
Chapter 4

MLD Estimators

Let µ be a p× 1 location vector and Σ a p× p symmetric dispersion matrix.
Because of symmetry, the first row of Σ has p distinct unknown parameters,
the second row has p−1 distinct unknown parameters, the third row has p−2
distinct unknown parameters, ..., and the pth row has one distinct unknown
parameter for a total of 1+2+· · ·+p = p(p+1)/2 unknown parameters. Since
µ has p unknown parameters, an estimator (T, C) of multivariate location
and dispersion (MLD), needs to estimate p(p + 3)/2 unknown parameters
when there are p random variables. If the p variables can be transformed
into an uncorrelated set then there are only 2p parameters, the means and
variances, while if the dimension can be reduced from p to p−1, the number
of parameters is reduced by p(p + 3)/2 − (p − 1)(p + 2)/2 = p − 1.

The sample covariance or sample correlation matrices estimate these pa-
rameters very efficiently since Σ = ((σij)) where σij is a population covariance
or correlation. These quantities can be estimated with the sample covariance
or correlation taking two variables Xi and Xj at a time. Note that there are
p(p + 1)/2 pairs that can be chosen from p random variables X1, ..., Xp.

Rule of thumb 4.1. For the classical estimators of multivariate location
and dispersion, (x, S) or (z, R), want n > 10p. Want n > 20p for the robust
MLD estimators (FCH, RFCH or RMVN) described later in this chapter.

4.1 Affine Equivariance

Before defining an important equivariance property, some notation is needed.
Again assume that the data is collected in an n × p data matrix W . Let
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B = 1bT where 1 is an n× 1 vector of ones and b is a p× 1 constant vector.
Hence the ith row of B is bT

i ≡ bT for i = 1, ..., n. For such a matrix B,
consider the affine transformation Z = W A+B where A is any nonsingular
p × p matrix.

Definition 4.1. Then the multivariate location and dispersion estimator
(T, C) is affine equivariant if

T (Z) = T (WA + B) = AT T (W ) + b, (4.1)

and
C(Z) = C(WA + B) = ATC(W )A. (4.2)

The following proposition shows that the Mahalanobis distances are in-
variant under affine transformations. See Rousseeuw and Leroy (1987, p.
252-262) for similar results. Thus if (T, C) is affine equivariant, so is
(T, D2

(cn)(T, C) C) where D2
(j)(T, C) is the jth order statistic of the D2

i .

Proposition 4.1. If (T, C) is affine equivariant, then

D2
i (W ) ≡ D2

i (T (W ), C(W )) =

D2
i (T (Z), C(Z)) ≡ D2

i (Z). (4.3)

Proof. Since Z = W A + B has ith row

zT
i = xT

i A + bT ,

D2
i (Z) = [zi − T (Z)]TC−1(Z)[zi − T (Z)]

= [AT (xi − T (W ))]T [AT C(W )A]−1[AT (xi − T (W ))]

= [xi − T (W )]TC−1(W )[xi − T (W )] = D2
i (W ). QED

Warning: Estimators that use randomly chosen elemental sets or pro-
jections are not affine equivariant since these estimators change every time
they are computed. Such estimators can sometimes be made affine equivari-
ant by using the same fixed random number seed each time the estimator is
used. Then the affine equivariance of the estimator depends on the random
number seed, and such estimators are not as attractive as affine equivariant
estimators that do not depend on a fixed random number seed.
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4.2 Breakdown

This section gives a standard definition of breakdown for estimators of mul-
tivariate location and dispersion. The following notation will be useful. Let
W denote the n × p data matrix with ith row xT

i corresponding to the ith
case. Let w1, ...wn be the contaminated data after dn of the xi have been
replaced by arbitrarily bad contaminated cases. Let W n

d denote the n × p
data matrix with ith row wT

i . Then the contamination fraction is γn = dn/n.
Let (T (W ), C(W )) denote an estimator of multivariate location and disper-
sion where the p × 1 vector T (W ) is an estimator of location and the p × p
symmetric positive semidefinite matrix C(W ) is an estimator of dispersion.
Recall from Theorem 1.1 that if C(W n

d) > 0, then max
‖a‖=1

aT C(W n
d )a = λ1

and min
‖a‖=1

aT C(W n
d )a = λp. A high breakdown dispersion estimator C is

positive definite if the amount of contamination is less than the breakdown
value. Since aTCa =

∑p
i=1

∑p
j=1 cijaiaj, the largest eigenvalue λ1 is bounded

as W n
d varies iff C(W n

d) is bounded as W n
d varies.

Definition 4.2. The breakdown value of the multivariate location esti-
mator T at W is

B(T, W ) = min{dn

n
: sup
W

n

d

‖T (W n
d )‖ = ∞}

where the supremum is over all possible corrupted samples W n
d and 1 ≤

dn ≤ n. Let λ1(C(W )) ≥ · · · ≥ λp(C(W )) ≥ 0 denote the eigenvalues of
the dispersion estimator applied to data W . The estimator C breaks down
if the smallest eigenvalue can be driven to zero or if the largest eigenvalue
can be driven to ∞. Hence the breakdown value of the dispersion estimator
is

B(C, W ) = min{dn

n
: sup
W

n

d

max[
1

λp(C(W n
d ))

, λ1(C(W n
d ))] = ∞}.

Definition 4.3. Let γn be the breakdown value of (T, C). High break-
down (HB) statistics have γn → 0.5 as n → ∞ if the (uncontaminated) clean
data are in general position: no more than p points of the clean data lie on
any (p−1)-dimensional hyperplane. Estimators are zero breakdown if γn → 0
and positive breakdown if γn → γ > 0 as n → ∞.
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Note that if the number of outliers is less than the number needed to cause
breakdown, then ‖T‖ is bounded and the eigenvalues are bounded away from
0 and ∞. Also, the bounds do not depend on the outliers but do depend on
the estimator (T, C) and on the clean data W .

The following result shows that a multivariate location estimator T basi-
cally “breaks down” if the d outliers can make the median Euclidean distance
MED(‖wi−T (W n

d)‖) arbitrarily large where wT
i is the ith row of W n

d . Thus
a multivariate location estimator T will not break down if T can not be driven
out of some ball of (possibly huge) radius r about the origin.

Proposition 4.2. If nonequivariant estimators (that may have a break-
down value of greater than 1/2) are excluded, then a multivariate loca-
tion estimator has a breakdown value of dT /n iff dT is the smallest num-
ber of arbitrarily bad cases that can make the median Euclidean distance
MED(‖wi − T (W n

d )‖) arbitrarily large.

Proof. Note that for a fixed data set W n
d with ith row wi, if the

multivariate location estimator T (W n
d ) satisfies ‖T (W n

d )‖ ≤ M for some
constant M , then the median Euclidean distance MED(‖wi − T (W n

d)‖) ≤
maxi=1,...,n ‖xi − T (W n

d)‖ ≤ maxi=1,...,n ‖xi‖ + M if dn < n/2. Similarly, if
MED(‖wi−T (W n

d)‖) ≤ M for some constant M , then ‖T (W n
d)‖ is bounded

if dn < n/2. QED

Since the coordinatewise median MED(W ) is a HB estimator of multi-
variate location, it is also true that a multivariate location estimator T will
not break down if T can not be driven out of some ball of radius r about
MED(W ). Hence (MED(W ), Ip) is a HB estimator of MLD.

If a high breakdown estimator (T, C) ≡ (T (W n
d ), C(W n

d)) is evaluated
on the contaminated data W n

d , then the location estimator T is contained in
some ball about the origin of radius r, and 0 < a < λp ≤ λ1 < b where the
constants a, r and b depend on the clean data and (T, C), but not on W n

d if
the number of outliers dn satisfies 0 ≤ dn ≤ nγn < n/2 where the breakdown
value γn → 0.5 as n → ∞.

The following lemma will be used to show that if the classical estimator
(XB, SB) is applied to cn ≈ n/2 cases contained in a ball about the origin of
radius r where r depends on the clean data but not on W n

d , then (XB, SB)
is a high breakdown estimator.

Lemma 4.3. If the classical estimator (XB , SB) is applied to cn cases
that are contained in some bounded region where p + 1 ≤ cn ≤ n, then the
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maximum eigenvalue λ1 of SB is bounded.

Proof. The largest eigenvalue of a p × p matrix A is bounded above
by pmax |ai,j| where ai,j is the (i, j) entry of A. See Datta (1995, p. 403).
Denote the cn cases by z1, ..., zcn . Then the (i, j)th element ai,j of A = SB

is

ai,j =
1

cn − 1

cn
∑

m=1

(zi,m − zi)(zj,m − zj).

Hence the maximum eigenvalue λ1 is bounded. �

The determinant det(S) = |S| of S is known as the generalized sample
variance. Consider the hyperellipsoid

{z : (z − T )TC−1(z − T ) ≤ D2
(cn)} (4.4)

where D2
(cn) is the cnth smallest squared Mahalanobis distance based on

(T, C). This ellipsoid contains the cn cases with the smallest D2
i . Sup-

pose (T, C) = (xM , b SM) is the sample mean and scaled sample covariance
matrix applied to some subset of the data where b > 0. The classical, RFCH
and RMVN estimators satisfy this assumption. For h > 0, the hyperellipsoid

{z : (z − T )TC−1(z − T ) ≤ h2} = {z : D2
z ≤ h2} = {z : Dz ≤ h}

has volume equal to

2πp/2

pΓ(p/2)
hp

√

det(C) =
2πp/2

pΓ(p/2)
hpbp/2

√

det(SM).

If h2 = D2
(cn), then the volume is proportional to the square root of the deter-

minant |SM |1/2, and this volume will be positive unless extreme degeneracy
is present among the cn cases. See Johnson and Wichern (1988, p. 103-104).

4.3 The Concentration Algorithm

Definition 4.4. Consider the subset Jo of cn ≈ n/2 observations whose sam-
ple covariance matrix has the lowest determinant among all C(n, cn) subsets
of size cn. Let TMCD and CMCD denote the sample mean and sample covari-
ance matrix of the cn cases in Jo. Then the minimum covariance determinant
MCD(cn) estimator is (TMCD(W ), CMCD(W )).
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The MCD estimator is a high breakdown (HB) estimator, and the value
cn = b(n + p + 1)/2c is often used as the default. The MCD estimator is the
pair

(β̂LTS, QLTS(β̂LTS)/(cn − 1))

in the location model where LTS stands for the least trimmed sum of squares
estimator. The population analog of the MCD estimator is closely related to
the ellipsoid of highest concentration that contains cn/n ≈ half of the mass.
The MCD estimator is a

√
n consistent HB estimator for

(µ, aMCDΣ)

where aMCD is some positive constant when the data xi are elliptically con-
toured ECp(µ,Σ, g), and TMCD has a Gaussian limit. See Butler, Davies,
and Jhun (1993) and Cator and Lopuhaä (2009, 2010).

Computing robust covariance estimators can be very expensive. For ex-
ample, to compute the exact MCD(cn) estimator (TMCD, CMCD), we need to
consider the C(n, cn) subsets of size cn. Woodruff and Rocke (1994, p. 893)
note that if 1 billion subsets of size 101 could be evaluated per second, it
would require 1033 millenia to search through all C(200, 101) subsets if the
sample size n = 200.

Hence algorithm estimators will be used to approximate the robust esti-
mators. Elemental sets are the key ingredient for both basic resampling and
concentration algorithms.

Definition 4.5. Suppose that x1, ..., xn are p × 1 vectors of observed
data. For the multivariate location and dispersion model, an elemental
set J is a set of p + 1 cases. An elemental start is the sample mean and
sample covariance matrix of the data corresponding to J. In a concentra-
tion algorithm, let (T−1,j, C−1,j) be the jth start (not necessarily elemental)
and compute all n Mahalanobis distances Di(T−1,j, C−1,j). At the next it-
eration, the classical estimator (T0,j, C0,j) = (x0,j, S0,j) is computed from
the cn ≈ n/2 cases corresponding to the smallest distances. This itera-
tion can be continued for k steps resulting in the sequence of estimators
(T−1,j, C−1,j), (T0,j, C0,j), ..., (Tk,j, Ck,j). The result of the iteration (Tk,j, Ck,j)
is called the jth attractor. If Kn starts are used, then j = 1, ..., Kn. The con-
centration attractor, (TA, CA), is the attractor chosen by the algorithm. The
attractor is used to obtain the final estimator. A common choice is the at-
tractor that has the smallest determinant det(Ck,j). The basic resampling
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algorithm estimator is a special case where k = −1 so that the attractor is
the start: (xk,j , Sk,j) = (x−1,j, S−1,j).

This concentration algorithm is a simplified version of the algorithms
given by Rousseeuw and Van Driessen (1999) and Hawkins and Olive (1999).
Using k = 10 concentration steps often works well.

Proposition 4.4: Rousseeuw and Van Driessen (1999, p. 214).
Suppose that the classical estimator (xt,j, St,j) is computed from cn cases
and that the n Mahalanobis distances Di ≡ Di(xt,j, St,j) are computed. If
(xt+1,j, St+1,j) is the classical estimator computed from the cn cases with the
smallest Mahalanobis distances Di, then det(St+1,j) ≤ det(St,j) with equality
iff (xt+1,j, St+1,j) = (xt,j, St,j).

Starts that use a consistent initial estimator could be used. Kn is the
number starts and k is the number of concentration steps used in the al-
gorithm. Suppose the algorithm estimator uses some criterion to choose an
attractor as the final estimator where there are K attractors and K is fixed,
eg K = 500, so K does not depend on n. A crucial observation is that the
theory of the algorithm estimator depends on the theory of the attractors,
not on the estimator corresponding to the criterion.

For example, let (0, Ip) and (1, diag(1, 3, ..., p)) be the high breakdown
attractors where 0 and 1 are the p × 1 vectors of zeroes and ones. If the
minimum determinant criterion is used, then the final estimator is (0, Ip).
Although the MCD criterion is used, the algorithm estimator does not have
the same properties as the MCD estimator.

Hawkins and Olive (2002) showed that if K randomly selected elemen-
tal starts are used with concentration to produce the attractors, then the
resulting estimator is inconsistent and zero breakdown if K and k are fixed
and free of n. Note that each elemental start can be made to breakdown
by changing one case. Hence the breakdown value of the final estimator is
bounded by K/n → 0 as n → ∞. Note that the classical estimator computed
from hn randomly drawn cases is an inconsistent estimator unless hn → ∞ as
n → ∞. Thus the classical estimator applied to a randomly drawn elemental
set of hn ≡ p + 1 cases is an inconsistent estimator, so the K starts and the
K attractors are inconsistent.

This theory shows that the Maronna, Martin and Yohai (2006, p. 198-
199) estimators that use K = 500 and one concentration step (k = 0) are
inconsistent and zero breakdown. The following theorem is useful because
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it does not depend on the criterion used to choose the attractor. If the al-
gorithm needs to use many attractors to achieve outlier resistance, then the
individual attractors have little outlier resistance. Such estimators include
elemental concentration algorithms, heuristic and genetic algorithms and pro-
jection algorithms. Algorithms where all K of the attractors are inconsistent,
such as elemental concentration algorithms that use k concentration steps,
are especially untrustworthy. As another example, Stahel Donoho algorithms
use randomly chosen projections and the attractor is a weighted mean and
covariance matrix computed for each projection. If randomly chosen projec-
tions result in inconsistent attractors, then the Stahel Donoho algorithm is
likely inconsistent.

Suppose there are K consistent estimators (Tj, Cj) of (µ, a Σ) for some
constant a > 0, each with the same rate nδ. If (TA, CA) is an estimator
obtained by choosing one of the K estimators, then (TA, CA) is a consistent
estimator of (µ, a Σ) with rate nδ by Pratt (1959). See Theorem 3.16.

Theorem 4.5. Suppose the algorithm estimator chooses an attractor as
the final estimator where there are K attractors and K is fixed.

i) If all of the attractors are consistent estimators of (µ, a Σ), then the
algorithm estimator is a consistent estimator of (µ, a Σ).

ii) If all of the attractors are consistent estimators of (µ, a Σ) with the
same rate, eg, nδ where 0 < δ ≤ 0.5, then the algorithm estimator is a
consistent estimator of (µ, a Σ) with the same rate as the attractors.

iii) If all of the attractors are high breakdown, then the algorithm esti-
mator is high breakdown.

iv) Suppose the data x1, ..., xn are iid and P (xi = µ) < 1. The elemental
basic resampling algorithm estimator (k = −1) is inconsistent.

v) The elemental concentration algorithm is zero breakdown.

Proof. i) Choosing from K consistent estimators for (µ, a Σ) results in a
consistent estimator for of (µ, a Σ), and ii) follows from Pratt (1959). iii) Let
γn,i be the breakdown value of the ith attractor if the clean data x1, ..., xn are
in general position. The breakdown value γn of the algorithm estimator can
be no lower than that of the worst attractor: γn ≥ min(γn,1, ..., γn,K) → 0.5
as n → ∞.

iv) Let (x−1,j , S−1,j) be the classical estimator applied to a randomly
drawn elemental set. Then x−1,j is the sample mean applied to p+1 iid cases.
Hence E[x−1,j] = E(x) = µ and Cov(x−1,j) = Cov(x)/(p+1) = Σx/(p+1)
assuming second moments. So the (x−1,j, S−1,j) are identically distributed
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and inconsistent estimators of (µ,Σx). Even without second moments, there
exists ε > 0 such that P (‖x−1,j − µ‖ > ε) = δε > 0 where the probability,
ε and δε do not depend on n since the distribution of x−1,j only depends on
the distribution of the iid xi, not on n. Then P (minj ‖x−1,j − µ‖ > ε) =
P (all ‖x−1,j − µ‖ > ε) → δK

ε > 0 as n → ∞ where equality would hold
if the x−1,j were iid. Hence the “best start” that minimizes ‖x−1,j − µ‖ is
inconsistent.

v) The classical estimator with breakdown 1/n is applied to each elemen-
tal start. Hence γn ≤ K/n → 0 as n → ∞. �

Since the FMCD estimator is a zero breakdown elemental concentration
algorithm, the Hubert, Rousseeuw and Van Aelst (2008) claim that “MCD
can be efficiently computed with the FAST-MCD estimator” is false. Suppose
K is fixed, but at least one randomly drawn start is iterated to convergence
so that k is not fixed. Then it is not known whether the attractors are
inconsistent or consistent estimators, so it is not known whether FMCD is
consistent. It is possible to produce consistent estimators if K ≡ Kn is
allowed to increase to ∞.

Remark 4.1. Let γo be the highest percentage of large outliers that an
elemental concentration algorithm can detect reliably. For many data sets,

γo ≈ min(
n − cn

n
, 1 − [1 − (0.2)1/K ]1/h)100% (4.5)

if n is large, cn ≥ n/2 and h = p + 1.

Equation (4.5) agrees very well with the Rousseeuw and Van Driessen
(1999) simulation performed on the hybrid FMCD algorithm that uses both
concentration and partitioning. Section 4.4 will provide theory for the useful
practical algorithms and will show that there exists a useful class of data sets
where the elemental concentration algorithm can tolerate up to 25% massive
outliers.

4.4 Theory for Practical Estimators

It is convenient to let the xi be random vectors for large sample theory,
but the xi are fixed clean observed data vectors when discussing breakdown.
This section presents the FCH estimator to be used along with the classical
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and FMCD estimators. Recall from Definition 4.5 that a concentration algo-
rithm uses Kn starts (T0,j, C0,j). Each start is refined with k concentration
steps, resulting in Kn attractors (Tk,j, Ck,j), and the concentration attractor
(TA, CA) is the attractor that optimizes the criterion.

Concentration algorithms include the basic resampling algorithm as a spe-
cial case with k = −1. Using k = 10 concentration steps works well, and
iterating until convergence is usually fast. The DGK estimator (Devlin,
Gnanadesikan and Kettenring 1975, 1981) defined below is one example.
Gnanadesikan and Kettenring (1972, p. 94–95) provide a similar algorithm.
The DGK estimator is affine equivariant since the classical estimator is affine
equivariant and Mahalanobis distances are invariant under affine transfor-
mations by Proposition 4.1. This section will show that the Olive (2004)
MB estimator is high breakdown estimator and that the DGK estimator is
a
√

n consistent estimator of (µ, aMCDΣ), the same quantity estimated by
the MCD estimator. Both estimators use the classical estimator computed
from cn ≈ n/2 cases. The breakdown point of the DGK estimator has been
conjectured to be “at most 1/p.” See Rousseeuw and Leroy (1987, p. 254).
Gnanadesikan (1977, p. 134) provides an estimator somewhat similar to the
MB estimator.

Definition 4.6. The DGK estimator (Tk,D, Ck,D) = (TDGK , CDGK) uses
the classical estimator (T−1,D, C−1,D) = (x, S) as the only start.

Definition 4.7. The median ball (MB) estimator (Tk,M , Ck,M ) =
(TMB, CMB) uses (T−1,M , C−1,M) = (MED(W ), Ip) as the only start where
MED(W ) is the coordinatewise median. So (T0,M , C0,M) is the classical
estimator applied to the “half set” of data closest to MED(W ) in Euclidean
distance.

The proof of the following theorem implies that a high breakdown estima-
tor (T, C) has MED(D2

i ) ≤ V and that the hyperellipsoid {x|D2
x ≤ D2

(cn)}
that contains cn of the cases is in some ball about the origin of radius r, where
V and r do not depend on the outliers even if the number of outliers is close
to n/2. Also the attractor of a high breakdown estimator is a high breakdown
estimator if the number of concentration steps k is fixed, eg, k = 10. The
theorem implies that the MB estimator (TMB, CMB) is high breakdown.

Theorem 4.6. Suppose (T, C) is a high breakdown estimator where C

is a symmetric, positive definite p×p matrix if the contamination proportion
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dn/n is less than the breakdown value. Then the concentration attractor
(Tk, Ck) is a high breakdown estimator if the coverage cn ≈ n/2 and the
data are in general position.

Proof. Following Leon (1986, p. 280), if A is a symmetric positive
definite matrix with eigenvalues τ1 ≥ · · · ≥ τn, then for any nonzero vector
x,

0 < ‖x‖2 τn ≤ xT Ax ≤ ‖x‖2 τ1. (4.6)

Let λ1 ≥ · · · ≥ λn be the eigenvalues of C. By (4.6),

1

λ1
‖x − T‖2 ≤ (x − T )TC−1(x − T ) ≤ 1

λn
‖x − T‖2. (4.7)

By (4.7), if the D2
(i) are the order statistics of the D2

i (T, C), then D2
(i) < V

for some constant V that depends on the clean data but not on the outliers
even if i and dn are near n/2. (Note that 1/λn and MED(‖xi − T‖2) are
both bounded for high breakdown estimators even for dn near n/2.)

Following Johnson and Wichern (1988, p. 50, 103), the boundary of
the set {x|D2

x ≤ h2} = {x|(x − T )TC−1(x − T ) ≤ h2} is a hyperellipsoid
centered at T with axes of length 2h

√
λi. Hence {x|D2

x ≤ D2
(cn)} is contained

in some ball about the origin of radius r where r does not depend on the
number of outliers even for dn near n/2. This is the set containing the cases
used to compute (T0, C0). Since the set is bounded, T0 is bounded and the
largest eigenvalue λ1,0 of C0 is bounded by Lemma 4.3. The determinant
det(CMCD) of the HB minimum covariance determinant estimator satisfies
0 < det(CMCD) ≤ det(C0) = λ1,0 · · ·λp,0, and λp,0 > inf det(CMCD)/λp−1

1,0 >
0 where the infinum is over all possible data sets with n− dn clean cases and
dn outliers. Since these bounds do not depend on the outliers even for dn near
n/2, (T0, C0) is a high breakdown estimator. Now repeat the argument with
(T0, C0) in place of (T, C) and (T1, C1) in place of (T0, C0). Then (T1, C1) is
high breakdown. Repeating the argument iteratively shows (Tk, Ck) is high
breakdown. �

The following corollary shows that it is easy to find a subset J of cn ≈ n/2
cases such that the classical estimator (xJ , SJ) applied to J is a HB estimator
of MLD.

Corollary 4.7. Let J consist of the cn cases xi such that
‖xi − MED(W )‖ ≤ MED(‖xi − MED(W )‖). Then the classical estimator
(xJ , SJ ) applied to J is a HB estimator of MLD.
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To investigate the consistency and rate of robust estimators of multivari-
ate location and dispersion, review Definition 3.16.

The following assumption (E1) gives a class of distributions where we
can prove that the new robust estimators are

√
n consistent. Cator and

Lopuhaä (2009, 2010) show that MCD is consistent provided that the MCD
functional is unique. Distributions where the functional is unique are called
“unimodal,” and rule out, for example, a spherically symmetric uniform dis-
tribution. Theorem 4.8 is crucial for theory and Theorem 4.9 shows that
under (E1), both MCD and DGK are estimating (µ, aMCDΣ).

Assumption (E1): The x1, ..., xn are iid from a “unimodal” ECp(µ,Σ, g)
distribution with nonsingular covariance matrix Cov(xi) where g is continu-
ously differentiable with finite 4th moment:

∫

(xTx)2g(xTx)dx < ∞.

Lopuhaä (1999) shows that if a start (T, C) is a consistent affine equiv-
ariant estimator of (µ, sΣ), then the classical estimator applied to the cases
with D2

i (T, C) ≤ h2 is a consistent estimator of (µ, aΣ) where a, s > 0 are
some constants. Affine equivariance is not used for Σ = Ip. Also, the attrac-
tor and the start have the same rate. If the start is inconsistent, then so is
the attractor. The constant a depends on h > 0, s, p, and on the elliptically
contoured distribution, but does not otherwise depend on the consistent start
(T, C). The weight function I(D2

i (T, C) ≤ h2) is an indicator that is 1 if
D2

i (T, C) ≤ h2 and 0 otherwise.

Theorem 4.8, Lopuhaä (1999). a) If the start (T, C) is inconsistent,
then so is the attractor.

b) Suppose (T, C) is a consistent estimator of (µ, sIp) with rate nδ where
s > 0 and 0 < δ ≤ 0.5. Assume (E1) holds and Σ = Ip. Then the classical
estimator (T0, C0) applied to the cases with D2

i (T, C) ≤ h2 is a consistent
estimator of (µ, aIp) with the same rate nδ where a > 0.

c) Suppose (T, C) is a consistent affine equivariant estimator of (µ, sΣ)
with rate nδ where s > 0 and 0 < δ ≤ 0.5. Assume (E1) holds. Then
the classical estimator (T0, C0) applied to the cases with D2

i (T, C) ≤ h2 is
a consistent affine equivariant estimator of (µ, aΣ) with the same rate nδ

where a > 0. The constant a depends on the positive constants s, h, p and
the elliptically contoured distribution, but does not otherwise depend on the
consistent start (T, C).

Let δ = 0.5. Applying Theorem 4.8c) iteratively for a fixed number k of
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steps produces a sequence of estimators (T0, C0), ..., (Tk, Ck) where (Tj, Cj)
is a

√
n consistent affine equivariant estimator of (µ, ajΣ) where the con-

stants aj > 0 depend on s, h, p and the elliptically contoured distribution,
but do not otherwise depend on the consistent start (T, C) ≡ (T−1, C−1).

The 4th moment assumption was used to simplify theory, but likely holds
under 2nd moments. Affine equivariance is needed so that the attractor is
affine equivariant, but probably is not needed to prove consistency.

Conjecture 4.1. Change the finite 4th moments assumption to a finite
2nd moments in assumption E1). Suppose (T, C) is a consistent estimator
of (µ, sΣ) with rate nδ where s > 0 and 0 < δ ≤ 0.5. Then the classical
estimator applied to the cases with D2

i (T, C) ≤ h2 is a consistent estimator
of (µ, aΣ) with the same rate nδ where a > 0.

Remark 4.2. To see that the Lopuhaä (1999) theory extends to concen-
tration where the weight function uses h2 = D2

(cn)(T, C), note that (T, C̃) ≡
(T, D2

(cn)(T, C) C) is a consistent estimator of (µ, bΣ) where b > 0 is derived

in (4.9), and weight function I(D2
i (T, C̃) ≤ 1) is equivalent to the concentra-

tion weight function I(D2
i (T, C) ≤ D2

(cn)(T, C)). As noted above Proposition

4.1, (T, C̃) is affine equivariant if (T, C) is affine equivariant. Hence Lopuhaä
(1999) theory applied to (T, C̃) with h = 1 is equivalent to theory applied
to affine equivariant (T, C) with h2 = D2

(cn)(T, C).

If (T, C) is a consistent estimator of (µ, s Σ) with rate nδ where 0 < δ ≤
0.5, then D2(T, C) = (x − T )TC−1(x − T ) =

(x −µ + µ − T )T [C−1 − s−1Σ−1 + s−1Σ−1](x− µ + µ − T )

= s−1D2(µ,Σ) + OP (n−δ). (4.8)

Thus the sample percentiles of D2
i (T, C) are consistent estimators of the

percentiles of s−1D2(µ,Σ). Suppose cn/n → ξ ∈ (0, 1) as n → ∞, and let
D2

ξ(µ,Σ) be the ξth percentile of the population squared distances. Then

D2
(cn)(T, C)

P→ s−1D2
ξ(µ,Σ) and bΣ = s−1D2

ξ(µ,Σ)sΣ = D2
ξ (µ,Σ)Σ. Thus

b = D2
ξ (µ,Σ) (4.9)

does not depend on s > 0 or δ ∈ (0, 0.5]. �
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Concentration applies the classical estimator to cases with D2
i (T, C) ≤

D2
(cn)(T, C). Let cn ≈ n/2 and

b = D2
0.5(µ,Σ)

be the population median of the population squared distances. By Remark
4.2, if (T, C) is a

√
n consistent affine equivariant estimator of (µ, sΣ) then

(T, C̃) ≡ (T, D2
(cn)(T, C) C) is a

√
n consistent affine equivariant estimator

of (µ, bΣ), and D2
i (T, C̃) ≤ 1 is equivalent to D2

i (T, C) ≤ D2
(cn)(T, C)).

Hence Lopuhaä (1999) theory applied to (T, C̃) with h = 1 is equivalent
to theory applied to the concentration estimator using the affine equivariant
estimator (T, C) ≡ (T−1, C−1) as the start. Since b does not depend on s,
concentration produces a sequence of estimators (T0, C0), ..., (Tk, Ck) where
(Tj, Cj) is a

√
n consistent affine equivariant estimator of (µ, aΣ) where the

constant a > 0 is the same for j = 0, 1, ..., k.
Theorem 4.9 shows that a = aMCD where ξ = 0.5. Hence concentration

with a consistent affine equivariant estimator of (µ, sΣ) with rate nδ as a start
results in a consistent affine equivariant estimator of (µ, aMCDΣ) with rate
nδ. This result can be applied iteratively for a finite number of concentration
steps. Hence DGK is a

√
n consistent affine equivariant estimator of the

same quantity that MCD is estimating. It is not known if the results hold
if concentration is iterated to convergence. For multivariate normal data,
D2(µ,Σ) ∼ χ2

p.

Theorem 4.9. Assume that (E1) holds and that (T, C) is a consistent
affine equivariant estimator of (µ, sΣ) with rate nδ where the constants s > 0
and 0 < δ ≤ 0.5. Then the classical estimator (xt,j, St,j) computed from the
cn ≈ n/2 of cases with the smallest distances Di(T, C) is a consistent affine
equivariant estimator of (µ, aMCDΣ) with the same rate nδ.

Proof. By Remark 4.1 the estimator is a consistent affine equivariant
estimator of (µ, aΣ) with rate nδ. By the remarks above, a will be the same
for any consistent estimator of (µ, sΣ) and a does not depend on s > 0
or δ ∈ (0, 0.5]. Hence the result follows if a = aMCD. The MCD estimator
is a

√
n consistent affine equivariant estimator of (µ, aMCDΣ) by Butler,

Davies and Jhun (1993) and Cator and Lopuhaä (2009, 2010). If the MCD
estimator is the start, then it is also the attractor by Rousseeuw and Van
Driessen (1999) who show that concentration does not increase the MCD
criterion. Hence a = aMCD. �
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Next we define the new easily computed robust
√

n consistent FCH es-
timator, so named since it is fast, consistent and uses a high breakdown
attractor. The FCH and MBA estimators use the

√
n consistent DGK es-

timator (TDGK , CDGK) and the high breakdown MB estimator (TMB, CMB)
as attractors.

Definition 4.8. Let the “median ball” be the hypersphere containing the
“half set” of data closest to MED(X) in Euclidean distance. The FCH esti-
mator uses the MB attractor if the DGK location estimator TDGK is outside
of the median ball, and the attractor with the smallest determinant, other-
wise. Let (TA, CA) be the attractor used. Then the estimator (TFCH, CFCH)
takes TFCH = TA and

CFCH =
MED(D2

i (TA, CA))

χ2
p,0.5

CA (4.10)

where χ2
p,0.5 is the 50th percentile of a chi–square distribution with p degrees

of freedom.

Remark 4.3. The MBA estimator (TMBA, CMBA) uses the attractor
(TA, CA) with the smallest determinant. Hence the DGK estimator is used
as the attractor if det(CDGK) ≤ det(CMB), and the MB estimator is used
as the attractor, otherwise. Then TMBA = TA and CMBA is computed using
the right hand side of (4.10). The difference between the FCH and MBA
estimators is that the FCH estimator also uses a location criterion to choose
the attractor: if the DGK location estimator TDGK has a greater Euclidean
distance from MED(W ) than half the data, then FCH uses the MB attractor.
The FCH estimator only uses the attractor with the smallest determinant if
‖TDGK−MED(W )‖ ≤ MED(Di(MED(W ), Ip)). Using the location criterion
increases the outlier resistance of the FCH estimator for certain types of
outliers, as will be seen in Section 4.5.

The following theorem shows the FCH estimator has good statistical prop-
erties. We conjecture that FCH is high breakdown. Note that the location
estimator TFCH is high breakdown and that det(CFCH) is bounded away from
0 and ∞ if the data is in general position, even if nearly half of the cases are
outliers.

Theorem 4.10. TFCH is high breakdown if the clean data are in general
position. Suppose (E1) holds. If (TA, CA) is the DGK or MB attractor
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with the smallest determinant, then (TA, CA) is a
√

n consistent estimator
of (µ, aMCDΣ). Hence the MBA and FCH estimators are outlier resistant√

n consistent estimators of (µ, cΣ) where c = u0.5/χ
2
p,0.5, and c = 1 for

multivariate normal data.

Proof. TFCH is high breakdown since it is a bounded distance from
MED(W ) even if the number of outliers is close to n/2. Under (E1) the
FCH and MBA estimators are asymptotically equivalent since ‖TDGK −
MED(W )‖ → 0 in probability. The estimator satisfies 0 < det(CMCD) ≤
det(CA) ≤ det(S0,M) < ∞ by Theorem 4.6 if up to nearly 50% of the cases
are outliers. If the distribution is spherical about µ, then the result fol-
lows from Pratt (1959) and Theorem 4.9 since both starts are

√
n consistent.

Otherwise, the MB estimator CMB is a biased estimator of aMCDΣ. But the
DGK estimator CDGK is a

√
n consistent estimator of aMCDΣ by Theorem

4.9 and ‖CMCD −CDGK‖ = OP (n−1/2). Thus the probability that the DGK
attractor minimizes the determinant goes to one as n → ∞, and (TA, CA) is
asymptotically equivalent to the DGK estimator (TDGK , CDGK).

Let CF = CFCH or CF = CMBA. Let P (U ≤ uα) = α where U is given
by (3.9). Then the scaling in (4.10) makes CF a consistent estimator of cΣ
where c = u0.5/χ

2
p,0.5, and c = 1 for multivariate normal data. �

Many variants of the FCH and MBA estimators can be given where the
algorithm gives a

√
n consistent estimator of (µ, cΣ). One such variant uses

K starts (T−1,j, C−1,j) that are affine equivariant
√

n consistent estimators
of (µ, sjΣ) where sj > 0. The MCD criteria is used to choose the final
attractor, and scaling is done as in (4.10). A second variant is the same
as the first, but the Kth attractor is replaced by the MB estimator, and for
j < K the jth attractor (Tk,j, Ck,j) is not used if Tk,j has a greater Euclidean
distance from MED(X) than half the data. Then the location estimator of
the algorithm is high breakdown.

Suppose the attractor is (xk,j , Sk,j) computed from a subset of cn cases.
The MCD(cn) criterion is the determinant det(Sk,j). The volume of the
hyperellipsoid {z : (z − xk,j)

T S−1
k,j(z − xk,j) ≤ h2} is equal to

2πp/2

pΓ(p/2)
hp

√

det(Sk,j), (4.11)

see Johnson and Wichern (1988, p. 103-104). The “MVE(cn)” criterion is
hp

√

det(Sk,j) where h = D(cn)(xk,j , Sk,j) (but does not actually correspond
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to the minimum volume ellipsoid (MVE) estimator).
We also considered several estimators that use the MB and DGK esti-

mators as attractors. CMVE is a concentration algorithm like FCH, but the
“MVE” criterion is used in place of the MCD criterion. A standard method
of reweighting can be used to produce the RMBA, RFCH and RCMVE es-
timators. RMVN uses a slightly modified method of reweighting so that
RMVN gives good estimates of (µ,Σ) for multivariate normal data, even
when certain types of outliers are present.

Definition 4.9. The RFCH estimator uses two standard reweighting
steps. Let (µ̂1, Σ̃1) be the classical estimator applied to the n1 cases with
D2

i (TFCH , CFCH ) ≤ χ2
p,0.975, and let

Σ̂1 =
MED(D2

i (µ̂1, Σ̃1))

χ2
p,0.5

Σ̃1.

Then let (TRFCH, Σ̃2) be the classical estimator applied to the cases with
D2

i (µ̂1, Σ̂1) ≤ χ2
p,0.975, and let

CRFCH =
MED(D2

i (TRFCH , Σ̃2))

χ2
p,0.5

Σ̃2.

RMBA and RFCH are
√

n consistent estimators of (µ, cΣ) by Lopuhaä
(1999) where the weight function uses h2 = χ2

p,0.975, but the two estima-
tors use nearly 97.5% of the cases if the data is multivariate normal. We
conjecture CMVE and RMVE are also

√
n consistent estimators of (µ, cΣ).

Definition 4.10. The RMVN estimator uses (µ̂1, Σ̃1) and n1 as above.
Let q1 = min{0.5(0.975)n/n1, 0.995}, and

Σ̂1 =
MED(D2

i (µ̂1, Σ̃1))

χ2
p,q1

Σ̃1.

Then let (TRMV N , Σ̃2) be the classical estimator applied to the n2 cases with
D2

i (µ̂1, Σ̂1)) ≤ χ2
p,0.975. Let q2 = min{0.5(0.975)n/n2 , 0.995}, and

CRMV N =
MED(D2

i (TRMV N , Σ̃2))

χ2
p,q2

Σ̃2.
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Table 4.1: Average Dispersion Matrices for Near Point Mass Outliers
RMVN FMCD OGK MB

[

1.002 −0.014
−0.014 2.024

] [

0.055 0.685
0.685 122.5

] [

0.185 0.089
0.089 36.24

] [

2.570 −0.082
−0.082 5.241

]

Table 4.2: Average Dispersion Matrices for Mean Shift Outliers
RMVN FMCD OGK MB

[

0.990 0.004
0.004 2.014

] [

2.530 0.003
0.003 5.146

] [

19.67 12.88
12.88 39.72

] [

2.552 0.003
0.003 5.118

]

The RMVN estimator is a
√

n consistent estimator of (µ, dΣ) by Lopuhaä
(1999) where the weight function uses h2 = χ2

p,0.975 and d = u0.5/χ
2
p,q where

q2 → q in probability as n → ∞. Here 0.5 ≤ q < 1 depends on the elliptically
contoured distribution, but q = 0.5 and d = 1 for multivariate normal data.

If the bulk of the data is Np(µ,Σ), the RMVN estimator can give useful
estimates of (µ,Σ) for certain types of outliers where FCH and RFCH esti-
mate (µ, dEΣ) for dE > 1. To see this claim, let 0 ≤ γ < 0.5 be the outlier

proportion. If γ = 0, then ni/n
P→ 0.975 and qi

P→ 0.5. If γ > 0, suppose
the outlier configuration is such that the D2

i (TFCH , CFCH) are roughly χ2
p

for the clean cases, and the outliers have larger D2
i than the clean cases.

Then MED(D2
i ) ≈ χ2

p,q where q = 0.5/(1 − γ). For example, if n = 100 and
γ = 0.4, then there are 60 clean cases, q = 5/6, and the quantile χ2

p,q is
being estimated instead of χ2

p,0.5. Now ni ≈ n(1−γ)0.975, and qi estimates q.
Thus CRMV N ≈ Σ. Of course consistency cannot generally be claimed when
outliers are present.

Simulations suggested (TRMV N , CRMV N) gives useful estimates of (µ,Σ)
for a variety of outlier configurations. Using 20 runs and n = 1000, the aver-
ages of the dispersion matrices were computed when the bulk of the data are
iid N2(0,Σ) where Σ = diag(1, 2). For clean data, FCH, RFCH and RMVN
give

√
n consistent estimators of Σ, while FMCD and the Maronna and Za-

mar (2002) OGK estimator seem to be approximately unbiased for Σ. The
median ball estimator was scaled using (4.10) and estimated diag(1.13, 1.85).

Next the data had γ = 0.4 and the outliers had x ∼ N2((0, 15)
T , 0.0001I 2),

a near point mass at the major axis. FCH, MB and RFCH estimated 2.6Σ
while RMVN estimated Σ. FMCD and OGK failed to estimate d Σ. Note
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Figure 4.1: Plots for Major Data

that χ2
2,5/6/χ

2
2,0.5 = 2.585. See Table 4.1. The following R commands were

used where mldsim is from mpack.

qchisq(5/6,2)/qchisq(.5,2) = 2.584963

mldsim(n=1000,p=2,outliers=6,pm=15)

Next the data had γ = 0.4 and the outliers had x ∼ N2((20, 20)
T ,Σ), a

mean shift with the same covariance matrix as the clean cases. Rocke and
Woodruff (1996) suggest that outliers with mean shift are hard to detect.
FCH, FMCD, MB and RFCH estimated 2.6Σ while RMVN estimated Σ,
and OGK failed. See Table 4.2. The R command is shown below.

mldsim(n=1000,p=2,outliers=3,pm=20)

Example 4.1. Tremearne (1911) recorded height = x[,1] and height
while kneeling = x[,2] of 112 people. Figure 4.1a shows a scatterplot of the
data. Case 3 has the largest Euclidean distance of 214.767 from MED(W ) =
(1680, 1240)T , but if the distances correspond to the contours of a covering
ellipsoid, then case 44 has the largest distance. For k = 0, (x0,M , S0,M) is
the classical estimator applied to the “half set” of cases closest to MED(W )
in Euclidean distance. The hypersphere (circle) centered at MED(W ) that
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covers half the data is small because the data density is high near MED(W ).
The median Euclidean distance is 59.661 and case 44 has Euclidean distance
77.987. Hence the intersection of the sphere and the data is a highly corre-
lated clean ellipsoidal region. Figure 4.1b shows the DD plot of the classical
distances versus the MB distances. Notice that both the classical and MB
estimators give the largest distances to cases 3 and 44. Notice that case 44
could not be detected using marginal methods.

As the dimension p gets larger, outliers that can not be detected by
marginal methods (case 44 in Example 4.1) become harder to detect. When
p = 3 imagine that the clean data is a baseball bat with one end at the SW
corner of the bottom of the box (corresponding to the coordinate axes) and
one end at the NE corner of the top of the box. If the outliers are a ball,
there is much more room to hide them in the box than in a covering rectangle
when p = 2.
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Figure 4.2: DD Plots for Gladstone Data

Example 4.2. The estimators can be useful when the data is not el-
liptically contoured. The Gladstone (1905-6) data has 11 variables on 267
persons after death. Head measurements were breadth, circumference, head
height, length and size as well as cephalic index and brain weight. Age, height
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and two categorical variables ageclass (0: under 20, 1: 20-45, 2: over 45) and
sex were also given. Figure 4.2 shows the DD plots for the FCH, RMVN,
cov.mcd and MB estimators. The DD plots from the DGK, MBA, CMVE,
RCMVE and RFCH estimators were similar, and the six outliers in Figure
4.2 correspond to the six infants in the data set.

Chapter 5 shows that if a consistent robust estimator is scaled as in (4.10),
then the plotted points in the DD plot will cluster about the identity line
with unit slope and zero intercept if the data is multivariate normal, and
about some other line through the origin if the data is from some other el-
liptically contoured distribution with a nonsingular covariance matrix. Since
multivariate procedures tend to perform well for elliptically contoured data,
the DD plot is useful even if outliers are not present.

4.5 Outlier Resistance and Simulations

Simulations were used to compare (TFCH , CFCH), (TRFCH , CRFCH),
(TRMV N , CRMV N ) and (TFMCD, CFMCD). Shown below are the averages,
using 20 runs and n = 1000, of the dispersion matrices when the bulk of the
data are iid N4(0,Σ) where Σ = diag(1, 2, 3, 4). The first pair of matrices
used γ = 0. Here the FCH, RFCH and RMVN estimators are

√
n consistent

estimators of Σ, while CFMCD seems to be approximately unbiased for 0.94Σ.

RMVN FMCD

0.996 0.014 0.002 -0.001 0.931 0.017 0.011 0.000

0.014 2.012 -0.001 0.029 0.017 1.885 -0.003 0.022

0.002 -0.001 2.984 0.003 0.011 -0.003 2.803 0.010

-0.001 0.029 0.003 3.994 0.000 0.022 0.010 3.752

Next the data had γ = 0.4 and the outliers had x ∼ N4((0, 0, 0, 15)
T ,

0.0001 I4), a near point mass at the major axis. FCH and RFCH estimated
1.93Σ while RMVN estimated Σ. The FMCD estimator failed to estimate
d Σ. Note that χ2

4,5/6/χ
2
4,0.5 = 1.9276.

RMVN FMCD

0.988 -0.023 -0.007 0.021 0.227 -0.016 0.002 0.049

-0.023 1.964 -0.022 -0.002 -0.016 0.435 -0.014 0.0130
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Table 4.3: Scaled Variance nS2(Tp) and nS2(Cp,p)

p n V FCH RFCH RMVN DGK OGK CLAS FMCD MB
5 50 C 216.0 72.4 75.1 209.3 55.8 47.12 153.9 145.8
5 50 T 12.14 6.50 6.88 10.56 6.70 4.83 8.38 13.23
5 5000 C 307.6 64.1 68.6 325.7 59.3 48.5 60.4 309.5
5 5000 T 18.6 5.34 5.33 19.33 6.61 4.98 5.40 20.20
10 100 C 817.3 276.4 286.0 725.4 229.5 198.9 459.6 610.4
10 100 T 21.40 11.42 11.68 20.13 12.75 9.69 14.05 24.13
10 5000 C 955.5 237.9 243.8 966.2 235.8 202.4 233.6 975.0
10 5000 T 29.12 10.08 10.09 29.35 12.81 9.48 10.06 30.20

-0.007 -0.022 3.053 0.007 0.002 -0.014 0.673 0.179

0.021 -0.002 0.007 3.870 0.049 0.013 0.179 55.648

Next the data had γ = 0.4 and the outliers had x ∼ N4(15 1,Σ), a mean
shift with the same covariance matrix as the clean cases. Again FCH and
RFCH estimated 1.93Σ while RMVN and FMCD estimated Σ.

RMVN FMCD

1.013 0.008 0.006 -0.026 1.024 0.002 0.003 -0.025

0.008 1.975 -0.022 -0.016 0.002 2.000 -0.034 -0.017

0.006 -0.022 2.870 0.004 0.003 -0.034 2.931 0.005

-0.026 -0.016 0.004 3.976 -0.025 -0.017 0.005 4.046

If Win ∼ N(0, τ 2/n) for i = 1, ..., r and if S2
W is the sample variance of the

Win, then E(nS2
W ) = τ 2 and V (nS2

W ) = 2τ 4/(r−1). So nS2
W±

√
5SE(nS2

W ) ≈
τ 2±

√
10τ 2/

√
r − 1. So for r = 1000 runs, expect nS2

W to be between τ 2−0.1τ 2

and τ 2+0.1τ 2 with high confidence. Similar results hold for many estimators
if Win is

√
n consistent and asymptotically normal and if n is large enough.

If Win has less than
√

n rate, eg n1/3 rate, then the scaled sample variance
nS2

W → ∞ as n → ∞.
Table 4.3 considers W = Tp and W = Cp,p for eight estimators, p = 5

and 10 and n = 10p and 5000 when x ∼ Np(0, diag(1, ..., p)). For the clas-
sical estimator, denoted by CLAS, Tp = xp ∼ N(0, p/n), and nS2(Tp) ≈ p
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while Cp,p is the sample variance of n iid N(0, p) random variables. Hence
nS2(Cp,p) ≈ 2p2. RFCH, RMVN, FMCD and OGK use a “reweight for effi-
ciency” concentration step that uses a random number of cases with percent-
age close to 97.5%. These four estimators had similar behavior. DGK, FCH
and MB used about 50% of the cases and had similar behavior. By Lopuhaä
(1999), estimators with less than

√
n rate still have zero efficiency after the

reweighting. Although FMCD, MB and OGK have not been proven to be√
n consistent, their values did not blow up even for n = 5000.
Geometrical arguments suggest that the MB estimator has considerable

outlier resistance. Suppose the outliers are far from the bulk of the data.
Let the “median ball” correspond to the half set of data closest to MED(W )
in Euclidean distance. If the outliers are outside of the median ball, then
the initial half set in the iteration leading to the MB estimator will be clean.
Thus the MB estimator will tend to give the outliers the largest MB distances
unless the initial clean half set has very high correlation in a direction about
which the outliers lie. This property holds for very general outlier configura-
tions. The FCH estimator tries to use the DGK attractor if the det(CDGK)
is small and the DGK location estimator TDGK is in the median ball. Distant
outliers that make det(CDGK) small also drag TDGK outside of the median
ball. Then FCH uses the MB attractor.

Compared to OGK and FMCD, the MB estimator is vulnerable to outliers
that lie within the median ball. If the bulk of the data is highly correlated
with the major axis of an ellipsoidal region, then the distances based on the
clean data can be very large for outliers that fall within the median ball.
The outlier resistance of the MB estimator decreases as p increases since the
volume of the median ball rapidly increases with p.

A simple simulation for outlier resistance is to count the number of times
the minimum distance of the outliers is larger than the maximum distance
of the clean cases. The simulation used 100 runs. If the count was 97, then
in 97 data sets the outliers can be separated from the clean cases with a
horizontal line in the DD plot, but in 3 data sets the robust distances did
not achieve complete separation.

The clean cases had x ∼ Np(0, diag(1, 2, ..., p)). Outlier types were the
mean shift x ∼ Np(pm1, diag(1, 2, ..., p)) where 1 = (1, ..., 1)T , and x ∼
Np((0, ..., 0, pm)T , 0.0001I p), a near point mass at the major axis. Notice that
the clean data can be transformed to a Np(0, Ip) distribution by multiplying
xi by diag(1, 1/

√
2, ..., 1/

√
p), and this transformation changes the location

of the near point mass to (0, ..., 0, pm/
√

p)T .
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Table 4.4: Number of Times Mean Shift Outliers had the Largest Distances
p γ n pm MBA FCH RFCH RMVN OGK FMCD MB
10 .1 100 4 49 49 85 84 38 76 57
10 .1 100 5 91 91 99 99 93 98 91
10 .4 100 7 90 90 90 90 0 48 100
40 .1 100 5 3 3 3 3 76 3 17
40 .1 100 8 36 36 37 37 100 49 86
40 .25 100 20 62 62 62 62 100 0 100
40 .4 100 20 20 20 20 20 0 0 100
40 .4 100 35 44 98 98 98 95 0 100
60 .1 200 10 49 49 49 52 100 30 100
60 .1 200 20 97 97 97 97 100 35 100
60 .25 200 25 60 60 60 60 100 0 100
60 .4 200 30 11 21 21 21 17 0 100
60 .4 200 40 21 100 100 100 100 0 100

For near point mass outliers, an ellipsoid with very small volume can
cover half of the data if the outliers are at one end of the ellipsoid and
some of the clean data are at the other end. This half set will produce a
classical estimator with very small determinant by (4.11). In the simulations
for large γ, as the near point mass is moved very far away from the bulk of
the data, only the classical, MB and OGK estimators did not have numerical
difficulties. Since the MCD estimator has smaller determinant than DGK
while MVE has smaller volume than DGK, estimators like FMCD and MBA
that use the MVE or MCD criterion without using location information will
be vulnerable to these outliers. FMCD is also vulnerable to outliers if γ is
slightly larger than γo given by (4.5).

Tables 4.4 and 4.5 help illustrate the results for the simulation. Large
counts and small pm for fixed γ suggest greater ability to detect outliers.
Values of p were 5, 10, 15, ..., 60. First consider the mean shift outliers
and Table 4.4. For γ = 0.25 and 0.4, MB usually had the highest counts.
For 5 ≤ p ≤ 20 and the mean shift, the OGK estimator often had the
smallest counts, although FMCD could not handle 40% outliers for p = 20.
For 25 ≤ p ≤ 60, OGK usually had the highest counts for γ = 0.05 and 0.1.
For p ≥ 30, FMCD could not handle 25% outliers even for enormous values
of pm.
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Table 4.5: Number of Times Near Point Mass Outliers had the Largest Dis-
tances

p γ n pm MBA FCH RFCH RMVN OGK FMCD MB
10 .1 100 40 73 92 92 92 100 95 100
10 .25 100 25 0 99 99 90 0 0 99
10 .4 100 25 0 100 100 100 0 0 100
40 .1 100 80 0 0 0 0 79 0 80
40 .1 100 150 0 65 65 65 100 0 99
40 .25 100 90 0 88 87 87 0 0 88
40 .4 100 90 0 91 91 91 0 0 91
60 .1 200 100 0 0 0 0 13 0 91
60 .25 200 150 0 100 100 100 0 0 100
60 .4 200 150 0 100 100 100 0 0 100
60 .4 200 20000 0 100 100 100 64 0 100

In Table 4.5, FCH greatly outperformed MBA although the only differ-
ence between the two estimators is that FCH uses a location criterion as well
as the MCD criterion. OGK performed well for γ = 0.05 and 20 ≤ p ≤ 60
(not tabled). For large γ, OGK often has large bias for cΣ. Then the outliers
may need to be enormous before OGK can detect them. Also see Table 4.2,
where OGK gave the outliers the largest distances for all runs, but COGK

does not give a good estimate of cΣ = c diag(1, 2).
The DD plot of MDi versus RDi is useful for detecting outliers. The

resistant estimator will be useful if (T, C) ≈ (µ, cΣ) where c > 0 since scaling
by c affects the vertical labels of the RDi but not the shape of the DD plot.
For the outlier data, the MBA estimator is biased, but the mean shift outliers
in the MBA DD plot will have large RDi since CMBA ≈ 2CFMCD ≈ 2Σ.

When p is increased to 8, the cov.mcd estimator was usually not useful
for detecting the mean shift outliers. Figure 4.3 shows that now the FMCD
RDi are highly correlated with the MDi. The DD plot based on the MBA
estimator detects the outliers. See Figure 4.4.

For many data sets, equation (4.5) gives a rough approximation for the
number of large outliers that concentration algorithms using K starts each
consisting of h cases can handle. However, if the data set is multivariate and
the bulk of the data falls in one compact ellipsoid while the outliers fall in an-
other hugely distant compact ellipsoid, then a concentration algorithm using
a single start can sometimes tolerate nearly 25% outliers. For example, sup-
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pose that all p+1 cases in the elemental start are outliers but the covariance
matrix is nonsingular so that the Mahalanobis distances can be computed.
Then the classical estimator is applied to the cn ≈ n/2 cases with the small-
est distances. Suppose the percentage of outliers is less than 25% and that
all of the outliers are in this “half set.” Then the sample mean applied to
the cn cases should be closer to the bulk of the data than to the cluster of
outliers. Hence after a concentration step, the percentage of outliers will be
reduced if the outliers are very far away. After the next concentration step
the percentage of outliers will be further reduced and after several iterations,
all cn cases will be clean.

In a small simulation study, 20% outliers were planted for various values
of p. If the outliers were distant enough, then the minimum DGK distance for
the outliers was larger than the maximum DGK distance for the nonoutliers.
Hence the outliers would be separated from the bulk of the data in a DD plot
of classical versus robust distances. For example, when the clean data comes
from the Np(0, Ip) distribution and the outliers come from the Np(2000 1, Ip)
distribution, the DGK estimator with 10 concentration steps was able to
separate the outliers in 17 out of 20 runs when n = 9000 and p = 30. With
10% outliers, a shift of 40, n = 600 and p = 50, 18 out of 20 runs worked.
Olive (2004a) showed similar results for the Rousseeuw and Van Driessen
(1999) FMCD algorithm and that the MBA estimator could often correctly
classify up to 49% distant outliers. The following proposition shows that it
is very difficult to drive the determinant of the dispersion estimator from a
concentration algorithm to zero.

Proposition 4.11. Consider the concentration and MCD estimators
that both cover cn cases. For multivariate data, if at least one of the starts is
nonsingular, then the concentration attractor CA is less likely to be singular
than the high breakdown MCD estimator CMCD.

Proof. If all of the starts are singular, then the Mahalanobis distances
cannot be computed and the classical estimator can not be applied to cn

cases. Suppose that at least one start was nonsingular. Then CA and CMCD

are both sample covariance matrices applied to cn cases, but by definition
CMCD minimizes the determinant of such matrices. Hence 0 ≤ det(CMCD) ≤
det(CA). QED

Software
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Figure 4.5: highlighted cases = half set with smallest RD = (T0, C0)
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Figure 4.6: highlighted cases = half set with smallest RD = (T1, C1)
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Figure 4.7: highlighted cases = half set with smallest RD = (T2, C2)
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The robustbase library was downloaded from (www.r-project.org/#doc).
∮

15.2 explains how to use the source command to get the mpack func-
tions in R and how to download a library from R. Type the commands
library(MASS) and library(robustbase) to compute the FMCD and OGK
estimators with the cov.mcd and covOGK functions.

The mpack function
mldsim(n=200,p=5,gam=.2,runs=100,outliers=1,pm=15)
can be used to produce Tables 4.1–4.5. Change outliers to 0 to examine the
average of µ̂ and Σ̂. The function mldsim6 is similar but does not need the
library command since it compares the FCH, RFCH, CMVE, RCMVE and
MB estimators. The command
sctplt(n=200,p=10,gam=.2,outliers=3, pm=5)
will make an outlier data set. Then the FCH and MB DD plots are made
(click on the right mouse button and highlight stop to go to the next plot) and
then the scatterplot matrix. The scatterplot matrix can be used to determine
whether the outliers are hard to detect with bivariate or univariate methods.
If p > 10 the bivariate plots may be too small. See Zhang (2011) for more
simulations.

The function covsim2 can be modified to show that the R implementation
of FCH is usually much faster than OGK which is much faster than FMCD.
The function corrsim can be used to simulate the correlations of robust dis-
tances with classical distances. RCMVE, RMBA and RFCH are reweighted
versions of CMVE, MBA and FCH that may perform better for small n. For
MVN data, the command
corrsim(n=200,p=20,nruns=100,type=5)
suggests that the correlation of the RFCH distances with the classical dis-
tances is about 0.97. Changing type to 4 suggests that FCH needs n = 800
before the correlation is about 0.97. The function corrsim2 uses a wider
variety of EC distributions. See Zhang (2011) for simulations.

The function cmve computes CMVE and RCMVE, function covfch com-
putes FCH and RFCH while covrmvn computes the RMVN and MB esti-
mators. The function covrmb computes MB and RMB where RMB is like
RMVN except the MB estimator is reweighted instead of FCH. Functions
covdgk, covmba and rmba compute the scaled DGK, MBA and RMBA esti-
mators.

The concmv function described in Problem 4.5 illustrates concentration
where the start is (MED(W ), diag([MAD(Xi)]

2)). In Figures 4.5, 4.6, and
4.7, the highlighted cases are the half set with the smallest distances, and
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Figure 4.10: highlighted cases = outliers, RD = (T2,D, C2,D)
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Figure 4.11: highlighted cases = outliers, RD = (T3,D, C3,D)

the initial half set shown in Figure 4.5 is not clean, where n = 100 and there
are 40 outliers. The attractor shown in Figure 4.7 is clean. This type of data
set has too many outliers for DGK while the MB starts and attractors are
almost always clean.

The ddmv function in Problem 4.6 illustrates concentration for the DGK
estimator where the start is the classical estimator. Now n = 100, p = 4
and there are 25 outliers. A DD plot of classical distances MD versus robust
distances RD is shown. See Figures 4.8, 4.9, 4.10 and 4.11. The half set of
cases with the smallest RDs is used, and the initial half set shown in Figure
4.8 is not clean. The attractor in Figure 4.11 is the DGK estimator which
uses a clean half set. The clean cases xi ∼ N4(0, diag(1, 2, 3, 4)) while the
outliers xi ∼ N4((10, 10

√
2, 10

√
3, 20)T , diag(1, 2, 3, 4)).

4.6 Summary

1) Given a table of data W for variables X1, ..., Xp, be able to find the
coordinatewise median MED(W ) and the sample mean x. If x =
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(X1, X2, ..., Xp)
T where Xj corresponds to the jth column of W , then MED(W ) =

(MEDX1
(n), ...., MEDXp(n))T where MEDXj

(n) = MED(Xj,1, ..., Xj,n) is the

sample median of the data in the jth column. Similarly, x = (X1, ..., Xp)
T

where Xj is the sample mean of the data in the jth column. See Q3.
2) A DD plot is a plot of classical vs robust Mahalanobis distances. The

DD plot is used to check i) if the data is MVN (plotted points follow the
identity line), ii) if the data is EC but not MVN (plotted points follow a line
through the origin with slope > 1), iii) if the data is not EC (plotted points
do not follow a line through the origin) iv) if multivariate outliers are present
(eg some plotted points are far from the bulk of the data or the plotted points
follow two lines). See Q3.

3) Many practical “robust estimators” generate a sequence of K trial fits
called attractors: (T1, C1), ..., (TK, CK). Then the attractor (TA, CA) that
minimizes some criterion is used to obtain the final estimator. One way
to obtain attractors is to generate trial fits called starts, and then use the
concentration technique. Let (T−1,j, C−1,j) be the jth start and compute all
n Mahalanobis distances Di(T−1,j, C−1,j). At the next iteration, the classical
estimator (T0,j, C0,j) is computed from the cn ≈ n/2 cases corresponding to
the smallest distances. This iteration can be continued for k steps resulting
in the sequence of estimators (T−1,j, C−1,j), (T0,j, C0,j), ..., (Tk,j, Ck,j). Then
(Tk,j, Ck,j) is the jth attractor for j = 1, ..., K. Using k = 10 often works
well, and the basic resampling algorithm is a special case k = −1 where the
attractors are the starts.

4) The DGK estimator (TDGK , CDGK) uses the classical estimator (T−1,D, C−1,D) =
(x, S) as the only start.

5) The median ball (MB) estimator (TMB, CMB) uses (T−1,M , C−1,M ) =
(MED(W ), Ip) as the only start where MED(W ) is the coordinatewise me-
dian. Hence (T0,M , C0,M) is the classical estimator applied to the “half set”
of data closest to MED(W ) in Euclidean distance.

6) Elemental concentration algorithms use elemental starts: (T−1,j, C−1,j) =
(xj, Sj) is the classical estimator applied to a randomly selected “elemental
set” of p + 1 cases. If the xi are iid with covariance matrix Σx, then the
starts (xj, Sj) are identically distributed with E(xj) = E(xi) and Cov(xj) =
Σx/(p + 1).

7) Let the “median ball” be the hypersphere containing the half set of
data closest to MED(W ) in Euclidean distance. The FCH estimator uses
the MB attractor if the DGK location estimator TDGK = Tk,D is outside of
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the median ball, and the attractor with the smallest determinant, otherwise.
Let (TA, CA) be the attractor used. Then the estimator (TFCH , CFCH) takes
TFCH = TA and

CFCH =
MED(D2

i (TA, CA))

χ2
p,0.5

CA (4.12)

where χ2
p,0.5 is the 50th percentile of a chi–square distribution with p degrees

of freedom. The RFCH estimator uses two standard “reweight for efficiency
steps” while the RMVN estimator uses a modified method for reweighting.

8) For a large class of elliptically contoured distributions, FCH, RFCH
and RMVN are

√
n consistent estimators of (µ, ciΣ) for c1, c2, c3 > 0 where

ci = 1 for Np(µ,Σ) data.
9) An estimator (T, C) of multivariate location and dispersion (MLD),

needs to estimate p(p + 3)/2 unknown parameters when there are p random
variables. For (x, S) or (z, R), want n > 10p. Want n > 20p for FCH,
RFCH or RMVN.

10) Brand name robust MLD estimators from the Rousseeuw and Yohai
paradigm take too long to compute: F-brand name estimators that are not
backed by breakdown or large sample theory are actually used. FMCD, F-
MVE, F-S, F-MM, F-τ , F-constrained-M and F-Stahel-Donoho are especially
common.

4.7 Complements

For concentration algorithms, note that (Tt,j, Ct,j) = (xt,j, St,j) is the classi-
cal estimator applied to the “half set” of cases satisfying {xi : D2

i (xt−1,j, St−1,j)
≤ D2

(cn)(xt−1,j, St−1,j)} for t ≥ 0. Hence (Tt,j, Ct,j) is estimating (µt,Σt), the
population mean and covariance matrix of the truncated distribution cover-
ing half of the mass corresponding to {x : (x − µt−1)

TΣ−1
t−1(x − µt−1) ≤

D2
0.5(µt−1,Σt−1)} where D2

0.5(µt−1,Σt−1) is the population median of the
population squared distances D2(µt−1,Σt−1). Here (µ−1,Σ−1) is the popu-
lation analog of (T−1,j, C−1,j).

The DGK estimator (Tk,D, Ck,D) uses the classical estimator (T−1,D, C−1,D)
= (x, S) as the only start. Thus (µ−1,D,Σ−1,D) is the population mean and
covariance matrix. For an elliptically contoured distribution with a nonsingu-
lar covariance matrix and for t ≥ 0, (µt,D,Σt,D) is the population mean and
covariance matrix of the truncated distribution corresponding to the high-
est density region covering half the mass. Hence µt,D = µ and Σt,D = cΣ
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for some c > 0. Riani, Atkinson and Cerioli (2009) find the population mean
and covariance matrices for such truncated multivariate normal distributions,
using results from Tallis (1963).

Conjecture 4.2. The DGK estimator is a
√

n consistent estimator of
(µk,D,Σk,D) under mild conditions.

The median ball (MB) estimator (Tk,M , Ck,M ) uses (T−1,M , C−1,M) =
(MED(X), Ip) as the only start where MED(X) is the coordinatewise me-
dian. Hence (T0,M , C0,M) is the classical estimator applied to the “half set”
of data closest to MED(X) in Euclidean distance while (µ0,M ,Σ0,M) is the
population mean and covariance matrix of the truncated distribution corre-
sponding to the hypersphere centered at the population median that contains
half the mass. For a distribution that is spherical about µ and for t ≥ 0,
(µt,M ,Σt,M ) = (µ, cIp) for some c > 0. For nonspherical elliptically con-
toured distributions, Σt,M 6= cΣ. However, the bias seems to be small even
for t = 0, and to get smaller as k increases. If the median ball estimator is
iterated to convergence, we do not know whether Σ∞,M = cΣ.

Conjecture 4.3. The MB estimator is a high breakdown
√

n consistent
estimator of (µk,M ,Σk,M) under mild conditions. For elliptically contoured
distributions, µk,M = µ.

Arcones (1995) and Kim (2000) showed that x0,M is a HB
√

n consistent
estimator of µ. Olive (2004a) showed that (x0,M , S0,M) is a high breakdown
estimator. If the data distribution is EC but not spherical about µ, then
for k ≥ 0, Sk,M = CMB under estimates the major axis and over estimates
the minor axis of the highest density region. Concentration reduces but fails
to eliminate this bias. Hence the estimated highest density region based on
the attractor is “shorter” in the direction of the major axis and “fatter” in
the direction of the minor axis than estimated regions based on consistent
estimators.

Recall that the sample median MED(Yi) = Y ((n + 1)/2) is the middle
order statistic if n is odd. Thus if n = m + d where m is the number of
clean cases and d = m − 1 is the number of outliers so γ ≈ 0.5, then the
sample median can be driven to the max or min of the clean cases. The
jth element of MED(W ) is the sample median of the jth predictor. Hence
with m−1 outliers, MED(W ) can be driven to the “coordinatewise covering
box” of the m clean cases. The boundaries of this box are at the min and
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max of the clean cases from each predictor, and the lengths of the box edges
equal the ranges Ri of the clean cases for the ith variable. If d ≈ m/2 so
that γ ≈ 1/3, then the MED(W ) can be moved to the boundary of the
much smaller “coordinatewise IQR box” corresponding the 25th and 75th
percentiles of the clean date. Then the edge lengths are approximately equal
to the interquartile ranges of the clean cases.

Note that Di(MED(W ), Ip) = ‖xi−MED(W )‖ is the Euclidean distance
of xi from MED(W ). Let C denote the set of m clean cases. If d ≤ m−1, then
the minimum distance of the outliers is larger than the maximum distance
of the clean cases if the distances for the outliers satisfy Di > B where

B2 = max
i∈C

‖xi − MED(X)‖2 ≤
p

∑

i=1

R2
i ≤ p(max R2

i ).

One of the most effective methods for detecting outliers for large data sets or
if p > n is to use Di(MED(W ), Ip).

The MB estimator has outlier resistance similar to (MED(W ), Ip) for
distant outliers but, as shown in Example 4.1, can be much more effective
for detecting certain types of outliers that can not be found by marginal
methods. For EC data, the MB estimator is best if the data is spherical
about µ or if the data is highly correlated with the major axis of the highest
density region {xi : D2

i (µ,Σ) ≤ d2}.
If the DGK estimator is used by itself, we recommend k = 10 in the

concentration algorithm. We use k = 5 when the DGK and MB estimators
are used as attractors for the FCH, CMVE and MBA estimators. The scaling
(4.10) makes CFCH a better estimate of Σ if the data is multivariate normal
MVN.

Concentration for the MB estimator begins with the “half set” of data
closest to the coordinatewise median in Euclidean distance, resulting in the
estimator (T0,M , C0,M) that uses 50% trimming. (T0,M , C0,M) is a high
breakdown estimator by Corollary 4.7. Since only cases xi such that ‖xi −
MED(W )‖ ≤ MED(‖xi − MED(W )‖) are used, the largest eigenvalue of
C0,50 is bounded if fewer than half of the cases are outliers by Lemma 4.3.

The geometric behavior of (T0,M , C0,M) is simple. If the data xi are MVN
(or EC) then the highest density regions of the data are hyperellipsoids. The
set of x closest to the coordinatewise median in Euclidean distance is a
hypersphere. For EC data the highest density ellipsoid and hypersphere will
have approximately the same center as the hypersphere, and the hypersphere
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will be drawn towards the longest axis of the hyperellipsoid. Hence too much
data will be trimmed in that direction. For example, if the data are MVN
with Σ = diag(1, 2, ..., p) then C0,M will underestimate the largest variance
and overestimate the smallest variance. Taking k concentration steps can
greatly reduce but not eliminate the bias of the MB estimator Ck,M if the
data is EC, and the determinant |Ck,M | < |C0,M | unless the attractor is
equal (T0,M , C0,M) by Proposition 4.4. The MB estimator (Tk,M , Ck,M) is not
affine equivariant but is resistant to gross outliers in that they will initially
be given weight zero if they are further than the median Euclidean distance
from the coordinatewise median. Gnanadesikan and Kettenring (1972, p.
94) suggest an estimator similar to the MB estimator, also see Croux and
Van Aelst (2002). Another estimator similar to MB was suggested by Wilk,
Gnanadesikan, Huyett and Lauh (1962). See Gnanadesikan (1977, p. 134).

Recall that the population squared Mahalanobis distance

U ≡ D2(µ,Σ) = (x − µ)TΣ−1(x − µ). (4.13)

For elliptically contoured distributions, U has pdf given by (3.10), and the
50% highest density region has the form of the hyperellipsoid

{z : (z − µ)TΣ−1(z − µ) ≤ U0.5}
where U0.5 is the median of the distribution of U . For example, if the x are
MVN, then U has the χ2

p distribution. Concentration estimators attempt to
estimate the population mean and covariance matrix of the mass in this 50%
highest density region. So it should not be surprising that good concentration
attractors estimate the same quantity (µ, aMCDΣ). See Theorem 4.9.

In regression, if the start is a consistent estimator for β, then so is the at-
tractor. Hence all attractors are estimating the same parameter β. Theorem
4.9 showed that MLD concentration attractors with k ≥ 0 are estimating the
same parameter (µ, aMCDΣ) even if the affine equivariant starts are estimat-
ing (µ, siΣ) where the si > 0 can differ for i = 1, ..., K.

Olive (2002) showed the following result. Assume (Ti, Ci) are consistent
estimators for (µ, aiΣ) where ai > 0 for i = 1, 2. Let Di,1 and Di,2 be
the corresponding distances and let R be the set of cases with distances
Di(T1, C1) ≤ MED(Di(T1, C1)). Let rn be the correlation between Di,1 and
Di,2 for the cases in R. Then rn → 1 in probability as n → ∞.

The theory for concentration algorithms is due to Hawkins and Olive
(2002) and Olive and Hawkins (2010). The MBA estimator is due to Olive
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(2004a). The computational and theoretical simplicity of the FCH estima-
tor makes it one of the most useful robust estimators ever proposed. An
important application of the robust algorithm estimators and of case diag-
nostics is to detect outliers. Sometimes it can be assumed that the analysis
for influential cases and outliers was completely successful in classifying the
cases into outliers and good or “clean” cases. Then classical procedures can
be performed on the good cases. This assumption of perfect classification is
often unreasonable, and it is useful to have robust procedures, such as the
FCH estimator, that have rigorous asymptotic theory and are practical to
compute. Since the FCH estimator is about an order of magnitude faster
than alternative robust estimators, the FCH estimator may be useful for
computationally intensive applications.

The RFCH and RMVN estimators takes slightly longer to compute than
the FCH estimator, and may have slightly less resistance to outliers.

In addition to concentration and randomly selecting elemental sets, three
other algorithm techniques are important. He and Wang (1996) suggest
computing the classical estimator and a consistent robust estimator. The
final cross checking estimator is the classical estimator if both estimators are
“close,” otherwise the final estimator is the robust estimator. The second
technique was proposed by Gnanadesikan and Kettenring (1972, p. 90).
They suggest using the dispersion matrix C = ((ci,j)) where ci,j is a robust
estimator of the covariance of Xi and Xj . Computing the classical estimator
on a subset of the data results in an estimator of this form. The identity

ci,j = Cov(Xi, Xj) = [VAR(Xi + Xj) − VAR(Xi − Xj)]/4

where VAR(X) = σ2(X) suggests that a robust estimator of dispersion can be
created by replacing the sample standard deviation σ̂ by a robust estimator
of scale. Maronna and Zamar (2002) modify this idea to create a fairly
fast (possibly high breakdown consistent) OGK estimator of multivariate
location and dispersion. This estimator may be the leading competitor of
the FCH estimator. Also see Alqallaf, Konis, Martin and Zamar (2002) and
Mehrotra (1995). Woodruff and Rocke (1994) introduced the third technique,
partitioning, which evaluates a start on a subset of the cases. Poor starts are
discarded, and L of the best starts are evaluated on the entire data set. This
idea is also used by Rocke and Woodruff (1996) and by Rousseeuw and Van
Driessen (1999).
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Billor, Hadi and Velleman (2000) have a BACON algorithm that uses
m0 = 4p or m0 = 5p cases, computes the sample mean and covariance matrix
of these cases, finds the m1 cases with Mahalanobis distances less than some
cutoff, then iterates until the subset of cases no longer changes. Version V1
uses the m0 cases with the smallest classical Mahalanobis distances while
version V2 uses the m0 cases closest to the coordinatewise median.

Croux, Dehon and Yadine (2010) claim that the practical Sign Covariance
Matrix is high breakdown and that their practical k-step Spatial Sign Covari-
ance Matrix is high breakdown and consistently estimates the orientation of

the scatter matrix. The Sign Covariance Matix Σ̂S =
1

n

n
∑

i=1

(xi − µ̂n)(xi − µ̂n)T

‖xi − µ̂n‖2

which is similar to the classical covariance estimator computed from zi =
xi − µ̂n

‖xi − µ̂n‖
. Here µ̂n is the L1-median or spatial median, defined as

µ̂n = argminµ
1

n

n
∑

i=1

‖xi − µ‖,

is a fairly practical high breakdown estimator of multivariate location.
There certainly exist types of outlier configurations where the FMCD

estimator outperforms the robust FCH estimator. The FCH estimators is
vulnerable to outliers that lie inside the hypersphere based on the median
Euclidean distance from the coordinatewise median. Although the FCH es-
timator should not be viewed as a replacement for the FMCD estimator, the
FMCD estimator should be modified so that it is backed by theory. Until this
modification appears in the software, both estimators can be used for outlier
detection by making a scatterplot matrix of the Mahalanobis distances from
the FMCD, FCH and classical estimators.

The simplest version of the MBA estimator only has two starts. A simple
modification would be to add additional starts as in Problem 4.7. The Det-
MCD estimator of Hubert, Rousseeuw, and Verdonck (2012) is very similar,
uses 6 starts, but is not yet backed by theory.

Rousseeuw (1984) introduced the MCD and the minimum volume ellip-
soid MVE(cn) estimator. For the MVE estimator, T (W ) is the center of
the minimum volume ellipsoid covering cn of the observations and C(W )
is determined from the same ellipsoid. TMV E has a cube root rate and the
limiting distribution is not Gaussian. See Davies (1992). Bernholdt and
Fisher (2004) show that the MCD estimator can be computed with O(nv)
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complexity where v = 1 + p(p + 3)/2 if x is a p × 1 vector.
Rocke and Woodruff (1996, p. 1050) claim that any affine equivariant lo-

cation and shape estimation method gives an unbiased location estimator and
a shape estimator that has an expectation that is a multiple of the true shape
for elliptically contoured distributions. Hence there are many candidate ro-
bust estimators of multivariate location and dispersion. See Cook, Hawkins
and Weisberg (1993) for an exact algorithm for the MVE. Other papers on ro-
bust algorithms include Hawkins (1993, 1994), Hawkins and Olive (1999a),
Hawkins and Simonoff (1993), He and Wang (1996), Olive (2004a), Olive
and Hawkins (2007, 2008), Rousseeuw and Van Driessen (1999), Rousseeuw
and van Zomeren (1990), Ruppert (1992), and Woodruff and Rocke (1993).
Rousseeuw and Leroy (1987,

∮

7.1) also describes many methods.
The discussion by Rocke and Woodruff (2001) and by Hubert (2001) of

Peña and Prieto (2001) stresses the fact that no one estimator can domi-
nate all others for every outlier configuration. These papers and Wisnowski,
Simpson, and Montgomery (2002) give outlier configurations that can cause
problems for the FMCD estimator.

Papers on robust distances include Olive (2002) and Garćıa-Escudero and
Gordaliza (2005).

Huber and Ronchetti (2009, p. 214, 233) note that theory for M-estimators
of multivariate location and dispersion is “not entirely satisfactory with re-
gard to joint estimation of” (µ, aΣ) and that “so far we have neither a really
fast, nor a demonstrably convergent, procedure for calculating simultaneous
M-estimates of location and scatter.”

If an exact algorithm exists but an approximate algorithm is also used,
the two estimators should be distinguished in some manner. For example
(TMCD, CMCD) could denote the estimator from the exact algorithm while
(TAMCD, CAMCD) could denote the estimator from the approximate algo-
rithm. In the literature this distinction is too seldomly made, but there are
a few outliers. Cook and Hawkins (1990, p. 640) point out that the AMVE
is not the minimum volume ellipsoid (MVE) estimator.

Where the Rousseeuw-Yohai Paradigm Goes Wrong
i) Estimators from this paradigm that have been shown to be both high

breakdown and consistent take too long to compute.
Let the ith case xi be a p×1 random vector, and suppose the n cases are

collected in an n× p matrix W with rows xT
1 , ..., xT

n . The fastest estimators
of multivariate location and dispersion that have been shown to be both con-
sistent and high breakdown are the minimum covariance determinant (MCD)
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estimator with O(nv) complexity where v = 1+p(p+3)/2 and possibly an all
elemental subset estimator of He and Wang (1997). See Bernholt and Fischer
(2004). The minimum volume ellipsoid complexity is far higher, and for p > 2
there may be no known method for computing S, τ , projection based, con-
strained M, MM, and Stahel-Donoho estimators. These estimators have
computational complexity is higher than O(np). See Maronna, Martin
and Yohai (2006, ch. 6) for descriptions and references.

Estimators with complexity higher than O[(n3 + n2p + np2 + p3) log(n)]
take too long to compute and will rarely be used. Reyen, Miller, and Weg-
man (2009) simulate the OGK and the Olive (2004a) median ball algorithm
(MBA) estimators for p = 100 and n up to 50000, and note that the OGK
complexity is O[p3 +np2 log(n)] while that of MBA is O[p3 +np2 +np log(n)].
FCH, RMBA, RMVN, CMVE and RCMVE have the same complexity as
MBA. FMCD has the same complexity as FCH, but FCH roughly 100 to 200
times faster.

ii) No practical useful “high breakdown” estimator of multivariate loca-
tion and dispersion from this paradigm has been shown to be consistent or
high breakdown: to my knowledge, if the complexity of the estimator is
less than O(n4) for general p, and if the estimator has been claimed
in the published literature to be both high breakdown and con-
sistent, then the estimator has not been shown to be either high
breakdown or consistent. Also Hawkins and Olive (2002) showed that
elemental concentration estimators using K starts are zero breakdown esti-
mators. They are inconsistent if they use k concentration steps where k is
fixed.

Papers with titles like Rousseeuw and Van Driessen (1999) “A Fast Al-
gorithm for the Minimum Covariance Determinant Estimator” and Hubert,
Rousseeuw and Van Aelst (2008) “High Breakdown Multivariate Methods”
where the zero breakdown estimators have not been shown to be consistent
are common, and very misleading to researchers who are not experts in robust
statistics. Also see Olive (2012a).

iii) Many papers give theory for an impractical estimator such as MCD,
then replace the estimator by a zero breakdown practical estimator such as
FAST-MCD.

If an estimator can not be computed in a reasonable amount of time, then
most of its theoretical properties are only of academic interest (consistency
of MCD is needed for the practical FCH estimator). What is of interest are
the theoretical properties of the estimator actually used.
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The central thesis of Hawkins and Olive (2002) was that, given the dis-
connect between the theoretically defined estimator and what can actually
be computed, the theoretical properties of the former do not necessarily give
useful guidance on the properties of the latter. Nearly all of the literature
appears to overlook this disconnect, including Hubert, Rousseeuw and Van
Aelst (2008) and Maronna, Martin and Yohai (2006).

iv) Papers on breakdown and maximal bias are not useful.
Both these properties are weaker than asymptotic unbiasedness. Also the

properties are derived for estimators that take far too long to compute.
Breakdown is a very weak property: having ‖T‖ bounded and eigenvalues

of C bounded away from 0 and ∞ does not mean that the estimator is good.
All too often claims are made that “high breakdown estimators make outliers
have large distances.”

Sometimes the literature gives a claim similar to “the fact that FMCD
is not the MCD estimator is unimportant since the algorithm that uses all
elemental sets has the same high breakdown value as MCD.” FMCD is not
the MCD estimator and FMCD is not the estimator that uses all elemental
sets. FMCD only uses a fixed number of elemental sets, hence FMCD is zero
breakdown.

v) Too much emphasis is given on the property of affine equivariance since
typically this is the only property that can be shown for a practical estimator
of MLD.

Huber and Ronchetti (2009, p. 200, 283) note that “one ought to be
aware that affine equivariance is a requirement deriving from mathematical
aesthetics; it is hardly ever dictated by the scientific content of the underly-
ing problem,” and the lack of affine equivariance “may be less of a disadvan-
tage than it first seems, since in statistics problems possessing genuine affine
equivariance are quite rare.” Also see the end of Section 4.1.

Being a
√

n consistent estimator of (µ, cΣ) is an important property, and
the FCH estimator is asymptotically equivalent to the scaled DGK estimator,
which is affine equivariant.

vi) The literature implies that the breakdown value is a measure of the
global reliability of the estimator and is a lower bound on the amount of
contamination needed to destroy an estimator.

These interpretations are not correct since the complement of complete
and total failure is not global reliability. The breakdown value dn/n is ac-
tually an upper bound on the amount of contamination that the estimator
can tolerate since the estimator can be made arbitrarily bad with dn mali-
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ciously placed cases. In particular, the breakdown value of an estimator tells
nothing about more important properties such as consistency or asymptotic
normality.

4.8 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

R/Splus Problems
Use the command source(“G:/mpack.txt”) to download the functions
and the command source(“G:/mrobdata.txt”) to download the data. See
Preface or Section 15.2. Typing the name of the mpack function, eg
covmba, will display the code for the function. Use the args command, eg
args(covmba), to display the needed arguments for the function.

4.1. a) Download the maha function that creates the classical Maha-
lanobis distances.

b) Enter the following commands and check whether observations 1–40
look like outliers.

> simx2 <- matrix(rnorm(200),nrow=100,ncol=2)

> outx2 <- matrix(10 + rnorm(80),nrow=40,ncol=2)

> outx2 <- rbind(outx2,simx2)

> maha(outx2)

4.2. Download the rmaha function that creates the robust Mahalanobis
distances. Obtain outx2 as in Problem 4.1 b). R users need to enter the com-
mand library(MASS). Enter the command rmaha(outx2) and check whether
observations 1–40 look like outliers.

4.3. a) Download the covmba function.

b) Download the program rcovsim.

c) Enter the command rcovsim(100) three times and include the output
in Word.

d) Explain what the output is showing.

4.4∗. a) Assuming that you have done the two source commands above
Problem 4.1 (and in R the library(MASS) command), type the command
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ddcomp(buxx). This will make 4 DD plots based on the DGK, FCH, FMCD
and median ball estimators. The DGK and median ball estimators are the
two attractors used by the FCH estimator. With the leftmost mouse button,
move the cursor to an outlier and click. This data is the Buxton (1920) data
and cases with numbers 61, 62, 63, 64, and 65 were the outliers with head
lengths near 5 feet. After identifying at least three outliers in each plot, hold
the rightmost mouse button down (and in R click on Stop) to advance to the
next plot. When done, hold down the Ctrl and c keys to make a copy of the
plot. Then paste the plot in Word.

b) Repeat a) but use the command ddcomp(cbrainx). This data is the
Gladstone (1905-6) data and some infants are multivariate outliers.

c) Repeat a) but use the command ddcomp(museum[,-1]). This data
is the Schaaffhausen (1878) skull measurements and cases 48–60 were apes
while the first 47 cases were humans.

4.5∗. (Perform the source(“G:/mpack.txt”) command if you have not
already done so.) The concmv function illustrates concentration with p = 2
and a scatterplot of X1 versus X2. The outliers are such that the MBA and
FCH estimators can not always detect them. Type the command concmv().
Hold the rightmost mouse button down (and in R click on Stop) to see the DD
plot after one concentration step. The start uses the coordinatewise median
and diag([MAD(Xi)]

2). Repeat 4 more times to see the DD plot based on
the attractor. The outliers have large values of X2 and the highlighted cases
have the smallest distances. Repeat the command concmv() several times.
Sometimes the start will contain outliers but the attractor will be clean (none
of the highlighted cases will be outliers), but sometimes concentration causes
more and more of the highlighted cases to be outliers, so that the attractor
is worse than the start. Copy one of the DD plots where none of the outliers
are highlighted into Word.

4.6∗. (Perform the source(“G:/mpack.txt”) command if you have not
already done so.) The ddmv function illustrates concentration with the DD
plot. The outliers are highlighted. The first graph is the DD plot after one
concentration step. Hold the rightmost mouse button down (and in R click
on Stop) to see the DD plot after two concentration steps. Repeat 4 more
times to see the DD plot based on the attractor. In this problem, try to
determine the proportion of outliers gam that the DGK estimator can detect
for p = 2, 4, 10 and 20. Make a table of p and gam. For example the command
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ddmv(p=2,gam=.4) suggests that the DGK estimator can tolerate nearly 40%
outliers with p = 2, but the command ddmv(p=4,gam=.4) suggest that gam
needs to be lowered (perhaps by 0.1 or 0.05). Try to make 0 < gam < 0.5 as
large as possible.

4.7. (Perform the source(“G:/mpack.txt”) command if you have not al-
ready done so.) A simple modification of the MBA estimator adds starts
trimming M% of cases furthest from the coordinatewise median MED(x).
For example use M ∈ {98, 95, 90, 80, 70, 60, 50}. Obtain the program cmba2
from mpack.txt and try the MBA estimator on the data sets in Problem 4.4.

4.8. The mpack function covesim compares various ways to robustly
estimate the covariance matrix. The estimators used are ccov: the classical
estimator applied to the clean cases, RFCH and RMVN. The average dis-
persion matrix is reported over nruns = 20. Let diag(A) be the diagonal of
the average dispersion matrix. Then diagdiff = diag(ccov) - diag(rmvne) and
abssumd = sum(abs(diagdiff)). The clean data Np(0, diag(1, ..., p)).

a) The R command covesim(n=100,p=4) gives output when there are no
outliers. Copy and paste the output into Word.

b) The command covesim(n=100,p=4,outliers=1,pm=15) uses 40% out-
liers that are a tight cluster at major axis with mean (0, ..., 0, pm)T . Hence
pm determines how far the outliers are from the bulk of the data. Copy and
paste the output into Word. The average dispersion matrices should be ≈ c
diag(1, 2, 3, 4) for this type of outlier configuration. What is c for RFCH and
RMVN?

4.9. The R function cov.mcd is a FMCD estimator. If cov.mcd computed
the minimum covariance determinant estimator, then the log determinant of
the dispersion matrix would be a minimum and would not change when the
rows of the data matrix are permuted. The R commands for this problem
permute the rows of the Gladstone (1905-6) data matrix seven times. The
log determinant is given for each of the resulting cov.mcd estimators.

a) Paste the output into Word.
b) How many distinct values of the log determinant were produced? (Only

one if the MCD estimator is being computed.)
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