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Abstract

Consider testing H0 : µ = 0 versus HA : µ 6= 0 using a random sample x1, ..., xn

where the xi are p×1 random vectors and p may be much larger than n. Several one
sample tests use the same test statistic Tn with different estimators of the variance

V (Tn). Rather simple theory from U-statistics is used to find V (Tn), resulting in
an estimator that is quick to compute when H0 is true. Some two sample tests for
H0 : µ1 = µ2 are also considered.
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1 INTRODUCTION

Consider testing H0 : µ = 0 versus HA : µ 6= 0 using independent and identically
distributed (iid) x1, ...,xn where the xi are p × 1 random vectors and p may be much
larger than n. Assume the expected value E(xi) = µ and nonsingular covariance matrix
Cov(xi) = Σ. Replace xi by wi = xi − µ0 to test H0 : µ = µ0 versus HA : µ 6= µ0.
This section reviews some tests while the following section gives a new test that has very
simple large sample theory.

Suppose p is fixed, and consider testing H0 : θ = θ0 versus H1 : θ 6= θ0 where a g× 1

statistic Tn satisfies
√
n(Tn − θ)

D→ u ∼ Ng(0,Σ). If Σ̂
−1 P→ Σ−1 and H0 is true, then

D2
n = D2

θ0

(Tn, Σ̂/n) = n(Tn − θ0)
T Σ̂

−1
(Tn − θ0)

D→ uTΣ−1u ∼ χ2
g

as n→ ∞. Then a Wald type test rejects H0 at significance level δ if D2
n > χ2

g,1−δ where
P (X ≤ χ2

g,1−δ) = 1 − δ if X ∼ χ2
g, a chi-square distribution with g degrees of freedom.

It is common to implement a Wald type test using

D2
n = D2

θ0

(Tn,Cn/n) = n(Tn − θ0)
T C−1

n (Tn − θ0)
D→ uTC−1u

as n→ ∞ if H0 is true, where the g×g symmetric positive definite matrix Cn
P→ C 6= Σ.

Hence Cn is the wrong dispersion matrix, and uT C−1u does not have a χ2
g distribution

when H0 is true. Often Cn is a regularized estimator of Σ, or C−1
n is a regularized

estimator of the precision matrix Σ−1, such as Cn = diag(Σ̂) or Cn = Ig, the g × g
identity matrix. Rajapaksha and Olive (2024) showed how to bootstrap Wald tests with
the wrong dispersion matrix.

When n is much larger than p, the one sample Hotelling (1931) T 2 test is often used
to test H0 : µ = µ0 versus HA : µ 6= µ0. The sample mean

x =
1

n

n
∑

i=1

xi,

and the sample covariance matrix

S =
1

n− 1

n
∑

i=1

(xi − x)(xi − x)T = (Sij).

That is, the ij entry of S is the sample covariance Sij. If the xi are iid with expected value
E(xi) = µ and nonsingular covariance matrix Cov(xi) = Σ, then by the multivariate
central limit theorem √

n(x − µ)
D→ Np(0,Σ).

If H0 is true, then

T 2
H = n(x −µ0)

T S−1(x − µ0)
D→ χ2

p.

The one sample Hotelling’s T 2 test rejects H0 if T 2
H > D2

1−δ where D2
1−δ = χ2

p,δ and
P (Y ≤ χ2

p,δ) = δ if Y ∼ χ2
p. Alternatively, use

D2
1−δ =

(n − 1)p

n− p
Fp,n−p,1−δ
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where P (Y ≤ Fp,d,δ) = δ if Y ∼ Fp,d. The scaled F cutoff can be used since T 2
H

D→ χ2
p if

H0 holds, and
(n − 1)p

n− p
Fp,n−p,1−δ → χ2

p,1−δ

as n→ ∞.
The next two high dimensional tests are described in Srivastava and Du (2008). Also

see Hu and Bai (2015). Let tr(A) be the trace of square matrix A. Let R be the sample
correlation matrix. Consider testing H0 : µ = 0 versus HA : µ 6= 0. Let D = diag(S).
Let

cp,n = 1 +
tr(R2)

p3/2
.

Let n = O(pδ) where 0.5 < δ ≤ n. Then under regularity conditions

Z1 =
nxT D−1x − (n−1)p

n−3

2
(

tr(R2) − p2

n−1

)

D→ N(0, 1)

as n, p → ∞. The next test is attributed to Bai and Saranadasa (1996). Suppose
p/n → c > 0. Under regularity conditions,

Z2 =
nxT x− tr(S)

[

2(n−1)n
(n−2)(n+1)

(

tr(S2) − 1
n
[tr(S)]2

)

]1/2

D→ N(0, 1)

as n, p → ∞. Both of these test statistics need p/n → c > 0 or p/n2 → 0. Hence p can
not be too big.

For test statistic Tn, let V (Tn) be the variance of Tn and let s2
n = V̂ (Tn) be a consistent

estimator of Tn. Then there are test statistics Tn for testing H0 : µ = 0, where p can be
much larger than n, with

Tn

sn

D→ N(0, 1)

where Tn is relatively simple to compute while sn is much harder to compute. The
following test is due to Chen and Qin (2010). Also see Hu and Bai (2015). Let a =
∑n

i=1 xi and let X = (xij) be the data matrix with ith row = xT
i and ij element =

xij. Let vec(A) stack the columns of matrix A so that c = vec(XT ) = [xT
1 ,x

T
2 , ...,x

T
n ]T .

Then

cTc =
n
∑

i=1

xT
i xi =

n
∑

i=1

‖xi‖2 =
n
∑

i=1

p
∑

j=1

(xij)
2.

Let

Tn =
1

n(n− 1)
[aTa − cT c] =

1

n(n − 1)

∑∑

i6=j

xT
i xj =

1

n(n− 1)

∑

i6=j

xT
i xj. (1)

The terms in cT c =
∑n

i=1 xT
i xi are the terms that cause the restriction on p for asymp-

totic normality for the previous two tests. Under H0 : µ = 0 and additional regularity
conditions,

Tn
√

V (Tn)

D→ N(0, 1) and
Tn

sn

D→ N(0, 1) (2)
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where sn is rather hard to compute. Here

s2
n =

2

n(n− 1)
tr

[

∑

i6=j

(xi − x(i,j))x
T
i (xj − x(i,j))x

T
j

]

is a consistent estimator of V (Tn) where x(i,j) is the sample mean computed without xi

or xj :

x(i,j) =
1

n− 2

∑

k 6=i,j

xk.

The Tn in Equation (1) can be viewed as a modification of ‖x‖2 = xTx that is a better
estimator of µTµ in high dimensions. Note that µ = 0 iff µT µ = 0 and E(xT

i xj) = µT µ

if xi and xj are iid with E(xi) = µ and i 6= j.
As noted by Park and Ayyala (2013), nTn = nxTx − tr(S). This result holds since

Tn =
1

n(n− 1)

[

∑

i

∑

j

xT
i xj −

∑

i

xT
i xi

]

=
n2xTx −∑i x

T
i xi

n(n− 1)
.

Now

S =
1

n− 1

[

∑

i

xix
T
i − nx xT

]

.

Thus

tr(S) =
1

n− 1

[

∑

i

tr(xix
T
i ) − ntr(x xT )

]

=
1

n− 1

[

∑

i

xT
i xi − nxT x

]

.

Thus

nxT x − tr(S) = nxT x +
n

n− 1
xTx − 1

n− 1

∑

i

xT
i xi =

n2xTx −∑i x
T
i xi

n− 1
.

We will also consider replacing xi by zi = ss(xi) where the spatial sign function
ss(xi) = 0 if xi = 0, and ss(xi) = xi/‖xi‖ otherwise. This function projects the
nonzero xi onto the unit p-dimensional hypersphere centered at 0. Let Tn(w) denote
the statistic Tn computed from an iid sample w1, ...,wn. Since the zi are iid if the xi

are iid, use Tn(z) to test H0 : µz = 0 versus HA : µz 6= 0 where µz = E(zi). In
general, µz 6= µ = µx = E(xi), but µz = µ = 0 can occur if the xi have a lot of
symmetry about 0. In particular, µz = µ = 0 if the xi are iid from an elliptically
contoured distribution with center µ = 0. The test based on the statistic Tn(z) can be
useful if the second moment of the xi does not exist, for example if the xi are iid from a
multivariate Cauchy distribution. These results may be useful for understanding papers
such as Wang, Peng, and Li (2015)

Section 2 finds estimators s2
n of V (Tn) that are easier to compute, and gives a new

test with very simple large sample theory. Section 3 considers two sample tests.
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2 Estimating V (Tn)

Some notation for the simple test is needed. Assume x1, ...,xn are iid, E(xi) = µ and
the variance V (xT

i xj) = σ2
W for i 6= j. Let m = floor(n/2) = bn/2c be the integer part of

n/2. So floor(100/2) = floor(101/2) = 50. Let the iid random variables Wi = xT
2i−1x2i for

i = 1, ..., m. HenceW1,W2, ...,Wm = xT
1 x2,x

T
3 x4, ...,x

T
2m−1x2m. Note that E(Wi) = µT µ

and V (Wi) = σ2
W . Let S2

W be the sample variance of the Wi:

S2
W =

1

m− 1

m
∑

i=1

(Wi −W )2.

If σ2
W ∝ τ 2p where p > n, then n may not be large enough for the normal approximation

to hold. The following theorem follows from the univariate central limit theorem.

Theorem 1. Assume x1, ...,xn are iid, E(xi) = µ, and the variance V (xT
i xj) = σ2

W

for i 6= j. Let W1, ...,Wm be defined as above. Then

a)
√
m(W −µTµ)

D→ N(0, σ2
W ).

b)

√
m(W − µTµ)

SW

D→ N(0, 1)

as n→ ∞.
The following theorem derives V (Tn) under much simpler regularity conditions than

those in the literature, and the proof of the theorem is also simple. For example, Li
(2023) finds V (Tn) when H0 is true, using much stronger regularity conditions than in
Theorem 2. In the simulations, we use a variant of the Li (2023) variance estimator σ̂2

W ,
and also use the estimator S2

W that is much easier to compute.

Theorem 2. Assume x1, ...,xn are iid, E(xi) = µ, and the variance V (xT
i xj) = σ2

W

for i 6= j. Let Wij = xT
i xj for i 6= j. Let θ = Cov(Wij,Wid) where j 6= d, i < j, and

i < d. Then

a) V (Tn) =
2σ2

W

n(n − 1)
+

4(n− 2)θ

n(n− 1)
.

b) If H0 : µ = 0 is true, then θ = 0 and

V0 = V (Tn) =
2σ2

W

n(n − 1)
.

Proof. a) To find the variance V (Tn) with Tn from Equation (1), let Wij = xT
i xj =

Wji, and note that

Tn =
2

n(n− 1)
Hn where Hn =

∑

i <

∑

j

xT
i xj =

∑

i<j

xT
i xj.

Then V (Hn) = Cov(Hn, Hn) =

Cov

(

∑

i <

∑

j

Wij,
∑

k <

∑

d

Wkd

)

=
∑

i <

∑

j

∑

k <

∑

d

Cov(Wij,Wkd). (3)
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Let V (Wij) = σ2
W for i 6= j. The covariances are of 3 types. First, if (ij) = (kd) with

i < j, then Cov(Wij,Wkd) = V (Wij) = σ2
W . Second, if i, j, k, d are distinct with i < j and

k < d, thenWij andWkd are independent with Cov(Wij,Wkd) = 0. Third, there are terms
where exactly three of the four subscripts are distinct, which have Cov(Wij,Wid) = θ
where j 6= d, i < j, and i < d or Cov(Wij,Wkj) = θ where i 6= k, i < j, and k < j. These
covariance terms are all equal to the same number θ since Wij = Wji. The number of
ways to get three distinct subscripts is

a− b− c =

(

n

2

)2

−
(

n

2

)(

n− 2

2

)

−
(

n

2

)

= n(n− 1)(n − 2)

since a is the number of terms on the right hand side of (3), b is the number of terms
where i, j, k, d are distinct with i < j and k < d, and c is the number of terms where
(ij) = (kd) with i < j. [Note that n(n − 1) terms have i and j distinct. Half of these
terms have i < j and half have i > j. Similarly, n(n− 1)(n − 2)(n − 3) terms have ijkd
distinct, and half of the n(n− 1) terms have i < j, while half of the (n− 2)(n− 3) terms
have k < d.] Thus

V (Hn) = 0.5n(n − 1)σ2
W + n(n− 1)(n − 2)θ.

This calculation was adapted from Lehmann (1975, pp. 336-337). Thus

V (Tn) =
4

[n(n− 1)]2
V (Hn) =

2σ2
W

n(n− 1)
+

4(n − 2)θ

n(n− 1)
.

b) Now θ = Cov(xT
i xj,x

T
i xj) where xi,xj, and xk are iid. Hence θ =

Cov(
∑

d

xidxjd,
∑

t

xitxkt) =
∑

d

∑

t

Cov(xidxjd, xitxkt) =

∑

d

∑

t

[E(xidxjdxitxkt] − E(xidxjd)E(xitxkt)] =

∑

d

∑

t

[E(xidxit)E(xjd)E(xkt)] −E(xid)E(xjd)E(xit)E(xkt)] =

∑

d

∑

t

[E(xjd)E(xkt)(E(xidxit) − E(xid)E(xit))] =

∑

d

∑

t

[E(xjd)E(xkt) Cov(xid, xit)].

Under H0, µ = 0 and thus E(xjd) = E(xkt) = 0. Hence θ = 0. �

Srivastava and Du (2008), Bai and Saranadasa (1996), Chen and Qin (2010), and

others use Tn/

√

V̂ (Tn)
D→ N(0, 1), while Li (2023) uses Tn/

√

V̂0(Tn)
D→ N(0, 1). Theorem

2 and the following result show that the second statistic has more power. Adapting an
argument from Lehmann (1999, pp. 367-368), let Z(a) = E(aTxj) = aT µ. Then it can
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be shown that θ = V (Z(xi)) = V (xT
i µ) ≥ 0. Let s2

n = V̂ be a consistent estimator of
V (Tn) and let

V̂0 =
2σ̂2

W

n(n− 1)
.

The test statistics

t1 =
Tn
√

V̂0

D→ N(0, 1) and t2 =
Tn
√

V̂

D→ N(0, 1)

if H0 : µ = 0 is true. However, when H0 is not true,

V̂ ≈ V̂0 +
4(n − 2)θ̂

n(n− 1)

where the second term is positive. If H0 is not true and n and p are such that the second
term dominates, then |t1| tends to be proportional to

√
n|t2|, greatly increasing the power

of the test that uses t1.
For power, we expect V0(Tn) → 0 if p/n2 → 0 as n → ∞. The high dimensional

literature often gives very strong regularity conditions where V (Tn) → 0 if pγ/n → 0
where γ > 0.5 and µ = 0. Suppose µ = δ1 where the constant δ > 0 and 1 is the p× 1
vector of ones. Then µT µ = δ2p, and the test using V̂0(Tn) may have good power for

Tn/
√

V̂0(Tn) > 1.96 ≈ 2 or for

δ2 p
√

2σ2

W

n(n−1)

> 2 or δ2 >
2
√

2 σW

n p
.

The above theory can also be applied to the zi = ss(xi) to test H0 : E(z) = 0. As
noted near the end of Section 1, for elliptically contoured distributions, E(z) = µz = 0

if E(x) = µ = µx = 0.
The nonparametric bootstrap draws a bootstrap data set x∗

1, ...,x
∗
n with replacement

from the xi and computes T ∗
1 by applying Tn on the bootstrap data set. This process is

repeated B times to get a bootstrap sample T ∗
1 , ..., T

∗
B. For the statistic Tn, the nonpara-

metric bootstrap fails in high dimensions because terms like xT
j xj need to be avoided,

and the nonparametric bootstrap has replicates: the proportion of cases in the bootstrap
sample that are not replicates is about 1 − e1 ≈ 2/3 ≈ 7/11. The m out of n bootstrap
draws a sample of size m without replacement from the n cases. For B = 1, this is a data
splitting estimator, and T ∗

m ≈ N(0, s2
m) for large enough m and p. Sampling without

replacement is also known as subsampling and the delete d jackknife.
Theory for subsampling is given by Politis and Romano (1994) and Wu (1990). Sub-

sampling tends to work well for a large variety of statistics if m/n→ 0 with m → ∞. A
linear statistic has the form

1

n

n
∑

i=1

t(Ui)

where θ = E[t(Ui)] and the Ui are iid. For a linear statistic, subsampling tends to
work well if m/n → τ ∈ [0, 1) with m → ∞. For the Wi = Ui in Theorem 1,
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t(Ui) = Ui = xT
2i−1x2i. If different blocks were taken such that the Wi are still iid,

then subsampling would still work, but the statistics from the different blocks are es-
timating the same quantiles. Hence subsampling from all of the data may also work
well. That is, subsampling may work well for a U-statistic that is the analog of a linear
statistic. Using m = floor(2n/3) worked well in simulations.

Now let Wi be an indicator random variable with Wi = 1 if x∗
i is in the sample and

Wi = 0, otherwise, for i = 1, ..., n. The Wi are binary and identically distributed, but
not independent. Hence P (Wi = 1) = m/n. Let Wij = WiWj with i 6= j. Again, the
Wij are binary and identically distributed. P (Wij = 1) = P(ordered pair (xi,xj)) was
selected in the sample. Hence P (Wij = 1) = m(m−1)/[n(n−1)] since m(m−1) ordered
pairs were selected out of n(n− 1) possible ordered pairs. Then

T ∗
m =

1

m(m− 1)

∑∑

k 6=d

xT
ik
xid =

1

m(m− 1)

∑∑

i6=j

WiWjx
T
i xj

where the xi1, ...,xim are the m vectors xi selected in the sample. The first double sum
has m(m− 1) terms while the second double sum has n(n− 1) terms. Hence

E(T ∗
m) =

1

m(m− 1)

∑∑

i6=j

E[WiWj ]x
T
i xj = Tn.

See similar calculations in Buja and Stuetzle (2006). Note that V (T ∗
m) = E([T ∗

m]2) −
[Tn]

2 = Cov(T ∗
m, T

∗
m).

3 Two Sample Tests

If (x1i,x2i) come in correlated pairs, a high dimensional analog of the paired t test applies
the one sample test on zi = x1i − x2i.

Now suppose there are two independent random samples x1,1, ...,xn1,1 and x1,2, ...,xn2,2

from two populations or groups, and that it is desired to test H0 : µ1 = µ2 versus
H1 : µ1 6= µ2 where E(xi) = µi are p×1 vectors. Let n = n1 +n2. Let Si be the sample
covariance matrix of xi and let Cov(xi) = Σi for i = 1, 2.

The classical two sample Hotelling’s T 2 test uses

T 2
C = (x1 − x2)

T

[(

1

n1
+

1

n2

)

Σ̂pool

]−1

(x1 − x2)

where

Σ̂pool =
(n1 − 1)S1 + (n2 − 1)S2

n− 2
.

Then reject H0 if T 2
C > mFm,n−2,1−α.

The large sample test uses

T 2
L = (x1 − x2)

T

(

S1

n1

+
S2

n2

)−1

(x1 − x2).

8



Let dn = min(n1 − p, n2 − p). Then reject H0 if T 2
L > mFm,dn,1−α.

Note that T 2
C ≈ T 2

L if n1 ≈ n2 ≥ 20p and the two tests are asymptotically equivalent
if ni/n→ 0.5 as n1, n2 → ∞. If the ni/n are not close to 0.5, then the test based on T 2

C

is useful if Σ1 = Σ2, a very strong assumption. Rajapaksha and Olive (2024) show how
to get a bootstrap test based on T 2

C where the assumption Σ1 = Σ2 is not needed.
There are test statistics Tn for testing H0 : µ1 = µ2 where p can be much larger than

n with
Tn

sn

D→ N(0, 1)

where Tn is relatively simple to compute while sn is much harder to compute. A simple
test takes m = min(n1, n2) and zi = xi1−xi2 for i = 1, ..., m. Then apply the one sample
test from Theorem 2 to the zi. In low dimensions, it is known that there are better tests.
In high dimensions, the power technique below Theorem 2 may be useful.

Let x1 be the xi that has n1 ≤ n2. Then let

yi = xi1 −
√

n1

n2
xi2 +

1√
n1n2

n1
∑

j=1

xj2 − x2 = xi1 −
√

n1

n2
xi2 + an1,n2

− x2

for i = 1, ..., n1. Note that yi = zi = xi1 − xi2 if n1 = n2. Anderson (1984, pp. 177-178)
proved that y = x1−x2, that yi and yj are uncorrelated for i 6= j, that E(yi) = µ1−µ2,
and that Cov(yi) = Cov(x1) + (n1/n2)Cov(x2) for i = 1, ..., n1. Li (2023) showed that

Tn(y)/
√

V̂0(y)
D→ N(0, 1) where the y denotes that the one sample test was computed

using the yi.
Let Tj,nj

denote the one sample test statistic applied to the xij for j = 1, 2. Then the
statistic T1n − T2n could be used to test H0 : µT

1 µ1 = µT
2 µ2. However, it is possible that

µT
1 µ1 = µT

2 µ2 even if µ1 6= µ2.
Let a =

∑n1

i=1 x1i and let X1 = (x1ij) be the data matrix with ith row = xT
1i and

ij element = x1ij. Let vec(A) stack the columns of matrix A so that c = vec(XT
1 ) =

[xT
11,x

T
12, ...,x

T
1n1

]T . Then

cTc =
n1
∑

i=1

xT
1ix1i =

n1
∑

i=1

‖x1i‖2 =

n1
∑

i=1

p
∑

j=1

(x1ij)
2.

Let b =
∑n2

i=1 x2i and let X2 = (x2ij) be the data matrix with ith row = xT
2i and ij

element = x2ij. Let d = vec(XT
2 ) = [xT

21,x
T
22, ...,x

T
2n2

]T . Then

dTd =
n2
∑

i=1

xT
2ix2i =

n2
∑

i=1

‖x2i‖2 =
n2
∑

i=1

p
∑

j=1

(x2ij)
2.

Note that ‖a − b‖2 = aTa + bTb − 2aT a, and let

Tn =
1

n1(n1 − 1)
[aTa − cT c] +

1

n2(n2 − 1)
[bTb − dT d] − 2aT b

n1n2

.
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The terms in cTc and dT d are the terms that cause the restriction on p for asymptotic
normality. Under H0 : µ1 = µ2 and additional regularity conditions,

Tn

sn

D→ N(0, 1)

where sn is rather hard to compute. See Hu and Bai (2015) and Chen and Qin (2010).

4 SIMULATIONS

In the simulations, we examined four one sample tests. The first two tests used Theorem

2 b) and Equation 2): Tn/sn
D→ N(0, 1) if s2

n is a consistent estimator of V (Tn). The first
test used σ̂2

W = S2
W based on Theorem 1. The second test used

σ̂2
W =

1

n(n − 1)

∑∑

i6=j

(xT
i xj − Tn)

2 =
1

n(n− 1)

∑∑

i6=j

(Wij − Tn)
2.

If the denominator n(n−1) was replaced by n(n−1)−1, this statistic would be the usual
sample variance of the Wij, which are not independent. This test should be asymptoti-
cally equivalent to the Li (2023) test.

These tests computed intervals

[Tn − t1−α/2,m−1

√

2σ̂2
W/[n(n− 1)], Tn + t1−α/2,m−1

√

2σ̂2
W/[n(n− 1)]].

The third test computed the usual t confidence interval

[W − t1−α/2,m−1SW/
√
m,W + t1−α/2,m−1SW/

√
m]

for µT µ based on the Wi from Theorem 1. The fourth “test” used the m out of n
bootstrap to compute T ∗

1 , ..., T
∗
B with B = 100. We used the shorth bootstrap “confidence

interval” described in Olive (2023, chapter 2) and Pelawa Watagoda and Olive (2021).
All four tests rejected H0 if 0 was not in the interval. The fourth “test” is ad hoc since
it has not yet been proven to have level α. Since nTn = nxTx − tr(S), the bootstrap
test is also a competitor for the test based on Z2. The fifth test used the Theorem 2 test
applied to the spatial sign vectors with S2

W .
The simulation used four distribution types where x = Ay + δ1 with E(x) = δ1

where 1 is the p × 1 vector of ones. Type 1 used y ∼ Np(0, I), type 2 used a mixture
distribution y ∼ 0.6Np(0, I)+0.4Np(0, 25I), type 3 for a multivariate t4 distribution, and
type 4 for a multivariate lognormal distribution where y = (y1, ..., yp) with wi = exp(Z)
where Z ∼ N(0, 1) and yi = wi −E(wi) where E(wi) = exp(0.5). The covariance matrix
type depended on the matrix A. Type 1 used A = Ip, type 2 used A = diag(

√
1, ...,

√
p),

and type 3 used A = ψ11T + (1 − ψ)Ip giving cor(xij, xik) = ρ for j 6= k where ρ = 0
if ψ = 0, ρ → 1/(c + 1) as p → ∞ if ψ = 1/

√
cp where c > 0, and ρ → 1 as p → ∞ if

ψ ∈ (0, 1) is a constant. We used δ = 0 and δ = 1. The simulation used 5000 runs, the 4
x distributions, and the 3 matrices A. For the third A, we used ψ = 1/

√
p.
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5 CONCLUSIONS

The test statistic Tn estimates µTµ and V (Tn) is easy to estimate when H0 : µ = 0 is

true. Under regularity conditions when H0 is true, Li (2023) proved that Tn/V (Tn)
D→ tk

as p→ ∞ for fixed n ≥ 3 where k = n(n− 1)/2 − 1.
The literature for high dimensional one and two sample tests is rather large. Hu,

Tong, and Genton (2024) have many references. Two sample tests that need Σ1 = Σ2

may not work well since the assumption of equal covariance matrices rarely holds. Some
high dimensional one sample tests include Chen et al. (2011), Feng and Sun (2016),
Hyodo and Nishiyama (2017), Park and Ayyala (2013), Srivastava and Du (2008), Wang,
Peng, and Li (2015), and Zhao (2017). Hu and Bai (2015) also describes some tests.
Chakraborty and Chaudhuri (2017) suggest a method for obtaining a k-sample test of
µ1 = · · · = µk from a one sample test statistic.

Some high dimensional two sample tests include Ahmad (2014), Chen, Li, and Zhong
(2019), Feng and Sun (2015), Gregory et al.(2015), Jiang et al. (2022), Xue and Yao
(2020), and Zhang et al. (2020).

Simulations were done in R. See R Core Team (2020). The collection of Olive (2023)
R functions slpack, available from (http://parker.ad.siu.edu/Olive/slpack.txt), has some
useful functions for the inference. The function hdhot1sim was used to simulate the
four tests, while the function hdhot1sim2 simulates the first test, which is rather fast.
The function hdhot3sim added the test based on sample signs using the fast test. The
function hdhot2sim simulates the two sample test which applies the fast one sample test
on the zi = xi1 −xi2 for i = 1, ..., m and the two sample test based on subsampling with
mi = floor(2ni/3) for i=1,2.

The spatial sign vectors have a some outlier resistance. If the predictor variables are
all continuous, the covmb2 and ddplot5 functions are useful for detecting outliers in high
dimensions. See Olive (2023,

∮

1.4.3) and Olive (2017, pp. 120-123).
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