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Abstract This paper suggests a method for bootstrapping the multiple linear
regression model Y = β1 + β2x2 + · · ·+ βpxp + e after variable selection. We
develop asymptotic theory for some common least squares variable selection
estimators such as forward selection with Cp. Then hypothesis testing is done
using three confidence regions, one of which is new. Theory suggests that the
three confidence regions tend to have coverage at least as high as the nominal
coverage if the sample size is large enough.
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1 Introduction

In this section we review the variable selection model and some results on
bootstrap confidence regions. Section 2 will give large sample theory for some
ordinary least squares (OLS) variable selection estimators. Section 3 will give
theory for bootstrap confidence regions. Section 4 will show how to bootstrap
some variable selection estimators. We assume the number of predictors, p, is
fixed.

Suppose that the response variable Yi and at least one predictor vari-
able xi,j are quantitative with xi,1 ≡ 1. Let xi = (xi,1, ..., xi,p)

T and β =
(β1, ..., βp)

T where β1 corresponds to the intercept. Then the multiple linear
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regression model is

Yi = β1 + xi,2β2 + · · ·+ xi,pβp + ei = xTi β + ei

for i = 1, ..., n. This model is also called the full model. Here n is the sample
size, and assume that the random variables ei are independent and identi-
cally distributed (iid) with variance V (ei) = σ2. In matrix notation, these n
equations become

Y = Xβ + e

where Y is an n × 1 vector of response variables, X is an n × p matrix of
predictors, β is a p × 1 vector of unknown coefficients, and e is an n × 1
vector of unknown errors. The ith fitted value Ŷi = xTi β̂ and the ith residual

ri = Yi− Ŷi where β̂ is an estimator of β. Ordinary least squares is often used
for inference if n/p is large.

Next, we describe variable selection, and then develop theory in Section
2. Variable selection is the search for a subset of predictor variables that can
be deleted with little loss of information if n/p is large. Following Olive and
Hawkins (2005), a model for variable selection can be described by

xTβ = xTSβS + xTEβE = xTSβS (1)

where x = (xTS ,x
T
E)T , xS is an aS × 1 vector, and xE is a (p− aS)× 1 vector.

Given that xS is in the model, βE = 0 and E denotes the subset of terms
that can be eliminated given that the subset S is in the model. Let xI be the
vector of a terms from a candidate subset indexed by I, and let xO be the
vector of the remaining predictors (out of the candidate submodel). Suppose
that S is a subset of I and that model (1) holds. Then

xTβ = xTSβS = xTSβS + xTI/Sβ(I/S) + xTO0 = xTI βI

where xI/S denotes the predictors in I that are not in S. Since this is true
regardless of the values of the predictors, βO = 0 if S ⊆ I.

Forward selection forms a sequence of submodels I1, ..., Ip where Ij uses
j predictors including the constant. Let I1 use x∗1 = x1 ≡ 1: the model has
a constant but no nontrivial predictors. To form I2, consider all models I
with two predictors including x∗1. Compute Q2(I) = SSE(I) = RSS(I) =
rT (I)r(I) =

∑n
i=1 r

2
i (I) =

∑n
i=1(Yi − Ŷi(I))

2 . Let I2 minimize Q2(I) for the
p− 1 models I that contain x∗1 and one other predictor. Denote the predictors
in I2 by x∗1, x

∗

2. In general, to form Ij consider all models I with j predictors
including variables x∗1, ..., x

∗

j−1. Compute Qj(I) = rT (I)r(I) =
∑n

i=1 r
2
i (I) =

∑n
i=1(Yi − Ŷi(I))

2. Let Ij minimize Qj(I) for the p − j + 1 models I that
contain x∗1, ..., x

∗

j−1 and one other predictor not already selected. Denote the
predictors in Ij by x∗1, ..., x

∗

j. Continue in this manner for j = 2, ...,M = p.
When there is a sequence of M submodels, the final submodel Id needs to

be selected. Let the candidate model I contain a terms, including a constant,
and let xI and β̂I be a×1 vectors. Then there are many criteria used to select
the final submodel Id. For a given data set, the quantities p, n, and σ̂2 act as
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constants, and a criterion below may add a constant or be divided by a positive
constant without changing the subset Imin that minimizes the criterion.

Let criteria CS(I) have the form

CS(I) = SSE(I) + aKnσ̂
2.

These criteria need a good estimator of σ2 and n/p large. The criterion Cp(I) =
AICS(I) uses Kn = 2 while the BICS(I) criterion uses Kn = log(n). See Jones
(1946) and Mallows (1973) for Cp. Typically σ̂2 is the OLS full model

MSE =

n
∑

i=1

r2i
n− p

when n/p is large. Then σ̂2 = MSE is a
√
n consistent estimator of σ2 under

mild conditions by Su and Cook (2012).
The following criteria also need n/p large. AIC is due to Akaike (1973)

and BIC to Schwarz (1978).

AIC(I) = n log

(

SSE(I)

n

)

+ 2a, and

BIC(I) = n log

(

SSE(I)

n

)

+ a log(n).

Let p be fixed and let Imin be the submodel that minimizes the criterion
using variable selection with OLS. Following Nishii (1984) and Shao (1993),
P (S ⊆ Imin) → 1 as n → ∞ if Cp or AIC is used for forward selection, back-
ward elimination, or all subsets. Seber and Lee (2003, p. 448) and Claeskens
and Hjort (2008) summarize related results. Also see Li (1987).

Inference will consider bootstrap hypothesis testing. Applying certain pre-
diction intervals or prediction regions to the bootstrap sample will result in
confidence intervals or confidence regions. See Olive (2018). The prediction
intervals and regions are based on samples of size n, while the bootstrap sam-
ple size is B = Bn. To help motivate this idea, let Z(1), ..., Z(n) be the order
statistics of n iid random variables Z1, ..., Zn. Let a future random variable
Zf be such that Z1, ..., Zn, Zf are iid. Let k1 = dnδ/2e and k2 = dn(1 − δ/2)e
where dxe is the smallest integer ≥ x. For example, d7.7e = 8. Then a com-
mon nonparametric large sample 100(1 − δ)% prediction interval (PI) for Zf
is [Z(k1), Z(k2)] where 0 < δ < 1. See Frey (2013) for references. Let Tn be an

estimator of a parameter θ such as Tn = Z =
∑n

i=1 Zi/n with θ = E(Z1). Let
T ∗

1 , ..., T
∗

B be a bootstrap sample for Tn. Then a bootstrap percentile method
large sample 100(1− δ)% confidence interval for θ is an interval [T ∗

(kL), T
∗

(KU)]

containing ≈ dB(1 − δ)e of the T ∗

i . A common choice is [T ∗

(k1)
, T ∗

(k2)
] where

the ki are as above with B used instead of n. See Efron (1982, p. 78). Note
that [T ∗

(k1)
, T ∗

(k2)
] is a large sample confidence interval for θ and a large sample

prediction interval for a future value of T ∗

f .
The shorth(c) estimator is useful for making prediction intervals. Then the

shorth estimator can be applied to a bootstrap sample β̂∗

i1, ..., β̂
∗

iB to get a
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confidence interval for βi. Here Tn = β̂i and θ = βi. With the Zi and Z(i) as
in the above paragraph, let the shortest closed interval containing at least c
of the Zi be

shorth(c) = [Z(s),Z(s+c−1)]. (2)

Let
kn = dn(1 − δ)e. (3)

Frey (2013) showed that for large nδ and iid data, the shorth(kn) prediction
interval has maximum undercoverage ≈ 1.12

√

δ/n, and used the shorth(c)
estimator as the large sample 100(1 − δ)% PI where

c = min(n, dn[1 − δ + 1.12
√

δ/n ] e). (4)

Applied to a bootstrap sample, the Frey shorth interval can be regarded as
the shortest percentile method confidence interval, asymptotically. Hence the
shorth confidence interval is a practical implementation of the Hall (1988)
shortest bootstrap interval based on all possible bootstrap samples. Some the-
ory for the bootstrap shorth confidence interval is given in the last paragraph
of Section 3.

Consider testing H0 : θ = θ0 versus H1 : θ 6= θ0 where θ0 is a known
g× 1 vector. Then a large sample 100(1− δ)% confidence region for θ is a set
An such that P (θ ∈ An) → 1 − δ as n → ∞. Then reject H0 if θ0 is not in
the confidence region An. A prediction region will be applied to iid random
vectors z1, ..., zn. Then confidence region (11) will apply the prediction region
to the bootstrap sample T ∗

1 , ..., T
∗

B. Context will be used to determine whether
z1, ..., zn are iid random vectors or the observed sample (the training data).

For a confidence region, let the g × 1 vector Tn be an estimator of the
g × 1 parameter vector θ. Let T ∗

1 , ..., T
∗

B be the bootstrap sample for Tn. Let
A be a full rank g× p constant matrix. For variable selection, consider testing
H0 : Aβ = θ0 versus H1 : Aβ 6= θ0 with θ = Aβ where often θ0 = 0.

Then let Tn = Aβ̂Imin,0 and let T ∗

i = Aβ̂
∗

Imin,0,i for i = 1, ..., B. The statistic

β̂Imin,0 is the variable selection estimator padded with zeroes. See the second
paragraph of Section 2.

To bootstrap a confidence region, Mahalanobis distances will be useful. Let
the g × 1 column vector T = Tn be a multivariate location estimator, and let
the g×g symmetric positive definite matrix C be a dispersion estimator. Then
the ith squared sample Mahalanobis distance is the scalar

D2
i = D2

i (T,C) = D2
zi

(T,C) = (zi − T )TC−1(zi − T ) (5)

for each observation zi. Notice that the Euclidean distance of zi from the
estimate of center T is Di(T, Ig) where Ig is the g × g identity matrix. The
classical Mahalanobis distance Di uses (T,C) = (z,S), the sample mean and
sample covariance matrix where

z =
1

n

n
∑

i=1

zi and S =
1

n − 1

n
∑

i=1

(zi − z)(z i − z)T. (6)
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Let qn = min(1 − δ + 0.05, 1− δ + g/n) for δ > 0.1 and

qn = min(1 − δ/2, 1− δ + 10δg/n), otherwise. (7)

If 1− δ < 0.999 and qn < 1 − δ + 0.001, set qn = 1 − δ. Let

c = dnqne. (8)

Let (T,C) = (z,S), and let D(Un) be the 100qnth sample quantile of the
Di. Then the Olive (2013, 2017b) large sample 100(1 − δ)% nonparametric
prediction region for a future value zf given iid data z1, ..., zn is

{z : D2
z(z,S) ≤ D2

(Un)}, (9)

while the classical large sample 100(1− δ)% prediction region is

{z : D2
z(z,S) ≤ χ2

g,1−δ}. (10)

The Olive (2017ab, 2018) prediction region method obtains a confidence
region for θ by applying the nonparametric prediction region (9) to the boot-

strap sample T ∗

1 , ..., T
∗

B. Let T
∗

and S
∗

T be the sample mean and sample co-

variance matrix of the bootstrap sample. Assume nS∗

T
P→ ΣA. See Machado

and Parente (2005) for regularity conditions for this assumption.
Following Bickel and Ren (2001), let the vector of parameters θ = T (F ),

the statistic Tn = T (Fn), and T ∗ = T (F ∗

n) where F is the cdf of iid x1, ...,xn,
Fn is the empirical cdf, and F ∗

n is the empirical cdf of x∗

1, ...,x
∗

n, a sample

from Fn using the nonparametric bootstrap. If
√
n(Fn−F )

D→ zF , a Gaussian
random process, and if T is sufficiently smooth (has a Hadamard derivative

Ṫ (F )), then
√
n(Tn − θ)

D→ u and
√
n(T ∗

i − Tn)
D→ u with u = Ṫ (F )zF .

Olive (2017b, 2018) used these results to show that if u ∼ Ng(0,ΣA), then
√
n(T

∗ − Tn)
D→ 0,

√
n(T ∗

i − T
∗

)
D→ u,

√
n(T

∗ − θ)
D→ u, and that the

prediction region method large sample 100(1− δ)% confidence region for θ is

{w : (w − T
∗

)T [S∗

T ]−1(w − T
∗

) ≤ D2
(UB)} =

{w : D2
w(T

∗

,S∗

T ) ≤ D2
(UB)} (11)

where D2
(UB) is computed from D2

i = (T ∗

i − T
∗

)T [S∗

T ]−1(T ∗

i − T
∗

) for i =
1, ..., B. Note that the corresponding test for H0 : θ = θ0 rejects H0 if
(T

∗ − θ0)
T [S∗

T ]−1(T
∗ − θ0) > D2

(UB). A simpler proof than the Olive (2017b,

2018) proof is given in Section 3.
The modified Bickel and Ren (2001) large sample 100(1 − δ)% confidence

region is {w : (w − Tn)T [S∗

T ]−1(w − Tn) ≤ D2
(UB,T )} =

{w : D2
w(Tn,S

∗

T ) ≤ D2
(UB ,T )} (12)

where the cutoff D2
(UB,T ) is the 100qBth sample quantile of the D2

i = (T ∗

i −
Tn)T [S∗

T ]−1(T ∗

i − Tn). Note that qB is found from (7) and (8) by replacing



6 Lasanthi C.R. Pelawa Watagoda, David J. Olive

n by B. Note that the corresponding test for H0 : θ = θ0 rejects H0 if
(Tn − θ0)

T [S∗

T ]−1(Tn − θ0) > D2
(UB,T ).

Shift region (11) to have center Tn, or equivalently, change the cutoff of
region (12) toD2

(UB) to get the new hybrid large sample 100(1−δ)% confidence

region: {w : (w − Tn)T [S∗

T ]−1(w − Tn) ≤ D2
(UB)} =

{w : D2
w(Tn,S

∗

T ) ≤ D2
(UB)}. (13)

Note that the corresponding test for H0 : θ = θ0 rejects H0 if
(Tn − θ0)

T [S∗

T ]−1(Tn − θ0) > D2
(UB).

Hyperellipsoids (11) and (13) have the same volume since they are the same
region shifted to have a different center. The ratio of the volumes of regions
(11) and (12) is

|S∗

T |1/2
|S∗

T |1/2
(

D(UB)

D(UB,T )

)g

=

(

D(UB)

D(UB ,T )

)g

. (14)

For g = 1, the percentile method uses an interval that contains UB ≈
kB = dB(1 − δ)e of the T ∗

i from a bootstrap sample T ∗

1 , ..., T
∗

B where the
statistic Tn is an estimator of θ based on a sample of size n. Note that the
squared Mahalanobis distance D2

θ = (θ − T
∗

)2/S∗2
T ≤ D2

(UB) is equivalent to

θ ∈ [T
∗−S∗

TD(UB), T
∗

+S∗

TD(UB)], which is an interval centered at T
∗

just long
enough to cover UB of the T ∗

i . Hence the prediction region method is a special
case of the percentile method if g = 1. Efron (2014) used a similar large sample

100(1 − δ)% confidence interval assuming that T
∗

is asymptotically normal.
The Frey (2013) shorth(c) interval (2) (with c given by (4)) applied to the T ∗

i

is recommended since the shorth confidence interval can be much shorter than
the Efron (2014) or prediction region method confidence intervals if g = 1.

The bootstrap confidence region (11) is centered at T
∗

, which is closely
related to a model averaging estimator. Wang and Zhou (2013) show that the
Hjort and Claeskens (2003) confidence intervals based on frequentist model
averaging are asymptotically equivalent to those obtained from the full model.
See Buckland et al. (1997) and Schomaker and Heumann (2014) for standard
errors when using the bootstrap or model averaging for linear model confidence
intervals. Additional references are in Section 6.

Sections 2 and 3 give large sample theory for some OLS variable selec-
tion estimators and for the confidence regions. Section 4 considers using the
confidence regions after variable selection, and Section 5 gives a simulation.

2 Large Sample Theory for Some OLS Variable Selection

Estimators

Large sample theory is often tractable if the optimization problem is convex.
The optimization problem for variable selection is not convex, so new tools
are needed. Tibshirani et al. (2018) and Leeb and Pötscher (2006, 2008) note
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that we can not find the limiting distribution of Zn =
√
nA(β̂Imin

−βI) after

variable selection. One reason is that with positive probability, β̂Imin
does not

have the same dimension as βI if AIC or Cp is used. Hence Zn is not defined
with positive probability.

We will show that large sample theory becomes simple by using zero
padding. If β̂I is a× 1, form the p× 1 vector β̂I,0 from β̂I by adding 0s corre-

sponding to the omitted variables. For example, if p = 4 and β̂Imin
= (β̂1 , β̂3)

T ,

then β̂Imin,0 = (β̂1, 0, β̂3, 0)T . Since fewer than 2p regression models I contain

the true model S, and each such model gives a
√
n consistent estimator β̂I,0 of

β, the probability that Imin picks one of these models goes to one as n → ∞
by Nishii (1984). Hence β̂Imin,0 is a

√
n consistent estimator of β under model

(1) if AIC or Cp is used with forward selection, backward elimination, or all

subsets. Olive (2017a: p. 123, 2017b: p. 176) showed that β̂Imin,0 is a consis-
tent estimator. This section will use mixture distributions to find the limiting
distribution of

√
n(β̂Imin,0 − β).

Mixture distributions are useful for variable selection since β̂Imin,0 has a

mixture distribution of the β̂Ij ,0. A random vector u has a mixture distribution
of random vectors uj with probabilities πj if u equals random vector uj with
probability πj for j = 1, ..., J . Let u and uj be p × 1 random vectors. Then
the cumulative distribution function (cdf) of u is

Fu(t) =

J
∑

j=1

πjFuj
(t)

where the probabilities πj satisfy 0 ≤ πj ≤ 1 and
∑J

j=1 πj = 1, J ≥ 2, and
Fuj

(t) is the cdf of uj.

Suppose E(h(u)) and the E(h(uj)) exist. Then

E(h(u)) =

J
∑

j=1

πjE[h(uj)] and E(u) =

J
∑

j=1

πjE[uj].

Hence Cov(u) = E(uuT ) − E(u)E(uT ) = E(uuT ) − E(u)[E(u)]T =
∑J

j=1 πjE[uju
T
j ] −E(u)[E(u)]T =

J
∑

j=1

πjCov(uj) +

J
∑

j=1

πjE(uj)[E(uj)]
T − E(u)[E(u)]T .

If E(uj) = θ for j = 1, ..., J , then E(u) = θ and

Cov(u) =
J

∑

j=1

πjCov(uj).

Now suppose that Tn is equal to the estimator Tjn with probability πjn for

j = 1, ..., J where
∑

j πjn = 1, πjn → πj as n→ ∞, and ujn =
√
n(Tjn−θ)

D→
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uj with E(uj) = 0 and Cov(uj) = Σj . Then Tn has a mixture distribution of
the Tjn with probabilities πjn, and the cdf of Tn is FTn

(z) =
∑

j πjnFTjn
(z)

where FTjn
(z) is the cdf of Tjn. Hence

√
n(Tn− θ) has a mixture distribution

of the
√
n(Tjn − θ), and

√
n(Tn − θ)

D→ u (15)

where the cdf of u is Fu(z) =
∑

j πjFuj
(z) and Fuj

(z) is the cdf of uj .
Thus, u is a mixture distribution of the uj with probabilities πj , E(u) = 0,
and Cov(u) = Σu =

∑

j πjΣj .
Applying the above results with large sample theory for OLS makes large

sample theory for OLS variable selection simple. Assume the maximum lever-
age maxi=1,...,n xTiI(X

T
I XI)

−1xiI → 0 in probability as n→ ∞ for each I with

S ⊆ I. For the full OLS model,
√
n(β̂−β)

D→ Np(0, σ
2V ) where (XTX)/n

P→
V −1. See, for example, Olive (2017a, p. 39) and Sen and Singer (1993, p. 280).

For OLS variable selection with Cp, let β̂Ij
= (XT

Ij
XIj

)−1XT
Ij

Y = DjY ,

Tn = β̂Imin,0 and Tjn = β̂Ij,0 = Dj,0Y where Dj,0 adds rows of zeroes to

Dj corresponding to the xi not in Ij . Let Tn = Tkn = β̂Ik,0 with probabil-
ities πkn where πkn → πk as n → ∞. Denote the πk with S ⊆ Ik by πj .

The other πk = 0 by Nishii (1984). Then
√
n(β̂Ij

− βIj
)
D→ Naj

(0, σ2V j) and

ujn =
√
n(β̂Ij,0

− β)
D→ uj ∼ Np(0, σ

2V j,0) where n(XT
Ij

XIj
)−1 P→ V j and

V j,0 adds columns and rows of zeroes corresponding to the xi not in Ij. Hence
Σj = σ2V j,0 is singular unless Ij corresponds to the full model.

Then Equation (15) holds:

√
n(β̂Imin,0

− β)
D→ u (16)

where the cdf of u is Fu(z) =
∑

j πjFuj
(z). Thus u is a mixture distribution

of the uj with probabilities πj, E(u) = 0, and Cov(u) = Σu =
∑

j πjσ
2V j,0.

The values of πj depend on the OLS variable selection method with Cp, such
as backward elimination, forward selection, and all subsets. The results also
hold if P (S ⊆ Imin) → 1 as n → ∞. Hence the results hold if BIC or AIC
is used instead of Cp, and, under regularity conditions, for the relaxed lasso
estimator that fits OLS to the predictors than had nonzero lasso coefficients.
See Efron et al. (2004), Meinshausen (2007), and Tibshirani (1996). Let A be
a g × p full rank matrix with 1 ≤ g ≤ p. Then

√
n(Aβ̂Imin,0

− Aβ)
D→ Au = v (17)

where Au has a mixture distribution of the Auj ∼ Ng(0, σ
2AV j,0A

T ) with
probabilities πj.

Two special cases are interesting. First, suppose πd = 1 so u ∼ ud ∼
Np(0,Σd). This special case occurs for Cp if aS = p so S is the full model, and
for all subsets variable selection with methods like BIC that choose IS with
probability going to one.
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The second special case occurs if for each πj > 0, Auj ∼ Ng(0,AΣjA
T ) =

Ng(0,AΣAT ). Then
√
n(Aβ̂Imin,0 −Aβ)

D→ Au ∼ Ng(0,AΣAT ). This spe-

cial case occurs for β̂S if the nontrivial predictors are orthogonal or uncor-
related with zero mean so XTX/n → diag(d1, ..., dp) as n → ∞ where each

di > 0. Then β̂S has the same multivariate normal limiting distribution for
Imin and for the OLS full model.

3 Theory for the Confidence Regions

Consider testing H0 : θ = θ0 versus H1 : θ 6= θ0 where θ is g × 1. This
section gives some theory for bootstrap confidence regions and for the bag-
ging estimator T

∗

, also called the smoothed bootstrap estimator. Empirically,
bootstrapping with the bagging estimator often outperforms bootstrapping
with Tn. See Breiman (1996), Yang (2003), and Efron (2014). See Büchlmann
and Yu (2002) and Friedman and Hall (2007) for theory and references for the
bagging estimator. Since (12) is a large sample confidence region by Bickel and

Ren (2001), (11) and (13) are too, provided
√
n(T

∗ − Tn)
P→ 0.

If i)
√
n(Tn−θ)

D→ u, then under regularity conditions, ii)
√
n(T ∗

i −Tn)
D→

u, iii)
√
n(T

∗ − θ)
D→ u, iv)

√
n(T ∗

i − T
∗

)
D→ u, and v) nS∗

T
P→ Cov(u).

Suppose i) and ii) hold with E(u) = 0 and Cov(u) = Σu. With respect
to the bootstrap sample, Tn is a constant and the

√
n(T ∗

i − Tn) are iid for

i = 1, ..., B. Let
√
n(T ∗

i − Tn)
D→ vi ∼ u where the vi are iid with the same

distribution as u. Fix B. Then the average of the
√
n(T ∗

i − Tn) is

√
n(T

∗ − Tn)
D→ 1

B

B
∑

i=1

vi ∼ ANg

(

0,
Σu

B

)

where z ∼ ANg(0,Σ) is an asymptotic multivariate normal approximation.

Hence as B → ∞,
√
n(T

∗ − Tn)
P→ 0, and iii) and iv) hold. If B is fixed and

u ∼ Ng(0,Σu), then

1

B

B
∑

i=1

vi ∼ Ng

(

0,
Σu

B

)

and
√

B
√

n(T
∗ − Tn)

D→ Ng(0,Σu).

Hence the prediction region method gives a large sample confidence region for
θ provided that the sample percentile D̂2

1−δ of the D2
T∗

i
(T

∗

,S∗

T ) =
√
n(T ∗

i −
T

∗

)T (nS∗

T )−1
√
n(T ∗

i − T
∗

) is a consistent estimator of the percentile D2
n,1−δ

of the random variable D2
θ
(T

∗

,S∗

T ) =
√
n(θ − T

∗

)T (nS
∗

T )−1
√
n(θ − T

∗

) in

that D̂2
1−δ − D2

n,1−δ
P→ 0. Since iii) and iv) hold, the sample percentile will

be consistent under much weaker conditions than v) if Σu is nonsingular.
Olive (2017b:

∮

5.3.3, 2018) proved that the prediction region method gives a
large sample confidence region under the much stronger conditions of v) and
u ∼ Ng(0,Σu), but the above proof is simpler.
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A geometric argument is useful. Assume T1, ..., TB are iid with nonsingular
covariance matrix ΣTn

. Then the large sample 100(1− δ)% prediction region
Rp = {w : D2

w(T ,ST ) ≤ D2
(UB)} centered at T contains a future value of

the statistic Tf with probability 1 − δB → 1 − δ as B → ∞. Hence the
region Rc = {w : D2

w(Tn,ST ) ≤ D2
(UB)} centered at a randomly selected Tn

contains T with probability 1 − δB . If
√
n(Tn − θ)

D→ u with E(u) = 0 and
Cov(u) = Σu, then for fixed B with vi ∼ u,

√
n(T − θ)

D→ 1

B

B
∑

i=1

vi ∼ ANg

(

0,
Σu

B

)

.

Hence (T − θ) = OP ((nB)−1/2), and T gets arbitrarily close to θ compared
to Tn as B → ∞. Hence Rc is a large sample 100(1 − δ)% confidence region
for θ as n, B → ∞. We also need (nST )−1 to be fairly well behaved (not
too ill conditioned) for each n ≥ 20g, say. This condition is weaker than

(nST )−1 P→ Σ
−1
u .

If
√
n(Tn − θ) and

√
n(T ∗

i − Tn) both converge in distribution to u ∼
Ng(0,ΣA), say, then the bootstrap sample data cloud of T ∗

1 , ..., T
∗

B is like the
data cloud of iid T1, ..., TB shifted to be centered at Tn. Then the hybrid region
(13) is a confidence region by the geometric argument, and (11) is a confidence

region if
√
n(T

∗ − Tn)
P→ 0.

Note that if
√
n(Tn − θ)

D→ U and
√
n(T ∗

i − Tn)
D→ U where U has a uni-

modal probability density function symmetric about zero, then the confidence
intervals from the three confidence regions, the shorth confidence interval, and
the usual percentile method confidence interval are asymptotically equivalent
(use the central proportion of the bootstrap sample, asymptotically).

4 Bootstrapping Variable Selection Estimators

Olive (2017a: p. 128, 2017b: p. 181, 2018) showed that the prediction region

method can simulate well for the p×1 vector β̂Imin,0. This section will explain
why the bootstrap confidence regions (11), (12), and (13) give useful results.
Much of the theory in Section 3 does not apply to the variable selection es-
timator Tn = Aβ̂Imin,0 with θ = Aβ, because Tn is not smooth since Tn is
equal to the estimator Tjn with probability πjn for j = 1, ..., J . Here A is a

known full rank g × p matrix with 1 ≤ g ≤ p. We have
√
n(Tn − θ)

D→ v by
(17) where E(v) = 0, and Σv =

∑

j σ
2AV j,0A

T . Hence the geometric argu-
ment of Section 3 holds: applying the prediction region (9) to an iid sample
T1, ..., TB and then centering the region at Tn gives a large sample confidence
region for θ. For variable selection, this section will show that the bootstrap
sample data cloud T ∗

1 , ..., T
∗

B tends to be slightly more variable than the data
cloud of iid T1, ..., TB for large n.

Assume p is fixed, n ≥ 20p, and that the error distribution is unimodal
and not highly skewed. The response plot and residual plot are plots with
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Ŷ = xT β̂ on the horizontal axis and Y or r on the vertical axis, respectively.
Then the plotted points in these plots should scatter in roughly even bands
about the identity line (with unit slope and zero intercept) and the r = 0
line, respectively. If the error distribution is skewed or multimodal, then much
larger sample sizes may be needed.

For the bootstrap, suppose that T ∗

i is equal to T ∗

ij with probability ρjn
for j = 1, ..., J where

∑

j ρjn = 1, and ρjn → πj as n → ∞. Let Bjn count
the number of times T ∗

i = T ∗

ij in the bootstrap sample. Then the bootstrap
sample T ∗

1 , ..., T
∗

B can be written as

T ∗

1,1, ..., T
∗

B1n,1, ..., T
∗

1,J, ..., T
∗

BJn,J

where the Bjn follow a multinomial distribution and Bjn/B
P→ ρjn as B → ∞.

Denote T ∗

1j, ..., T
∗

Bjn,j
as the jth bootstrap component of the bootstrap sample

with sample mean T
∗

j and sample covariance matrix S∗

T,j. Then

T
∗

=
1

B

B
∑

i=1

T ∗

i =
∑

j

Bjn
B

1

Bjn

Bjn
∑

i=1

T ∗

ij =
∑

j

ρ̂jnT
∗

j .

Similarly, we can define the jth component of the iid sample T1, ..., TB to have
sample mean T j and sample covariance matrix ST,j.

For the residual bootstrap, we use the fitted values and residuals from
the OLS full model to obtain Y

∗, but fit β̂ for a method such as forward
selection, lasso, et cetera. Consider forward selection where each component
uses a β̂Ij

. Let Ŷ = Ŷ OLS = Xβ̂OLS = HY be the fitted values from the

OLS full model where H = X(XTX)−1XT . Let rW denote an n×1 random
vector of elements selected with replacement from the OLS full model residuals.
Following Freedman (1981) and Efron (1982, p. 36), Y ∗ = Xβ̂OLS + rW

follows a standard linear model where the elements rWi of rW are iid from the
empirical distribution of the OLS full model residuals ri. Hence

E(rWi ) =
1

n

n
∑

i=1

ri = 0, V (rWi ) = σ2
n =

1

n

n
∑

i=1

r2i =
n− p

n
MSE,

E(rW ) = 0, and Cov(Y ∗) = Cov(rW) = σ2
nIn.

Then β̂
∗

Ij
= (XT

Ij
XIj

)−1XT
Ij

Y ∗ = DjY
∗ with Cov(β̂

∗

Ij
) = σ2

n(XT
Ij

XIj
)−1

and E(β̂
∗

Ij
) = (XT

Ij
XIj

)−1XT
Ij
E(Y ∗) = (XT

Ij
XIj

)−1XT
Ij

HY = β̂Ij
since

HXIj
= XIj

. The expectations are with respect to the bootstrap distribution

where Ŷ acts as a constant.
For the above residual bootstrap with Cp, let Tn = Aβ̂Imin,0 and Tjn =

Aβ̂Ij,0 = ADj,0Y where Dj,0 adds rows of zeroes to Dj corresponding

to the xi not in Ij . If S ⊆ Ij , then
√
n(β̂Ij

− βIj
)

D→ Naj
(0, σ2V j) and

√
n(β̂Ij ,0 − β)

D→ uj ∼ Np(0, σ
2V j,0) where V j,0 adds columns and rows
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of zeroes corresponding to the xi not in Ij . Using results from Section 2,

E(T ∗) =
∑

j ρjnTjn =
∑

j ρjnAβ̂Ij,0 and S∗

T is a consistent estimator of

Cov(T ∗) =
∑

j

ρjnCov(T ∗

jn) +
∑

j

ρjnAβ̂Ij,0
β̂
T

Ij,0
AT −E(T ∗)[E(T ∗)]T

where asymptotically the sum is over j : S ⊆ Ij . If θ0 = 0, then nS
∗

T =
ΣA + OP (1) where

nCov(Tn)
P→ ΣA =

∑

j

σ2πjAV j,0A
T .

Then (nS∗

T )−1 tends to be “well behaved” if ΣA is nonsingular.
For the residual bootstrap with forward selection nCov(Tjn) and nCov(T ∗

jn)

both converge in probability to σ2AV j,0A
T , and are close for n ≥ 20p since

Cov(T ∗

jn) ≈ (n − p)Cov(Tjn)/n. Hence the jth component of an iid sample
T1, ..., TB and the jth component of the bootstrap sample T ∗

1 , ..., T
∗

B have the
same variability asymptotically. Since E(Tjn) = θ, each component of the iid

sample is centered at θ. Since E(T ∗

jn) = Tjn = Aβ̂Ij,0, the bootstrap com-
ponents are centered at Tjn. Geometrically, separating the component clouds
so that they are no longer centered at one value makes the overall data cloud
larger. Thus the variability of T ∗

n is larger than that of Tn for variable selection,
asymptotically. Hence the prediction region applied to the bootstrap sample
is slightly larger than the prediction region applied to the iid sample, asymp-
totically (we want n ≥ 20p). Hence cutoff D̂2

1,1−δ = D2
(UB) gives coverage close

to or higher than the nominal coverage for confidence regions (11) and (13),
using the geometric argument. The deviation T ∗

i − Tn tends to be larger in

magnitude than the deviations T
∗ − θ, Tn− θ, and T ∗

i − T
∗

. Hence the cutoff

D̂2
2,1−δ = D2

(UB,T ) tends to be larger than D2
(UB), and region (12) tends to

have higher coverage than region (13) for a mixture distribution. The boot-

strap sample data cloud is centered at T
∗ ≈ ∑

j ρjnTjn. The Tjn are computed
from the same data set and hence correlated. In simulations for n ≥ 20p and
(11) and (13), the coverage tends to get close to 1 − δ for B ≥ max(400, 50p)
so that S

∗

T is a good estimator of Cov(T ∗).
In the simulations where S is not the full model, inference with forward

selection with Imin using Cp was often more precise than inference with the
OLS full model if n ≥ 20p and B ≥ 50p. It is possible that S∗

T is singular if a
column of the bootstrap sample is equal to 0.

Undercoverage can occur if the bootstrap sample data cloud is less variable
than the iid data cloud, e.g., if (n− p)/n is not close to one. Coverage can be
higher than the nominal coverage for two reasons: i) the bootstrap data cloud
is more variable than the iid data cloud of T1, ..., TB, and ii) zero padding.

To see the effect of zero padding, consider H0 : Aβ = βO = 0 where
βO = (βi1 , ...., βig)

T and O ⊆ E in (1) so that H0 is true. Suppose a nominal
95% confidence region is used and UB = 0.96. Hence the confidence region (11)

or (12) covers at least 96% of the bootstrap sample. If β̂
∗

O,j = 0 for more than
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4% of the β̂
∗

O,1, ..., β̂
∗

O,B , then 0 is in the confidence region and the bootstrap
test fails to reject H0. If this occurs for each run in the simulation, then the
observed coverage will be 100%.

Now suppose β̂
∗

O,j = 0 for j = 1, ..., B. Then S∗

T is singular, but the
singleton set {0} is the large sample 100(1− δ)% confidence region (11), (12),
or (13) for βO and δ ∈ (0, 1), and the pvalue for H0 : βO = 0 is one. (This

result holds since {0} contains 100% of the β̂
∗

O,j in the bootstrap sample.)
For large sample theory tests, the pvalue estimates the population pvalue. Let
I denote the other predictors in the model so β = (βTI ,β

T
O)T . For the Imin

model from forward selection, there may be strong evidence that xO is not
needed in the model given xI is in the model if the “100%” confidence region
is {0}, n ≥ 20p, B ≥ 50p, and the error distribution is unimodal and not
highly skewed. (Since the pvalue is one, this technique may be useful for data
snooping: applying OLS theory to submodel I may have negligible selection
bias.)

Note that there are several important variable selection models, including
the model given by Equation (1). Another model is xTβ = xTSi

βSi
for i =

1, ..., K. Then there are K ≥ 2 competing “true” nonnested submodels where
βSi

is aSi
× 1. See Ferrari and Yang (2015). For example, suppose the K = 2

models have predictors x1, x2, x3 for S1 and x1, x2, x4 for S2. Then x3 and
x4 are likely to be selected and omitted often by forward selection for the B
bootstrap samples. Hence omitting all predictors xi that have a β∗

ij = 0 for
at least one of the bootstrap samples j = 1, ..., B could result in underfitting,
e.g. using just x1 and x2 in the above K = 2 example. If n and B are large
enough, the singleton set {0} could still be the “100%” confidence region for
a vector βO.

Suppose the predictors xi have been standardized. Then another important
regression model has the βi taper off rapidly, but no coefficients are equal to
zero. For example, βi = e−i for i = 1, ..., p.

5 Example and Simulations

Example. Cook and Weisberg (1999, pp. 351, 433, 447) gives a data set on 82
mussels sampled off the coast of New Zealand. The data set can be found at
the URL listed for Olive (2019, Example 2.8) which has R code to reproduce
the example. Let the response variable be the logarithm log(M) of the muscle

mass, and the predictors are the length L and height H of the shell in mm, the
logarithm log(W ) of the shell width W, the logarithm log(S) of the shell mass

S and a constant. Inference for the full model is shown along with the shorth(c)
nominal 95% confidence intervals for βi computed using the nonparametric and
residual bootstraps. As expected, the residual bootstrap intervals are close to
the classical least squares confidence intervals ≈ β̂i ± 2SE(β̂i).

The minimum Cp model from forward selection used a constant, H , and
log(S). The shorth(c) nominal 95% confidence intervals for βi using the resid-
ual bootstrap are shown. Note that the intervals for W andH are right skewed
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and contain 0 when closed intervals are used instead of open intervals. The
least squares output is also shown, but should only be used for inference if the
model was selected before looking at the data.

It was expected that log(S) may be the only predictor needed, along with
a constant, since log(S) and log(M) are both log(mass) measurements and
likely highly correlated. Hence we want to test H0 : β2 = β3 = β4 = 0 with
the Imin model selected by forward selection. (Of course this test would be
easy to do with the full model using least squares theory.) Then H0 : Aβ =
(β2, β3, β4)

T = 0. Using the prediction region method with the full model had

[0, D(UB)] = [0, 2.908] with D0 = 1.577. Note that
√

χ2
3,0.95 = 2.795. So fail to

reject H0. Using the prediction region method with the Imin forward selection
model had [0, D(UB)] = [0, 3.258] while D0 = 1.245. So fail to reject H0. The
ratio of the volumes of the bootstrap confidence regions for this test was 0.392.
(Use (14) with S∗

T and D from forward selection for the numerator, and from
the full model for the denominator.) Hence the forward selection bootstrap
test was more precise than the full model bootstrap test.

large sample full model inference

Est. SE t Pr(>|t|) nparboot resboot

int -1.249 0.838 -1.49 0.14 [-2.93,-0.093][-3.045,0.473]

L -0.001 0.002 -0.28 0.78 [-0.005,0.003][-0.005,0.004]

logW 0.130 0.374 0.35 0.73 [-0.457,0.829][-0.703,0.890]

H 0.008 0.005 1.50 0.14 [-0.002,0.018][-0.003,0.016]

logS 0.640 0.169 3.80 0.00 [ 0.244,1.040][ 0.336,1.012]

output and shorth intervals for the min Cp submodel

Est. SE t Pr(>|t|) 95% shorth CI

int -0.9573 0.1519 -6.3018 0.0000 [-3.294, 0.495]

L 0 [-0.005, 0.004]

logW 0 [ 0.000, 1.024]

H 0.0072 0.0047 1.5490 0.1254 [ 0.000, 0.016]

logS 0.6530 0.1160 5.6297 0.0000 [ 0.322, 0.901]

Next, we describe a small simulation study that was done using B =
max(1000, n/25, 50p) and 5000 runs. The simulation used p = 4, 6, 7, 8, and
10; n = 25p and 50p; ψ = 0, 1/

√
p, and 0.9; and k = 1 and p−2 where k and ψ

are defined in the following paragraph. Larger simulation studies are in Imhoff
(2018), Murphy (2018), and Pelawa Watagoda (2017). In the simulations, we
use θ = Aβ = βi, θ = Aβ = βS = 1 and θ = Aβ = βE = 0.

Let x = (1 uT )T where u is the (p− 1)× 1 vector of nontrivial predictors.
In the simulations, for i = 1, ..., n, we generated wi ∼ Np−1(0, I) where the
m = p − 1 elements of the vector wi are iid N(0,1). Let the m × m matrix
A = (aij) with aii = 1 and aij = ψ where 0 ≤ ψ < 1 for i 6= j. Then the vector

ui = Awi so that Cov(ui) = Σu = AAT = (σij) where the diagonal entries
σii = [1+(m−1)ψ2] and the off diagonal entries σij = [2ψ+(m−2)ψ2]. Hence
the correlations are cor(xi, xj) = ρ = (2ψ+(m−2)ψ2)/(1+(m−1)ψ2) for i 6= j
where xi and xj are nontrivial predictors. If ψ = 1/

√
cp, then ρ→ 1/(c+1) as

p → ∞ where c > 0. As ψ gets close to 1, the predictor vectors cluster about
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the line in the direction of (1, ..., 1)T. Let Yi = 1 + 1xi,2 + · · · + 1xi,k+1 + ei
for i = 1, ..., n. Hence β = (1, .., 1, 0, ..., 0)T with k + 1 ones and p − k − 1
zeros. The zero mean errors ei were iid from five distributions: i) N(0,1), ii)
t3, iii) EXP(1) - 1, iv) uniform(−1, 1), and v) 0.9 N(0,1) + 0.1 N(0,100). Only
distribution iii) is not symmetric.

When ψ = 0, the full model least squares confidence intervals for βi should
have length near 2t96,0.975σ/

√
n ≈ 2(1.96)σ/10 = 0.392σ when n = 100 and

the iid zero mean errors have variance σ2. The simulation computed the Frey
shorth(c) interval for each βi and used bootstrap confidence regions to test
H0 : βS = 1 (whether first k + 1 βi = 1) and H0 : βE = 0 (whether the last
p − k − 1 βi = 0). The nominal coverage was 0.95 with δ = 0.05. Observed
coverage between 0.94 and 0.96 suggests coverage is close to the nominal value.

The regression models used the residual bootstrap on the forward selection
estimator β̂Imin,0. Table 1 gives results for when the iid errors ei ∼ N(0, 1)
with n = 100, p = 4, and k = 1. Table 1 shows two rows for each model
giving the observed confidence interval coverages and average lengths of the
confidence intervals. The term “reg” is for the full model regression, and the
term “vs” is for forward selection. The last six columns give results for the
tests. The terms pr, hyb, and br are for the prediction region method (11),
hybrid region (13), and Bickel and Ren region (12). The 0 indicates the test was
H0 : βE = 0, while the 1 indicates that the test was H0 : βS = 1. The length
and coverage = P(fail to reject H0) for the interval [0, D(UB)] or [0, D(UB,T )]
where D(UB) or D(UB ,T ) is the cutoff for the confidence region. The cutoff will

often be near
√

χ2
g,0.95 if the statistic T is asymptotically normal. Note that

√

χ2
2,0.95 = 2.448 is close to 2.45 for the full model regression bootstrap tests.

Volume ratios of the three confidence regions can be compared using (14),
but there is not enough information in Table 1 to compare the volume of
the confidence region for the full model regression versus that for the forward
selection regression since the two methods have different determinants |S∗

T |.

Table 1 Bootstrapping OLS Forward Selection with Cp , ei ∼ N(0,1)

ψ β1 β2 βp−1 βp pr0 hyb0 br0 pr1 hyb1 br1
reg,0 0.946 0.950 0.947 0.948 0.940 0.941 0.941 0.937 0.936 0.937
len 0.396 0.399 0.399 0.398 2.451 2.451 2.452 2.450 2.450 2.451
vs,0 0.948 0.950 0.997 0.996 0.991 0.979 0.991 0.938 0.939 0.940
len 0.395 0.398 0.323 0.323 2.699 2.699 3.002 2.450 2.450 2.457

reg,0.5 0.946 0.944 0.946 0.945 0.938 0.938 0.938 0.934 0.936 0.936
len 0.396 0.661 0.661 0.661 2.451 2.451 2.452 2.451 2.451 2.452

vs,0.5 0.947 0.968 0.997 0.998 0.993 0.984 0.993 0.955 0.955 0.963
len 0.395 0.658 0.537 0.539 2.703 2.703 2.994 2.461 2.461 2.577

reg,0.9 0.946 0.941 0.944 0.950 0.940 0.940 0.940 0.935 0.935 0.935
len 0.396 3.257 3.253 3.259 2.451 2.451 2.452 2.451 2.451 2.452

vs,0.9 0.947 0.968 0.994 0.996 0.992 0.981 0.992 0.962 0.959 0.970
len 0.395 2.751 2.725 2.735 2.716 2.716 2.971 2.497 2.497 2.599
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The inference for forward selection was often as precise or more precise than
the inference for the full model. The coverages were near 0.95 for the regression
bootstrap on the full model, although there was slight undercoverage for the
tests since (n−p)/n = 0.96 when n = 25p. Suppose ψ = 0. Then from Section

2, β̂S has the same limiting distribution for Imin and the full model. Note that
the average lengths and coverages were similar for the full model and forward
selection Imin for β1, β2, and βS = (β1, β2)

T . Forward selection inference
was more precise for βE = (β3, β4)

T . The Bickel and Ren (12) cutoffs and
coverages were at least as high as those of the hybrid region (13).

For ψ > 0 and Imin , the coverages for the βi corresponding to βS were
near 0.95, but the average length could be shorter since Imin tends to have
less multicorrelation than the full model. For ψ ≥ 0, the Imin coverages were
higher than 0.95 for β3 and β4 and for testing H0 : βE = 0 since zeros often

occurred for β̂∗

j for j = 3, 4. The average CI lengths were shorter for Imin than
for the OLS full model for β3 and β4. Note that for Imin, the coverage for
testing H0 : βS = 1 was higher than that for the OLS full model.

Table 2 Bootstrap CIs with Cp, p = 10, k = 8, ψ = 0.9, error type v)

n β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

250 0.945 0.824 0.822 0.827 0.827 0.824 0.826 0.817 0.827 0.999
shlen 0.825 6.490 6.490 6.482 6.485 6.479 6.512 6.496 6.493 6.445
250 0.946 0.979 0.980 0.985 0.981 0.983 0.983 0.977 0.983 0.998

prlen 0.807 7.836 7.850 7.842 7.830 7.830 7.851 7.840 7.839 7.802
250 0.947 0.976 0.978 0.984 0.978 0.978 0.979 0.973 0.980 0.996

brlen 0.811 8.723 8.760 8.765 8.736 8.764 8.745 8.747 8.753 8.756
2500 0.951 0.947 0.948 0.948 0.948 0.947 0.949 0.944 0.951 0.999
shlen 0.263 2.268 2.271 2.271 2.273 2.262 2.632 2.277 2.272 2.047
2500 0.945 0.961 0.959 0.955 0.960 0.960 0.961 0.958 0.961 0.998
prlen 0.258 2.630 2.639 2.640 2.632 2.632 2.641 2.638 2.642 2.517
2500 0.946 0.958 0.954 0.960 0.956 0.960 0.962 0.955 0.961 0.997
brlen 0.258 2.865 2.875 2.882 2.866 2.871 2.887 2.868 2.875 2.830
25000 0.952 0.940 0.939 0.935 0.940 0.942 0.938 0.937 0.942 1.000
shlen 0.083 0.809 0.808 0.806 0.805 0.807 0.808 0.808 0.809 0.224
25000 0.948 0.964 0.968 0.962 0.964 0.966 0.964 0.964 0.967 0.991
prlen 0.082 0.806 0.805 0.801 0.800 0.805 0.805 0.803 0.806 0.340
25000 0.949 0.969 0.972 0.968 0.967 0.971 0.969 0.969 0.973 0.999
brlen 0.082 0.810 0.810 0.805 0.804 0.809 0.810 0.808 0.810 0.317

Results for other values of n, p, k, and distributions of ei were similar.
For forward selection with ψ = 0.9 and Cp, the hybrid region (13) and shorth
confidence intervals occasionally had coverage less than 0.93. It was also rare
for the bootstrap to have one or more columns of zeroes so S

∗

T was singular.
For error distributions i)-iv) and ψ = 0.9, sometimes the shorth CIs needed
n ≥ 100p for all p CIs to have good coverage. For error distribution v) and
ψ = 0.9, even larger values of n were needed. Confidence intervals based on
(11) and (12) worked for much smaller n, but tended to be longer than the
shorth CIs.

See Table 2 for one of the worst scenarios for the shorth, where shlen,
prlen, and brlen are for the average CI lengths based on the shorth, (11), and
(12), respectively. In Table 2, k = 8 and the two nonzero πj correspond to



Bootstrapping Multiple Linear Regression After Variable Selection 17

the full model β̂ and β̂S,0. Hence βi = 1 for i = 1, ..., 9 and β10 = 0. Hence
confidence intervals for β10 had the highest coverage and usually the shortest
average length (for i 6= 1) due to zero padding. Theory in this paper showed
that the CI lengths are proportional to 1/

√
n. When n = 25000, the shorth CI

uses the 95.16th percentile while CI (11) uses the 95.00th percentile, allowing
the average CI length of (11) to be shorter than that of the shorth CI, but

the distribution for β̂∗

i is likely approximately symmetric for i 6= 10 since the
average lengths of the three confidence intervals were about the same for each
i 6= 10.

When BIC was used, undercoverage was a bit more common and severe,
and undercoverage occasionally occurred with regions (11) and (12). BIC also
occasionally had 100% coverage since BIC produces more zeroes than Cp.

Limited simulations for the Tibshirani (1996) lasso estimator were similar,
but the confidence intervals were longer than those for forward selection. Ridge
regression only simulated well for ψ = 0.

6 Conclusion

Another way to look at the bootstrap confidence region for OLS variable se-
lection estimators is to consider the estimator T2,n that chooses Ij with prob-
ability equal to the observed bootstrap proportion ρ̂jn. The bootstrap sample
T ∗

1 , ..., T
∗

B tends to be slightly more variable than an iid sample T2,1, ..., T2,B,
and the geometric argument suggests that the large sample coverage of the
nominal 100(1− δ)% confidence region will be at least as large as the nominal
coverage 100(1 − δ)%.

The hybrid confidence region was motivated by the geometric argument.
The modified Bickel and Ren confidence region can be motivated by the hybrid
region with a larger cutoff. The prediction region method works since the
bagging estimator T

∗

tends estimate θ at least as well as Tn. See Breiman
(1996) and Yang (2003). Note that T

∗ ≈ E(T ∗) =
∑

j ρjnTjn, a version of
model averaging.

In simulations for forward selection with Cp, bootstrap confidence regions
(11) and (12) performed well. BIC seems to need larger sample size n than
Cp to perform well. For some data sets, S∗

T may be singular due to one or
more columns of zeroes in the bootstrap sample for β1, ..., βp. The variables
corresponding to these columns are likely not needed in the model given that
the other predictors are in the model. Confidence intervals can be computed
without S∗

T for (11), (12), and (13).
Under regularity conditions, applying the prediction region (9) to a boot-

strap sample results in a confidence region. Knight and Fu (2000) have some
results on the residual bootstrap that use residuals from one estimator, such
as full model OLS, but fit another estimator, such as lasso. Schomaker (2012)

suggests bootstrap estimates of the standard error of β̂i for shrinkage estima-
tors. Firinguetti and Bobadilla (2011) suggest confidence intervals for βi for
ridge regression.
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There is a massive literature on variable selection and a fairly large litera-
ture for inference after variable selection. See, for example, Leeb and Pötscher
(2006, 2008), Leeb et al. (2015), Tibshirani et al. (2016), and Tibshirani et
al. (2018). Recent papers on large sample theory for multiple linear regression
estimators include Cook and Forzani (2018, 2019), Knight and Fu (2000), and
Zhang (2018).

Results in Claeskens and Hjort (2008, pp. 101, 102, 232) suggest that the
probability that AIC underfits goes to zero for many models. Hence with AIC
variable selection,

√
n(β̂Imin,0 − β)

D→ u

for many time series models, generalized linear models, and survival regression
models. Confidence regions (11) and (12) may be useful for the estimator

β̂Imin,0 selected by AIC.
In addition to large sample theory, shrinkage and variable selection estima-

tors can be compared with asymptotically optimal prediction intervals, even
if n/p is not large. See Pelawa Watagoda and Olive (2019).

Response plots of the fitted values Ŷ versus the response Y are useful for
checking linearity of the model and for detecting outliers. Residual plots should
also be made.

The simulations were done in R. See R Core Team (2016). We used several
R functions including forward selection as computed with the regsubsets

function from the leaps library. The collection of Olive (2019) R functions
slpack, available from (http://lagrange.math.siu.edu/Olive/slpack.txt), has some
useful functions for the inference. Table 1 was made using regbootsim3 for
the OLS full model and vsbootsim4 for forward selection. The functions
bicboot and bicbootsim are useful if BIC is used instead of Cp. The function
lassobootsim3 uses the prediction region method for lasso and ridge regres-
sion. The function lassobootsim4 can be useful if S∗

T is singular for lasso.
For forward selection with Cp, the function vscisim was used to make Ta-
ble 2, and can be used to compare the shorth, prediction region method, and
Bickel and Ren CIs for βi. The function fselboot can be used to bootstrap
the forward selection model.
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