
Chapter 6

Principal Component Analysis

6.1 Introduction

Principal component analysis (PCA) is used to explain the dispersion struc-
ture with a few linear combinations of the original variables, called principal
components. These linear combinations are uncorrelated if S or R is used as
the dispersion matrix. The analysis is used for data reduction and interpre-
tation. The notation ej will be used for orthonormal eigenvectors: eT

j ej = 1
and eT

j ek = 0 for j 6= k. The eigenvalue eigenvector pairs of a matrix Σ will
be (λ1, e1), ..., (λp, ep) where λ1 ≥ λ2 ≥ · · · ≥ λp. The eigenvalue eigenvector

pairs of a matrix Σ̂ will be (λ̂1, ê1), ..., (λ̂p, êp) where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p.
The generalized correlation matrix defined below is the correlation matrix
when second moments exist if Σ = c Cov(x) for some constant c > 0.

Definition 6.1. Let Σ = ((σij)) be a positive definite symmetric p × p

dispersion matrix. A generalized correlation matrix ρ = ((ρij)) where

ρij =
σij√
σiiσjj

.

The following theorem holds since the eigenvalues and generalized corre-
lation matrix are continuous functions of Σ. Also see Theorem 3.29. When
the distribution of the xi is unknown, then a good dispersion estimator es-
timates cΣ on a large class of distributions where c > 0 depends on the
unknown distribution of xi. For example, if the xi ∼ ECp(µ,Σ, g), then the
sample covariance matrix S estimates Cov(x) = cXΣ.
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Theorem 6.1. Suppose the dispersion matrix Σ has eigenvalue eigen-

vector pairs (λ1, e1), ..., (λp, ep) where λ1 ≥ λ2 ≥ · · · ≥ λp. Suppose Σ̂
P→ cΣ

for some constant c > 0. Let the eigenvalue eigenvector pairs of Σ̂ be

(λ̂1, ê1), ..., (λ̂p, êp) where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p. Then λ̂j(Σ̂)
P→ cλj(Σ) = cλj,

ρ̂ P→ ρ and λ̂j (ρ̂) P→ λj (ρ) where λj(A) is the jth eigenvalue of A for
j = 1, ..., p.

Eigenvectors ej are not continuous functions of Σ, and if ej is an eigen-
vector of Σ then so is −ej. The software produces êj which sometimes
approximates ej and sometimes approximates −ej if the eigenvalue λj is
unique, since then the set of eigenvectors corresponding to λj has the form
aej for any nonzero constant a. The situation becomes worse if some of
the eigenvalues are equal, since the possible eigenvectors then span a space
of dimension equal to the multiplicity of the eigenvalue. Hence if the mul-
tiplicity is two and both ej and ek are eigenvectors corresponding to the
eigenvalue λi, then ei = xi/‖xi‖ is also an eigenvector corresponding to λi

where xi = ajej + akek for constants aj and ak which are not both equal
to 0. The software produces êj and êk that are approximately in the span
of ej and ek for large n by the following theorem, which also shows that êi

is asymptotically an eigenvector of Σ in that (Σ − λi)êi
P→ 0. It is possible

that êi,n is arbitrarily close to ei for some values of n and arbitrarily close to
−ei for other values of n so that êi ≡ êi,n oscillates and does not converge
in probability to either ei or −ei.

Theorem 6.2. Assume the p × p symmetric dispersion matrix Σ is
positive definite.

a) If Σ̂
P→ Σ, then Σ̂ei − λ̂iei

P→ 0.

b) If Σ̂
P→ Σ, then Σêi − λiêi

P→ 0.
If Σ̂− Σ = OP (n−δ) where 0 < δ ≤ 0.5, then
c) λiei − Σ̂ei = OP (n−δ), and
d) λ̂iêi −Σêi = OP (n−δ).

e) If Σ̂
P→ cΣ for some constant c > 0, and if the eigenvalues λ1 > · · · >

λp > 0 of Σ are unique, then the absolute value of the correlation of êj with

ej converges to 1 in probability: |corr(êj, ej)| P→ 1.

Proof. a) Σ̂ei − λ̂iei
P→ Σei − λiei = 0.

b) Note that (Σ−λiI)êi = [(Σ−λiI)− (Σ̂− λ̂iI)]êi = oP (1)OP (1)
P→ 0.
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c) λiei − Σ̂ei = Σei − Σ̂ei = OP (n−δ).
d) λ̂iêi −Σêi = Σ̂êi − Σêi = OP (n−δ).

e) Note that a) and b) hold if Σ̂
P→ Σ is replaced by Σ̂

P→ cΣ. Hence
for large n, êi ≡ êi,n is arbitrarily close to either ei or −ei, and the result
follows.

Rule of thumb 6.1. To use PCA, assume the DD plot and subplots
of the scatterplot matrix are linear. Want n > 10p for classical PCA and
n > 20p for robust PCA that uses FCH, RFCH or RMVN. For classical
PCA, use the correlation matrix R instead of the covariance matrix S if
maxi=1,...,p S2

i /mini=1,...,p S2
i > 2. If S is used, also do a PCA using R.

The trace of a matrix A is the sum of the diagonal elements of A and the
sum of the eigenvalues of A. If A is a p×p matrix, then trace(A) = tr(A) =
∑p

i=1 Aii =
∑p

i=1 λi. Note that tr(Cov(x)) = σ2
1 + · · ·+σ2

p and tr(ρ̂) = p.

Definition 6.2. Let dispersion estimator Σ̂ have eigenvalue eigenvector
pairs (λ̂1, ê1), ..., (λ̂p, êp) where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p. Then the p principal
components corresponding to the jth case xj are Zj1 = ê

T
1 xj , ..., Zjp = ê

T
p xj.

Let the vector zj = (Zj1, ..., Zjp)
T . The proportion of the trace explained

by the first kth principal components is
∑k

i=1 λ̂i/
∑p

j=1 λ̂j =
∑k

i=1 λ̂i/tr(Σ̂).
When a correlation or covariance matrix is being estimated, “trace” is re-
placed by “variance.” The population analogs use the dispersion matrix Σ
with eigenvalue eigenvector pairs (λi, ei) for i = 1, ..., p. The population prin-
cipal components corresponding to the j case are Yji = eT

i xj, and Zji = Ŷji

for i = 1, ..., p.

Note that the principal components can be collected into an n × p data
matrix

Z =











Z1,1 Z1,2 . . . Z1,p

Z2,1 Z2,2 . . . Z2,p

...
...

. . .
...

Zn,1 Zn,2 . . . Zn,p











=
[

u1 u2 . . . up

]

=







zT
1
...

zT
n







.

Then ui corresponds to the ith principal component. A plot of the second
principal component versus the first principal component can be useful.

The data matrix W corresponds to the usual axes where ei is a vector of
zeroes except for a one in the ith position. Hence the ith axis corresponds to
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the ith variable Xi. The data matrix Z corresponds to axes that are parallel
to the axes of the hyperellipsoid corresponding to the dispersion matrix Σ̂.
These axes are a rotation of the usual axes about the origin.

If Σ̂ = S, then the definition of the estimated proportion of the to-
tal population variance may make little sense if the variables are measured
on different scales. Assume the population covariance matrix is I2. Then
λj/(λ1 + λ2) = 0.5, but if xj is multiplied by 3 then V (xj) = 9 = λj, and
λj/(λ1 + λ2) = 0.9. Then xj seems much more important than the other
variable just by scaling. This is why rule of thumb 6.1 says R should be used
instead of S if maxi=1,...,p S2

i /mini=1,...,p S2
i > 2.

Examine Theorems 2.4, 2.5 and Figure 2.1. The hyperellipsoid {x|D2
x ≤

h2} = {x : (x − µ)TΣ−1(x − µ) ≤ h2}, where h2 = u1−α and P (U ≤
u1−α) = 1 − α, is the highest density region covering 1 − α of the mass for
an elliptically contoured distribution. The hyperellipsoid is centered at µ.
If µ = 0, then points at squared distance wTS−1w = h2 from the origin
lie on the hyperellipsoid centered at the origin whose axes are given by the
eigenvectors ei where the half length in the direction of ei is h

√
λi.

The projection vector of a vector x onto a vector e is

eeT x

eTe
.

Hence if eTe = 1, the projection vector is v = [eT x]e and ‖v‖ = |eT x|. So
eT x is the signed length of the projection vector of x onto e, and eT x is
called the (scalar) projection of x onto e.

The ei are the directions of the axes through the origin that are parallel
to the axes of the hyperellipsoid. Suppose µ = 0. Then the ith principle
component is the linear combination of the predictors that is the projection
on the ith axis of the hyperellipsoid. That is, get the projection vectors of
the xi onto ei and find their signed lengths eT

i xi from the origin. Then these
scalars form the ith principal components corresponding to the n data cases
x1, ..., xn. So the first principal component is the projection on the major
axis, the second principal component is the projection on the next longest
axis, ..., the pth principal component is the projection on the minor axis.
The axes are orthogonal, so the directions ei are orthogonal.

When µ 6= 0 the projections on ei are projections on the axes through
the origin that are parallel to the axes of the hyperellipsoid. Figure 2.1 shows
two ellipsoids where p = 2.
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The first k principal components can be regarded as a good k dimen-
sional approximation to the p dimensional data. Suppose the data cloud
approximates the hyperellipsoid {x|D2

x ≤ h2} where h2 = D2
(n), the largest

squared distance, so the hyperellipsoid contains all of the data. Then a good
one dimensional approximation is the projection on the major axis since this
captures the dimension with the greatest variability or dispersion as mea-
sured by Σ. A good two dimensional approximation uses the projection on
the major axis and the projection on the next largest axis since these are the
two orthogonal directions where the two projections have the greatest vari-
ability. Following Mardia, Kent and Bibby (1979, p. 220), if S (with centered
data) or R is used as the dispersion matrix, then the vector space spanned
by the first k principal components has smaller mean square deviation from
the p variables than any other k−dimensional subspace.

Since Z represents a new coordinate system, the ith case
xi = (xT

i êi)ê1+ · · ·+(xT
i êp)êp = Zi,1ê1+ · · ·+Zi,pêp. Also xi = x̃i(k)+ri(k)

where x̃i(k) =
∑k

j=1 Zi,j êj and the residual vector ri(k) =
∑p

j=k+1 Zi,jêj.

The squared length of the residual vector is ‖ri(k)‖2 = ri(k)Tri(k) = Z2
i,k+1+

· · · + Z2
i,p.

Suppose S or R is used as the as the dispersion matrix and that T = 0 so
the hyperellisoid is centered at the origin. Following Kendall (1980, p. 17),
the eigenvector corresponding to the largest eigenvalue determines the major
axis of the hyperellipsoid. This axis forms the line through the origin such
that the sum of squared distances from the n data points xi to this line is a
minimum. If the data points are projected onto a hyperplane perpendicular
to the major axis line, then the eigenvector corresponding to the next largest
eigenvalue determines the second longest axis of the hyperellipsoid, and this
axis is the line through the origin in the hyperplane that minimizes the sum
of squared distances, and so on.

When the covariance matrix is used, that the first principal component
eT

1 x is the linear combination gT
1 x that maximizes Var(gT

1 x) subject to
gT

1 g1 = 1, while the jth principal component is the linear combination gT
j x

that maximizes Var(gT
j x) subject to gT

j gj = 1 and Cov(gT
j x, gT

k x) = 0 for
k < j. This result can be proved using Theorem 1.1.

Definition 6.3. A scree plot is a plot of component number versus
eigenvalue.

Dimension reduction involves using the first k principal components to
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approximate the data matrix without losing much important information.
Want the proportion of the trace explained by the first k principal compo-
nents to be higher than 0.8 or 0.9.

Rule of thumb 6.2. The value of k should be such that
∑k

i=1 λ̂i
∑p

i=1 λ̂i

≥ 0.9.

The scree plot is also useful for choosing k since often there is a sharp bend
in the scree plot when the components are no longer important. See Cattell
(1966).

Following Johnson and Wichern (1988, p. 343, 347), let x = (X1, ..., Xp)
be a random vector such that the xi and x have the same distribution. Let
Yi = eT

i x be the population principal components based on the covariance
matrix Cov(x) = Σx. Let ei = (e1i, ..., epi)

T . Then eki is proportional to the
correlation between Yi and Xk, in fact,

corr(Yi, Xk) =
eki

√
λi√

σkk

for i, k = 1, ..., p. If the correlation matrix ρ is used instead of Σx, then
corr(Yi, Xk) = eki

√
λi.

Following Johnson and Wichern (1988, p. 252-253), some software that
uses S or R centers the data by using xi−x. Centering does not change S or
R but makes the ith principal component equal to êT

i (x−x) for observation
x.

Warning: If λ̂p ≈ 0, then Σ̂ is nearly singular, and there could be an
unnoticed linear dependency in the data set, eg Xp ≈ ∑p−1

i=1 ciXi. Then
one or more of the variables is redundant and should be deleted. Following
Johnson and Wichern (1988, p. 360), suppose p = 4 and X1, X2 and X3

are midterm exam scores while X4 is the total of the midterm scores so that
X4 = X1 + X2 + X3. Due to rounding, λ̂4 could be nonzero, but very close
to zero.

6.2 Robust Principal Component Analysis

A robust “plug in” method uses an analysis based on the (λ̂i, êi) computed
from a robust dispersion estimator C. The RPCA method performs the
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classical principal component analysis on the RMVN subset, using either the
sample covariance matrix CU = SU or the sample correlation matrix RU .
Under assumption (E1) from Chapter 4, CU and RU are

√
n consistent highly

outlier resistant estimators of cΣ = dCov(x) and the population correlation
matrix DCov(x)D = ρ, respectively, where D = diag(1/

√
σ11, ..., 1/

√
σpp)

and the σii are the diagonal entries of Cov(x) = Σx = cXΣ. Let λi(A) be
the eigenvalues of A where λ1(A) ≥ λ2(A) ≥ · · · ≥ λp(A). Let λ̂i(Â) be the

eigenvalues of Â where λ̂1(Â) ≥ λ̂2(Â) ≥ · · · ≥ λ̂(Â).

Theorem 6.3. Under (E1), the correlation of the eigenvalues computed
from the classical PCA and RPCA converges to 1 in probability.

Proof: The eigenvalues are continuous functions of the dispersion es-
timator, hence consistent estimators of dispersion give consistent estima-
tors of the population eigenvalues. See Eaton and Tyler (1991) and Bha-
tia, Elsner and Krause (1990). Let λi(Σ) = λi be the eigenvalues of Σ so

cXλi are the eigenvalues of Cov(x) = Σx. Under (E1), λi(S)
P→ cXλi and

λi(CU)
P→ cλi =

c

cX

cXλi = d cX λi. Hence the population eigenvalues of Σx

and d Σx differ by the positive multiple d, and the population correlation of
the two sets of eigenvalues is equal to one.

Now let λi(ρ) = λi. Under (E1), both R and RU converge to ρ in

probability, so λ̂i(R)
P→ λi and λ̂i(RU)

P→ λi for i = 1, ..., p. Hence the
two population sets of eigenvalues are the same and thus have population
correlation equal to one. �

Note that if Σx e = λe, then

d Σx e = dλe.

Thus λ̂i(S)
P→ λi(Σx) and λ̂i(CU )

P→ dλi(Σx) for i = 1, ..., p. Since plotting
software fills space, two scree plots of two sets of eigenvalues that differ by a
constant positive multiple will look nearly the same, except for the labels of
the vertical axis, and the “trace explained” by the largest k eigenvalues will
be the same for the two sets of eigenvalues. Theorem 6.2 implies that for a
large class of elliptically contoured distributions and for large n, the classical
and robust scree plots should be similar visually, and the “trace explained”
by the classical PCA and the robust PCA should also be similar.

The eigenvectors are not continuous functions of the dispersion estimator,
and the sample size may need to be massive before the robust and classical
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eigenvectors or principal components have high absolute correlation. In the
software, sign changes in the eigenvectors are common, since Σx e = λe

implies that Σx (−e) = λ(−e).

Table 6.1: Estimation of Σ with γ = 0.4, n = 35p

p type n pm Q
5 1 135 16 0.153
5 2 135 6 0.213
10 1 350 21 0.326
10 2 350 6 0.326
15 1 525 26 0.856
15 2 525 7 0.675
20 1 700 33 0.798
20 2 700 8 0.792
25 1 875 39 1.014
25 2 875 10 1.867

A simulation was done to check that RMVN estimates Σ if the clean data
is MVN and γ is the percentage of outliers. The clean cases were MVN: x ∼
Np(0, diag(1, 2, ..., p)). Outlier types were x ∼ Np((0, ..., 0, pm)T , 0.0001Ip),
a near point mass at the major axis, and the mean shift x ∼ Np(pm1, diag
(1, 2, ..., p)) where 1 = (1, ..., 1)T . On clean MVN data, n ≥ 20p gave good
results for 2 ≤ p ≤ 100. For the contaminated MVN data, the first nγ cases
were outliers, and the classical estimator Sc was computed on the clean
cases. The diagonal elements of Sc and Σ̂RMV N should both be estimating
(1, 2, ..., p)T . The average diagonal elements of both matrices were computed
for 20 runs, and the criterion Q was the sum of the absolute differences of the
p diagonal elements from the two averaged matrices. Since γ = 0.4 and the
initial subsets for the RMVN estimator are half sets, the simulations used
n = 35p. The values of Q shown in Table 6.1 correspond to good estimation
of the diagonal elements. Values of pm slightly smaller than the tabled values
led to poor estimation of the diagonal elements.

Example 6.1. Buxton (1920) gives various measurements on 87 men
including height, head length, nasal height, bigonal breadth and cephalic in-
dex. Five heights were recorded to be about 19mm with the true heights
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Figure 6.1: First Two Principal Components for Buxton data
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Figure 6.2: First Two Robust Principal Components with Outliers Omitted
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recorded under head length. Performing a classical principal components
analysis on these five variables using the covariance matrix resulted in a
first principal component corresponding to a major axis that passed through
the outliers. See Figure 6.1 where the second principal component is plot-
ted versus the first. The robust PCA, or the classical PCA performed after
the outliers are removed, resulted in a first principal component that was
approximately − height with ê1 ≈ (−1.000, 0.002,−0.023,−0.002,−0.009)T

while the second robust principal component was based on the eigenvector
ê2 ≈ (−0.005, 0.848,−0.054,−0.048, 0.525)T . The plot of the first two ro-
bust principal components, with the outliers deleted, is shown in Figure 6.2.
These two components explain about 86% of the variance.

The R function prcomp can be used to compute output. Suppose the
data matrix is z. The commands

zz <- prcomp(z)

zz

will create and display output. The term zz$sd gives the square roots of the
eigenvalues while the term zz$rot displays the eigenvectors using the covari-
ance matrix. Hence Figure 6.1 can be made with the following commands.

z <- cbind(buxy,buxx)

zz <- prcomp(z)

PC1 <- z%*%zz$rot[,1]

PC2 <- z%*%zz$rot[,2]

plot(PC2,PC1)

It usually makes more sense to use the correlation matrix. the mpack
function rprcomp does robust principal components. The two functions use
“scale=T” or “cor=T” to use a correlation matrix.

zzcor <- prcomp(z,scale=T)

zrcor <- rprcomp(z,cor=T)

Then

zrcor$out$sd^2

gives the eigenvalues and zrcor$out$rot gives the eigenvectors. Scree plots
can be made with the following commands, and Figure 6.3 shows the robust
scree plot which suggests that the last principal component can be deleted.
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Figure 6.3: Robust Scree Plot

EIG <- zzcor$sd^2

plot(EIG)

#robust scree plot

REIG <- zrcor$out$sd^2

plot(REIG)

The outliers are known from the DD plot so the robust principal compo-
nent analysis can be done with and without the outliers. The data matrix
zw is the clean data without the outliers.

zw <-z[-c(61,62,63,64,65),]

zzcorc <- prcomp(zw,scale=T)

# clean data with corr matrix

> zzcorc

Standard deviations:

[1] 1.3184358 1.1723991 1.0155266 0.7867349 0.4867867

Rotation:

PC1 PC2 PC3 PC4 PC5

buxy 0.01551 0.71466 0.02247 -0.68890 -0.11806

len 0.70308 -0.06778 0.07744 -0.16901 0.68302

nasal 0.15038 0.68868 0.02042 0.70385 0.08539

bigonal 0.11646 -0.04882 0.96504 0.02261 -0.22855

cephalic -0.68502 0.08950 0.24854 -0.03071 0.67825
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zrcor <- rprcomp(z,cor=T)

> zrcor

$out

Standard deviations:

[1] 1.3323400 1.1548879 0.9988643 0.8182741 0.4730769

Rotation:

PC1 PC2 PC3 PC4 PC5

buxy -0.10724 -0.69431 -0.11325 0.69184 -0.12238

len 0.69909 -0.06324 0.02560 0.17129 0.69085

nasal 0.04094 -0.70310 -0.08718 -0.70093 0.07123

bigonal 0.02638 -0.13994 0.98660 0.01120 -0.07884

cephalic -0.70527 -0.00317 0.07443 0.02432 0.70460

> zrcorc <- rprcomp(zw,cor=T)

> zrcorc

$out

Standard deviations:

[1] 1.3369152 1.1466891 1.0016463 0.8123854 0.4842482

Rotation:

PC1 PC2 PC3 PC4 PC5

buxy -0.21306 0.67557 -0.01727 -0.68852 -0.15446

len 0.67272 0.21639 0.05560 -0.15178 0.68884

nasal -0.22213 0.66958 0.05174 0.68978 0.15441

bigonal -0.01374 -0.02995 0.99668 -0.03546 -0.06543

cephalic -0.67270 -0.21807 0.02363 -0.16076 0.68813

Note that the square roots of the eigenvalues, given by “Standard devia-
tions,” do not change much for the following three estimators: the classical
estimator applied to the clean data, and the robust estimator applied to the
full data or the clean data. The first eigenvector is roughly proportional to
length − cephalic while the second eigenvector is roughly proportional to buxy
+ nasal. The third principal component is highly correlated with bigonal,
the fourth principal component is proportional to buxy − nasal, and the fifth
principal component to length + cephalic.

In simulations for principal component analysis, FCH, RMVN, OGK and
Fake-MCD seem to estimate cΣx if x = Az + µ where z = (z1, ..., zp)

T

and the zi are iid from a continuous distribution with variance σ2. Here
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Σx = Cov(x) = σ2AAT . The bias for the MB estimator seemed to be small.
It is known that affine equivariant estimators give unbiased estimators of
cΣx if the distribution of zi is also symmetric. DGK and Fake-MCD (with
fixed random number seed) are affine equivariant. FCH and RMVN are
asymptotically equivalent to a scaled DGK estimator. But in the simulations
the results also held for skewed distributions.

The simulations used 1000 runs where x = Az and z ∼ Np(0, Ip), z ∼
LN(0, Ip) where the marginals are iid lognormal(0,1), or z ∼ MV Tp(1), a
multivariate t distribution with 1 degree of freedom so the marginals are iid
Cauchy(0,1). The choice A = diag(

√
1, ...,

√
p) results in Σ = diag(1, ..., p).

Note that the population eigenvalues will be proportional to (p, p− 1, ..., 1)T

and the population “variance explained” by the ith principal component is
λi/

∑p

j=1 λj = 2(p + 1 − i)/[p(p + 1)]. For p = 4, these numbers are 0.4, 0.3
and 0.2 for the first three principal components. If the “correlation” option is
used, then the population “correlation matrix” is the identity matrix Ip, the
ith population eigenvalue is proportional to 1/p and the population “variance
explained” by the ith principal component is 1/p.

Table 6.2 shows the mean “variance explained” along with the standard
deviations for the first three principal components. Also ai and pi are the
average absolute value of the correlation between the ith eigenvectors or the
ith principal components of the classical and robust methods. Two rows were
used for each “n–data type” combination. The ai are shown in the top row
while the pi are in the lower row. The values of ai and pi were similar. The
standard deviations were slightly smaller for the classical PCA for normal
data. The classical method failed to estimate (0.4,0.3,0.2) for the Cauchy
data. For the lognormal data, RPCA gave better estimates, and the pi were
not high except for n = 10000.

To compare affine equivariant and non-equivariant estimators, Maronna
and Zamar (2002) suggest using Ai,i = 1 and Ai,j = ρ for i 6= j and ρ =
0, 0.5, 0.7, 0.9, and 0.99. Then Σ = A2. If ρ is high, or if p is high and ρ ≥ 0.5,
then the data are concentrated about the line with direction 1 = (1, ..., 1)T .
For p = 50 and ρ = 0.99, the population variance explained by the first
principal component is 0.999998. If the “correlation” option is used, then
there is still one extremely dominant principal component unless both p and
ρ are small.

Table 6.3 shows the mean “variance explained” along with the standard
deviations multiplied by 107 for the first principal component. The a1 value is
given but p1 was always 1.0 to many decimal places even with Cauchy data.
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Table 6.2: Variance Explained by PCA and RPCA, p = 4

n type M/S vexpl rvexpl a1/p1 a2/p2 a3/p3

40 N M 0.445,0.289,0.178 0.472,0.286,0.166 0.895 0.821 0.825
S 0.050,0.037,0.032 0.062,0.043,0.037 0.912 0.813 0.804

100 N M 0.419,0.295,0.191 0.425,0.293,0.189 0.952 0.926 0.963
S 0.033,0.030,0.024 0.040,0.032,0.027 0.956 0.923 0.953

400 N M 0.404,0.298,0.198 0.406,0.298,0.198 0.994 0.991 0.996
S 0.019,0.017,0.014 0.021,0.019,0.015 0.995 0.990 0.994

40 C M 0.765,0.159,0.056 0.514,0.275,0.147 0.563 0.519 0.511
S 0.165,0.112,0.051 0.078,0.055,0.040 0.776 0.383 0.239

100 C M 0.762,0.156,0.060 0.455,0.286,0.173 0.585 0.527 0.528
S 0.173,0.112,0.055 0.054,0.041,0.034 0.797 0.377 0.269

400 C M 0.756,0.162,0.060 0.413,0.296,0.194 0.608 0.562 0.575
S 0.172,0.113,0.054 0.030,0.025,0.022 0.796 0.397 0.308

40 L M 0.539,0.256,0.139 0.521,0.268,0.146 0.610 0.509 0.530
S 0.127,0.075,0.054 0.099,0.061,0.047 0.643 0.439 0.398

100 L M 0.482,0.270,0.165 0.459,0.279,0.172 0.647 0.555 0.566
S 0.180,0.063,0.052 0.077,0.047,0.041 0.654 0.492 0.474

400 L M 0.437,0.282,0.185 0.416,0.290,0.194 0.748 0.639 0.739
S 0.080,0.048,0.044 0.049,0.035,0.033 0.727 0.594 0.690

10000 L M 0.400,0.301,0.200 0.402,0.300,0.199 0.982 0.967 0.991
S 0.027,0.023,0.018 0.013,0.011,0.009 0.976 0.967 0.989

Table 6.3: Variance Explained by PCA and RPCA, SSD = 107 SD, p = 50

n type vexpl SSD rvexpl SSD a1

200 N 0.999998 1.958 0.999998 2.867 0.687
1000 N 0.999998 0.917 0.999998 0.971 0.944
1000 C 0.999996 161.3 0.999998 1.482 0.112
1000 L 0.999998 0.919 0.999998 1.508 0.175
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Hence the eigenvectors from the robust and classical methods could have
low absolute correlation, but the data was so tightly clustered that the first
principal components from the robust and classical methods had absolute
correlation near 1.

6.3 Summary

1) Let Σ = ((σij)) be a positive definite symmetric p × p dispersion matrix.

A generalized correlation matrix ρ = ((ρij)) where

ρij =
σij√
σiiσjj

.

The generalized correlation matrix is the correlation matrix when second
moments exist if Σ = c Cov(x) for some constant c > 0.

2) Classical principal component analysis (PCA) gets the eigenvalues and
eigenvectors (λ̂i, êi) of the sample covariance matrix S or of the sample cor-
relation matrix R.

3) Let U be the subset of at least half of the cases from which the ro-
bust estimator is computed. Let SU and RU denote the sample covariance
matrix and sample correlation matrix computed from the cases in U . Then
the robust estimator C = dSU for some constant d > 0 and RU is the gen-
eralized correlation matrix corresponding to C. The robust PCA uses U
corresponding to the RMVN estimator.

4) Want n > 10p for the classical PCA and n > 20p for the robust PCA.
5) Both R and SAS output give the eigenvectors as shown in symbols for

the following table.
PC1 PC2 · · · PCp
ê1 ê2 · · · êp

R output shows the square roots of the eigenvalues

√

λ̂1,

√

λ̂2, ...,

√

λ̂p

while SAS output gives the eigenvalues λ̂i.
6) Given the eigenvalues or square roots of the eigenvalues, be able to

sketch a
scree plot of i versus λ̂i.
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7) The trace explained or variance explained by the first k principal com-

ponents is

∑k

i=1 λ̂i
∑p

i=1 λ̂i

where the denominator is equal to p if the correlation

option R or RU is used, as recommended in point 10).
8) Use k principal components if the trace explained is bigger than some

percentage like 90%, 80% or 70%. There is often a sharp bend in the scree
plot when the components are no longer useful.

9) When R or RU is used, the correlation of the ith variable with the jth
principal component is proportional to the ith entry of the jth eigenvector
êj . To try to explain the jth principal component, look at entries in êj

that are large in magnitude and ignore entries close to zero. Sometimes only
one entry is large. Sometimes all of the large entries have approximately
the same size and sign, then the principal component is interpreted as an
average of these entrees. If exactly two entries are of similar large magnitude
but of different sign, the principal component is interpreted as a difference
of the two entrees. If there are j ≥ 2 large entrees that differ in magnitude,
then the principal component is interpreted as a linear combination of the
corresponding variables.

10) PCA based on R or RU is easier to interpret than PCA based on S

or SU .
i) If S is used, the variance explained by the first principal component

could be large because one variable has much larger variance than the other
variables.

ii) If S is used, the correlation of the ith variable with the jth principal
component is proportional to the ith entry of the jth eigenvector êj divided
by the standard deviation of ith variable: eij/

√
Sii.

Hence PCA based on S is harder to interpret if p random variables do not
have similar sample variances. The variances could differ if different units
are used or if some variables are transformed while others are not. Hence
PCA based on R or RU is recommended.

11) Typical Routput is shown. Standard deviations:

[1] 1.3369152 1.1466891 1.0016463 0.8123854 0.4842482

Rotation: PC1 PC2 PC3 PC4 PC5

len 0.67271620 -0.21639022 0.05559575 0.15178244 -0.68883916

nasal -0.22213361 -0.66957907 0.05173705 -0.68978370 -0.15440936

bigonal -0.01373814 0.02995162 0.99668240 0.03545927 0.06542933
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cephalic -0.67269993 0.21806615 0.02362841 0.16076405 -0.68812686

buxy -0.21306252 -0.67556583 -0.01727087 0.68851877 0.15446292

12) Let Σ̂ be a consistent estimator of Σ. The following theorems show
that asymptotically, the eigenvalues and eigenvectors of Σ̂ act as those of Σ
and vice verca. This result is useful since eigenvectors are not continuous
functions of the dispersion matrix. The following theorem holds because
eigenvalues and the generalized correlation matrix are continuous functions
of the dispersion matrix.

i) Theorem 6.1. Suppose the dispersion matrix Σ has eigenvalue eigen-

vector pairs (λ1, e1), ..., (λp, ep) where λ1 ≥ λ2 ≥ · · · ≥ λp. Suppose Σ̂
P→ cΣ

for some constant c > 0. Let the eigenvalue eigenvector pairs of Σ̂ be

(λ̂1, ê1), ..., (λ̂p, êp) where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p. Then λ̂j(Σ̂)
P→ cλj(Σ) = cλj,

ρ̂ P→ ρ and λ̂j (ρ̂) P→ λj (ρ) where λj(A) is the jth eigenvalue of A for
j = 1, ..., p.

ii) Theorem 6.2. Assume the p × p symmetric dispersion matrix Σ is

positive definite. a) If Σ̂
P→ Σ, then Σ̂ei − λ̂iei

P→ 0.

b) If Σ̂
P→ Σ, then Σêi − λiêi

P→ 0.
If Σ̂− Σ = OP (n−δ) where 0 < δ ≤ 0.5, then
c) λiei − Σ̂ei = OP (n−δ), and
d) λ̂iêi −Σêi = OP (n−δ).

e) If Σ̂
P→ cΣ for some constant c > 0, and if the eigenvalues λ1 > · · · >

λp > 0 of Σ are unique, then the absolute value of the correlation of êj with

ej converges to 1 in probability: |corr(êj, ej)| P→ 1.
iii) Theorem 6.3. Under (E1), the correlation of the eigenvalues com-

puted from the classical PCA and robust PCA converges to 1 in probability.
13) Centering uses wi = xi−T where T is the sample mean or the sample

mean of the standardized data for the full data set or for the set U used to
compute the robust estimator. Centering does not change S, SU , R or RU ,
but the jth principal component is êT

j wi = êT
j (xi − T ).

14) For PCA, the summary(out) statement shows
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Importance of components: PC1 PC2 · · · PCk · · · PCp

Standard deviation
√

λ̂1

√

λ̂2 · · ·
√

λ̂k · · ·
√

λ̂p

Proportion of variance λ̂1
Pp

i=1 λ̂i

λ̂2
Pp

i=1 λ̂i
· · · λ̂k

Pp
i=1 λ̂i

· · · λ̂p
Pp

i=1 λ̂i

Cumulative Proportion λ̂1
Pp

i=1 λ̂i

P2
j=1 λ̂j

Pp
i=1 λ̂i

· · ·
Pk

j=1 λ̂j
Pp

i=1 λ̂i
· · · 1

Recall that if R or RU is used, then
∑p

i=1 λ̂i = p. Typically want to keep

the first m principal components where

∑m

j=1 λ̂j

∑p

i=1 λ̂i

> a where the threshold a

is a number like 0.9, 0.8 or 0.7.
15) For PCA, a biplot is a plot of the first principal component versus

the second principal component. The plotted points are êT
j xi for j = 1, 2

where the classical biplot uses i = 1, ..., n and the robust plot uses cases in
the RMVN set U . Let êj = (ê1j, ê2j, ..., êpj)

T . Then êkj is called the loading
of the kth variable on the jth principal component. An arrow with the kth
variable name is the vector from the origin (0, 0)T to the loadings (êk1, êk2)

T .
So if the arrow is in the first quadrant, both loadings are positive, etc. If
the arrow is long to the right but short down, then the loading with the first
principal component is large and positive while the loading with the second
principal component is small and negative. Be able to interpret the classical
and robust biplots.

6.4 Complements

Suppose Z is the standardized n × p data matrix and Y = Z/
√

n − 1. If
n < p, then the correlation matrix R = Y T Y = ZT Z/(n − 1) does not
have full rank. By singular value decomposition (SVD) theory, the SVD of
Y is Y = UΛV T where the positive singular values are square roots of the
positive eigenvalues of both Y TY and of Y Y T . Also V = (ê1 ê2 · · · êp),
and Y T Y êi = σ2

i êi. Hence classical principal component analysis on the
standardized data can be done using êi and λ̂i = σ2

i . The SVD of Y T is
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V ΛTUT , and

Y Y T =
1

n − 1







zT
1 z1 zT

1 z2 . . . zT
1 zn

...
...

. . .
...

zT
nz1 zT

nz2 . . . zT
nzn







which is the matrix of scalar products divided by (n− 1). For more informa-
tion about the SVD, see Datta (1995, p. 552-556).

It may be possible to do robust PCA when n < p by standardizing the
data with the MED(Xi) and MAD(Xi). Then plot the Euclidean distaces of
the standardized data from the coordinatewise median MED(Z) and delete
outliers, leaving m cases in an m × p matrix Y . Then use the SVD of Y to
perform a “robust” PCA.

Jolliffe (2010) is an authoritative text on PCA. Cattell (1966) and Bentler
and Yuan (1998) are good references for scree plots. Mφller, von Frese and
Bro (2005) discuss PCA, principal component regression and drawbacks of
M estimators. Waternaux (1976) and Tyler (1983) give some large sample
theory for PCA. In particular, if the xi are iid from a multivariate distribution
with fourth moments and a covariance matrix Σx such that the eigenvalues

are distinct and positive, then
√

n(λ̂i − λi)
D→ N(0, κi + 2λ2

i ) where κi is the
kurtosis of the marginal distribution of xi, for i = 1, ..., p.

The literature for robust PCA is large, but the “high breakdown” meth-
ods are impractical or not backed by theory. Some of these methods may be
useful as outlier diagnostics. The theory of Boente (1987) for mildly outlier
resistant principal components is not based on DGK estimators since the
weighting function on the Di is continuous. Spherical principal components
is a mildly outlier resistant bounded influence approach suggested by Lo-
cantore, Marron, Simpson, Tripoli, Zhang and Cohen (1999). Boente and
Fraiman (1999) claim that basis of the eigenvectors is consistently estimated
by spherical principal components for elliptically contoured distributions.
Also see Maronna, Martin and Yohai (2006, p. 212-213) and Taskinen, Koch
and Oja (2012).

Bali, Boente, Tyler and Wang (2011) gave possibly impressive theory for
infinite complexity impractical robust projection estimators, but should have
given theory for the practical Fake-projection estimator actually used. This
“bait and switch hoax” occurs far too often in multivariate “robust statistics”
papers.
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To estimate the first principal direction for principal component analysis,
the Fake-projection (CR) estimator uses n projections zi = wi/‖wi‖ where
wi = yi − µ̂n. Note that for p = 2 one can select 360 projections through
the origin and a point on the unit circle that are one degree apart. Then
there is a projection that is highly correlated with any projection on the unit
circle. If p = 3, then 360 projections are not nearly enough to adequately
approximate all projections through the unit sphere. Since the surface area
of a unit hypersphere is proportional to np−1, approximations rapidly get
worse as p increases.

Theory for the Fake-projection (CR) estimator may be simple. Suppose
the data is multivariate normal Np(0, diag(p, 1, ..., 1)). Then β = (1, 0, ..., 0)T

(or −β) is the population first direction. Heuristically, assume µ̂n = 0,
although in general µ̂n should be a good

√
n consistent estimator of µ such

as the coordinatewise median. Let bo be the “best” estimated projection zj

that minimizes ‖zi − β‖ for i = 1, ..., n. “Good” projections will have a yi

that lies in one of two “hypercones” with a vertex at the origin and centered
about a line through the origin and ±β with radius r at ±β. So for p = 2 the
two “cones” are determined by the two lines through the origin with slopes
± r. The probability that a randomly selected yi falls in one of the two
“hypercones” is proportional to rp−1, and for bo to be consistent for β need
r → 0, P(at least one yi falls in “hypercone”) → 1 and n → ∞. If these

heuristics are correct, need r ∝ n
−1
p−1 for ‖bo−β‖ = OP (n

1
p−1 ). Note that bo is

not an estimator since β is not known, but the rate of the “best” projection
bo gives an upper bound on the rate of the Fake-projection estimator v1

since ‖v1 − β‖ ≥ ‖bo − β‖. If the scale estimator is
√

n consistent, then
for a large class of elliptically contoured distributions, a conjecture is that

‖v1 − β‖ = OP (n
1

2(p−1) ) for p > 1.
Simulations were done in R. The MASS library was used to compute FMCD

and the robustbase library was used to compute OGK. The mpack function
covrmvn computes the FCH, RMVN and MB estimators while covfch com-
putes the FCH, RFCH and MB estimators. The following functions were
used in the three simulations and have more outlier configurations than the
two described in the text. Function covesim was used to produce Table 6.1
and pcasim for Tables 6.2 and 6.3. See Zhang (2011) for more extensive
simulations.

For a nonsingular matrix, the inverse of the matrix, the determinant of
the matrix and the eigenvalues of the matrix are continuous functions of
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the matrix. Hence if Σ̂ is a consistent estimator of Σ, then the inverse,
determinant and eigenvalues of Σ̂ are consistent estimators of the inverse,
determinant and eigenvalues of Σ. See, for example, Bhatia, Elsner and
Krause (1990), Stewart (1969) and Severini (2005, p. 348-349).

6.5 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

6.1∗. Assume the p×p dispersion matrix Σ is positive definite. If Σ̂
P→ cΣ

for some constant c > 0, prove that Σêi − λiêi
P→ 0.

6.2. Shown below is PCA output using the correlation matrix for the
Buxton data where 5 outliers were deleted. The variables were length, nasal
height, bigonal breadth, cephalic and buxy = height/20. The “standard devi-
ations” line corresponds to the square roots of the eigenvalues. The Rotation
matrix gives the 5 principal components.

a) For the robust rprcomp output make a scree plot. What proportion of
the trace is explained by the first 4 principal components?

b) Which principal component corresponds to i) bigonal, ii) nasal + buxy,
iii) length + cephalic, iv) length − cephalic and v) nasal − buxy?

rprcomp(z)

$out

Standard deviations:

[1] 1.3369152 1.1466891 1.0016463 0.8123854 0.4842482

Rotation:

PC1 PC2 PC3 PC4 PC5

len 0.67271620 -0.21639022 0.05559575 0.15178244 -0.68883916

nasal -0.22213361 -0.66957907 0.05173705 -0.68978370 -0.15440936

bigonal -0.01373814 0.02995162 0.99668240 0.03545927 0.06542933

cephalic -0.67269993 0.21806615 0.02362841 0.16076405 -0.68812686

buxy -0.21306252 -0.67556583 -0.01727087 0.68851877 0.15446292

prcomp(z,scale=T)

Standard deviations:
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[1] 1.3184358 1.1723991 1.0155266 0.7867349 0.4867867

Rotation:

PC1 PC2 PC3 PC4 PC5

len -0.70308364 -0.06777853 0.07743938 0.16900791 0.6830219

nasal -0.15038248 0.68867720 0.02042098 -0.70384733 0.0853859

bigonal -0.11646120 -0.04882199 0.96504341 -0.02261327 -0.2285455

cephalic 0.68502160 0.08950469 0.24854103 0.03070660 0.6782468

buxy -0.01551443 0.71465734 0.02246533 0.68889840 -0.1180614

6.3. Let Yj = eT
j x be the first population principal component where

Cov(x) = Σx.

a) Using Cov(Ax, Bx) = AΣxBT , show Cov(x, Yj) = Σxej = λjej.

b) Now V (Yj) = Cov(eT
j x, eT

j x). Show that V (Yj) = λj .

c) Let x = (X1, ..., Xp)
T where Xi is the ith random variable with

V (Xi) = σii and by a) Cov(Xi, Yj) = λjeij where ej = (e1j, ..., eij, ..., epj)
T .

Find corr(Xi, Yj).

6.4. The classical PCA output below is for the Buxton data described
in Problem 6.2 where 5 cases have massive outliers in the height and length
variables. Interpret PC1 and PC2.

prcomp(z,scale=T)

[1] 1.431 1.074 0.964 0.926 0.106

PC1 PC2 PC3 PC4 PC5

len 0.685 0.037 0.004 -0.189 -0.702

nas -0.199 0.568 0.153 -0.783 0.047

big -0.049 -0.569 0.783 -0.247 -0.007

ceph -0.100 -0.594 -0.603 -0.523 0.008

ht -0.692 -0.000 -0.008 0.131 -0.710

6.5. SAS output for PCA using the correlation matrix is shown below.
The Khattree and Naik (1999, p. 11) cork data gives the weights of cork
borings in four directions for 28 trees in a block of plantations.

a) What is the variance explained by the first two principal components?

b) Interpret the first principal component.
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Eigenvalues of the Covariance Matrix

Eigenvalue Difference Proportion Cumulative

1 3.5967 3.3431 0.8992 0.8992

2 0.2536 0.1735 0.0634 0.9626

3 0.0801 0.0107 0.0200 0.9826

4 0.0694 0.0174 1.0000

Eigenvectors

Prin1 Prin2 Prin3 Prin4

north -0.5108992 0.1267234 0.803287920 0.2786606

east -0.4829921 0.7604818 -0.328918253 -0.2831940

south -0.5082783 -0.3006659 -0.496526386 0.6361719

west -0.4973468 -0.5614345 0.001687729 -0.6613884

Rotation: PC1 PC2 PC3

length 0.5771831 -0.5884323 -0.5662218

width 0.5811769 -0.1910978 0.7910215

height 0.5736663 0.7856393 -0.2316848

> summary(out$out)

Importance of components:PC1 PC2 PC3

Standard deviation 1.7065 0.25601 0.14961

Proportion of Variance 0.9707 0.02185 0.00746

Cumulative Proportion 0.9707 0.99254 1.00000

6.6. The Johnson and Wichern (1988, p. 262) turtle data has X1 =
length, X2 = width and X3 = height for painted turtle shells with 48 cases.
Principal component analysis output is shown above based on the (robust)
correlation matrix.

a) How many principal components are needed?

b) Interpret the first principal component.

6.7. The output below describes lawyers’ ratings of state judges in the
US Superior Court with 43 observations on 12 numeric variables: CONT
Number of contacts of lawyer with judge, INTG Judicial integrity, DMNR
Demeanor, DILG Diligence, CFMG Case flow managing, DECI Prompt deci-
sions, PREP Preparation for trial, FAMI Familiarity with law, ORAL Sound
oral rulings, WRIT Sound written rulings, PHYS Physical ability, RTEN
Worthy of retention.
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> rprcomp(USJudgeRatings)

Standard deviations:

[1] 3.22195231 1.03832823 0.51049711 0.41049221 0.22797980 0.16242562

[7] 0.11155709 0.09407153 0.07441343 0.05595849 0.04492358 0.03805913

Rotation:

PC1 PC2

CONT 0.09651014 0.90089601

INTG -0.29727192 -0.19029004

DMNR -0.28269055 -0.21697647

DILG -0.30634676 0.01963176

CFMG -0.29804314 0.19297945

DECI -0.30227359 0.18417871

PREP -0.30428044 0.10879296

FAMI -0.30144067 0.11286037

ORAL -0.30874784 0.05751148

WRIT -0.30769444 0.06085970

PHYS -0.28368257 -0.03718180

RTEN -0.30728474 -0.02411832

a) Interpret the first principal component.

b) Interpret the second principal component.

6.8. From the SAS output shown below, what is the variance explained
by the second principal component?

Eigenvalues of the Covariance Matrix

Eigenvalue Difference Proportion Cumulative

1 154.310607 145.147647 0.9439 0.9439

2 9.162960 0.0561 1.0000

Eigenvectors

Prin1 Prin2

July 0.343532 0.939141

January 0.939141 -.343532

R/Splus Problems

Warning: Use the command source(“G:/mpack.txt”) to download
the programs. See Preface or Section 15.2. Typing the name of the
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mpack function, eg ddplot, will display the code for the function. Use the
args command, eg args(pcasim), to display the needed arguments for the
function.

6.9. a) Type the R command pcasim() and paste the output into Word.

This command computes the first 3 eigenvalues and eigenvectors for the
classical and robust PCA using the R and RU . The multivariate normal
data is such that the cases cluster tightly about the eigenvector c(1, 1, ..., 1)T

corresponding to the largest eigenvalue. The term mncor gives the mean
correlation between the classical and robust eigenvalues while the terms vexpl
and rvexpl give the average variance explained by the largest 3 eigenvalues.
The terms abscoreigvi give the absolute correlation between the i classical
and robust eigenvector for i = 1, ..., 3 while the term abscorpc gives the
absolute correlations of the first 3 principal components.

b) Are the robust and classical eigenvalues highly correlated? Is the
absolute correlation for first classical principal component and the robust
principal component high?

6.10. The Venables and Ripley (2003) CPU data has variables syct =
cycle time,
mmin = minimum main memory,
chmin = minimum number of channels,
chmax = maximum number of channels,
perf = published performance, and
estperf = estimated performance.

a) There are nonlinear relationships among the variables and 1 is added
to each variable to make them positive. Read more about the data set and
make a scatterplot matrix with the R commands for this part. You can make
the help window small by clicking the box with the − in the upper right
corner. Include the scatterplot matrix in Word.

b) The log rule suggests using the log transformation on all of the vari-
ables. Make the log transformations, scatterplot matrix and DD plot with
the R commands for this part. Right click “Stop” to go from the DD plot to
the R prompt. Wait until part d) until you put plots in Word.

c) You might be able to get a better scatterplot matrix and DD plot by
doing alternative transformations on the last two variables. The commands
for this part give the log transformation for the first 4 variables and possible
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transformations for the last variables. Clearly state which transformations
you use for the 5th and 6th variable. For example if you decide logs are ok,
write down the following transformations.

zz[,5] <- log(z[,5])

zz[,6] <- log(z[,6])

d) For your data set zz of transformed variables, make the scatterplot
matrix and DD plot and put the two plots in Word.

e) Put the classical PCA output using the correlation matrix into Word
with the command for this problem.

f) Put the robust PCA output using the correlation matrix into Word
with the command for this problem.

g) Comment on the similarities or differences of the classical and robust
PCA.

6.11. The R data set USArrests contains statistics, in arrests per 100,000
residents, for assault, murder, and rape in each of the 50 US states in 1973.
The fourth variable, UrbanPop, is the percent urban population in each state.
For PCA, the R summary command can be used to get proportion of variance
explained and cumulative proportion of variance explained, similar to SAS
output.

a) Use the R commands for this part to get the classical and robust PCA
summaries where S or SU is used. Paste the summaries into Word.

i) Are the summaries similar?
ii) Using the 0.9 threshold, how many principal components are needed?
a) Use the R commands for this part to get the classical and robust PCA

summaries where R or RU is used. Paste the summaries into Word.
i) Are the summaries similar?
ii) using the 0.9 threshold, how many principal components are needed?

6.12. For PCA, a biplot is a plot of the first principal component versus
the second principal component. The plotted points are êT

j xi for j = 1, 2
where the classical biplot uses i = 1, ..., n and the robust plot uses cases in
the RMVN set U . Let êj = (ê1j, ê2j, ..., êpj)

T . Then êkj is called the loading
of the kth variable on the jth principal component. An arrow with the kth
variable name is the vector from the origin (0, 0)T to the loadings (êk1, êk2)

T .
So if the arrow is in the first quadrant, both loadings are positive, etc. If
the arrow is long to the right but short down, then the loading with the first
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principal component is large and positive while the loading with the second
principal component is small and negative.

The Buxton (1920) data has a cluster of 5 massive outliers. The first
classical principal component tends to go right through a cluster of large
outliers.

a) These R commands make the classical scree plot and biplot. Paste the
plots into Word.

b) These R commands make the robust scree plot and biplot. Paste the
plots into Word.

c) From the classical scree plot, how many principal components are
needed? From the robust scree plot, how many principal components are
needed?

d) The four variables used were len, nasal, bigonal, and cephalic . From
the classical biplot, which variable had the 5 massive outliers.

e) From the robust biplot, which two variables loaded highest with the
first principal component?
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