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Abstract

Inference after variable selection is a very important problem. This paper derives the
asymptotic distribution of many variable selection estimators, such as forward selection and
backward elimination, when the number of predictors is fixed. Under strong regularity
conditions, the variable selection estimators are asymptotically normal, but generally the
asymptotic distribution is a nonnormal mixture distribution. The theory shows that the lasso
variable selection and elastic net variable selection estimators are y/n consistent estimators
of @ when lasso and elastic net are consistent estimators of 3. A bootstrap technique to
eliminate selection bias is to fit the variable selection estimator B*VS to a bootstrap sample to
find a submodel, then draw another bootstrap sample and fit the same submodel to get the

bootstrap estimator B}kw ;x- Bootstrap confidence regions were used for hypothesis testing.

1. Introduction

This section reviews regression models, variable selection, and some results on bootstrap
confidence regions. Consider regression models where the response variable Y is indepen-
dent of the p x 1 vector of predictors x given 73, written Y I x|z’ 3. Many important

regression models satisfy this condition, including multiple linear regression, the Nelder and



Wedderburn (1972) generalized linear models (GLMs), and the Cox (1972) proportional haz-
ards regression model. Forward selection or backward elimination with the Akaike (1973)
AIC criterion or Schwarz (1978) BIC criterion are often used for variable selection.

Some shrinkage methods do variable selection: the regression method, such as a GLM,
uses the predictors that had nonzero shrinkage estimator coefficients. These methods include
least angle regression, lasso, relaxed lasso, and elastic net. Least angle regression variable
selection is the LARS-OLS hybrid estimator of Efron et al. (2004, p. 421). Lasso variable
selection is called relaxed lasso by Hastie, Tibshirani, and Wainwright (2015, p. 12), and
the relaxed lasso estimator with ¢ = 0 by Meinshausen (2007, p. 376). Also see Fan and
Li (2001), Friedman, Hastie, and Tibshirani (2010), Simon et al. (2011), Tibshirani (1996),
and Zou and Hastie (2005). The Meinshausen (2007) relaxed lasso estimator fits lasso with
penalty A, to get a subset of variables with nonzero coefficients, and then fits lasso with a
smaller penalty ¢, to this subset of variables where n is the sample size.

Two important quantities for a regression model are the sufficient predictor SP = 2”3,
and the estimated sufficient predictor ESP = :I;TB. For the regression models, the condi-
tioning and subscripts, such as ¢, will often be suppressed. The multiple linear regression
model is Y|z = 7B + e or V; = 1B + ¢; for i = 1,...,n. Consider a parametric re-
gression model Y|z ~ D(zTB,v) where D is a parametric distribution that depends on
the p x 1 vector of predictors & only through &’ 3, and ~ is a ¢ x 1 vector of parameters.

Three examples used in the simulations follow. The binomial logistic regression model is

oSP
Y, ~ binomial (mi,p(SP) =

1+e5F

) . The binary logistic regression model has m; = 1 for
1 =1,...,n. A useful Poisson regression model is Y ~ Poisson (esp). The Weibull propor-

tional hazards regression model is
VISP ~ W (v, Aoexp(SP))
where Y has a Weibull W (~, \) distribution if the probability density function of Y is

fly) = My " exp[=Xy"] for y > 0.



Following Olive and Hawkins (2005), a model for variable selection can be described by

'8 =xiBs+ LBy = w5 By (1)

where = (1, L)

, Tg is an ag X 1 vector, and x is a (p — ag) X 1 vector. Given that xg
is in the model, B; = 0 and E denotes the subset of terms that can be eliminated from the
model. Let x; be the vector of a terms from a candidate subset indexed by I, and let o be

the vector of the remaining predictors (out of the candidate submodel). Suppose that S is

a subset of I and that model (1) holds. Then
z' B = x5B8s = 1 B + x50 = 7 By

Thus B, = 0 if S C I. The model using 3 is the full model.

To clarify notation, suppose p = 4, a constant 1 = 1 corresponding to [; is always in the
model, and B = (31, £2,0,0)T. Then there are J = 2P~! = 8 possible subsets of {1,2, ..., p}
that contain 1, including I; = {1} and S = I, = {1,2}. There are 27~ = 4 subsets such
that S C I,. Let BIZ = (Bl,BQ)T and xy, = (21, 70)%.

Let I,,;, correspond to the set of predictors selected by a variable selection method such
as forward selection or lasso variable selection. If 3 ; is a x 1, use zero padding to form
the p x 1 vector B 7o from B ; by adding Os corresponding to the omitted variables. For
example, if p = 4 and Blmm = (ﬁAl,ﬁAg)T, then the observed variable selection estimator
Bvs = Blmm,o = (31, 0, 3, 0)T. As a statistic, Bvs = B%O with probabilities mg, = P(Lmim =
Iy) for k=1, ..., J where there are J subsets, e.g. J =2P — 1.

The large sample theory for 3 w1x, defined below, is useful for explaining the large sample
theory of Bvs- Let B wmix be arandom vector with a mixture distribution of the B 1,0 With
probabilities equal to m,. Hence 3 MIX = B%O with the same probabilities m, of the
variable selection estimator 3y,g, but the Ij, are randomly selected. A random vector w has
a mixture distribution of random vectors w; with probabilities 7; if w equals the randomly

selected random vector w; with probability 7; for j = 1,...,J. Let w and u; be p x 1 random



vectors. Then the cumulative distribution function (cdf) of w is

J
Fu(t) = Z 7 Fy, (t)

where the probabilities 7; satisfy 0 < 7; < 1 and Z}]=1 m; =1, J > 2, and Fy,(t) is the cdf
of u;. Suppose E(h(u)) and the E(h(u;)) exist. Then

J
E(h(u) = > mElh(w;)] and

J J
Cov(u) = Z%’COV(’%) + ZWjE(Uj)[E(Uj)]T — E(u)[E(w)]".

J
If E(u;) =0 for j=1,...,J, then E(u) =60 and Cov(u) = Z']TjCOV('U/j).
j=1

Inference will consider bootstrap hypothesis testing with confidence intervals (Cls) and
regions. Consider testing Hy : @ = 0, versus Hy : 0 # 0y where 0 is a known g x 1 vector.
A large sample 100(1 — )% confidence region for 6 is a set A, such that P(0 € A,) is
eventually bounded below by 1 — § as the sample size n — oo. Then reject Hy if 8 is not
in the confidence region. Let the g x 1 vector T}, be an estimator of 6. Let 77, ..., T be the
bootstrap sample for T;,. Let A be a full rank ¢ x p constant matrix. For variable selection,
test Hy : AB = 6 versus H; : A3 # 6, with 8 = AB3. Then let T,, = ABSEL and let
Tr = AB;EL fori=1,..,Band SELis V.S or MIX. Let [x] be the smallest integer > z.
For g = 1, let the shortest closed interval containing at least ¢ of the T* be the shorth(c)
estimator. See Frey (2013). Then the large sample 100(1 — §)% shorth(c) CI for 6 is

(T3 Tioeeny) With ¢ =min(B, [B[1— 6+ 1.12¢/6/n ] ). (2)

The shorth confidence interval is a practical implementation of the Hall (1988) shortest
bootstrap interval based on all possible bootstrap samples.
The confidence regions use Mahalanobis distances D; and a correction factor to get better

coverage when B > 50¢g. This result is useful because the bootstrap confidence regions can



be slow to simulate. Let

gg =min(1 — 6 +0.05,1 = + g/B) for 6 > 0.1 and
g =min(1 —4§/2,1 -5+ 10dg/B), otherwise. (3)

If1—-6<0.999 and gp < 1 -6+ 0.001, set gg = 1 — 0. Let Dy, be the 100gpth sample
percentile of the D;. Let T be g x 1 and let C be a g x g symmetric positive definite matrix.

Then the ith squared sample Mahalanobis distance is the scalar
D} = D}(T.C) = D3 (T,C) = (2; = 1)"C7 (2 = T)

for each observation z;. Let T and S7 be the sample mean and sample covariance matrix
of the bootstrap sample.

The Olive (2017ab, 2018) prediction region method (4), modified Bickel and Ren (2001)
(5), and Pelawa Watagoda and Olive (2021) hybrid (6) large sample 100(1 — §)% confidence
regions for 0 are {w : D2, (T, 84) < D?UB)} =

{w: (w T[S (w~T) < Dy} (4)

where D7, , is computed from D? = (T =TT [S5) (T =T Yfori=1,...,B (if g = 1, (4) is
a closed interval centered at T just long enough to cover Ug of the T7), {w : D2,(T,,, S&) <

Diy,m} =
{w: (w—T,)"[S7] " (w—T,) < Dfy, 1} (5)

where the cutoff D?UB’T) is the 100gpth sample percentile of the D? =
(Ty = To)"[S7) (T = Tn), and {w : Diy(T,,, 87) < Dy} =

{w:(w—T,)"[S7] 7 (w—T,) < Diy,,)}- (6)

Under regularity conditions, Olive (2017b, 2018) proved that (4) is a large sample confi-
dence region. See Bickel and Ren (2001) for (5), while Pelawa Watagoda and Olive (2021)

gave simpler proofs and proved that (2) is a large sample CI. Assume w, L where



w, = V(TF — T), Vr(Tr =T, Va(T, — 6), or va(T" — 6), and nS; 2> C where C is

7

nonsingular. Let

D} = D;.(T", 87) = Va(T; = T)"(nS7) " Va(T; = T),

D} = D}(T,, S3) = V(T — 6)" (nS3)~ V(T — 6),
D2 = D)(T", S3) = V/a(T" — 8)" (nS3) " Vi(T ~ ), and
D} = D3.(T,, S3) = V(T — T,)" (nS3) " Va(T} - To).

Then D? ~ u”(nS})'u ~ u"C 'u, and the percentiles of D and D} can be used as
cutoffs. Confidence regions (4) and (6) have the same volume.

The ratio of the volumes of regions (4) and (5) is

|S§“|1/2 ( D(UB) )g _ ( D(UB) )g‘ (7)
1S71Y2 \ Dws,m) Dwy 1)

The volume of confidence region (5) tends to be greater than that of (4) since the T are

closer to T than T}, on average.

Section 2 gives large sample theory for B mix and Bvs- Section 3 shows how to bootstrap
these two estimators, and Section 4 gives a simulation.
2. Large Sample Theory For Variable Selection Estimators

The new Theorems 1 and 3 in this section generalize the Pelawa Watagoda and Olive
(2020, 2021) theory for multiple linear regression to many other models. Theorem 2, due
to Pelawa Watagoda and Olive (2021), is added for reference with an improved proof. The
theory assumes that there is a “true model” S and that at least one subset [ is considered
such that S C I. For example, with forward selection and backward elimination, the theory
assumes that the full model contains S. The theory does not hold if the true model S is not a
subset of any of the considered models. For example, S could contain some interactions that
were not included in the “full” model. Checking that the full model is good is important.

Assume p is fixed. Suppose model (1) holds, and that if S C I; where the dimension of I;
is a;, then \/H(Blj —By) e Ny, (0, V ;) where V' is the covariance matrix of the asymptotic



multivariate normal distribution. Then

Vi(Br o~ B) 2 Ny(0, V) (8)

where V ;o adds columns and rows of zeros corresponding to the x; not in I;, and V, is
singular unless /; corresponds to the full model. This large sample theory holds for many
models, including multiple linear regression fit by least squares (OLS), GLMs fit by maximum
likelihood, and Cox regression fit by maximum partial likelihood. See, for example, Sen and
Singer (1993, pp. 280, 309).

The first assumption in Theorem 1 is P(S C I,;,) — 1 as n — oo. Then the variable
selection estimator corresponding to I,,;, underfits with probability going to zero, and the
assumption holds under regularity conditions if BIC or AIC is used for many parametric
regression models such as GLMs. See Charkhi and Claeskens (2018) and Claeskens and
Hjort (2008, pp. 70, 101, 102, 114, 232). This assumption is a necessary condition for a
variable selection estimator to be a consistent estimator. See Zhao and Yu (2006). Thus
if a shrinkage estimator that does variable selection is a consistent estimator of 3, then
P(S C Ihin) — 1 as n — oo. Hence Theorem 1c¢) proves that the lasso variable selection
and elastic net variable selection estimators are y/n consistent estimators of 3 if lasso and
elastic net are consistent. Also see Theorem 3. The assumption on wj, in Theorem 1 is
reasonable by (8) since S C I; for each 7;, and since B wmix uses random selection.

Consider the assumption P(S C I,,;,) — 1 as n — oo for multiple linear regression.
Charkhi and Claeskens (2018) proved the assumption holds for AIC for a wide variety of
error distributions. Shao (1993) gave similar results for AIC, BIC, and C,. The assumption
holds for lasso variable selection and elastic net variable selection provided that A, /n— 0 as
n — oo so lasso and elastic net are consistent estimators. Here ), is the shrinkage penalty
parameter selected after k-fold cross validation. See Pelawa Watogoda and Olive (2020) and
Knight and Fu (2000). Next we give a new argument for the Mallows (1973) C, criterion
when each submodel contains a constant. Let submodel I have k£ < p predictors including a

constant. Then
B SSE(I)

7



where MSE is for the full model, and C,(I) > —p. Assume the full model is one of the
submodels considered with C,(full) = p, e.g. forward selection, backward elimination,
stepwise selection, and all subsets selection. Then —p < Cp(Inin) < p. Let 7 be the residual

vector for the full model and r; that for the submodel. Then the correlation

rr(r,rr) = n=p
COMmT =\ (1) + n — 2k

by Olive and Hawkins (2005). Thus corr(r,r; . ) — 1 as n — oo. Suppose S is not a subset
of I. Under the model ¥ 3 = xL 3, corr(r,r;) will not converge to 1 as n — oo, and for
large enough n, [corr(r,r[)]? < < 1. Thus C,(I) — oo as n — oo. Hence P(S C Ipin) — 1
as n — oo if the zero mean iid errors have constant variance o2

Theorem 1 a) proves that w is a mixture distribution of the w; with probabilities 7;,
E(u) =0, and Cov(u) = Xy, = 3, m;V ;0. Some of the submodels I; will have 7, = 0. For
example, since the probability of underfitting goes to zero, every submodel [, that underfits
has 7, = 0. Hence S C I; corresponding to the m; > 0. If my = 1, then submodel I is picked
with probability going to 1 as n — oo, and I; is the only submodel with a positive 7. Often

74 = g in the literature.

Theorem 1 Assume P(S C In) — 1 asn — oo, and let BMIX = Blk,o with probabilities
Tin Where T, — T, asn — oo. Denote the positive m by m;. Assume w;, = \/H(sz,o—ﬁ) A
uj ~ N,(0,V,o). a) Then

Upn = \/E(BMIX - B) Sy (9)

where the cdf of w is Fu(t) = ;7 Fu,(t).
b) Let A be a g X p full rank matriz with 1 < g < p. Then

v, = Au, = \/E(ABMIX — ApB) 5 Au=v (10)

where v has a mizture distribution of the v; = Au; ~ N,(O0, AVLOAT) with probabilities ;.
¢) The estimator By is a \/n consistent estimator of B: /n(Bys — B) = Op(1).
d) If 7y = 1, then \/n(Bgpy, — B) Do~ N,(0,V 40) where SEL is V.S or MIX.



Proof. a) Since u,, has a mixture distribution of the wug, with probabilities m,, the cdf of
U is P, (t) = >0 menFuy, (]) — Fu(t) = 2, mjFu;(t) at continuity points of the Fuy, (1)
as n — 0o.

. D D
b) Since u,, — u, then Au,, — Au.
¢) The result follows since selecting from a finite number J of \/n consistent estimators (even
on a set that goes to one in probability) results in a y/n consistent estimator by Pratt (1959).
d) If 74 = 1, there is no selection bias, asymptotically. The result also follows by Potscher

(1991, Lemma 1). O

The following subscript notation is useful. Subscripts before the MIX are used for
subsets of 3,75 = (B1,-... 3,)7. Let BLMIX — (. Similarly, if I = {iy, ..., i,}, then BLMIX =
(Biy, -, 3i)T. Subscripts after MIX denote the ith vector from a sample BMIX’I, s BMIX’B.
Similar notation is used for other estimators such as Bvs- The subscript 0 is still used for
zero padding. We may use FULL to denote the full model 3 = By ;.

Typically the mixture distribution is not asymptotically normal unless a 7, = 1 (e.g.
if S is the full model), or if for each m;, Au; ~ N,(0, AV, A") = N,(0, AXA"). Then
Vi(AByx — AB) D Ay~ N,(0, A AT). This special case occurs for BSMIX if /n(B—
I6) KA N,(0,V) where the asymptotic covariance matrix V' is diagonal and nonsingular.
Then B& wmix and B&FULL have the same multivariate normal limiting distribution. For
several criteria, this result should hold for Bvs since asymptotically, \/H(ABVS — Ap) is
selecting from the Aw; which have the same distribution. In the simulations when V is
diagonal, the confidence regions applied to AB;EL = BB;SEL had similar volume and
cutoffs where SEL is MIX, VS, or FULL.

Theorem 1 can be used to justify prediction intervals after variable selection. See Olive,
Rathnayake, and Haile (2021). Theorem 1d) is useful for variable selection consistency and
the oracle property where 7y = mg = 1 if P(L;pin = S) — 1 as n — oo. See Claeskens and
Hjort (2008, pp. 101-114) and Fan and Li (2001) for references. A necessary condition for
P(Ipin = S) — 1 is that S is one of the models considered with probability going to one.

This condition holds under strong regularity conditions for fast methods. See Wieczorek



(2018) for forward selection and Hastie, Tibshirani, and Wainwright (2015, pp. 295-302) for
lasso, where the predictors need a “near orthogonality” condition.

The following Pelawa Watagoda and Olive (2021) theorem is useful for bootstrapping
variable selection estimators. Let (T, S7) be the sample mean and sample covariance matrix
computed from 77, ..., T which have the same distribution as 7T,, where T; = Tj,. Let
D7,y be the cutoff computed from the D*(T,S7) for i = 1,...,B. The hyperellipsoids
corresponding to D?(T},, C) and D?*(T, C) are centered at T}, and T, respectively. Note that
D(T,,C) = D% (T,C). Thus D(T,,C) < D?UB) iff D7 (T,C) < D?UB). In Theorem
2, since R, contains T with probability 1 — dp, the region R. contains 7" with probability
1 — dp. Since T}, depends on the sample size n, we need (nS7)~! to be fairly well behaved,
e.g. (nSr)t L2y

Theorem 2: Geometric Argument. Suppose /n(T, — 6) B w with Eu) =0
and Cov(u) = Xq # 0. Assume Ti,...,Tp are iid with nonsingular covariance matrix
31, where (nSt)™! il 3t Then the large sample 100(1 — §)% prediction region R, =
{w : D},(T,Sr) < D?UB)} centered at T contains a future value of the statistic Ty with
probability 1 — dg which is eventually bounded below by 1 — 6 as B — oo. Hence the region
R. = {w : D},(T,,St) < D?UB)} is a large sample 100(1 — §)% confidence region for
where T}, 1s a randomly selected Tj;.

Proof. The region R, centered at a randomly selected 7}, contains 7" with probability
1 — dp which is eventually bounded below by 1 —¢§ as B — oo. Since the /n(T; — 0) are iid,

\/E(Tl — 0) V1
) D )
ﬁ
\/E(TB — 0) VB
where the v; are iid with the same distribution as w. For fixed B, the average of these

random vectors is

B
— D 1 Eu
\/’E(T—O) — E izgl v; ~ ANg (0, ?)

where AN, denotes an approximate multivariate normal distribution. Hence (T — 0) =

10



Op((nB)~'/?), and T gets arbitrarily close to @ compared to T, as B — oco. Thus R, is a
large sample 100(1 — §)% confidence region for @ as n, B — co. O

Examining the iid data cloud 71, ..., T and the bootstrap sample data cloud 17, ..., T} is
often useful for understanding the bootstrap. If \/n(7T, — ) and /n(T;* —T,,) both converge
in distribution to u ~ Ny (0, X), say, then the bootstrap sample data cloud of 17, ..., T} is
like the data cloud of iid 77, ..., T shifted to be centered at T,,. Then the hybrid region (6)
is a confidence region by the geometric argument (as is region (5) which tends to use a larger
cutoff), and (4) is a confidence region if \/n(T" — T,) Zo.

For T}, = AB,;;x with 8 = AB3, we have /n(T, — 6) 2w by (10) where E(v) = 0,
and Xop = Zj m;AV ;o AT, By Theorem 2, if we had iid data 71, ..., T, then R, would be a
large sample confidence region for 8. If \/n(TF —T,) 2 v, then we could use the bootstrap
sample and confidence regions (4) to (6). This condition holds only under strong regularity
conditions such as 7y =1 or 8 = AB = B34 if V was diagonal. Section 3 will explain why
the bootstrap confidence regions may still be useful.

Pétscher (1991) used the conditional distribution of By ¢|(By g = Blk,o) to find the dis-
tribution of w, = /n(Bys — B). Define P(A|B,)P(By) = 0 if P(B) = 0. Let 3270
be a random vector from the conditional distribution Blk,0|(BVS = Blk,o)- Let wy, =
VilBs — Bl(Bus = Bro) ~ VilBys — B). Denote Fz(t) = Pzt <ty < 1,) by
P(z <t). Then Potscher (1991) and Pelawa Watagoda and Olive (2020) show

J
Fu,(t) = Pn'*(Bys — B) < t] = Fuw,, ()T
k=1

Hence Bvs has a mixture distribution of the Bio with probabilities m,, and w, has a
mixture distribution of the wy, with probabilities 7.

Charkhi and Claeskens (2018) showed that wj, = \/H(BICJO - B) A w; if S C I for the
maximum likelihood estimator (MLE) with AIC, and gave a forward selection example. Here
w; is a multivariate truncated normal distribution (where no truncation is possible) that is
symmetric about 0. Note that both /7 (By;x — 3) and n(Byg — B) are selecting from

the ug, = \/H(sz,o — B) and asymptotically from the ;. The random selection for B,y

11



does not change the distribution of wj,, but selection bias does change the distribution of
the selected w;, and u; to that of w;, and w;. The assumption that wj, 5 w; may not
be mild. The proof for Equation (11) is the same as that for (9). Theorem 3 proves that w
is a mixture distribution of the w; with probabilities ;.

Theorem 3. Assume P(S C I,,) — 1 asn — oo, and let Bvs = Blk,o with probabilities
Tkn Where Ty, — T, as n — o0o. Denote the positive w1, by 7;. Assume wj, = \/H(Bgo —

I6) e w;. Then

D

Wy, = \/E(Bvs -B)—w (11)

where the cdf of w is Faw(t) = ), mjFw,(t).
3. Bootstrapping Variable Selection Estimators

Obtaining the bootstrap samples for Bvs and B wix is simple. Generate Y and X*
that would be used to produce B* if the full model estimator 3 was being bootstrapped.
Instead of computing B*, compute the variable selection estimator B*VSJ = B;Z o- Then
generate another Y™ and X" and compute BTWXJ = BZPO (using the same subset Iy, ).
This process is repeated B times to get the two bootstrap samples for ¢+ = 1,..., B. Let
the selection probabilities for the bootstrap variable selection estimator be pg,. Then this
bootstrap procedure bootstraps both Bvs and B mix With mr, = pgn. Then apply the
confidence regions (4), (5), and (6) on the bootstrap sample 77, ..., T}, where T} = AB;EL’Z-
where SEL is VS or MIX.

By Section 2, we expect the confidence regions to simulate well (have coverage close to
or higher than the nominal level so that the type I error is close to or less than the nominal
level) if 74, = 1 or if the asymptotic covariance matrix for the full model is nonsingular and
diagonal, but these conditions are very strong. In simulations for Bvs with n > 20p, if the
confidence regions (4) and (5) simulated well for the full model bootstrap, then (4) and (5)
also simulated well for 3,,g. The hybrid confidence region (6) had poorer performance, and
confidence regions for By ¢ tended to have less undercoverage than confidence regions for

Ak

/BMIX'

Undercoverage can occur if the bootstrap data cloud is less variable than the iid data

12



cloud, e.g., if n < 20p. Heuristically, if n > 20p, then coverage can be higher than the nominal
coverage for two reasons: i) the bootstrap data cloud 77, ..., T} is more variable than the iid
data cloud of T1, ..., Ts, and ii) zero padding. In the simulations for H, : A3 = BB¢ = 0, the
simulated coverage for confidence intervals and confidence regions (4) and (5) was roughly
2% less than to 2% higher than the nominal 95% coverage due to i). In the simulations
for Hy : AB = BB, = 0, the simulated coverage for confidence intervals and confidence
regions (4) and (5) tended to be close to 99% when the nominal coverage was 95%, but
the nominal 95% confidence intervals tended to be shorter than those for the full model,
and the confidence region volumes were often much smaller than those for the full model.
See Pelawa Watagoda and Olive (2021) for more on why zero padding tends to increase the
coverage while decreasing the volume of the confidence regions and confidence intervals. The
simulations also used B > max(200,50p) so that S7 is a good estimator of Cov(7™).

The matrix S7 can be singular due to one or more columns of zeros in the bootstrap
sample for 3, ..., B,. The variables corresponding to these columns are likely not needed in
the model given that the other predictors are in the model. A simple remedy is to add d
bootstrap samples of the full model estimator B* = B*FULL to the bootstrap sample. For
example, take d = [c¢B| with ¢ = 0.01. A confidence interval [L,,U,| can be computed
without S7 for (4), (5), and (6). Using the confidence interval [max(Ly,, T7})), min(Un, () )]
can give a shorter covering region.

Next we examine why the bootstrap data cloud tends to be more variable than the iid
data cloud. Let Bj, count the number of times T = T in the bootstrap sample. Then the

bootstrap sample 77, ..., T} can be written as

* * * *
T1,1> "'>TB1n,1> e 41,0 "'>TBJn,J‘

Denote 175, ..., T§.

g as the jth bootstrap component of the bootstrap sample with sample

mean T; and sample covariance matrix Sy ;. Similarly, we can define the jth component of

the iid sample T1, ..., T to have sample mean T'; and sample covariance matrix S7 ;.

Let T, = Byx. If S C I, assume \/H(BI], - By) A N, (0,V;) and \/H(BZ — Blj) A

13



Nqg,;(0,V ;). Then by Equation (8),
\/E(BIJ»,O - 5) L Np(0> Vj,o) and \/H(Bz,o - Blj,o) 5 Np(0> Vj,O)- (12)

If Equation (12) holds, then the component clouds have the same variability asymptotically,
and the confidence regions will shrink to a point at 3 as n — oo, giving good test power,
asymptotically. The iid data component clouds are all centered at 3. If the bootstrap data
component clouds were all centered at the same value B, then the bootstrap cloud would
be like an iid data cloud shifted to be centered at 3, and (5) and (6) would be confidence
regions for @ = 3 by Theorem 2. Instead, the bootstrap data component clouds are shifted
slightly from a common center, and are each centered at a B 1,,0° Geometrically, the shifting
of the bootstrap component data clouds makes the bootstrap data cloud more variable than
the iid data cloud, asymptotically (we want n > 20p). The shifting also makes the T7* further
from T than if there is no shifting. A similar argument can be given for T}, = ABMIX and
0 = AB. Region (4) has the same volume as region (6), but tends to have higher coverage
since empirically, the bagging estimator T tends to estimate 0 at least as well as T}, for a
mixture distribution. See Breiman (1996) and Yang (2003).

The above argument is heuristic since we have not been able to prove that the coverage
is > 1 — ¢, asymptotically, except under strong regularity conditions. Then the type I error
< §, asymptotically. Confidence region (5) rejects Hy if (15, —00) [S] 1 (T,, — o) > Dy my:
If an iid data cloud was available, the cutoff D?UB)(T w, S7) could be computed from D? =
(T; — 600)"[S] 1 (T; — ) for i = 1, ..., B. Hence the type I error is controlled if D?UB’T) tends
to be larger than DZ; (T, S7).

The bootstrap component clouds for B*V g are again separated compared to the iid clouds
for BVS, which are centered about 8. Heuristically, most of the selection bias is due to
predictors in E, not to the predictors in S. Hence B;VS is roughly similar to B;MIX.
Typically the distributions of B*Eys and B*E vix are not similar, but use the same zero
padding.

Next we will examine when Equation (12) holds. If S C [;, then \/H(BI], - By,) A

Ny, (0, V) by the large sample theory (8) for the estimator. Bootstrap theory should show
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that (8 — B) A N,(0, V), but showing \/H(BZ - ij) A Ng,(0,V;) is often difficult.

The nonparametric bootstrap (also called the empirical bootstrap, naive bootstrap, and

*
%

the pairs bootstrap) draws a sample of n cases (Y;*, x}) with replacement from the n cases

(Y;, x;), and regresses the Y;* on the x] to get /B*VS,D and then draws another sample to get
ijx,r This process is repeated B times to get the two bootstrap samples for i =1, ..., B.
If (B3 — B) = N,(0,V) for the full model, then /n(B8;, — B;,) = Nuy(0,V;) when
S C I;: just use I; as the new full model. Thus Equation (12) should hold when the full
model bootstrap works. The method is used for multiple linear regression, Cox proportional
hazards regression with right censored Y;, and GLMs. See, for example, Burr (1994), Efron
and Tibshirani (1986), Freedman (1981), and Shao and Tu (1995, pp. 335-349).

For the parametric regression model Y;|&; ~ D(xT 3, ~), assume /n(8—23) A N,(0,V(B)),
and that V' (8) il V(B) as n — oo. These assumptions tend to be mild for a parametric
regression model where the MLE (3 is used. Then V(8) = I"'(3), the inverse Fisher in-
formation matrix. For GLMSs, see, for example, Sen and Singer (1993, p. 309). For the

parametric regression model, we regress Y on X to obtain (B,’S/) where the n x 1 vector
T

i

Y = (Vi) and the ith row of the n x p design matrix X is «

The parametric bootstrap uses Y7; = (Y;*) where Y;*|x; ~ D(xB,4) for i = 1,....,n.
Regress Y on X to get B; for 5 = 1,...,B. The large sample theory for B* is simple.
Note that if Y;*|x; ~ D(xl'b,%) where b does not depend on n, then (Y*, X) follows the
parametric regression model with parameters (b,4). Hence v/n(3 — b) Z N,(0,V (b)).

Now fix large integer ng, and let b = 3, . Then N - Bno) Z Np(O,V(BnO)). Since
N,(0,V(B)) 2 N,(0, V(8)), we have

V(B - B) 2 N,(0,V(B)) (13)

as n — Q.

Now suppose S C I. Without loss of generality, let 8 = (8%, 85)T and 8 = (B(I)”, B(0)")T.

Then (Y, X;) follows the parametric regression model with parameters (3;,7y). Hence
V(B — B;) A N,,(0,V(B;)). Now (Y™, X ) only follows the parametric regression model
asymptotically, since 3(0O) # 0. Then showing \/H(BZ —sz) i Nq, (0, V) is often difficult.

15



For the multiple linear regression model, Y = X3 + e, assume a constant x; is in the
model, and the zero mean e; are iid with variance V(e;) = 0% Let H = X(XTX) ' X",
probability as n — co. For least squares with S C I, /n(8; — B;) 2 N,,(0, V) where
(XTX[)/(no?) il V1. See, for example, Sen and Singer (1993, p. 280).

Consider the parametric bootstrap for the above model with Y* ~ N, (X3,62I) ~
N,(HY ,62I) where we are not assuming that the e; ~ N(0,0?), and

62 = MSE = ! > or?

T
n—=pr.3

where the residuals are from the full OLS model. Then MSE is a \/n consistent estimator
of o2 under mild conditions by Su and Cook (2012). Thus B; = (XTX)'XTY" ~
N, (B;,62(XTX )1 since E(B;) = (XTX,)'XTHY = 3, because HX; = X, and
Cov(B;) = 62(XTX )~ . Hence

Vi(By — Br) ~ Noy(0,n62(XTX 1)) 2 N, (0, V)

as n, B — oo if S C I. Hence Equation (12) holds under mild conditions.
When V is diagonal, \/H(B&fu” — Bg) £ Nys(0,Vg) where Vg is a diagonal matrix
using the relevant diagonal elements of V. For multiple linear regression with the parametric

bootstrap, the full model 3 ~ N,(8,52(XTX)!) ~ N,(8,V /n). If the columns of X are

orthogonal and S C I, then B*SI = /B*S,full and BS,I = BS,full' Hence \/H(B*S,MIX _BS,full) L

Nys(0,Vg). When V is diagonal, the columns of X are asymptotically orthogonal. Hence if
SCI,p 51~ B& full T", and the bootstrap component clouds have the same asymptotic
variability as the iid data clouds. Hence we expect the bootstrap cutoffs for AB*S MIX
to be near x7, 5. Results in Pelawa Watagoda and Olive (2021) show that the residual
bootstrap behaves similarly to the parametric bootstrap, with 62 = MSE replaced by
62 = (n—p)MSE/n.

The weighted least squares formulation of the GLM maximum likelihood estimator, given
for example by Hillis and Davis (1994) and Sen and Singer (1993, p. 307), suggests that
similar results hold for the GLM when V' is diagonal.

16



4. Example and Simulations

Example. Lindenmayer et al. (1991) and Cook and Weisberg (1999, p. 533) gave
a data set with 151 cases where Y is the number of possum species found in a tract of
land in Australia. The predictors are acacia=basal area of acacia + 1, bark=bark index,
habitat=habitat score, shrubs=number of shrubs + 1, stags= number of hollow trees + 1,
stumps=indicator for presence of stumps, and a constant. For the full Poisson regression
model, the bootstrap shorth Cls were close to the large sample GLM confidence intervals
~ [3; + 2SE(5;) (not shown). The data set is available from the Cook and Weisberg (1999)
Arc software (https://www.stat.umn.edu/arc/).

The minimum AIC model from backward elimination used a constant, bark, habitat, and
stags. The 95% shorth(c) confidence intervals for (3; using the parametric bootstrap are
shown in Table 1. Note that most of the ClIs contain 0 when closed intervals are used instead

of open intervals.

Table 1: Shorth CIs for the example

variable BZ 95% shorth CI: VS  95% shorth CI: MIX

intercept —0.8994 [—1.5662, —0.5169]  [—1.3680, —0.3553)
acacia 0 [0, 0.0.0384] [—0.0004, 0.0397]
bark  0.0336 [0, 0.05928) [0, 0.0563]
habitat  0.1069 [0, 0.1524] [0, 0.1584]
shrubs 0 [0, 0.05582] [—0.01560, 0.04532]
stags  0.0302 [0, 0.0540] [0, 0.0540]
stumps 0 [—0.9326, 0.0000]  [—0.8402,0.1515]

We tested Hy : B2 = 35 = (67 = 0 with the I,,;, model selected by backward elimination.
(Of course this test would be easy to do with the full model using GLM theory.) Then
Hy : AB = (32,055, 08:)7 = 0. Using the prediction region method with the full model
had [0, Dr,p)] = [0,2.773] with Dg = 2.067. Note that \/% — 2.795. So fail to reject
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H,. Using the prediction region method with the I,,;, backward elimination model had
[0, D] = [0,2.702] while Dg = 1.327. So fail to reject Hy. The ratio of the volumes of the
bootstrap confidence regions for this test was 0.322. (Use (7) with S7 and D from backward
elimination for the numerator, and from the full model for the denominator.) Hence the
backward elimination bootstrap test was more precise than the full model bootstrap test.
The test with 3,,;y had [0, D] = [0,3.157] while D = 1.066. So fail to reject Hy. The
ratio of the volumes of the bootstrap confidence regions for this test (MIX vs. FULL) was
0.117.

Now we describe simulations for multiple linear regression, binomial regression, Cox
regression, and Poisson regression. There is a massive literature on variable selection, but
most of the methods for confidence intervals and hypothesis testing are conditional on the
subset I,,;, of predictors selected by the variable selection method. Then inference for the
predictors that were not selected is difficult. Data splitting, the Charkhi and Claeskens
(2018) method, and most high dimensional variable selection methods are conditional on
Lin. Also, most of the methods are for multiple linear regression. Previous inference
methods for forward selection, backward elimination, and lasso variable selection did not use
the large sample theory given by this paper and Pelawa Watagoda and Olive (2020). For
variable selection estimators of 3 with n/p large, the most important competitor is inference
from the full model.

Hence our simulations compare bootstrap inference for the full model with that for the
variable selection estimator of 3. We used 5000 runs, 0 = AB = 3;,, 0 = AB = B =
(B, 1,...,1)T and @ = AB = B = 0. The simulations often used n = 25p, n = 50p;
Y =0,1/,/p, and 0.9; and k£ = 1 and 2 where k£ and 1) are defined in the following paragraph.
We often used p = 4 since the simulations with 5000 runs take a long time.

Let * = (1 u”)? where u is the (p — 1) x 1 vector of nontrivial predictors. In the
simulations, for i = 1,...,n, we generated w; ~ N,_1(0,I) where the ¢ = p — 1 elements of
the vector w; are iid N(0,1). Let the ¢ x ¢ matrix A = (a;;) with a;; = 1 and a;; = 1) where
0 < < 1fori# j. Then the vector z; = Aw; so that Cov(z;) = Xz = AA” = (0,;) where
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the diagonal entries oy = [1 + (¢ — 1)1?] and the off diagonal entries o;; = [2¢) + (¢ — 2)v?].
Hence the correlations are cor(z;, z;) = p = (20 + (¢ — 2)9?) /(1 + (¢ — 1)¢?) for i # j. Then
Z?Zl z; ~ N(0, koy + k(k — 1)o;j) = N(0,0?). Let w = az/v. Then cor(z;,x;) = p for i # j
where z; and x; are nontrivial predictors. If ¢» = 1/,/cp, then p — 1/(c+1) as p — oo where
c > 0. As 1 gets close to 1, the predictor vectors u; cluster about the line in the direction
of (1,....,1)T. Let SP =2T8 = 31 + lwio + -+ + 12301 ~ N(B1,a?) for i = 1,...,n. Hence
B = (61,1,...,1,0,...,0)T with 31, k ones, and p — k — 1 zeros. Binomial regression used
B1 = 0,a =5/3, and m; = m with m = 1 or 20. Poisson regression used #; = 1 = a and
(1 = 5 with a = 2. The simulation for multiple linear regression was similar, but §; = 1 and
z was used instead of u. The Cox regression simulation changes are described above Table
5. In the tables, ¥ = 0 means the correlation p = 0. If v» = 0.9, then p = 0.996 if p = 4 and
p=0.999 if p = 10. In Table 5, if v = 0.5, then p = 0.857.

The simulation computed the shorth(c) CI for each (; and used bootstrap confidence
regions to test Hy : Bg = (1, 1,...,1)T where 8 = -+ = 1 = 1, and Hy : By = 0
(whether the last p— k—1 3; = 0). The nominal coverage was 0.95 with § = 0.05. Observed
coverage between 0.94 and 0.96 would suggest coverage is close to the nominal value. The
parametric bootstrap was used with AIC for the GLMs, multiple linear regression used
the residual bootstrap with Mallows (1973) C,,, and Cox regression used the nonparametric
bootstrap with lasso variable selection.

In Tables 2-5, there are two rows for each model giving the observed confidence interval
coverages and average lengths of the confidence intervals. The term “reg,0” is for the full
model regression with ¢ = 0, the term “vs,0.9” is for variable selection with ¢ = 0.9, and
“mix,0” for random selection with ¢» = 0. The last six columns give results for the tests.
The terms pr, hyb, and br are for the prediction region method (4), hybrid region (6), and
Bickel and Ren region (5). The 0 indicates the test was Hy : By = 0, while the 1 indicates
that the test was Hy : B¢ = (B, 1..., 1)T. The length and coverage = P(fail to reject Hy) for
the interval [0, D(y,,)] or [0, Dy, )] where D,y or D, 1y is the cutoff for the confidence
region. The cutoff will often be near \/% if the statistic 7' is asymptotically normal.
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Note that /X395 = 2.448 is close to 2.45 for the full model regression bootstrap tests for
B if k=1 (if £ = 2 for Cox regression).

Volume ratios of the three confidence regions can be compared using (7), but there is
not enough information in the tables to compare the volume of the confidence region for the
full model versus that for the variable selection or random selection since the three methods
have different determinants |S%|. For random selection, the random vector Jé; MmIx 1s not
observed. Hence for the hybrid region and Bickel and Ren region 7}, = ABVS was used, and
the coverage for the hybrid region for B w1x was often 5% too low in the hyb0 and hybl
columns with ¢ = 0.9.

The inference for variable selection was often as precise or more precise than the inference
for the full model. The coverages tended to be near 0.95 for the bootstrap for the full model.
Variable selection coverage tended to be near 0.95 unless the 3; could equal 0 or if the hybrid
region was used with 3 mix- An exception was binary logistic regression with m = 1 where
variable selection and the full model often had higher coverage than the nominal 0.95 for
the hypothesis tests, especially for n = 25p. For binary regression, the bootstrap confidence
regions using smaller a and larger n resulted in coverages closer to 0.95 for the full model, and
convergence problems caused the programs to fail for a > 4. (The MLE tends to converge if
max(|z7 B|) < 7 and if the ¥ values of 0 and 1 are not nearly perfectly classified by the rule
Y =1if2”B > 0and Y = 0, otherwise.) The Bickel and Ren (5) average cutoffs were rarely
lower than those of the hybrid region (6). For Poisson regression for 3, with p = 10 and
1 = 0.9, the coverages for Hy : 35 = 1 were about 4% too low in Table 4. One of the ten
shorth confidence intervals also had coverage about 2% too low for this case.

If §; was a component of 5g, then the variable selection confidence intervals had higher
coverage but were shorter than those of the full model due to zero padding. The zeros in 3 B
tend to result in higher than nominal coverage for the variable selection estimator, but can
greatly decrease the volume of the confidence region compared to that of the full model.

For the simulated data, when v = 0, the asymptotic covariance matrix, e.g. I"*(3), is

diagonal. Hence 3 g has the same multivariate normal limiting distribution for Jé; mix and
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the full model B, and possibly for BVS, by Section 2. For Tables 2-5, B¢ = (81, 32)T, and
Bp—1 and (3, are components of 3. For the n in the tables and ¢ = 0, the coverages and
“lengths” did tend to be close for the [3; that are components of 3¢, and for prl, hybl, and
brl.

Table 2 was for multiple linear regression with forward selection, the residual bootstrap,
n =100,p = 4,k = 1, and B = 1000. There was slight undercoverage for 1) = 0 since n is
small for the skewed error distribution. For the full model, and for ¢» = 0 with S = {1, 2},
the CI length should be close to 2(1.96)c/10 = 0.392 when n = 100. A larger simulation
study, with p as large as 10 and without the MIX rows, is in Pelawa Watagoda and Olive
(2021).

Table 2: Bootstrapping OLS Forward Selection with C,, e; ~ EXP(1) — 1

W B B Bp1 By pr0 hyb0 b0 prl hybl  brl
reg,0 0.939 0.949 0.949 0.944 0.941 0.942 0.942 0.937 0.937 0.938
len 0.393 0.400 0.399 0.400 2.474 2.474 2.475 2.453 2.453 2.455
vs,0 0.938 0.944 0.999 0.997 0.994 0.984 0.995 0.932 0.933 0.934
len 0.392 0.398 0.323 0.323 2.709 2.709 3.014 2.453 2.453 2.460
mix,0 0.937 0.943 0.999 0.998 0.998 0.987 0.995 0.930 0.931 0.931
len 0.391 0.397 0.274 0.278 3.072 3.072 3.288 2.455 2.455 2.459
reg,0.9 0.940 0.948 0.953 0.953 0.946 0.948 0.948 0.933 0.933 0.932
len 0.392 3.249 3.249 3.249 2475 2475 2.476 2.454 2.454 2.455
vs,0.9  0.941 0.966 0.996 0.997 0.992 0.983 0.994 0.957 0.953 0.962
len 0.393 2.754 2.721 2.713 2.712 2.712 2.950 2.492 2492 2.597
mix,0.9 0.941 0.972 0.997 0.998 0.995 0.873 0.996 0.938 0.892 0.935
len 0.391 2.105 1.999 2.000 2.547 2.547 2.828 2.448 2.448 2.610

Tables 3 and 4 are for binary logistic regression and Poisson regression with backward
elimination. In Table 3, the coverages for Hy : B4 = (0,1)7 were a bit high. In Table 4, the
coverages for Hy : Bg = (1,1)7 were low for 3,,;x and 1 = 0.9.

For Cox proportional hazards regression, the cases were (Z;,0;, x;) where Z; = Y; is
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Table 3: Bootstrapping Binomial Logistic Regression, Backward Elimination with AIC,
B=200,n=200,p=4, k=1, and m=1

v B B Bpa By pO hyb0 b0 prl  hybl  brl
reg,0 0.950 0.944 0.955 0.954 0.958 0.966 0.967 0.958 0.966 0.973
len 0.754 0.677 0.458 0.459 2.488 2.488 2.499 2.485 2.485 2.575
vs,0 0.954 0.948 0.998 0.998 0.996 0.993 0.997 0.962 0.968 0.976
len 0.750 0.675 0.393 0.390 2.725 2.725 3.031 2.482 2482 2.575
mix,0 0.956 0.947 0.999 0.998 0.998 0.994 0.998 0.962 0.965 0.970
len 0.740 0.663 0.321 0.322 3.129 3.129 3.341 2.482 2.482 2.548
reg,0.9 0.946 0.954 0.952 0.950 0.955 0.964 0.966 0.950 0.961 0.963
len 0.755 6.084 6.069 6.080 2.489 2.489 2.499 2.486 2.486 2.497
vs,0.9  0.954 0.949 0.996 0.997 0.993 0.991 0.996 0.976 0.980 0.984
len 0.750 5.320 5.385 5.388 2.788 2.788 3.039 2.588 2.588 2.723
mix,0.9 0.955 0.966 0.997 0.997 0.996 0.989 0.996 0.977 0.968 0.974
len 0.741 3.938 3.859 3.865 2.869 2.869 3.046 2.604 2.604 2.707

uncensored if §; = 1, and Z; is right censored if §; = 0. We used the nonparametric bootstrap
on the cases with lasso variable selection: fit the Cox model on the predictors with nonzero
lasso coefficients. R code similar to that of Zhou (2001) was used to generate data from
the Weibull proportional hazards regression model. The correlations for the predictors were
similar to those for the Poisson and binomial regression, but no constant was used so replace
q by p. Then SP = I8 = 1z;1 + -+ + lz; ~ N(0,a?) for i = 1,...,n. The simulations
use a = 1 where B = (1,...,1,0,...,0)T with k ones and p — k zeros. We used ¢ = 0.5 since
1 = 0.9 gave convergence problems. See Table 5.
6. Conclusions

Pelawa Watagoda and Olive (2020) showed that Bvs is a y/n consistent estimator of
B for several important variable selection estimators for multiple linear regression. This
paper extended the theory for several important variable selection estimators for many other

regression estimators. The random vector B wmix has simple large sample theory, and is
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Table 4: Bootstrapping Poisson Regression, Backward Elimination with AIC, B = 500,
n=250,p=10,k=1,a=1, f1 =1

W B B Bpa Py pi0 hyb0 b0 prl hybl  brl
reg,0 0.948 0.953 0.953 0.952 0.951 0.951 0.952 0.943 0.945 0.947
len 0.175 0.133 0.128 0.128 3.986 3.986 3.990 2.453 2.453 2.474
vs,0 0.947 0.952 0.998 0.999 0.998 0.997 0.997 0.950 0.954 0.958
len 0.175 0.132 0.105 0.104 4.303 4.303 4.740 2.452 2.452 2.499
mix,0 0.948 0.953 0.999 1— 1.000 1— 1— 0.951 0.949 0.951
len 0.174 0.129 0.088 0.088 5.122 5.122 5.396 2.453 2.453 2.475
reg,0.9 0.948 0.953 0.957 0.955 0.946 0.948 0.948 0.945 0.945 0.948
len 0.175 3.287 3.286 3.291 3.983 3.983 3.987 2.454 2.454 2.469
vs,0.9  0.948 0.943 0.998 0.999 0.998 0.997 0.999 0.968 0.967 0.973
len 0.175 2.862 2.810 2.820 4.261 4.261 4.685 2.480 2.480 2.638
mix,0.9 0.951 0.921 0.998 0.999 1— 0.999 1— 0.899 0.874 0.898
len 0.174 2.527 2.231 2.228 4.971 4.971 5.287 2.569 2.569 2.711

useful for understanding the more complicated large sample theory of Bvs- Theory for the
C), criterion for multiple linear regression with an unknown error distribution was also given.
The hybrid confidence region is useful for explaining the three bootstrap confidence regions
with Theorem 2, but often has lower coverage than the other two confidence regions.

More theory is needed for the bootstrap confidence regions for variable selection. The
method works well when m; = 1, which is a very strong assumption, but weaker than the
assumption g = 1 that is often made for variable selection consistency and the oracle prop-
erty. The confidence regions (4) and (5) simulate well for many variable selection estimators,
especially when V is diagonal. Augmenting the bootstrap sample for the variable selection
estimator with 7™ from the full model makes S nonsingular.

Heuristically, the iid component data clouds are centered at 3 while the bootstrap com-
ponent data clouds are centered at 3 1,0- Hence the T tend to be further from T than

the T, are from 7. Then the bootstrap cutoffs tend to result in conservative tests provided
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Table 5: Bootstrapping Cox Regression, Lasso Variable Selection, B = 200, n = 100, p = 4,
k=2

W B B Bp1 By pr0 hyb0 b0 prl hybl  brl
reg,0 0.936 0.934 0.952 0.956 0.951 0.962 0.968 0.945 0.965 0.974
len 0.850 0.852 0.744 0.744 2.525 2.525 2.552 2.514 2.514 2.640
vs,0 0.937 0.942 0.989 0.988 0.970 0.974 0.977 0.947 0.966 0.975
len 0.852 0.853 0.728 0.726 2.544 2.544 2.647 2.515 2.515 2.640
mix,0 0.940 0.942 0.992 0.992 0.979 0.978 0.981 0.946 0.966 0.976
len 0.842 0.841 0.667 0.666 2.691 2.691 2.758 2.515 2.515 2.623
reg,0.5 0.945 0.953 0.954 0.951 0.951 0.963 0.965 0.944 0.962 0.968
len 2372 2373 2.333 2.338 2.529 2.529 2.556 2.522 2522 2.571
vs,0.5  0.968 0.960 0.992 0.990 0.980 0.979 0.984 0.976 0.965 0.975
len 2.064 2.064 2.046 2.045 2.784 2.784 2.931 2.558 2.558 2.688
mix,0.5 0.944 0.940 0.993 0.992 0.984 0.984 0.990 0.933 0.944 0.953
len 2.220 2.212 1971 1970 2.784 2.784 2.929 2.546 2.546 2.667

(n —p)/n is near 1. The theory, heuristics, and good simulation results suggest that (4) and
(5) are useful for exploratory purposes.

There is a massive literature on variable selection and a fairly large literature for inference
after variable selection. See, for example, Guan and Tibshirani (2020), Lee and Wu (2018),
Leeb and Pétscher (2003), Leeb, Potscher, and Ewald (2015), Lu et al. (2017), Ning and
Liu (2017), Potscher (1991), and Tibshirani et al. (2018). High dimensional testing has
n/p small, and often assumes that n/ag is large. Ewald and Schneider (2018) note several
methods basically use the OLS full model when n/p is large. Rinaldo, Wasserman, and
G’Sell (2019) show data splitting is useful and discuss problems with inference after variable
selection. Su (2018) shows that fast variable selection methods tend to select spurious
variables quickly if £k = ag is not small. Recent papers on large sample theory for multiple
linear regression estimators include Cook and Forzani (2018, 2019), Pelawa Watagoda and

Olive (2020), and Zhang (2020). Also see Knight and Fu (2000).
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See Efron (1979, 1982) for more on the bootstrap. The bagging estimator, T, is closely
related to a model averaging estimator. Wang and Zhou (2013) show that the Hjort and
Claeskens (2003) confidence intervals based on frequentist model averaging are asymptoti-
cally equivalent to those obtained from the full model. See Buckland et al. (1997), Schomaker
(2012), and Schomaker and Heumann (2014) for standard errors when using the bootstrap
or model averaging for linear model confidence intervals.

The simulations were done in R. See R Core Team (2016). We used several R functions
including backward elimination computed with the step function from the Venables and Rip-
ley (2010) MASS library, forward selection computed with the Lumley (2009) leaps function,
and lasso computed from the Friedman et al. (2015) glmnet library. The collection of Olive
(2021) R functions slpack, available from (http://parker.ad.siu.edu/Olive/slpack.txt), has
some useful functions for the inference. The functions regbootsim3 and vsbootsimb were
to bootstrap the full model and forward selection for multiple linear regression. The functions
binregbootsim and pregbootsim are useful for the full binomial regression and full Poisson
regression models. The functions vsbrbootsim2 and vsprbootsim2 were used to boot-
strap backward elimination for binomial and Poisson regression. The functions LRboot and
vsLRboot2 bootstrap the logistic regression full model and backward elimination. The func-
tions PRboot and vsPRboot2 bootstrap the Poisson regression full model and backward elim-
ination. The function PHboot bootstraps the full Cox PH model. The function PHbootsim
is used to simulate the bootstrap for the full Cox PH model. The function RLPHboot2 boot-
straps a Cox PH model with lasso variable selection. The function RLPHbootsim2 is used
to simulate the bootstrap for lasso variable selection with Cox regression. Sample R code is

available from (http://parker.ad.siu.edu/Olive/ppRcodebootglm.pdf).
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