
Chapter 14

Other Techniques

14.1 Resistant Regression

Ellipsoidal trimming can be used to create resistant multiple linear regression
(MLR) estimators. To perform ellipsoidal trimming, an estimator (T, C) is
computed and used to create the squared Mahalanobis distances D2

i for each
vector of observed predictors xi. If the ordered distance D(j) is unique, then
j of the xi’s are in the ellipsoid

{x : (x − T )TC−1(x − T ) ≤ D2
(j)}. (14.1)

The ith case (Yi, x
T
i )T is trimmed if Di > D(j). Then an estimator of β is

computed from the remaining cases. For example, if j ≈ 0.9n, then about
10% of the cases are trimmed, and OLS or L1 could be used on the cases
that remain.

Recall that a response plot is a plot of the fitted values Ŷi versus the
response Yi and is very useful for detecting outliers. If the MLR model holds
and the MLR estimator is good, then the plotted points will scatter about
the identity line that has unit slope and zero intercept. The identity line is
added to the plot as a visual aid, and the vertical deviations from the identity
line are equal to the residuals since Yi − Ŷi = ri.

The resistant trimmed views estimator combines ellipsoidal trimming and
the response plot. First compute (T, C), perhaps using the RFCH estimator
or the R/Splus function cov.mcd. Trim the M% of the cases with the largest
Mahalanobis distances, and then compute the MLR estimator β̂M from the
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remaining cases. Use M = 0, 10, 20, 30, 40, 50, 60, 70, 80, and 90 to generate

ten response plots of the fitted values β̂
T

Mxi versus yi using all n cases. (Fewer
plots are used for small data sets if β̂M can not be computed for large M .)
These plots are called “trimmed views.”

Definition 14.1. The trimmed views (TV) estimator β̂T,n corresponds
to the trimmed view where the bulk of the plotted points follow the identity
line with smallest variance function, ignoring any outliers.

Example 14.1. For the Buxton (1920) data, height was the response
variable while an intercept, head length, nasal height, bigonal breadth, and
cephalic index were used as predictors in the multiple linear regression model.
Observation 9 was deleted since it had missing values. Five individuals,
cases 61–65, were reported to be about 0.75 inches tall with head lengths
well over five feet! OLS was used on the cases remaining after trimming,
and Figure 14.1 shows four trimmed views corresponding to 90%, 70%, 40%
and 0% trimming. The OLS TV estimator used 70% trimming since this
trimmed view was best. Since the vertical distance from a plotted point
to the identity line is equal to the case’s residual, the outliers had massive
residuals for 90%, 70% and 40% trimming. Notice that the OLS trimmed
view with 0% trimming “passed through the outliers” since the cluster of
outliers is scattered about the identity line.

The TV estimator β̂T,n has good statistical properties if an estimator
with good statistical properties is applied to the cases (XM,n, Y M,n) that
remain after trimming. Candidates include OLS, L1, Huber’s M–estimator,
Mallows’ GM–estimator or the Wilcoxon rank estimator. See Rousseeuw
and Leroy (1987, p. 12-13, 150). The basic idea is that if an estimator with
OP (n−1/2) convergence rate is applied to a set of nM ∝ n cases, then the
resulting estimator β̂M,n also has OP (n−1/2) rate provided that the response

Y was not used to select the nM cases in the set. If ‖β̂M,n−β‖ = OP (n−1/2)

for M = 0, ..., 90 then ‖β̂T,n − β‖ = OP (n−1/2) by Pratt (1959).
Let Xn = X0,n denote the full design matrix. Often when proving asymp-

totic normality of an MLR estimator β̂0,n, it is assumed that

XT
nXn

n
→ W−1.

If β̂0,n has OP (n−1/2) rate and if for big enough n all of the diagonal elements
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Figure 14.1: 4 Trimmed Views for the Buxton Data

of
(

XT
M,nXM,n

n

)

−1

are all contained in an interval [0, B) for some B > 0, then ‖β̂M,n − β‖ =

OP (n−1/2).
The distribution of the estimator β̂M,n is especially simple when OLS is

used and the errors are iid N(0, σ2). Then

β̂M,n = (XT
M,nXM,n)

−1XT
M,nY M,n ∼ Np(β, σ2(XT

M,nXM,n)
−1)

and
√

n(β̂M,n−β) ∼ Np(0, σ2(XT
M,nXM,n/n)−1). Notice that this result does

not imply that the distribution of β̂T,n is normal.

Table 14.1 compares the TV, MBA (for MLR), lmsreg, ltsreg, L1 and
OLS estimators on 7 data sets available from the text’s website. The column
headers give the file name while the remaining rows of the table give the
sample size n, the number of predictors p, the amount of trimming M used by
the TV estimator, the correlation of the residuals from the TV estimator with
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Table 14.1: Summaries for Seven Data Sets, the Correlations of the Residuals
from TV(M) and the Alternative Method are Given in the 1st 5 Rows

Method Buxton Gladstone glado hbk major nasty wood
MBA 0.997 1.0 0.455 0.960 1.0 -0.004 0.9997

LMSREG -0.114 0.671 0.938 0.977 0.981 0.9999 0.9995
LTSREG -0.048 0.973 0.468 0.272 0.941 0.028 0.214

L1 -0.016 0.983 0.459 0.316 0.979 0.007 0.178
OLS 0.011 1.0 0.459 0.780 1.0 0.009 0.227

outliers 61-65 none 119 1-10 3,44 2,6,...,30 4,6,8,19
n 87 274 274 75 112 32 20
p 5 7 7 4 6 5 6
M 70 0 30 90 0 90 20

the corresponding alternative estimator, and the cases that were outliers.
If the correlation was greater than 0.9, then the method was effective in
detecting the outliers, and the method failed, otherwise. Sometimes the
trimming percentage M for the TV estimator was picked after fitting the
bulk of the data in order to find the good leverage points and outliers.

Notice that the TV, MBA and OLS estimators were the same for the
Gladstone data and for the major data (Tremearne 1911) which had two
small Y –outliers. For the Gladstone data, there is a cluster of infants that are
good leverage points, and we attempt to predict brain weight with the head
measurements height, length, breadth, size and cephalic index. Originally, the
variable length was incorrectly entered as 109 instead of 199 for case 119, and
the glado data contains this outlier. In 1997, lmsreg was not able to detect
the outlier while ltsreg did. Due to changes in the Splus 2000 code, lmsreg
now detects the outlier but ltsreg does not.

The TV estimator can be modified to create a resistant weighted MLR
estimator. To see this, recall that the weighted least squares (WLS) estima-
tor using weights Wi can be found using the ordinary least squares (OLS)
regression (without intercept) of

√
WiYi on

√
Wixi. This idea can be used

for categorical data analysis since the minimum chi-square estimator is often
computed using WLS. Let xi = (1, xi,2, ..., xi,p)

T , let Yi = xT
i β + ei and let
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β̃ be an estimator of β.

Definition 14.2. For a multiple linear regression model with weights
Wi, a weighted response plot is a plot of

√
Wix

T
i β̃ versus

√
WiYi. The

weighted residual plot is a plot of
√

Wix
T
i β̃ versus the WMLR residuals

rWi =
√

WiYi −
√

Wix
T
i β̃.

Application 14.1. For resistant weighted MLR, use the WTV estimator
which is selected from ten weighted response plots.

14.2 1D Regression

Regression is the study of the conditional distribution Y |x of the response Y
given the k × 1 vector of nontrivial predictors x. The scalar Y is a random
variable and x is a random vector. A special case of regression was the
multiple linear regression model Y = α+x1β1 + · · ·+xkβk + e = α+βTx+ e
where k = p−1 and the nontrivial predictors are collected in the k×1 vector
x.

Definition 14.3: Cook and Weisberg (1999a, p. 414). In a 1D
regression model, the response Y is conditionally independent of x given a
single linear combination βT x of the predictors, written

Y x|βT x or Y x|(α + βTx). (14.2)

An important 1D regression model, introduced by Li and Duan (1989),
has the form

Y = g(α + βTx, e) (14.3)

where g is a bivariate (inverse link) function and e is a zero mean error that
is independent of x. The constant term α may be absorbed by g if desired.

Special cases of the 1D regression model (14.2) include many important
generalized linear models (GLMs) and the additive error single index model

Y = m(α + βTx) + e. (14.4)

Typically m is the conditional mean or median function. For example if all
of the expectations exist, then

E[Y |x] = E[m(α + βTx)|x] + E[e|x] = m(α + βTx).
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The multiple linear regression model is an important special case where m is
the identity function: m(α + βTx) = α + βT x. Another important special
case of 1D regression is the response transformation model where

g(α + βTx, e) = t−1(α + βTx + e) (14.5)

and t−1 is a one to one (typically monotone) function. Hence

t(Y ) = α + βT x + e.

Definition 14.4. Regression is the study of the conditional distribution
of Y |x. Focus is often on the mean function E(Y |x) and/or the variance
function VAR(Y |x). There is a distribution for each value of x = xo such
that Y |x = xo is defined. For a 1D regression,

E(Y |x = xo) = E(Y |βT x = βTxo) ≡ M(βTxo)

and
VAR(Y |x = xo) = VAR(Y |βT x = βTxo) ≡ V (βTxo)

where M is the kernel mean function and V is the kernel variance function.

Notice that the mean and variance functions depend on the same linear
combination if the 1D regression model is valid. This dependence is typical
of GLMs where M and V are known kernel mean and variance functions
that depend on the family of GLMs. See Cook and Weisberg (1999a, section
23.1). A heteroscedastic regression model

Y = M(βT
1 x) +

√

V (βT
2 x) e (14.6)

is a 1D regression model if β2 = cβ1 for some scalar c.

Dimension reduction can greatly simplify our understanding of the con-
ditional distribution Y |x. If a 1D regression model is appropriate, then the
k–dimensional vector x can be replaced by the 1–dimensional scalar βT x

with “no loss of information about the conditional distribution.” Cook and
Weisberg (1999a, p. 411) define a sufficient summary plot (SSP) to be a
plot that contains all the sample regression information about the conditional
distribution Y |x of the response given the predictors.
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Definition 14.5: If the 1D regression model holds, then Y x|(a+cβTx)
for any constants a and c 6= 0. The quantity a + cβTx is called a sufficient
predictor (SP), and a sufficient summary plot is a plot of any SP versus Y .

An estimated sufficient predictor (ESP) is α̃ + β̃
T
x where β̃ is an estimator

of cβ for some nonzero constant c. A response plot or estimated sufficient
summary plot (ESSP) is a plot of any ESP versus Y .

If there is only one predictor x, then the plot of x versus Y is both a
sufficient summary plot and a response plot, but generally only a response
plot can be made. Since a can be any constant, a = 0 is often used. The
following section shows how to use the OLS regression of Y on x to obtain
an ESP. If we plot the fitted values and the ESP versus Y , the plots are
called fit–response and ESP-response plots. For multiple linear regression,
these two plots are the same.

14.3 Visualizing 1D Regression

Consider the OLS estimator (α̂, β̂). Li and Duan (1989, p. 1031) show that
under regularity conditions, β̂ is a

√
n consistent estimator of cβ for some

constant c. If β̂ ≈ cβ when model (14.2) holds, then the response plot of

α̂ + β̂
T
x versus Y

can be used to visualize the conditional distribution Y |(α + βT x) provided
that c 6= 0. Often if no strong nonlinearities are present among the

predictors, the bias vector is small enough so that β̂
T
x is a useful ESP.

Suppose Y = m(α + βT x) + e and the errors e are small. Suppose β̂
T
x

is a good estimator of cβT x. Then m can be visualized with both a plot of

ESP = a + β̂
T
x versus Y if c 6= 0. If c > 0 then the plot of ESP versus Y is

similar to the plot of α + βT x versus Y : except the labels of the horizontal
axis change. (The two plots are usually not exactly identical since plotting
controls to “fill space” depend on several factors and will change slightly.) If
c < 0, then the plot appears to be flipped about the vertical axis. OLS often
provides a useful estimator of cβ where c 6= 0, but OLS can result in c = 0
if g is symmetric about the population median of α + βT x.

Definition 14.6. If the 1D regression model (14.2) holds, and OLS is
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used, then the ESP may be called the OLS ESP and the response plot may
be called the OLS response plot. Other estimators, such as SIR, may have
similar labels.
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Figure 14.2: SSP for m(u) = u3

Example 14.2. Suppose that xi ∼ N3(0, I3) and that

Y = m(βT x) + e = (x1 + 2x2 + 3x3)
3 + e.

Then a 1D regression model holds with β = (1, 2, 3)T . Figure 14.2 shows the
sufficient summary plot of βTx versus Y , and Figure 14.3 shows the sufficient
summary plot of −βTx versus Y . Notice that the functional form m appears
to be cubic in both plots and that both plots can be smoothed by eye or with
a scatterplot smoother such as lowess. The two figures were generated with
the following R/Splus commands.

X <- matrix(rnorm(300),nrow=100,ncol=3)

SP <- X%*%1:3

Y <- (SP)^3 + rnorm(100)

plot(SP,Y)

plot(-SP,Y)
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Figure 14.3: Another SSP for m(u) = u3

We particularly want to use the OLS estimator (α̂, β̂) to produce an
estimated sufficient summary plot. This estimator is obtained from the usual
multiple linear regression of Yi on xi, but we are not assuming that the
multiple linear regression model holds; however, we are hoping that the 1D
regression model Y x|βT x is a useful approximation to the data and that
β̂ ≈ cβ for some nonzero constant c. Nice results exist if the single index
model is appropriate. Recall that

Cov(x, Y ) = E[(x− E(x))((Y − E(Y ))T ].

Definition 14.7. Suppose that (Yi, x
T
i )T are iid observations and that

the positive definite k × k matrix Cov(x) = ΣX and the k × 1 vector
Cov(x, Y ) = ΣX,Y . Let the OLS estimator (α̂, β̂) be computed from the

multiple linear regression of Y on x plus a constant. Then (α̂, β̂) estimates
the population quantity (αOLS, βOLS) where

βOLS = Σ−1
X ΣX,Y . (14.7)
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The following notation will be useful for studying the OLS estimator.
Let the sufficient predictor z = βTx and let w = x − E(x). Let r =
w − (ΣXβ)βTw.

Theorem 14.1. In addition to the conditions of Definition 14.7, also
assume that Yi = m(βTxi) + ei where the zero mean constant variance iid
errors ei are independent of the predictors xi. Then

βOLS = Σ−1
X ΣX,Y = cm,Xβ + um,X (14.8)

where the scalar
cm,X = E[βT (x − E(x)) m(βTx)] (14.9)

and the bias vector
um,X = Σ−1

X E[m(βTx)r]. (14.10)

Moreover, um,X = 0 if x is from an EC distribution with nonsingular ΣX,
and cm,X 6= 0 unless Cov(x, Y ) = 0. If the multiple linear regression model
holds, then cm,X = 1, and um,X = 0.

The proof of the above result is outlined in Problem 14.1 using an ar-
gument due to Aldrin, Bφlviken, and Schweder (1993). See related results
in Cook, Hawkins, and Weisberg (1992). If the 1D regression model is ap-
propriate, then typically Cov(x, Y ) 6= 0 unless βT x follows a symmetric
distribution and m is symmetric about the median of βT x.

Definition 14.8. Let (α̂, β̂) denote the OLS estimate obtained from the
OLS multiple linear regression of Y on x. The OLS view is a response plot

of a + β̂
T
x versus Y . Typically a = 0 or a = α̂.

Remark 14.1. All of this awkward notation and theory leads to a re-
markable result, perhaps first noted by Brillinger (1977, 1983) and called the
1D Estimation Result by Cook and Weisberg (1999a, p. 432). The result
is that if the 1D regression model is appropriate, then the OLS view will
frequently be a useful estimated sufficient summary plot (ESSP). Hence the

OLS predictor β̂
T
x is a useful estimated sufficient predictor (ESP).

Although the OLS view is frequently a good ESSP if no strong nonlinear-
ities are present in the predictors and if cm,X 6= 0 (eg the sufficient summary
plot of βTx versus Y is not approximately symmetric), even better estimated
sufficient summary plots can be obtained by using ellipsoidal trimming. This
topic is discussed in the following section and follows Olive (2002) closely.
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To perform ellipsoidal trimming, an estimator (T, C) is computed where
T is a k × 1 multivariate location estimator and C is a k × k symmetric
positive definite dispersion estimator. Then the ith squared Mahalanobis
distance is the random variable

D2
i = (xi − T )TC−1(xi − T ) (14.11)

for each vector of observed predictors xi. If the ordered distances D(j) are
unique, then j of the xi are in the hyperellipsoid

{x : (x − T )TC−1(x − T ) ≤ D2
(j)}. (14.12)

The ith case (Yi, x
T
i )T is trimmed if Di > D(j). Thus if j ≈ 0.9n, then about

10% of the cases are trimmed.

We suggest that the estimator (T, C) should be the classical sample mean
and covariance matrix (x, S) or a robust multivariate location and dispersion
estimator such as RFCH. See Section 4.4. When j ≈ n/2, the RFCH esti-
mator attempts to make the volume of the hyperellipsoid given by Equation
(14.12) small.

Ellipsoidal trimming seems to work for at least three reasons. The trim-
ming divides the data into two groups: the trimmed cases and the remaining
cases (xM , YM ) where M% is the amount of trimming, eg M = 10 for 10%
trimming. If the distribution of the predictors x is EC then the distribution
of xM still retains enough symmetry so that the bias vector is approximately
zero. If the distribution of x is not EC, then the distribution of xM will
often have enough symmetry so that the bias vector is small. In particular,
trimming often removes strong nonlinearities from the predictors and the
weighted predictor distribution is more nearly elliptically symmetric than
the predictor distribution of the entire data set (recall Winsor’s principle:
“all data are roughly Gaussian in the middle”). Secondly, under heavy trim-
ming, the mean function of the remaining cases may be more linear than the
mean function of the entire data set. Thirdly, if |c| is very large, then the bias
vector may be small relative to cβ. Trimming sometimes inflates |c|. From
Theorem 14.1, any of these three reasons should produce a better estimated
sufficient predictor.

For example, examine Figure 5.4. The data are not EC, but the data
within the resistant covering ellipsoid are approximately EC.

Example 14.3. Cook and Weisberg (1999a, p. 351, 433, 447) gave a
data set on 82 mussels sampled off the coast of New Zealand. The variables
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Figure 14.4: Scatterplot for Mussel Data, o Corresponds to Trimmed Cases
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are the muscle mass M in grams, the length L and height H of the shell
in mm, the shell width W and the shell mass S. The robust and classical
Mahalanobis distances were calculated, and Figure 14.4 shows a scatterplot
matrix of the mussel data, the RDi’s, and the MDi’s. Notice that many
of the subplots are nonlinear. The cases marked by open circles were given
weight zero by the FMCD algorithm, and the linearity of the retained cases
has increased. Note that only one trimming proportion is shown and that
a heavier trimming proportion would increase the linearity of the cases that
were not trimmed.

The two ideas of using ellipsoidal trimming to reduce the bias and choos-
ing a view with a smooth mean function and smallest variance function can
be combined into a graphical method for finding the estimated sufficient sum-
mary plot and the estimated sufficient predictor. Trim the M% of the cases
with the largest Mahalanobis distances, and then compute the OLS estima-
tor (α̂M , β̂M ) from the cases that remain. Use M = 0, 10, 20, 30, 40, 50, 60,

70, 80, and 90 to generate ten plots of β̂
T

Mx versus Y using all n cases. In
analogy with the Cook and Weisberg procedure for visualizing 1D structure
with two predictors, the plots will be called “trimmed views.” Notice that
M = 0 corresponds to the OLS view.

Definition 14.9. The best trimmed view is the trimmed view with a
smooth mean function and the smallest variance function and is the estimated
sufficient summary plot. If M∗ = E is the percentage of cases trimmed that

corresponds to the best trimmed view, then β̂
T

Ex is the estimated sufficient
predictor.

The following examples illustrate the R/Splus function trviews that is
used to produce the ESSP. If R is used instead of Splus, the command

library(MASS)

needs to be entered to access the function cov.mcd called by trviews. The
function trviews is used in Problem 14.2. Also notice the trviews estimator
is basically the same as the tvreg estimator described in Section 14.1. The
tvreg estimator can be used to simultaneously detect whether the data is
following a multiple linear regression model or some other single index model.

Plot α̂E +β̂
T

Ex versus Y and add the identity line. If the plotted points follow
the identity line then the MLR model is reasonable, but if the plotted points
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follow a nonlinear mean function, then a nonlinear single index model may
be reasonable.

Example 14.2 continued. The command

trviews(X, Y)

produced the following output.

Intercept X1 X2 X3

0.6701255 3.133926 4.031048 7.593501

Intercept X1 X2 X3

1.101398 8.873677 12.99655 18.29054

Intercept X1 X2 X3

0.9702788 10.71646 15.40126 23.35055

Intercept X1 X2 X3

0.5937255 13.44889 23.47785 32.74164

Intercept X1 X2 X3

1.086138 12.60514 25.06613 37.25504

Intercept X1 X2 X3

4.621724 19.54774 34.87627 48.79709

Intercept X1 X2 X3

3.165427 22.85721 36.09381 53.15153

Intercept X1 X2 X3

5.829141 31.63738 56.56191 82.94031

Intercept X1 X2 X3

4.241797 36.24316 70.94507 105.3816

Intercept X1 X2 X3

6.485165 41.67623 87.39663 120.8251

The function generates 10 trimmed views. The first plot trims 90% of the
cases while the last plot does not trim any of the cases and is the OLS view.
To advance a plot, press the right button on the mouse (in R, highlight
stop rather than continue). After all of the trimmed views have been
generated, the output is presented. For example, the 5th line of numbers in

the output corresponds to α̂50 = 1.086138 and β̂
T

50 where 50% trimming was
used. The second line of numbers corresponds to 80% trimming while the

last line corresponds to 0% trimming and gives the OLS estimate (α̂0, β̂
T

0 ) =
(â, b̂). The trimmed views with 50% and 90% trimming were very good.
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Figure 14.6: The angle between the SP and the ESP is nearly zero.
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We decided that the view with 50% trimming was the best. Hence β̂E =
(12.60514, 25.06613, 37.25504)T ≈ 12.5β. The best view is shown in Figure
14.5 and is nearly identical to the sufficient summary plot shown in Figure
14.2. Notice that the OLS estimate = (41.68, 87.40, 120.83)T ≈ 42β.

The plot of the estimated sufficient predictor versus the sufficient predic-
tor is also informative. Of course this plot can usually only be generated for
simulated data since β is generally unknown. If the plotted points are highly
correlated (with |corr(ESP,SP)| > 0.95) and follow a line through the origin,
then the estimated sufficient summary plot is nearly as good as the sufficient
summary plot. The simulated data used β = (1, 2, 3)T , and the commands

SP <- X %*% 1:3

ESP <- X %*% c(12.60514, 25.06613, 37.25504)

plot(ESP,SP)

generated the plot shown in Figure 14.6.

Example 14.5. An artificial data set with 200 trivariate vectors xi was
generated. The marginal distributions of xi,j are iid lognormal for j = 1, 2,
and 3. Since the response Yi = sin(βTxi)/β

T xi where β = (1, 2, 3)T , the
random vector xi is not elliptically contoured and the function m is strongly
nonlinear. Figure 14.7d shows the OLS view and Figure 14.8d shows the best
trimmed view. Notice that it is difficult to visualize the mean function with
the OLS view, and notice that the correlation between Y and the ESP is very
low. By focusing on a part of the data where the correlation is high, it may be
possible to improve the estimated sufficient summary plot. For example, in
Figure 14.8d, temporarily omit cases that have ESP less than 0.3 and greater
than 0.75. From the untrimmed cases, obtained the ten trimmed estimates
β̂90, ..., β̂0. Then using all of the data, obtain the ten views. The best view
could be used as the ESSP.

Application 14.2. Suppose that a 1D regression analysis is desired on
a data set, use the trimmed views as an exploratory data analysis technique
to visualize the conditional distribution Y |βT x. The best trimmed view is
an estimated sufficient summary plot. If the single index model (14.4) holds,
the function m can be estimated from this plot using parametric models
or scatterplot smoothers such as lowess. Notice that Y can be predicted
visually using up and over lines.
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Figure 14.7: Estimated Sufficient Summary Plots Without Trimming
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Figure 14.8: 1D Regression with Trimmed Views
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Table 14.2: Estimated Sufficient Predictors Coefficients Estimating c(1, 2, 3)T

method b1 b2 b3

OLS View 0.0032 0.0011 0.0047
90% Trimmed OLS View 0.086 0.182 0.338

SIR View −0.394 −0.361 −0.845
10% Trimmed SIR VIEW −0.284 −0.473 −0.834

SAVE View −1.09 0.870 -0.480
40% Trimmed SAVE VIEW 0.256 0.591 0.765

PHD View −0.072 −0.029 −0.0097
90% Trimmed PHD VIEW −0.558 −0.499 −0.664

LMSREG VIEW −0.003 −0.005 −0.059
70% Trimmed LMSREG VIEW 0.143 0.287 0.428

Application 14.4. The best trimmed view can also be used as a diag-
nostic for linearity and monotonicity.

For example in Figure 14.5, if ESP = 0, then Ŷ = 0 and if ESP = 100,
then Ŷ = 500. Figure 14.5 suggests that the mean function is monotone but
not linear, and Figure 14.8 suggests that the mean function is neither linear
nor monotone.

Application 14.4. Assume that a known 1D regression model is as-
sumed for the data. Then the best trimmed view is a model checking plot
and can be used as a diagnostic for whether the assumed model is appropri-
ate.

The trimmed views are sometimes useful even when the assumption of
linearly related predictors fails. Cook and Li (2002) summarize when compet-
ing methods such as the OLS view, sliced inverse regression (SIR), principal
Hessian directions (PHD), and sliced average variance estimation (SAVE)
can fail. All four methods frequently perform well if there are no strong
nonlinearities present in the predictors.

Example 14.5 (continued). Figure 14.7 shows that the response plots
for SIR, PHD, SAVE, and OLS are not very good while Figure 14.8 shows
that trimming improved the SIR, SAVE and OLS methods.
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Figure 14.9: 1D Regression with lmsreg

One goal for future research is to develop better methods for visualizing
1D regression. Trimmed views seem to become less effective as the number
of predictors k = p − 1 increases. Consider the sufficient predictor SP =
x1 + · · ·+ xk. With the sin(SP)/SP data, several trimming proportions gave
good views with k = 3, but only one of the ten trimming proportions gave
a good view with k = 10. In addition to problems with dimension, it is not
clear which covariance estimator and which regression estimator should be
used. We suggest using the RFCH estimator with OLS, and preliminary
investigations suggest that the classical covariance estimator gives better
estimates than cov.mcd. But among the many Splus regression estimators,
lmsreg often worked well. There is OLS theory, but there is no theory for
the robust regression estimators.

Example 14.5 continued. Replacing the OLS trimmed views by alter-
native MLR estimators often produced good response plots, and for single
index models, the lmsreg estimator often worked the best. Figure 14.9 shows
a scatterplot matrix of Y , ESP and SP where the sufficient predictor SP =
βT x. The ESP used ellipsoidal trimming with cov.mcd and with lmsreg
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Figure 14.10: The Weighted lmsreg Fitted Values Versus Y

instead of OLS. The top row of Figure 14.9 shows that the estimated suf-
ficient summary plot and the sufficient summary plot are nearly identical.
Also the correlation of the ESP and the SP is nearly one. Table 14.2 shows
the estimated sufficient predictor coefficients b when the sufficient predictor
coefficients are c(1, 2, 3)T . Only the SIR, SAVE, OLS and lmsreg trimmed
views produce estimated sufficient predictors that are highly correlated with
the sufficient predictor.

Figure 14.10 helps illustrate why ellipsoidal trimming works. This view
used 70% trimming and the open circles denote cases that were trimmed. The
highlighted squares correspond to the cases (x70, Y70) that were not trimmed.
Note that the highlighted cases are far more linear than the data set as a
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whole. Also lmsreg will give half of the highlighted cases zero weight, further
linearizing the function. In Figure 14.10, the lmsreg constant α̂70 is included,
and the plot is simply the response plot of the weighted lmsreg fitted values
versus Y . The vertical deviations from the line through the origin are the

“residuals” Yi − α̂70 − β̂
T

70x and at least half of the highlighted cases have
small residuals.

Example 14.6. This insulation data was contributed by Ms. Spector.
A box with insulation was heated for 20 minutes then allowed to cool down.
The response variable Y = temperature in middle of box was taken at time
0, 5, ..., 40. The type of insulation was a factor with type 1 = no insulation,
2 = corn pith, 3 = fiberglass, 4 = styrofoam and 5 = bubbles. There were
45 temperature measurements, one for each time type combination. The
measurements were averages of ten trials and starting temperatures were
close but not exactly equal.

The model using time, (time)2, type, and the interactions type:time and
type:(time)2 had E(Y |x) ≈ (xT β)2. A second model used time, (time)2

and type, and rather awkward R code for producing the response plot in
Figure 14.11 is shown below. The solid curve corresponds to (xT β̂, (xT β̂)2) =
(FIT, (FIT )3) where β̂ is the OLS estimator from regressing Y on xT = (1,
time, (time)2, type). The thin curve corresponds to lowess. Since the two
lines correspond, E(Y |x) ≈ (xT β)3 or Y = m(xTβ) + e where m(w) = w3.
See Problem 14.7 for producing the response plot in Arc.

#assume the insulation data is loaded

ftype <- as.factor(insulation[,2])

zi <- as.data.frame(insulation)

iout <- lm(ytemp~time+I(time^2)+ftype,data=zi)

FIT <- iout$fit

Y <- insulation[,1]

plot(FIT,Y)

lines(lowess(FIT,Y)) #get (FIT,(FIT)^3) curve

zx <- FIT

z <- lsfit(cbind(zx,zx^2,zx^3),Y)

zfit <- Y-z$resid

lines(FIT,zfit)
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Figure 14.11: Response Plot for Insulation Data

14.4 Complements

The TV estimator was proposed by Olive (2002, 2005) and is similar to an
estimator proposed by Rousseeuw and van Zomeren (1992). Although both
the TV and MBA estimators have the good OP (n−1/2) convergence rate, their
efficiency under normality may be very low. Chang and Olive (2007, 2010)
suggest a method of adaptive trimming such that the resulting estimator is
asymptotically equivalent to the OLS estimator.

Introduction to 1D regression and regression graphics are Cook and Weis-
berg (1999a, ch. 18, 19, and 20) and Cook and Weisberg (1999b), while Olive
(2010) considers 1D regression. Also see Olive (2013, ch. 12).

14.5 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.
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14.1∗. (Aldrin, Bφlviken, and Schweder 1993). Suppose

Y = m(βTx) + e (14.13)

where m is a possibly unknown function and the zero mean errors e are inde-
pendent of the predictors. Let z = βTx and let w = x −E(x). Let Σx,Y =
Cov(x, Y ), and let Σx =Cov(x) = Cov(w). Let r = w − (Σxβ)βT w.

a) Recall that Cov(x, Y ) = E[(x − E(x))(Y − E(Y ))T ] and show that
Σx,Y = E(wY ).

b) Show that E(wY ) = Σx,Y = E[(r + (Σxβ)βT w) m(z)] =

E[m(z)r] + E[βT w m(z)]Σxβ.

c) Using βOLS = Σ−1
x Σx,Y , show that βOLS = c(x)β + u(x) where the

constant
c(x) = E[βT (x − E(x))m(βTx)]

and the bias vector u(x) = Σ−1
x E[m(βT x)r].

d) Show that E(wz) = Σxβ. (Hint: Use E(wz) = E[(x−E(x))xTβ] =
E[(x− E(x))(xT − E(xT ) + E(xT ))β].)

e) Assume m(z) = z. Using d), show that c(x) = 1 if βT Σxβ = 1.

f) Assume that βTΣxβ = 1. Show that E(zr) = E(rz) = 0. (Hint: Find
E(rz) and use d).)

g) Suppose that βT Σxβ = 1 and that the distribution of x is multivariate
normal. Then the joint distribution of z and r is multivariate normal. Using
the fact that E(zr) = 0, show Cov(r, z) = 0 so that z and r are independent.
Then show that u(x) = 0.

(Note: the assumption βT Σxβ = 1 can be made without loss of gen-
erality since if βTΣxβ = d2 > 0 (assuming Σx is positive definite), then
y = m(d(β/d)T x) + e ≡ md(η

T x) + e where md(u) = m(du), η = β/d and
ηTΣxη = 1.)

R/Splus Problems

Warning: Use the command source(“G:/mpack.txt”) to download
the programs. See Preface or Section 15.2. Typing the name of the
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mpack function, eg trviews, will display the code for the function. Use the
args command, eg args(trviews), to display the needed arguments for the
function.

14.2. Use the following R/Splus commands to make 100 N3(0, I3) cases
and 100 trivariate non-EC cases.

n3x <- matrix(rnorm(300),nrow=100,ncol=3)

ln3x <- exp(n3x)

In R, type the command library(MASS).

a) Using the commands pairs(n3x) and pairs(ln3x) and include both scat-
terplot matrices in Word. (Click on the plot and hit Ctrl and c at the same
time. Then go to file in the Word menu and select paste.) Are strong
nonlinearities present among the MVN predictors? How about the non-EC
predictors? (Hint: a box or ball shaped plot is linear.)

b) Make a single index model and the sufficient summary plot with the
following commands

ncy <- (n3x%*%1:3)^3 + 0.1*rnorm(100)

plot(n3x%*%(1:3),ncy)

and include the plot in Word.
c) The command trviews(n3x, ncy) will produce ten plots. To advance the

plots, click on the rightmost mouse button (and in R select stop) to advance
to the next plot. The last plot is the OLS view. Include this plot in Word.

d) After all 10 plots have been looked at the output will show 10 estimated
predictors. The last estimate is the OLS (least squares) view and might look
like

Intercept X1 X2 X3

4.417988 22.468779 61.242178 75.284664

If the OLS view is a good estimated sufficient summary plot, then the
plot created from the command (leave out the intercept)

plot(n3x%*%c(22.469,61.242,75.285),n3x%*%1:3)
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should cluster tightly about some line. Your linear combination will be dif-
ferent than the one used above. Using your OLS view, include the plot using
the command above (but with your linear combination) in Word. Was this
plot linear? Did some of the other trimmed views seem to be better than
the OLS view, that is, did one of the trimmed views seem to have a smooth
mean function with a smaller variance function than the OLS view?

e) Now type the R/Splus command

lncy <- (ln3x%*%1:3)^3 + 0.1*rnorm(100).

Use the command trviews(ln3x,lncy) to find the best view with a smooth
mean function and the smallest variance function. This view should not be
the OLS view. Include your best view in Word.

f) Get the linear combination from your view, say (94.848, 216.719, 328.444)T ,
and obtain a plot with the command

plot(ln3x%*%c(94.848,216.719,328.444),ln3x%*%1:3).

Include the plot in Word. If the plot is linear with high correlation, then
your response plot in e) should be good.

14.3. (At the beginning of your R/Splus session, use source(“G:/rpack.txt”)
command (and library(MASS) in R.))

a) Perform the commands

> nx <- matrix(rnorm(300),nrow=100,ncol=3)

> lnx <- exp(nx)

> SP <- lnx%*%1:3

> lnsincy <- sin(SP)/SP + 0.01*rnorm(100)

For parts b), c) and d) below, to make the best trimmed view with
trviews, ctrviews or lmsviews, you may need to use the function twice.
The first view trims 90% of the data, the next view trims 80%, etc. The last
view trims 0% and is the OLS view (or lmsreg view). Remember to advance
the view with the rightmost mouse button (and in R, highlight “stop”). Then
click on the plot and next simultaneously hit Ctrl and c. This makes a copy
of the plot. Then in Word, use the menu commands “Copy>paste.”

b) Find the best trimmed view with OLS and covfch with the following
commands and include the view in Word.

> trviews(lnx,lnsincy)
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(With trviews, suppose that 40% trimming gave the best view. Then
instead of using the procedure above b), you can use the command

> essp(lnx,lnsincy,M=40)

to make the best trimmed view. Then click on the plot and next simultane-
ously hit Ctrl and c. This makes a copy of the plot. Then in Word, use the
menu commands “Copy>paste”. Click the rightmost mouse button (and in
R, highlight “stop”) to return the command prompt.)

c) Find the best trimmed view with OLS and (x, S) using the following
commands and include the view in Word. See the paragraph above b).

> ctrviews(lnx,lnsincy)

d) Find the best trimmed view with lmsreg and cov.mcd using the fol-
lowing commands and include the view in Word. See the paragraph above
b).

> lmsviews(lnx,lnsincy)

e) Which method or methods gave the best response plot? Explain briefly.

14.4. Warning: this problem may take too much time. This
problem is like Problem 14.3 but uses many more single index models.
a) Make some prototype functions with the following commands.

> nx <- matrix(rnorm(300),nrow=100,ncol=3)

> SP <- nx%*%1:3

> ncuby <- SP^3 + rnorm(100)

> nexpy <- exp(SP) + rnorm(100)

> nlinsy <- SP + 4*sin(SP) + 0.1*rnorm(100)

> nsincy <- sin(SP)/SP + 0.01*rnorm(100)

> nsiny <- sin(SP) + 0.1*rnorm(100)

> nsqrty <- sqrt(abs(SP)) + 0.1*rnorm(100)

> nsqy <- SP^2 + rnorm(100)

b) Make sufficient summary plots similar to Figures 14.2 and 14.3 with
the following commands and include both plots in Word.

> plot(SP,ncuby)

> plot(-SP,ncuby)
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c) Find the best trimmed view with the following commands (first type
library(MASS) if you are using R). Include the view in Word.

> trviews(nx,ncuby)

You may need to use the function twice. The first view trims 90% of the
data, the next view trims 80%, etc. The last view trims 0% and is the OLS
view. Remember to advance the view with the rightmost mouse button (and
in R, highlight “stop”). Suppose that 40% trimming gave the best view.
Then use the command

> essp(nx,ncuby, M=40)

to make the best trimmed view. Then click on the plot and next simultane-
ously hit Ctrl and c. This makes a copy of the plot. Then in Word, use the
menu commands “Copy>paste”.

d) To make a plot like Figure 14.6, use the following commands. Let tem
= β̂ obtained from the trviews output. In Example 14.2 (continued), tem
can be obtained with the following command.

> tem <- c(12.60514, 25.06613, 37.25504)

Include the plot in Word.

> ESP <- nx%*%tem

> plot(ESP,SP)

e) Repeat b), c) and d) with the following data sets.
i) nx and nexpy
ii) nx and nlinsy
iii) nx and nsincy
iv) nx and nsiny
v) nx and nsqrty
vi) nx and nsqy
Enter the following commands to do parts vii) to x).

> lnx <- exp(nx)

> SP <- lnx%*%1:3

> lncuby <- (SP/3)^3 + rnorm(100)

> lnlinsy <- SP + 10*sin(SP) + 0.1*rnorm(100)

> lnsincy <- sin(SP)/SP + 0.01*rnorm(100)

> lnsiny <- sin(SP/3) + 0.1*rnorm(100)

> ESP <- lnx%*%tem
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vii) lnx and lncuby
viii) lnx and lnlinsy
ix) lnx and lnsincy
x) lnx and lnsiny

14.5. Warning: this problem may take too much time. Repeat
Problem 14.4 but replace trviews with a) lmsviews, b) symviews (that cre-
ates views that sometimes work even when symmetry is present), c) ctrviews
and d) sirviews.

Except for part a), the essp command will not work. Instead, for the
best trimmed view, click on the plot and next simultaneously hit Ctrl and
c. This makes a copy of the plot. Then in Word, use the menu commands
“Copy>paste”.

14.6. a) In addition to the source(“G:/mpack.txt”) command, also use
the source(“G:/mrobdata.txt”) command (and in R, type the library(MASS)
command).

b) Type the command tvreg(buxx,buxy,ii=1). Click the rightmost mouse
button (and in R, highlight Stop). The response plot should appear. Repeat
10 times and remember which plot percentage M (say M = 0) had the best
response plot. Then type the command tvreg2(buxx,buxy, M = 0) (except
use your value of M, not 0). Again, click the rightmost mouse button (and
in R, highlight Stop). The response plot should appear. Hold down the Ctrl
and c keys to make a copy of the plot. Then paste the plot in Word.

c) The estimated coefficients β̂TV from the best plot should have appeared
on the screen. Copy and paste these coefficients into Word.

Problem using ARC

14.7. a) Activate the insulation.lsp dataset of Example 14.6 with the
menu commands “File > Load > Removable Disk (G:) > insulation.lsp.”
Scroll up the screen to read the data description.

b) From the insulation menu select Transform, click on time, change the
number in the p box to 2 and click on OK to add time2 to the variable
list. From the insulation menu select Make factors, click on type and click
on OK to make the factor {F}type. From the insulation menu select Make
interactions, click on {F}type and time, then click on OK. Again from the
insulation menu select Make interactions, click on {F}type and time2, then
click on OK.

c) From the Graph&Fit menu select Fit linear LS, place y in the response
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box and time, time2 and {F}type in the Terms/Predictors box. Click on OK
and copy and paste the output into Word.

d) To make a response plot use the menu commands “Graph&Fit >Plot
of”. Select y for the V-box and L1:Fit-Values for the H-box. Click on OK.
When the graph appears, move the OLS slider bar to 3 and the lowess slider
bar to 0.5. Since the lowess curve and the OLS cubic fit to xT β̂ nearly
coincide, the approximation E(Y |x) ≈ (xTβ)3 seems to be good. Copy the
plot into Word.

e) From the Graph&Fit menu select Fit linear LS, place y in the response
box and time, time2, {F}type and From the Graph&Fit menu select Fit linear
LS, place y in the response box and time, time2, {F}type, {F}type∗time and
{F}type∗time2 in the Terms/Predictors box. Click on OK and copy and paste
the output into Word.

f) To make a response plot for a second 1D regression model use the menu
commands “Graph&Fit >Plot of”. Select y for the V-box and L2:Fit-Values
for the H-box. Click on OK. When the graph appears, move the OLS slider
bar to 2 and the lowess slider bar to 0.5. Since the lowess curve and the OLS
quadratic fit to xT β̂ nearly coincide, the approximation E(Y |x) ≈ (xT β)2

seems to be good. Copy the plot into Word.
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