
Chapter 5

DD Plots and Prediction
Regions

5.1 DD Plots

A basic way of designing a graphical display is to arrange for reference
situations to correspond to straight lines in the plot.

Chambers, Cleveland, Kleiner, and Tukey (1983, p. 322)

Definition 5.1: Rousseeuw and Van Driessen (1999). The DD
plot is a plot of the classical Mahalanobis distances MDi versus robust Ma-
halanobis distances RDi.

The DD plot is used as a diagnostic for multivariate normality, elliptical
symmetry and for outliers. Assume that the data set consists of iid vectors
from an ECp(µ,Σ, g) distribution with second moments. Then the classi-
cal sample mean and covariance matrix (TM , CM ) = (x, S) is a consistent
estimator for (µ, cxΣ) = (E(X), Cov(X)). Assume that an alternative al-
gorithm estimator (TA, CA) is a consistent estimator for (µ, aAΣ) for some
constant aA > 0. By scaling the algorithm estimator, the DD plot can be con-
structed to follow the identity line with unit slope and zero intercept. Let
(TR, CR) = (TA, CA/τ 2) denote the scaled algorithm estimator where τ > 0
is a constant to be determined. Notice that (TR, CR) is a valid estimator of
location and dispersion. Hence the robust distances used in the DD plot are
given by

RDi = RDi(TR, CR) =
√

(xi − TR(W ))T [CR(W )]−1(xi − TR(W ))
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= τ Di(TA, CA) for i = 1, ..., n.
The following proposition shows that if consistent estimators are used to

construct the distances, then the DD plot will tend to cluster tightly about
the line segment through (0, 0) and (MDn,α, RDn,α) where 0 < α < 1 and
MDn,α is the α sample percentile of the MDi. Nevertheless, the variability in
the DD plot may increase with the distances. Let K > 0 be a constant, eg
the 99th percentile of the χ2

p distribution.

Proposition 5.1. Assume that x1, ..., xn are iid observations from a
distribution with parameters (µ,Σ) where Σ is a symmetric positive definite
matrix. Let aj > 0 and assume that (µ̂j,n, Σ̂j,n) are consistent estimators of
(µ, ajΣ) for j = 1, 2.

a) D2
x(µ̂j , Σ̂j) − 1

aj
D2

x(µ,Σ) = oP (1).

b) Let 0 < δ ≤ 0.5. If (µ̂j, Σ̂j)− (µ, ajΣ) = Op(n
−δ) and ajΣ̂

−1

j −Σ−1 =
OP (n−δ), then

D2
x(µ̂j, Σ̂j) −

1

aj
D2

x(µ,Σ) = OP (n−δ).

c) Let Di,j ≡ Di(µ̂j,n, Σ̂j,n) be the ith Mahalanobis distance computed

from (µ̂j,n, Σ̂j,n). Consider the cases in the region R = {i|0 ≤ Di,j ≤ K, j =
1, 2}. Let rn denote the correlation between Di,1 and Di,2 for the cases in R
(thus rn is the correlation of the distances in the “lower left corner” of the
DD plot). Then rn → 1 in probability as n → ∞.

Proof. Let Bn denote the subset of the sample space on which both Σ̂1,n

and Σ̂2,n have inverses. Then P (Bn) → 1 as n → ∞.

a) and b): D2
x(µ̂j , Σ̂j) = (x − µ̂j)

T Σ̂
−1

j (x − µ̂j) =

(x − µ̂j)
T

(

Σ−1

aj
− Σ−1

aj
+ Σ̂

−1

j

)

(x − µ̂j)

= (x− µ̂j)
T

(−Σ−1

aj

+ Σ̂
−1

j

)

(x − µ̂j) + (x− µ̂j)
T

(

Σ−1

aj

)

(x − µ̂j)

=
1

aj
(x − µ̂j)

T (−Σ−1 + aj Σ̂
−1

j )(x − µ̂j) +

(x − µ + µ − µ̂j)
T

(

Σ−1

aj

)

(x − µ + µ − µ̂j)
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=
1

aj
(x −µ)TΣ−1(x −µ)

+
2

aj
(x − µ)T Σ−1(µ − µ̂j) +

1

aj
(µ − µ̂j)

T Σ−1(µ − µ̂j)

+
1

aj
(x − µ̂j)

T [ajΣ̂
−1

j −Σ−1](x− µ̂j) (5.1)

on Bn, and the last three terms are oP (1) under a) and OP (n−δ) under b).

c) Following the proof of a), D2
j ≡ D2

x(µ̂j, Σ̂j)
P→ (x−µ)T Σ−1(x−µ)/aj

for fixed x, and the result follows.
QED

The above result implies that a plot of the MDi versus the Di(TA, CA) ≡
Di(A) will follow a line through the origin with some positive slope since if
x = µ, then both the classical and the algorithm distances should be close to
zero. We want to find τ such that RDi = τ Di(TA, CA) and the DD plot of
MDi versus RDi follows the identity line. By Proposition 5.1, the plot of MDi

versus Di(A) will follow the line segment defined by the origin (0, 0) and the
point of observed median Mahalanobis distances, (med(MDi), med(Di(A))).
This line segment has slope

med(Di(A))/med(MDi)

which is generally not one. By taking τ = med(MDi)/med(Di(A)), the plot
will follow the identity line if (x, S) is a consistent estimator of (µ, cxΣ) and
if (TA, CA) is a consistent estimator of (µ, aAΣ). (Using the notation from
Proposition 5.1, let (a1, a2) = (cx, aA).) The classical estimator is consis-
tent if the population has a nonsingular covariance matrix. The algorithm
estimators (TA, CA) from Theorem 4.10 are consistent on a large class of
EC distributions that have a nonsingular covariance matrix, but tend to be
biased for non–EC distributions.

By replacing the observed median med(MDi) of the classical Mahalanobis
distances with the target population analog, say MED, τ can be chosen so
that the DD plot is simultaneously a diagnostic for elliptical symmetry and a
diagnostic for the target EC distribution. That is, the plotted points follow
the identity line if the data arise from a target EC distribution such as the
multivariate normal distribution, but the points follow a line with non-unit
slope if the data arise from an alternative EC distribution. In addition the
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DD plot can often detect departures from elliptical symmetry such as outliers,
the presence of two groups, or the presence of a mixture distribution. These
facts make the DD plot a useful alternative to other graphical diagnostics for
target distributions. See Easton and McCulloch (1990), Li, Fang, and Zhu
(1997), and Liu, Parelius, and Singh (1999) for references.

Example 5.1. Rousseeuw and Van Driessen (1999) choose the multi-
variate normal Np(µ,Σ) distribution as the target. If the data are indeed iid
MVN vectors, then the (MDi)

2 are asymptotically χ2
p random variables, and

MED =
√

χ2
p,0.5 where χ2

p,0.5 is the median of the χ2
p distribution. Since the

target distribution is Gaussian, let

RDi =

√

χ2
p,0.5

med(Di(A))
Di(A) so that τ =

√

χ2
p,0.5

med(Di(A))
. (5.2)

Note that the DD plot can be tailored to follow the identity line if the
data are iid observations from any target elliptically contoured distribution
that has nonsingular covariance matrix. If it is known that med(MDi) ≈
MED where MED is the target population analog (obtained, for example,
via simulation, or from the actual target distribution as in Equations (3.8),
(3.9) and (3.10)), then use

RDi = τ Di(A) =
MED

med(Di(A))
Di(A). (5.3)

The choice of the algorithm estimator (TA, CA) is important, and the√
n consistent RFCH estimator is a good choice. In this chapter we used

the R/Splus function cov.mcd which is basically an implementation of the
elemental FMCD concentration algorithm described in the previous chapter.
The number of starts used was K = max(500, n/10) (the default is K = 500,
so the default can be used if n ≤ 5000).

Conjecture 5.1. If x1, ..., xn are iid ECp(µ,Σ, g) and an elemental
FMCD concentration algorithm is used to produce the estimator (TA,n, CA,n),
then this algorithm estimator is consistent for (µ, aΣ) for some constant
a > 0 (that depends on g) if the number of starts K = K(n) → ∞ as the
sample size n → ∞.
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Table 5.1: Corr(RDi, MDi) for Np(0, Ip) Data, 100 Runs.

p n mean min % < 0.95 % < 0.8
3 44 0.866 0.541 81 20
3 100 0.967 0.908 24 0
7 76 0.843 0.622 97 26
10 100 0.866 0.481 98 12
15 140 0.874 0.675 100 6
15 200 0.945 0.870 41 0
20 180 0.889 0.777 100 2
20 1000 0.998 0.996 0 0
50 420 0.894 0.846 100 0

Notice that if this conjecture is true, and if the data is EC with 2nd
moments, then

[

med(Di(A))

med(MDi)

]2

CA (5.4)

estimates Cov(x). For the DD plot, consistency is desirable but not necessary.
It is necessary that the correlation of the smallest 99% of the MDi and RDi

be very high. This correlation goes to 1 by Proposition 5.1 if consistent
estimators are used.

The choice of using a concentration algorithm to produce (TA, CA) is cer-
tainly not perfect, and the cov.mcd estimator should be modified by adding
the FCH starts to the 500 elemental starts. There exist data sets with out-
liers or two groups such that both the classical and robust estimators produce
ellipsoids that are nearly concentric. We suspect that the situation worsens
as p increases.

In a simulation study, Np(0, Ip) data were generated and cov.mcd was
used to compute first the Di(A), and then the RDi using Equation (5.2). The
results are shown in Table 5.1. Each choice of n and p used 100 runs, and the
100 correlations between the RDi and the MDi were computed. The mean
and minimum of these correlations are reported along with the percentage
of correlations that were less than 0.95 and 0.80. The simulation shows that
small data sets (of roughly size n < 8p + 20) yield plotted points that may
not cluster tightly about the identity line even if the data distribution is
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Gaussian.

Since every estimator of location and dispersion defines a hyperellipsoid,
the DD plot can be used to examine which points are in the robust hyperel-
lipsoid

{x : (x − TR)TC−1
R (x − TR) ≤ RD2

(h)} (5.5)

where RD2
(h) is the hth smallest squared robust Mahalanobis distance, and

which points are in a classical hyperellipsoid

{x : (x− x)T S−1(x − x) ≤ MD2
(h)}. (5.6)

In the DD plot, points below RD(h) correspond to cases that are in the
hyperellipsoid given by Equation (5.5) while points to the left of MD(h) are
in a hyperellipsoid determined by Equation (5.6).

The DD plot will follow a line through the origin closely if the two hyper-
ellipsoids are nearly concentric, eg if the data is EC. The DD plot will follow
the identity line closely if med(MDi) ≈ MED, and RD2

i =

(xi − TA)T [(
MED

med(Di(A))
)2C−1

A ](xi − TA) ≈ (xi − x)TS−1(xi − x) = MD2
i

for i = 1, ..., n. When the distribution is not EC,

(TA, CA) = (TRFCH , CRFCH) or (TA, CA) = (TFMCD, CFMCD)

and (x, S) will often produce hyperellipsoids that are far from concentric.

Application 5.1. The DD plot can be used simultaneously as a diagnos-
tic for whether the data arise from a multivariate normal (MVN or Gaussian)
distribution or from another EC distribution with nonsingular covariance
matrix. EC data will cluster about a straight line through the origin; MVN
data in particular will cluster about the identity line. Thus the DD plot can
be used to assess the success of numerical transformations towards ellipti-
cal symmetry. This application is important since many statistical methods
assume that the underlying data distribution is MVN or EC.

For this application, the RFCH estimator may be best. For MVN data,
the RDi from the RFCH estimator tend to have a higher correlation with
the MDi from the classical estimator than the RDi from the FCH estimator,
and the cov.mcd estimator may be inconsistent.
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Figure 5.1: 4 DD Plots

Figure 5.1 shows the DD plots for 3 artificial data sets using cov.mcd.
The DD plot for 200 N3(0, I3) points shown in Figure 5.1a resembles the
identity line. The DD plot for 200 points from the elliptically contoured
distribution 0.6N3(0, I3) + 0.4N3(0, 25 I3) in Figure 5.1b clusters about a
line through the origin with a slope close to 2.0.

A weighted DD plot magnifies the lower left corner of the DD plot by

omitting the cases with RDi ≥
√

χ2
p,.975. This technique can magnify features

that are obscured when large RDi’s are present. If the distribution of x is
EC with nonsingular Σ, Proposition 5.1 implies that the correlation of the
points in the weighted DD plot will tend to one and that the points will
cluster about a line passing through the origin. For example, the plotted
points in the weighted DD plot (not shown) for the non-MVN EC data of
Figure 5.1b are highly correlated and still follow a line through the origin
with a slope close to 2.0.
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Figure 5.2: DD Plots for the Buxton Data

Figures 5.1c and 5.1d illustrate how to use the weighted DD plot. The ith
case in Figure 5.1c is (exp(xi,1), exp(xi,2), exp(xi,3))

T where xi is the ith case
in Figure 5.1a; ie, the marginals follow a lognormal distribution. The plot
does not resemble the identity line, correctly suggesting that the distribution
of the data is not MVN; however, the correlation of the plotted points is
rather high. Figure 5.1d is the weighted DD plot where cases with RDi ≥
√

χ2
3,.975 ≈ 3.06 have been removed. Notice that the correlation of the plotted

points is not close to one and that the best fitting line in Figure 5.1d may
not pass through the origin. These results suggest that the distribution of x

is not EC.

It is easier to use the DD plot as a diagnostic for a target distribution
such as the MVN distribution than as a diagnostic for elliptical symmetry.
If the data arise from the target distribution, then the DD plot will tend
to be a useful diagnostic when the sample size n is such that the sample
correlation coefficient in the DD plot is at least 0.80 with high probability.
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As a diagnostic for elliptical symmetry, it may be useful to add the OLS line
to the DD plot and weighted DD plot as a visual aid, along with numerical
quantities such as the OLS slope and the correlation of the plotted points.

Numerical methods for transforming data towards a target EC distribu-
tion have been developed. Generalizations of the Box–Cox transformation
towards a multivariate normal distribution are described in Velilla (1993).
Alternatively, Cook and Nachtsheim (1994) offer a two-step numerical pro-
cedure for transforming data towards a target EC distribution. The first step
simply gives zero weight to a fixed percentage of cases that have the largest
robust Mahalanobis distances, and the second step uses Monte Carlo case
reweighting with Voronoi weights.

Example 5.2. Buxton (1920, p. 232-5) gives 20 measurements of 88 men.
We will examine whether the multivariate normal distribution is a plausible
model for the measurements head length, nasal height, bigonal breadth, and
cephalic index where one case has been deleted due to missing values. Figure
5.2a shows the DD plot. Five head lengths were recorded to be around 5
feet and are massive outliers. Figure 5.2b is the DD plot computed after
deleting these points and suggests that the normal distribution is plausible.
(The recomputation of the DD plot means that the plot is not a weighted
DD plot which would simply omit the outliers and then rescale the vertical
axis.)

The DD plot complements rather than replaces the numerical procedures.
For example, if the goal of the transformation is to achieve a multivariate
normal distribution and if the data points cluster tightly about the identity
line, as in Figure 5.1a, then perhaps no transformation is needed. For the
data in Figure 5.1c, a good numerical procedure should suggest coordinate-
wise log transforms. Following this transformation, the resulting plot shown
in Figure 5.1a indicates that the transformation to normality was successful.

Application 5.2. The DD plot can be used to detect multivariate out-
liers. See Figures 4.2, 4.4, 5.2a and 5.7.
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5.2 Robust Prediction Regions

Suppose that (TA, CA) is a good estimator of (µ, aΣ). Section 5.1 showed
that if x is multivariate normal Np(µ,Σ), TA estimates µ and CA/τ 2 esti-
mates Σ where τ is given in Equation (5.2). Then (TR, CR) ≡ (TA, CA/τ 2)
is an estimator of multivariate location and dispersion.

Suppose (T, C) = (xM , b SM ) is the sample mean and scaled sample
covariance matrix applied to some subset of the data. The classical and
RMVN estimators satisfy this assumption. For h > 0, the hyperellipsoid

{z : (z − T )TC−1(z − T ) ≤ h2} = {z : D2
z ≤ h2} = {z : Dz ≤ h} (5.7)

has volume equal to

2πp/2

pΓ(p/2)
hp

√

det(C) =
2πp/2

pΓ(p/2)
hpbp/2

√

det(SM). (5.8)

A future observation (random vector) xf is in the region (5.7) if Dxf
≤ h.

A large sample (1−α)100% prediction region is a set An such that P (xf ∈
An)

P→ 1 − α. Let qn = min(1 − α + 0.05, 1 − α + p/n) for α > 0.1 and

qn = min(1 − α/2, 1 − α + 10αp/n), otherwise.

If qn < 1 − α + 0.001, use qn = 1 − α. (5.9)

If (T, C) is a consistent estimator of (µ, dΣ), then (5.7) is a large sample
(1 − α)100% prediction regions if h = D(up) where D(up) is the qnth sample
quantile of the Di where the D2

i are given by (3.12). If x1, ..., xn and xf are
iid from an EC distribution (with continuous decreasing g), then region (5.7)
is asymptotically optimal in that its volume converges in probability to the
volume of the minimum volume covering region {z : (z −µ)T Σ−1(z −µ) ≤
u1−α} where P (U ≤ u1−α) = 1 − α and U has pdf given by (3.10). The

classical parametric MVN prediction region uses MDxf
≤

√

χ2
p,1−α.

Notice that for the data x1, ..., xn, if C−1 exists, then 100qn% of the n
cases are in the prediction region, and qn → 1 − α even if (T, C) is not
a good estimator. Hence the coverage qn of the data is robust to model
assumptions. Of course the volume of the prediction region could be large if
a poor estimator (T, C) is used or if the xi do not come from an elliptically
contoured distribution. Also notice that qn = 1 − α/2 or qn = 1 − α + 0.05
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for n ≤ 20p and qn → 1 − α as n → ∞. If qn ≡ 1 − α, then (5.7) is a large
sample prediction region, but taking qn given by (5.9) improves the finite
sample performance of the region. Taking qn ≡ 1 − α does not take into
account variability of (T, C), and for small n the resulting prediction region
tended to have undercoverage as high as min(0.05, α/2). Using (5.9) helped
reduce undercoverage for small n due to the unknown variability of (T, C).

Three new prediction regions will be considered. The nonparametric re-
gion uses the classical estimator (T, C) = (x, S) and h = D(up). The semi-
parametric region uses (T, C) = (TRMV N , CRMV N) and h = D(up). The
parametric MVN region uses (T, C) = (TRMV N , CRMV N ) and h2 = χ2

p,qn

where P (W ≤ χ2
p,α) = α if W ∼ χ2

p. All three regions are asymptotically
optimal for MVN distributions with nonsingular Σ. The first two regions
are asymptotically optimal under the large class of EC distribution given
by Assumption (E1) used in Theorem 4.8. For distributions with nonsin-
gular covariance matrix cXΣ, the nonparametric region is a large sample
(1 − α)100% prediction region, but regions with smaller volume may exist.
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Figure 5.3: Artificial Bivariate Data
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Figure 5.4: Artificial Data

Example 5.3. An artificial data set consisting of 100 iid cases from a

N2

( (

0
0

)

,

(

1.49 1.4
1.4 1.49

) )

distribution and 40 iid cases from a bivariate normal distribution with mean
(0,−3)T and covariance I2. Figure 5.3 shows the classical ellipsoid (with

MD ≤
√

χ2
2,0.95) that uses (T, C) = (x, S). The symbol “1” denotes the

data while the symbol “2” is on the border of the covering ellipse. Notice
that the classical parametric ellipsoid covers almost all of the data. Figure

5.4 displays the robust ellipsoid (using RD ≤
√

χ2
2,0.95) which contains most

of the 100 “clean” cases and excludes the 40 outliers. Problem 5.5 recreates
similar figures with the classical and RMVN estimators using qn = 0.95.

Example 5.4. Buxton (1920) gives various measurements on 87 men
including height, head length, nasal height, bigonal breadth and cephalic index.
Five heights were recorded to be about 19mm and are massive outliers. First
height and nasal height were used with qn = 0.95. Figure 5.5 shows that the
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Figure 5.5: Ellipsoid is Inflated by Outliers

classical parametric prediction region (using MD ≤
√

χ2
2,.95) is quite large

but does not include any of the outliers. Figure 5.6 shows that the parametric

MVN prediction region (using RD ≤
√

χ2
2,.95) is not inflated by the outliers.

Next all 87 cases and 5 predictors were used. Figure 5.7 shows the RMVN
DD plot with the identity line added as a visual aid. Points to the left
of the vertical line are in the nonparametric large sample 90% prediction
region. Points below the horizontal line are in the semiparametric region.
The horizontal line at RD = 3.33 corresponding to the parametric MVN
90% region is obscured by the identity line. This region contains 78 of the
cases. Since n = 87, the nonparametric and semiparametric regions used
the 95th quantile. Since there were 5 outliers, this quantile was a linear
combination of the largest clean distance and the smallest outlier distance.
The semiparametric 90% region blows up unless the outlier proportion is
small.

Figure 5.8 shows the DD plot and 3 prediction regions after the 5 outliers
were removed. The classical and robust distances cluster about the identity
line and the three regions are similar, with the parametric MVN region cutoff
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Figure 5.6: Ellipsoid Ignores Outliers

again at 3.33, slightly below the semiparametric region cutoff of 3.44.
Simulations for the prediction regions used x = Aw where A =

diag(
√

1, ...,
√

p), w ∼ Np(0, Ip) (MVN), w ∼ LN(0, Ip) where the marginals
are iid lognormal(0,1), or w ∼ MV Tp(1), a multivariate t distribution with
1 degree of freedom so the marginals are iid Cauchy(0,1). All simulations
used 5000 runs and α = 0.1.

For large n, the semiparametric and nonparametric regions are likely to
have coverage near 0.90 because the coverage on the training sample is slightly
larger than 0.9 and xf comes from the same distribution as the xi. For
n = 10p and 2 ≤ p ≤ 40, the semiparametric region had coverage near 0.9.
The ratio of the volumes

hp
i

√

det(Ci)

hp
2

√

det(C2)

was recorded where i = 1 was the nonparametric region, i = 2 was the
semiparametric region, and i = 3 was the parametric MVN region. The
volume ratio converges in probability to 1 for Np(µ,Σ) data, and the ratio
converges to 1 for i = 1 if Assumption (E1) holds. The parametric MVN
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Figure 5.7: Prediction Regions for Buxton Data

region often had coverage much lower than 0.9 with a volume ratio near
0, recorded as 0+. The volume ratio tends to be tiny when the coverage is
much less than the nominal value 0.9. For 10p ≤ n ≤ 20p, the nonparametric
region often had good coverage and volume ratio near 0.5.

Table 5.2: Coverages for 90% Prediction Regions

w dist n p ncov scov mcov voln volm
MVN 600 30 0.906 0.919 0.902 0.503 0.512
MVN 1500 30 0.899 0.899 0.900 1.014 1.027
LN 1000 10 0.903 0.906 0.567 0.659 0+

MVT(1) 1000 10 0.914 0.914 0.541 22634.3 0+

Simulations and Table 5.2 suggest that for MVN data, the coverages
(ncov, scov and mcov) for the 3 regions are near 90% for n = 20p and that
the volume ratios voln and volm are near 1 for n = 50p. With fewer than
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Figure 5.8: Prediction Regions for Buxton Data without Outliers

5000 runs, this result held for 2 ≤ p ≤ 80. For the non–elliptically contoured
LN data, the nonparametric region had voln well under 1, but the volume
ratio blew up for w ∼ MV Tp(1).

5.3 Summary

1) For h > 0, the hyperellipsoid {z : (z − T )TC−1(z − T ) ≤ h2} = {z :
D2

z ≤ h2} = {z : Dz ≤ h}. A future observation (random vector) xf is in
this region if Dxf

≤ h. A large sample (1 − α)100% prediction region is a

set An such that P (xf ∈ An)
P→ 1 − α where 0 < α < 1.

2) The classical (1−α)100% large sample prediction region is {z : D2
z(x, S) ≤

χ2
p,1−α} and works well if n is large and the data are iid MVN.

3) Let qn = min(1−α + 0.05, 1 −α + p/n) for α > 0.1 and qn = min(1−
α/2, 1−α+10αp/n), otherwise. If qn < 1−α+0.001, set qn = 1−α. If (T, C)
is a consistent estimator of (µ, dΣ), then {z : Dz ≤ h} is a large sample
(1 − α)100% prediction regions if h = D(up) where D(up) is the qnth sample
quantile of the Di. The nonparametric prediction region uses (T, C) = (x, S)
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and the semiparametric prediction region uses (T, C) = (TRMV N , CRMV N).
The parametric MVN prediction region
{z : D2

z(T, C) ≤ χ2
p,qn

} also uses (T, C) = (TRMV N , CRMV N ).
4) These 3 regions can be displayed in an RMVN DD plot with cases in the

nonparametric region corresponding to points to the left of the vertical line
corresponding to D(up)(x, S). Cases in the semiparametric region correspond
to points below the horizontal line corresponding to D(up)(TRMV N , CRMV N )
while cases in the parametric MVN region correspond to points below the
horizontal line corresponding to

√

χ2
p,qn

. Suppose x1, ..., xn, xf are iid with
nonsingular covariance matrix Σx. The three prediction regions are asymp-
totically optimal if the data is MVN. The semiparametric and nonparametric
prediction regions are asymptotically optimal on a large class of EC distribu-
tions and the nonparametric prediction region is a large sample 100(1−α)%
prediction region, although large sample prediction regions with smaller vol-
ume may exist.

5) Suppose m independent large sample 100(1 − α)% prediction regions
are made where x1, ..., xn, xf are iid from the same distribution for each
of the m runs. Let Y count the number of times xf is in the prediction
region. Then Y ∼ binomial (m, 1 − αn) where 1 − αn is the true coverage
and 1 − αn → 1 − α as n → ∞. Simulation can be used to see if the true or
actual coverage 1 − αn is close to the nominal coverage 1 − α. A prediction
region with 1 − αn < 1 − α is liberal and a region with 1 − αn > 1 − α
is conservative. It is better to be conservative by 5% than liberal by 5%.
Parametric prediction regions tend to have large undercoverage and so are
too liberal.

6) For prediction regions, want n > 10p for the nonparametric prediction
region and n > 20p for the semiparametric prediction region.

5.4 Complements

The first section of this chapter followed Olive (2002) closely. The DD plot
can be used to diagnose elliptical symmetry, to detect outliers, and to assess
the success of numerical methods for transforming data towards an ellipti-
cally contoured distribution. Since many statistical methods assume that
the underlying data distribution is Gaussian or EC, there is an enormous
literature on numerical tests for elliptical symmetry. Bogdan (1999), Czörgö
(1986) and Thode (2002) provide references for tests for multivariate normal-
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ity while Koltchinskii and Li (1998) and Manzotti, Pérez and Quiroz (2002)
have references for tests for elliptically contoured distributions.

There are few practical competitors for the Olive (2013b) prediction re-
gions in Section 5.2. Parametric regions such as the classical region for mul-
tivariate normal data tend to have severe undercoverage because the data
rarely follows the parametric distribution. Procedures that use brand name
high breakdown multivariate location and dispersion estimators take too long
to compute for p > 2.

5.5 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

5.1∗. If X and Y are random variables, show that

Cov(X, Y) = [Var(X + Y) − Var(X − Y)]/4.

R/Splus Problems

Warning: Use the command source(“G:/mpack.txt”) to download
the programs. See Preface or Section 15.2. Typing the name of the
mpack function, eg ddplot, will display the code for the function. Use the
args command, eg args(ddplot), to display the needed arguments for the
function.

5.2. a) Download the program ddsim. (In R, type the command li-
brary(MASS).)

b) Using the function ddsim for p = 2, 3, 4, determine how large the
sample size n should be in order for the RFCH DD plot of n Np(0, Ip) cases
to cluster tightly about the identity line with high probability. Table your
results. (Hint: type the command ddsim(n=20,p=2) and increase n by 10
until most of the 20 plots look linear. Then repeat for p = 3 with the n that
worked for p = 2. Then repeat for p = 4 with the n that worked for p = 3.)

5.3. a) Download the program corrsim. (In R, type the command
library(MASS).)

b) A numerical quantity of interest is the correlation between the MDi

and RDi in a RFCH DD plot that uses n Np(0, Ip) cases. Using the function
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corrsim for p = 2, 3, 4, determine how large the sample size n should be in or-
der for 9 out of 10 correlations to be greater than 0.9. (Try to make n small.)
Table your results. (Hint: type the command corrsim(n=20,p=2,nruns=10)
and increase n by 10 until 9 or 10 of the correlations are greater than 0.9.
Then repeat for p = 3 with the n that worked for p = 2. Then repeat for
p = 4 with the n that worked for p = 3.)

5.4∗. a) Download the ddplot function. (In R, type the command li-
brary(MASS).)

b) Using the following commands to make generate data from the EC
distribution (1 − ε)Np(0, Ip) + εNp(0, 25 Ip) where p = 3 and ε = 0.4.

n <- 400

p <- 3

eps <- 0.4

x <- matrix(rnorm(n * p), ncol = p, nrow = n)

zu <- runif(n)

x[zu < eps,] <- x[zu < eps,]*5

c) Use the command ddplot(x) to make a DD plot and include the plot
in Word. What is the slope of the line followed by the plotted points?

5.5. a) Download the ellipse function.

b) Use the following commands to create a bivariate data set with outliers
and to obtain a classical and robust RMVN covering ellipsoid. Include the
two plots in Word.

> simx2 <- matrix(rnorm(200),nrow=100,ncol=2)

> outx2 <- matrix(10 + rnorm(80),nrow=40,ncol=2)

> outx2 <- rbind(outx2,simx2)

> ellipse(outx2)

> zout <- covrmvn(outx2)

> ellipse(outx2,center=zout$center,cov=zout$cov)

5.6. a) Download the function mplot.

b) Enter the commands in Problem 5.4b to obtain a data set x. The
function mplot makes a plot without the RDi and the slope of the resulting
line is of interest.
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c) Use the command mplot(x) and place the resulting plot in Word.

d) Do you prefer the DD plot or the mplot? Explain.

5.7 a) Download the function wddplot.

b) Enter the commands in Problem 5.4b to obtain a data set x.

c) Use the command wddplot(x) and place the resulting plot in Word.

5.8. Use the R command source(”G:/mrobdata.txt”) then ddplot4(buxx,alpha=0.2)
and put the plot in Word. The Buxton data has 5 outliers, p = 4, and n = 87,
so the 80% prediction regions use 1− α + p/n = 0.846 percentiles. The out-
put shows that the cutoffs are 2.527, 2.734 and 2.583 for the nonparametric,
semiparametric and robust parametric prediction regions. The two horizon-
tal lines that correspond to the robust distances are obscured by the identity
line.

5.9. a) Type the R command predsim() and paste the output into Word.

This computes xi ∼ N4(0, diag(1, 2, 3, 4)) for i = 1, ..., 100 and xf = x101.
One hundred such data sets are made, and ncvr, scvr, mcvr counts the num-
ber of times xf was in the nonparametric, semiparametric and parametric
MVN 90% prediction regions. The volumes of the prediction regions are
computed and voln, vols and volm are the average ratio of the volume of the
ith prediction region over that of the semiparametric region. Hence vols is
always equal to 1. For multivariate normal data, these ratios should converge
to 1 as n → ∞. Were the three coverages near 90%?

5.10. Tests for covariance matrices are very nonrobust to nonnormality.
Let a plot of x versus y have x on the horizontal axis and y on the vertical axis.
A good diagnostic is to use the DD plot. So a diagnostic for H0 : Σx = Σ0

is to plot Di(x, S) versus Di(x,Σ0) for i = 1, ..., n. If n > 10p and H0 is
true, then the plotted points in the DD plot should cluster tightly about the
identity line.

a) A test for sphericity is a test of H0 : Σx = dIp for some unknown
constant d > 0. Make a “DD plot” of D2

i (x, S) versus D2
i (x, Ip). If n > 10p

and H0 is true, then the plotted points in the “DD plot” should cluster
tightly about the line through the origin with slope d. Use the R commands
for this part and paste the plot into Word. The simulated data set has
xi ∼ N10(0, 100I10) where n = 100 and p = 10. Do the plotted points follow
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a line through the origin with slope 100?
b) Now suppose there are k samples, and want to test H0 : Σx1

=
· · · = Σxk

, that is, all k populations have the same covariance matrix. As a
diagnostic, make a DD plot of Di(xj, Sj) versus Di(xj, Spool) for j = 1, ..., k
and i = 1, ..., ni. If each ni > 10p and H0 is true, what line will the plotted
points cluster about in each of the k DD plots?
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