
Chapter 12

Multivariate Linear Regression

12.1 Introduction

Definition 12.1. The response variables are the variables that you want
to predict. The predictor variables are the variables used to predict the
response variables.

Notation. The multivariate linear regression model yi = BTxi +
εi for i = 1, ..., n has m ≥ 2 response variables Y1, ..., Ym and p predictor
variables X1, X2, ..., Xp where X1 = 1 is the trivial predictor. The ith case is
(xT

i , yT
i ) = (1, xi2, ..., xip, Yi1, ..., Yim) where the 1 could be omitted.

In matrix form, the model is Z = XB + E, and the data matrix W =
[X Y ] except usually the first column 1 of X is omitted. The n×m matrix

Z =





Y1,1 Y1,2 . . . Y1,m

Y2,1 Y2,2 . . . Y2,m
...

...
. . .

...
Yn,1 Yn,2 . . . Yn,m




=
[

Y 1 Y 2 . . . Y m

]
=




yT

1
...

yT
n



 .

The n × p matrix

X =





x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p
...

...
. . .

...
xn,1 xn,2 . . . xn,p




=
[

v1 v2 . . . vp

]
=




xT

1
...

xT
n




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where v1 = 1.
The p × m matrix

B =





β1,1 β1,2 . . . β1,m

β2,1 β2,2 . . . β2,m
...

...
. . .

...
βp,1 βp,2 . . . βp,m



 =
[

β1 β2 . . . βm

]
.

The n × m matrix

E =





ε1,1 ε1,2 . . . ε1,m

ε2,1 ε2,2 . . . ε2,m
...

...
. . .

...
εn,1 εn,2 . . . εn,m




=
[

e1 e2 . . . em

]
=




εT

1
...

εT
n



 .

Warning: The ei are error vectors, not orthonormal eigenvectors.

Definition 12.2. In the multiple linear regression model,

Yi = xi,1β1 + xi,2β2 + · · · + xi,pβp + ei = xT
i β + ei (12.1)

for i = 1, . . . , n. In matrix notation, these n equations become

Y = Xβ + e, (12.2)

where Y is an n × 1 vector of response variables, X is an n × p matrix of
predictors, β is a p × 1 vector of unknown coefficients, and e is an n × 1
vector of unknown errors. Equivalently,





Y1

Y2
...

Yn



 =





x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p
...

...
. . .

...
xn,1 xn,2 . . . xn,p









β1

β2
...

βp



+





e1

e2
...

en



 . (12.3)

The ei are iid with zero mean and variance σ2, and multiple linear regression
is used to estimate the unknown parameters β and σ2.

Each response variable in a multivariate linear regression model follows a
multiple linear regression model Y j = Xβj + ej for j = 1, ..., m where it is
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assumed that E(ej) = 0 and Cov(ej) = σjjIn. Hence the errors correspond-
ing to the jth response are uncorrelated with variance σ2

j = σjj. Notice that
the same design matrix X of predictors is used for each of the m models,
but the jth response variable vector Y j, coefficient vector βj and error vector
ej change and thus depend on j.

Now consider the ith case (xT
i , yT

i ) which corresponds to the ith row of
Z and the ith row of X. Then





Yi1 = β11xi1 + · · · + βp1xip + εi1 = xT
i β1 + εi1

Yi2 = β12xi1 + · · · + βp2xip + εi2 = xT
i β2 + εi2

...
Yim = β1mxi1 + · · · + βpmxip + εim = xT

i βm + εim





or yi = µxi
+ εi = E(yi) + εi where

E(yi) = µxi
= BTxi =





xT
i β1

xT
i β2
...

xT
i βm



 .

The notation yi|xi and E(yi|xi) is more accurate, but usually the condi-
tioning is suppressed. Taking µxi

to be a constant (or condition on xi if the
predictor variables are random variables), yi and εi have the same covariance
matrix. In the multivariate regression model, this covariance matrix Σε does
not depend on i. Observations from different cases are uncorrelated (often
independent), but the m errors for the m different response variables for the
same case are correlated. If X is a random matrix, then assume X and E

are independent and that expectations are conditional on X.

Definition 12.3. The multivariate linear regression model yk =
BT xk + εk for k = 1, ..., n is written in matrix form as Z = XB + E.
The model has E(εk) = 0 and Cov(εk) = Σε = ((σij)) for k = 1, ..., n.
Also E(ei) = 0 while Cov(ei, ej) = σijIn for i, j = 1, ..., m. Then B and
Σε are unknown matrices of parameters to be estimated, and E(Z) = XB

while E(Yij) = xT
i βj. Considering the kth row of Z, X and E shows that

yT
k = xT

k B + εT
k .

Example 12.1. Suppose it is desired to predict the response variables
Y1 = height and Y2 = height at shoulder of a person from partial skeletal
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remains. A model for prediction can be built from nearly complete skeletons
or from living humans, depending on the population of interest (eg ancient
Egyptians or modern US citizens). The predictor variables might be x1 ≡ 1,
x2 = femur length and x3 = ulna length. The two heights of individuals with
x2 = 200mm and x3 = 140mm should be shorter on average than the two
heights of individuals with x2 = 500mm and x3 = 350mm. In this example
Y1, Y2, x2 and x3 are quantitative variables. If x4 = gender is a predictor
variable, then gender (coded as male = 1 and female = 0) is qualitative.

Definition 12.4. Least squares is the classical method for fitting multi-
variate linear regression. The least squares estimators are B̂ = (XTX)−1XT Z =[

β̂1 β̂2 . . . β̂m

]
. The predicted values or fitted values

Ẑ = XB̂ =
[

Ŷ 1 Ŷ 2 . . . Ŷ m

]
=





Ŷ1,1 Ŷ1,2 . . . Ŷ1,m

Ŷ2,1 Ŷ2,2 . . . Ŷ2,m
...

...
. . .

...

Ŷn,1 Ŷn,2 . . . Ŷn,m



 .

The residuals Ê = Z − Ẑ = Z − XB̂ =




ε̂T
1

ε̂T
2
...

ε̂
T
n




=
[

r̂1 r̂2 . . . r̂m

]
=





ε̂1,1 ε̂1,2 . . . ε̂1,m

ε̂2,1 ε̂2,2 . . . ε̂2,m
...

...
. . .

...
ε̂n,1 ε̂n,2 . . . ε̂n,m




.

These quantities can be found from the m multiple linear regressions of Yj

on the predictors: β̂j = (XTX)−1XT Y j , Ŷ j = Xβ̂j and r̂j = Y j − Ŷ j

for j = 1, ..., m. Hence ε̂i,j = Yi,j − Ŷi,j where Ŷ j = (Ŷ1,j, ..., Ŷn,j)
T . Finally,

Σ̂ε,d =

(Z − Ẑ)T (Z − Ẑ)

n − d
=

(Z −XB̂)T (Z −XB̂)

n − d
=

Ê
T
Ê

n − d
=

1

n − d

n∑

i=1

ε̂iε̂
T
i .

The choices d = 0 and d = p are common. If d = 1, then Σ̂ε,d=1 = Sr, the
sample covariance matrix of the residual vectors ε̂i since the sample mean of
the ε̂i is 0. Let Σ̂ε = Σ̂ε,p be the unbiased estimator of Σε. Also,

Σ̂ε,d = (n − d)−1ZT [I −X(XT X)−1X]Z,
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and
Ê = [I − X(XTX)−1X]Z.

Theorem 12.1, (Johnson and Wichern (1988, p. 304): Suppose
X has full rank p < n and the covariance structure of Definition 12.3 holds.
Then E(B̂) = B so E(β̂j) = βj, Cov(β̂j, β̂k) = σjk(X

T X)−1 for j, k =

1, ..., p. Also Ê and B̂ are uncorrelated, E(Ê) = 0 and

E(Σ̂ε) = E

(
Ê

T
Ê

n − p

)

= Σε.

Theorem 12.2. Sr = Σε+OP (n−1/2) if B−B̂ = OP (n−1/2), 1
n

∑n
i=1 εix

T
i =

OP (1), 1
n

∑n
i=1 xix

T
i = OP (n1/2) and 1

n

∑n
i=1 εiε

T
i = Σε + OP (n−1/2).

Proof. Note that yi = BT xi +εi = B̂
T
xi + ε̂i. Hence ε̂i = (B−B̂)Txi +

εi. Thus

n∑

i=1

ε̂iε̂
T
i =

n∑

i=1

(εi−εi+ε̂i)(εi−εi+ε̂i)
T =

n∑

i=1

[εiε
T
i +εi(ε̂i−εi)

T +(ε̂i−εi)ε̂
T
i ] =

n∑

i=1

εiε
T
i +(

n∑

i=1

εix
T
i )(B−B̂)+(B−B̂)T (

n∑

i=1

xiε
T
i )+(B−B̂)T (

n∑

i=1

xix
T
i )(B−B̂).

Thus 1
n

∑n
i=1 ε̂iε̂

T
i = 1

n

∑n
i=1 εiε

T
i +

OP (1)OP (n−1/2) + OP (n−1/2)OP (1) + OP (n−1/2)OP (n1/2)OP (n−1/2),

and the result follows since 1
n

∑n
i=1 εiε

T
i = Σε + OP (n−1/2) and

Sr =
n

n − 1

1

n

n∑

i=1

ε̂iε̂
T
i .

12.2 Checking the Model

12.2.1 Plots

Notation. Plots will be used to simplify regression analysis, and in this text
a plot of W versus Z uses W on the horizontal axis and Z on the vertical
axis.
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Definition 12.5. A response plot for the jth response variable is a
plot of the fitted values Ŷij versus the response Yij . The identity line with
slope one and zero intercept is added to the plot as a visual aid. A residual
plot corresponding to the jth response variable is a plot of Ŷij versus rij.

Remark 12.1. Make the m response and residual plots for any multi-
variate linear regression. In a response plot, the vertical deviations from the
identity line are the residuals rij = Yij − Ŷij. If the model is appropriate,
then the plotted points should cluster about the identity line in each of the
m response plots. If outliers are present or if the plot is not linear, then the
current model or data need to be changed or corrected. If the model is good,
then the each of the m residual plots should be ellipsoidal with no trend and
should be centered about the r = 0 line. There should not be any pattern in
the residual plot: as a narrow vertical strip is moved from left to right, the
behavior of the residuals within the strip should show little change. Outliers
and patterns such as curvature or a fan shaped plot are bad.

Notation. A rule of thumb is a rule that often but not always works well
in practice.

Rule of thumb 12.1. Use multivariate linear regression if n > 10max(p, m).
The m response and residual plots should all look good. Make the DD plot
of the ε̂i. If a residual plot would look good after several points have been
deleted, and if these deleted points were not gross outliers (points far from
the point cloud formed by the bulk of the data), then the residual plot is
probably good. Beginners often find too many things wrong with a good
model. For practice, use the computer to generate several multivariate linear
regression data sets, and make the m response and residual plots for these
data sets. This exercise will help show that the plots can have considerable
variability even when the multivariate linear regression model is good.

Rule of thumb 12.2. If the plotted points in the residual plot look like
a left or right opening megaphone, the first model violation to check is the
assumption of nonconstant variance. (This is a rule of thumb because it is
possible that such a residual plot results from another model violation such
as nonlinearity, but nonconstant variance is much more common.)

Remark 12.2. Residual plots magnify departures from the model while
the response plots emphasizes how well the multivariate linear regression
model fits the data.
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Definition 12.6. An RR plot is a scatterplot matrix of the m sets of
residuals r1, ..., rm.

Definition 12.7. An FF plot is a scatterplot matrix of the m sets
of fitted values of response variables Ŷ 1, ..., Ŷ m. The m response variables
Y 1, ..., Y m can be added to the plot.

Remark 12.3. Multivariate linear regression makes the most sense if the
m errors are linearly related, eg from an elliptically contoured distribution.
Make the RR plot and a DD plot of the residuals ε̂i to check that the errors
are linearly related. Make a DD plot of the continuous predictor variables
to check for x-outliers. Make a DD plot of Y1, ...., Ym to check for outliers,
especially if it is assumed that the response variables come from an elliptically
contoured distribution.

Example 12.2. Tremearne (1911) presents a data set of about 17 mea-
surements on 115 people of Hausa nationality. We deleted 3 cases (107, 108
and 109) because of missing values and used height as the response variable
Y1. Suppose Y2 is the other response variable and that the response and
residual plots for Y2 are well behaved. Along with a constant xi,1 ≡ 1, the
five additional predictor variables used were height when sitting, height when
kneeling, head length, nasal breadth, and span (perhaps from left hand to right
hand). Figure 12.1 presents the response and residual plots corresponding
the response variable Y1 = height for this data set. These plots show that
the model should be useful for the data since the plotted points in the re-
sponse plot are linear and follow the identity line while the plotted points in
the residual plot follow the r = 0 line with no other pattern (except for a
possible outlier marked 44).

To use the response plot to visualize the conditional distribution of Y1|xT β1,
use the fact that the fitted values Ŷ1 = xT β̂1. For example, suppose the height
given fit = 1700 is of interest. Mentally examine the plot about a narrow
vertical strip about fit = 1700, perhaps from 1675 to 1725. The cases in the
narrow strip have a mean close to 1700 since they fall close to the identity
line. Similarly, when the fit = w for w between 1500 and 1850, the cases
have heights near w, on average.

Cases 3, 44 and 63 are highlighted. The 3rd person was very tall while
the 44th person was rather short. Beginners often label too many points
as outliers. Mentally draw a box about the bulk of the data ignoring any
outliers. Double the width of the box (about the identity line for the response
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Figure 12.1: Residual and Response Plots for the Response Variable Height
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plot and about the horizontal r = 0 line for the residual plot). Cases outside
of this imaginary doubled box are potential outliers. Alternatively, visually
estimate the standard deviation of the residuals in both plots. In the residual
plot look for residuals that are more than 5 standard deviations from the
r = 0 line. In Figure 12.1, the standard deviation of the residuals appears to
be around 10. Hence cases 3 and 44 are certainly worth examining.

The plots corresponding to Y1 can be made with the following commands.
In general store Y 1, Y 2, ..., Y m and make the MLRplot(X,Y) command m
times for Y = Y 1, ..., Y m.

source("G:/mpack.txt")

#assume the data is stored in R matrix major

X<-major[,-6]; Y1 <- major[,6]; MLRplot(X,Y1)

12.2.2 Predictor and Response Transformations

Predictor transformations for the continuous predictors can be made exactly
as in Section 2.4.

Warning: The Rule of thumb 2.1 does not always work. For example,
the log rule may fail. If the relationships in the scatterplot matrix are already
linear or if taking the transformation does not increase the linearity, then no
transformation may be better than taking a transformation. For the Arc data
set evaporat.lsp, the log rule suggests transforming the response variable
Evap, but no transformation works better.

Response transformations can also be made as in Section 2.4, but there is
an alternative graphical method for response transformations once the pre-
dictors are fixed. Discussion will first be given for multiple linear regression
with response variable Y . Then for multivariate regression, simply use the
transformation plots for each of the m response variables Y1, ..., Ym.

An important class of response transformation models adds an additional
unknown transformation parameter λo, such that

Yi = tλo(Zi) ≡ Z
(λo)
i = E(Yi|xi) + ei = xT

i β + ei. (12.4)

If λo was known, then Yi = tλo(Zi) would follow a multiple linear regression
model with p predictors including the constant. Here, β is a p × 1 vector
of unknown coefficients depending on λo, x is a p × 1 vector of predictors
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that are assumed to be measured with negligible error, and the errors ei are
assumed to be iid with zero mean.

Definition 12.8. Assume that all of the values of the “response” Zi are
positive. A power transformation has the form Y = tλ(Z) = Zλ for λ 6= 0
and Y = t0(Z) = log(Z) for λ = 0 where

λ ∈ ΛL = {−1,−1/2,−1/3, 0, 1/3, 1/2, 1}.

Definition 12.9. Assume that all of the values of the “response” Zi are
positive. Then the modified power transformation family

tλ(Zi) ≡ Z
(λ)
i =

Zλ
i − 1

λ
(12.5)

for λ 6= 0 and Z
(0)
i = log(Zi). Often Z

(1)
i is replaced by Zi for λ = 1.

Generally λ ∈ Λ where Λ is some interval such as [−1, 1] or a coarse subset
such as ΛL. This family is a special case of the response transformations
considered by Tukey (1957).

A graphical method for response transformations refits the model using
the same fitting method: changing only the “response” from Z to tλ(Z).
Compute the “fitted values” Ŵi using Wi = tλ(Zi) as the “response.” Then
a transformation plot of Ŵi versus Wi is made for each of the seven values of
λ ∈ ΛL with the identity line added as a visual aid. Vertical deviations from
the identity line are the “residuals” ri = Wi−Ŵi. Then a candidate response
transformation Y = tλ∗(Z) is reasonable if the plotted points follow the
identity line in a roughly evenly populated band. Curvature from the identity
line suggests that the candidate response transformation is inappropriate.

Definition 12.10. A transformation plot is a plot of Ŵ versus W with
the identity line added as a visual aid.

There are several reasons to use a coarse grid of powers. First, several
of the powers correspond to simple transformations such as the log, square
root, and cube root. These powers are easier to interpret than λ = .28,
for example. According to Mosteller and Tukey (1977, p. 91), the most
commonly used power transformations are the λ = 0 (log), λ = 1/2,
λ = −1 and λ = 1/3 transformations in decreasing frequency of use. Sec-
ondly, if the estimator λ̂n can only take values in ΛL, then sometimes λ̂n will
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converge (eg in probability) to λ∗ ∈ ΛL. Thirdly, Tukey (1957) showed that
neighboring power transformations are often very similar, so restricting the
possible powers to a coarse grid is reasonable. Note that powers can always
be added to the grid ΛL. Useful powers are ±1/4,±2/3,±2, and ±3. Powers
from numerical methods can also be added.

Application 12.1. This graphical method for selecting a response trans-
formation is very simple. Let Wi = tλ(Zi). Then for each of the seven values
of λ ∈ ΛL, perform least squares (OLS) on (Wi, xi) and make the transfor-
mation plot of Ŵi versus Wi. If the plotted points follow the identity line for
λ∗, then take λ̂o = λ∗, that is, Y = tλ∗(Z) is the response transformation.
(Note that this procedure can be modified to create a graphical diagnostic for
a numerical estimator λ̂ of λo by adding λ̂ to ΛL.) Note that for multivariate
regression, use W = Yj for j = 1, ..., m. Hence 7m plots will be made.

If more than one value of λ ∈ ΛL gives a linear plot, take the simplest or
most reasonable transformation or the transformation that makes the most
sense to subject matter experts. Also check that the corresponding “residual
plots” of Ŵ versus W − Ŵ look reasonable. The values of λ in decreasing
order of importance are 1, 0, 1/2,−1 and 1/3. So the log transformation
would be chosen over the cube root transformation if both transformation
plots look equally good.

After selecting the transformations, the usual checks on the multivari-
ate regression model should be made. In particular, make the m response
and residual plots. In particular, the transformation plot for the selected
transformation is the response plot, and a residual plot should also be made.

The following two examples illustrates the procedure for a single response
variable Y = Y1, and the plots show tλ(Z) on the vertical axis. The label
“TZHAT” of the horizontal axis are the “fitted values” that result from us-
ing tλ(Z) as the “response” in the OLS software. In general for multivariate
regression, the plots would be made for Z1, ..., Zm resulting in response vari-
ables Y1 = t1(Z1), ..., Ym = tm(Zm).

Example 12.3: Textile Data. In their pioneering paper on response
transformations, Box and Cox (1964) analyze data from a 33 experiment
on the behavior of worsted yarn under cycles of repeated loadings. The “re-
sponse” Z is the number of cycles to failure and a constant is used along with
the three predictors length, amplitude and load. Using the normal profile log
likelihood for λo, Box and Cox determine λ̂o = −0.06 with approximate 95
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Figure 12.2: Four Transformation Plots for the Textile Data
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percent confidence interval −0.18 to 0.06. These results give a strong indi-
cation that the log transformation may result in a relatively simple model,
as argued by Box and Cox. Nevertheless, the numerical Box–Cox transfor-
mation method provides no direct way of judging the transformation against
the data.

Shown in Figure 12.2 are transformation plots of Ẑ versus Zλ for four
values of λ except log(Z) is used if λ = 0. The plots show how the trans-
formations bend the data to achieve a homoscedastic linear trend. Perhaps
more importantly, they indicate that the information on the transformation
is spread throughout the data in the plot since changing λ causes all points
along the curvilinear scatter in Figure 12.2a to form along a linear scatter in
Figure 12.2c. Dynamic plotting using λ as a control seems quite effective for
judging transformations against the data and the log response transformation
does indeed seem reasonable.

Note the simplicity of the method: Figure 12.2a shows that a response
transformation is needed since the plotted points follow a nonlinear curve
while Figure 12.2c suggests that Y = log(Z) is the appropriate response
transformation since the plotted points follow the identity line. If all 7
plots were made for λ ∈ ΛL, then λ = 0 would be selected since this plot
is linear. Also, Figure 12.2a suggests that the log rule is reasonable since
max(Z)/min(Z) > 10.

The essential point of the next example is that observations that influence
the choice of the usual Box–Cox numerical power transformation are often
easily identified in the transformation plots. The transformation plots are
especially useful if the bivariate relationships of the predictors, as seen in the
scatterplot matrix of the predictors, are linear.

Example 12.4: Mussel Data. Cook and Weisberg (1999a, p. 351, 433,
447) gave a data set on 82 mussels sampled off the coast of New Zealand.
Suppose the response Z is muscle mass M in grams, and the predictors are
the length L and height H of the shell in mm, the logarithm log W of the
shell width W, the logarithm log S of the shell mass S and a constant. With
this starting point, we might expect a log transformation of M to be needed
because M and S are both mass measurements and log S is being used as
a predictor. Using log M would essentially reduce all measurements to the
scale of length. The Box–Cox likelihood method gave λ̂0 = 0.28 with ap-
proximate 95 percent confidence interval 0.15 to 0.4. The log transformation
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is excluded under this inference leading to the possibility of using different
transformations of the two mass measurements.

Shown in Figure 12.3 are transformation plots for four values of λ. A
striking feature of these plots is the two points that stand out in three of
the four plots (cases 8 and 48). The Box–Cox estimate λ̂ = 0.28 is evi-
dently influenced by the two outlying points and, judging deviations from
the identity line in Figure 12.3c, the mean function for the remaining points
is curved. In other words, the Box–Cox estimate is allowing some visually
evident curvature in the bulk of the data so it can accommodate the two
outlying points. Recomputing the estimate of λo without the highlighted
points gives λ̂o = −0.02, which is in good agreement with the log trans-
formation anticipated at the outset. Reconstruction of the transformation
plots indicated that now the information for the transformation is consistent
throughout the data on the horizontal axis of the plot.

Note that in addition to helping visualize λ̂ against the data, the transfor-
mation plots can also be used to show the curvature and heteroscedasticity in
the competing models indexed by λ ∈ ΛL. Example 12.3 shows that the plot
can also be used as a diagnostic to assess the success of numerical methods
such as the Box–Cox procedure for estimating λo.

12.3 Variable Selection

Variable selection, also called subset or model selection, is the search for
a subset of predictor variables that can be deleted without important loss
of information. First we review variable selection for the multiple linear
regression (MLR) model, and then adapt the techniques for multivariate
linear regression.

12.3.1 Variable Selection for the MLR Model

This subsection follows Olive and Hawkins (2005) closely. A model for vari-
able selection in multiple linear regression can be described by

Y = xTβ + e = βTx + e = βT
SxS + βT

ExE + e = βT
SxS + e (12.6)

where e is an error, Y is the response variable, x = (xT
S , xT

E)T is a p × 1
vector of predictors, xS is a kS × 1 vector and xE is a (p − kS) × 1 vector.
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Given that xS is in the model, βE = 0 and E denotes the subset of terms
that can be eliminated given that the subset S is in the model.

Since S is unknown, candidate subsets will be examined. Let xI be the
vector of k terms from a candidate subset indexed by I , and let xO be the
vector of the remaining predictors (out of the candidate submodel). Then

Y = βT
I xI + βT

OxO + e. (12.7)

Definition 12.11. The model Y = βTx+e that uses all of the predictors
is called the full model. A model Y = βT

I xI + e that only uses a subset xI

of the predictors is called a submodel. The sufficient predictor (SP) is the
linear combination of the predictor variables used in the model. Hence the
full model has SP = βT x and the submodel has SP = βT

I xI .

Notice that the full model is a submodel. The estimated sufficient
predictor (ESP) is β̂

T
x and the following remarks suggest that a submodel I

is worth considering if the correlation corr(ESP, ESP (I)) ≥ 0.95. Suppose
that S is a subset of I and that model (12.6) holds. Then

SP = βTx = βT
SxS = βT

SxS + βT
(I/S)xI/S + 0TxO = βT

I xI (12.8)

where xI/S denotes the predictors in I that are not in S. Since this is true
regardless of the values of the predictors, βO = 0 and the sample correlation
corr(βT xi, β

T
I xI,i) = 1.0 for the population model if S ⊆ I .

This subsection proposes a graphical method for evaluating candidate
submodels. Let β̂ be the estimate of β obtained from the regression of Y
on all of the terms x. Denote the residuals and fitted values from the full

model by ri = Yi − β̂
T
xi = Yi − Ŷi and Ŷi = β̂

T
xi respectively. Similarly,

let β̂I be the estimate of βI obtained from the regression of Y on xI and

denote the corresponding residuals and fitted values by rI,i = Yi − β̂
T

I xI,i

and ŶI,i = β̂
T

I xI,i where i = 1, ..., n. Two important summary statistics for a
multiple linear regression model are R2, the proportion of the variability of
Y explained by the nontrivial predictors in the model, and the estimate σ̂ of
the error standard deviation σ.

Definition 12.12. The “fit–fit” or FF plot is a plot of ŶI,i versus Ŷi while
a “residual–residual” or RR plot is a plot rI,i versus ri. A response plot is a

plot of ŶI,i versus Yi. A residual plot is a plot of ŶI,i versus rI,i.
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Many numerical methods such as forward selection, backward elimina-
tion, stepwise and all subset methods using the Cp(I) criterion (Jones 1946,
Mallows 1973), have been suggested for variable selection. We will use the
FF plot, RR plot, the response plots from the full and submodel, and the
residual plots (of the fitted values versus the residuals) from the full and
submodel. These six plots will contain a great deal of information about
the candidate subset provided that Equation (12.6) holds and that a good
estimator for β̂ and β̂I is used.

For these plots to be useful, it is crucial to verify that a multiple lin-
ear regression (MLR) model is appropriate for the full model. Both the
response plot and the residual plot for the full model need to be
used to check this assumption. The plotted points in the response plot
should cluster about the identity line (that passes through the origin with
unit slope) while the plotted points in the residual plot should cluster about
the line r = 0. Any nonlinear patterns or outliers in either plot suggests that
an MLR relationship does not hold. Similarly, before accepting the candi-
date model, use the response plot and the residual plot from the candidate
model to verify that an MLR relationship holds for the response Y and the
predictors xI . If the submodel is good, then the residual and response plots
of the submodel should be nearly identical to the corresponding plots of the
full model. Assume that all submodels contain a constant.

Remark 12.4. To visualize whether a candidate submodel using predic-
tors xI is good, use the fitted values and residuals from the submodel and
full model to make an RR plot of the rI,i versus the ri and an FF plot of ŶI,i

versus Ŷi. Add the OLS line to the RR plot and identity line to both plots as
visual aids. The subset I is good if the plotted points cluster tightly about
the identity line in both plots. In particular, the OLS line and the identity
line should “nearly coincide” so that it is difficult to tell that the two lines
intersect at the origin in the RR plot.

The following notation will be useful. Suppose that all submodels in-
clude a constant and that X is the full rank n × p design matrix for the
full model. Let the corresponding vectors of OLS fitted values and resid-
uals be Ŷ = X(XTX)−1XT Y = HY and r = (I − H)Y , respectively.
Suppose that XI is the n × k design matrix for the candidate submodel
and that the corresponding vectors of OLS fitted values and residuals are
Ŷ I = XI(X

T
I XI)

−1XT
I Y = HIY and rI = (I − HI)Y , respectively. For
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multiple linear regression, recall that if the candidate model of xI has k terms
(including the constant), then the FI statistic for testing whether the p − k
predictor variables in xO can be deleted is

FI =
SSE(I) − SSE

(n − k) − (n − p)
/

SSE

n − p
=

n − p

p − k
[
SSE(I)

SSE
− 1]

where SSE is the error sum of squares from the full model and SSE(I) is the
error sum of squares from the candidate submodel. Then

Cp(I) =
SSE(I)

MSE
+ 2k − n = (p − k)(FI − 1) + k

where MSE is the error mean square for the full model. Notice that Cp(I) ≤
2k if and only if FI ≤ p/(p−k). Remark 12.7 below suggests that for subsets
I with k terms, submodels with Cp(I) ≤ min(2k, p) are especially interesting.

Olive (2013, proposition 5.1) shows that

corr(r, rI) =

√
n − p

Cp(I) + n − 2k
=

√
n − p

(p − k)FI + n − p
, (12.9)

and that the plotted points in the FF, RR and response plots will cluster
about the identity line. This proposition is a property of OLS and holds even
if the data does not follow an MLR model.

Remark 12.5. Note that for large n, Cp(I) < k or FI < 1 will force
corr(ESP,ESP(I)) to be high (≥ 0.95). Let d be a lower bound on corr(r, rI).
If

Cp(I) ≤ 2k + n

[
1

d2
− 1

]
− p

d2
,

then corr(r, rI) ≥ d. The simple screen Cp(I) ≤ 2k corresponds to

dn ≡
√

1 − p

n
.

To reduce the chance of overfitting, use the screen Cp(I) ≤ min(2k, p).

A standard model selection procedure will often be needed to suggest
models. For example, forward selection or backward elimination could be
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used. If p < 30, Furnival and Wilson (1974) provide a technique for selecting
a few candidate subsets after examining all possible subsets.

Rule of thumb 12.3 (assuming that the cost of each predictor is the
same): a) After using a numerical method such as forward selection or back-
ward elimination, let Imin correspond to the submodel with the smallest
Cp. Find the submodel II with the fewest number of predictors such that
Cp(II) ≤ Cp(Imin) + 1. Then II is the initial submodel that should be exam-
ined. It is possible that II = Imin or that II is the full model. Do not use
more predictors than model II to avoid overfitting.

b) Models I with fewer predictors than II such that Cp(I) ≤ Cp(Imin)+4
are interesting and should also be examined.

c) Models I with k predictors, including a constant and with fewer predic-
tors than II such that Cp(Imin) + 4 < Cp(I) ≤ min(2k, p) should be checked
but often underfit: important predictors are deleted from the model. Un-
derfit is especially likely to occur if a predictor with one degree of freedom
is deleted and the jump in Cp is large, greater than 4, say. (A factor has
c − 1 degrees of freedom corresponding to the c − 1 indicator variables used
to define the factor, and usually either all of the indicator variables are kept
or deleted by variable selection software.)

d) If there are no models I with fewer predictors than II such that Cp(I) ≤
min(2k, p), then model II is a good candidate for the best subset found by
the numerical procedure.

Variable selection seeks a subset I of the variables to keep in the model.
The submodel I will always contain a constant and will have k−1 nontrivial
predictors where 1 ≤ k ≤ p.

Forward selection starts with a constant = W1 = X1. Step 1) k = 2:
compute Cp for all models containing the constant and a single predictor Xi.
Keep the predictor W2 = Xj , say, that corresponds to the model with the
smallest value of Cp.
Step 2) k = 3: Fit all models with k = 3 that contain W1 and W2. Keep the
predictor W3 that minimizes Cp. ...
Step j) k = j +1: Fit all models with k = j +1 that contains W1, W2, ..., Wj.
Keep the predictor Wj+1 that minimizes Cp. ...
Step p − 1): Fit the full model.

Backward elimination: All models contain a constant = U1 = X1.
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Step 1) k = p: Start with the full model that contains X1, ..., Xp. We will
also say that the full model contains U1, ..., Up where U1 = X1 but Ui need
not equal Xi for i > 1.
Step 2) k = p− 1: fit each model with p− 1 predictors including a constant.
Delete the predictor Up, say, that corresponds to the model with the smallest
Cp. Keep U1, ..., Up−1.
Step 3) k = p−2: fit each model with p−2 predictors and a constant. Delete
the predictor Up−1 that corresponds to the smallest Cp. Keep U1, ..., Up−2. ...
Step j) k = p − j + 1: fit each model with p − j + 1 predictors and a
constant. Delete the predictor Up−j+2 that corresponds to the smallest Cp.
Keep U1, ..., Up−j+1. ...
Step p− 1) k = 2. The current model contains U1, U2 and U3. Fit the model
U1, U2 and the model U1, U3. Assume that model U1, U2 minimizes Cp. Then
delete U3 and keep U1 and U2.

Assume that the full model has p predictors including a constant and
that the submodel I has k predictors including a constant. Assume that
the full model has good response and residual plots and that n > 5p. Then
we would like following properties i) – xi) (roughly in order of decreasing
importance) to hold. Often we can not find a submodel where i) – xi) all
hold simultaneously. Do not use more predictors than model II to avoid
overfitting.

Then the submodel I is good if
i) the response and residual plots for the submodel looks like the response
and residual plots for the full model.
ii) corr(ESP,ESP(I)) = corr(Ŷ, ŶI) ≥ 0.95.
iii) The plotted points in the FF plot cluster tightly about the identity line.
iv) Want the p-value ≥ 0.01 for the partial F test that uses I as the reduced
model.
v) Want k ≤ n/10.
vi) The plotted points in the RR plot cluster tightly about the identity line.
vii) Want R2(I) > 0.9R2 and R2(I) > R2 − 0.07 (R2(I) ≤ R2(full) since
adding predictors to I does not decrease R2(I)).
viii) Want Cp(Imin) ≤ Cp(I) ≤ min(2k, p) with no big jumps in Cp (the
increase should be less than four) as variables are deleted.
ix) Want hardly any predictors with p-values > 0.05.
x) Want few predictors with p-values between 0.01 and 0.05.
xi) Want MSE(I) to be smaller than or not much larger than the MSE from
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the full model.

Example 12.5. The FF and RR plots can be used as a diagnostic for
whether a given numerical method is including too many variables. Glad-
stone (1905-1906) attempts to estimate the weight of the human brain (mea-
sured in grams after the death of the subject) using simple linear regression
with a variety of predictors including age in years, height in inches, head
height in mm, head length in mm, head breadth in mm, head circumference
in mm, and cephalic index. The sex (coded as 0 for females and 1 for males)
of each subject was also included. The variable cause was coded as 1 if the
cause of death was acute, 3 if the cause of death was chronic, and coded as 2
otherwise. A variable ageclass was coded as 0 if the age was under 20, 1 if the
age was between 20 and 45, and as 3 if the age was over 45. Head size, the
product of the head length, head breadth, and head height, is a volume mea-
surement, hence (size)1/3 was also used as a predictor with the same physical
dimensions as the other lengths. Thus there are 11 nontrivial predictors and
one response, and all models will also contain a constant. Nine cases were
deleted because of missing values, leaving 267 cases.
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Figure 12.4: Gladstone data: comparison of the full model and the submodel.
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Figure 12.5: Gladstone data: submodels added (size)1/3, sex, age and finally
breadth.
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Figure 12.6: Gladstone data with Predictors (size)1/3, sex, and age
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Figure 12.4 shows the response plots and residual plots for the full model
and the final submodel that used a constant, size1/3, age and sex. The five
cases separated from the bulk of the data in each of the four plots correspond
to five infants. These may be outliers, but the visual separation reflects the
small number of infants and toddlers in the data. A purely numerical variable
selection procedure would miss this interesting feature of the data. We will
first perform variable selection with the entire data set, and then examine the
effect of deleting the five cases. Using forward selection and the Cp statistic
on the Gladstone data suggests the subset I5 containing a constant, (size)1/3,
age, sex, breadth, and cause with Cp(I5) = 3.199. The p–values for breadth
and cause were 0.03 and 0.04, respectively. The subset I4 that deletes cause
has Cp(I4) = 5.374 and the p–value for breadth was 0.05. Figure 12.5d shows
the RR plot for the subset I4. Note that the correlation of the plotted points
is very high and that the OLS and identity lines nearly coincide.

A scatterplot matrix of the predictors and response suggests that (size)1/3

might be the best single predictor. First we regressed Y = brain weight on
the eleven predictors described above (plus a constant) and obtained the
residuals ri and fitted values Ŷi. Next, we regressed Y on the subset I
containing (size)1/3 and a constant and obtained the residuals rI,i and the

fitted values ŶI,i. Then the RR plot of rI,i versus ri, and the FF plot of ŶI,i

versus Ŷi were constructed.
For this model, the correlation in the FF plot (Figure 12.5b) was very

high, but in the RR plot the OLS line did not coincide with the identity line
(Figure 12.5a). Next sex was added to I , but again the OLS and identity
lines did not coincide in the RR plot (Figure 12.5c). Hence age was added
to I. Figure 12.6a shows the RR plot with the OLS and identity lines added.
These two lines now nearly coincide, suggesting that a constant plus (size)1/3,
sex, and age contains the relevant predictor information. This subset has
Cp(I) = 7.372, R2

I = 0.80, and σ̂I = 74.05. The full model which used
11 predictors and a constant has R2 = 0.81 and σ̂ = 73.58. Since the Cp

criterion suggests adding breadth and cause, the Cp criterion may be leading
to an overfit.

Figure 12.6b shows the FF plot. The five cases in the southwest corner
correspond to five infants. Deleting them leads to almost the same conclu-
sions, although the full model now has R2 = 0.66 and σ̂ = 73.48 while the
submodel has R2

I = 0.64 and σ̂I = 73.89.
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12.3.2 Variable Selection for Multivariate Linear Re-

gression

We still have the full model x = (xT
I , xO)T where xI is a candidate submodel.

It is crucial to verify that a multivariate regression model is appropriate
for the full model. For each of the m response variables, use the
response plot and the residual plot for the full model to check this
assumption.

To obtain the candidate subset for multivariate regression, do numeri-
cal variable selection such as forward selection or backward elimination for
multiple linear regression for each response variable Yj. Very often predictor
variables are highly correlated and often similar sets of predictor variables
will be used by each of the m multiple linear regressions. See if there is a
pattern to the most important and least important predictors. Try to get rid
of predictors that are not needed in any of the m multiple linear regressions.
It is better to keep too many predictors than to possible delete a predictor
that is needed in at least one of the m multiple linear regression, but want
n > 10p.

Check the submodel xI for multivariate linear regression with the FF,
RR plots and the response and residual plots for the full model and for
the candidate model for each of the m response variables Y1, ..., Ym. The
submodels use YIj for j = 1, ..., m.

12.4 Prediction

12.4.1 Prediction Intervals for Multiple Linear Regres-

sion

This subsection gives estimators for predicting a future or new value Yf of the
vector of response variables given the predictors xf . The following subsection
will extend the results to multivariate regression.

Warning: All too often the MLR model seems to fit the data

(x1, Y1), ..., (xn, Yn)

well, but when new data is collected, a very different MLR model is needed
to fit the new data well. In particular, the MLR model seems to fit the data
(xi, Yi) well for i = 1, ..., n, but when the researcher tries to predict Yf for a
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new vector of predictors xf , the prediction is very poor in that Ŷf is not close
to the Yf actually observed. Wait until after the MLR model has been
shown to make good predictions before claiming that the model
gives good predictions!

There are several reasons why the MLR model may not fit new data
well. i) The model building process is usually iterative. Data Z, w1, ..., wk

is collected. If the model is not linear, then functions of Z are used as a
potential response and functions of the wi as potential predictors. After trial
and error, the functions are chosen, resulting in a final MLR model using Y
and x1, ..., xp. Since the same data set was used during the model building
process, biases are introduced and the MLR model fits the “training data”
better than it fits new data. Suppose that Y , x1, ..., xp are specified before
collecting data and that the residual and response plots from the resulting
MLR model look good. Then predictions from the prespecified model will
often be better for predicting new data than a model built from an iterative
process.

ii) If (xf , Yf , ) come from a different population than the population of
(x1, Y1), ..., (xn, Yn), then prediction for Yf can be arbitrarily bad.

iii) Even a good MLR model may not provide good predictions for an xf

that is far from the xi (extrapolation).
iv) The MLR model may be missing important predictors (underfitting).
v) The MLR model may contain unnecessary predictors (overfitting).

Two remedies for i) are a) use previously published studies to select an
MLR model before gathering data. b) Do a trial study. Collect some data,
build an MLR model using the iterative process. Then use this model as the
prespecified model and collect data for the main part of the study. Better
yet, do a trial study, specify a model, collect more trial data, improve the
specified model and repeat until the latest specified model works well. Un-
fortunately, trial studies are often too expensive or not possible because the
data is difficult to collect. Also, often the population from a published study
is quite different from the population of the data collected by the researcher.
Then the MLR model from the published study is not adequate.

Definition 12.13. Consider the MLR model Y = Xβ + e and the hat
matrix H = X(XT X)−1XT . Let hi = hii be the ith diagonal element of H

for i = 1, ..., n. Then hi is called the ith leverage and hi = xT
i (XTX)−1xi.

Suppose new data is to be collected with predictor vector xf . Then the
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leverage of xf is hf = xT
f (XT X)−1xf . Extrapolation occurs if xf is far

from the x1, ..., xn.

Rule of thumb 12.4. Predictions based on extrapolation are not reli-
able. A rule of thumb is that extrapolation occurs if hf > max(h1, ..., hn).
This rule works best if the predictors are linearly related in that a plot of
xi versus xj should not have any strong nonlinearities. If there are strong
nonlinearities among the predictors, then xf could be far from the xi but
still have hf < max(h1, ..., hn).

Example 12.6. Consider predicting Y = weight from x = height and a
constant from data collected on men between 18 and 24 where the minimum
height was 57 and the maximum height was 79 inches. The OLS equation
was Ŷ = −167 + 4.7x. If x = 70 then Ŷ = −167 + 4.7(70) = 162 pounds.
If x = 1 inch, then Ŷ = −167 + 4.7(1) = −162.3 pounds. It is impossible
to have negative weight, but it is also impossible to find a 1 inch man. This
MLR model should not be used for x far from the interval (57, 79).

The following theorem is analogous to the central limit theorem and the
theory for the t–interval for µ based on Y and the sample standard deviation
(SD) SY . If the data Y1, ..., Yn are iid with mean 0 and variance σ2, then Y is
asymptotically normal and the t–interval will perform well if the sample size
is large enough. The result below suggests that the OLS estimators Ŷi and
β̂ are good if the sample size is large enough. The condition max hi → 0 in
probability usually holds if the researcher picked the design matrix X or if
the xi are iid random vectors from a well behaved population. Outliers can
cause the condition to fail.

Theorem 12.3: Huber (1981, p. 157-160). Consider the MLR
model Yi = xT

i β + ei and assume that the errors are independent with zero
mean and the same variance: E(ei) = 0 and VAR(ei) = σ2. Also assume that
maxi(h1, ..., hn) → 0 in probability as n → ∞. Then

a) Ŷi = xT
i β̂ → E(Yi|xi) = xiβ in probability for i = 1, ..., n as n → ∞.

b) All of the least squares estimators aT β̂ are asymptotically normal
where a is any fixed constant p × 1 vector.

Theorem 12.4. The least squares estimator satisfies β̂ − β = oP (1) if

(
XT X

n

)−1 (
XT e

n

)
= oP (1).
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Proof:

β̂ − β =

(
XT X

n

)−1 (
XT e

n

)
.

Definition 12.14. A large sample 100(1 − δ)% prediction interval (PI)

has the form (L̂n, Ûn) where P (L̂n < Yf < Ûn)
P→ 1 − δ as the sample size

n → ∞.

The interpretation of a 100 (1 − δ)% PI for a random variable Yf is
similar to that of a confidence interval (CI). Collect data, then form the PI,
and repeat for a total of k times where k trials are independent from the same
population. If Yfi is the ith random variable and PIi is the ith PI, then the
probability that Yfi ∈ PIi for m of the PIs follows a binomial(k, ρ = 1 − δ)
distribution. Hence if 100 95% PIs are made, ρ = 0.95 and Yfi ∈ PIi happens
about 95 times.

The length of the CI goes to 0 as the sample size n goes to ∞ while
the length of the PI converges to some nonzero number L, say. To see this,
consider xf such that the heights Y of women between 18 and 24 is normal
with a mean of 66 inches and an SD of 3 inches. A 95% CI for E(Y |xf )
should be centered at about 66 and the length should go to zero as n gets
large. But a 95% PI needs to contain about 95% of the heights so the PI
should converge to the interval 66 ± 1.96(3). This result follows because if
Y ∼ N(66, 9) then P (Y < 66 − 1.96(3)) = P (Y > 66 + 1.96(3)) = 0.025. In
other words, the endpoints of the PI estimate the 97.5 and 2.5 percentiles of
the normal distribution. However, the percentiles of a parametric error dis-
tribution depend heavily on the parametric distribution and the parametric
formulas are violated if the assumed error distribution is incorrect.

Let ξδ be the δ percentile of the error e, ie, P (e ≤ ξδ) = δ. Let ξ̂δ be
the sample δ percentile of the residuals. The percentiles of the residuals are

consistent estimators, ξ̂δ
P→ ξδ, under “mild” regularity conditions, and this

consistency is the basis for using QQ plots. For multiple linear regression

with iid errors with constant variance σ2, sufficient conditions are β̂
P→ β

and the xi are bounded in probability. See Olive (2011), Olive and Hawkins
(2003), Welsh (1986) and Rousseeuw and Leroy (1987, p. 128).
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For many error distributions,

E(MSE) = E

(
n∑

i=1

r2
i

n − p

)
= σ2 = E

(
n∑

i=1

e2
i

n

)
.

This result suggests that √
n

n − p
ri ≈ ei.

Let

an =

(
1 +

15

n

)√
n

n − p

√
(1 + hf ). (12.10)

Following Olive (2007), a PI is asymptotically optimal if it has the shortest
asymptotic length that gives the desired asymptotic coverage. If the error
distribution is unimodal, an asymptotically optimal PI can be created by
applying the shorth(c) estimator to the residuals where c = dn(1−δ)e and dxe
is the smallest integer≥ x, e.g., d7.7e = 8. That is, let r(1), ..., r(n) be the order
statistics of the residuals. Compute r(c) − r(1), r(c+1) − r(2), ..., r(n) − r(n−c+1).

Let (r(d), r(d+c−1)) = (ξ̃δ1
, ξ̃1−δ2

) correspond to the interval with the smallest
distance. Then the large sample 100 (1 − δ)% PI for Yf is

(Ŷf + anξ̃δ1
, Ŷf + anξ̃1−δ2

). (12.11)

12.4.2 Prediction Intervals for Multivariate linear Re-

gression

For multivariate linear regression, want to predict a future or new value
Y f = (Y1f , ..., Ymf)

T of the vector of m response variables given the vector
of predictors xf .

The collection of m prediction intervals (L1n, U1n), ..., (Lmn, Umn) are large
sample simultaneous conservative 100(1 − δ)% prediction intervals for Yjf if
the m prediction intervals all hold simultaneously, that is all m PIs (Ljn, Ujn)
contain Yjf , with probability 1−γn where 1−γn → 1−γ ≥ 1− δ as n → ∞.

The Bonferroni simultaneous PIs are made by increasing the coverage of
a single PI from 1 − δ to (1 − δ/m). Hence 90% large sample simultaneous
PIs will use coverage 0.95 if m = 2 and coverage 0.99 if m = 10. Let Ej be an
event with P (Ej) = 1 − δj. Let Ej be the compliment of Ej so P (Ej) = δj.
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Then Bonferroni’s inequality is

P (∩m
j=1Ej) = 1 − P (∩m

j=1Ej) = 1 − P (∪m
j=1Ej) ≥ 1 −

m∑

j=1

P (Ej) =

= 1 −
∑m

j=1 δj = 1 − δ if δj = δ/m. To use this inequality for simultaneous
intervals, let Ej be the event that the jth PI contains Yjf . Then P (∩m

j=1Ej)
is the probability that all m PIs contain Yjf for j = 1, ..., m.

Let τ = δ/m. Then the m large sample simultaneous conservative
100(1 − δ)% PIs are

(Ŷjf + anξ̃τ1
, Ŷjf + anξ̃1−τ2

) (12.12)

for j = 1, ..., m using Equation (12.11) and residuals r1,j, ..., rn,j. That is,
make the 100(1−τ )% PI (12.11) for Yjf for j = 1, ..., m corresponding to the
multiple linear regression of the jth response variable Yj on X.

These PIs make no use of the fact that Cov(εi) = Σε, but no paramet-
ric distribution for the εi is needed. The classical simultaneous prediction
region for yf assumes that the εi are iid Nm(0,Σε) and tend to have large
undercoverage (are too liberal) when the normality assumption is violated,
which is usually the case.

12.4.3 Prediction Regions

Suppose a prediction region for yf given a vector of predictors xf is desired.

If we had many cases zi = BT xf + εi, then we could make a prediction

region for zi using Section 5.2. Instead, use ẑi = B̂
T
xf + ε̂i = ŷf + ε̂i

for i = 1, ..., n. This takes the data cloud of the n residual vectors ε̂i and
centers the cloud at ŷf . Note that ẑi = (B −B + B̂)Txf + (εi − εi + ε̂i) =

zi + (B̂ − B)Txf + ε̂i − εi = zi + OP (n−1/2). Hence the distances based
on the zi and the distances based on the ẑi should have the same quantiles,
asymptotically.

Theorem 12.5. Suppose yi = E(yi) + εi = ŷi + ε̂i where Cov(εi) =
Σε > 0, and where εf and the εi are iid for i = 1, ..., n. Suppose the fitted

model produces ŷf and nonsingular Σ̂ε. Let ẑi = ŷf + ε̂i and

D2
i (ŷf , Σ̂ε) = (ẑi − ŷf )

T Σ̂
−1

ε (ẑi − ŷf)
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for i = 1, ..., n. Let qn = min(1 − α + 0.05, 1 − α + m/n) for α > 0.1 and

qn = min(1 − α/2, 1 − α + 10αm/n), otherwise.

If qn < 1 − α + 0.001, set qn = 1 − α. Let 0 < α < 1 and h = D(Un)

where D(Un) is the qnth sample quantile of the Di. Consider the nominal
100(1 − α)% prediction region for yf

{z : (z − ŷf )
T Σ̂

−1

ε (z − ŷf) ≤ D2
(Un)} =

{z : D2
z(ŷf , Σ̂ε) ≤ D2

(Un)} = {z : Dz(ŷf , Σ̂ε) ≤ D(Un)}. (12.13)

a) Consider the n prediction regions for the data where (yf,i, xf,i) =
(yi, xi) for i = 1, ..., n. If the order statistic D(Un) is unique, then Un of the
n prediction regions contain yi where Un/n → 1 − α as n → ∞.

b) If (ŷf , Σ̂ε) is a consistent estimator of (E(yf ),Σε) then (12.13) is a
large sample 100(1 − α)% prediction region for yf .

c) If (ŷf , Σ̂ε) is a consistent estimator of (E(yf ),Σε), and the εi come
from an elliptically contoured distribution such that the highest density re-
gion is {z : Dz(0,Σε) ≤ D1−α}, then the prediction region (12.13) is asymp-
totically optimal.

Proof. a) Suppose (xf , yf) = (xi, yi). Then

D2
y

i
(ŷi, Σ̂ε) = (yi − ŷi)

T Σ̂
−1

ε (yi − ŷi) = ε̂T
i Σ̂

−1

ε ε̂i = D2
ε̂i

(0, Σ̂ε).

Hence yi is in the ith prediction region {z : Dz(ŷi, Σ̂ε) ≤ D(Un)(ŷi, Σ̂ε)} iff

ε̂i is in prediction region {z : Dz(0, Σ̂ε) ≤ D(Un)(0, Σ̂ε)}, but exactly Un of
the ε̂i are in the latter region by construction, if D(Un) is unique. Since D(Un)

is the (1 − α) percentile of the Di asymptotically, Un/n → 1 − α.
b) Let P [Dz(E(yf ),Σε) ≤ D1−α(E(yf ),Σε)] = 1 − α. Since Σε > 0,

Proposition 5.1 shows that if (ŷf , Σ̂ε)
P→ (E(yf ),Σε) then D(ŷf , Σ̂ε)

P→
Dz(E(yf ),Σε). Hence the percentiles of the distances also converge in prob-

ability, and the probability that yf is in {z : Dz(ŷf , Σ̂ε) ≤ D1−α(ŷf , Σ̂ε)}
converges to 1 − α = the probability that yf is in {z : Dz(E(yf ),Σε) ≤
D1−α(E(yf ),Σε)}.

c) The asymptotically optimal prediction region is the region with the
smallest volume (hence highest density) such that the coverage is 1 − α, as
n → ∞. This region is {z : Dz(E(yf ),Σε) ≤ D1−α(E(yf ),Σε)} if the

283



asymptotically optimal region for the εi is {z : Dz(0,Σε) ≤ D1−α(0,Σε)}.
Hence the result follows by b). �

Multivariate linear regression satisfies Theorem 12.5, and applying a pre-
diction region from Section 5.2 on the ẑi results in a large sample 100(1−α)%
prediction region for yf given the vector of predictors xf . The prediction
region is asymptotically optimal if the εi are iid from an ECp(0,Σ, g) distri-
bution for a large class of elliptically contoured distributions.

To see the above claim, note that if the εi are iid from an elliptically
contoured distribution with nonsingular covariance matrix Σε, then the pop-
ulation asymptotically optimal prediction region is {y : Dy(BT xf ,Σε) <

D1−α} where P (Dy(BT xf ,Σε) < D1−α) = 1 − α. For example, if the iid

εi ∼ Nm(0,Σε), then D1−α =
√

χ2
m,1−α. If the error distribution is not ellip-

tically contoured, then the above region still has 100(1 − α)% coverage, but
prediction regions with smaller volume may exist. In general these quan-
tities need to be estimated. If many errors εi were available and B was
known, could estimate Σε with

∑n
i=1 εiε

T
i /n, compute zi = BTxF + εi and

estimate D1−α with D(dn(1−α)e), the sample (1 − α) percentile of the Dzi
.

These quantities are unavailable, but the plug in estimators are ŷf = B̂
T
xf ,

Sr = Σ̂ε = (n − 1)−1
∑n

i=1 ε̂iε̂
T
i , ẑi = ŷf + ε̂i and D̂1−α, the sample (1 − α)

percentile of the Dẑi
.

Following Section 5.2, suppose (T, C) is the sample mean and scaled
sample covariance matrix applied to the ẑi where the multivariate linear
regression used least squares. For h > 0, the hyperellipsoid

{y : (y −T )TC−1(y−T ) ≤ h2} = {y : D2
y ≤ h2} = {y : Dy ≤ h}. (12.14)

A future observation (random vector) yf is in the region (12.14) if Dy
f
≤ h.

Set up the prediction region (12.14) using h = D(Un) as described in Theorem
2.5. Following Section 5.2, this prediction region (12.14) will be called the
nonparametric prediction region.

The nonparametic prediction region has some interesting properties. Let
Sr be the sample covariance matrix of the residual vectors ε̂i. The sample
mean of the residual vectors is 0 since least squares was used. Hence the
ẑi = ŷf + ε̂i have sample covariance matrix Sr, and sample mean ŷf . Hence
(T, C) = (ŷf , Sr), and the Di(ŷf , Sr) are used to compute D(Un). So if there
are 100 different values (xjf , yjf ) to be predicted, only need to update ŷjf
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for j = 1, ..., 100, do not need to update the covariance matrix Sr.
The geometry of the nonparametric region is simple. Let Rr be the non-

parametric prediction region applied to the residuals ε̂i, and let (12.14) be the
nonparametric prediction region using (T, C) = (ŷf , Sr) when the multivari-
ate regression is fit by least squares. Then Rr is a hyperellipsoid with center
0, and the nonparametric prediction region (12.14) is the hyperellipsoid Rr

translated to have center ŷf .
It is common practice to examine how well the prediction regions work

on the data. That is, for i = 1, ..., n, set xf = xi and see if yi is in the region
with probability near to 1 − α with a simulation study. Note that ŷf = ŷi

if xf = xi. Simulation is not needed for the nonparametric prediction region
(12.14) for the data since the prediction region (12.14) centered at ŷi contains
yi iff Rr, the prediction region centered at 0, contains ε̂i since yi − ŷi = ε̂i.
Thus 100qn% of prediction regions corresponding to the data (yi, xi) contain
yi, and 100qn% → 100(1 − α)%. Hence the prediction regions work well on
the data and should work well on (xf , yf ) similar to the data. Of course
simulation should be done for (xf , yf ) that are not equal to data cases.

This result holds provided that the multivariate linear regression using
least squares is such that the sample covariance matrix Sr of the residual
vectors is nonsingular, the multivariate regression model need not be
correct. Hence the coverage at the n data cases (xi, yi) is very robust to
model misspecification. Of course, the prediction regions may be very large
if the model is severely misspecified, but severity of misspecification can be
checked with the response and residual plots. Coverage can also be arbitrarily
bad if there is extrapolation or if (xf , yf ) comes from a different population
than that of the data.

Example 12.5. Consider the Mussel data described in Example 2.2
with response variables Y1 = log(S) and Y2 = log(M) with predictors X2 =
L, X3 = log(W ), and X4 = height. Figure 12.7 shows a scatterplot matrix of
the data and Figure 12.8 shows a DD plot of the data with multivariate pre-
diction regions added. These plots suggest that the data may come from an
elliptically contoured distribution that is not multivariate normal. The semi-
parametric and nonparametric 90% prediction regions of Section 5.2 consist
of the cases below the RD = 5.86 line and to the left of the MD = 4.12 line.
These two lines intersect on a line through the origin that is followed by the
plotted points. The parametric MVN prediction region is given by the points
below the RD = 3.33 line and does not contain enough cases.

Figures 12.9 and 12.10 give the response and residual plots for Y1 and Y2.
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Figure 12.7: Scatterplot Matrix of the Mussels Data.
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Figure 12.8: DD Plot of the Mussels Data.
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For Y2, cases 8, 25 and 48 are not fit well. A residual vector r = (r−e)+e is
a combination of e and a discrepancy r−e that tends to have an approximate
multivariate normal distribution. The r − e term can dominate for small to
moderate n when e is not multivariate normal, incorrectly suggesting that
the distribution of the error e is closer to a multivariate normal distribution
than is actually the case. Figure 12.11 shows the DD plot of the residual
vectors. The nonparametric prediction region for the residuals consists of
the points to the left of the vertical line MD = 2.27. Comparing Figure
12.8 and 12.11, the residual distribution is closer to a multivariate normal
distribution. Cases 8, 48 and 79 have especially large distances. R code for
producing the five figures is shown below.

y <- log(mussels)[,4:5]

x <- mussels[,1:3]

x[,2] <- log(x[,2])

z<-cbind(x,y)

pairs(z, labels=c("L","log(W)","H","log(S)","log(M)"))

ddplot4(z)

out <- mltreg(x,y)

ddplot4(out$res)

12.5 Testing Hypotheses

This section follows Khattree and Naik (1999, p. 66-67) closely.

Definition 12.15. Assume rank(X) = p. The total corrected (for the
mean) sum of squares and cross products matrix is

T = R + W = ZT (In − 1

n
11T )Z.

Note that T/(n− 1) is the usual sample covariance matrix Σ̂y if all n of the
yi are iid so that B = 0. The regression sum of squares and cross products
matrix is

R = ZT [X(XT X)−1XT − 1

n
11T ]Z = ZT XB̂ − 1

n
ZT 11tZ.

The error or residual sum of squares and cross products matrix is

W e = (Z − Ẑ)T (Z − Ẑ) = ZTZ − ZT XB̂ = ZT [In −X(XT X)−1XT ]Z.
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Figure 12.9: Plots for Y1 = log(W ).
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Figure 12.10: Plots for Y2 = log(M).
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Figure 12.11: DD Plot of the Residual Vectors.

Note that W e = Ê
T
Ê and W e/(n − p) = Σ̂ε.

Warning: SAS output uses E instead of W e.

The MANOVA table is shown below.

Summary MANOVA Table

Source matrix df
Regression or Treatment R p − 1

Error or Residual W e n − p
Total (corrected) T n − 1

Consider testing a linear hypothesis H0 : LB = 0 versus H1 : LB 6= 0
where L is a full rank r × p matrix. Let H = B̂LT [L(XT X)−1LT ]−1LB̂.
Let λ1 ≥ λ2 ≥ · · · ≥ λm be the ordered eigenvalues of W −1

e H . Then there
are four commonly used test statistics.

The Wilk’s Λ statistic is Λ(L) = |(H + W e)
−1W e| = |W−1

e H + I |−1 =
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m∏

i=1

(1 + λi)
−1.

The Pillai’s trace statistic is V (L) = tr[(H + W e)
−1H ] =

m∑

i=1

λi

1 + λi
.

The Hotelling-Lawley trace statistic is U(L) = tr[W−1
e H ] =

m∑

i=1

λi.

The Roy’s maximum root statistic is λmax(L) = λ1.

Typically some function of one of the four above statistics is used to get
pval, the estimated pvalue. Output often gives the pvals for all four test
statistics. Be cautious about inference if the four test statistics do not lead
to the same conclusions. Pillai’s trace statistic is thought to be the most
robust against nonnormality of the εi.

The four steps of the MANOVA test of linear hypotheses follow.
i) State the hypotheses H0 : LB = 0 and H1 : LB 6= 0.
ii) Get test statistic from output.
iii) Get pval from output.
iv) State whether you reject H0 or fail to reject H0. If pval ≤ α, reject H0

and conclude that LB 6= 0. If pval > α, fail to reject H0 and conclude that
LB = 0 or that there is not enough evidence to conclude that LB 6= 0. As
a textbook convention, use α = 0.05 if α is not given.

The MANOVA test of H0 : B = 0 versus H1 : B 6= 0 is the special case

corresponding to L = I and H = B̂
T
XT XB̂ = Ẑ

T
Ẑ.

12.6 Justification of the Hotelling Lawley Test

Some notation is needed. Following Henderson and Searle (1979), let matrix
A =

[
a1 a2 . . . ap

]
. Then the vec operator stacks the columns of A on

top of one another so

vec(A) =





a1

a2
...

ap



 .
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Let A = ((aij)) be an m×n matrix and B a p×q matrix. Then the Kronecker
product of A and B is the mp × nq matrix

A ⊗B =





a11B a12B · · · a1nB

a21B a22B · · · a2nB
...

... · · · ...
am1B am2B · · · amnB




.

An important fact is that if A and B are nonsingular square matrices,
then [A ⊗ B]−1 = A−1 ⊗ B−1.

Consider testing a linear hypothesis H0 : LB = 0 versus H1 : LB 6= 0
where L is a full rank r × p matrix. For now assume the error distribution
is multivariate normal Np(0,Σε). Then

vec(B̂ − B) =





β̂1 − β1

β̂2 − β2
...

β̂m − βm




∼ Npm(0,Σε ⊗ (XTX)−1)

where

C = Σε⊗(XT X)−1 =





σ11(X
TX)−1 σ12(X

TX)−1 · · · σ1p(X
T X)−1

σ21(X
TX)−1 σ22(X

TX)−1 · · · σ2p(X
T X)−1

...
... · · · ...

σp1(X
TX)−1 σp2(X

T X)−1 · · · σpp(X
TX)−1




.

Now let A be a rm × pm block diagonal matrix: A = diag(L, ..., L).
Then A vec(B̂ −B) = vec(L(B̂ − B)) =





L(β̂1 − β1)

L(β̂2 − β2)
...

L(β̂m − βm)



 ∼ Nrm(0,Σε ⊗ L(XT X)−1LT )

where D = Σε ⊗ L(XTX)−1LT = ACAT =




σ11L(XTX)−1LT σ12L(XTX)−1LT · · · σ1pL(XT X)−1LT

σ21L(XTX)−1LT σ22L(XTX)−1LT · · · σ2pL(XT X)−1LT

...
... · · · ...

σp1L(XTX)−1LT σp2L(XTX)−1LT · · · σppL(XT X)−1LT



 .
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Under H0, vec(LB) = A vec(B) = 0, and

vec(LB̂) =





Lβ̂1

Lβ̂2
...

Lβ̂m



 ∼ Nrm(0,Σε ⊗ L(XTX)−1LT ).

Hence under H0,

[vec(LB̂)]T [Σ−1
ε ⊗ (L(XT X)−1LT )−1][vec(LB̂)] ∼ χ2

rm,

and

T = [vec(LB̂)]T [Σ̂
−1

ε ⊗ (L(XTX)−1LT )−1][vec(LB̂)]
D→ χ2

rm. (12.15)

A large sample level δ test will reject H0 if pval < δ where

pval = P (
T

rm
< Frm,n−mp). (12.16)

Since least squares estimators are asymptotically normal, for a large class
of distributions,

√
n vec(B̂ − B) =

√
n





β̂1 − β1

β̂2 − β2
...

β̂m − βm




D→ Npm(0,Σε ⊗ W )

where
XT X

n
→ W −1.

Then under H0,

√
n vec(LB̂) =

√
n





Lβ̂1

Lβ̂2
...

Lβ̂m




D→ Nrm(0,Σε ⊗ LWLT ),

and
n [vec(LB̂)]T [Σ−1

ε ⊗ (LWLT )−1][vec(LB̂)]
D→ χ2

rm.
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Hence (12.15) holds, and (12.16) gives a large sample level δ test if the least
squares estimators are asymptotically normal.

Multivariate analogs of tests for multiple linear regression can be derived
with appropriate choice of L. Using L = [0 Ip−1] tests whether the nontrivial
predictors are needed in the multivariate linear regression model, an analog
of the Anova F test. Using L = [0 Ik] tests whether the last k predictors are
needed in the multivariate linear regression model given that the remaining
prredictors are in the model, an analog of the partial F test. Using L =
(0, ..., 0, 1, 0, ..., 0), a row vector with a 1 in the jth position, tests whether
the jth variable is needed in the multivariate linear regression model given
that the other p − 1 predictors are in the model, an analog to the t tests for
multiple linear regression. This statistic has the form

Tj =
1

dj

(β̂j1, β̂j2, ..., β̂jm)Σ̂
−1

ε





β̂j1

β̂j2
...

β̂jm





where dj = (XTX)−1
jj , the jth diagonal entry of (XTX)−1. The statistic

Tj could be used for forward selection and backward elimination in variable
selection.

12.7 Seemingly Unrelated Regressions

Each response variable in a multivariate linear regression model follows a
multiple linear regression model Y j = Xβj + ej for j = 1, ..., m where it is
assumed that E(ej) = 0 and Cov(ej) = σjjIn. Hence the errors correspond-
ing to the jth response are uncorrelated with variance σ2

j = σjj. Notice that
the same design matrix X of predictors is used for each of the m models,
but the response variable vector Y j, coefficient vector βj and error vector ej

change and thus depend on j.
The seemingly related regressions (SUR) model differs from the multivari-

ate linear regression model in that each response model follows a multiple lin-
ear regression model Y j = Xjβj +ej with a different design matrix Xj and
the βj are kj × 1 vectors. Let xi,j = (1, x2,j, ..., xkj,j)

T . Then the ith case in
the SUR model is (Yi,1, ..., Yi,m, x2,1, ..., xk1,1, x2,2, ..., xk2,2, ..., x2,m, ..., xkm,m).
That is, string yi and the xi,j into a vector, omitting the m ones.
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The multivariate linear regression model can be regarded as the special
case of the SUR model where all of the design matrices are equal Xj ≡ X

for j = 1, ..., m, and the SUR model can be regarded as a special case of the
multivariate linear regression model where the design matrix X has columns
corresponding to the constant 1, x2,1, ..., xkm,m. Hence if k =

∑m
i=1 ki, then

X is an n × (k − m + 1) matrix. Then the (k − m + 1) × 1 vector β∗
j =

(β1,j, 0, ..., 0, β2,j, ..., βkj,j, 0, ..., 0)
T . Here β∗

j is the jth column of B, and only
kj of the entries of β∗

j are nonzero. Hence most of the entries in B are zeroes.

A competitor of the SUR model would be the multivariate linear regres-
sion model where there are no restrictions on B, so the columns βj of B

are estimated using least squares and X. The SUR model says that the
Yi,1, ..., Yi,m are correlated, but only xi,j is needed in the model for predict-
ing the Yi,j when xi,1, ..., xi,m are possible vectors of predictors. If this as-
sumption is wrong, then the SUR model could be throwing away a lot of
information from relevant predictors.

Definition 12.15. In the seemingly unrelated regressions model,

yi = E(yi) + εi =





xT
i,1β1

xT
i,2β2
...

xT
i,mβm



 +





εi,1

εi,2
...

εi,m



 =





xT
i,1β̂1

xT
i,2β̂2
...

xT
i,mβ̂m



+





ε̂i,1

ε̂i,2
...

ε̂i,m





= ŷi + ε̂i for i = 1, ..., n, where Cov(εi) ≡ Σε is m×m and E(εi) ≡ 0. Here
xi,j, βj and β̂j are kj ×1 vectors where

∑m
j=1 kj = k, and yi = (yi1, ..., yim)T .

There are several ways to estimate the β̂j. First, estimate β̂j using least
squares on the m multiple linear regression models Y j = Xjβj + ej . This
method should be equivalent to using the multivariate regression model where
the β∗

j are the columns of B and the nonzero entries of β̂
∗

j are collected

into the kj × 1 vectors β̂j. Another method uses the seemingly unrelated
regressions estimator (SURE) which uses the multivariate linear regression
estimator as an initial estimator, and then uses generalized least squares.
See Press (2005,

∮
8.5). In the discussion that follows, β̂ will be the SUR

estimator which is thought to be more efficient than the alternatives. See
White (1984, p. 166-171) for large sample theory of the SUR estimator.
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Model checking and prediction for the SUR model is very similar to that
for the multivariate regression model, but use the fitted values and residuals
from the SUR model.

1) Make the m response and residual plots, and make the DD plot of the
ε̂i.

2) Transformation plots and variable selection can be done using least
squares on each of the m multiple linear regression models Y j = Xj = ej

for j = 1, ..., m.
3) Simultaneous prediction intervals using (12.11) and (12.12) can be

made using either least squares fits for each of the m models or using the
fitted values and residuals from the SUR model.

4) A prediction region for yf is made as in Section 12.4.3 using Σ̂ε and

ẑi = ŷf + ε̂i for i = 1, ..., n where ŷf = (xT
f,1β̂1, ..., x

T
f,mβ̂m)T and Σ̂ε and

the β̂j are the SUR estimators.

mltreg(x,y,indices=c(3,4))

$partial

partialF Pval

[1,] 0.2001622 0.9349877

$Ftable

Fj pvals

[1,] 4.35326807 0.02870083

[2,] 600.57002201 0.00000000

[3,] 0.08819810 0.91597268

[4,] 0.06531531 0.93699302

$MANOVA

MANOVAF pval

[1,] 295.071 1.110223e-16

Example 12.2. The above output is for the Hebbler (1847) data from
the the 1843 Prussia census. Sometimes if the wife or husband was not at
the household, then s/he would not be counted. Y1 = number of married
civilian men in the district, Y2 = number of women married to civilians in
the district, x2 = population of the district in 1843, x3 = number of married
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military men in the district, x4 = number of women married to military men
in the district. The reduced model deletes x3 and x4.

a) Do the MANOVA F test.

b) Do the F2 test.

c) Do the F4 test.

d) Do an appropriate 4 step test for the reduced model that deletes x3

and x4.

e) The output for the reduced model that deletes x1 and x2 is shown
below. Do an appropriate 4 step test.

$partial

partialF Pval

[1,] 569.6429 0

12.8 Summary

1) The multivariate linear regression model is a special case of the multivari-
ate linear model where at least one predictor variable Xj is continuous. The
MANOVA model is a multivariate linear model where all of the predictors are
categorical variables so the Xj are coded and are often indicator variables.

2) The multivariate linear regression model yi = BT xi + εi for
i = 1, ..., n has m ≥ 2 response variables Y1, ..., Ym and p predictor variables
X1, X2, ..., Xp. The ith case is (xT

i , yT
i ) = (xi1, xi2, ..., xip, Yi1, ..., Yim). The

constant xi1 = 1 is in the model, and is often omitted from the case and the
data matrix. The model is written in matrix form as Z = XB + E. The
model has E(εk) = 0 and Cov(εk) = Σε = ((σij)) for k = 1, ..., n. Also
E(ei) = 0 while Cov(ei, ej) = σijIn for i, j = 1, ..., m. Then B and Σε are
unknown matrices of parameters to be estimated, and E(Z) = XB while
E(Yij) = xT

i βj.
3) Each response variable in a multivariate linear regression model follows

a univariate linear regression model Y j = Xβj + ej for j = 1, ..., m where it
is assumed that E(ej) = 0 and Cov(ej) = σjjIn.

4) For each variable Yk make a response plot of Ŷik versus Yik and a resid-
ual plot of Ŷik versus rik = Yik − Ŷik. If the multivariate linear regression
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model is appropriate, then the plotted points should cluster about the iden-
tity line in each of the m response plots. If outliers are present or if the plot is
not linear, then the current model or data need to be changed or corrected. If
the model is good, then the each of the m residual plots should be ellipsoidal
with no trend and should be centered about the r = 0 line. There should
not be any pattern in the residual plot: as a narrow vertical strip is moved
from left to right, the behavior of the residuals within the strip should show
little change. Outliers and patterns such as curvature or a fan shaped plot
are bad.

5) Make a scatterplot matrix of Y1, ..., Ym and of the continuous predictors.
Use power transformations to remove strong nonlinearities.

6) Consider testing LB = 0 where L is a r × p full rank matrix. Let

W e = Ê
T
Ê and W e/(n− p) = Σ̂ε. Let H = B̂

T
LT [L(XT X)−1LT ]−1LB̂.

Let λ1 ≥ λ2 ≥ · · · ≥ λm be the ordered eigenvalues of W −1
e H . Then there

are four commonly used test statistics.
The Wilk’s Λ statistic is Λ(L) = |(H + W e)

−1W e| = |W−1
e H + I |−1 =

m∏

i=1

(1 + λi)
−1.

The Pillai’s trace statistic is V (L) = tr[(H + W e)
−1H ] =

m∑

i=1

λi

1 + λi
.

The Hotelling-Lawley trace statistic is U(L) = tr[W−1
e H ] =

m∑

i=1

λi =

1

n − p
[vec(LB̂)]T [Σ̂

−1

ε ⊗ (L(XTX)−1LT )−1][vec(LB̂)].

The Roy’s maximum root statistic is λmax(L) = λ1.

7) Under regularity conditions, −[n−p+1−0.5(m− r+3)] log(Λ(L))
D→

χ2
rm,

(n − p)V (L)
D→ χ2

rm, (n − p)U(L)
D→ χ2

rm, and if h = max(r, m),

n − p − h + r

h
λmax(L) ≈ F (h, n− p − h + r).

The Hotelling Lawley statistic is robust against nonnormality.
8) For the Wilk’s Lambda test,

pval = P

(−[n− p + 1 − 0.5(m − r + 3)]

rm
log(Λ(L)) < Frm,n−rm

)
.
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For the Pillai’s trace test, pval = P

(
n − p

rm
V (L) < Frm,n−rm

)
.

For the Hotelling Lawley trace test, pval = P

(
n − p

rm
U(L) < Frm,n−rm

)
.

The above three tests are large sample tests, P(reject H0|H0 is true) → α
as n → ∞, under regularity conditions.

For the Roy’s largest root test, use

pval = P

(
n − p − h + r

h
λmax(L) < Fh,n−p−h+r

)
.

The F statistic is an upper bound on the F statistic that provides a lower
bound on the nominal level of significance, α, under regularity conditions.

9) The 4 step MANOVA F test of hypotheses uses L = [0 Ip−1]:
i) State the hypotheses H0: the nontrivial predictors are not needed in the
mreg model H1: at least one of the nontrivial predictors is needed
ii) Find the test statistic Fo from output.
iii) Find the pval from output.
iv) If pval < α, reject H0. If pval ≥ α, fail to reject H0. If H0 is rejected,
conclude that there is a mreg relationship between the response variables
Y1, ..., Ym and the predictors X2, ..., Xp. If you fail to reject H0, conclude
that there is a not a mreg relationship between Y1, ..., Ym and the predictors
X2, ..., Xp. (Get the variable names from the story problem.)

10) The 4 step Fj test of hypotheses uses Lj = [0, ..., 0, 1, 0, ..., 0] where
the 1 is in the jth position. Let bT

j be the jth row of B. i) State the
hypotheses H0 :
bbT

j = 0 H1 : bT
j 6= 0

ii) Find the test statistic Fj from output.
iii) Find pval from output.
iv) If pval < α, reject H0. If pval ≥ α, fail to reject H0. Give a nontechnical
sentence restating your conclusion in terms of the story problem. If H0 is
rejected, then conclude that Xj is needed in the mreg model for Y1, ..., Ym

given that the other predictors are in the model. If you fail to reject H0,
then conclude that Xj is not needed in the mreg model for Y1, ..., Ym given
that the other predictors are in the model. (Get the variable names from the
story problem.)

11) The 4 step MANOVA partial F test of hypotheses has a full model
using all of the variables and a reduced model where r of the variables are
deleted. The ith row of L has a 1 in the position corresponding to the ith
variable to be deleted. Omitting the jth variable corresponds to the Fj test
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while omitting variables X2, ..., Xp corresponds to the MANOVA F test.
i) State the hypotheses H0: the reduced model is good H1: use the full
model.
ii) Find the test statistic FR from output.
iii) Find the pval from output.
iv) If pval < α, reject H0 and conclude that the full model should be used.
If pval ≥ α, fail to reject H0 and conclude that the reduced model is good.

12) The 4 step MANOVA F test should reject H0 if the response and
residual plots look good, n is large enough and at least one response plot
does not look like the corresponding residual plot. A response plot for Yj

will look like a residual plot if the identity line appears almost horizontal,
hence the range of Ŷj is small.

13) The mpack function mltreg produces the m response and residual
plots, gives B̂, Σ̂ε, the MANOVA partial F test statistic and pval corre-
sponding to the reduced model that leaves out the variables given by indices
(so X2 and X4 in the output below with F = 0.77 and pval = 0.614), Fj

and the pval for the Fj test for variables 1, 2, ..., p (where p = 4 in the
output below so F2 = 1.51 with pval = 0.284) and F0 and pval for the
MANOVA F test (in the output below F0 = 3.15 and pval= 0.06). The
command out <- mltreg(x,y,indices=c(2)) would produce a MANOVA
partial F test corresponding to the F2 test while the command out <-

mltreg(x,y,indices=c(2,3,4)) would produce a MANOVA partial F test
corresponding to the MANOVA F test for a data set with p = 4 predictor
variables. The Hotelling Lawley trace statistic is used in the tests.

out <- mltreg(x,y,indices=c(2,4))

$Bhat

[,1] [,2] [,3]

[1,] 47.96841291 623.2817463 179.8867890

[2,] 0.07884384 0.7276600 -0.5378649

[3,] -1.45584256 -17.3872206 0.2337900

[4,] -0.01895002 0.1393189 -0.3885967

$Covhat

[,1] [,2] [,3]

[1,] 21.91591 123.2557 132.339

[2,] 123.25566 2619.4996 2145.780
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[3,] 132.33902 2145.7797 2954.082

$partial

partialF Pval

[1,] 0.7703294 0.6141573

$Ftable

Fj pvals

[1,] 6.30355375 0.01677169

[2,] 1.51013090 0.28449166

[3,] 5.61329324 0.02279833

[4,] 0.06482555 0.97701447

$MANOVA

MANOVAF pval

[1,] 3.150118 0.06038742

14) Given B̂ = [β̂1 β̂2 · · · β̂m] and xf , find ŷf = (ŷ1, ..., ŷm)T where

ŷi = β̂
T

i xf .

15) Σ̂ε =
Ê

T
Ê

n − p
=

1

n − p

n∑

i=1

ε̂iε̂
T
i while the sample covariance matrix of

the residuals is Sr =
n − p

n − 1
Σ̂ε =

Ê
T
Ê

n − 1
. Both Σ̂ε and Sr are

√
n consistent

estimators of Σε for a large class of error distributions for εi.
16) The 100(1 − α)% nonparametric prediction region for yf given xf is

the nonparametric prediction region from
∮

5.2 applied to ẑi = ŷf + ε̂i =

B̂
T
xf + ε̂i for i = 1, ..., n. This takes the data cloud of the n residual vectors

ε̂i and centers the cloud at ŷf . Let

D2
i (ŷf , Sr) = (ẑi − ŷf )

TS−1
r (ẑi − ŷf)

for i = 1, ..., n. Let qn = min(1 − α + 0.05, 1 − α + m/n) for α > 0.1 and

qn = min(1 − α/2, 1 − α + 10αm/n), otherwise.

If qn < 1 − α + 0.001, set qn = 1 − α. Let 0 < α < 1 and h = D(Un) where
D(Un) is the qnth sample quantile of the Di. The 100(1−α)% nonparametric
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prediction region for yf is

{z : (z − ŷf)
T S−1

r (z − ŷf ) ≤ D2
(Un)} = {z : Dz(ŷf , Sr) ≤ D(Un)}.

a) Consider the n prediction regions for the data where (yf,i, xf,i) =
(yi, xi) for i = 1, ..., n. If the order statistic D(Un) is unique, then Un of the
n prediction regions contain yi where Un/n → 1 − α as n → ∞.

b) If (ŷf , Sr) is a consistent estimator of (E(yf ),Σε) then the non-
paramtric prediction region is a large sample 100(1 − α)% prediction region
for yf .

c) If (ŷf , Sr) is a consistent estimator of (E(yf),Σε), and the εi come
from an elliptically contoured distribution such that the highest density re-
gion is {z : Dz(0,Σε) ≤ D1−α}, then the nonparametric prediction region
is asymptotically optimal.

17) On the DD plot for the residuals, the cases to the left of the vertical
line correspond to cases that would have yf = yi in the nonparametric
prediction region if xf = xi while the cases to the right of the line would not
have yf = yi in the nonparametric prediction region.

18) The DD plot for the residuals is interpreted almost exactly as a DD
plot for iid multivariate data is interpreted. Plotted points clustering about
the identity line suggests that the εi may be iid from a multivariate normal
distribution while plotted points that lie above the identity line but cluster
about a line through the origin with slope greater than 1 suggests that the
εi may be iid from an elliptically contoured distribution that is not MVN.
The semiparametric and parametric MVN prediction regions correspond to
horizontal lines on the DD plot. Robust distances have not been shown to
be consistent estimators of the population distances, but are useful for a
graphical diagnostic.

19) A robust multivariate linear regression method replaces least squares
with the hbreg estimator. The probability that the robust estimator equals
the least squares estimator goes to 1 as n → ∞ for a large class of error dis-
tributions. Hence the hypothesis tests and nonparametric prediction regions
for the classical method can be applied to the robust method. The entries of
B̂ are hard to drive to ±∞ for the robust estimator, and the residuals corre-
sponding to outliers are often large. Since the residuals are used to compute
Σ̂ε, the tests of hypothesis based on the robust estimator are not robust to
the presence of outliers. But the robust estimator and classical estimator

301



tend to give different response and residual plots and test statistics when
outliers are present.

12.9 Complements

The least squares estimator β̂ is a good estimator of β under very mild con-
ditions by Theorem 12.3; however, Theorem 12.3 assumes that the model
is known before gathering data. If variable selection and response transfor-
mation are performed to build a model, then the estimators are biased and
results for inference fail to hold in that pvalues and coverage of confidence
and prediction intervals will be wrong. See, for example, Berk (1978), Co-
pas (1983), Miller (1984) and Rencher and Pun (1980). Hence it is a good
idea to do a pilot study to suggest which transformations and variables to
use. Then do a larger study without using variable selection and response
transformations.

Cook and Olive (2001) and Olive (2004b, 2013) discuss response plots
and transformation plots. Cook and Setodji (2003) use the FF plot while
Wilcox (2009) has a robust method for multivariate regression. Su and Cook
(2012) give an interesting alternative to least squares. Prediction regions for
this method could be made following Section 12.4.3.

Khattree and Naik (1999, p. 91-98) discuss testing H0 : LBM = 0
versus H1 : LBM 6= 0 where M = I gives a linear test of hypotheses.

12.10 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

12.1∗. Refer to the alternative form of the Hotelling Lawley test statistic.
Let

T (W ) = n [vec(LB̂)]T [Σ̂
−1

ε ⊗ (LWLT )−1][vec(LB̂)].

Let
XT X

n
= Ŵ

−1
.

Show T (Ŵ ) = [vec(LB̂)]T [Σ̂
−1

ε ⊗ (L(XT X)−1LT )−1][vec(LB̂)].
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12.2. Refer to the alternative form of the Hotelling Lawley test statistic.

Let T = [vec(LB̂)]T [Σ̂
−1

ε ⊗ (L(XTX)−1LT )−1][vec(LB̂)]. Let L = Lj =

[0, ..., 0, 1, 0, ..., 0] have a 1 in the jth position. Let b̂
T

j = LB̂ be the jth

row of B̂. Let dj = Lj(X
T X)−1LT

j = (XTX)−1
jj , the jth diagonal entry

of (XTX)−1. Then Tj = 1
dj

b̂
T

j Σ̂
−1

ε b̂j. The Hotelling Lawley statistic U =

tr([(n− p)Σ̂ε]−1B̂
T
LT [L(XT X)−1LT ]−1LB̂]). Hence if L = Lj, then Uj =

1
dj(n−p)

tr(Σ̂
−1

ε b̂jb̂
T

j ).

Using tr(ABC) = tr(CAB) and tr(a) = a for scalar a, show the (n −
p)Uj = Tj.

12.3. Refer to the alternative form of the Hotelling Lawley test statistic.
Using the Searle (1982, p. 333) identity
tr(AGT DGC) = [vec(G)]T [CA ⊗ DT ][vec(G)], show

(n − p)U(L) = tr[Σ̂
−1

ε B̂
T
LT [L(XT X)−1LT ]−1LB̂]

= [vec(LB̂)]T [Σ̂
−1

ε ⊗ (L(XTX)−1LT )−1][vec(LB̂)] by identifying A, G, D,
and C.

$Ftable

Fj pvals

[1,] 82.147221 0.000000e+00

[2,] 58.448961 0.000000e+00

[3,] 15.700326 4.258563e-09

[4,] 9.072358 1.281220e-05

[5,] 45.364862 0.000000e+00

$MANOVA

MANOVAF pval

[1,] 67.80145 0

12.4. The above output is for the R Seatbelts data set where Y1 =
drivers = number of drivers killed or seriously injured, Y2 = front = number
of front seat passengers killed or seriously injured, and Y3 = back = number
of back seat passengers killed or seriously injured. The predictors were x2 =
kms = distance driven, x3 = price = petrol price, x4 = van = number of
van drivers killed, and x5 = law = 0 if the law was in effect that month and
1 otherwise. The data consists of 192 monthly totals in Great Britain from
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January 1969 to December 1984, and the compulsory wearing of seat belts
law was introduced in February 1983.

a) Do the MANOVA F test.

b) Do the F4 test.

12.5. a) Sketch a DD plot of the residual vectors ε̂i for the multivariate
linear regression model if the error vectors εi are iid from a multivariate
normal distribution. b) Does the DD plot change if the one way MANOVA
model is used instead of the multivariate linear regression model?

y<-USJudgeRatings[,c(9,10,12)]

x<-USJudgeRatings[,-c(9,10,12)]

mltreg(x,y,indices=c(2,5,6,7,8))

$partial

partialF Pval

[1,] 1.649415 0.1855314

$MANOVA

MANOVAF pval

[1,] 340.1018 1.121325e-14

12.6. The above output is for the R judge ratings data set consisting of
lawyer ratings for n = 43 judges. Y1 = oral = sound oral rulings, Y2 = writ =
sound written rulings, and Y3 = rten = worthy of retention. The predictors
were x2 = cont = number of contacts of lawyer with judge, x3 = intg =
judicial integrity, x4 = dmnr = demeanor, x5 = dilg = diligence, x6 =
cfmg = case flow managing, x7 = deci = prompt decisions, x8 = prep =
preparation for trial, x9 = fami = familiarity with law, and x10 = phys =
physical ability.

a) Do the MANOVA F test.

b) Do the MANOVA partial F test for the reduced model that deletes
x2, x5, x6, x7 and x8.

12.7. Let βi be p × 1 and suppose

(
β̂1 − β1

β̂2 − β2

)
∼ N2p

((
0
0

)
,

[
σ11(X

T X)−1 σ12(X
TX)−1

σ21(X
T X)−1 σ22(X

TX)−1

])
.
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Find the distribution of

[L 0]

(
β̂1 − β1

β̂2 − β2

)
= Lβ̂1

where Lβ1 = 0 and L is r × p with r ≤ p. Simplify.
R/Splus Problems

Warning: Use the command source(“G:/mpack.txt”) to download
the programs. See Preface or Section 15.2. Typing the name of the
mpack function, eg ddplot, will display the code for the function. Use the
args command, eg args(ddplot), to display the needed arguments for the
function.

12.8. This problem examines multivariate linear regression on the Cook
and Weisberg (1999a) mussels data with Y1 = log(S) and Y2 = log(M) where
S is the shell mass and M is the muscle mass. The predictors are X2 = L,
X3 = log(W ) and X4 = H: the shell length, log(width) and height.

a) The R command for this part make the response and residual plots for
each of the three variables. Click the rightmost mouse button and highlight
Stop to advance the plot. When you have the response and residual plots for
one variable on the screen, copy and paste the two plots into Word. Do this
two times, once for each response variable. The plotted points fall in roughly
evenly populated bands about the identity or r = 0 line.

b) Copy and paste the output produced from the R command for this
part from $partial on. This gives the output needed to do the MANOVA F
test, MANOVA partial F test and the Fj tests.

c) The R command for this plot makes a DD plot of the residuals and
adds the lines corresponding to the three prediction regions of Section 5.2.
The robust cutoff is larger than the semiparametric cutoff. Place the plot in
Word. Do the residuals appear to follow a multivariate normal distribution?

d) Do the MANOVA partial F test where the reduced model deletes X3

and X4.
e) Do the F2 test.
f) Do the MANOVA F test.

12.9. This problem examines multivariate linear regression on SAS Insti-
tute (1985, p. 146) Fitness Club Data data with Y1 = chinups, Y2 = situps
and Y3 = jumps. The predictors are X2 = weight, X3 = waist and
X4 = pulse.
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a) The R command for this part make the response and residual plots for
each of the three variables. Click the rightmost mouse button and highlight
Stop to advance the plot. When you have the response and residual plots
for one variable on the screen, copy and paste the three plots into Word. Do
this three times, once for each response variable. Are there any outliers?

b) The R command for this plot makes a DD plot of the residuals and
adds the lines corresponding to the three prediction regions of Section 5.2.
The robust cutoff is larger than the semiparametric cutoff. Place the plot in
Word. Are there any outliers?

12.6. This problem uses the mpack function mregsim to simulate the
Wilk’s Lambda test, Pillai’s trace test, Hotelling Lawley trace test, and Roy’s
largest root test for the Fj tests and the MANOVA F test for multivariate
linear regression. When mnull = T the first row of B is 1T while the re-
maining rows are equal to 0. Hence the null hypothesis for the MANOVA F
test is true. When mnull = F the null hypothesis is true for p = 2, but false
for p > 2. Now the first row of B is 1T and the last row of B is 0. If p > 2,
then the second to last row of B is (1, 0, ..., 0), the third to last row is (1,
1, 0, ..., 0) etcetera as long as the first row is not changed from 1T . First m
iid errors zi are generated such that the m errors are iid with variance σ2.
Then εi = Azi so that Σ̂ε = σ2AAT = ((σij)) where the diagonal entries
σii = σ2[1 + (m− 1)ρ2] and the off diagonal entries σij = σ2[2ρ + (m− 2)ρ2]
where ρ = 0.10. Terms like Wilkcov give the percentage of times the Wilk’s
test rejected the F1, F2, ..., Fp tests. The $mancv wcv pcv hlcv rcv fcv output
gives the percentage of times the 4 test statistics reject the MANOVA F test.
Here hlcov and fcov both correspond to the Hotelling Lawley test using the
formulas in problem A).

5000 runs will be used so the simulation will take several minutes. Sample
sizes n = 10min(m, p), n = 10max(m, p) and n = 10mp were interesting.
Want coverage near 0.05 when H0 is true and coverage close to 1 for good
power when H0 is false. Multivariate normal errors were used in a) and b)
below.

a) Copy the coverage parts of the output produced by the R commands
for this part. Used n = 20, m = 2, p = 4. Here H0 is true except for the F1

test. Wilk’s and Pillai’s tests had low coverage < 0.05 when H0 was false.
Roy’s test was good for the Fj tests but why was Roy’s test bad for the
MANOVA F test?

b) Copy the coverage parts of the output produced by the R commands
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for this part. Used n = 20, m = 2, p = 4. Here H0 is false except for the F4

test. Which two tests seem to be the best for this part?

12.11 This problem uses the mpack function mpredsim to simulate the
prediction regions for yf given xf for multivariate regression. With 5000
runs this simulation takes several minutes. The R command for this problem
generate iid lognormal errors then subtract the mean producing zi. Then the
εi = Azi are generated as in problem D). Used n=100, m=2, and p=4. The
nominal coverage of the prediction region is 90%, and 92% of the training
data is covered. The ncvr output gives the coverage of the nonparametric
region. What was ncvr?
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