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Abstract

Consider a binary regression model with binary response variable Y , that takes

on values 0 and 1, with predictors x = (x1, ..., xp). Let n be the number of cases.
For a high dimensional binary regression, n/p is small. We consider some high

dimensional binary regression models that have some simple large sample theory.
As is well known, binary regression estimators can be used for classification.

KEY WORDS: Dimension reduction, lasso, data spitting, marginal max-

imum likelihood estimator.

1 INTRODUCTION

This section reviews binary regression models, including variable selection and data split-
ting. Consider a binary regression model with binary response variable Y ∈ {0, 1} and
predictors x = (x1, ..., xp). Then there are n cases (Yi, x

T
i )T , and the sufficient predictor

SP = α+xT β. For the binary regression models, the conditioning and subscripts, such as
i, will often be suppressed. A binary regression model is Y = Y |SP ∼ binomial(1, ρ(SP))
where ρ(SP ) = P (Y = 1|SP ). There are many binary regression models, including bi-
nary logistic regression, binary probit regression, and support vector machines (with
Zi = 2Yi − 1). See Hosmer and Lemeshow (2000) and James et al. (2021). The binary
logistic regression model has

ρ(SP ) =
eSP

1 + eSP
.

Variable selection estimators include forward selection or backward elimination when
n ≥ 10p. When n/p is not large, sparse regression methods such as forward selection,
lasso, and the elastic net can be useful: the binary logistic regression submodel uses the
predictors that had nonzero sparse regression estimated coefficients. See Friedman et al.
(2007), Friedman, Hastie, and Tibshirani (2010), and Zou and Hastie (2005).
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Following Olive and Hawkins (2005), a model for variable selection can be described
by

xT β = xT
SβS + xT

EβE = xT
SβS (1)

where x = (xT
S , xT

E)T , xS is an aS × 1 vector, and xE is a (p− aS)× 1 vector. Given that
xS is in the model, βE = 0 and E denotes the subset of terms that can be eliminated
given that the subset S is in the model. Let xI be the vector of a terms from a candidate
subset indexed by I , and let xO be the vector of the remaining predictors (out of the
candidate submodel). Suppose that S is a subset of I and that model (1) holds. Then

xT β = xT
SβS = xT

I βI + xT
O0 = xT

I βI .

Thus βO = 0 if S ⊆ I . The model using xT β is the full model.
To clarify notation, suppose p = 3, a constant α is always in the model, and β =

(β1, 0, 0)
T . Then the J = 2p = 8 possible subsets of {1, 2, ..., p} are I1 = ∅, S = I2 = {1},

I3 = {2}, I4 = {3}, I5 = {1, 2}, I6 = {1, 3}, I7 = {2, 3}, and I8 = {1, 2, 3}. There
are 2p−aS = 4 subsets I2, I5, I6, and I8 such that S ⊆ Ij. Let β̂I7

= (β̂2, β̂3)
T and

xI7 = (x2, x3)
T .

Let Imin correspond to the set of predictors selected by a variable selection method
such as forward selection or lasso variable selection. If β̂I is a×1, use zero padding to form
the p × 1 vector β̂I,0 from β̂I by adding 0s corresponding to the omitted variables. For

example, if p = 4 and β̂Imin
= (β̂1, β̂3)

T , then the observed variable selection estimator

β̂V S = β̂Imin,0 = (β̂1, 0, β̂3, 0)
T . As a statistic, β̂V S = β̂Ik,0 with probabilities πkn =

P (Imin = Ik) for k = 1, ..., J where there are J subsets, e.g. J = 2p.
Theory for the variable selection estimator β̂V S is complicated. See Pelawa Watagoda

and Olive (2021) for multiple linear regression, and Rathnayake and Olive (2023) for
models such as GLMs and Cox (1972) proportional hazards regression. For fixed p, these
two papers showed that β̂V S is

√
n consistent with a complicated nonnormal limiting

distribution.
The marginal maximum likelihood estimator (MMLE) is due to Fan and Lv (2008)

and Fan and Song (2010). This estimator computes the marginal regression, such as the
binary logistic regression, of Y on xi resulting in the estimator (α̂i,M , β̂i,M) for i = 1, ..., p.

Then β̂MMLE = (β̂1,M , ..., β̂p,M)T .
For estimation with ordinary least squares (OLS) and the discriminant function, let

the covariance matrix of x be Cov(x) = Σx = E[(x − E(x))(x − E(x))T = E(xxT ) −
E(x)E(xT ) and η = Cov(x, Y ) = ΣxY = E[(x − E(X)(Y − E(Y ))] = E(xY ) −
E(x)E(Y ) = E[(x − E(x))Y ] = E[x(Y − E(Y ))]. Let

η̂ = η̂n = Σ̂xY = SxY =
1

n − 1

n
∑

i=1

(xi − x)(Yi − Y )

and

η̃ = η̃n = Σ̃xY =
1

n

n
∑

i=1

(xi − x)(Yi − Y ).
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Then the OLS estimators are α̂OLS = Y − β̂
T

OLSx and

β̂OLS = Σ̃
−1

x Σ̃xY = Σ̂
−1

x Σ̂xY = Σ̂
−1

x η̂.

For a multiple linear regression model with independent, identically distributed (iid)
cases, β̂OLS is a consistent estimator of βOLS = Σ−1

x ΣxY under mild regularity condi-
tions, while α̂OLS is a consistent estimator of E(Y ) − βT

OLSE(x).
Another binary regression model is the discriminant function model. See Hosmer

and Lemeshow (2000, pp. 43–44). Assume that πj = P (Y = j) and that x|Y = j ∼
Np(µj,Σpool) for j = 0, 1. That is, the conditional distribution of x given Y = j follows a
multivariate normal distribution with mean vector µj and covariance matrix Σpool which
does not depend on j. Notice that Σpool = Cov(x|Y ) 6= Cov(x). Then as for the binary
logistic regression model,

P (Y = 1|x) = ρ(x) =
exp(α + βT x)

1 + exp(α + βTx)
.

Under the conditions above, the discriminant function parameters are given by

β = βDF = Σ−1
pool(µ1 −µ0) (2)

and α = log

(

π1

π0

)

− 0.5(µ1 −µ0)
T Σ−1

pool(µ1 + µ0).

Under the above conditions (multivariate normality with the same covariance matrix but
possibly different means), the population quantity estimated by the discriminant function
model is the same as that estimated by logistic regression: β = βDF = βLR. In general,
the above conditions fail to hold, and β = βDF 6= βLR.

To compare the OLS estimator with binary regression estimators such as binary
logistic regression, Olive (2017a, pp. 396-397) gave the following derivation. Let πj =
P (Y = j) for j = 0, 1. Let µj = E(x|Y = j) for j = 0, 1. Let Ni be the number of Ys
that are equal to i for i = 0, 1. Then

µ̂i =
1

Ni

∑

j:Yj=i

xj

for i = 0, 1 while π̂i = Ni/n and π̂1 = 1 − π̂0. Hence µ̂i = xi is the sample mean of the
xk corresponding to Yk = j for j = 0, 1. Then

Σ̃xY =
1

n

n
∑

i=1

xiYi − x Y .

Thus Σ̃xY =
1

n





∑

j:Yj=1

xj(1) +
∑

j:Yj=0

xj(0)



 − x π̂1 =

1

n
(N1µ̂1) −

1

n
(N1µ̂1 + N0µ̂0)π̂1 = π̂1µ̂1 − π̂2

1µ̂1 − π̂1π̂0µ̂0 =
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π̂1(1 − π̂1)µ̂1 − π̂1π̂0µ̂0 = π̂1π̂0(µ̂1 − µ̂0).

This result means
η = Σx,Y = π1π0(µ1 − µ0), (3)

and φ = µ1 − µ0 are quantities of interest for binary regression. Note that

βDF =
1

π1π0

Σ−1
poolΣx,Y =

1

π1π0

Σ−1
poolΣxΣ−1

x Σx,Y =
1

π1π0

Σ−1
poolΣxβOLS.

Let β = λη = γφ. To compute λ̂ or φ̂, plug in η̂Tx or φ̂
T
x into a binary regression

program such as logistic regression, probit regression, support vector machines (with
Zi = 2Yi − 1), et cetera. Then β̂ = λ̂η̂ or β̂ = γ̂φ̂ This procedure is very similar to the
one component partial least squares estimator for multiple linear regression. See Olive
and Zhang (2024).

Data splitting divides the training data set of n cases into two sets: H and the
validation set V where H has nH of the cases and V has the remaining nV = n − nH

cases i1, ..., inV
. An application of data splitting is to use a variable selection method,

such as forward selection or lasso, on H to get submodel Imin with a predictors, then fit
the selected model to the cases in the validation set V using standard inference. See, for
example, Rinaldo et al. (2019).

High dimensional regression has n/p small. A fitted or population regression model is
sparse if a of the predictors are active (have nonzero β̂i or βi) where n ≥ Ja with J ≥ 10.
Otherwise the model is nonsparse. A high dimensional population regression model is
abundant or dense if the regression information is spread out among the p predictors
(nearly all of the predictors are active). Hence an abundant model is a nonsparse model.

Olive and Zhang (2024) proved that there are often many valid population models for
binary regression, gave theory for Σ̂x,Y , gave theory for data splitting estimators, and
gave some theory for the MMLE for multiple linear regression.

Section 2 gives some large sample theory, including tests of hypotheses.

2 Large Sample Theory and Testing

The MMLE is interesting since if each predictor satisfies a marginal model, then the
marginal model theory can be used to find a confidence interval for βi for i = 1, ..., p
where βi is the ith component of βMMLE. This regularity condition is quite strong for
high dimensional binary regression.

Suppose βBR = λη is found by plugging η̂T x into a binary regression program to
get λ̂. Then β̂BR = λ̂η̂. Testing H0 : AβBR = 0 versus H1 : AβBR 6= 0 is equivalent
to testing H0 : Aη = 0 versus H1 : Aη 6= 0 where A is a k × p constant matrix with
k ≤ p. If the cases (xi, Yi) are iid and η = Σx,Y , then the testing is exactly as in Olive
and Zhang (2024).

Now suppose η = µ1 − µ2 and η̂ = x1 − x0 where xi is the sample mean of the
predictors corresponding to Y = i for i = 0, 1. Assume the cases in each group Y = i
are iid and that the groups are independent. Then the large sample theory for x1 − x0

is given by Rupasinghe Arachchige Don and Pelawa Watagoda (2018) and Rupasinghe
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Arachchige Don and Olive (2019). To simplify the large sample theory, assume ni = πin
where 0 < πi < 1 and

∑2

i=1
πi = 1. Assume H0 is true, and let µi = µ for i = 0, 1.

Suppose
√

ni(Ti − µ)
D→ Np(0,Σi), and

√
n(Ti −µ)

D→ Np

(

0,
Σi

πi

)

. Then

√
n[(T1 − T0) − (µ1 −µ0)]

D→ Np

(

0,
Σ1

π1

+
Σ0

π0

)

.

Thus √
n[(x1 − x0) − (µ1 − µ0)]

D→ Np

(

0,
Σ1

π1

+
Σ0

π0

)

∼ Np(0,Σw), (4)

with

Σ̂w =
nΣ̂1

n1

+
nΣ̂0

n0

.

High Dimensional Tests

Some tests when n/p is not large are simple. Testing H0 : AβBR = 0 versus H1 :
AβBR 6= 0 is equivalent to testing H0 : Aη = 0 versus H1 : Aη 6= 0 where A is a k × p
constant matrix. Let Cov(η̂) = Σw be the asymptotic covariance matrix of η̂. In high
dimensions where n < 5p, we can’t get a good nonsingular estimator of Cov(η̂), but we
can get good nonsingular estimators of Cov((η̂i1, ..., η̂ik)

T ) with u = (xi1, ..., xik)
T where

n ≥ Jk with J ≥ 10. (Values of J much larger than 10 may be needed if some of the k
predictors are skewed or if a πi in near 0 or 1.) Simply use the sample covariance matrix
with u replacing x. Hence we can test hypotheses like H0 : βi − βj = 0. In particular,
testing H0 : βi = 0 is equivalent to testing H0 : ηi = 0.

Data splitting uses model selection (variable selection is a special case) to reduce
the high dimensional problem to a low dimensional problem. The above procedure also
reduces the high dimensional problem to a low dimensional problem.

3 CONCLUSIONS

Binary regression is closely related to two sample tests. Note that η̂ = µ̂1 − µ̂2 can
use other multivariate location estimators than sample means. For example, sample
coordinatewise medians, sample coordinatewise trimmed means, and the Olive (2017b)
TRMV N estimator have large sample theory given by Rupasinghe Arachchige Don and
Olive (2019) and Rupasinghe Arachchige Don and Pelawa Watagoda (2018).

Some papers on binary regression include Cai, Guo, and Ma (2023), Candès and Sur
(2020), Mukherjee, Pillai, and Lin (2015), Sur and Candès (2019), Sur, Chen, and Candès
(2019), and Tang and Ye (2020). Empirically, often βLR ≈ d βOLS. Haggstrom (1983)
suggests that d is not far from 1/MSE for logistic regression.

These binary regression estimators also give new ways to compare multivariate loca-
tion estimators from two groups. The tests using k predictors can be performed. High
dimensional tests for means from two groups can also be used. The tests that make very
strong assumptions, such as multivariate normality or equal covariance matrices for the
two groups, should be avoided. See Feng and Sun (2015), Gregory et al. (2015), Hu and
Bai (2015), Rajapaksha and Olive (2024), and Xue and Yao (2020).
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Software

The R software was used in the simulations. See R Core Team (2024). Programs
will be added to the Olive (2025) collections of R functions slpack.txt, available from
(http://parker.ad.siu.edu/Olive/slpack.txt).
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