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Abstract

This paper shows that practical high breakdown
√

n consistent regression es-

timators exist. The response plot of the fitted values versus the response and the

residual plot of the fitted values versus the residuals are shown to be useful for

detecting outliers and groups of high leverage cases.
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1. INTRODUCTION

A long standing question in Statistics is whether high breakdown regression is a

viable field of study: are there high breakdown consistent regression estimators that

are practical to compute? Huber and Ronchetti (2009, pp. xiii, 8-9, 152-154, 196-197)

suggest that high breakdown regression estimators do not provide an adequate remedy

for the ill effects of outliers, that their statistical and computational properties are not

adequately understood, that high breakdown estimators “break down for all except the

smallest regression problems by failing to provide a timely answer!” and that “there are

no known high breakdown point estimators of regression that are demonstrably stable.”

This paper provides practical high breakdown
√

n consistent estimators, providing a

partial remedy for these concerns.

The multiple linear regression model is Y = Xβ + e where Y is an n × 1 vector of

response variables, X is an n × p matrix of predictors, β is a p × 1 vector of unknown

coefficients and e is an n × 1 vector of errors. The ith case (xT
i , Yi) corresponds to the

ith row xT
i of X and the ith element of Y , and Yi = xT

i β + ei for i = 1, ..., n.

If dn of the cases have been replaced by arbitrarily bad contaminated cases, then the

contamination fraction is γn = dn/n. Then the breakdown value of β̂ is the smallest value

of γn needed to make ‖β̂‖ arbitrarily large. High breakdown regression estimators have

γn → 0.5 as n → ∞ if the clean (uncontaminated) data are in general position: any p

clean cases give a unique estimate of β. For the remainder of this paper, assume that the

clean data are in general position. Estimators are zero breakdown if γn → 0 and positive

breakdown if γn → γ > 0 as n → ∞.

2



Since Hampel (1975) proposed the least median of squares (LMS) estimator, a large

number of high breakdown regression estimators have been proposed as alternatives to

least squares (OLS). The computational complexity of the “brand name” high breakdown

estimators is too high: the fastest regression estimators that have been shown to be high

breakdown and consistent are LMS and the least trimmed sum of absolute deviations

(LTA) estimator with O(np) complexity. The least trimmed sum of squares (LTS), least

quantile of differences, repeated median and regression depth complexities are far higher,

and there may be no known method for computing S, τ , projection based, constrained M

and MM estimators. See Maronna, Martin and Yohai (2006, ch. 2) for references. Theory

for LTA, LTS and LMS is given by Čı́žek (2006, 2008) and Kim and Pollard (1990) while

computation is discussed by Bernholt (2005) and Hawkins and Olive (1999).

Since the above estimators take too long to compute, they are replaced by practical

estimators that have not been shown to be both consistent and high breakdown. Of-

ten practical “robust estimators” generate a sequence of K trial fits called attractors:

b1, ..., bK. Then some criterion is evaluated and the attractor bA that minimizes the

criterion is used as the final estimator. One way to obtain attractors is to generate trial

fits called starts, and then use the concentration technique. Let b0,j be the jth start and

compute all n residuals ri(b0,j) = Yi −xT
i b0,j. Let [n/2] ≤ cn ≤ [n/2]+[(p+1)/2]. At the

next iteration, the OLS estimator b1,j is computed from the cn ≈ n/2 cases correspond-

ing to the smallest squared residuals r2
i (b0,j). This iteration can be continued for k steps

resulting in the sequence of estimators b0,j, b1,j, ..., bk,j . Then bk,j is the jth attractor for

j = 1, ...,K. Using k = 10 concentration steps often works well, and the basic resampling

algorithm is a special case with k = 0, i.e., the attractors are the starts. Elemental starts
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are the fits from randomly selected “elemental sets” of p cases.

Many criteria for screening the attractors have been suggested. The LMS(cn) criterion

is QLMS(b) = r2
(cn)(b) where r2

(1) ≤ · · · ≤ r2
(n) are the ordered squared residuals, and

the LTS(cn) criterion is QLTS(b) =
∑cn

i=1 r2
(i)(b). The LTA(cn) criterion is QLTA(b) =

∑cn

i=1 |r(b)|(i) where |r(b)|(i) is the ith ordered absolute residual.

Although dozens of papers note that the high breakdown consistent regression es-

timators that have appeared in the literature are hard to compute, hundreds of papers

claim to use practical, consistent, “brand name high breakdown” estimators such as LMS

or LTS. In the published literature, to our knowledge, regression estimators proven to be

both consistent and high breakdown have at least O(np) complexity, conversely, if the

estimator is practical to compute, then it has not been proven to be both high breakdown

and consistent.

A common mistake in the literature is to claim that a brand name high breakdown

estimator can be practically computed by using a few hundred randomly selected attrac-

tors and choosing the attractor that minimizes the brand name criterion. For example,

Rousseeuw and Leroy (1987) use the elemental basic resampling algorithm estimators

while Hubert, Rousseeuw and Van Aelst (2008), Rousseeuw, Van Aelst and Hubert (1999,

p. 425) and Rousseeuw and Van Driessen (2006) claim that the LTS estimator can be

computed with the FAST-LTS elemental concentration algorithm. These claims are false

since Hawkins and Olive (2002) proved that elemental concentration algorithms are zero

breakdown and that elemental basic resampling estimators are zero breakdown and in-

consistent.

Hubert, Rousseeuw and Van Aelst (2002) reported that they appreciate this work,
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but ignore it in their later papers. Maronna and Yohai (2002) correctly note that the

algorithm estimators are inconsistent if the number of concentration steps k is finite, but

consistency is not known if the concentration is iterated to convergence. So it is not

known whether FAST-LTS is consistent.

Next consider a two stage estimator that has theory if an initial high breakdown

consistent estimator such as LMS is used. Since estimators proven to be both high

breakdown and consistent have O(np) or higher complexity, this two stage estimator also

has O(np) or higher complexity. A common mistake is to claim, without proof, that the

two stage estimator that is backed by theory can be computed with a practical initial

estimator that has not been shown to be high breakdown. For example Maronna and

Yohai (2002) and Maronna, Martin and Yohai (2006, p. 124) claim that a high breakdown

consistent estimator can be iterated with a smooth objective function such as the S, MM

or τ estimators. If the two stage estimator is backed by theory when the impractical

LMS estimator is the initial estimator, then the practical implementation of the two

stage estimator that uses the zero breakdown inconsistent lmsreg initial estimator is not

backed by theory.

Some of the practical estimators, such as FAST-LTS, are useful for outlier detection.

Also, a few practical robust estimators may eventually be proven to be high breakdown

and consistent. For example, the Salibian-Barrera, Willems and Zamar (2008) FAST-τ

estimator uses a
√

n consistent estimator and a high breakdown estimator as “starts”

for iteration, but proving that the FAST-τ estimator is consistent will require impressive

large sample theory.

Section 3 will develop a large class of practical
√

n consistent high breakdown hbreg
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estimators by using 3 attractors. One attractor will be a practical outlier resistant es-

timator that may not be backed by theory, such as FAST-LTS or FAST-τ . Another

attractor will be a practical
√

n consistent estimator such as OLS while the third attrac-

tor will be a practical but inconsistent high breakdown estimator. The resulting hbreg

estimator will be asymptotically equivalent to the consistent attractor, e.g. OLS.

Section 2 provides theory showing that many practical algorithm estimators for “high

breakdown estimators” are inconsistent and zero breakdown. Section 4 demonstrates that

the response and residual plots are useful for detecting outliers and leverage groups for

linear models including multiple linear regression and many experimental design models.

2. THEORY FOR SOME PRACTICAL ESTIMATORS

The main point of this section is that the theory of the algorithm estimator depends

on the theory of the attractors, not on the estimator corresponding to the criterion. The

following theorem is due to Hawkins and Olive (2002) who show that if K randomly

selected elemental starts are used with concentration to produce the attractors, then the

resulting estimator is inconsistent and zero breakdown if K and k are fixed and free of n.

Hence no matter how the attractor is chosen, the resulting estimator is not consistent.

The proof uses results from He and Portnoy (1992) who show that if a start b is a

consistent estimator of β, then the attractor is a consistent estimator of β with the same

rate as the start. If the start is inconsistent, then so is the attractor.

If concentration is iterated to convergence so that k is not fixed, then it is not known

whether the attractor is inconsistent. If k is fixed, Olive and Hawkins (2007) show that

the “best attractor” that minimizes ‖bk,j −β‖ has rate K
1/p
n if Kn → ∞ as n → ∞. The
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“best attractor” is not an estimator since β is unknown.

Theorem 1. Suppose K is fixed. Then the elemental concentration algorithm and the

elemental basic resampling algorithm estimators are zero breakdown. The estimators are

inconsistent if k is fixed.

Note that each elemental start can be made to breakdown by changing one case.

Hence the breakdown value of the final regression estimator is bounded by K/n → 0

as n → ∞. The classical estimator applied to a randomly drawn elemental set is an

inconsistent estimator, so the K starts and the K attractors are inconsistent. Since the

breakdown value of the FAST-LTS estimator is bounded by 500/n → 0, the claim that

FAST-LTS can be used to compute LTS is false.

Suppose that there are K estimators β̂j where K is fixed, and that β̂A is an estimator

obtained by choosing one of the K estimators as the final estimator. If each estimator is

consistent with the same rate nδ, then β̂A is a consistent estimator of β with rate nδ by

Pratt (1959). On the other hand, if P(randomly selected attractor β̂i gets arbitrarily close

to β) → 0 as n → ∞, then β̂A is inconsistent since none of the attractors gets arbitrarily

close to β. This condition is slightly stronger than each attractor being inconsistent,

but algorithms where all K of the attractors are inconsistent are untrustworthy. If the

algorithm needs to use many attractors to achieve outlier resistance, then the individual

attractors have little outlier resistance. Such estimators include elemental concentration

algorithms, heuristic and genetic algorithms and projection algorithms.

The following theorem can be used to prove that the Olive (2005) MBA estimator is

√
n consistent, and the theorem is powerful because it does not depend on the criterion

used to choose the attractor.
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Theorem 2. Suppose the algorithm estimator chooses an attractor as the final esti-

mator where there are K attractors and K is fixed.

i) If all of the attractors are consistent, then the algorithm estimator is consistent.

ii) If all of the attractors are consistent with the same rate, e.g., nδ where 0 < δ ≤ 0.5,

then the algorithm estimator is consistent with the same rate as the attractors.

iii) If all of the attractors are high breakdown, then the algorithm estimator is high

breakdown.

Proof. i) Choosing from K consistent estimators results in a consistent estimator. ii)

follows from Pratt (1959). iii) Let γn,i be the breakdown value of the ith attractor if the

clean data are in general position. The breakdown value γn of the algorithm estimator

can be no lower than that of the worst attractor: γn ≥ min(γn,1, ..., γn,K) → 0.5 as

n → ∞. �

3. PRACTICAL HIGH BREAKDOWN REGRESSION ESTIMATORS

It is not hard to find an estimator that has high breakdown, though, as we shall see,

the high breakdown property does not, in and of itself, mean that the estimator has much

practical value. To explore this, Olive (2005) showed that β̂ is high breakdown if the

cnth largest absolute residual |r(β̂)|(cn) stays bounded under high contamination. This

follows since, assuming general position and except in the degenerate case of exact fit, if

‖β̂‖ = ∞, then median(|ri|) = ∞, and conversely, if ‖β̂‖ is bounded then median(|ri|)

is bounded if fewer than half of the cases are outliers.

Abusing notation slightly for ease of expression, we will refer to this cnth largest

order statistic of the residuals as the “median’. Let QL(β̂H) denote the LMS, LTS or
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LTA criterion for an estimator β̂H ; therefore, the estimator β̂H is high breakdown if and

only if QL(β̂H) is bounded for dn near n/2.

The concentration operator refines an initial estimator by successively reducing the

LTS criterion. If β̂F refers to the final estimator obtained by applying concentration to

some starting estimator β̂H that is high breakdown, then since QLTS(β̂F ) ≤ QLTS(β̂H),

applying concentration to a high breakdown start results in a high breakdown attractor.

High breakdown estimators are, however, not necessarily useful for detecting outliers.

Suppose γn < 0.5. On the one hand, if the xi are fixed, and the outliers are moved up

and down parallel to the Y axis, then for high breakdown estimators, β̂ and MED(|ri|)

will be bounded. Thus if the |Yi| values of the outliers are large enough, the |ri| values

of the outliers will be large, suggesting that the high breakdown estimator is useful for

outlier detection. On the other hand, if the Yi’s are fixed at any values and the x values

perturbed, sufficiently large x-outliers tend to drive the slope estimates to 0, not ∞. For

many estimators, including LTS, LMS and LTA, a cluster of Y outliers can be moved

arbitrarily far from the bulk of the data but still, by perturbing their x values, have

arbitrarily small residuals.

A high breakdown estimator is easy to find. Recall that the median absolute deviation

MAD(wi) = median(|wi − median(wi)|), and assume that the multiple linear regression

model contains an intercept and that MAD(Yi) is finite. Make an OLS fit to the cn

cases whose Y values are closest to the median Y , and use this fit as the start for

concentration. Write β̂B for the final attractor attained in this way. Since the initial

estimator has an LTS criterion value bounded by n[MAD(Yi)]
2, it is high breakdown.

And the subsequent concentration will further reduce this criterion, implying that β̂B
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will also be high breakdown.

This start is reminiscent of literature proposals to make an initial OLS fit, find the cn

cases with the smallest residuals, and then use the OLS fit to these cases as the starting

point for concentration. Note, however, that this proposal, unlike β̂B is not guaranteed

to have high breakdown.

With these preliminaries, we now define our high breakdown procedure. This is made

up of three components:

• A practical estimator β̂C that is consistent for clean data. Suitable choices would

include the full-sample OLS and L1 estimators.

• A practical estimator β̂A that is effective for outlier identification. Suitable choices

would include the conventionally-implemented lmsreg or FAST-LTS estimators.

• A practical high-breakdown estimator such as β̂B.

By selecting one of these three estimators according to the features each of them

uncovers in the data, we may inherit the good properties of each of them. Specifically,

our proposed hbreg estimator β̂H is defined as follows. Pick a constant a > 1 and find the

smallest of the three scaled criterion values QL(β̂C), aQL(β̂A), aQL(β̂B). According to

which of the three estimators attains this minimum, set β̂H to β̂C , β̂A or β̂B respectively.

Large sample theory for hbreg is simple and given in the following theorem. Let

β̂L be the LMS, LTS or LTA estimator that minimizes the criterion QL. Note that the

impractical estimator β̂L is never computed.

Theorem 3. Suppose that both β̂L and β̂C are consistent estimators of β where the
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regression model contains a constant. Then the hbreg estimator β̂H is high breakdown

and asymptotically equivalent to β̂C.

Proof. Since the clean data are in general position and QL(β̂H) ≤ aQL(β̂B) is bounded

for γn near 0.5, the hbreg estimator is high breakdown. Let Q∗
L = QL for LMS and Q∗

L =

QL/n for LTS and LTA. As n → ∞, consistent estimators β̂ satisfy Q∗
L(β̂)−Q∗

L(β) → 0

in probability. Since LMS, LTS and LTA are consistent and the minimum value is

Q∗
L(β̂L), it follows that Q∗

L(β̂C) − Q∗
L(β̂L) → 0 in probability, while Q∗

L(β̂L) < aQ∗
L(β̂)

for any estimator β̂. Thus with probability tending to one as n → ∞, QL(β̂C) <

amin(QL(β̂A), QL(β̂B)). Hence β̂H is asymptotically equivalent to β̂C. �

The family of hbreg estimators is enormous and depends on the practical high break-

down estimator, β̂C, β̂A, a and on the criterion QL. Note that the theory needs the

error distribution to be such that both β̂C and β̂L are consistent. Sufficient conditions

for LMS, LTS and LTA to be consistent are rather strong. To have reasonable suffi-

cient conditions for the hbreg estimator to be consistent, β̂C should be consistent under

weak conditions. Hence OLS is a good choice that results in 100% asymptotic Gaussian

efficiency.

We suggest using the LTA criterion since in simulations, hbreg behaved like β̂C for

smaller sample sizes than those needed by the LTS and LMS criteria. Want a near 1 so

that hbreg has outlier resistance similar to β̂A, but want a large enough so that hbreg

performs like β̂C for moderate n on clean data. Simulations suggest that a = 1.4 is a

reasonable choice.

There are at least three reasons for using β̂B as the high breakdown estimator. First,

β̂B is high breakdown and simple to compute. Second, the fitted values roughly track
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Table 1: MEAN β̂i and SD(β̂i)

n method mn or sd β̂1 β̂2 β̂3 β̂4 β̂5

25 HB mn 0.9921 0.9825 0.9989 0.9680 1.0231

sd 0.4821 0.5142 0.5590 0.4537 0.5461

OLS mn 1.0113 1.0116 0.9564 0.9867 1.0019

sd 0.2308 0.2378 0.2126 0.2071 0.2441

ALTS mn 1.0028 1.0065 1.0198 1.0092 1.0374

sd 0.5028 0.5319 0.5467 0.4828 0.5614

BB mn 1.0278 0.5314 0.5182 0.5134 0.5752

sd 0.4960 0.3960 0.3612 0.4250 0.3940

400 HB mn 1.0023 0.9943 1.0028 1.0103 1.0076

sd 0.0529 0.0496 0.0514 0.0459 0.0527

OLS mn 1.0023 0.9943 1.0028 1.0103 1.0076

sd 0.0529 0.0496 0.0514 0.0459 0.0527

ALTS mn 1.0077 0.9823 1.0068 1.0069 1.0214

sd 0.1655 0.1542 0.1609 0.1629 0.1679

BB mn 1.0184 0.8744 0.8764 0.8679 0.8794

sd 0.1273 0.1084 0.1215 0.1206 0.1269
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the bulk of the data. Lastly, although β̂B has rather poor outlier resistance, β̂B does

perform well on several outlier configurations where some common alternatives fail. See

the first three examples in Section 4.

Next we will show that the hbreg estimator implemented with a = 1.4 using QLTA,

β̂C = OLS and β̂B can greatly improve the estimator β̂A. We will use β̂A = ltsreg

in R and Splus 2000. Depending on the implementation, the ltsreg estimators use

the elemental resampling algorithm, the elemental concentration algorithm or a genetic

algorithm. Coverage is 50%, 75% or 90%. The Splus 2000 implementation is an unusually

poor genetic algorithm with 90% coverage. The R implementation appears to be the zero

breakdown inconsistent elemental basic resampling algorithm that uses 50% coverage.

Simulations were run in R with the xij (for i > 1) and ei iid N(0, σ2) and β = 1,

the p × 1 vector of ones. Then β̂ was recorded for 100 runs. The mean and standard

deviation of the β̂j were recorded for j = 1, ..., p. For n ≥ 10p and OLS, the vector of

means should be close to 1 and the vector of standard deviations should be close to 1/
√

n.

The
√

n consistent high breakdown hbreg estimator performed like OLS if n ≈ 35p and

2 ≤ p ≤ 6, if n ≈ 20p and 7 ≤ p ≤ 14, or if n ≈ 15p and 15 ≤ p ≤ 40. See Table 1 for

p = 5 and 100 runs. ALTS denotes ltsreg, HB denotes hbreg and BB denotes β̂B.

4. PLOTS FOR OUTLIER DETECTION

Consider the linear model Yi = xT
i β + ei where i = 1, ..., n. Multiple linear regression

and many experimental design models are linear models. Let the iid error model be

the linear model where the zero mean constant variance errors are iid from a unimodal

distribution that is not highly skewed. Then the zero mean assumption E(ei) ≡ 0 holds
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without loss of generality if the linear model contains a constant.

Huber and Ronchetti (2009, p. 154) note that efficient identification of outliers and

leverage groups “is an open, perhaps unsolvable, diagnostic problem.” Such groups are

often difficult to detect with residuals and regression diagnostics, but often have outlying

fitted values and responses. The OLS fit often passes through a cluster of outliers, causing

a large gap between a cluster corresponding to the bulk of the data and the cluster of

outliers. When such a gap appears, it is possible that the smaller cluster corresponds to

good leverage points: the cases follow the same model as the bulk of the data. Fit the

model to the bulk of the data. If the fit passes through the cluster, then the cases may

be good leverage points, otherwise they may be outliers.

Olive (2005) suggests using residual, response, RR and FF plots to detect outliers.

The residual plot is a plot of fitted values versus the residuals while the response plot uses

fitted values versus the response. An RR plot is a scatterplot matrix of the residuals from

several estimators. An FF plot replaces the residuals by the fitted values and includes

the response on the top or bottom row of the scatterplot matrix, giving the response

plots of the different estimators. The four plots are best for n > 5p.

Under the iid error model, if the fitted values take on many values, then the plotted

points should scatter about the identity line with unit slope and zero intercept or about

the r = 0 line in a roughly evenly populated band in the response and residual plots,

respectively. Deviations from the evenly populated band suggest that something is wrong

with the iid error model. Response and residual plots are very effective for suggesting

that something is wrong with the iid error model. The plots often show two or more

groups of data, and outliers often cause an obvious tilt in the residual plot.
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In the following three examples, it is shown that β̂B is sometimes useful for detecting

outliers where some competing methods fail. The Splus 2000 ltsreg estimator is used

as β̂A in hbreg. Influence diagnostics such as Cook’s distances CDi from Cook (1977)

and the weighted Cook’s distances WCDi from Peña (2005) are also sometimes useful.

In the following example, cases in the plots with CDi > min(0.5, 2p/n) are highlighted

with open squares, and cases with |WCDi − median(WCDi)| > 4.5MAD(WCDi) are

highlighted with crosses.
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Figure 1: Buxton Data

Example 1. The LMS, LTA and LTS estimators are determined by a “narrowest

band” covering half of the cases. Hawkins and Olive (2002) suggest that the fit will pass

through outliers if the band through the outliers is narrower than the band through the

clean cases. This behavior tends to occur if regression relationship is weak, and if there is

a tight cluster of outliers where |Y | is not too large. As an illustration, Buxton (1920, p.

232-5) gives 20 measurements of 88 men. Consider predicting stature using an intercept,

head length, nasal height, bigonal breadth, and cephalic index. One case was deleted since
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Figure 2: Response Plots for Buxton Data

it had missing values. Five individuals, numbers 61-65, were reported to be about 0.75

inches tall with head lengths well over five feet! The OLS fit to the clean data makes the

absolute residuals of the outliers large.

In Figure 1, notice that the OLS fit to all of the data passes through the outliers, but

the response plot is resistant to Y–outliers since Y is on the vertical axis. Also notice

that only two of the outliers had large Cook’s distance and only one case had a large

WCDi. Figure 2 shows the response plots for OLS, ltsreg, hbreg and β̂B. Notice that

only the fit from β̂B (BBFIT) did not pass through the outliers. There are always outlier

configurations where an estimator will fail, and hbreg should fail on configurations where

LTA, LTS and LMS would fail.

The CDi and WCDi are the most effective when there is a single cluster about the

identity line. If there is a second cluster of outliers or good leverage points or if there is

nonconstant variance, then these numerical diagnostics tend to fail.

Example 2. Portnoy (1987) gives an artifical data set with nine predictors and n = 50.
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Figure 3: Response Plots for Portnoy Data

The fifteen outliers are cases 36-50. Figure 3 shows the response plots for OLS, ltsreg,

hbreg and β̂B. Note that the OLS response plot shows two groups of data better than the

ltsreg response plot. For this data set, hbreg is better than ltsreg since the outliers

have massive absolute residuals in the hbreg response plot.

Example 3. There are data sets where the OLS response and residual plots fail.

Rousseeuw and Leroy (1987, pp. 242-245) give a modified wood data set with 4 nontrivial

predictors and 4 planted outliers. Figure 4 shows an FF plot for the data, using OLS,

least absolute deviations (L1), lmsreg (ALMS), ltsreg (ALTS), MBA and β̂B (BB).

The response plots are on the top row of the FF plot. The four planted outliers have

the smallest values of the response, and can not be detected by the OLS response and

residual plots. They can be detected by the ALMS, MBA and β̂B response plots. For

this data set, hbreg fails if β̂A = ltsreg, but hbreg works if β̂A = MBA.

As illustrated in the last three examples, there are several common outlier configura-

tions where β̂B is useful for outlier detection, but there are many outlier configurations

where β̂B fails. A good hbreg estimator should use a good outlier resistant estimator for
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β̂A such as MBA, FAST-τ , or FAST-LTS with 50% coverage. On the other hand, hbreg

greatly improves estimators like ltsreg.

Note that Figures 1–4 all display the regression data with response plots. The next

two examples show that response and residual plots are also useful for outlier detection

for experimental design models.

Example 4. Dunn and Clark (1974, p. 129) study the effects of four fertilizers on

wheat yield using a Latin square design. The row blocks were 4 types of wheat, and the

column blocks were 4 plots of land. Each plot was divided into 4 subplots. Case 14 had

a yield of 64.5 while the next highest yield was 35.5. For the response plot in Figure 5,

note that both Y and Ŷ are large for the high yield. Also note that Ŷ underestimates Y

by about 10 for this case.

10 20 30 40 50

10
30

50

FIT

Y

14

Response Plot

10 20 30 40 50

−
10

0
10

FIT

R
E

S

14

Residual Plot

Figure 5: Latin Square Data

Example 5. Snedecor and Cochran (1967, p. 300) give a data set with 5 types of

soybean seed. The response frate = number of seeds out of 100 that failed to germinate.

Five blocks were used. The response and residual plots in Figure 6 suggest that case 5 is
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Figure 6: One Way Block Design Does Not Fit All of the Data

not fit well by the model. On further examination of the data, there seems to be a block

treatment interaction, which is not allowed by the completely randomized block design.

5. CONCLUDING REMARKS

This paper discusses two important problems: i) finding outliers and high leverage

cases for linear models and ii) deriving practical
√

n consistent high breakdown regression

estimators.

The OLS response and residual plots are useful for detecting outliers and high leverage

cases. Using the two plots speeds up the process of finding a linear model that is a useful

approximation of the data, and both plots should be made before performing inference.

It is important to provide researchers tools that they are willing to use, and researchers

who use the residual plot to visualize e|βTx should be willing to use the response plot to

visualize Y |βTx. Cases with large “leave one out” diagnostics, such as Cook’s distances,

can be highlighted in the plots.
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For multiple linear regression, the RR and FF plots can be useful for detecting outliers

and high leverage cases when the two OLS plots fail. The MBA estimator that uses the

Olive and Hawkins (1999) LATA criterion is also useful. The fit from this estimator often

tilts away from both “good” and “bad” high leverage cases. Then the clean data and

one or two groups of high leverage cases can be seen in the response plot.

Note that hbreg technique simultaneously increases the outlier resistance of the clas-

sical estimator β̂C while modifying the outlier resistant estimator β̂A so that the resulting

robust estimator is backed by theory. Hence the hbreg technique robustifies both a classi-

cal estimator and a practical outlier resistant estimator that has no large sample theory.

The outlier resistance of any practical outlier resistant estimator is likely to decrease

rapidly as the number of predictors p increases.

Plots and simulations were done in R and Splus. See R Development Core Team

(2008). Programs are in the collection of functions rpack.txt available from (www.math.siu.

edu/olive/rpack.txt). From rpack, the function hbreg computes the hbreg estimator, the

function hbregsim can be used to reproduce the simulation, and the function hbplot can

be used to make four response plots as in Figure 2. For these three functions, β̂A can be

MBA, ltsreg or MBA using the LATA criterion. Splus functions ffplot and rrplot

and R functions ffplot2 and rrplot2 can be used to make RR and FF plots. In R,

the function mlrplot4 can be used as in Figure 1 to make the response and residual

plots where cases with large Cook’s distances and large WCDi are highlighted. MBA is

computed with mbareg, and MBA using the LATA criterion is computed with mbalata.
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