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Preface

Statistics is, or should be, about scientific investigation and how to do it
better ....

Box (1990)

Statistics is the science of extracting useful information from data, and
a statistical model is used to provide a useful approximation to some of the
important characteristics of the population which generated the data.

A case or observation consists of the random variables measured for one
person or thing. For multivariate location and dispersion the ith case is
xi = (xi,1, ..., xi,p)

T . There are n cases. Outliers are cases that lie far away
from the bulk of the data, and they can ruin a classical analysis.

Olive (2013) and this book give a two volume presentation of robust
statistics. Olive (2013) emphasized the location model, visualizing regres-
sion models, high breakdown regression, highly outlier resistant multivariate
location and dispersion estimators such as the FCH estimator, and applica-
tions of the FCH estimator for visualizing regression models.

Robust Multivariate Analysis tries to find methods that give good results
for multivariate analysis for a large group of underlying distributions and
that are useful for detecting certain types of outliers. Plots for detecting
outliers and prediction intervals and regions that work for large classes of
distributions are also of interest.

This book covers robust multivariate analysis. Topics include applications
of the easily computed robust estimators to multivariate analysis and when
can multivariate procedures give good results if the data distribution is not
multivariate normal.

Many of the most used estimators in statistics are semiparametric. For
multivariate location and dispersion (MLD), the classical estimator is the
sample mean and sample covariance matrix. Many classical procedures orig-
inally meant for the multivariate normal (MVN) distribution are semipara-

vi



Preface vii

metric in that the procedures also perform well on a much larger class of
elliptically contoured (EC) distributions.

An important goal of robust multivariate analysis is to produce easily
computed semiparametric MLD estimators that perform well when the clas-
sical estimators perform well, but are also useful for detecting some important
types of outliers.

Two paradigms appear in the robust literature. The “perfect classifica-
tion paradigm” assumes that diagnostics or robust statistics can be used to
perfectly classify the data into a “clean” subset and a subset of outliers. Then
classical methods are applied to the clean data. These methods tend to be
inconsistent, but this paradigm is widely used and can be very useful for a
fixed data set that contains outliers.

The “asymptotic paradigm” assumes that the data are iid and develops
the large sample properties of the estimators. Unfortunately, many robust
estimators that have rigorously proven asymptotic theory are impractical to
compute. In the robust literature for multivariate location and dispersion,
often no distinction is made between the two paradigms: frequently the large
sample properties for an impractical estimator are derived, but the examples
and software use an inconsistent “perfect classification” procedure. In this
text, some practical MLD estimators that have good statistical properties are
developed (see Section 4.4), and some effort has been made to state whether
the “perfect classification” or “asymptotic” paradigm is being used.

Olive (2013, ch. 10, 11) provides an introduction to robust multivariate
analysis. Also see Atkinson, Riani and Cerioli (2004), and Wilcox (2012).
Most work on robust multivariate analysis follows the Rousseeuw Yohai
paradigm. See Maronna, Martin and Yohai (2006).

What is in the Book?
This book examines robust statistics for multivariate analysis. Robust

statistics can be used to improve many of the most used statistical proce-
dures. Often practical robust outlier resistant alternatives backed by large
sample theory are also given, and may be used in tandem with the classi-
cal method. Emphasis is on the following topics. 1) The practical robust√

n consistent multivariate location and dispersion FCH estimator is devel-
oped, along with reweighted versions RFCH and RMVN. These estimators
are useful for creating robust multivariate procedures such as robust princi-
pal components, for outlier detection and for determining whether the data is
from a multivariate normal distribution or some other elliptically contoured
distribution. 2) Practical asymptotically optimal prediction regions are de-
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veloped.
Chapter 1 provides an introduction and some results that will be used

later in the text. Chapters 2 and 3 cover multivariate distributions and
limit theorems including the multivariate normal distribution, elliptically
contoured distributions, and the multivariate central limit theorem. Chapter
4 considers classical and easily computed highly outlier resistant

√
n con-

sistent robust estimators of multivariate location and dispersion such as the
FCH, RFCH and RMVN estimators. Chapter 5 considers DD plots and ro-
bust prediction regions. Chapters 6 through 13 consider principal component
analysis, canonical correlation analysis, discriminant analysis, Hotelling’s T 2

test, MANOVA, factor analysis, multivariate regression and clustering, re-
spectively. Chapter 14 discusses other techniques while Chapter 15 provides
information on software and suggests some projects for the students.

The text can be used for supplementary reading for courses in multivariate
analysis and pattern recognition. See Duda, Hart and Stork (2000) and
Bishop (2006). The text can also be used to present many statistical methods
to students running a statistical consulting lab.

Some of the applications in this text include the following.
1) The first practical highly outlier resistant robust estimators of multi-

variate location and dispersion that are backed by large sample and break-
down theory are given with proofs. Section 4.4 provide the easily computed
robust

√
n consistent highly outlier resistant FCH, RFCH and RMVN esti-

mators of multivariate location and dispersion. Applications are numerous,
and R software for computing the estimators is provided.

2) Practical asymptotically optimal prediction regions are developed in
Section 5.2, and should replace parametric prediction regions, which tend to
be far too short when the parametric distribution is misspecified, and also
replace bootstrap intervals that take too long to compute. These prediction
regions are extended to multivariate regression in Section 12.4.

3) Throughout the book there are goodness of fit and lack of fit plots
for examining the model. The main tool is the DD plot, and Section 5.1
shows that the DD plot can be used to detect multivariate outliers and as
a diagnostic for whether the data is multivariate normal or from some other
elliptically contoured distribution with second moments.

4) Applications for robust and resistant estimators are given. The basic
idea is to replace the classical estimator or the inconsistent zero breakdown
estimators (such as cov.mcd) used in the “robust procedure” with the easily
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computed
√

n consistent robust RFCH and RMVN estimators from Section
4.4. The resistant trimmed views methods for visualizing 1D regression mod-
els graphically are discussed in Section 14.3.

The website (www.math.siu.edu/olive/multbk.htm) for this book pro-
vides more than 20 data sets for Arc, and over 60 R/Splus programs in
the file mpack.txt. The students should save the data and program files on
a flash drive. Section 15.2 discusses how to get the data sets and programs
into the software, but the following commands will work.

Downloading the book’s R/Splus functions mpack.txt into R or
Splus:

Download mpack.txt onto a flash drive G. Enter R and wait for the cursor
to appear. Then go to the File menu and drag down Source R Code. A
window should appear. Navigate the Look in box until it says Removable
Disk (G:). In the Files of type box choose All files(*.*) and then select
mpack.txt. The following line should appear in the main R window.

> source("G:/mpack.txt")

If you use Splus, the above “source command” will enter the functions
into Splus. Creating a special workspace for the functions may be useful.

Type ls(). Over 60 R/Splus functions from mpack.txt should appear. In
R, enter the command q(). A window asking “Save workspace image?” will
appear. Click on No to remove the functions from the computer (clicking on
Yes saves the functions on R, but the functions are on your flash drive).

Similarly, to download the text’s R/Splus data sets, save mrobdata.txt on
a flash drive G, and use the following command.

> source("G:/mrobdata.txt")

Background
This course assumes that the student has had considerable exposure to

statistics, but is at a much lower level than most texts on robust statistics.
Calculus and a course in linear algebra are essential. The level of the text
is similar to that of Johnson and Wichern (2007), Mardia, Kent, and Bibby
(1979), Press (2005) and Rencher (2002). Anderson (2003) is at a much
higher level.

Lower level texts on multivariate analysis include Flury and Riedwyl
(1988), Grimm and Yarnold(1995, 2000), Hair, Black, Anderson and Tatham
(2005), Kachigan (1991) and Tabachnick and Fidell (2006).
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An advanced course in statistical inference, especially one that covered
convergence in probability and distribution, is needed for several sections of
the text. Casella and Berger (2002), Olive (2012b), Poor (1988) and White
(1984) easily meet this requirement.

If the students have had only one calculus based course in statistics (eg
Wackerly, Mendenhall and Scheaffer 2008), then skip the proofs of the theo-
rems. Chapter 2, Sections 3.1-3.3, 4.4, and Chapter 5 are important. Then
topics from the remaining chapters can be chosen.

Need for the book:
As a book on robust multivariate analysis, this book is an alternative

to the Rousseeuw Yohai paradigm and attempts to find practical robust
estimators that are backed by theory. As a book on multivariate analysis,
this book provides large sample theory for the classical methods, showing
that many of the methods are robust to nonnormality and work well on large
classes of distributions.

The Rousseeuw Yohai paradigm for high breakdown multivariate robust
statistics is to approximate an impractical brand name estimator by com-
puting a fixed number of easily computed trial fits and then use the brand
name estimator criterion to select the trial fit to be used in the final robust
estimator. The resulting estimator will be called an F-brand name estimator
where the F indicates that a fixed number of trial fits was used. For example,
generate 500 easily computed estimators of multivariate location and disper-
sion as trial fits. Then choose the trial fit with the dispersion estimator
that has the smallest determinant. Since the minimum covariance deter-
minant (MCD) criterion is used, name the resulting estimator the FMCD
estimator These practical estimators are typically not yet backed by large
sample or breakdown theory. Most of the literature follows the Rousseeuw
Yohai paradigm, using estimators like FMCD, FLTS, FMVE, F-S, FLMS, F-
τ , F-Stahel-Donoho, F-Projection, F-MM, FLTA, F-Constrained M, ltsreg,
lmsreg, cov.mcd, cov.mve or OGK that are not backed by theory. Maronna,
Martin and Yohai (2006, ch. 2, 6) and Hubert, Rousseeuw and Van Aelst
(2008) provide references for the above estimators.

The best papers from this paradigm either give large sample theory for
impractical brand name estimators that take too long to compute, or give
practical outlier resistant methods that could possibly be used as diagnostics
but have not yet been shown to be consistent or high breakdown. As a
rule of thumb, if p > 2 then the brand name estimators take too long to
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compute, so researchers who claim to be using a practical implementation
of an impractical brand name estimator are actually using a F-brand name
estimator.

Some Theory and Conjectures for F-Brand Name Estimators
Some widely used F-brand name estimators are easily shown to be zero

breakdown and inconsistent, but it is also easy to derive F-brand name esti-
mators that have good theory. For example, suppose that the only trial fit
is the classical estimator (x, S) where x is the sample mean and S is the
sample covariance matrix. Computing the determinant of S does not change
the classical estimator, so the resululting FMCD estimator is the classical
estimator, which is

√
n consistent on a large class of distributions. Now sup-

pose there are two trial fits (x, S) and (0, Ip) where x is a p × 1 vector, 0
is the zero vector and Ip is the p × p identity matrix. Since the determinant
det(Ip) = p, the fit with the smallest determinant will not be the classical
estimator if det(S) > p. Hence this FMCD estimator is only consistent on a
rather small class of distributions. Another FMCD estimator might use 500
trial fits, where each trial fit is the classical estimator applied to a subset
of size dn/2e where n is the sample size and d7.7e = 8. If the subsets are
randomly selected cases, then each trial fit is

√
n consistent, so the resulting

FMCD estimator is
√

n consistent, but has little outlier resistance. Choosing
trial fits so that the resulting estimator can be shown to be both consistent
and outlier resistant is a very challenging problem.

Some theory for the F-brand name estimators actually used will be given
after some notation. Let p = the number of predictors. The elemental con-
centration and elemental resampling algorithms use K elemental fits where
K is a fixed number that does not depend on the sample size n. To produce
an elemental fit, randomly select h cases and compute the classical estima-
tor (Ti, Ci) (or Ti = β̂i for regression) for these cases, where h = p + 1 for
multivariate location and dispersion (and h = p for multiple linear regres-
sion). The elemental resampling algorithm uses one of the K elemental fits
as the estimator, while the elemental concentration algorithm refines the K
elemental fits using all n cases. See Olive and Hawkins (2010, 2011) for more
details.

Breakdown is computed by determining the smallest number of cases dn

that can be replaced by arbitrarily bad contaminated cases in order to make
‖T‖ (or ‖β̂‖) arbitrarily large or to drive the smallest or largest eigenvalues
of the dispersion estimator C to 0 or ∞. High breakdown estimators have
γn = dn/n → 0.5 and zero breakdown estimators have γn → 0 as n → ∞.
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Note that an estimator can not be consistent for θ unless the number
of randomly selected cases goes to ∞, except in degenerate situations. The
following theorem shows the widely used elemental estimators are zero break-
down estimators. (If Kn → ∞, then the elemental estimator is zero break-
down if Kn = o(n). A necessary condition for the elemental basic resampling
estimator to be consistent is Kn → ∞.)

Theorem P.1: a) The elemental basic resampling algorithm estimators
are inconsistent. b) The elemental concentration and elemental basic resam-
pling algorithm estimators are zero breakdown.

Proof: a) Note that you can not get a consistent estimator by using Kh
randomly selected cases since the number of cases Kh needs to go to ∞ for
consistency except in degenerate situations.

b) Contaminating all Kh cases in the K elemental sets shows that the
breakdown value is bounded by Kh/n → 0, so the estimator is zero break-
down. QED

Theorem P.1 shows that the elemental basic resampling PROGRESS es-
timators of Rousseeuw (1984), Rousseeuw and Leroy (1987) and Rousseeuw
and van Zomeren (1990) are zero breakdown and inconsistent. Yohai’s two
stage estimators, such as MM, need initial consistent high breakdown estima-
tors such as LMS, MCD or MVE, but were implemented with the inconsistent
zero breakdown elemental estimators such as lmsreg, Fake-LMS, Fake-MCD,
MVEE or Fake-MVE. See Hawkins and Olive (2002, p. 157). You can get
consistent estimators if Kn → ∞ or hn → ∞ as n → ∞. You can get high
breakdown estimators and avoid singular starts if all Kn = C(n, h) = O(nh)
elemental sets are used, but such an estimator is impractical.
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