistant regression: Let the ith case wi =
(Yi, x

T
i )T where the continuous predictors from xi are denoted by ui for

i = 1, ..., n. Apply the covmb2 estimator to the ui, and then run the regres-
sion method on the m cases wi corresponding to the covmb2 set B indices
i1, ...im, where m ≥ n/2.

The covmb2 estimator can also be used for n > p. The covmb2 estimator
attempts to give a robust dispersion estimator that reduces the bias by using
a big ball about MEDj instead of a ball that contains half of the cases. The
lspack function getB gives the set B of cases that got weight 1 along with
the index indx of the case numbers that got weight 1.

8.3 Resistant Multiple Linear Regression

Consider the multiple linear regression model, written in matrix form as
Y = Xβ + e. Some good outlier resistant regression estimators are rmreg2
from Section 8.5, the hbreg estimator from Section 8.4, and the Olive (2005)
MBA and trimmed views estimators described below. Also apply a multiple
linear regression method such as OLS or lasso to the cases corresponding to
the RFCH, RMVN, or covmb2 set applied to the continuous predictors. See
Applications 8.6 and 8.7.

Resistant estimators are often created by computing several trial fits bi

that are estimators of β. Then a criterion is used to select the trial fit to be
used in the resistant estimator. Suppose c ≈ n/2. The LMS(c) criterion is
QLMS(b) = r2

(c)(b) where r2
(1) ≤ · · · ≤ r2

(n) are the ordered squared residu-

als, and the LTS(c) criterion is QLTS(b) =
∑c

i=1 r2
(i)(b). The LTA(c) crite-

rion is QLTA(b) =
∑c

i=1 |r(b)|(i) where |r(b)|(i) is the ith ordered absolute
residual. Three impractical high breakdown robust estimators are the Ham-
pel (1975) least median of squares (LMS) estimator, the Rousseeuw (1984)
least trimmed sum of squares (LTS) estimator, and the Hössjer (1991) least
trimmed sum of absolute deviations (LTA) estimator. Also see Hawkins and

Olive (1999ab). These estimators correspond to the β̂L ∈ R
p that minimizes

the corresponding criterion. LMS, LTA, and LTS have O(np) or O(np+1)
complexity. See Bernholt (2005), Hawkins and Olive (1999b), Klouda (2015),
and Mount et al. (2014). Estimators with O(n4) or higher complexity take
too long to compute. LTS and LTA are

√
n consistent while LMS has the

lower n1/3 rate. See Kim and Pollard (1990), Č́ıžek (2006, 2008), and Maš̈ıček
(2004). If c = n, the LTS and LTA criteria are the OLS and L1 criteria. See
Olive (2008, 2017b: ch. 14) for more on these estimators.
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A good resistant estimator is the Olive (2005) median ball algorithm (MBA
or mbareg). The Euclidean distance of the ith vector of predictors xi from
the jth vector of predictors xj is

Di(xj) = Di(xj , Ip) =
√

(xi − xj)T (xi − xj).

For a fixed xj consider the ordered distances D(1)(xj), ..., D(n)(xj). Next,

let β̂j(α) denote the OLS fit to the min(p + 3 + bαn/100c, n) cases with
the smallest distances where the approximate percentage of cases used is
α ∈ {1, 2.5, 5, 10, 20, 33, 50}. (Here bxc is the greatest integer function so
b7.7c = 7. The extra p +3 cases are added so that OLS can be computed for
small n and α.) This yields seven OLS fits corresponding to the cases with
predictors closest to xj. A fixed number of K cases are selected at random
without replacement to use as the xj . Hence 7K OLS fits are generated. We
use K = 7 as the default. A robust criterion Q is used to evaluate the 7K
fits and the OLS fit to all of the data. Hence 7K + 1 OLS fits are generated
and the MBA estimator is the fit that minimizes the criterion. The median
squared residual is a good choice for Q.

Three ideas motivate this estimator. First, x-outliers, which are outliers in
the predictor space, tend to be much more destructive than Y -outliers which
are outliers in the response variable. Suppose that the proportion of outliers
is γ and that γ < 0.5. We would like the algorithm to have at least one
“center” xj that is not an outlier. The probability of drawing a center that is
not an outlier is approximately 1−γK > 0.99 for K ≥ 7 and this result is free
of p. Secondly, by using the different percentages of coverages, for many data
sets there will be a center and a coverage that contains no outliers. Third, by
Theorem 2.28, the MBA estimator is a

√
n consistent estimator of the same

parameter vector β estimated by OLS under mild conditions.

Ellipsoidal trimming can be used to create resistant multiple linear regres-
sion (MLR) estimators. To perform ellipsoidal trimming, an estimator (T, C)
is computed and used to create the squared Mahalanobis distances D2

i for
each vector of observed predictors xi. If the ordered distance D(j) is unique,
then j of the xi’s are in the ellipsoid

{x : (x − T )T C−1(x − T ) ≤ D2
(j)}. (8.44)

The ith case (Yi, x
T
i )T is trimmed if Di > D(j). Then an estimator of β is

computed from the remaining cases. For example, if j ≈ 0.9n, then about
10% of the cases are trimmed, and OLS or L1 could be used on the cases
that remain. Ellipsoidal trimming differs from using the RFCH, RMVN, or
covmb2 set since these sets use a random amount of trimming. (The ellip-
soidal trimming technique can also be used for other regression models, and
the theory of the regression method tends to apply to the method applied to
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the cleaned data that was not trimmed since the response variables were not
used to select the cases.)

Use ellipsoidal trimming on the RFCH, RMVN, or covmb2 set applied to
the continuous predictors to get a fit β̂C . Then make a response and residual
plot using all of the data, not just the cleaned data that was not trimmed.

The resistant trimmed views estimator combines ellipsoidal trimming and
the response plot. First compute (T, C) on the xi, perhaps using the RMVN
estimator. Trim the M% of the cases with the largest Mahalanobis distances,
and then compute the MLR estimator β̂M from the remaining cases. Use
M = 0, 10, 20, 30, 40, 50, 60, 70, 80, and 90 to generate ten response plots

of the fitted values β̂
T

Mxi versus Yi using all n cases. (Fewer plots are used

for small data sets if β̂M can not be computed for large M .) These plots are
called “trimmed views.”

Definition 8.37. The trimmed views (TV) estimator β̂T,n corresponds
to the trimmed view where the bulk of the plotted points follow the identity
line with smallest variance function, ignoring any outliers.

Example 8.10. For the Buxton (1920) data, height was the response
variable while an intercept, head length, nasal height, bigonal breadth, and
cephalic index were used as predictors in the multiple linear regression model.
Observation 9 was deleted since it had missing values. Five individuals, cases
61–65, were reported to be about 0.75 inches tall with head lengths well
over five feet! OLS was used on the cases remaining after trimming, and
Figure 7.18 shows four trimmed views corresponding to 90%, 70%, 40%,
and 0% trimming. The OLS TV estimator used 70% trimming since this
trimmed view was best. Since the vertical distance from a plotted point to the
identity line is equal to the case’s residual, the outliers had massive residuals
for 90%, 70%, and 40% trimming. Notice that the OLS trimmed view with
0% trimming “passed through the outliers” since the cluster of outliers is
scattered about the identity line.

The TV estimator β̂T,n has good statistical properties if an estimator with
good statistical properties is applied to the cases (XM,n, Y M,n) that remain
after trimming. Candidates include OLS, L1, Huber’s M–estimator, Mallows’
GM–estimator, or the Wilcoxon rank estimator. See Rousseeuw and Leroy
(1987, pp. 12-13, 150). The basic idea is that if an estimator with OP (n−1/2)
convergence rate is applied to a set of nM ∝ n cases, then the resulting
estimator β̂M,n also has OP (n−1/2) rate provided that the response Y was

not used to select the nM cases in the set. If ‖β̂M,n − β‖ = OP (n−1/2) for

M = 0, ..., 90 then ‖β̂T,n − β‖ = OP (n−1/2) by Theorem 2.28.
Let Xn = X0,n denote the full design matrix. Often when proving asymp-

totic normality of an MLR estimator β̂0,n, it is assumed that
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Fig. 8.1 4 Trimmed Views for the Buxton Data

XT
nXn

n
→ W−1.

If β̂0,n has OP (n−1/2) rate and if for big enough n all of the diagonal elements
of (

XT
M,nXM,n

n

)−1

are all contained in an interval [0, B) for some B > 0, then ‖β̂M,n − β‖ =

OP (n−1/2).

The distribution of the estimator β̂M,n is especially simple when OLS is
used and the errors are iid N(0, σ2). Then

β̂M,n = (XT
M,nXM,n)−1XT

M,nY M,n ∼ Np(β, σ2(XT
M,nXM,n)−1)

and
√

n(β̂M,n−β) ∼ Np(0, σ2(XT
M,nXM,n/n)−1). This result does not imply

that β̂T,n is asymptotically normal.

Warning: When Yi = xT
i β + e, MLR estimators tend to estimate the

same slopes β2, ..., βp, but the constant β1 tends to depend on the estimator
unless the errors are symmetric. The MBA and trimmed views estimators do
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estimate the same β as OLS asymptotically, but samples may need to be huge
before the MBA and trimmed views estimates of the constant are close to the
OLS estimate of the constant. See Olive (2017b, p. 444) for an explanation
for why large sample sizes may be needed to estimate the constant.

Often practical “robust estimators” generate a sequence of K trial fits
called attractors: b1, ..., bK . Then some criterion is evaluated and the attractor
bA that minimizes the criterion is used in the final estimator.

Definition 8.38. For MLR, an elemental set J is a set of p cases drawn
with replacement from the data set of n cases. The elemental fit is the OLS
estimator β̂Ji

= (XT
Ji

XJi
)−1XT

Ji
Y Ji

= X−1
Ji

Y Ji
applied to the cases corre-

sponding to the elemental set provided that the inverse of XJi
exists. In a

concentration algorithm, let b0,j be the jth start, not necessarily elemental,
and compute all n residuals ri(b0,j) = Yi −xT

i b0,j. At the next iteration, the
OLS estimator b1,j is computed from the cn ≈ n/2 cases corresponding to
the smallest squared residuals r2

i (b0,j). This iteration can be continued for
k steps resulting in the sequence of estimators b0,j, b1,j, ..., bk,j. Then bk,j is
the jth attractor for j = 1, ..., K. Then the attractor bA that minimizes the
LTS criterion is used in the final estimator. Using k = 10 concentration steps
often works well, and the basic resampling algorithm is a special case with
k = 0, i.e., the attractors are the starts. Such an algorithm is called a CLTS
concentration algorithm or CLTS.

Remark 8.9. Consider drawing K elemental sets J1, ..., JK with replace-
ment to use as starts. For multivariate location and dispersion, use the attrac-
tor with the smallest MCD criterion to get the final estimator. For multiple
linear regression, use the attractor with the smallest LMS, LTA, or LTS cri-
terion to get the final estimator. For 500 ≤ K ≤ 3000 and p not much larger
than 5, the elemental set algorithm is very good for detecting certain “outlier
configurations,” including i) a mixture of two regression hyperplanes that
cross in the center of the data cloud for MLR (not an outlier configuration
since outliers are far from the bulk of the data) and ii) a cluster of outliers
that can often be placed close enough to the bulk of the data so that an MB,
RFCH, or RMVN DD plot can not detect the outliers. However, the outlier
resistance of elemental algorithms decreases rapidly as p increases.

Suppose the data set has n cases where d are outliers and n−d are “clean”
(not outliers). The the outlier proportion γ = d/n. Suppose that K elemental
sets are chosen with replacement and that it is desired to find K such that
the probability P(that at least one of the elemental sets is clean) ≡ P1 ≈ 1−α
where α = 0.05 is a common choice. Then P1 = 1− P(none of the K elemental
sets is clean) ≈ 1− [1−(1−γ)p]K by independence. Hence α ≈ [1−(1−γ)p]K

or

K ≈ log(α)

log([1 − (1 − γ)p])
≈ log(α)

−(1 − γ)p
(8.45)
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using the approximation log(1 − x) ≈ −x for small x. Since log(0.05) ≈ −3,

if α = 0.05, then K ≈ 3

(1 − γ)p
. Frequently a clean subset is wanted even if

the contamination proportion γ ≈ 0.5. Then for a 95% chance of obtaining at
least one clean elemental set, K ≈ 3 (2p) elemental sets need to be drawn. If
the start passes through an outlier, so does the attractor. For concentration
algorithms for multivariate location and dispersion, if the start passes through
a cluster of outliers, sometimes the attractor would be clean. See Olive (2017b:
pp. 114-117).

Notice that the number of subsets K needed to obtain a clean elemental set
with high probability is an exponential function of the number of predictors
p but is free of n. Hawkins and Olive (2002) showed that if K is fixed and
free of n, then the resulting elemental or concentration algorithm (that uses k
concentration steps), is inconsistent and zero breakdown. See Theorem 8.39.
Nevertheless, many practical estimators tend to use a value of K that is free
of both n and p (e.g. K = 500 or K = 3000). Such algorithms include ALMS
= FLMS = lmsreg and ALTS = FLTS = ltsreg. The “A” denotes that
an algorithm was used. The “F” means that a fixed number of trial fits (K
elemental fits) was used and the criterion (LMS or LTS) was used to select
the trial fit used in the final estimator.

To examine the outlier resistance of such inconsistent zero breakdown es-
timators, fix both K and the contamination proportion γ and then find the
largest number of predictors p that can be in the model such that the proba-
bility of finding at least one clean elemental set is high. Given K and γ, P (at
least one of K subsamples is clean) = 0.95 ≈
1− [1 − (1 − γ)p]K. Thus the largest value of p satisfies

3

(1 − γ)p
≈ K, or

p ≈
⌊

log(3/K)

log(1 − γ)

⌋
(8.46)

if the sample size n is very large. Again bxc is the greatest integer function:
b7.7c = 7.

Theorem 8.32. Let h = p be the number of randomly selected cases in
an elemental set, and let γo be the highest percentage of massive outliers that
a resampling algorithm can detect reliably. If n is large, then

γo ≈ min

(
n − c

n
, 1 − [1 − (0.2)1/K]1/h

)
100%. (8.47)

Proof. As in Remark 8.5, if the contamination proportion γ is fixed, then
the probability of obtaining at least one clean subset of size h with high
probability (say 1 − α = 0.8) is given by 0.8 = 1 − [1 − (1 − γ)h]K . Fix the
number of starts K and solve this equation for γ. �
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The value of γo depends on c ≥ n/2 and h. To maximize γo, take c ≈ n/2
and h = p. For example, with K = 500 starts, n > 100, and h = p ≤ 20 the
resampling algorithm should be able to detect up to 24% outliers provided
every clean start is able to at least partially separate inliers (clean cases)
from outliers. However, if h = p = 50, this proportion drops to 11%.

8.4 Robust Regression

This section will consider the breakdown of a regression estimator and then
develop the practical high breakdown hbreg estimator.

8.4.1 MLR Breakdown and Equivariance

Breakdown and equivariance properties have received considerable attention
in the literature. Several of these properties involve transformations of the
data, and are discussed below. If X and Y are the original data, then the
vector of the coefficient estimates is

β̂ = β̂(X, Y ) = T (X , Y ), (8.48)

the vector of predicted values is

Ŷ = Ŷ (X, Y ) = Xβ̂(X , Y ), (8.49)

and the vector of residuals is

r = r(X , Y ) = Y − Ŷ . (8.50)

If the design matrix X is transformed into W and the vector of dependent
variables Y is transformed into Z, then (W , Z) is the new data set.

Definition 8.39. Regression Equivariance: Let u be any p×1 vector.
Then β̂ is regression equivariant if

β̂(X , Y + Xu) = T (X , Y + Xu) = T (X , Y ) + u = β̂(X , Y ) + u. (8.51)

Hence if W = X and Z = Y + Xu, then Ẑ = Ŷ + Xu and r(W , Z) =

Z − Ẑ = r(X , Y ). Note that the residuals are invariant under this type of

transformation, and note that if u = −β̂, then regression equivariance implies
that we should not find any linear structure if we regress the residuals on X .



266 8 Robust Statistics

Definition 8.40. Scale Equivariance: Let c be any scalar. Then β̂ is
scale equivariant if

β̂(X , cY ) = T (X , cY ) = cT (X , Y ) = cβ̂(X , Y ). (8.52)

Hence if W = X and Z = cY , then Ẑ = cŶ and r(X, cY ) = c r(X , Y ).
Scale equivariance implies that if the Yi’s are stretched, then the fits and the
residuals should be stretched by the same factor.

Definition 8.41. Affine Equivariance: Let A be any p× p nonsingular
matrix. Then β̂ is affine equivariant if

β̂(XA, Y ) = T (XA, Y ) = A−1T (X , Y ) = A−1β̂(X , Y ). (8.53)

Hence if W = XA and Z = Y , then Ẑ = Wβ̂(XA, Y ) =

XAA−1β̂(X, Y ) = Ŷ , and r(XA, Y ) = Z − Ẑ = Y − Ŷ = r(X, Y ). Note
that both the predicted values and the residuals are invariant under an affine
transformation of the predictor variables.

Definition 8.42. Permutation Invariance: Let P be an n × n per-
mutation matrix. Then P T P = P P T = In where In is an n × n identity
matrix and the superscript T denotes the transpose of a matrix. Then β̂ is
permutation invariant if

β̂(PX , PY ) = T (P X, P Y ) = T (X, Y ) = β̂(X, Y ). (8.54)

Hence if W = PX and Z = P Y , then Ẑ = P Ŷ and r(P X , PY ) =
P r(X , Y ). If an estimator is not permutation invariant, then swapping
rows of the n× (p + 1) augmented matrix (X , Y ) will change the estimator.
Hence the case number is important. If the estimator is permutation invariant,
then the position of the case in the data cloud is of primary importance.
Resampling algorithms are not permutation invariant because permuting the
data causes different subsamples to be drawn.

Remark 8.10. OLS has the above invariance properties, but most Statis-
tical Learning alternatives such as lasso and ridge regression do not have all
four properties. Hence Remark 6.2 is used to fit the data with Z = Wη + e.
Then obtain β̂ from η̂.

The remainder of this subsection gives a standard definition of breakdown
and then shows that if the median absolute residual is bounded in the presence
of high contamination, then the regression estimator has a high breakdown
value. The following notation will be useful. Let W denote the data matrix
where the ith row corresponds to the ith case. For regression, W is the
n × (p + 1) matrix with ith row (xT

i , Yi). Let W n
d denote the data matrix

where any dn of the cases have been replaced by arbitrarily bad contaminated
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cases. Then the contamination fraction is γ ≡ γn = dn/n, and the breakdown

value of β̂ is the smallest value of γn needed to make ‖β̂‖ arbitrarily large.

Definition 8.43. Let 1 ≤ dn ≤ n. If T (W ) is a p× 1 vector of regression
coefficients, then the breakdown value of T is

B(T, W ) = min

{
dn

n
: sup
W n

d

‖T (W n
d)‖ = ∞

}

where the supremum is over all possible corrupted samples W n
d .

Definition 8.44. High breakdown regression estimators have γn → 0.5
as n → ∞ if the clean (uncontaminated) data are in general position: any
p clean cases give a unique estimate of β. Estimators are zero breakdown if
γn → 0 and positive breakdown if γn → γ > 0 as n → ∞.

The following result greatly simplifies some breakdown proofs and shows
that a regression estimator basically breaks down if the median absolute
residual MED(|ri|) can be made arbitrarily large. The result implies that if
the breakdown value ≤ 0.5, breakdown can be computed using the median
absolute residual MED(|ri|(Wn

d )) instead of ‖T (W n
d )‖. Similarly β̂ is high

breakdown if the median squared residual or the cnth largest absolute resid-
ual |ri|(cn) or squared residual r2

(cn) stay bounded under high contamination

where cn ≈ n/2. Note that ‖β̂‖ ≡ ‖β̂(W n
d)‖ ≤ M for some constant M that

depends on T and W but not on the outliers if the number of outliers dn is
less than the smallest number of outliers needed to cause breakdown.

Theorem 8.33. If the breakdown value ≤ 0.5, computing the break-
down value using the median absolute residual MED(|ri|(W n

d)) instead of
‖T (Wn

d )‖ is asymptotically equivalent to using Definition 8.43.

Proof. Consider any contaminated data set W n
d with ith row (wT

i , Zi)
T .

If the regression estimator T (W n
d ) = β̂ satisfies ‖β̂‖ ≤ M for some constant

M if d < dn, then the median absolute residual MED(|Zi−β̂
T
wi|) is bounded

by maxi=1,...,n |Yi − β̂
T
xi| ≤ maxi=1,...,n[|Yi| +

∑p
j=1 M |xi,j|] if dn < n/2.

If the median absolute residual is bounded by M when d < dn, then ‖β̂‖
is bounded provided fewer than half of the cases line on the hyperplane (and

so have absolute residual of 0), as shown next. Now suppose that ‖β̂‖ = ∞.
Since the absolute residual is the vertical distance of the observation from the
hyperplane, the absolute residual |ri| = 0 if the ith case lies on the regression
hyperplane, but |ri| = ∞ otherwise. Hence MED(|ri|) = ∞ if fewer than
half of the cases lie on the regression hyperplane. This will occur unless the
proportion of outliers dn/n > (n/2 − q)/n → 0.5 as n → ∞ where q is the
number of “good” cases that lie on a hyperplane of lower dimension than p.
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In the literature it is usually assumed that the original data are in general
position: q = p − 1. �

Suppose that the clean data are in general position and that the number of
outliers is less than the number needed to make the median absolute residual
and ‖β̂‖ arbitrarily large. If the xi are fixed, and the outliers are moved up
and down by adding a large positive or negative constant to the Y values
of the outliers, then for high breakdown (HB) estimators, β̂ and MED(|ri|)
stay bounded where the bounds depend on the clean data W but not on the
outliers even if the number of outliers is nearly as large as n/2. Thus if the
|Yi| values of the outliers are large enough, the |ri| values of the outliers will
be large.

If the Yi’s are fixed, arbitrarily large x-outliers tend to drive the slope
estimates to 0, not ∞. If both x and Y can be varied, then a cluster of
outliers can be moved arbitrarily far from the bulk of the data but may still
have small residuals. For example, move the outliers along the regression
hyperplane formed by the clean cases.

If the (xT
i , Yi) are in general position, then the contamination could be

such that β̂ passes exactly through p − 1 “clean” cases and dn “contam-
inated” cases. Hence dn + p − 1 cases could have absolute residuals equal
to zero with ‖β̂‖ arbitrarily large (but finite). Nevertheless, if T possesses
reasonable equivariant properties and ‖T (W n

d )‖ is replaced by the median
absolute residual in the definition of breakdown, then the two breakdown val-
ues are asymptotically equivalent. (If T (W ) ≡ 0, then T is neither regression
nor affine equivariant. The breakdown value of T is one, but the median ab-
solute residual can be made arbitrarily large if the contamination proportion
is greater than n/2.)

If the Yi’s are fixed, arbitrarily large x-outliers will rarely drive ‖β̂‖ to

∞. The x-outliers can drive ‖β̂‖ to ∞ if they can be constructed so that
the estimator is no longer defined, e.g. so that XT X is nearly singular. The
examples following some results on norms may help illustrate these points.

Definition 8.45. Let y be an n × 1 vector. Then ‖y‖ is a vector norm if
vn1) ‖y‖ ≥ 0 for every y ∈ R

n with equality iff y is the zero vector,
vn2) ‖ay‖ = |a| ‖y‖ for all y ∈ R

n and for all scalars a, and
vn3) ‖x + y‖ ≤ ‖x‖ + ‖y‖ for all x and y in R

n.

Definition 8.46. Let G be an n × p matrix. Then ‖G‖ is a matrix norm if
mn1) ‖G‖ ≥ 0 for every n×p matrix G with equality iff G is the zero matrix,
mn2) ‖aG‖ = |a| ‖G‖ for all scalars a, and
mn3) ‖G + H‖ ≤ ‖G‖ + ‖H‖ for all n × p matrices G and H .

Example 8.11. The q-norm of a vector y is ‖y‖q = (|y1|q + · · ·+ |yn|q)1/q.
In particular, ‖y‖1 = |y1|+ · · ·+ |yn|, the Euclidean norm
‖y‖2 =

√
y2
1 + · · ·+ y2

n, and ‖y‖∞ = maxi |yi|. Given a matrix G and
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a vector norm ‖y‖q the q-norm or subordinate matrix norm of matrix G is

‖G‖q = max
y 6=0

‖Gy‖q

‖y‖q
. It can be shown that the maximum column sum norm

‖G‖1 = max
1≤j≤p

n∑

i=1

|gij|, the maximum row sum norm ‖G‖∞ = max
1≤i≤n

p∑

j=1

|gij|,

and the spectral norm ‖G‖2 =

√
maximum eigenvalue of GT G. The

Frobenius norm

‖G‖F =

√√√√
p∑

j=1

n∑

i=1

|gij|2 =

√
trace(GTG).

Several useful results involving matrix norms will be used. First, for any
subordinate matrix norm, ‖Gy‖q ≤ ‖G‖q ‖y‖q. Let J = Jm = {m1, ..., mp}
denote the p cases in the mth elemental fit bJ = X−1

J Y J . Then for any
elemental fit bJ (suppressing q = 2),

‖bJ − β‖ = ‖X−1
J (XJβ + eJ) − β‖ = ‖X−1

J eJ‖ ≤ ‖X−1
J ‖ ‖eJ‖. (8.55)

The following results (Golub and Van Loan 1989, pp. 57, 80) on the Euclidean
norm are useful. Let 0 ≤ σp ≤ σp−1 ≤ · · · ≤ σ1 denote the singular values of
XJ = (xmi,j). Then

‖X−1
J ‖ =

σ1

σp‖XJ‖
, (8.56)

max
i,j

|xmi,j| ≤ ‖XJ‖ ≤ p max
i,j

|xmi,j|, and (8.57)

1

p maxi,j |xmi,j|
≤ 1

‖XJ‖
≤ ‖X−1

J ‖. (8.58)

From now on, unless otherwise stated, we will use the spectral norm as the
matrix norm and the Euclidean norm as the vector norm.

Example 8.12. Suppose the response values Y are near 0. Consider the fit
from an elemental set: bJ = X−1

J Y J and examine Equations (8.56), (8.57),
and (8.58). Now ‖bJ‖ ≤ ‖X−1

J ‖ ‖Y J‖, and since x-outliers make ‖XJ‖
large, x-outliers tend to drive ‖X−1

J ‖ and ‖bJ‖ towards zero not towards ∞.
The x-outliers may make ‖bJ‖ large if they can make the trial design ‖XJ‖
nearly singular. Notice that Euclidean norm ‖bJ‖ can easily be made large if
one or more of the elemental response variables is driven far away from zero.

Example 8.13. Without loss of generality, assume that the clean Y ’s are
contained in an interval [a, f ] for some a and f . Assume that the regression
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model contains an intercept β1. Then there exists an estimator β̂M of β such

that ‖β̂M‖ ≤ max(|a|, |f |) if dn < n/2.

Proof. Let MED(n) = MED(Y1, ..., Yn) and MAD(n) = MAD(Y1, ..., Yn).

Take β̂M = (MED(n), 0, ..., 0)T. Then ‖β̂M‖ = |MED(n)| ≤ max(|a|, |f |).
Note that the median absolute residual for the fit β̂M is equal to the median
absolute deviation MAD(n) = MED(|Yi − MED(n)|, i = 1, ..., n) ≤ f − a if
dn < b(n + 1)/2c. �

Note that β̂M is a poor high breakdown estimator of β and Ŷi(β̂M ) tracks
the Yi very poorly. If the data are in general position, a high breakdown
regression estimator is an estimator which has a bounded median absolute
residual even when close to half of the observations are arbitrary. Rousseeuw
and Leroy (1987, pp. 29, 206) conjectured that high breakdown regression
estimators can not be computed cheaply, and that if the algorithm is also
affine equivariant, then the complexity of the algorithm must be at least
O(np). The following theorem shows that these two conjectures are false.

Theorem 8.34. If the clean data are in general position and the model has
an intercept, then a scale and affine equivariant high breakdown estimator
β̂w can be found by computing OLS on the set of cases that have Yi ∈
[MED(Y1, ..., Yn) ± w MAD(Y1, ..., Yn)] where w ≥ 1 (so at least half of the
cases are used).

Proof. Note that β̂w is obtained by computing OLS on the set J of the
nj cases which have

Yi ∈ [MED(Y1, ..., Yn) ± wMAD(Y1, ..., Yn)] ≡ [MED(n) ± wMAD(n)]

where w ≥ 1 (to guarantee that nj ≥ n/2). Consider the estimator β̂M =

(MED(n), 0, ..., 0)T which yields the predicted values Ŷi ≡ MED(n). The

squared residual r2
i (β̂M ) ≤ (w MAD(n))2 if the ith case is in J . Hence the

weighted LS fit β̂w is the OLS fit to the cases in J and has

∑

i∈J

r2
i (β̂w) ≤ nj(w MAD(n))2.

Thus

MED(|r1(β̂w)|, ..., |rn(β̂w)|) ≤ √
nj w MAD(n) <

√
n w MAD(n) < ∞.

Thus the estimator β̂w has a median absolute residual bounded by√
n w MAD(Y1, ..., Yn). Hence β̂w is high breakdown, and it is affine equiv-

ariant since the design is not used to choose the observations. It is scale
equivariant since for constant c = 0, β̂w = 0, and for c 6= 0 the set of



8.4 Robust Regression 271

cases used remains the same under scale transformations and OLS is scale
equivariant. �

Note that if w is huge and MAD(n) 6= 0, then the high breakdown estima-

tor β̂w and β̂OLS will be the same for most data sets. Thus high breakdown

estimators can be very nonrobust. Even if w = 1, the HB estimator β̂w only
resists large Y outliers.

An ALTA concentration algorithm uses the L1 estimator instead of OLS
in the concentration step and uses the LTA criterion. Similarly an ALMS
concentration algorithm uses the L∞ estimator and the LMS criterion.

Theorem 8.35. If the clean data are in general position and if a high
breakdown start is added to an ALTA, ALTS, or ALMS concentration algo-
rithm, then the resulting estimator is HB.

Proof. Concentration reduces (or does not increase) the corresponding HB
criterion that is based on cn ≥ n/2 absolute residuals, so the median absolute
residual of the resulting estimator is bounded as long as the criterion applied
to the HB estimator is bounded. �

For example, consider the LTS(cn) criterion. Suppose the ordered squared
residuals from the high breakdown mth start b0m are obtained. If the data
are in general position, then QLTS(b0m) is bounded even if the number of
outliers dn is nearly as large as n/2. Then b1m is simply the OLS fit to
the cases corresponding to the cn smallest squared residuals r2

(i)(b0m) for

i = 1, ..., cn. Denote these cases by i1, ..., icn
. Then QLTS(b1m) =

cn∑

i=1

r2
(i)(b1m) ≤

cn∑

j=1

r2
ij

(b1m) ≤
cn∑

j=1

r2
ij

(b0m) =

cn∑

j=1

r2
(i)(b0m) = QLTS(b0m)

where the second inequality follows from the definition of the OLS estimator.
Hence concentration steps reduce or at least do not increase the LTS criterion.
If cn = (n+1)/2 for n odd and cn = 1+n/2 for n even, then the LTS criterion
is bounded iff the median squared residual is bounded.

Theorem 8.35 can be used to show that the following two estimators are
high breakdown. The estimator β̂B is the high breakdown attractor used by
the

√
n consistent high breakdown hbreg estimator of Definition 8.48.

Definition 8.47. Make an OLS fit to the cn ≈ n/2 cases whose Y values
are closest to the MED(Y1, ..., Yn) ≡ MED(n) and use this fit as the start

for concentration. Define β̂B to be the attractor after k concentration steps.

Define bk,B = 0.9999β̂B .

Theorem 8.36. If the clean data are in general position, then β̂B and
bk,B are high breakdown regression estimators.
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Proof. The start can be taken to be β̂w with w = 1 from Theorem 8.34.

Since the start is high breakdown, so is the attractor β̂B by Theorem 8.35.
Multiplying a HB estimator by a positive constant does not change the break-
down value, so bk,B is HB. �

The following result shows that it is easy to make a HB estimator that is
asymptotically equivalent to a consistent estimator on a large class of iid zero
mean symmetric error distributions, although the outlier resistance of the HB
estimator is poor. The following result may not hold if β̂C estimates βC and

β̂LMS estimates βLMS where βC 6= βLMS . Then bk,B could have a smaller

median squared residual than β̂C even if there are no outliers. The two param-
eter vectors could differ because the constant term is different if the error dis-
tribution is not symmetric. For a large class of symmetric error distributions,
βLMS = βOLS = βC ≡ β, then the ratio MED(r2

i (β̂))/MED(r2
i (β)) → 1 as

n → ∞ for any consistent estimator of β. The estimator below has two attrac-
tors, β̂C and bk,B, and the probability that the final estimator β̂D is equal

to β̂C goes to one under the strong assumption that the error distribution is

such that both β̂C and β̂LMS are consistent estimators of β.

Theorem 8.37. Assume the clean data are in general position, and that
the LMS estimator is a consistent estimator of β. Let β̂C be any practical con-

sistent estimator of β, and let β̂D = β̂C if MED(r2
i (β̂C)) ≤ MED(r2

i (bk,B)).

Let β̂D = bk,B, otherwise. Then β̂D is a HB estimator that is asymptotically

equivalent to β̂C .

Proof. The estimator is HB since the median squared residual of β̂D

is no larger than that of the HB estimator bk,B. Since β̂C is consistent,

MED(r2
i (β̂C)) → MED(e2) in probability where MED(e2) is the population

median of the squared error e2. Since the LMS estimator is consistent, the
probability that β̂C has a smaller median squared residual than the biased

estimator β̂k,B goes to 1 as n → ∞. Hence β̂D is asymptotically equivalent

to β̂C . �

The elemental concentration and elemental resampling algorithms use K
elemental fits where K is a fixed number that does not depend on the sample
size n, e.g. K = 500. See Definitions 8.29 and 8.38. Note that an estimator can
not be consistent for θ unless the number of randomly selected cases goes to
∞, except in degenerate situations. The following theorem shows the widely
used elemental estimators are zero breakdown estimators. (If K = Kn → ∞,
then the elemental estimator is zero breakdown if Kn = o(n). A necessary
condition for the elemental basic resampling estimator to be consistent is
Kn → ∞.)
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Theorem 8.38: a) The elemental basic resampling algorithm estimators
are inconsistent. b) The elemental concentration and elemental basic resam-
pling algorithm estimators are zero breakdown.

Proof: a) Note that you can not get a consistent estimator by using Kh
randomly selected cases since the number of cases Kh needs to go to ∞ for
consistency except in degenerate situations.

b) Contaminating all Kh cases in the K elemental sets shows that the
breakdown value is bounded by Kh/n → 0, so the estimator is zero break-
down. �

8.4.2 A Practical High Breakdown Consistent Estimator

Olive and Hawkins (2011) showed that the practical hbreg estimator is a
high breakdown

√
n consistent robust estimator that is asymptotically equiv-

alent to the least squares estimator for many error distributions. This sub-
section follows Olive (2017b, pp. 420-423).

The outlier resistance of the hbreg estimator is not very good, but roughly
comparable to the best of the practical “robust regression” estimators avail-
able in R packages as of 2022. The estimator is of some interest since it proved
that practical high breakdown consistent estimators are possible. Other prac-
tical regression estimators that claim to be high breakdown and consistent
appear to be zero breakdown because they use the zero breakdown elemental
concentration algorithm. See Theorem 8.38.

The following theorem is powerful because it does not depend on the crite-
rion used to choose the attractor. Suppose there are K consistent estimators
β̂j of β, each with the same rate nδ. If β̂A is an estimator obtained by choos-

ing one of the K estimators, then β̂A is a consistent estimator of β with rate
nδ by Pratt (1959). See Theorem 2.18.

Theorem 8.39. Suppose the algorithm estimator chooses an attractor as
the final estimator where there are K attractors and K is fixed.

i) If all of the attractors are consistent, then the algorithm estimator is
consistent.

ii) If all of the attractors are consistent with the same rate, e.g., nδ where
0 < δ ≤ 0.5, then the algorithm estimator is consistent with the same rate as
the attractors.

iii) If all of the attractors are high breakdown, then the algorithm estimator
is high breakdown.

Proof. i) Choosing from K consistent estimators results in a consistent
estimator, and ii) follows from Pratt (1959). iii) Let γn,i be the breakdown
value of the ith attractor if the clean data are in general position. The break-
down value γn of the algorithm estimator can be no lower than that of the
worst attractor: γn ≥ min(γn,1, ..., γn,K) → 0.5 as n → ∞. �
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The consistency of the algorithm estimator changes dramatically if K is
fixed but the start size h = hn = g(n) where g(n) → ∞. In particular, if
K starts with rate n1/2 are used, the final estimator also has rate n1/2. The
drawback to these algorithms is that they may not have enough outlier resis-
tance. Notice that the basic resampling result below is free of the criterion.

Theorem 8.40. Suppose Kn ≡ K starts are used and that all starts have
subset size hn = g(n) ↑ ∞ as n → ∞. Assume that the estimator applied to
the subset has rate nδ.
i) For the hn-set basic resampling algorithm, the algorithm estimator has
rate [g(n)]δ.
ii) Under regularity conditions (e.g. given by He and Portnoy 1992), the k–
step CLTS estimator has rate [g(n)]δ.

Proof. i) The hn = g(n) cases are randomly sampled without replacement.
Hence the classical estimator applied to these g(n) cases has rate [g(n)]δ. Thus
all K starts have rate [g(n)]δ, and the result follows by Pratt (1959). ii) By
He and Portnoy (1992), all K attractors have [g(n)]δ rate, and the result
follows by Pratt (1959). �

Remark 8.11. Theorem 8.33 shows that β̂ is HB if the median absolute or
squared residual (or |r(β̂)|(cn) or r2

(cn) where cn ≈ n/2) stays bounded under

high contamination. Let QL(β̂H) denote the LMS, LTS, or LTA criterion for

an estimator β̂H ; therefore, the estimator β̂H is high breakdown if and only

if QL(β̂H) is bounded for dn near n/2 where dn < n/2 is the number of out-
liers. The concentration operator refines an initial estimator by successively
reducing the LTS criterion. If β̂F refers to the final estimator (attractor) ob-

tained by applying concentration to some starting estimator β̂H that is high

breakdown, then since QLTS(β̂F ) ≤ QLTS(β̂H), applying concentration to
a high breakdown start results in a high breakdown attractor. See Theorem
8.35.

High breakdown estimators are, however, not necessarily useful for detect-
ing outliers. Suppose γn < 0.5. On the one hand, if the xi are fixed, and the
outliers are moved up and down parallel to the Y axis, then for high break-
down estimators, β̂ and MED(|ri|) will be bounded. Thus if the |Yi| values
of the outliers are large enough, the |ri| values of the outliers will be large,
suggesting that the high breakdown estimator is useful for outlier detection.
On the other hand, if the Yi’s are fixed at any values and the x values per-
turbed, sufficiently large x-outliers tend to drive the slope estimates to 0,
not ∞. For many estimators, including LTS, LMS, and LTA, a cluster of Y
outliers can be moved arbitrarily far from the bulk of the data but still, by
perturbing their x values, have arbitrarily small residuals.
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Our practical high breakdown procedure is made up of three components.
1) A practical estimator β̂C that is consistent for clean data. Suitable choices
would include the full-sample OLS and L1 estimators.
2) A practical estimator β̂A that is effective for outlier identification. Suitable
choices include the mbareg, rmreg2, lmsreg, or FLTS estimators.
3) A practical high-breakdown estimator such as β̂B from Definition 8.47
with k = 10.

By selecting one of these three estimators according to the features each
of them uncovers in the data, we may inherit some of the good properties of
each of them.

Definition 8.48. The hbreg estimator β̂H is defined as follows. Pick a

constant a > 1 and set β̂H = β̂C . If aQL(β̂A) < QL(β̂C), set β̂H = β̂A. If

aQL(β̂B) < min[QL(β̂C), aQL(β̂A)], set β̂H = β̂B.

That is, find the smallest of the three scaled criterion values QL(β̂C),

aQL(β̂A), aQL(β̂B). According to which of the three estimators attains this

minimum, set β̂H to β̂C , β̂A, or β̂B respectively.
Large sample theory for hbreg is simple and given in the following theo-

rem. Let β̂L be the LMS, LTS, or LTA estimator that minimizes the criterion

QL. Note that the impractical estimator β̂L is never computed. The following

theorem shows that β̂H is asymptotically equivalent to β̂C on a large class

of zero mean finite variance symmetric error distributions. Thus if β̂C is
√

n

consistent or asymptotically efficient, so is β̂H . Notice that β̂A does not need
to be consistent. This point is crucial since lmsreg is not consistent and it is
not known whether FLTS is consistent. The clean data are in general position
if any p clean cases give a unique estimate of β̂.

Theorem 8.41. Assume the clean data are in general position, and sup-
pose that both β̂L and β̂C are consistent estimators of β where the regression

model contains a constant. Then the hbreg estimator β̂H is high breakdown

and asymptotically equivalent to β̂C .

Proof. Since the clean data are in general position and QL(β̂H) ≤
aQL(β̂B) is bounded for γn near 0.5, the hbreg estimator is high break-
down. Let Q∗

L = QL for LMS and Q∗
L = QL/n for LTS and LTA. As n → ∞,

consistent estimators β̂ satisfy Q∗
L(β̂) − Q∗

L(β) → 0 in probability. Since

LMS, LTS, and LTA are consistent and the minimum value is Q∗
L(β̂L), it

follows that Q∗
L(β̂C) − Q∗

L(β̂L) → 0 in probability, while Q∗
L(β̂L) < aQ∗

L(β̂)

for any estimator β̂. Thus with probability tending to one as n → ∞,
QL(β̂C) < a min(QL(β̂A), QL(β̂B)). Hence β̂H is asymptotically equivalent

to β̂C . �
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Remark 8.12. i) Let β̂C = β̂OLS . Then hbreg is asymptotically equiv-
alent to OLS when the errors ei are iid from a large class of zero mean finite
variance symmetric distributions, including the N(0, σ2) distribution, since

the probability that hbreg uses OLS instead of β̂A or β̂B goes to one as
n → ∞.

ii) The above theorem proves that practical high breakdown estimators
with 100% asymptotic Gaussian efficiency exist; however, such estimators
are not necessarily good.

iii) The theorem holds when both β̂L and β̂C are consistent estimators of
β, for example, when the iid errors come from a large class or zero mean finite
variance symmetric distributions. For asymmetric distributions, β̂C estimates

βC and β̂L estimates βL where the constants usually differ. The theorem
holds for some distributions that are not symmetric because of the penalty
a. As a → ∞, the class of asymmetric distributions where the theorem holds
greatly increases, but the outlier resistance decreases rapidly as a increases
for a > 1.4.

iv) The default hbreg estimator used OLS, mbareg, and β̂B with a = 1.4
and the LTA criterion. For the simulated data with symmetric error distri-
butions, β̂B appeared to give biased estimates of the slopes. However, for the

simulated data with right skewed error distributions, β̂B appeared to give
good estimates of the slopes but not the constant estimated by OLS, and the
probability that the hbreg estimator selected β̂B appeared to go to one.

v) Both MBA and OLS are
√

n consistent estimators of β, even for a large

class of skewed distributions. Using β̂A = β̂MBA and removing β̂B from the

hbreg estimator results in a
√

n consistent estimator of β when β̂C = OLS is
a
√

n consistent estimator of β, but massive sample sizes were still needed to
get good estimates of the constant for skewed error distributions. For skewed
distributions, if OLS needed n = 1000 to estimate the constant well, mbareg
might need n > one million to estimate the constant well.

vi) The outlier resistance of hbreg is not especially good.
The family of hbreg estimators is enormous and depends on i) the prac-

tical high breakdown estimator β̂B, ii) β̂C , iii) β̂A, iv) a, and v) the criterion
QL. Note that the theory needs the error distribution to be such that both
β̂C and β̂L are consistent. Sufficient conditions for LMS, LTS, and LTA to be
consistent are rather strong. To have reasonable sufficient conditions for the
hbreg estimator to be consistent, β̂C should be consistent under weak condi-
tions. Hence OLS is a good choice that results in 100% asymptotic Gaussian
efficiency.

We suggest using the LTA criterion since in simulations, hbreg behaved
like β̂C for smaller sample sizes than those needed by the LTS and LMS

criteria. We want a near 1 so that hbreg has outlier resistance similar to β̂A,

but we want a large enough so that hbreg performs like β̂C for moderate
n on clean data. Simulations suggest that a = 1.4 is a reasonable choice.
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The default hbreg program from linmodpack uses the
√

n consistent outlier
resistant estimator mbareg as β̂A.

There are at least three reasons for using β̂B as the high breakdown es-

timator. First, β̂B is high breakdown and simple to compute. Second, the

fitted values roughly track the bulk of the data. Lastly, although β̂B has

rather poor outlier resistance, β̂B does perform well on several outlier con-
figurations where some common alternatives fail.

As implemented in lspack, the hbreg estimator is a practical
√

n consistent
high breakdown estimator that appears to perform like OLS for moderate n
if the errors are unimodal and symmetric, and to have outlier resistance
comparable to competing practical “outlier resistant” estimators.

8.5 The Robust rmreg2 Estimator

The robust multivariate linear regression estimator rmreg2 is the classi-
cal multivariate linear regression estimator applied to the RMVN set when
RMVN is computed from the vectors ui = (xi2, ..., xip, Yi1, ..., Yim)T for
i = 1, ..., n. Hence ui is the ith case with xi1 = 1 deleted. This regression
estimator has considerable outlier resistance, and is one of the most outlier
resistant practical robust regression estimator for the m = 1 multiple linear
regression case. The rmreg2 estimator has been shown to be consistent if
the ui are iid from a large class of elliptically contoured distributions, which
is a much stronger assumption than having iid error vectors εi.

Let x = (1, uT )T and let β = (β1 , β
T
2 )T = (α, ηT )T . Now for multivariate

linear regression, β̂j = (α̂j, η̂
T
j )T where α̂j = Y j − η̂T

j u and η̂j = Σ̂
−1

u Σ̂uYj
.

Let Σ̂uy = 1
n−1

∑n
i=1(wi − w)(yi − y)T which has jth column Σ̂wYj

for
j = 1, ..., m. Let

v =

(
u

y

)
, E(v) = µv =

(
E(u)
E(y)

)
=

(
µu
µy

)
, and Cov(v) = Σv =

(
Σuu Σuy
Σyu Σyy

)
.

Let the vector of constants be αT = (α1, ..., αm) and the matrix of slope
vectors BS =

[
η1 η2 . . . ηm

]
. Then the population least squares coefficient

matrix is

B =

(
αT

BS

)

where α = µy − BT
Sµu and BS = Σ−1

u Σuy where Σu = Σuu.
If the ui are iid with nonsingular covariance matrix Cov(u), the least

squares estimator
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B̂ =

(
α̂

T

B̂S

)

where α̂ = y − B̂
T

Su and B̂S = Σ̂
−1

u Σ̂uy . The least squares multivariate
linear regression estimator can be calculated by computing the classical esti-
mator (v, Sv) = (v, Σ̂v) of multivariate location and dispersion on the vi,

and then plug in the results into the formulas for α̂ and B̂S .
Let (T, C) = (µ̃v , Σ̃v) be a robust estimator of multivariate location and

dispersion. If µ̃v is a consistent estimator of µv and Σ̃v is a consistent
estimator of c Σv for some constant c > 0, then a robust estimator of mul-

tivariate linear regression is the plug in estimator α̃ = µ̃y − B̃
T

S µ̃u and

B̃S = Σ̃
−1

u Σ̃uy .
For the rmreg2 estimator, (T, C) is the classical estimator applied to

the RMVN set when RMVN is applied to vectors vi for i = 1, ..., n (could
use (T, C) = RMVN estimator since the scaling does not matter for this
application). Then (T, C) is a

√
n consistent estimator of (µv , c Σv) if the vi

are iid from a large class of ECd(µv , Σv , g) distributions where d = m+p−1.
Thus the classical and robust estimators of multivariate linear regression
are both

√
n consistent estimators of B if the vi are iid from a large class

of elliptically contoured distributions. This assumption is very strong, but
the robust estimator is useful for detecting outliers. It seems likely that the
estimator is a

√
n consistent estimator of β under mild conditions where

the parameter vector β is not, in general, the parameter vector estimated
by OLS. When there are categorical predictors or the joint distribution of v

is not elliptically contoured, it is possible that the robust estimator is bad
and very different from the good classical least squares estimator. The lspack
function rmreg2 computes the rmreg2 estimator and produces the response
and residual plots.

8.6 Summary

1) For the location model, the sample mean Y =

∑n
i=1 Yi

n
, the sample vari-

ance S2
n =

∑n
i=1(Yi − Y )2

n − 1
, and the sample standard deviation Sn =

√
S2

n.

If the data Y1, ..., Yn is arranged in ascending order from smallest to largest
and written as Y(1) ≤ · · · ≤ Y(n), then Y(i) is the ith order statistic and the
Y(i)’s are called the order statistics. The sample median

MED(n) = Y((n+1)/2) if n is odd,

MED(n) =
Y(n/2) + Y((n/2)+1)

2
if n is even.
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The notation MED(n) = MED(Y1, ..., Yn) will also be used. The sample me-
dian absolute deviation is MAD(n) = MED(|Yi − MED(n)|, i = 1, . . . , n).

2) Suppose the multivariate data has been collected into an n × p matrix

W = X =




xT

1
...

xT
n



 .

The coordinatewise median MED(W ) = (MED(X1), ..., MED(Xp))T where
MED(Xi) is the sample median of the data in column i corresponding to

variable Xi. The sample mean x =
1

n

n∑

i=1

xi = (X1, ..., Xp)
T where Xi is

the sample mean of the data in column i corresponding to variable Xi. The
sample covariance matrix

S =
1

n − 1

n∑

i=1

(xi − x)(xi − x)T = (Sij).

That is, the ij entry of S is the sample covariance Sij . The classical estimator
of multivariate location and dispersion is (T, C) = (x, S).

3) Let (T, C) = (T (W ), C(W )) be an estimator of multivariate location
and dispersion. The ith Mahalanobis distance Di =

√
D2

i where the ith
squared Mahalanobis distance is D2

i = D2
i (T (W ), C(W )) =

(xi − T (W ))T C−1(W )(xi − T (W )).
4) The squared Euclidean distances of the xi from the coordinatewise

median is D2
i = D2

i (MED(W ), Ip). Concentration type steps compute the
weighted median MEDj: the coordinatewise median computed from the cases
xi with D2

i ≤ MED(D2
i (MEDj−1, Ip)) where MED0 = MED(W ). Often used

j = 0 (no concentration type steps) or j = 9. Let Di = Di(MEDj , Ip). Let
Wi = 1 if Di ≤ MED(D1, ..., Dn)+kMAD(D1, ..., Dn) where k ≥ 0 and k = 5
is the default choice. Let Wi = 0, otherwise.

5) Let the covmb2 set B of at least n/2 cases correspond to the cases with
weight Wi = 1. Then the covmb2 estimator (T, C) is the sample mean and
sample covariance matrix applied to the cases in set B. Hence

T =

∑n
i=1 Wixi∑n

i=1 Wi
and C =

∑n
i=1 Wi(xi − T )(xi − T )T

∑n
i=1 Wi − 1

.

The function ddplot5 plots the Euclidean distances from the coordinatewise
median versus the Euclidean distances from the covmb2 location estimator.
Typically the plotted points in this DD plot cluster about the identity line,
and outliers appear in the upper right corner of the plot with a gap between
the bulk of the data and the outliers.
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8.7 Complements

Nearly all of the literature for high breakdown regression and high
breakdown multivariate location and dispersion has massive errors:
i) the estimators that have large sample theory tend to be impractical to com-
pute, while ii) estimators that are practical to compute tend to be inconsistent
and zero breakdown, or have no proven large sample theory. See Hawkins and
Olive (2002). Read Olive (2008, 2017b, 2022c) for practical robust statistics
backed by some large sample theory. Sections 8.2 and 8.4 showed that getting
large sample theory for practical estimators is very difficult.

Location Model: The two stage trimmed means are due to Olive (2001).
The confidence interval for the population median appears in Olive (2017b).
Huber and Ronchetti (2009) is useful for other estimators.

Robust MLD
For the FCH, RFCH, and RMVN estimators, see Olive and Hawkins

(2010), Olive (2017b, ch. 4), and Zhang et al. (2012). See Olive (2017b, p.
120) for the covmb2 estimator.

The fastest estimators of multivariate location and dispersion that have
been shown to be both consistent and high breakdown are the minimum
covariance determinant (MCD) estimator with O(nv) complexity where
v = 1 + p(p + 3)/2 and possibly an all elemental subset estimator of He
and Wang (1997). See Bernholt and Fischer (2004). The minimum volume
ellipsoid (MVE) complexity is far higher, and for p > 2 there may be no
known method for computing S, τ , projection based, and constrained M
estimators. For some depth estimators, like the Stahel-Donoho estimator, the
exact algorithm of Liu and Zuo (2014) appears to take too long if p ≥ 6 and
n ≥ 100, and simulations may need p ≤ 3. It is possible to compute the MCD
and MVE estimators for p = 4 and n = 100 in a few hours using branch
and bound algorithms (like estimators with O(1004) complexity). See Agulló
(1996, 1998) and Pesch (1999). These algorithms take too long if both p ≥ 5
and n ≥ 100. Simulations may need p ≤ 2. Two stage estimators such as
the MM estimator, that need an initial high breakdown consistent estimator,
take longer to compute than the initial estimator. Rousseeuw (1984) intro-
duced the MCD and MVE estimators. See Maronna et al. (2006, ch. 6) for
descriptions and references.

Estimators with complexity higher than O[(n3+n2p+np2+p3) log(n)] take
too long to compute and will rarely be used. Reyen et al. (2009) simulated
the OGK and the Olive (2004a) median ball algorithm (MBA) estimators for
p = 100 and n up to 50000, and noted that the OGK complexity is O[p3 +
np2 log(n)] while that of MBA is O[p3 + np2 + np log(n)]. FCH, RMBA, and
RMVN have the same complexity as MBA. FMCD has the same complexity
as FCH, but FCH is roughly 100 to 200 times faster.

Robust Regression
For the hbreg estimator, see Olive and Hawkins (2011) and Olive (2017b,

ch. 14). Robust regression estimators have unsatisfactory outlier resistance
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and large sample theory. The hbreg estimator is fast and high breakdown,
but does not provide an adequate remedy for outliers, and the symmetry
condition for consistency is too strong. OLS response and residual plots are
useful for detecting multiple linear regression outliers.

Many of the robust statistics for the location model are practical to com-
pute, outlier resistant, and backed by theory. See Huber and Ronchetti (2009).
A few estimators of multivariate location and dispersion, such as the coordi-
natewise median, are practical to compute, outlier resistant, and backed by
theory.

For practical estimators for MLR and MCD, hbreg and FCH appear to
be the only estimators proven to be consistent (for a large class of symmetric
error distributions and for a large class of EC distributions, respectively) with
some breakdown theory (TFCH is HB). Perhaps all other “robust statistics”
for MLR and MLD that have been shown to be both consistent and high
breakdown are impractical to compute for p > 4: the impractical “brand
name” estimators have at least O(np) complexity, while the practical esti-
mators used in the software for the “brand name estimators” have not been
shown to be both high breakdown and consistent. See Theorems 8.30 and
8.38, Hawkins and Olive (2002), Olive (2008, 2017b), Hubert et al. (2002),
and Maronna and Yohai (2002). Huber and Ronchetti (2009, pp. xiii, 8-9,
152-154, 196-197) suggested that high breakdown regression estimators do
not provide an adequate remedy for the ill effects of outliers, that their sta-
tistical and computational properties are not adequately understood, that
high breakdown estimators “break down for all except the smallest regres-
sion problems by failing to provide a timely answer!” and that “there are no
known high breakdown point estimators of regression that are demonstrably
stable.”

A large number of impractical high breakdown regression estimators have
been proposed, including LTS, LMS, LTA, S, LQD, τ , constrained M, re-
peated median, cross checking, one step GM, one step GR, t-type, and re-
gression depth estimators. See Rousseeuw and Leroy (1987) and Maronna et
al. (2019). The practical algorithms used in the software use a brand name
criterion to evaluate a fixed number of trial fits and should be denoted as
an F-brand name estimator such as FLTS. Two stage estimators, such as
the MM estimator, that need an initial consistent high breakdown estima-
tor often have the same breakdown value and consistency rate as the initial
estimator. These estimators are typically implemented with a zero break-
down inconsistent initial estimator and hence are zero breakdown with zero
efficiency.

Maronna and Yohai (2015) used OLS and 500 elemental sets as the 501
trial fits to produce an FS estimator used as the initial estimator for an
FMM estimator. Since the 501 trial fits are zero breakdown, so is the FS
estimator. Since the FMM estimator has the same breakdown as the initial
estimator, the FMM estimator is zero breakdown. For regression, they show
that the FS estimator is consistent on a large class of zero mean finite variance
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symmetric distributions. Consistency follows since the elemental fits and OLS
are unbiased estimators of βOLS but an elemental fit is an OLS fit to p cases.
Hence the elemental fits are very variable, and the probability that the OLS
fit has a smaller S-estimator criterion than a randomly chosen elemental
fit (or K randomly chosen elemental fits) goes to one as n → ∞. (OLS
and the S-estimator are both

√
n consistent estimators of β, so the ratio of

their criterion values goes to one, and the S-estimator minimizes the criterion
value.) Hence the FMM estimator is asymptotically equivalent to the MM
estimator that has the smallest criterion value for a large class of iid zero
mean finite variance symmetric error distributions. This FMM estimator is
asymptotically equivalent to the FMM estimator that uses OLS as the initial
estimator. When the error distribution is skewed the S-estimator and OLS
population constant are not the same, and the probability that an elemental
fit is selected is close to one for a skewed error distribution as n → ∞. (The

OLS estimator β̂ gets very close to βOLS while the elemental fits are highly
variable unbiased estimators of βOLS , so one of the elemental fits is likely to
have a constant that is closer to the S-estimator constant while still having
good slope estimators.) Hence the FS estimator is inconsistent, and the FMM
estimator is likely inconsistent for skewed distributions. No practical method
is known for computing a

√
n consistent FS or FMM estimator that has the

same breakdown and maximum bias function as the S or MM estimator that
has the smallest S or MM criterion value.

8.8 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

8.1. Use Theorem 2.6 to find the limiting distribution of
√

n(MED(n) −
MED(Y )).

8.2. The interquartile range IQR(n) = ξ̂n,0.75 − ξ̂n,0.25 and is a popular
estimator of scale. Use Theorem 3.11 to show that

√
n

1

2
(IQR(n) − IQR(Y ))

D→ N(0, σ2
A)

where

σ2
A =

1

64

[
3

[f(ξ3/4)]2
− 2

f(ξ3/4)f(ξ1/4)
+

3

[f(ξ1/4)]2

]
.

8.3∗. Let F be the N(0, 1) cdf. Show that the ARE of the sample median
MED(n) with respect to the sample mean Y n is ARE ≈ 0.64.
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8.4∗. Let F be the DE(0, 1) cdf. Show that the ARE of the sample median
MED(n) with respect to the sample mean Y n is ARE ≈ 2.0.

8.5. If Y is TEXP (λ, b = kλ) for k > 0, show that

a) E(Y ) = λ

[
1 − k

ek − 1

]
.

b) E(Y 2) = 2λ2

[
1 − (0.5k2 + k)

ek − 1

]
.


