
Chapter 7

Canonical Correlation Analysis

7.1 Introduction

Let x be the p × 1 vector of predictors, and partition x = (wT , yT )T

where w is m × 1 and y is q × 1 where m = p − q ≤ q and m, q ≥ 2.
Canonical correlation analysis (CCA) seeks m pairs of linear combinations
(aT

1
w, bT

1
y), ..., (aT

mw, bT
my) such that corr(aT

i w, bT
i y) is large under some

constraints on the ai and bi where i = 1, ..., m. The first pair (aT
1
w, bT

1
y) has

the largest correlation. The next pair (aT
2
w, bT

2
y) has the largest correlation

among all pairs uncorrelated with the first pair and the process continues so
that (aT

mw, bT
my) is the pair with the largest correlation that is uncorrelated

with the first m− 1 pairs. The correlations are called canonical correlations

while the pairs of linear combinations are called canonical variables.
Some notation is needed to explain CCA. Let the p × p positive definite

symmetric dispersion matrix

Σ =

(

Σ11 Σ12

Σ21 Σ22

)

.

Let J = Σ
−1/2

11
Σ12Σ

−1/2

22
. Let Σa = Σ−1

11
Σ12Σ

−1

22
Σ21, ΣA = JJT =

Σ
−1/2

11
Σ12Σ

−1

22
Σ21Σ

−1/2

11
, Σb = Σ−1

22
Σ21Σ

−1

11
Σ12 and ΣB = JT J =

Σ
−1/2

22
Σ21Σ

−1

11
Σ12Σ

−1/2

22
. Let ei and gi be sets of orthonormal eigenvectors,

so eT
i ei = 1, eT

i ej = 0 for i 6= j, gT
i gi = 1 and gT

i gj = 0 for i 6= j. Let the
ei be m × 1 while the gi are q × 1.

Let Σa have eigenvalue eigenvector pairs (λ1, a1), ..., (λm, am) where λ1 ≥
λ2 ≥ · · · ≥ λm. Let ΣA have eigenvalue eigenvector pairs (λi, ei) for i =
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1, ..., m. Let Σb have eigenvalue eigenvector pairs (λ1, b1), ..., (λq, bq). Let
ΣB have eigenvalue eigenvector pairs (λi, gi) for i = 1, ..., q. It can be shown
that the m largest eigenvalues of the four matrices are the same. Hence
λi(Σa) = λi(ΣA) = λi(Σb) = λi(ΣB) ≡ λi for i = 1, ..., m. It can be shown

that ai = Σ
−1/2

11
ei and bi = Σ

−1/2

22
gi. The eigenvectors ai are not necessarily

orthonormal and the eigenvectors bi are not necessarily orthonormal.

Theorem 7.1. Assume the p×p dispersion matrix Σ is positive definite.

Assume Σ11,Σ22,ΣA,Σa,ΣB and Σb are positive definite and that Σ̂
P→ cΣ

for some constant c > 0. Let di be an eigenvector of the corresponding ma-
trix. Hence di = ai, bi, ei or gi. Let (λ̂i, d̂i) be the ith eigenvalue eigenvector
pair of Σ̂γ.

a) Σ̂γ
P→ Σγ and λ̂i(Σ̂γ)

P→ λi(Σγ) = λi where γ = A, a, B or b.

b) Σγd̂i − λid̂i
P→ 0 and Σ̂γdi − λ̂idi

P→ 0.
c) If the jth eigenvalue λj is unique where j ≤ m, then the absolute value

of the correlation of d̂j with dj converges to 1 in probability: |corr(d̂j, dj)| P→
1.

Proof. a) Σ̂γ
P→ Σγ since matrix multiplication is a continuous func-

tion of the relevant matrices and matrix inversion is a continuous function
of a positive definite matrix. Then λ̂i(Σ̂γ)

P→ λi since an eigenvalue is a
continuous function of its associated matrix.

b) Note that (Σγ−λiI)d̂i = [(Σγ−λiI)−(Σ̂γ − λ̂iI)]d̂i = oP (1)OP (1)
P→

0, and Σ̂γdi − λ̂idi
P→ Σγdi − λidi = 0.

c) If n is large, then d̂i ≡ d̂i,n is arbitrarily close to either di or −di, and
the result follows.

Rule of thumb 7.1. To use CCA, assume the DD plot and subplots
of the scatterplot matrix are linear. Want n > 10p for classical CCA and
n > 20p for robust CCA that uses FCH, RFCH or RMVN. Also make the
DD plot for the y variables and the DD plot for the z variables.

Definition 7.1. Let the dispersion matrix be Cov(x) = Σx. Let (λi, ei)
and (λi, gi) be the eigenvalue eigenvector pairs of ΣA and ΣB . The kth pair
of population canonical variables is

Uk = aT
k w = eT

k Σ
−1/2

11
w and Vk = bT

k y = gT
k Σ

−1/2

22
y

for k = 1, ..., m. Then the population canonical correlations ρk = corr(Uk, Vk)

166



=
√

λk for k = 1, ..., m. The vectors ak = Σ
−1/2

11
ek and bk = Σ

−1/2

22
gk are the

kth canonical correlation coefficient vectors for w and y.

Theorem 7.2. Johnson and Wichern (1988, p. 440-441): Let the dis-
persion matrix be Cov(x) = Σx. Then V (Uk) = V (Vk) = 1, Cov(Ck, Dj) =
corr(Ck, Dj) = 0 for k 6= j where Ck = Uk or Ck = Vk, and Dj = Uj or
Dj = Vj and j, k = 1, ..., m. That is, Uk is uncorrelated with Vj and Uj

for j 6= k, and Vk is uncorrelated with Vj and Uj for j 6= k. The first pair
of canonical variables is the pair of linear combinations (U, V ) having unit
variances that maximizes corr(U, V ) and this maximum is corr(U1, V1) = ρ1.
The ith pair of canonical variables are the linear combinations (U, V ) with
unit variances that maximize corr(U, V ) among all choices uncorrelated with
the previous k − 1 canonical variable pairs.

Definition 7.2. Suppose standardized data z = (wT , yT )T is used and
the dispersion matrix is the correlation matrix Σ = ρ. Hence Σii = ρ

ii

for i = 1, 2. Let (λi, ei) and (λi, gi) be the eigenvalue eigenvector pairs of ΣA

and ΣB . The kth pair of population canonical variables is

Uk = aT
k w = eT

k Σ
−1/2

11
w and Vk = bT

k y = gT
k Σ

−1/2

22
y

for k = 1, ..., m for k = 1, ..., m. Then the population canonical correlations

ρk = corr(Uk , Vk) =
√

λk for k = 1, ..., m.

Then Theorem 7.2 holds for the standardized data and the canonical
correlations are unchanged by the standardization.

Let

Σ̂ =

(

Σ̂11 Σ̂12

Σ̂21 Σ̂22

)

.

Define estimators Σ̂a, Σ̂A, Σ̂b and Σ̂B in the same manner as their population

analogs but using Σ̂ instead of Σ. For example, Σ̂a = Σ̂
−1

11
Σ̂12Σ̂

−1

22
Σ̂21.

Let Σ̂a have eigenvalue eigenvector pairs (λ̂i, âi), and let Σ̂A have eigen-
value eigenvector pairs (λ̂i, êi) for i = 1, ..., m. Let Σ̂b have eigenvalue eigen-
vector pairs (λ̂1, b̂1), and let Σ̂B have eigenvalue eigenvector pairs (λ̂i, ĝi) for
i = 1, ..., q. For these four matrices λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂m.

Definition 7.3. Let Σ̂ = S if data x = (wT , yT )T is used, and let
Σ̂ = R if standardized data z = (wT , yT )T is used. The kth pair of sample
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canonical variables is

Ûk = âT
k w = êT

k Σ̂
−1/2

11
w and V̂k = b̂

T

k y = ĝT
k Σ̂

−1/2

22
y

for k = 1, ..., m. Then the sample canonical correlations ρ̂k = corr(Ûk , V̂k)

=
√

λ̂k for k = 1, ..., m. The vectors âk = Σ̂
−1/2

11
êk and b̂k = Σ̂

−1/2

22
ĝk are

the kth sample canonical correlation vectors for w and y.

Theorem 7.3. Under the conditions of Definition 7.3, the first pair of
canonical variables (Û1, V̂1) is the pair of linear combinations (Û , V̂ ) having
unit sample variances that maximizes the sample correlation corr(Û , V̂ ) and
this maximum is corr(Û1, V̂1) = ρ̂1. The ith pair of canonical variables are
the linear combinations (Û , V̂ ) with unit sample variances that maximize
the sample corr(Û , V̂ ) among all choices uncorrelated with the previous k−1
canonical variable pairs.

7.2 Robust CCA

The R function cancor does classical CCA and the mpack function rcancor

does robust CCA by applying cancor on the RMVN set: the subset of the
data used to compute RMVN.

Some theory is simple: the FCH, RFCH and RMVN methods of RCCA
produce consistent estimators of the kth canonical correlation ρk on a large
class of elliptically contoured distributions.

To see this, suppose Cov(x) = cxΣ and C ≡ C(X)
P→ cΣ where

cx > 0 and c > 0 are some constants. Then C−1

XXCXY C−1

Y Y CY X
P→ ΣA =

Σ−1

XXΣXY Σ−1

Y Y ΣY X , and C−1

Y Y CY XC−1

XXCXY
P→ ΣB = Σ−1

Y Y ΣY XΣ−1

XXΣXY .
Note that ΣA and ΣB only depend on Σ and do not depend on the constants
c or cx.

(If C is also the classical covariance matrix applied to some subset of
the data, then the correlation matrix G ≡ RC applied to the same subset

satisfies G−1

XXGXY G−1

Y Y GY X
P→ RA = R−1

XXRXY R−1

Y Y RY X , and

G−1

Y Y GY XG−1

XXGXY
P→ RB = R−1

Y Y RY XR−1

XXRXY .)
Since eigenvalues are continuous functions of the associated matrix, and

the FCH, RFCH and RMVN estimators are consistent estimators of c1Σ, c2Σ

and c3Σ on a large class of elliptically contoured distributions, Theorem

168



7.1 holds, so these three RCCA methods and rcancor produce consistent
estimators the kth canonical correlation ρk on that class of distributions.

Example 7.1. Example 2.2 describes the mussel data. Log transforma-
tion were taken on muscle mass M , shell width W and on the shell mass

S. Then x contained the two log mass measurements while y contains L, H
and log(W ). The robust and classical CCAs were similar, but the canonical
coefficients were difficult to interpret since log(W ) has different units than
L and H. Hence the log transformation were taken on all five variables and
output is shown below.

The data set zm contains x and y, and the DD plot showed case 48 was
separated from the bulk of the data, but near the identity line. The DD plot
for x showed two cases, 8 and 48, were separated from the bulk of the data.
Also the plotted points did not cluster tightly about the identity line. The
DD plot for y looked fine. The classical CCA produces output $cor, $xcoef
and $ycoef. These are the canonical correlations, the ai and the bi. The
labels for the RCCA are $out$cor, $out$xcoef and $out$ycoef.

Note that the first correlation was about 0.98 while the second correlation
was small. The RCCA is the CCA on the RMVN data set, which is contained
in a compact ellipsoidal region. The variability of the truncated data set is
less than that of the entire data set, hence expect the robust ai and bi to
be larger in magnitude, ignoring sign, than that of the classical ai and bi,
since the variance of each canonical variate is equal to one, and RCCA uses
the truncated data. Note that a1 was roughly proportional to log(S) while
b1 gave slightly higher weight for log(H) then log(W ) and then log(L). Note
that the five variables have high pairwise correlations, so log(M) was not
important given that log(S) was in x. The second pair (a2, b2) might be
ignored since the second canonical correlation was very low.

> cancor(x,y)

$cor

[1] 0.9818605 0.1555381

$xcoef

[,1] [,2]

S 0.12650486 0.4077765

M 0.01897332 -0.4872522
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$ycoef

[,1] [,2] [,3]

L 0.1567463 0.7277888 2.1935890

W 0.1605139 0.8650480 -1.0676419

H 0.2143781 -2.0634587 -0.8303862

$xcenter

S M

4.563856 2.850187

$ycenter

L W H

5.472944 3.697654 4.723295

> rcancor(x,y)

$out

$out$cor

[1] 0.98596703 0.06797587

$out$xcoef

[,1] [,2]

S 0.14966183 0.6460117

M 0.03236328 -0.8543387

$out$ycoef

[,1] [,2] [,3]

L 0.1625452 0.4237524 -2.8492678

W 0.2369692 1.5379681 0.9356495

H 0.2530324 -2.6806462 1.7785931

$out$xcenter

S M

4.651941 2.948571

$out$ycenter

L W H

5.496255 3.728292 4.745839
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7.3 Summary

1) Let x be the p × 1 vector of predictors, and partition x = (wT , yT )T

where w is m × 1 and y is q × 1 where m = p − q ≤ q and m, q ≥ 2.
Canonical correlation analysis (CCA) seeks m pairs of linear combinations
(aT

1
w, bT

1
y), ..., (aT

mw, bT
my) such that corr(aT

i w, bT
i y) is large under some

constraints on the ai and bi where i = 1, ..., m. The first pair (aT
1
w, bT

1
y) has

the largest correlation. The next pair (aT
2
w, bT

2
y) has the largest correlation

among all pairs uncorrelated with the first pair and the process continues so
that (aT

mw, bT
my) is the pair with the largest correlation that is uncorrelated

with the first m− 1 pairs. The correlations are called canonical correlations

while the pairs of linear combinations are called canonical variables.

2) R output is shown in symbols for the following table.

corr
ρ̂1 · · · ρ̂1

wcoef
w â1 · · · âm

ycoef

y b̂1 · · · b̂m · · · b̂q

64) $out$cor

[1] 0.98596703 0.06797587 $out$ycoef

$out$xcoef [,1] [,2] [,3]

[,1] [,2] L 0.1625452 0.4237524 -2.8492678

S 0.14966183 0.6460117 W 0.2369692 1.5379681 0.9356495

M 0.03236328 -0.8543387 H 0.2530324 -2.6806462 1.7785931

3) Some notation is needed to explain CCA. Let the p×p positive definite
symmetric dispersion matrix

Σ =

(

Σ11 Σ12

Σ21 Σ22

)

.

Let J = Σ
−1/2

11
Σ12Σ

−1/2

22
. Let Σa = Σ−1

11
Σ12Σ

−1

22
Σ21, ΣA = JJT =

Σ
−1/2

11
Σ12Σ

−1

22
Σ21Σ

−1/2

11
, Σb = Σ−1

22
Σ21Σ

−1

11
Σ12 and ΣB = JT J =

Σ
−1/2

22
Σ21Σ

−1

11
Σ12Σ

−1/2

22
. Let ei and gi be sets of orthonormal eigenvectors,

so eT
i ei = 1, eT

i ej = 0 for i 6= j, gT
i gi = 1 and gT

i gj = 0 for i 6= j. Let the
ei be m × 1 while the gi are q × 1.

Let Σa have eigenvalue eigenvector pairs (λ1, a1), ..., (λm, am) where λ1 ≥
λ2 ≥ · · · ≥ λm. Let ΣA have eigenvalue eigenvector pairs (λi, ei) for i =
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1, ..., m. Let Σb have eigenvalue eigenvector pairs (λ1, b1), ..., (λq, bq). Let
ΣB have eigenvalue eigenvector pairs (λi, gi) for i = 1, ..., q. It can be shown
that the m largest eigenvalues of the four matrices are the same. Hence
λi(Σa) = λi(ΣA) = λi(Σb) = λi(ΣB) ≡ λi for i = 1, ..., m. It can be shown

that ai = Σ
−1/2

11
ei and bi = Σ

−1/2

22
gi. The eigenvectors ai are not necessarily

orthonormal and the eigenvectors bi are not necessarily orthonormal.
Theorem 7.1. Assume the p×p dispersion matrix Σ is positive definite.

Assume Σ11,Σ22,ΣA,Σa,ΣB and Σb are positive definite and that Σ̂
P→ cΣ

for some constant c > 0. Let di be an eigenvector of the corresponding ma-
trix. Hence di = ai, bi, ei or gi. Let (λ̂i, d̂i) be the ith eigenvalue eigenvector
pair of Σ̂γ.

a) Σ̂γ
P→ Σγ and λ̂i(Σ̂γ)

P→ λi(Σγ) = λi where γ = A, a, B or b.

b) Σγd̂i − λid̂i
P→ 0 and Σ̂γdi − λ̂idi

P→ 0.
c) If the jth eigenvalue λj is unique where j ≤ m, then the absolute value

of the correlation of d̂j with dj converges to 1 in probability: |corr(d̂j, dj)| P→
1.

7.4 Complements

Muirhead and Waternaux (1980) shows that if the population canonical cor-
relations ρk are distinct and if the underlying population distribution has a
finite fourth moments, then the limiting joint distribution of

√
n(ρ̂2

k − ρ2

k)
is multivariate normal where the ρ̂k are the classical sample canonical cor-
relations and k = 1, ..., p. If the data are iid from an elliptically contoured
distribution with kurtosis 3κ, then the limiting joint distribution of

√
n

ρ̂2

k − ρ2

k

2ρk(1 − ρ2

k)

for k = 1, ..., p is Np(0, (κ + 1)Ip). Note that κ = 0 for multivariate normal
data.

Alkenani and Yu (2012), Zhang (2011) and Zhang, Olive and Ye (2012)
develop robust CCA based on FCH, RFCH and RMVN.

7.5 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
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FUL.

7.1∗. Examine the R output in Example 7.1. a) What is the first canon-
ical correlation ρ̂1?

b) What is â1?
c) What is b̂1?

7.2. The R output below is for a canonical correlation analysis on Ven-
ables and Ripley (2003) CPU data. The variables were syct = log(cycle time
+ 1),
mmin = log(minimum main memory + 1),
chmin = log(minimum number of channels + 1),
chmax = log(maximum number of channels + 1),
perf = log(published performance + 1) and
estperf = 20/

√

(estimated performance+1). These six variables had a linear
scatterplot matrix and DD plot and similar variances. Want to compare the
two performance variables with the four remaining variables.

a) What is the first canonical correlation ρ̂1?

b) What is â1?

c) What is b̂1?

d) Interpret the second canonical variable U2 = âT
2
w.

> cancor(w,y)

$cor

[1] 0.8769433 0.2278554

$xcoef
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[,1] [,2]

perf 0.02536432 0.1558717

estperf -0.04121870 0.1431100

$ycoef

[,1] [,2] [,3] [,4]

syct -0.013613254 0.05700360 0.089757416 -0.011423664

mmin 0.037485282 -0.01874858 0.084442460 0.005859654

chmin 0.006932264 0.09843612 -0.021782624 0.090756713

chmax 0.019998948 0.01159728 0.007855559 -0.094198608

7.3. Edited SAS output for SAS Institute (1985, p. 146) Fitness Club
Data is given below for CCA. Three physiological and three exercise variables
measured on 20 middle aged men at a fitness club.

a) What is the first canonical correlation ρ̂1?

b) What is â1?

c) What is b̂1?

Canonical

Correlation

0.7956

0.2006

0.0726
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Raw Canonical Coefficients for the Physiological Variables

PHYS1 PHYS2 PHYS3

weight -0.0314 -0.0763 -0.0077

waist 0.0493 0.3687 0.1580

pulse -0.0082 -0.0321 0.1457

Raw Canonical Coefficients for the Exercise Variables

Exer1 Exer2 Exer3

chinups -0.0661 -0.0714 -0.2428

situps -0.0168 0.0020 0.0198

jumps 0.0140 0.0207 -0.0082

7.4. The output below is for a canonical correlations analysis on the R

Seatbelts data set where y1 = drivers = number of drivers killed or seriously
injured, y2 = front = number of front seat passengers killed or seriously
injured, and y3 = rear = number of back seat passengers killed or seriously
injured, x1 = kms = distance driven, x2 = PetrolPrice = petrol price and
x3 = V anKilled = number of van drivers killed. The data consists of 192
monthly totals in Great Britain from January 1969 to December 1984.

a) What is the first canonical correlation ρ̂1?

b) What is â1?

c) What is b̂1?

d) Let z = (xT , yT )T . The from the DD plot, the zi appeared to follow
a multivariate normal distribution. Sketch the DD plot.

> rcancor(x,y)

$out

$out$cor
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[1] 0.8116953 0.5064619 0.1376399

$out$xcoef

[,1] [,2] [,3]

x.kms -2.080206e-05 -0.0000233873 -2.259723e-06

x.PetrolPrice -1.847967e+00 3.7173715818 5.292041e+00

x.VanKilled 1.597620e-03 -0.0168450843 1.673662e-02

$out$ycoef

[,1] [,2] [,3]

y.drivers 1.678751e-06 -2.487259e-05 0.0004717902

y.front 5.594715e-04 -7.797027e-05 -0.0008157585

y.rear -9.964980e-04 -7.521578e-04 0.0005045756

7.5. The R output below is for a canonical correlation analysis on some
iris data. An iris is a flower, and there were 50 observations with 4 variables
sepal length, sepal width, petal length and petal width.

a) What is the first canonical correlation ρ̂1?

b) What is â1?

c) What is b̂1?

w<-iris3[,,3]

x <- w[,1:2]

y <- w[,3:4]

cancor(x,y)

$cor

[1] 0.8642869 0.4836991

$xcoef

[,1] [,2]

Sepal L. -0.223034210 -0.1186117
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Sepal W. -0.006920448 0.4980378

$ycoef

[,1] [,2]

Petal L. -0.257853414 -0.09094352

Petal W. -0.006108292 0.54939125
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