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Abstract

High breakdown multivariate location and dispersion, high breakdown regres-

sion, and outlier diagnostics have generated an enormous literature. High break-

down estimators are often computed with sub-sampling algorithms, and changes

to these algorithm estimators are needed to produce estimators that are useful for

both outlier detection and inference. For regression, the response and residual plots

are useful for outlier detection and for visualizing the model.

KEY WORDS: least trimmed sum of squares estimator, minimum co-

variance determinant estimator, outliers, robust regression.

∗David J. Olive is Associate Professor, Department of Mathematics, Southern Illinois University,

Mailcode 4408, Carbondale, IL 62901-4408, USA. Douglas M. Hawkins is Professor, School of Statistics,

University of Minnesota, Minneapolis, MN 55455-0493, USA. Their work was supported by the National

Science Foundation under grants DMS 0600933, DMS 0306304, DMS 9803622 and ACI 9619020.

1



1 Introduction

The multiple linear regression (MLR) model is Y = Xβ + e where Y is an n× 1 vector

of dependent variables, X is an n×p matrix of predictors, β is a p×1 vector of unknown

coefficients and e is an n × 1 vector of errors. The ith case (xT
i , Yi) corresponds to the

ith row xT
i of X and the ith element of Y .

A multivariate location and dispersion (MLD) model is a joint distribution for a p×1

random vector x that is completely specified by a p × 1 population location vector µ

and a p×p symmetric positive definite population dispersion matrix Σ. The multivariate

normal distribution is an important MLD model.

High breakdown (HB) estimators of MLR and of MLD are longstanding objects of

statistical research. These publications tend to concentrate on the theoretical properties

of the estimators they propose, and to downplay their computational aspects. The two

are, however, inextricably connected. If an estimator can not be computed in a tolerable

amount of time, then most of its theoretical properties are of only academic interest.

What is of interest is the properties of the estimator as it will actually be computed, and

these properties are something entirely different.

To illustrate the problem, consider an estimator whose computational complexity is

O(np), where n is the number of cases and p is the dimensionality. This complexity

(which applies for example to the least median of squares LMS criterion) is very modest

in the field of HB estimation; many criteria have complexity O(nn/2), but is enough to

highlight the problem. Suppose n and p are 200 and 10 respectively so that the data

set is small by modern standards. Then np ≈ 1023. A computer that could analyze one
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candidate solution per microsecond would take 5 billion years to evaluate the theoretical

estimator. This means HB estimators such as LMS, least trimmed sum of squares (LTS),

minimum covariance determinant (MCD), minimum volume ellipsoid (MVE), repeated

median, S-estimators, Stahel-Donoho estimators and many depth estimators are far too

slow to be practical as defined theoretically. Two stage estimators that use an initial

estimator from the above list are also impractical, including the cross checking, MM, one

step GM, one step GR, τ and t-type estimators. See Maronna, Martin and Yohai (2006)

for details on most of these estimators.

Section 2 reviews the theory for the sub-sampling algorithm estimators actually used.

Section 3 shows that computing HB MLR estimators is simple, and Section 4 gives a

graphical method for detecting MLR outliers.

2 Review of Theory for HB Algorithm Estimators

The actual estimators do not implement the theoretical criterion, but use some approxi-

mation. The workhorse of most estimators is the “basic resampling” or “elemental set”

method where random subsets of size p (for MLR but p + 1 for MLD) are drawn to get

trial estimators. In the “pure” basic resampling scheme, the final estimator used is the

best of K such trial solutions. Since each trial estimator is inconsistent, so is the final

estimator if K is fixed.

More recent methods tend to use these initial elemental estimators as a starting

point for refinement. Some perform a fixed number of refinement steps; others refine

to convergence. The final estimator is then the best of the “attractors” uncovered from
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these K starts.

None of these approaches is guaranteed to give a final solution that is close to the

theoretical solution whose good properties are shown, and theoretical analyses of the

procedure as actually implemented, rather than as conceptually defined, are rare.

The inadequacy of the original PROGRESS algorithm with K ≤ 3000 and no refine-

ment has long been familiar. Concentration estimators like FAST-LTS use k refinement

steps of an initial elemental start to identify “attractors” that are fits to ≈ n/2 of the

cases. By direct application of results in He and Portnoy (1992) and Lopuhaä (1999),

Hawkins and Olive (2002) showed that the best attractor has no better convergence than

its starting point, and so is not consistent if K and k are fixed and free of n. Hence

no matter how the attractor is chosen, the resulting estimator is not consistent. This is

equally true of the MLR or MLD problems.

More specifically, He and Portnoy (1992) and Lopuhaä (1999) show that if, for MLR

and MLD respectively a start b or (T,C) is a consistent estimator of β or (µ, sΣ), then

the attractor is a consistent estimator of β or (µ, aΣ) where a, s > 0 are some constants.

The start and the attractor have the same convergence rate; if the start is inconsistent,

then so is the attractor. The classical estimator applied to a randomly drawn elemental

set is an inconsistent estimator, so the K starts and the K attractors are inconsistent.

The final estimator is an attractor and thus inconsistent.

Iterating some starts to convergence so that k is not fixed, as suggested by Hubert,

Rousseeuw and Van Aelst (2008), produces inconsistent estimators if the attractor of a

randomly drawn elemental start is inconsistent.

Another popular algorithm uses K randomly chosen directions to define weights for

4



a weighted MLD estimator. If each of the K sets of weights results in an inconsistent

estimator, then the final estimator is inconsistent. Such approximations are completely

different estimators than the impractical estimators that have theory, such as the Stahel-

Donoho estimator.

The central thesis of Hawkins and Olive (2002) was that, given the disconnect between

the theoretically defined estimator and what can actually be computed, the theoretical

properties of the former do not necessarily give useful guidance on the properties of the

latter. Nearly all of the literature appears to overlook this disconnect, including Agulló,

Croux and Van Aelst (2008), Berrendero, Mendes and Tyler (2007), Hubert, Rousseeuw

and Van Aelst (2008), Maronna, Martin and Yohai (2006) and Zuo, Cui and He (2004).

3 Computing HB MLR Estimators

Turning to a somewhat different topic, consider breakdown in the MLR problem (similar

remarks apply to MLD). If d of the cases have been replaced by arbitrarily bad contam-

inated cases, then the contamination fraction is γ = d/n. Then the breakdown value of

the MLR β̂ is the smallest value of γ needed to make ‖β̂‖ arbitrarily large. Olive (2005)

showed that an MLR estimator is high breakdown if the median absolute or squared

residual stays bounded under high contamination: if ‖β̂‖ = ∞, then med(|ri|) = ∞, and

if ‖β̂‖ = M then med(|ri|) is bounded if fewer than half of the cases are outliers.

The folklore says that HB estimators are good: they make outliers have large absolute

residuals, and that an estimator should be judged by its breakdown value and Gaussian

efficiency; however, the property of being a high breakdown estimator is weaker than the
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property of being an asymptotically unbiased estimator.

To see that the folklore is false, consider the LMS estimator. In a plot of xT
i β̂LMS

vs Yi, the LMS(cn) estimator is determined by the “narrowest strip” covering cn ≈ n/2

cases. Picture a “planet and moon” data set in which the majority of the data constitute

a spheroid, indicating that in the majority of the cases there is no relationship between

x and Y , while a minority of the cases form a compact “moon”, located some distance

from the planet. Then as long as the moon remains within some cone, the narrowest

strip is likely to consist of all the outliers plus enough planetary points to make up the

half-sample. Suppose for example that a large data set comprises a single predictor x and

response Y , both being independent N(0,1). Now replace 40% of the cases with outlier

values clustered tightly about (x, Y ) = (k, bk). It can be shown that the LMS line will

accommodate the outliers provided |b| is no larger than about 5. Only for larger values

of |b| will the outliers be excluded from coverage, so cases located at say (100, 500) could

lie within the covered half-sample and have near-zero residuals. As for the fitted line,

the maximum absolute value of the slope of the LMS line is no more than about 5. As

5 < ∞, the breakdown property is indeed respected, but this may be small comfort to a

user who assumed that the fitted LMS slope would not be very far from the true value

of 0 that describes the inliers.

Breakdown involves the estimate of β tending to infinity or remaining bounded as data

values are replaced by arbitrary values. A very simple procedure gives high breakdown,

along with
√

n asymptotics at clean data. Suppose the MLR model has an intercept

β1. Let b = (med(Yi), 0, ..., 0)
T . Define the estimator β̂HB to equal the least squares

estimator β̂OLS if med(r2
i (β̂OLS)) ≤ med(r2

i (b)) and equal b otherwise. Then β̂HB is HB
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since its median squared residual is less than (MAD(Yi))
2, the squared median absolute

deviation. Consistent estimators such as OLS and LMS have a median squared residual

that converges to med(e2) where the random variable e has the same distribution as

the iid errors ei. Hence the criterion for the OLS estimator gets arbitrarily close to the

criterion for the LMS estimator, and if at least one of the slopes βi is nonzero, then the

probability that med(r2
i (β̂OLS)) ≤ med(r2

i (b)) goes to one. Hence β̂HB is high breakdown

with 100% asymptotic Gaussian efficiency since it is asymptotically equivalent to OLS.

This estimator is greatly superior to LMS because it is practical to compute and
√

n

consistent, but its outlier resistance is similar to that of OLS.

4 Graphical Detection of MLR Outliers

One application of the MLR algorithm estimators is outlier detection. Outlier diagnostics

such as Cook’s distances CDi from Cook (1977) and the weighted Cook’s distances WCDi

from Peña (2005) are also sometimes useful. For detection of outliers and influential cases,

it is crucial to make the residual plot of Ŷ vs r and the response plot of Ŷ = xT β̂ vs Y

with the identity line with zero intercept and unit slope added as a visual aid. Vertical

deviations from the identity line are the residuals ri = Yi − xT
i β̂.

Olive and Hawkins (2005) also showed that the two plots are crucial for visualizing

the MLR model and for examining lack of fit. If n > 10p and if the plotted points

scatter about the identity line and the r = 0 line in an evenly populated band, then

the MLR model with iid ei where VAR(ei) = σ2 may be reasonable. Deviations from

the evenly populated band suggest that something is wrong with the MLR model, and
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are often easily detected even if OLS is used. In the following examples, cases in the

plots with CDi > min(0.5, 2p/n) are highlighted with squares, and cases with |WCDi −

med(WCDi)| > 4.5MAD(WCDi) are highlighted with an open triangle in R and a cross

in Splus.

Example 1. Buxton (1920, p. 232-5) gives 20 measurements of 88 men. Consider

predicting stature using an intercept, head length, nasal height, bigonal breadth, and

cephalic index. One case was deleted since it had missing values. Five individuals,

numbers 61-65, were reported to be about 0.75 inches tall with head lengths well over

five feet! Figure 1 shows the OLS response plot and residual plot (made in R) for the

Buxton data. Notice that the OLS fit passes through the outliers, but the response plot

is resistant to Y –outliers since Y is on the vertical axis. Also notice that although the

outlying cluster is far from Y only two of the outliers had large Cook’s distance and only

case 62 had a large WCDi. Influence diagnostics are the most effective when there is a

single cluster about the identity line.

Example 2. Wood (1973) provides octane data where the octane number is predicted

from 3 feed compositions and the log of a combination of process conditions. Figure 1

shows the OLS response plot and residual plot (made in Splus). Although none of the

cases had large influence diagnostics, the two plots suggest that the iid error MLR model

with constant variance is not appropriate for this data. There seems to be three groups

of data and the largest group has a left opening megaphone shape.

Tremendous profit can be gained by raising the octane number by one point. To use

the response plot to visualize the MLR model, mentally examine the response plot for a
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narrow vertical strip about fit = w. The cases in the strip have octane numbers near w

on average. The two cases with the largest fitted values were of the greatest interest.

Using the response and residual plots, 26 benchmark data sets were examined for

large CDi and WCDi. Cook’s distances were useful for 8 of the data sets while Peña’s

distances were useful for 4 data sets; however, the numerical diagnostics did not provide

much information that could not be seen in the response and residual plots. The plots

often showed two or more groups of data, and for several data sets the outliers caused

an obvious tilt in the residual plot.

5 Conclusions

Many papers, for example the discussion of asymptotics of LMS and MCD in Kim and

Pollard (1990) and Butler, Davies and Jhun (1993), prove impressive large sample theory.

The practical usefulness of these theoretical properties however is clouded by the fact that

these estimators are unimplementable in moderate to large samples. The fact that they

are consistent and HB was used by Olive in 2004 to create MLR and MLD estimators

that are HB,
√

n consistent, easy to compute, but with much more outlier resistance than

β̂HB.

There is an important but unfilled need for fuller theoretical analysis of actual imple-

mentable HBEs to supplement the current results that may be mathematically elegant,

but do not address the questions of practical performance. For MLR, the response and

residual plots should be made to check whether the MLR model is reasonable.
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