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Abstract

Inference after variable selection is a very important problem. This paper derives the

asymptotic distribution of many variable selection estimators, such as forward selection and

backward elimination, when the number of predictors is fixed. Under strong regularity

conditions, the variable selection estimators are asymptotically normal, but generally the

asymptotic distribution is a nonnormal mixture distribution. The theory shows that the lasso

variable selection and elastic net variable selection estimators are
√
n consistent estimators

of β when lasso and elastic net are consistent estimators of β. A bootstrap technique to

eliminate selection bias is to fit the variable selection estimator β̂
∗

V S to a bootstrap sample to

find a submodel, then draw another bootstrap sample and fit the same submodel to get the

bootstrap estimator β̂
∗

MIX. Bootstrap confidence regions were used for hypothesis testing.

1. Introduction

This section reviews regression models, variable selection, and some results on bootstrap

confidence regions. Consider regression models where the response variable Y is indepen-

dent of the p × 1 vector of predictors x given xT β, written Y x|xT β. Many important

regression models satisfy this condition, including multiple linear regression, the Nelder and

1



Wedderburn (1972) generalized linear models (GLMs), and the Cox (1972) proportional haz-

ards regression model. Forward selection or backward elimination with the Akaike (1973)

AIC criterion or Schwarz (1978) BIC criterion are often used for variable selection.

Some shrinkage methods do variable selection: the regression method, such as a GLM,

uses the predictors that had nonzero shrinkage estimator coefficients. These methods include

least angle regression, lasso, relaxed lasso, and elastic net. Least angle regression variable

selection is the LARS-OLS hybrid estimator of Efron et al. (2004, p. 421). Lasso variable

selection is called relaxed lasso by Hastie, Tibshirani, and Wainwright (2015, p. 12), and

the relaxed lasso estimator with φ = 0 by Meinshausen (2007, p. 376). Also see Fan and

Li (2001), Friedman, Hastie, and Tibshirani (2010), Simon et al. (2011), Tibshirani (1996),

and Zou and Hastie (2005). The Meinshausen (2007) relaxed lasso estimator fits lasso with

penalty λn to get a subset of variables with nonzero coefficients, and then fits lasso with a

smaller penalty φn to this subset of variables where n is the sample size.

Two important quantities for a regression model are the sufficient predictor SP = xT β,

and the estimated sufficient predictor ESP = xT β̂. For the regression models, the condi-

tioning and subscripts, such as i, will often be suppressed. The multiple linear regression

model is Y |x = xT β + e or Yi = xT
i β + ei for i = 1, ..., n. Consider a parametric re-

gression model Y |x ∼ D(xT β,γ) where D is a parametric distribution that depends on

the p × 1 vector of predictors x only through xT β, and γ is a q × 1 vector of parameters.

Three examples used in the simulations follow. The binomial logistic regression model is

Yi ∼ binomial

(

mi, ρ(SP) =
eSP

1 + eSP

)

. The binary logistic regression model has mi ≡ 1 for

i = 1, ..., n. A useful Poisson regression model is Y ∼ Poisson
(

eSP
)

. The Weibull propor-

tional hazards regression model is

Y |SP ∼ W (γ, λ0 exp(SP ))

where Y has a Weibull W (γ, λ) distribution if the probability density function of Y is

f(y) = λγyγ−1 exp[−λyγ] for y > 0.
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Following Olive and Hawkins (2005), a model for variable selection can be described by

xTβ = xT
SβS + xT

EβE = xT
SβS (1)

where x = (xT
S ,x

T
E)T , xS is an aS × 1 vector, and xE is a (p− aS)× 1 vector. Given that xS

is in the model, βE = 0 and E denotes the subset of terms that can be eliminated from the

model. Let xI be the vector of a terms from a candidate subset indexed by I , and let xO be

the vector of the remaining predictors (out of the candidate submodel). Suppose that S is

a subset of I and that model (1) holds. Then

xTβ = xT
SβS = xT

I βI + xT
O0 = xT

I βI.

Thus βO = 0 if S ⊆ I . The model using xT β is the full model.

To clarify notation, suppose p = 4, a constant x1 = 1 corresponding to β1 is always in the

model, and β = (β1, β2, 0, 0)
T . Then there are J = 2p−1 = 8 possible subsets of {1, 2, ..., p}

that contain 1, including I1 = {1} and S = I2 = {1, 2}. There are 2p−aS = 4 subsets such

that S ⊆ Ij. Let β̂I2
= (β̂1, β̂2)

T and xI2 = (x1, x2)
T .

Let Imin correspond to the set of predictors selected by a variable selection method such

as forward selection or lasso variable selection. If β̂I is a × 1, use zero padding to form

the p × 1 vector β̂I,0 from β̂I by adding 0s corresponding to the omitted variables. For

example, if p = 4 and β̂Imin
= (β̂1, β̂3)

T , then the observed variable selection estimator

β̂V S = β̂Imin,0 = (β̂1, 0, β̂3, 0)
T . As a statistic, β̂V S = β̂Ik ,0 with probabilities πkn = P (Imin =

Ik) for k = 1, ..., J where there are J subsets, e.g. J = 2p − 1.

The large sample theory for β̂MIX, defined below, is useful for explaining the large sample

theory of β̂V S. Let β̂MIX be a random vector with a mixture distribution of the β̂Ik,0 with

probabilities equal to πkn. Hence β̂MIX = β̂Ik ,0 with the same probabilities πkn of the

variable selection estimator β̂V S , but the Ik are randomly selected. A random vector u has

a mixture distribution of random vectors uj with probabilities πj if u equals the randomly

selected random vector uj with probability πj for j = 1, ..., J . Let u and uj be p×1 random
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vectors. Then the cumulative distribution function (cdf) of u is

Fu(t) =
J

∑

j=1

πjFuj
(t)

where the probabilities πj satisfy 0 ≤ πj ≤ 1 and
∑J

j=1 πj = 1, J ≥ 2, and Fuj
(t) is the cdf

of uj . Suppose E(h(u)) and the E(h(uj)) exist. Then

E(h(u)) =
J

∑

j=1

πjE[h(uj)] and

Cov(u) =
J

∑

j=1

πjCov(uj) +
J

∑

j=1

πjE(uj)[E(uj)]
T − E(u)[E(u)]T .

If E(uj) = θ for j = 1, ..., J , then E(u) = θ and Cov(u) =
J

∑

j=1

πjCov(uj).

Inference will consider bootstrap hypothesis testing with confidence intervals (CIs) and

regions. Consider testing H0 : θ = θ0 versus H1 : θ 6= θ0 where θ0 is a known g × 1 vector.

A large sample 100(1 − δ)% confidence region for θ is a set An such that P (θ ∈ An) is

eventually bounded below by 1 − δ as the sample size n → ∞. Then reject H0 if θ0 is not

in the confidence region. Let the g × 1 vector Tn be an estimator of θ. Let T ∗

1 , ..., T
∗

B be the

bootstrap sample for Tn. Let A be a full rank g× p constant matrix. For variable selection,

test H0 : Aβ = θ0 versus H1 : Aβ 6= θ0 with θ = Aβ. Then let Tn = Aβ̂SEL and let

T ∗

i = Aβ̂
∗

SEL for i = 1, ..., B and SEL is V S or MIX. Let dxe be the smallest integer ≥ x.

For g = 1, let the shortest closed interval containing at least c of the T ∗

i be the shorth(c)

estimator. See Frey (2013). Then the large sample 100(1 − δ)% shorth(c) CI for θ is

[T ∗

(s), T
∗

(s+c−1)] with c = min(B, dB[1− δ + 1.12
√

δ/n ] e). (2)

The shorth confidence interval is a practical implementation of the Hall (1988) shortest

bootstrap interval based on all possible bootstrap samples.

The confidence regions use Mahalanobis distancesDi and a correction factor to get better

coverage when B ≥ 50g. This result is useful because the bootstrap confidence regions can
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be slow to simulate. Let

qB = min(1 − δ + 0.05, 1 − δ + g/B) for δ > 0.1 and

qB = min(1 − δ/2, 1 − δ + 10δg/B), otherwise. (3)

If 1 − δ < 0.999 and qB < 1 − δ + 0.001, set qB = 1 − δ. Let D(UB) be the 100qBth sample

percentile of the Di. Let T be g× 1 and let C be a g× g symmetric positive definite matrix.

Then the ith squared sample Mahalanobis distance is the scalar

D2
i = D2

i (T,C) = D2
zi

(T,C) = (zi − T )TC−1(zi − T )

for each observation zi. Let T
∗

and S∗

T be the sample mean and sample covariance matrix

of the bootstrap sample.

The Olive (2017ab, 2018) prediction region method (4), modified Bickel and Ren (2001)

(5), and Pelawa Watagoda and Olive (2021) hybrid (6) large sample 100(1− δ)% confidence

regions for θ are {w : D2
w(T

∗

,S∗

T ) ≤ D2
(UB)} =

{w : (w − T
∗

)T [S∗

T ]−1(w − T
∗

) ≤ D2
(UB)} (4)

whereD2
(UB) is computed from D2

i = (T ∗

i −T
∗

)T [S∗

T ]−1(T ∗

i −T
∗

) for i = 1, ..., B (if g = 1, (4) is

a closed interval centered at T
∗

just long enough to cover UB of the T ∗

i ), {w : D2
w(Tn,S

∗

T ) ≤
D2

(UB,T )} =

{w : (w − Tn)
T [S∗

T ]−1(w − Tn) ≤ D2
(UB ,T )} (5)

where the cutoff D2
(UB,T ) is the 100qBth sample percentile of the D2

i =

(T ∗

i − Tn)
T [S∗

T ]−1(T ∗

i − Tn), and {w : D2
w(Tn,S

∗

T ) ≤ D2
(UB)} =

{w : (w − Tn)
T [S∗

T ]−1(w − Tn) ≤ D2
(UB)}. (6)

Under regularity conditions, Olive (2017b, 2018) proved that (4) is a large sample confi-

dence region. See Bickel and Ren (2001) for (5), while Pelawa Watagoda and Olive (2021)

gave simpler proofs and proved that (2) is a large sample CI. Assume un
D→ u where
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un =
√
n(T ∗

i − Tn),
√
n(T ∗

i − T
∗

),
√
n(Tn − θ), or

√
n(T

∗ − θ), and nS∗

T
P→ C where C is

nonsingular. Let

D2
1 = D2

T ∗

i
(T

∗

,S∗

T ) =
√
n(T ∗

i − T
∗

)T (nS∗

T )−1
√
n(T ∗

i − T
∗

),

D2
2 = D2

θ(Tn,S
∗

T ) =
√
n(Tn − θ)T (nS∗

T )−1
√
n(Tn − θ),

D2
3 = D2

θ(T
∗

,S∗

T ) =
√
n(T

∗ − θ)T (nS∗

T )−1
√
n(T

∗ − θ), and

D2
4 = D2

T ∗

i
(Tn,S

∗

T ) =
√
n(T ∗

i − Tn)
T (nS∗

T )−1
√
n(T ∗

i − Tn).

Then D2
j ≈ uT (nS∗

T )−1u ≈ uT C−1u, and the percentiles of D2
1 and D2

4 can be used as

cutoffs. Confidence regions (4) and (6) have the same volume.

The ratio of the volumes of regions (4) and (5) is

|S∗

T |1/2

|S∗

T |1/2

(

D(UB)

D(UB,T )

)g

=

(

D(UB)

D(UB ,T )

)g

. (7)

The volume of confidence region (5) tends to be greater than that of (4) since the T ∗

i are

closer to T
∗

than Tn on average.

Section 2 gives large sample theory for β̂MIX and β̂V S. Section 3 shows how to bootstrap

these two estimators, and Section 4 gives a simulation.

2. Large Sample Theory For Variable Selection Estimators

The new Theorems 1 and 3 in this section generalize the Pelawa Watagoda and Olive

(2020, 2021) theory for multiple linear regression to many other models. Theorem 2, due

to Pelawa Watagoda and Olive (2021), is added for reference with an improved proof. The

theory assumes that there is a “true model” S and that at least one subset I is considered

such that S ⊆ I . For example, with forward selection and backward elimination, the theory

assumes that the full model contains S. The theory does not hold if the true model S is not a

subset of any of the considered models. For example, S could contain some interactions that

were not included in the “full” model. Checking that the full model is good is important.

Assume p is fixed. Suppose model (1) holds, and that if S ⊆ Ij where the dimension of Ij

is aj, then
√
n(β̂Ij

−βIj
)

D→ Naj
(0,V j) where V j is the covariance matrix of the asymptotic
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multivariate normal distribution. Then

√
n(β̂Ij ,0 − β)

D→ Np(0,V j,0) (8)

where V j,0 adds columns and rows of zeros corresponding to the xi not in Ij, and V j,0 is

singular unless Ij corresponds to the full model. This large sample theory holds for many

models, including multiple linear regression fit by least squares (OLS), GLMs fit by maximum

likelihood, and Cox regression fit by maximum partial likelihood. See, for example, Sen and

Singer (1993, pp. 280, 309).

The first assumption in Theorem 1 is P (S ⊆ Imin) → 1 as n → ∞. Then the variable

selection estimator corresponding to Imin underfits with probability going to zero, and the

assumption holds under regularity conditions if BIC or AIC is used for many parametric

regression models such as GLMs. See Charkhi and Claeskens (2018) and Claeskens and

Hjort (2008, pp. 70, 101, 102, 114, 232). This assumption is a necessary condition for a

variable selection estimator to be a consistent estimator. See Zhao and Yu (2006). Thus

if a shrinkage estimator that does variable selection is a consistent estimator of β, then

P (S ⊆ Imin) → 1 as n → ∞. Hence Theorem 1c) proves that the lasso variable selection

and elastic net variable selection estimators are
√
n consistent estimators of β if lasso and

elastic net are consistent. Also see Theorem 3. The assumption on ujn in Theorem 1 is

reasonable by (8) since S ⊆ Ij for each πj, and since β̂MIX uses random selection.

Consider the assumption P (S ⊆ Imin) → 1 as n → ∞ for multiple linear regression.

Charkhi and Claeskens (2018) proved the assumption holds for AIC for a wide variety of

error distributions. Shao (1993) gave similar results for AIC, BIC, and Cp. The assumption

holds for lasso variable selection and elastic net variable selection provided that λ̂n/n → 0 as

n → ∞ so lasso and elastic net are consistent estimators. Here λ̂n is the shrinkage penalty

parameter selected after k-fold cross validation. See Pelawa Watogoda and Olive (2020) and

Knight and Fu (2000). Next we give a new argument for the Mallows (1973) Cp criterion

when each submodel contains a constant. Let submodel I have k ≤ p predictors including a

constant. Then

Cp(I) =
SSE(I)

MSE
+ 2k − n
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where MSE is for the full model, and Cp(I) ≥ −p. Assume the full model is one of the

submodels considered with Cp(full) = p, e.g. forward selection, backward elimination,

stepwise selection, and all subsets selection. Then −p ≤ Cp(Imin) ≤ p. Let r be the residual

vector for the full model and rI that for the submodel. Then the correlation

corr(r, rI) =

√

n− p

Cp(I) + n− 2k

by Olive and Hawkins (2005). Thus corr(r, rImin
) → 1 as n→ ∞. Suppose S is not a subset

of I . Under the model xT β = xT
SβS, corr(r, rI) will not converge to 1 as n → ∞, and for

large enough n, [corr(r, rI)]
2 ≤ γ < 1. Thus Cp(I) → ∞ as n→ ∞. Hence P (S ⊆ Imin) → 1

as n→ ∞ if the zero mean iid errors have constant variance σ2.

Theorem 1 a) proves that u is a mixture distribution of the uj with probabilities πj,

E(u) = 0, and Cov(u) = Σu =
∑

j πjV j,0. Some of the submodels Ik will have πk = 0. For

example, since the probability of underfitting goes to zero, every submodel Ik that underfits

has πk = 0. Hence S ⊆ Ij corresponding to the πj > 0. If πd = 1, then submodel Id is picked

with probability going to 1 as n→ ∞, and Id is the only submodel with a positive πk. Often

πd = πS in the literature.

Theorem 1 Assume P (S ⊆ Imin) → 1 as n→ ∞, and let β̂MIX = β̂Ik,0 with probabilities

πkn where πkn → πk as n→ ∞. Denote the positive πk by πj. Assume ujn =
√
n(β̂Ij ,0−β)

D→
uj ∼ Np(0,V j,0). a) Then

un =
√
n(β̂MIX − β)

D→ u (9)

where the cdf of u is Fu(t) =
∑

j πjFuj
(t).

b) Let A be a g × p full rank matrix with 1 ≤ g ≤ p. Then

vn = Aun =
√
n(Aβ̂MIX − Aβ)

D→ Au = v (10)

where v has a mixture distribution of the vj = Auj ∼ Ng(0,AV j,0A
T ) with probabilities πj.

c) The estimator β̂V S is a
√
n consistent estimator of β:

√
n(β̂V S − β) = OP (1).

d) If πd = 1, then
√
n(β̂SEL − β)

D→ u ∼ Np(0,V d,0) where SEL is V S or MIX.
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Proof. a) Since un has a mixture distribution of the ukn with probabilities πkn, the cdf of

un is Fun
(t) =

∑

k πknFukn
(t) → Fu(t) =

∑

j πjFuj
(t) at continuity points of the Fuj

(t)

as n→ ∞.

b) Since un
D→ u, then Aun

D→ Au.

c) The result follows since selecting from a finite number J of
√
n consistent estimators (even

on a set that goes to one in probability) results in a
√
n consistent estimator by Pratt (1959).

d) If πd = 1, there is no selection bias, asymptotically. The result also follows by Pötscher

(1991, Lemma 1). �

The following subscript notation is useful. Subscripts before the MIX are used for

subsets of β̂MIX = (β̂1, ..., β̂p)
T . Let β̂i,MIX = β̂i. Similarly, if I = {i1, ..., ia}, then β̂I,MIX =

(β̂i1, ..., β̂ia)
T . Subscripts after MIX denote the ith vector from a sample β̂MIX,1, ..., β̂MIX,B.

Similar notation is used for other estimators such as β̂V S. The subscript 0 is still used for

zero padding. We may use FULL to denote the full model β̂ = β̂FULL.

Typically the mixture distribution is not asymptotically normal unless a πd = 1 (e.g.

if S is the full model), or if for each πj, Auj ∼ Ng(0,AV j,0A
T ) = Ng(0,AΣAT ). Then

√
n(Aβ̂MIX −Aβ)

D→ Au ∼ Ng(0,AΣAT ). This special case occurs for β̂S,MIX if
√
n(β̂ −

β)
D→ Np(0,V ) where the asymptotic covariance matrix V is diagonal and nonsingular.

Then β̂S,MIX and β̂S,FULL have the same multivariate normal limiting distribution. For

several criteria, this result should hold for β̂V S since asymptotically,
√
n(Aβ̂V S − Aβ) is

selecting from the Auj which have the same distribution. In the simulations when V is

diagonal, the confidence regions applied to Aβ̂
∗

SEL = Bβ̂
∗

S,SEL had similar volume and

cutoffs where SEL is MIX, V S, or FULL.

Theorem 1 can be used to justify prediction intervals after variable selection. See Olive,

Rathnayake, and Haile (2021). Theorem 1d) is useful for variable selection consistency and

the oracle property where πd = πS = 1 if P (Imin = S) → 1 as n → ∞. See Claeskens and

Hjort (2008, pp. 101-114) and Fan and Li (2001) for references. A necessary condition for

P (Imin = S) → 1 is that S is one of the models considered with probability going to one.

This condition holds under strong regularity conditions for fast methods. See Wieczorek
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(2018) for forward selection and Hastie, Tibshirani, and Wainwright (2015, pp. 295-302) for

lasso, where the predictors need a “near orthogonality” condition.

The following Pelawa Watagoda and Olive (2021) theorem is useful for bootstrapping

variable selection estimators. Let (T ,ST ) be the sample mean and sample covariance matrix

computed from T1, ..., TB which have the same distribution as Tn where Ti = Tin. Let

D2
(UB) be the cutoff computed from the D2

i (T ,ST ) for i = 1, ..., B. The hyperellipsoids

corresponding to D2(Tn,C) and D2(T ,C) are centered at Tn and T , respectively. Note that

D2
T
(Tn,C) = D2

Tn
(T ,C). Thus D2

T
(Tn,C) ≤ D2

(UB) iff D2
Tn

(T ,C) ≤ D2
(UB). In Theorem

2, since Rp contains Tf with probability 1 − δB, the region Rc contains T with probability

1 − δB. Since Tn depends on the sample size n, we need (nST )−1 to be fairly well behaved,

e.g. (nST )−1 P→ Σ−1
A .

Theorem 2: Geometric Argument. Suppose
√
n(Tn − θ)

D→ u with E(u) = 0

and Cov(u) = Σu 6= 0. Assume T1, ..., TB are iid with nonsingular covariance matrix

ΣTn where (nST )−1 P→ Σ−1
A . Then the large sample 100(1 − δ)% prediction region Rp =

{w : D2
w(T ,ST ) ≤ D2

(UB)} centered at T contains a future value of the statistic Tf with

probability 1 − δB which is eventually bounded below by 1 − δ as B → ∞. Hence the region

Rc = {w : D2
w(Tn,ST ) ≤ D2

(UB)} is a large sample 100(1 − δ)% confidence region for θ

where Tn is a randomly selected Ti.

Proof. The region Rc centered at a randomly selected Tn contains T with probability

1− δB which is eventually bounded below by 1− δ as B → ∞. Since the
√
n(Ti −θ) are iid,











√
n(T1 − θ)

...
√
n(TB − θ)











D→











v1

...

vB











where the vi are iid with the same distribution as u. For fixed B, the average of these

random vectors is
√
n(T − θ)

D→ 1

B

B
∑

i=1

vi ∼ ANg

(

0,
Σu

B

)

where ANg denotes an approximate multivariate normal distribution. Hence (T − θ) =
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OP ((nB)−1/2), and T gets arbitrarily close to θ compared to Tn as B → ∞. Thus Rc is a

large sample 100(1 − δ)% confidence region for θ as n,B → ∞. �

Examining the iid data cloud T1, ..., TB and the bootstrap sample data cloud T ∗

1 , ..., T
∗

B is

often useful for understanding the bootstrap. If
√
n(Tn−θ) and

√
n(T ∗

i −Tn) both converge

in distribution to u ∼ Ng(0,Σ), say, then the bootstrap sample data cloud of T ∗

1 , ..., T
∗

B is

like the data cloud of iid T1, ..., TB shifted to be centered at Tn. Then the hybrid region (6)

is a confidence region by the geometric argument (as is region (5) which tends to use a larger

cutoff), and (4) is a confidence region if
√
n(T

∗ − Tn)
P→ 0.

For Tn = Aβ̂MIX with θ = Aβ, we have
√
n(Tn − θ)

D→ v by (10) where E(v) = 0,

and Σv =
∑

j πjAV j,0A
T . By Theorem 2, if we had iid data T1, ..., TB, then Rc would be a

large sample confidence region for θ. If
√
n(T ∗

n − Tn)
D→ v, then we could use the bootstrap

sample and confidence regions (4) to (6). This condition holds only under strong regularity

conditions such as πd = 1 or θ = Aβ = BβS if V was diagonal. Section 3 will explain why

the bootstrap confidence regions may still be useful.

Pötscher (1991) used the conditional distribution of β̂V S |(β̂V S = β̂Ik ,0) to find the dis-

tribution of wn =
√
n(β̂V S − β). Define P (A|Bk)P (Bk) = 0 if P (Bk) = 0. Let β̂

C

Ik,0

be a random vector from the conditional distribution β̂Ik ,0|(β̂V S = β̂Ik,0). Let wkn =
√
n(β̂Ik ,0 − β)|(β̂V S = β̂Ik ,0) ∼ √

n(β̂
C

Ik,0 − β). Denote Fz(t) = P (z1 ≤ t1, ..., zp ≤ tp) by

P (z ≤ t). Then Pötscher (1991) and Pelawa Watagoda and Olive (2020) show

Fwn
(t) = P [n1/2(β̂V S − β) ≤ t] =

J
∑

k=1

Fwkn
(t)πkn.

Hence β̂V S has a mixture distribution of the β̂
C

Ik ,0 with probabilities πkn, and wn has a

mixture distribution of the wkn with probabilities πkn.

Charkhi and Claeskens (2018) showed that wjn =
√
n(β̂

C

Ij ,0 − β)
D→ wj if S ⊆ Ij for the

maximum likelihood estimator (MLE) with AIC, and gave a forward selection example. Here

wj is a multivariate truncated normal distribution (where no truncation is possible) that is

symmetric about 0. Note that both
√
n(β̂MIX − β) and

√
n(β̂V S − β) are selecting from

the ukn =
√
n(β̂Ik ,0 − β) and asymptotically from the uj . The random selection for β̂MIX
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does not change the distribution of ujn, but selection bias does change the distribution of

the selected ujn and uj to that of wjn and wj . The assumption that wjn
D→ wj may not

be mild. The proof for Equation (11) is the same as that for (9). Theorem 3 proves that w

is a mixture distribution of the wj with probabilities πj.

Theorem 3. Assume P (S ⊆ Imin) → 1 as n→ ∞, and let β̂V S = β̂Ik,0 with probabilities

πkn where πkn → πk as n → ∞. Denote the positive πk by πj. Assume wjn =
√
n(β̂

C

Ij ,0 −
β)

D→ wj. Then

wn =
√
n(β̂V S − β)

D→ w (11)

where the cdf of w is Fw(t) =
∑

j πjFwj
(t).

3. Bootstrapping Variable Selection Estimators

Obtaining the bootstrap samples for β̂V S and β̂MIX is simple. Generate Y ∗ and X∗

that would be used to produce β̂
∗

if the full model estimator β̂ was being bootstrapped.

Instead of computing β̂
∗

, compute the variable selection estimator β̂
∗

V S,1 = β̂
∗C

Ik1
,0. Then

generate another Y ∗ and X∗ and compute β̂
∗

MIX,1 = β̂
∗

Ik1
,0 (using the same subset Ik1

).

This process is repeated B times to get the two bootstrap samples for i = 1, ..., B. Let

the selection probabilities for the bootstrap variable selection estimator be ρkn. Then this

bootstrap procedure bootstraps both β̂V S and β̂MIX with πkn = ρkn. Then apply the

confidence regions (4), (5), and (6) on the bootstrap sample T ∗

1 , ..., T
∗

B where T ∗

i = Aβ̂
∗

SEL,i

where SEL is V S or MIX.

By Section 2, we expect the confidence regions to simulate well (have coverage close to

or higher than the nominal level so that the type I error is close to or less than the nominal

level) if πd = 1 or if the asymptotic covariance matrix for the full model is nonsingular and

diagonal, but these conditions are very strong. In simulations for β̂V S with n ≥ 20p, if the

confidence regions (4) and (5) simulated well for the full model bootstrap, then (4) and (5)

also simulated well for β̂V S. The hybrid confidence region (6) had poorer performance, and

confidence regions for β̂V S tended to have less undercoverage than confidence regions for

β̂
∗

MIX.

Undercoverage can occur if the bootstrap data cloud is less variable than the iid data

12



cloud, e.g., if n < 20p. Heuristically, if n ≥ 20p, then coverage can be higher than the nominal

coverage for two reasons: i) the bootstrap data cloud T ∗

1 , ..., T
∗

B is more variable than the iid

data cloud of T1, ..., TB, and ii) zero padding. In the simulations forH0 : Aβ = BβS = θ, the

simulated coverage for confidence intervals and confidence regions (4) and (5) was roughly

2% less than to 2% higher than the nominal 95% coverage due to i). In the simulations

for H0 : Aβ = BβE = 0, the simulated coverage for confidence intervals and confidence

regions (4) and (5) tended to be close to 99% when the nominal coverage was 95%, but

the nominal 95% confidence intervals tended to be shorter than those for the full model,

and the confidence region volumes were often much smaller than those for the full model.

See Pelawa Watagoda and Olive (2021) for more on why zero padding tends to increase the

coverage while decreasing the volume of the confidence regions and confidence intervals. The

simulations also used B ≥ max(200, 50p) so that S∗

T is a good estimator of Cov(T ∗).

The matrix S∗

T can be singular due to one or more columns of zeros in the bootstrap

sample for β1, ..., βp. The variables corresponding to these columns are likely not needed in

the model given that the other predictors are in the model. A simple remedy is to add d

bootstrap samples of the full model estimator β̂
∗

= β̂
∗

FULL to the bootstrap sample. For

example, take d = dcBe with c = 0.01. A confidence interval [Ln, Un] can be computed

without S∗

T for (4), (5), and (6). Using the confidence interval [max(Ln, T
∗

(1)),min(Un, T
∗

(B))]

can give a shorter covering region.

Next we examine why the bootstrap data cloud tends to be more variable than the iid

data cloud. Let Bjn count the number of times T ∗

i = T ∗

ij in the bootstrap sample. Then the

bootstrap sample T ∗

1 , ..., T
∗

B can be written as

T ∗

1,1, ..., T
∗

B1n,1, ..., T
∗

1,J, ..., T
∗

BJn,J .

Denote T ∗

1j, ..., T
∗

Bjn,j as the jth bootstrap component of the bootstrap sample with sample

mean T
∗

j and sample covariance matrix S∗

T,j. Similarly, we can define the jth component of

the iid sample T1, ..., TB to have sample mean T j and sample covariance matrix ST,j.

Let Tn = β̂MIX. If S ⊆ Ij, assume
√
n(β̂Ij

− βIj
)

D→ Naj
(0,V j) and

√
n(β̂

∗

Ij
− β̂Ij

)
D→

13



Naj
(0,V j). Then by Equation (8),

√
n(β̂Ij ,0 − β)

D→ Np(0,V j,0) and
√

n(β̂
∗

Ij,0
− β̂Ij,0

)
D→ Np(0,V j,0). (12)

If Equation (12) holds, then the component clouds have the same variability asymptotically,

and the confidence regions will shrink to a point at β as n → ∞, giving good test power,

asymptotically. The iid data component clouds are all centered at β. If the bootstrap data

component clouds were all centered at the same value β̃, then the bootstrap cloud would

be like an iid data cloud shifted to be centered at β̃, and (5) and (6) would be confidence

regions for θ = β by Theorem 2. Instead, the bootstrap data component clouds are shifted

slightly from a common center, and are each centered at a β̂Ij ,0. Geometrically, the shifting

of the bootstrap component data clouds makes the bootstrap data cloud more variable than

the iid data cloud, asymptotically (we want n ≥ 20p). The shifting also makes the T ∗

i further

from T
∗

than if there is no shifting. A similar argument can be given for Tn = Aβ̂MIX and

θ = Aβ. Region (4) has the same volume as region (6), but tends to have higher coverage

since empirically, the bagging estimator T
∗

tends to estimate θ at least as well as Tn for a

mixture distribution. See Breiman (1996) and Yang (2003).

The above argument is heuristic since we have not been able to prove that the coverage

is ≥ 1 − δ, asymptotically, except under strong regularity conditions. Then the type I error

≤ δ, asymptotically. Confidence region (5) rejectsH0 if (Tn−θ0)
T [S∗

T ]−1(Tn−θ0) > D2
(UB,T ).

If an iid data cloud was available, the cutoff D2
(UB)(Tn,S

∗

T ) could be computed from D2
i =

(Ti−θ0)
T [S∗

T ]−1(Ti−θ0) for i = 1, ..., B. Hence the type I error is controlled if D2
(UB,T ) tends

to be larger than D2
(UB)(Tn,S

∗

T ).

The bootstrap component clouds for β̂
∗

V S are again separated compared to the iid clouds

for β̂V S, which are centered about β. Heuristically, most of the selection bias is due to

predictors in E, not to the predictors in S. Hence β̂
∗

S,V S is roughly similar to β̂
∗

S,MIX.

Typically the distributions of β̂
∗

E,V S and β̂
∗

E,MIX are not similar, but use the same zero

padding.

Next we will examine when Equation (12) holds. If S ⊆ Ij, then
√
n(β̂Ij

− βIj
)

D→
Naj

(0,V j) by the large sample theory (8) for the estimator. Bootstrap theory should show
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that
√
n(β̂

∗ − β̂)
D→ Np(0,V ), but showing

√
n(β̂

∗

Ij
− β̂Ij

)
D→ Naj

(0,V j) is often difficult.

The nonparametric bootstrap (also called the empirical bootstrap, naive bootstrap, and

the pairs bootstrap) draws a sample of n cases (Y ∗

i ,x
∗

i ) with replacement from the n cases

(Yi,xi), and regresses the Y ∗

i on the x∗

i to get β̂
∗

V S,1, and then draws another sample to get

β̂
∗

MIX,1. This process is repeated B times to get the two bootstrap samples for i = 1, ..., B.

If
√
n(β̂

∗ − β̂)
D→ Np(0,V ) for the full model, then

√
n(β̂

∗

Ij
− β̂Ij

)
D→ Naj

(0,V j) when

S ⊆ Ij: just use Ij as the new full model. Thus Equation (12) should hold when the full

model bootstrap works. The method is used for multiple linear regression, Cox proportional

hazards regression with right censored Yi, and GLMs. See, for example, Burr (1994), Efron

and Tibshirani (1986), Freedman (1981), and Shao and Tu (1995, pp. 335-349).

For the parametric regression model Yi|xi ∼ D(xT
i β,γ), assume

√
n(β̂−β)

D→ Np(0,V (β)),

and that V (β̂)
P→ V (β) as n → ∞. These assumptions tend to be mild for a parametric

regression model where the MLE β̂ is used. Then V (β) = I−1(β), the inverse Fisher in-

formation matrix. For GLMs, see, for example, Sen and Singer (1993, p. 309). For the

parametric regression model, we regress Y on X to obtain (β̂, γ̂) where the n × 1 vector

Y = (Yi) and the ith row of the n × p design matrix X is xT
i .

The parametric bootstrap uses Y ∗

j = (Y ∗

i ) where Y ∗

i |xi ∼ D(xT
i β̂, γ̂) for i = 1, ...., n.

Regress Y ∗

j on X to get β̂
∗

j for j = 1, ..., B. The large sample theory for β̂
∗

is simple.

Note that if Y ∗

i |xi ∼ D(xT
i b, γ̂) where b does not depend on n, then (Y ∗,X) follows the

parametric regression model with parameters (b, γ̂). Hence
√
n(β̂

∗ − b)
D→ Np(0,V (b)).

Now fix large integer n0, and let b = β̂no
. Then

√
n(β̂

∗ − β̂no
)

D→ Np(0,V (β̂no
)). Since

Np(0,V (β̂))
D→ Np(0,V (β)), we have

√
n(β̂

∗ − β̂)
D→ Np(0,V (β)) (13)

as n→ ∞.

Now suppose S ⊆ I . Without loss of generality, let β = (βT
I ,β

T
O)T and β̂ = (β̂(I)T , β̂(O)T )T .

Then (Y ,XI) follows the parametric regression model with parameters (βI ,γ). Hence
√
n(β̂I −βI)

D→ NaI
(0,V (βI)). Now (Y ∗,XI) only follows the parametric regression model

asymptotically, since β̂(O) 6= 0. Then showing
√
n(β̂

∗

Ij
−β̂Ij

)
D→ Naj

(0,V j) is often difficult.
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For the multiple linear regression model, Y = Xβ + e, assume a constant x1 is in the

model, and the zero mean ei are iid with variance V (ei) = σ2. Let H = X(XT X)−1XT .

For each I with S ⊆ I , assume the maximum leverage maxi=1,...,n xT
iI(X

T
I XI)

−1xiI → 0 in

probability as n → ∞. For least squares with S ⊆ I ,
√
n(β̂I − βI)

D→ NaI
(0,V I) where

(XT
I XI)/(nσ

2)
P→ V −1

I . See, for example, Sen and Singer (1993, p. 280).

Consider the parametric bootstrap for the above model with Y ∗ ∼ Nn(Xβ̂, σ̂2
nI) ∼

Nn(HY , σ̂2
nI) where we are not assuming that the ei ∼ N(0, σ2), and

σ̂2
n = MSE =

1

n − p

n
∑

i=1

r2
i

where the residuals are from the full OLS model. Then MSE is a
√
n consistent estimator

of σ2 under mild conditions by Su and Cook (2012). Thus β̂
∗

I = (XT
I XI)

−1XT
I Y ∗ ∼

NaI
(β̂I , σ̂

2
n(X

T
I XI)

−1) since E(β̂
∗

I) = (XT
I XI)

−1XT
I HY = β̂I because HXI = XI , and

Cov(β̂
∗

I) = σ̂2
n(X

T
I XI)

−1. Hence

√
n(β̂

∗

I − β̂I) ∼ NaI
(0, nσ̂2

n(X
T
I XI)

−1)
D→ NaI

(0,V I)

as n,B → ∞ if S ⊆ I . Hence Equation (12) holds under mild conditions.

When V is diagonal,
√
n(β̂S,full − βS)

D→ NaS
(0,V S) where V S is a diagonal matrix

using the relevant diagonal elements of V . For multiple linear regression with the parametric

bootstrap, the full model β̂
∗ ∼ Np(β̂, σ̂

2
n(X

T X)−1) ≈ Np(β̂,V /n). If the columns of X are

orthogonal and S ⊆ I , then β̂
∗

S,I = β̂
∗

S,full and β̂S,I = β̂S,full. Hence
√
n(β̂

∗

S,MIX − β̂S,full)
D→

NaS
(0,V S). When V is diagonal, the columns of X are asymptotically orthogonal. Hence if

S ⊆ I, β̂S,I ≈ β̂S,full ≈ T
∗

, and the bootstrap component clouds have the same asymptotic

variability as the iid data clouds. Hence we expect the bootstrap cutoffs for Aβ̂
∗

S,MIX

to be near χ2
g,1−δ. Results in Pelawa Watagoda and Olive (2021) show that the residual

bootstrap behaves similarly to the parametric bootstrap, with σ̂2
n = MSE replaced by

σ̃2
n = (n− p)MSE/n.

The weighted least squares formulation of the GLM maximum likelihood estimator, given

for example by Hillis and Davis (1994) and Sen and Singer (1993, p. 307), suggests that

similar results hold for the GLM when V is diagonal.
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4. Example and Simulations

Example. Lindenmayer et al. (1991) and Cook and Weisberg (1999, p. 533) gave

a data set with 151 cases where Y is the number of possum species found in a tract of

land in Australia. The predictors are acacia=basal area of acacia + 1, bark=bark index,

habitat=habitat score, shrubs=number of shrubs + 1, stags= number of hollow trees + 1,

stumps=indicator for presence of stumps, and a constant. For the full Poisson regression

model, the bootstrap shorth CIs were close to the large sample GLM confidence intervals

≈ β̂i ± 2SE(β̂i) (not shown). The data set is available from the Cook and Weisberg (1999)

Arc software (https://www.stat.umn.edu/arc/).

The minimum AIC model from backward elimination used a constant, bark, habitat, and

stags. The 95% shorth(c) confidence intervals for βi using the parametric bootstrap are

shown in Table 1. Note that most of the CIs contain 0 when closed intervals are used instead

of open intervals.

Table 1: Shorth CIs for the example

variable β̂i 95% shorth CI: VS 95% shorth CI: MIX

intercept −0.8994 [−1.5662,−0.5169] [−1.3680,−0.3553]

acacia 0 [ 0, 0.0.0384] [−0.0004, 0.0397]

bark 0.0336 [ 0, 0.05928] [0, 0.0563]

habitat 0.1069 [ 0, 0.1524] [0, 0.1584]

shrubs 0 [ 0, 0.05582] [−0.01560, 0.04532]

stags 0.0302 [ 0, 0.0540] [0, 0.0540]

stumps 0 [−0.9326, 0.0000] [−0.8402, 0.1515]

We tested H0 : β2 = β5 = β7 = 0 with the Imin model selected by backward elimination.

(Of course this test would be easy to do with the full model using GLM theory.) Then

H0 : Aβ = (β2, β5, β7)
T = 0. Using the prediction region method with the full model

had [0, D(UB)] = [0, 2.773] with D0 = 2.067. Note that
√

χ2
3,0.95 = 2.795. So fail to reject
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H0. Using the prediction region method with the Imin backward elimination model had

[0, D(UB)] = [0, 2.702] while D0 = 1.327. So fail to reject H0. The ratio of the volumes of the

bootstrap confidence regions for this test was 0.322. (Use (7) with S∗

T and D from backward

elimination for the numerator, and from the full model for the denominator.) Hence the

backward elimination bootstrap test was more precise than the full model bootstrap test.

The test with β̂MIX had [0, D(UB)] = [0, 3.157] while D0 = 1.066. So fail to reject H0. The

ratio of the volumes of the bootstrap confidence regions for this test (MIX vs. FULL) was

0.117.

Now we describe simulations for multiple linear regression, binomial regression, Cox

regression, and Poisson regression. There is a massive literature on variable selection, but

most of the methods for confidence intervals and hypothesis testing are conditional on the

subset Imin of predictors selected by the variable selection method. Then inference for the

predictors that were not selected is difficult. Data splitting, the Charkhi and Claeskens

(2018) method, and most high dimensional variable selection methods are conditional on

Imin. Also, most of the methods are for multiple linear regression. Previous inference

methods for forward selection, backward elimination, and lasso variable selection did not use

the large sample theory given by this paper and Pelawa Watagoda and Olive (2020). For

variable selection estimators of β with n/p large, the most important competitor is inference

from the full model.

Hence our simulations compare bootstrap inference for the full model with that for the

variable selection estimator of β. We used 5000 runs, θ = Aβ = βi, θ = Aβ = βS =

(β1, 1, ..., 1)
T and θ = Aβ = βE = 0. The simulations often used n = 25p, n = 50p;

ψ = 0, 1/
√
p, and 0.9; and k = 1 and 2 where k and ψ are defined in the following paragraph.

We often used p = 4 since the simulations with 5000 runs take a long time.

Let x = (1 uT )T where u is the (p − 1) × 1 vector of nontrivial predictors. In the

simulations, for i = 1, ..., n, we generated wi ∼ Np−1(0, I) where the q = p− 1 elements of

the vector wi are iid N(0,1). Let the q× q matrix A = (aij) with aii = 1 and aij = ψ where

0 ≤ ψ < 1 for i 6= j. Then the vector zi = Awi so that Cov(zi) = Σz = AAT = (σij) where
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the diagonal entries σii = [1 + (q− 1)ψ2] and the off diagonal entries σij = [2ψ+ (q − 2)ψ2].

Hence the correlations are cor(zi, zj) = ρ = (2ψ+(q− 2)ψ2)/(1 + (q− 1)ψ2) for i 6= j. Then
∑k

j=1 zj ∼ N(0, kσii + k(k − 1)σij) = N(0, v2). Let u = az/v. Then cor(xi, xj) = ρ for i 6= j

where xi and xj are nontrivial predictors. If ψ = 1/
√
cp, then ρ→ 1/(c+1) as p→ ∞ where

c > 0. As ψ gets close to 1, the predictor vectors ui cluster about the line in the direction

of (1, ..., 1)T . Let SP = xTβ = β1 + 1xi,2 + · · · + 1xi,k+1 ∼ N(β1, a
2) for i = 1, ..., n. Hence

β = (β1, 1, ..., 1, 0, ..., 0)
T with β1, k ones, and p − k − 1 zeros. Binomial regression used

β1 = 0, a = 5/3, and mi = m with m = 1 or 20. Poisson regression used β1 = 1 = a and

β1 = 5 with a = 2. The simulation for multiple linear regression was similar, but β1 = 1 and

z was used instead of u. The Cox regression simulation changes are described above Table

5. In the tables, ψ = 0 means the correlation ρ = 0. If ψ = 0.9, then ρ = 0.996 if p = 4 and

ρ = 0.999 if p = 10. In Table 5, if ψ = 0.5, then ρ = 0.857.

The simulation computed the shorth(c) CI for each βi and used bootstrap confidence

regions to test H0 : βS = (β1, 1, ..., 1)
T where β2 = · · · = βk+1 = 1, and H0 : βE = 0

(whether the last p− k− 1 βi = 0). The nominal coverage was 0.95 with δ = 0.05. Observed

coverage between 0.94 and 0.96 would suggest coverage is close to the nominal value. The

parametric bootstrap was used with AIC for the GLMs, multiple linear regression used

the residual bootstrap with Mallows (1973) Cp, and Cox regression used the nonparametric

bootstrap with lasso variable selection.

In Tables 2-5, there are two rows for each model giving the observed confidence interval

coverages and average lengths of the confidence intervals. The term “reg,0” is for the full

model regression with ψ = 0, the term “vs,0.9” is for variable selection with ψ = 0.9, and

“mix,0” for random selection with ψ = 0. The last six columns give results for the tests.

The terms pr, hyb, and br are for the prediction region method (4), hybrid region (6), and

Bickel and Ren region (5). The 0 indicates the test was H0 : βE = 0, while the 1 indicates

that the test was H0 : βS = (β1, 1..., 1)
T . The length and coverage = P(fail to reject H0) for

the interval [0, D(UB)] or [0, D(UB,T )] where D(UB) or D(UB ,T ) is the cutoff for the confidence

region. The cutoff will often be near
√

χ2
g,0.95 if the statistic T is asymptotically normal.
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Note that
√

χ2
2,0.95 = 2.448 is close to 2.45 for the full model regression bootstrap tests for

βS if k = 1 (if k = 2 for Cox regression).

Volume ratios of the three confidence regions can be compared using (7), but there is

not enough information in the tables to compare the volume of the confidence region for the

full model versus that for the variable selection or random selection since the three methods

have different determinants |S∗

T |. For random selection, the random vector β̂MIX is not

observed. Hence for the hybrid region and Bickel and Ren region Tn = Aβ̂V S was used, and

the coverage for the hybrid region for β̂MIX was often 5% too low in the hyb0 and hyb1

columns with ψ = 0.9.

The inference for variable selection was often as precise or more precise than the inference

for the full model. The coverages tended to be near 0.95 for the bootstrap for the full model.

Variable selection coverage tended to be near 0.95 unless the β̂i could equal 0 or if the hybrid

region was used with β̂MIX. An exception was binary logistic regression with m = 1 where

variable selection and the full model often had higher coverage than the nominal 0.95 for

the hypothesis tests, especially for n = 25p. For binary regression, the bootstrap confidence

regions using smaller a and larger n resulted in coverages closer to 0.95 for the full model, and

convergence problems caused the programs to fail for a > 4. (The MLE tends to converge if

max(|xT
i β̂|) ≤ 7 and if the Y values of 0 and 1 are not nearly perfectly classified by the rule

Ŷ = 1 if xT
i β̂ > 0 and Ŷ = 0, otherwise.) The Bickel and Ren (5) average cutoffs were rarely

lower than those of the hybrid region (6). For Poisson regression for β̂MIX with p = 10 and

ψ = 0.9, the coverages for H0 : βS = 1 were about 4% too low in Table 4. One of the ten

shorth confidence intervals also had coverage about 2% too low for this case.

If βi was a component of βE, then the variable selection confidence intervals had higher

coverage but were shorter than those of the full model due to zero padding. The zeros in β̂E

tend to result in higher than nominal coverage for the variable selection estimator, but can

greatly decrease the volume of the confidence region compared to that of the full model.

For the simulated data, when ψ = 0, the asymptotic covariance matrix, e.g. I−1(β), is

diagonal. Hence β̂S has the same multivariate normal limiting distribution for β̂MIX and
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the full model β̂, and possibly for β̂V S , by Section 2. For Tables 2-5, βS = (β1, β2)
T , and

βp−1 and βp are components of βE . For the n in the tables and ψ = 0, the coverages and

“lengths” did tend to be close for the βi that are components of βS, and for pr1, hyb1, and

br1.

Table 2 was for multiple linear regression with forward selection, the residual bootstrap,

n = 100, p = 4, k = 1, and B = 1000. There was slight undercoverage for ψ = 0 since n is

small for the skewed error distribution. For the full model, and for ψ = 0 with S = {1, 2},
the CI length should be close to 2(1.96)σ/10 = 0.392 when n = 100. A larger simulation

study, with p as large as 10 and without the MIX rows, is in Pelawa Watagoda and Olive

(2021).

Table 2: Bootstrapping OLS Forward Selection with Cp, ei ∼ EXP (1) − 1

ψ β1 β2 βp−1 βp pr0 hyb0 br0 pr1 hyb1 br1

reg,0 0.939 0.949 0.949 0.944 0.941 0.942 0.942 0.937 0.937 0.938

len 0.393 0.400 0.399 0.400 2.474 2.474 2.475 2.453 2.453 2.455

vs,0 0.938 0.944 0.999 0.997 0.994 0.984 0.995 0.932 0.933 0.934

len 0.392 0.398 0.323 0.323 2.709 2.709 3.014 2.453 2.453 2.460

mix,0 0.937 0.943 0.999 0.998 0.998 0.987 0.995 0.930 0.931 0.931

len 0.391 0.397 0.274 0.278 3.072 3.072 3.288 2.455 2.455 2.459

reg,0.9 0.940 0.948 0.953 0.953 0.946 0.948 0.948 0.933 0.933 0.932

len 0.392 3.249 3.249 3.249 2.475 2.475 2.476 2.454 2.454 2.455

vs,0.9 0.941 0.966 0.996 0.997 0.992 0.983 0.994 0.957 0.953 0.962

len 0.393 2.754 2.721 2.713 2.712 2.712 2.950 2.492 2.492 2.597

mix,0.9 0.941 0.972 0.997 0.998 0.995 0.873 0.996 0.938 0.892 0.935

len 0.391 2.105 1.999 2.000 2.547 2.547 2.828 2.448 2.448 2.610

Tables 3 and 4 are for binary logistic regression and Poisson regression with backward

elimination. In Table 3, the coverages for H0 : βS = (0, 1)T were a bit high. In Table 4, the

coverages for H0 : βS = (1, 1)T were low for β̂MIX and ψ = 0.9.

For Cox proportional hazards regression, the cases were (Zi, δi,xi) where Zi = Yi is
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Table 3: Bootstrapping Binomial Logistic Regression, Backward Elimination with AIC,

B = 200, n = 200, p = 4, k = 1, and m = 1

ψ β1 β2 βp−1 βp pr0 hyb0 br0 pr1 hyb1 br1

reg,0 0.950 0.944 0.955 0.954 0.958 0.966 0.967 0.958 0.966 0.973

len 0.754 0.677 0.458 0.459 2.488 2.488 2.499 2.485 2.485 2.575

vs,0 0.954 0.948 0.998 0.998 0.996 0.993 0.997 0.962 0.968 0.976

len 0.750 0.675 0.393 0.390 2.725 2.725 3.031 2.482 2.482 2.575

mix,0 0.956 0.947 0.999 0.998 0.998 0.994 0.998 0.962 0.965 0.970

len 0.740 0.663 0.321 0.322 3.129 3.129 3.341 2.482 2.482 2.548

reg,0.9 0.946 0.954 0.952 0.950 0.955 0.964 0.966 0.950 0.961 0.963

len 0.755 6.084 6.069 6.080 2.489 2.489 2.499 2.486 2.486 2.497

vs,0.9 0.954 0.949 0.996 0.997 0.993 0.991 0.996 0.976 0.980 0.984

len 0.750 5.320 5.385 5.388 2.788 2.788 3.039 2.588 2.588 2.723

mix,0.9 0.955 0.966 0.997 0.997 0.996 0.989 0.996 0.977 0.968 0.974

len 0.741 3.938 3.859 3.865 2.869 2.869 3.046 2.604 2.604 2.707

uncensored if δi = 1, and Zi is right censored if δi = 0. We used the nonparametric bootstrap

on the cases with lasso variable selection: fit the Cox model on the predictors with nonzero

lasso coefficients. R code similar to that of Zhou (2001) was used to generate data from

the Weibull proportional hazards regression model. The correlations for the predictors were

similar to those for the Poisson and binomial regression, but no constant was used so replace

q by p. Then SP = xT
i β = 1xi,1 + · · · + 1xi,k ∼ N(0, a2) for i = 1, ..., n. The simulations

use a = 1 where β = (1, ..., 1, 0, ..., 0)T with k ones and p − k zeros. We used ψ = 0.5 since

ψ = 0.9 gave convergence problems. See Table 5.

6. Conclusions

Pelawa Watagoda and Olive (2020) showed that β̂V S is a
√
n consistent estimator of

β for several important variable selection estimators for multiple linear regression. This

paper extended the theory for several important variable selection estimators for many other

regression estimators. The random vector β̂MIX has simple large sample theory, and is
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Table 4: Bootstrapping Poisson Regression, Backward Elimination with AIC, B = 500,

n = 250, p = 10, k = 1, a = 1, β1 = 1

ψ β1 β2 βp−1 βp pr0 hyb0 br0 pr1 hyb1 br1

reg,0 0.948 0.953 0.953 0.952 0.951 0.951 0.952 0.943 0.945 0.947

len 0.175 0.133 0.128 0.128 3.986 3.986 3.990 2.453 2.453 2.474

vs,0 0.947 0.952 0.998 0.999 0.998 0.997 0.997 0.950 0.954 0.958

len 0.175 0.132 0.105 0.104 4.303 4.303 4.740 2.452 2.452 2.499

mix,0 0.948 0.953 0.999 1− 1.000 1− 1− 0.951 0.949 0.951

len 0.174 0.129 0.088 0.088 5.122 5.122 5.396 2.453 2.453 2.475

reg,0.9 0.948 0.953 0.957 0.955 0.946 0.948 0.948 0.945 0.945 0.948

len 0.175 3.287 3.286 3.291 3.983 3.983 3.987 2.454 2.454 2.469

vs,0.9 0.948 0.943 0.998 0.999 0.998 0.997 0.999 0.968 0.967 0.973

len 0.175 2.862 2.810 2.820 4.261 4.261 4.685 2.480 2.480 2.638

mix,0.9 0.951 0.921 0.998 0.999 1− 0.999 1− 0.899 0.874 0.898

len 0.174 2.527 2.231 2.228 4.971 4.971 5.287 2.569 2.569 2.711

useful for understanding the more complicated large sample theory of β̂V S . Theory for the

Cp criterion for multiple linear regression with an unknown error distribution was also given.

The hybrid confidence region is useful for explaining the three bootstrap confidence regions

with Theorem 2, but often has lower coverage than the other two confidence regions.

More theory is needed for the bootstrap confidence regions for variable selection. The

method works well when πd = 1, which is a very strong assumption, but weaker than the

assumption πS = 1 that is often made for variable selection consistency and the oracle prop-

erty. The confidence regions (4) and (5) simulate well for many variable selection estimators,

especially when V is diagonal. Augmenting the bootstrap sample for the variable selection

estimator with T ∗ from the full model makes S∗

T nonsingular.

Heuristically, the iid component data clouds are centered at β while the bootstrap com-

ponent data clouds are centered at β̂Ij ,0. Hence the T ∗

i tend to be further from T
∗

than

the Ti are from T . Then the bootstrap cutoffs tend to result in conservative tests provided
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Table 5: Bootstrapping Cox Regression, Lasso Variable Selection, B = 200, n = 100, p = 4,

k = 2

ψ β1 β2 βp−1 βp pr0 hyb0 br0 pr1 hyb1 br1

reg,0 0.936 0.934 0.952 0.956 0.951 0.962 0.968 0.945 0.965 0.974

len 0.850 0.852 0.744 0.744 2.525 2.525 2.552 2.514 2.514 2.640

vs,0 0.937 0.942 0.989 0.988 0.970 0.974 0.977 0.947 0.966 0.975

len 0.852 0.853 0.728 0.726 2.544 2.544 2.647 2.515 2.515 2.640

mix,0 0.940 0.942 0.992 0.992 0.979 0.978 0.981 0.946 0.966 0.976

len 0.842 0.841 0.667 0.666 2.691 2.691 2.758 2.515 2.515 2.623

reg,0.5 0.945 0.953 0.954 0.951 0.951 0.963 0.965 0.944 0.962 0.968

len 2.372 2.373 2.333 2.338 2.529 2.529 2.556 2.522 2.522 2.571

vs,0.5 0.968 0.960 0.992 0.990 0.980 0.979 0.984 0.976 0.965 0.975

len 2.064 2.064 2.046 2.045 2.784 2.784 2.931 2.558 2.558 2.688

mix,0.5 0.944 0.940 0.993 0.992 0.984 0.984 0.990 0.933 0.944 0.953

len 2.220 2.212 1.971 1.970 2.784 2.784 2.929 2.546 2.546 2.667

(n− p)/n is near 1. The theory, heuristics, and good simulation results suggest that (4) and

(5) are useful for exploratory purposes.

There is a massive literature on variable selection and a fairly large literature for inference

after variable selection. See, for example, Guan and Tibshirani (2020), Lee and Wu (2018),

Leeb and Pötscher (2003), Leeb, Pötscher, and Ewald (2015), Lu et al. (2017), Ning and

Liu (2017), Pötscher (1991), and Tibshirani et al. (2018). High dimensional testing has

n/p small, and often assumes that n/aS is large. Ewald and Schneider (2018) note several

methods basically use the OLS full model when n/p is large. Rinaldo, Wasserman, and

G’Sell (2019) show data splitting is useful and discuss problems with inference after variable

selection. Su (2018) shows that fast variable selection methods tend to select spurious

variables quickly if k = aS is not small. Recent papers on large sample theory for multiple

linear regression estimators include Cook and Forzani (2018, 2019), Pelawa Watagoda and

Olive (2020), and Zhang (2020). Also see Knight and Fu (2000).
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See Efron (1979, 1982) for more on the bootstrap. The bagging estimator, T
∗

, is closely

related to a model averaging estimator. Wang and Zhou (2013) show that the Hjort and

Claeskens (2003) confidence intervals based on frequentist model averaging are asymptoti-

cally equivalent to those obtained from the full model. See Buckland et al. (1997), Schomaker

(2012), and Schomaker and Heumann (2014) for standard errors when using the bootstrap

or model averaging for linear model confidence intervals.

The simulations were done in R. See R Core Team (2016). We used several R functions

including backward elimination computed with the step function from the Venables and Rip-

ley (2010) MASS library, forward selection computed with the Lumley (2009) leaps function,

and lasso computed from the Friedman et al. (2015) glmnet library. The collection of Olive

(2021) R functions slpack, available from (http://parker.ad.siu.edu/Olive/slpack.txt), has

some useful functions for the inference. The functions regbootsim3 and vsbootsim5 were

to bootstrap the full model and forward selection for multiple linear regression. The functions

binregbootsim and pregbootsim are useful for the full binomial regression and full Poisson

regression models. The functions vsbrbootsim2 and vsprbootsim2 were used to boot-

strap backward elimination for binomial and Poisson regression. The functions LRboot and

vsLRboot2 bootstrap the logistic regression full model and backward elimination. The func-

tions PRboot and vsPRboot2 bootstrap the Poisson regression full model and backward elim-

ination. The function PHboot bootstraps the full Cox PH model. The function PHbootsim

is used to simulate the bootstrap for the full Cox PH model. The function RLPHboot2 boot-

straps a Cox PH model with lasso variable selection. The function RLPHbootsim2 is used

to simulate the bootstrap for lasso variable selection with Cox regression. Sample R code is

available from (http://parker.ad.siu.edu/Olive/ppRcodebootglm.pdf).
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