
Chapter 1

Introduction

1.1 Introduction

Multivariate analysis is a set of statistical techniques used to analyze corre-
lated data containing observations on p ≥ 2 random variables measured on a
set of n cases. Let x = (x1, ..., xp)

T where x1, ..., xp are p random variables.
Usually context will be used to decide whether x is a random vector or the
observed random vector. For multivariate location and dispersion the ith
case is xi = (xi,1, ..., xi,p)

T .
Notation: Typically lower case boldface letters such as x denote column

vectors while upper case boldface letters such as S denote matrices with 2 or
more columns. An exception may occur for random vectors which are usually
denoted by x, y or z. If context is not enough to determine whether x is a
random vector or an observed random vector, then X = (X1, ..., Xp)

T and Y

will be used for the random vectors, and x = (x1, ..., xp)
T for observed value

of the random vector. This notation is used in Chapter 3 in order to study
the conditional distribution of Y |X = x. An upper case letter such as Y will
usually be a random variable. A lower case letter such as x1 will also often be
a random variable. An exception to this notation is the generic multivariate
location and dispersion estimator (T, C) where the location estimator T is a
p × 1 vector such as T = x. C is a p × p dispersion estimator and conforms
to the above notation. Another exception is in Chapter 3 where
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Assume that the data xi has been observed and stored in an n×p matrix

W =







xT
1
...

xT
n






=











x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p
...

...
. . .

...
xn,1 xn,2 . . . xn,p











=
[

v1 v2 . . . vp

]

where the ith row of W is the ith case xT
i and the jth column vj of W

corresponds to n measurements of the jth random variable xj for j = 1, ..., p.
Often the n rows corresponding to the n cases are assumed to be iid

or a random sample from some multivariate distribution. The p columns
correspond to n measurements on the p correlated random variables x1, ..., xp.
The n cases are p × 1 vectors while the p columns are n × 1 vectors.

Methods involving one response variable will not be covered in depth in
this text. Such models include multiple linear regression, many experimental
design models and generalized linear models. Discrete multivariate analysis
= categorical data analysis will also not be covered.

Most of the multivariate techniques studied in this book will use esti-
mators of multivariate location and dispersion. Typically the data will be
assumed to come from a continuous distribution with a joint probability dis-
tribution function (pdf). Multivariate techniques that examine correlations
among the p random variables x1, ..., xp include principal component analysis,
canonical correlation analysis and factor analysis. Multivariate techniques
that compare the n cases x1, ..., xn include discriminant analysis and cluster
analysis. Data reduction attempts to simplify the multivariate data without
losing important information. Since the data matrix W has np terms, data

reduction is an important technique. Prediction and hypothesis testing are
also important techniques. Hypothesis testing is important for multivariate
regression, Hotelling’s T 2 test, and MANOVA.

Robust multivariate analysis consists of i) techniques that are robust
to nonnormality or ii) techniques that are robust to outliers. Techniques
that are robust to outliers tend to have some robustness to nonnormality.
The classical covariance matrix S is very robust to nonnormality, but is not
robust to outliers. Large sample theory is useful for both robust techniques.
See Section 3.4.
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1.2 Things That Can Go Wrong with a Mul-

tivariate Analysis

In multivariate analysis, there is often a training data set used to predict or
classify data in a future data set. Many things can go wrong. For classifica-
tion and prediction, it is usually assumed that the data in the training set
is from the same distribution as the data in the future set. Following Hand
(2006), this crucial assumption is often not justified.

Population drift is a common reason why the above assumption, which
assumes that the various distributions involved do not change over time, is vi-
olated. Population drift occurs when the population distribution does change
over time. As an example, perhaps pot shards are classified after being sent
to a lab for analysis. It is often the case that even if the shards are sent to the
same lab twice, the two sets of lab measurements differ greatly. As another
example, suppose there are several variables being used to produce greater
yield of a crop or a chemical. If one journal paper out of 50 (the training set)
finds a set of variables and variable levels that successfully increases yield,
then the next 25 papers (the future set) are more likely to use variables and
variable levels similar to the one successful paper than variables and variable
levels of the 49 papers that did not succeed. Hand (2006) notes that classifi-
cation rules used to predict whether applicants are likely to default on loans
are updated every few months in the banking and credit scoring industries.

A second thing that can go wrong is that the training or future data
set is distorted away from the population distribution. This could occur
if outliers are present or if one of the data sets is not a random sample
from the population. For example, the training data set could be drawn
from three hospitals, and the future data set could be drawn from two more
hospitals. These two data sets may not represent random samples from the
same population of hospitals.

Often problems specific to the multivariate method can occur. Often
simpler techniques can outperform sophisticated multivariate techniques be-
cause the user of the multivariate method does not have the expertise to get
the most out of the sophisticated technique. For supervised classification,
Hand (2006) notes that there can be error in class labels, arbitrariness in
class definitions and data sets where different optimization criteria lead to
very different classification rules. Hand (2006) suggests that simple rules
such as linear discriminant analysis may perform almost as well or better
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than sophisticated classification rules because of all of the possible problems.
See Chapter 8.

1.3 Some Matrix Optimization Results

The following results will be useful throughout the text. Let A > 0 denote
that A is a positive definite matrix.

Theorem 1.1. Let B > 0 be a p × p symmetric matrix with eigenvalue
eigenvector pairs (λ1, e1), ..., (λp, ep) where λ1 ≥ λ2 · · · ≥ λp > 0 and the
orthonormal eigenvectors satisfy eT

i ei = 1 while eT
i ej = 0 for i 6= j. Let d

be a given p × 1 vector and let a be an arbitrary nonzero p × 1 vector. See
Johnson and Wichern (1988, p. 64-65, 184).

a) max
a6=0

aT ddTa

aTBa
= dT B−1d where the max is attained for a = cB−1d

for any constant c 6= 0. Note that the numerator = (aT d)2.

b) max
a6=0

aTBa

aT a
= max

‖a‖=1
aT Ba = λ1 where the max is attained for a = e1.

c) min
a6=0

aTBa

aT a
= min

‖a‖=1
aTBa = λp where the min is attained for a = ep.

d) max
a⊥e1,...,ek

aT Ba

aT a
= max

‖a‖=1,a⊥e1,...,ek

aT Ba = λk+1 where the max is

attained for a = ek+1 for k = 1, 2, ..., p − 1.
e) Let (x, S) be the observed sample mean and sample covariance matrix

where S > 0. Then max
a 6=0

aT (x− µ)(x− µ)T a

aT Sa
= n(x−µ)TS−1(x−µ) = T 2

where the max is attained for a = cS−1(x − µ) for constant c 6= 0.

f) Let A be a p × p symmetric matrix. Then max
a 6=0

aT Aa

aTBa
= λ1(B

−1A),

the largest eigenvalue of B−1A.

1.4 The Location Model

The location model

Yi = µ + ei, i = 1, . . . , n (1.1)
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is a special case of the multivariate location and dispersion model with p =
1. The location model is often summarized by obtaining point estimates
and confidence intervals for a location parameter and a scale parameter.
Assume that there is a sample Y1, . . . , Yn of size n where the Yi are iid from
a distribution with median MED(Y ), mean E(Y ), and variance V (Y ) if they
exist. Also assume that the Yi have a cumulative distribution function (cdf)
F that is known up to a few parameters. For example, Yi could be normal,
exponential, or double exponential. The location parameter µ is often the
population mean or median while the scale parameter is often the population
standard deviation

√

V (Y ). The ith case is Yi.
Point estimation is one of the oldest problems in statistics and four of

the most important statistics for the location model are the sample mean,
median, variance, and the median absolute deviation (mad). Let Y1, . . . , Yn

be the random sample; ie, assume that Y1, ..., Yn are iid.

Definition 1.1. The sample mean

Y =

∑n
i=1 Yi

n
. (1.2)

The sample mean is a measure of location and estimates the population
mean (expected value) µ = E(Y ). The sample mean is often described as
the “balance point” of the data. The following alternative description is also
useful. For any value m consider the data values Yi ≤ m, and the values Yi >
m. Suppose that there are n rods where rod i has length |ri(m)| = |Yi − m|
where ri(m) is the ith residual of m. Since

∑n
i=1(Yi − Y ) = 0, Y is the value

of m such that the sum of the lengths of the rods corresponding to Yi ≤ m
is equal to the sum of the lengths of the rods corresponding to Yi > m. If
the rods have the same diameter, then the weight of a rod is proportional
to its length, and the weight of the rods corresponding to the Yi ≤ Y is
equal to the weight of the rods corresponding to Yi > Y . The sample mean
is drawn towards an outlier since the absolute residual corresponding to a
single outlier is large.

If the data Y1, ..., Yn is arranged in ascending order from smallest to largest
and written as Y(1) ≤ · · · ≤ Y(n), then Y(i) is the ith order statistic and the
Y(i)’s are called the order statistics. Using this notation, the median

MEDc(n) = Y((n+1)/2) if n is odd,
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and
MEDc(n) = (1 − c)Y(n/2) + cY((n/2)+1) if n is even

for c ∈ [0, 1]. Note that since a statistic is a function, c needs to be fixed.
The low median corresponds to c = 0, and the high median corresponds to
c = 1. The choice of c = 0.5 will yield the sample median. For example, if
the data Y1 = 1, Y2 = 4, Y3 = 2, Y4 = 5, and Y5 = 3, then Y = 3, Y(i) = i for
i = 1, ..., 5 and MEDc(n) = 3 where the sample size n = 5.

Definition 1.2. The sample median

MED(n) = Y((n+1)/2) if n is odd, (1.3)

MED(n) =
Y(n/2) + Y((n/2)+1)

2
if n is even.

The notation MED(n) = MED(Y1, ..., Yn) will also be used.

Definition 1.3. The sample variance

S2
n =

∑n
i=1(Yi − Y )2

n − 1
=

∑n
i=1 Y 2

i − n(Y )2

n − 1
, (1.4)

and the sample standard deviation Sn =
√

S2
n.

The sample median need not be unique and is a measure of location while
the sample standard deviation is a measure of scale. In terms of the “rod
analogy,” the median is a value m such that at least half of the rods are to
the left of m and at least half of the rods are to the right of m. Hence the
number of rods to the left and right of m rather than the lengths of the rods
determine the sample median. The sample standard deviation is vulnerable
to outliers and is a measure of the average value of the rod lengths |ri(Y )|.
The sample mad, defined below, is a measure of the median value of the rod
lengths |ri(MED(n))|.

Definition 1.4. The sample median absolute deviation is

MAD(n) = MED(|Yi − MED(n)|, i = 1, . . . , n). (1.5)

Since MAD(n) is the median of n distances, at least half of the obser-
vations are within a distance MAD(n) of MED(n) and at least half of the
observations are a distance of MAD(n) or more away from MED(n).
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Example 1.1. Let the data be 1, 2, 3, 4, 5, 6, 7, 8, 9. Then MED(n) = 5
and MAD(n) = 2 = MED{0, 1, 1, 2, 2, 3, 3, 4, 4}.

Since these estimators are nonparametric estimators of the corresponding
population quantities, they are useful for a very wide range of distributions.

1.5 Mixture Distributions

Mixture distributions are often used as outlier models, and certain mixtures
of elliptically contoured distributions have an elliptically contoured distribu-
tion. The following two definitions and proposition are useful for finding the
mean and variance of a mixture distribution. Parts a) and b) of Proposition
1.2 below show that the definition of expectation given in Definition 1.6 is the
same as the usual definition for expectation if Y is a discrete or continuous
random variable.

Definition 1.5. The distribution of a random variable Y is a mixture

distribution if the cdf of Y has the form

FY (y) =

k
∑

i=1

αiFWi
(y) (1.6)

where 0 < αi < 1,
∑k

i=1 αi = 1, k ≥ 2, and FWi
(y) is the cdf of a continuous

or discrete random variable Wi, i = 1, ..., k.

Definition 1.6. Let Y be a random variable with cdf F (y). Let h be a
function such that the expected value Eh(Y ) = E[h(Y )] exists. Then

E[h(Y )] =

∫ ∞

−∞

h(y)dF (y). (1.7)

Proposition 1.2. a) If Y is a discrete random variable that has a pmf
f(y) with support Y, then

Eh(Y ) =

∫ ∞

−∞

h(y)dF (y) =
∑

y∈Y

h(y)f(y).

b) If Y is a continuous random variable that has a pdf f(y), then

Eh(Y ) =

∫ ∞

−∞

h(y)dF (y) =

∫ ∞

−∞

h(y)f(y)dy.
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c) If Y is a random variable that has a mixture distribution with cdf FY (y) =
∑k

i=1 αiFWi
(y), then

Eh(Y ) =

∫ ∞

−∞

h(y)dF (y) =
k

∑

i=1

αiEWi
[h(Wi)]

where EWi
[h(Wi)] =

∫ ∞

−∞
h(y)dFWi

(y).

Example 1.2. Proposition 1.2c implies that the pmf or pdf of Wi is
used to compute EWi

[h(Wi)]. As an example, suppose the cdf of Y is F (y) =
(1 − ε)Φ(y) + εΦ(y/k) where 0 < ε < 1 and Φ(y) is the cdf of W1 ∼ N(0, 1).
Then Φ(y/k) is the cdf of W2 ∼ N(0, k2). To find EY, use h(y) = y. Then

EY = (1 − ε)EW1 + εEW2 = (1 − ε)0 + ε0 = 0.

To find EY 2, use h(y) = y2. Then

EY 2 = (1 − ε)EW 2
1 + εEW 2

2 = (1 − ε)1 + εk2 = 1 − ε + εk2.

Thus VAR(Y ) = E[Y 2] − (E[Y ])2 = 1 − ε + εk2. If ε = 0.1 and k = 10, then
EY = 0, and VAR(Y ) = 10.9.

To generate a random variable Y with the above mixture distribution,
generate a uniform (0,1) random variable U which is independent of the Wi. If
U ≤ 1−ε, then generate W1 and take Y = W1. If U > 1−ε, then generate W2

and take Y = W2. Note that the cdf of Y is FY (y) = (1−ε)FW1
(y)+εFW2

(y).

Remark 1.1. Warning: Mixture distributions and linear combinations
of random variables are very different quantities. As an example, let

W = (1 − ε)W1 + εW2

where W1 and W2 are independent random variables and 0 < ε < 1. Then
the random variable W is a linear combination of W1 and W2, and W can
be generated by generating two independent random variables W1 and W2.
Then take W = (1 − ε)W1 + εW2.

If W1 and W2 are as in the previous example then the random variable
W is a linear combination that has a normal distribution with mean

EW = (1 − ε)EW1 + εEW2 = 0
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and variance

VAR(W ) = (1 − ε)2VAR(W1) + ε2VAR(W2) = (1 − ε)2 + ε2k2 < VAR(Y )

where Y is given in the example above. Moreover, W has a unimodal normal
distribution while Y does not follow a normal distribution. In fact, if X1 ∼
N(0, 1), X2 ∼ N(10, 1), and X1 and X2 are independent, then (X1+X2)/2 ∼
N(5, 0.5); however, if Y has a mixture distribution with cdf

FY (y) = 0.5FX1
(y) + 0.5FX2

(y) = 0.5Φ(y) + 0.5Φ(y − 10),

then the pdf of Y is bimodal.

1.6 Summary

1) Given a small data set, find Y , S, MED(n) and MAD(n). Recall that

Y =

∑n
i=1 Yi

n
and the sample variance

VAR(n) = S2 = S2
n =

∑n
i=1(Yi − Y )2

n − 1
=

∑n
i=1 Y 2

i − n(Y )2

n − 1
,

and the sample standard deviation (SD) S = Sn =
√

S2
n.

If the data Y1, ..., Yn is arranged in ascending order from smallest to largest
and written as Y(1) ≤ · · · ≤ Y(n), then the Y(i)’s are called the order statistics.

The sample median

MED(n) = Y((n+1)/2) if n is odd,

MED(n) =
Y(n/2) + Y((n/2)+1)

2
if n is even.

The notation MED(n) = MED(Y1, ..., Yn) will also be used. To find the
sample median, sort the data from smallest to largest and find the middle
value or values.

The sample median absolute deviation

MAD(n) = MED(|Yi − MED(n)|, i = 1, . . . , n).

To find MAD(n), find Di = |Yi − MED(n)|, then find the sample median
of the Di by ordering them from smallest to largest and finding the middle
value or values.
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1.7 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-

FUL.

1.1. Consider the data set 6, 3, 8, 5, and 2. Show work.

a) Find the sample mean Y .

b) Find the standard deviation S

c) Find the sample median MED(n).

d) Find the sample median absolute deviation MAD(n).

1.2∗. The Cushny and Peebles data set (see Staudte and Sheather 1990,
p. 97) is listed below.

1.2 2.4 1.3 1.3 0.0 1.0 1.8 0.8 4.6 1.4

a) Find the sample mean Y .

b) Find the sample standard deviation S.

c) Find the sample median MED(n).

d) Find the sample median absolute deviation MAD(n).

e) Plot the data. Are any observations unusually large or unusually small?
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