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Bali, Boente, Tyler and Wang (2011) gave possibly impressive theory

for infinite complexity impractical robust projection estimators, but should

have given theory for the practical Fake-projection estimator actually used.

This “bait and switch error” occurs far too often in multivariate “robust

statistics” papers.

To estimate the first principal direction, the Fake-projection (CR) esti-

mator uses n projections zi = wi/‖wi‖ where wi = yi − µ̂n. Note that for

p = 2 one can select 360 projections (through the origin and a point) on

the unit circle that are one degree apart. Then there is a projection that

is highly correlated with any projection on the unit circle. If p = 3, then

360 projections are not nearly enough to adequately approximate all projec-

tions through the unit sphere. Since the surface area of a unit hypersphere

is proportional to np−1, approximations rapidly get worse as p increases.

Theory for the Fake-projection (CR) estimator may be simple. Suppose

the data is multivariate normal Np(0, diag(p, 1, ..., 1)).Then β = (1, 0, ..., 0)T

(or −β) is the population first direction. Heuristically, assume µ̂n = 0, al-

though in general µ̂n should be a good
√

n consistent estimator of µ such

as the coordinatewise median. Let bo be the “best” estimated projection zj

that minimizes ‖zi − β‖ for i = 1, ..., n. “Good” projections will have a yi

that lies in one of two “hypercones” with a vertex at the origin and centered

about a line through the origin and ±β with radius r at ±β. So for p = 2

the two “cones” are determined by the two lines through the origin with

slopes ± r. The probability that a randomly selected yi falls in one of the

two “hypercones” is proportional to rp−1, and for bo to be consistent for β

need r → 0, P(at least one yi falls in “hypercone”) → 1 and n → ∞. If
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these heuristics are correct, need r ∝ n
−1
p−1 for ‖bo − β‖ = OP (n

1
p−1 ). Note

that bo is not an estimator since β is not known, but the rate of the “best”

projection bo gives an upper bound on the rate of the Fake-projection esti-

mator v1 since ‖v1−β‖ ≥ ‖bo −β‖. If the scale estimator is
√

n consistent,

then for a large class of elliptically contoured distributions, a conjecture is

that ‖v1 − β‖ = OP (n
1

2(p−1) ) for p > 1.

There has been a breakdown in the research and refereeing of multivariate

“robust statistics.” The Rousseeuw Yohai paradigm is to replace the imprac-

tical brand name estimator by a practical Fake-estimator that computes no

more than a few thousand easily computed trial fits, but no breakdown or

large sample theory is given for the Fake-estimator (the “bait and switch

error”). Most of the literature follows the Rousseeuw Yohai paradigm, us-

ing estimators like Fake-MCD, Fake-LTS, Fake-MVE, Fake-S, Fake-LMS,

Fake-τ , Fake-Stahel-Donoho, Fake-Projection, Fake-MM, Fake-LTA, Fake-

Constrained M, or OGK that are not backed by theory. Maronna, Martin

and Yohai (2006, ch. 2, 6) and Hubert, Rousseeuw and Van Aelst (2008) pro-

vide references for the above estimators. Most of the brand name estimators

were invented in papers by Rousseeuw, Yohai, Maronna or Tyler.

Problems with these estimators have been pointed out many times. See,

for example, Huber and Ronchetti (2009, p. xiii, 8-9, 152-154, 196-197). Also

Hawkins and Olive (2002) proved elemental concentration estimators are

zero breakdown. Maronna and Yohai (2002) correctly note that elemental

concentration estimators are inconsistent if the number of concentration

steps is finite, but consistency is not known if the concentration is iterated

to convergence. So it is not known whether Fake-MCD and Fake-LTS are

consistent.

Since The Annals of Statistics frequently publishes papers on “robust

statistics,” some theory for the Fake-estimators actually used will be given

after some notation. Let p = the number of predictors. The Fake-MCD and

Fake-S estimators are zero breakdown variants of the elemental concentra-

tion and elemental resampling algorithms that use K elemental fits where K
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is a fixed number that does not depend on the sample size n. To produce an

elemental fit, randomly select h cases and compute the classical estimator

(Ti, Ci) (or Ti = β̂i for regression) for these cases, where h = p for multiple

linear regression and h = p+1 for multivariate location and dispersion. The

elemental resampling algorithm uses one of the K elemental fits as the esti-

mator, while the elemental concentration algorithm refines the K elemental

fits using all n cases. See Olive and Hawkins (2010, 2011) for more details.

Breakdown is computed by determining the smallest number of cases dn

that can be replaced by arbitrarily bad contaminated cases in order to make

‖T‖ or ‖β̂‖ arbitrarily large or to drive the smallest or largest eigenvalues of

the dispersion estimator C to 0 or ∞. High breakdown estimators have γn =

dn/n → 0.5 and zero breakdown estimators have γn → 0 as n → ∞. Note

that an estimator can not be consistent for θ unless the number of randomly

selected cases goes to ∞, except in degenerate situations. The following

theorem shows Fake-MCD and Fake-S are zero breakdown estimators. (If

Kn → ∞, then the elemental estimator is zero breakdown if Kn = o(n).

A necessary condition for the elemental basic resampling estimator to be

consistent is Kn → ∞.)

Theorem 1: a) The elemental basic resampling algorithm estimators are

inconsistent. b) The elemental concentration and elemental basic resampling

algorithm estimators are zero breakdown.

Proof: a) Note that you can not get a consistent estimator by using Kh

randomly selected cases since the number of cases Kh needs to go to ∞ for

consistency except in degenerate situations.

b) Contaminating all Kh cases in the K elemental sets shows that the

breakdown value is bounded by Kh/n → 0, so the estimator is zero break-

down. QED

Theorem 1 shows that the elemental basic resampling PROGRESS esti-

mators of Rousseeuw and Leroy (1987) and Rousseeuw and van Zomeren

(1990) are zero breakdown and inconsistent. Yohai’s two stage estimators,

such as MM, need initial consistent high breakdown estimators such as LMS,
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MCD or MVE, but were implemented with the inconsistent zero break-

down elemental estimators such as Fake-LMS, Fake-MCD or Fake-MVE.

See Hawkins and Olive (2002, p. 157).

Some workers claim that their elemental estimators search for sets for

which the classical estimator can be computed, hence the above trivial re-

sults do not hold. (This claim does not excuse the fact that the workers fail

to provide any large sample or breakdown theory for their “practical esti-

mators.”) For practical estimators, this claim is false since the estimator will

not be practical if the program goes into an endless loop or searches all O(np)

elemental sets when supplied with messy data. For example, the Rousseeuw

and Leroy (1987) PROGRESS algorithm starts with a default of Kd = 3000

and ends with no more than K ≤ 30000 elemental sets. Fake-MCD starts

with Kd = 500.

There is an alternative to the Rousseeuw Yohai paradigm. Use the esti-

mators of Olive and Hawkins (2010, 2011) who avoid the “bait and switch

error” by giving theory for the practical HBREG, FCH, RFCH and RMVN

estimators actually used in the software.
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