
Chapter 11

Factor Analysis

11.1 Introduction

Factor analysis gives an approximation of the dispersion matrix in terms
of m < p unobservable random quantities called factors. Typically factor
analysis is useful if the p random variables can be placed into a few groups
of variables with fairly high correlation such that the variables within the
group are not highly correlated with variables outside of the group. Let
m be the number of groups. Then the hope is that the kth group can be
explained by the kth factor. For example, if the p = 6 random variables
consist of three head measurements and height, arm length and leg length,
then perhaps the three head measurements are highly correlated and the
three other measurements are highly correlated. Then there would be m = 2
groups corresponding to a “head measurement” factor and a “length” factor.

Some notation is needed before presenting the model. When the eigen-
value λi of Σ is unique, there are two standardized eigenvectors: ei and
−ei. The literature sometimes states that the standardized eigenvectors

are “unique up to sign.” Assume λ1 > λ2 > · · · > λp > 0. If Σ̂
P→ cΣ

for some positive constant c, then by the spectral decomposition theorem,

Σ̂ =
∑p

i=1
λ̂iêiê

T
i

P→ c
∑p

i=1
λieie

T
i = cΣ, and êiê

T
i

P→ eie
T
i for i = 1, ..., p by

Theorem 6.2 since eie
T
i = (−ei)(−ei)

T .
The factor analysis approximation of the dispersion matrix Σ ≈ ΣP

uses the first m terms of the spectral decomposition of Σ and a diagonal
matrix Ψ so that the approximation is exact for the diagonal elements:
Σii = ΣP,ii. Let the ith column of the p×m matrix L be

√
λiei where m < p.
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Then L =
[ √

λ1e1

√
λ2e2 . . .

√
λmem

]

. Then Σ =
∑m

i=1
λieie

T
i +

∑p

i=m+1
λieie

T
i = LLT +

∑p

i=m+1
λieie

T
i ≈ LLT + Ψ ≡ ΣP where Ψ =

diag(ψ1, ..., ψp) and Σii = ΣP,ii. Hence (LLT )ii + ψi = Σii.

Definition 11.1. The orthogonal factor analysis model is x−µ = LF +ε

where the p× 1 random vector x = (X1, ..., Xp), the p×m matrix of factor
loadings L = ((lij)), the m × 1 random vector of common factors is F =
(F1, ..., Fm)T and the p× 1 error vector is ε = (ε1, ..., εp)

T . The εi are called
errors or specific factors. The dispersion structure is Σ ≈ LLT + Ψ = ΣP

with equality for the diagonal elements. Hence Σii = l2i1+l
2
i2+· · ·+l2im+ψi =

h2
i + ψi where h2

i = l2i1 + l2i2 + · · · + l2im is called the ith communality. The
model has Xi − µi = li1F1 + li2F2 + · · · + limFm + εm for i = 1, ..., p. The
loading of the ith variable on the jth factor = lij.

Data often does not have this structure, so an important question in
whether the factor analysis structure is reasonable. Note that if Σ is the
covariance matrix, then V (Xi) = σii = Σii = h2

i + ψi. L,F , ε and µ are
unobservable. When Σ is the covariance matrix, assume that E(F ) = 0,
Cov(F ) = Im, E(ε = 0, Cov(ε) = Ψ and that F and ε are independent.
Then Cov(x,F ) = L or Cov(Xi, Fj) = lij, and Σ = LLT + Ψ = ΣP .

Let the ith column of the p × m matrix L̂ be
√

λ̂iêi where m < p.

Then L̂ =
[

√

λ̂1ê1

√

λ̂2ê2 . . .
√

λ̂mêm

]

. Then Σ̂ =
∑m

i=1
λ̂iêiê

T
i +

∑p

i=m+1
λ̂iêiê

T
i = L̂L̂

T
+

∑p

i=m+1
λ̂iêiê

T
i ≈ L̂L̂

T
+ Ψ̂ ≡ Σ̂P where Ψ̂ =

diag(ψ̂1, ..., ψ̂p) and Σ̂ii = Σ̂P,ii. Hence (L̂L̂
T
)ii + ψ̂i = Σ̂ii.

Definition 11.2. The principal component factor analysis uses the ap-

proximation Σ̂ ≈ L̂L̂
T

+ Ψ̂. L̂ is called the matrix of estimated factor load-
ings. The ith estimated communality ĥ2

i = l̂2i1 + l̂2i2 + · · · + l̂2im for i = 1, .., p.

The kth column
√

λ̂kêk of L̂ gives the estimated factor loadings for factor
Fk. These estimated factor loadings do not change as m is increased. If Γ
is an orthogonal matrix, then L̂

∗

= L̂Γ is also a matrix of estimated factor

loadings, and L̂L̂
T

= L̂
∗

(L̂
∗

)T . The communalities are unaffected by the
choice of Γ.

Rule of thumb 11.1. To use factor analysis, assume the DD plot and
subplots of the scatterplot matrix are linear. Want n > 10p for classical
factor analysis and n > 20p for robust factor analysis that uses FCH, RFCH
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or RMVN. For classical factor analysis, use the correlation matrix R instead
of the covariance matrix S if maxi=1,...,p S

2
i /mini=1,...,p S

2
i > 2. If S is used,

also do a factor analysis using R. Want the proportion of the trace explained
by the first m factors =

∑m

i=1
λ̂i/

∑p

j=1
λ̂j =

∑m

i=1
λ̂i/tr(Σ̂) > 0.7. Want

m < min(10, p). Suppose (T, Σ̂) is the estimator of multivariate location
and dispersion. Make a plot of Di(T, Σ̂P ) versus Di(T, Σ̂) with the identity
line that has unit slope and zero intercept added as a visual aid. If Σ̂P is an
adequate approximation of Σ̂, then the plotted points should cluster tightly
about the identity line.

11.2 Robust Factor Analysis

Robust factor analysis can be done using the FCH, RFCH or RMVN dis-

persion estimator as Σ̂. Under (E1) the robust factor analysis has Σ̂
P→ cΣ

while S
P→ cXΣ. If the generalized correlation matrix is used as Σ̂, then the

classical and robust methods both satisfy Σ̂
P→ ρ. The RMVN method is

easy to program since it is the classical factor analysis applied to the RMVN
subset.

11.3 Summary

1) Factor analysis is use to write Σ̂ ≈ L̂L̂
T

+ Ψ̂ = Σ̂F . Factor analysis
clusters variables into groups called factors and suggests that the m < p
factors explain the dispersion more simply than X1, ..., Xp. L̂ = [L1, ...,Lm]
is the matrix of factor loadings.

2) Factor analysis output is a lot like PCA output, but replace PC1, ...,

PCp by Factor 1, ..., Factor m:
Factor 1 Factor 2 · · · Factor m

L̂1 L̂2 · · · L̂m

3) To try to explain Factor j, look at entries in L̂j that are large in
magnitude and ignore entries close to zero. Sometimes only one entry is
large. Sometimes all of the large entries have approximately the same size
and sign, then the Factor is interpreted as an average of these entrees. If all
of the large entries have approximately the same size but different signs then
the Factor is interpreted as the sum of the variables with the positive sign −
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the sum of the variables with a minus sign. Thus if exactly two entries are
of similar large magnitude but of different sign, the Factor is interpreted as
a difference of the two entrees. If there are k ≥ 2 large entrees that differ
in magnitude, then the Factor is interpreted as a linear combination of the
corresponding variables.

4) The proportion of variance explained and cumulative proportion of
variance explained are interpreted as for PCA. Use the k factor model if the
proportion of the variance explained by the first k Factors is larger than some
percentage such as 50%, 60%, 70%, 80% or 90%.

5) For a k factor model, want the degrees of freedom d ≥ 0 where
d = 0.5(p− k)2 − 0.5(p + k).

6) If the 1 factor model is not adequate, R will give a test for whether a k
factor model is sufficient. A k factor model with pval < 0.05 is not sufficient:
more factors are needed. A k factor model with pval > 0.05 is sufficient.

7) Let Γ̂ be an orthogonal matrix. The L̂ΓL̂
T

Γ = L̂Γ̂Γ̂
T
L̂

T
= L̂L̂

T
. The

varimax and promax rotations seek Γ̂ such that L̂Γ = L̂Γ̂ has loadings that
are easier to interpret than the loadings of L̂. The promax rotation attempts
to produce loading with a lot of zeroes.

11.4 Complements

Kosfeld (1996) does factor analysis with the DGK estimator.

11.5 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

Loadings:

Factor1 Factor2

height 0.872

arm.span 0.973

forearm 0.938

lower.leg 0.876

weight 0.961

bitro.diameter 0.803
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chest.girth 0.796

chest.width 0.125 0.611

Factor1 Factor2

SS loadings 3.375 2.589

Proportion Var 0.422 0.324

Cumulative Var 0.422 0.745

11.1∗. The above output is for the factor analysis using a correlation
matrix of eight physical measurements on 305 girls between ages seven and
seventeen.

a) What is the cumulative variance explained by the 2 factors?

b) Which factor has a nonzero loading for weight?

c) Explain Factor 2.

factanal(marry,factors=2,rotation="promax")

Uniquenesses: pop mmen mwmn mmilmen milwmn

0.010 0.005 0.005 0.005 0.005

Loadings:Factor1 Factor2

pop 0.986

mmen 1.003

mwmn 1.003

mmilmen 0.965

milwmn 0.958

Factor1 Factor2

SS loadings 2.995 1.850

Proportion Var 0.599 0.370

Cumulative Var 0.599 0.969

11.2. The above output is for a factor analysis of the Hebbler (1847)
data from the the 1843 Prussia census. Sometimes if the wife or husband
was not at the household, then s/he would not be counted. X1 = pop =
population of the district in 1843, X2 = mmen = number of married civilian
men in the district, X3 = mwmn = number of women married to civilians
in the district, X4 = mmilmen = number of married military men in the

251



district, and x5 = milwmn = number of women married to military men in
the district.

a) What is the cumulative variance explained by the 2 factors?

b) Explain Factor 1.

c) Explain Factor 2.

Uniquenesses:

age breadth cephalic circum headht height len size cbrainy

0.005 0.005 0.005 0.142 0.005 0.303 0.005 0.005 0.366

Loadings:

Factor1 Factor2 Factor3 Factor4

log(age) 1.026

breadth 0.874 0.461 -0.142

cephalic -0.115 1.020

circum 0.849 0.113

headht 0.965

height 0.202 0.597 0.204

len 1.109 -0.363 -0.156

size 0.805 0.231

brainwt 0.642 -0.262 0.296

Factor1 Factor2 Factor3 Factor4

SS loadings 3.833 1.491 1.389 1.161

Proportion Var 0.426 0.166 0.154 0.129

Cumulative Var 0.426 0.592 0.746 0.875

11.3. The above output is for the factor analysis of the Gladstone (1905-
6) data. The variables included log(age) and height and 7 head measure-
ments breadth, cephalic, circum, headht, len, size, and brain weight.

a) What is the cumulative variance explained by the 4 factors?

b) Which factor has a nonzero loading for log(age)?

c) Explain Factor 3.

R/Splus Problems

Warning: Use the command source(“G:/mpack.txt”) to download
the programs. See Preface or Section 15.2. Typing the name of the
mpack function, eg ddplot, will display the code for the function. Use the
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args command, eg args(ddplot), to display the needed arguments for the
function.

11.4. The Buxton data has 5 massive outliers in variables len and buxy
= height.

a) The R commands for this part do a factor analysis on the Buxton data
using the sample covariance matrix. Copy and paste the output into Word.

i) Which variables have nonzero loadings for factor 1?
ii) Which variables have nonzero loadings for factor 2?
iii) What is the cumulative variance explained by the two factors?
b) The R commands for this part do a factor analysis on the Buxton data

using the RMVN dispersion matrix. Copy and paste the output into Word.
i) Which variables have nonzero loadings for factor 1?
ii) Which variables have nonzero loadings for factor 2?
iii) What is the cumulative variance explained by the two factors?
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