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Abstract

Consider a regression or classification model with response variable Y that
depends on the predictors @ = (z1, ..., :Ep)T through the sufficient predictor SP =
a+ xTB. Let n be the number of cases. For a high dimensional model, n/p is
small.
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1 INTRODUCTION

High dimensional statistics are used when n < 5p where n is the sample size and p is
the number of variables. Such a model is overfitting: the model does not have enough
data to estimate p parameters accurately. Then n tends to not be large enough for the
classical statistical method to be useful. An alternative (but less general) definition of
high dimensional statistics is that p is large. Sometimes p > Kn with K > 10 is called
ultrahigh dimensional statistics.

In high dimensions, it is very difficult to estimate a p x 1 vector 6. This result is a
form of “the curse of dimensionality.” If a \/n consistent estimator of 8 is available, then

the squared norm
p

16— 617 =) (6 —6:)° o p/n. (1)

i=1

When p is fixed, p/n — 0 as n — oo and 0 is a consistent estimator of 6. In high
dimensions, often the estimator has not been shown to be consistent, except under very
strong regularity conditions.

Some important statistical methods include regression, multivariate statistics, and
classification. These methods are important for statistical learning ~ machine learning,
an important part of artificial intelligence. Let predictor variables for regression or mul-
tivariate statistics be = (1,...,2,)T. Let Y be a response variable for regression or
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classification. Important regression models include generalized linear models, nonlinear
regression, nonparametric regression, and survival regression models. There are n cases
(Y;, 2F)T, and for some important models, Y depends on x through the sufficient pre-
dictor SP = o + 7 3. Some important classification models include binary regression,
linear discriminant analysis, and quadratic discriminant analysis.

A binary regression model is Y = Y|SP ~ binomial(1, p(SP)) where p(SP) = P(Y =
1|SP). There are many binary regression models, including binary logistic regression,
binary probit regression, and support vector machines (SVMs) (with Z; = 2Y; — 1).

Let the multiple linear regression (MLR) model

Vi=a+zfi+ - +afhte=at+zB+e (2)

for ¢ = 1, ...,n. In matrix form, this model is Y = X + e, where Y is an n x 1 vector of
dependent variables, X is an n x (p4 1) matrix of predictors, § = (o, 37)T isa (p+1) x 1
vector of unknown coefficients, and e is an n x 1 vector of unknown errors. Assume that
the e; are independent and identically distributed (iid) with expected value F(e;) = 0
and variance V(e;) = 0%, A multiple linear regression model with heterogeneity has the
zero mean ¢; independent with V(e;) = o?2.

For estimation with ordinary least squares, let the covariance matrix of & be Cov(x) =
¢ = E[(x — E(z))(xz — E(x))’] and the p x 1 vector n = Cov(z,Y) = Zgy =
El(x — E(x)(Y — E(Y))] = (Cov(z1,Y),...,Cov(z,, Y))T. Let the sample covariance
matrix be

5 1 o
w—n_lg(wi—w)(wl—w).
Let
. - 1 = _
WZWn—Ewy—SwYZ—_l (x; —Z)(Y; = Y)
=1
and .
. ~ 1 _ —
n=mn,=3zy = (i —Z)(Yi - Y)
i=1

Then the OLS estimators for model (2) are ¢, = (XTX) ' XTY, doLs = Y—Bgmi,
and ) L . L

Bors =Yg Yy = Xg Ypy = Xg 1.
For a multiple linear regression model with iid cases, B, is a consistent estimator of
Bors = E;}E;I;y under mild regularity conditions, while &g is a consistent estimator
of BE(Y) — B61sE().

Let the population correlation p;; = pu, ., = Cor(z;,z;) and the sample correla-
tion 74 = 74,2, = cor(w;, x;). Let the population correlation matrices Cor(x) = pg =
(pij) and Cor(x,Y) = pgy = (Por,vs--s Pa,y)’ . Let the sample covariance matrices be
Ry = (rij) and rey = (14,v, ...,r%y)T. Then ﬁ]g; and R are dispersion estimators, and
(, ) is an estimator of multivariate location and dispersion.

Suppose the positive semidefinite dispersion matrix 3 has eigenvalue eigenvector pairs
(A1,dr), ..., (A\p,d,) where Ay > Ay > --- > \,. Let the eigenvalue eigenvector pairs of )
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be (5\1, Ell), e (j\p, Elp) where 5\1 > 5\2 > ... > ),. These vectors are important quantities
for principal component analysis (PCA).

Principal components regression (PCR), partial least squares (PLS), and several other
dimension reduction models use p linear combinations v! z, ..., 'ygar:. Estimating the «,
and performing the ordinary least squares (OLS) regression of Y on (41,43, ..., 41 x)
and a constant gives the k-component estimator, e.g. the k-component PLS estimator
or the k-component PCR estimator, for £ = 1, ..., J where J < p and the p-component
estimator is the OLS estimator Bp.g. Let 4;(PCR) = d; and ~; = ~,(PLS). The
model selection estimator chooses one of the k-component estimators, e.g. using cross
validation, and will be denoted by B,,5ppg OF By spcr-

The k-component partlal least squares estimator can be found by regressing Y on

a constant and on W,; = 'yi x for i = 1,...,k where 7, = E Eq;y fore = 1,... k.
See Helland (1990). Let X = [1 X,4]. Chun and Keleg (2010) noted that one way to
formulate PLS is to solve an optimization problem by forming b; = 4, iteratively where

by, = arg mgx{[Cor(Y, X1b)*V(X1b)} (3)

subject to b’ b = 1 and bTEq;bj =0for j=1,...,k— 1. Here V stands for the variance.
So PLS is a model free way to get predictors 'S/Z-Tar: that are fairly highly correlated with
the response, and the absolute correlations tend to decrease quickly. Brown (1993, pp.
71-72) shows that an equivalent way to compute the k-component PLS estimator is to
maximize T3y under some constraints. If the predictors are standardized to have unit
sample variance, then this method becomes a correlation vector optimization problem.
The marginal maximum likelihood estimator (MMLE) is due to Fan and Lv (2008)
and Fan and Song (2010). This estimator computes the marginal regression, such as the
binary logistic regression, of Y on z; resulting in the estimator (&; v, BzM) fori=1,...,p.

Then /BMMLE — (Bl,M) "'7/3107M)T'

2 What Are Some Dimension Reduction Estimators
Estimating?

Several dimension reduction methods use p linear combinations ﬁ/lTar:, - ’)/Z:I;. PCA and
PLS are interesting since these two methods can be used with high dimensional data. Let
W; = ﬁfw for i =1,...,p. For PLS, let %, = fljm_lf]my with f]om = X% =1I,. For PCA,
let Ell be orthogonal eigenvectors of f]q; where the d; are orthogonal eigenvectors of .
Then 7, = d;. In low dimensions, envelope methods have some optimality properties,
and can be used with more than one response variable. See, for example, Cook and
Forzani (2024).

In low dimensions with one response variable, canonical correlation analysis (CCA)
also has some optimality properties. For CCA, if (Y;, 1)7 are iid with V(Y) = Sy, then

v Sy
M = max Cor(y',Y) = max

v+0 Y40 Xy /YT Xy




This optimization problem is equivalent to maximizing

¥y M? = max VTEZ'YE;;Y’Y
~20  YTExy

which has a maximum at v = Xz Xzy = Borg. Hence 41 = Bp.s for CCA of Y and
x1, ..., Tp. See Mardia, Kent, and Bibby (1979, pp. 168, 282). Hence PLS is a lot like CCA
for (V;, 2F)T but with more constraints, and PLS can be computed in high dimensions.
From the dimension reduction literature, if Y depends on @ only through o + 87, then
under the assumption of “linearly related predictors,” BOLS estimates B,.g = ¢ for
some constant ¢ which is often nonzero. See, for example, Cook and Weisberg (1999, p.
432). Note that in high dimensions, 4, = BOLS can be replaced by 41 = 3, where 8 is a
high dimensional multiple linear regression estimator, such as lasso.

Instead of using the response variable Y and the predictors Xj, ..., X, the regression
model or classification model can use Y and the predictors Wy, ..., Wy. Then the
k-component estimator (dy, Bk) is obtained by fitting the working model

WSP:ak+91W1+---+9ka:ak+egw

where 0, = (01, ...,0;)T and w = (W4, ..., Wi)T. For the k-component estimator, assume
the k x p matrix

) ) o AT
App=A; = : il Ay = :
o o

Then Ay = w = (Wi, ..., W;)T, and ESP(w) = éu+0,w = a5 +0, Ay = a4+ B, @ =
ESP(z) with 8, = AZ@k Assume 0, 5> 0.

For example, fit a GLM, logistic regression, a support vector machine, multiple linear
regression, et cetera. The ; depend on the method used to fit the working model. (Also,
using 0y; instead of 6; is more accurate, but suppressing the subscript k is convenient.)
Parts e), f), and g) of Theorem 1 and part b) of Theorem 2 are new.

Theorem 1. Cons1der the above notation.

~

a) ESP—Qk"’Bkw—O‘k“‘(Zg 19379)
b) Sp—ak+5kw—ak+(zg 19J'YJ)
C) Zg 1 9.77_] Akek

) Z] 19J7j Agek

o Adi—1l. A

e) /BkPLS = (Z Q'Ejar; )y ’
f) Under 11d cases, Byprs = (Zk 0,350 Sy

g) If e - Vg and Sgy B Vy, then /BkPLS - BrpLs = (25:1 Qngl)me.
Proof. Fit WSP to get the ESP = &y, + 91W1 + -4 Qka = &y + élfle:I; + -4

. . T
OyEx = éy + B, x. Equating terms gives the result.

(oW



~ A—1 A
When the cases are not iid, 3 = 3, 3y may be estimating 8 = Bp.g # X Sy
When the errors e; are iid, a common assumption for OLS MLR theory is

n(XTX)'=v = ‘:/11 ) ‘:fﬁ Py ( Vii Vi ) .
V21 V22 = nEm /(TL — 1) V21 V22

Thus ﬁ]%l i V22, ﬁ]m i V2_21, and ﬁ]my i V2_21/6 since B = ﬁ]%lﬁ]my i ,6

Remark 1. The following result is useful for several multiple linear regression es-
timators. Let w; = A,x; for i = 1,...,n where A, is a full rank £ x p matrix with
1<k <p.

a) Let £* be 3 or X. Then X}, = A, X5 A7 and X,y = 4,35,

b) If A, is a constant matrix, then Tqy = A, Xz AL and Twy = A, Xy

The following result is known. Using the notation above Theorem 1, let Az = w.
For multiple linear regression with OLS, let Y = o + 2”3 + e. Let the working model
be Y = oy + ng + €. Then the OLS estimator ék = ﬁ];;f]wy. By Remark 1, the
k-component estimator

~ ~T A AT~ & ~T NS

N - - L —1 . .
Suppose k =p and A, exists. Then 8, = B¢ = Xz Xy since 8, =

A T « A1 A

T, ~ o ~T A A T A —1, ~ A A
A (A3zA) Ay =A,(A) '3, (A) A3y =3 Sy

The following theorem shows that if the p components W; are plugged into a model
that uses maximum likelihood estimation, such as a GLM, the p-component estima-
tor Bp = Bw, the MLE. Similar theory holds for other maximization or minimization
problems, such as quasi-likelihood and partial likelihood. The profile likelihood func-
tion L,(Bz|x) = L(Bg, n|x) where L is the likelihood function of all of the parameters
(Bg,m) and 7 is the MLE of . As above, use 8 = @4 to denote the MLE with w
instead of Bw-

Theorem 2. Suppose the profile likelihood function L,(Bz|x) = [[;-, f(x:i|Bz) =
[T, 9(zf B) depends on « and By only through ' B,4. a) If the maximum likelihood
estimator is computed using w = Apac instead of x, then Bm = AZ@ = Bp provided that

A, is nonsingular. b) Thus B, = /B;DPLS = (2o éjﬁ]jw_l)ﬁ]q;y if the PLS components
are used.
Proof. a)

n

L,(6lw) = [To(w!6) = [J a2 A"0) = [[ ol 3")

i=1

AT A N
Since the second to last term is maximized by A 6 = 3, and the last term is maximized

by 3% = Bw, it follows that Bw — A9 = Bp’ and 0 = (AT)_lﬁw. Nonsingularity was
used so that 3 varies through R? as B, varies through R?.
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b) Plug in By = Bp = BPPLS from Theorem 1 e). O

A useful high dimensional technique is to use PCA for dimension reduction. Let
Uy, ..., U, be the PCA linear combinations (U; = 'S/ZTJ;) ordered with respect to the largest
eigenvalues. Then use Uy, ..., Uy in the regression or classification model where k is chosen
in some manner. This method can be used for models with m response variables Y1, ..., Y,,.
See, for example, Artigue and Smith (2019), Cook (2007, 2018), and Zhang and Chen
(2020).

Consider a low or high dimensional regression or classification method with a univari-
ate response variable Y. Let W, ..., W, be the linear combinations ordered with respect
to the highest squared correlations 7’% > 7’% > o > 7’5 where the sample correlation
riy = cor(z;,Y). As noted by Olive (2025), from a model selection viewpoint, using
Wi, ..., Wy should work much better than using Uy, ..., U. Also, the PLS components
W; should be used instead of the PCA W;, since the PLS components are chosen to be
fairly highly correlated with Y. Cook and Forzani (2021) used the PLS components as
predictors for nonlinear regression.

3 The OPLS Estimator

The OPLSTestlmator is the PLS estimator from Section 2 with £ = 1. Then the ESP
= a1 + 03X pyx = Goprs + 50PL51' where BOPLS — 032y Let NorLs = S zy. Testing
: ABoprs = 0 versus Hy : ABpprg 7 0 is equivalent to testing Hy : An = 0 versus
H : An # 0 where A is a k X p constant matrix and n = Ygy.
For multiple linear regression, Cook, Helland, and Su (2013) and Basa et al. (2024)
showed that 6OPLS = QEq;y estimates 03y = Byprg Where

~T ~
pINY R pIID Y

0= 2T and 6= BT (4)
EwYEwEwY EwawEwy

for Ewy 7é 0. If Ewy = 0, then /BOPLS =0.

Next, some large sample theory is reviewed for 1y p; g = 32y and OPLS for the mul-
tiple linear regression model, including some high dimensional tests for low dimensional
quantities such as Hy : 3; = 0 or Hy : 3; — 3; = 0. These tests depended on iid cases,
but not on linearity or the constant variance assumption. Hence the tests are useful for
multiple linear regression with heterogeneity.

The following Olive and Zhang (2025) theorem gives the large sample theory for 77 =
(/jaf(ac, Y). Olive et al. (2025) gave alternative proofs. This theory needs 1 = npoprg =
Yy to exist for n = f]q;y to be a consistent estimator of 1. Let x; = (z;1, . .. ,:Eip)T
and let w; and z; be defined below where

Cov(w,) = Tap = El(@; — pa) (@i — )" (Vi — 1y )*)] — Sy Ty

Then the low order moments are needed for 3 ~ to be a consistent estimator of Xqyp.

Theorem 3. Assume the cases (z,Y;)" are iid. Assume E(z}; Y;™) exist for j =

1,...,pand k,m =0,1,2. Let pgp = E(x) and py = E(Y). Let w; = (x; — pogp ) (Vi — py)



with sample mean w,,. Let n = Xz y. Then (a)
_ . D
Vi(@, —1) 2 Ny(0, Sw), Vali, —n) 2 N,y(0, Sw), (5)

and /n(#, —n) = Ny(0, Zap).

(b) Let v; = (x; — Z,)(Y; — Y,). Then Sw = 3o + Op(n~='/?). Hence Sw = 3u +
Op(n_l/z).
(c) Let A be a k x p full rank constant matrix with k£ < p, assume Hy : AByprg = 0 is

true, and assume 0 Lo # 0. Then

VI ABoprs — Borrs) = Ni(0,0% ASy A”). (6)

For the following theorem, consider a subset of k distinct elements from ¥ or from
3. Stack the elements into a vector, and let each vector have the same ordering. For
example, the largest subset of distinct elements corresponds to

’U€Ch(§~]) = (&11> cee >51P> 522> ceey 52% s >5p—17p—1> 5p—17p> 5PP)T = [&J’f]

For random variables 1, ..., z,, use notation such as 7; = the sample mean of the z;,
wj = E(z;), and o, = Cov(zj, z). Let

n

n vech(X) = [n Gk = Z[(Izg —T5)(Tik — Ti))-

i=1

For general vectors of elements, the ordering of the vectors will all be the same and be
denoted by vectors such as ¢ = [Gjx], € = [Gi], ¢ = [0ji], vi = [(zij — T;j) (v — Tk)], and
w; = [(z;— ;) (xik— ). Let w,, = Y " | w;/n be the sample mean of the w;. Assuming
that Cov(w;) = X exists, then F(w;) = E(w,) = c.

The following Olive et al. (2025) theorem provides large sample theory for ¢ and ¢.
We use Cov(w;) = X4 to avoid confusion with the X4y used in Theorem 3. Note that
x; are dummy variables and could be replaced by w; = (Yi1,. .., Yim, Ti1, - . . ,xip)T to get
information about m response variables Y;,...,Y,,.

Theorem 4. Assume the cases x; are iid and that Cov(w;) = X 4 exists. Using the

above notation with ¢ a k x 1 vector,
(i) V(e —¢) 2 Ny(0, ).

(if) v/n(é - ) L Nk(0,2). o
(iii) g = X + Op(n~"%) and B g = Ty + Op(n~1/?).

4 Large Sample Theory and Testing

Suppose the classification or regression model has a response variable Y that depends on
the predictors & through SP = a + 37 x. In low dimensions, important tests include a)
Hy : 3; = 0 (the Wald tests for MLR), b) Hy : 8 = 0 (the Anova F' test for MLR), and
¢) Ho: (Biys- -, 8:,)" =0 (the partial F test for MLR).

This section will derive some high dimensional analogs of the above tests.
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4.1 Testing Hy: 3=0

An Omnibus or Universal Test

This subsection follows Abid, Quaye, and Olive (2025) closely. Consider classification
and regression models where the response variable Y only depends on the p x 1 vector
of predictors ® = (z1,...,2,)T through the sufficient predictor SP = a + £73. Let the
covariance vector Cov(z,Y) = Xgy. Assume the cases (!, Y;)? are iid random vectors
for ¢ = 1,...,n. Then for many such regression models, 8 = 0 if and only if Xgy =0
where 0 = (0, ...,0)T is the p x 1 vector of zeroes.

The test of Hy : Xy = 0 versus H; : gy # 0 is equivalent to the high dimensional
one sample test Hy : u = 0 versus Hy : p # 0 applied to wy, ..., w, where w; =
(x; — pg)(Y; — py) and the expected values E(x) = pp and E(Y) = py. Since pg and
iy are unknown, the test of Hy : 3 = 0 versus H; : 3 # 0 is implemented by applying
the one sample test to v; = (x; —Z)(Y; = Y) fori=1,...,n

Zhao et al. (2024) have an interesting result for the multiple linear regression model
(2). Assume that the cases (2!, Y;)? are iid with E(Y) = py, E(x) = pg and nonsingular
Cov(x) = Xg. Let B = Bprg. Then testing Hy : B = B, versus Hy : B # 3, is
equivalent to testing Hy : p = 0 versus Hy : p # 0 with p = E(w;) = Ex(8 — B)
where w; = (x; — prg)(Yi — ppy — (@ — pg)” By), and a one sample test can be applied
to v; = (x; — ar;)(Y Y — (z; — ar;)TBO)

Abid, Quaye, and Olive (2025) used the above test for 3, = 0. The resulting test
can be used for many regression models, not just multiple linear regression. Suppose
By, = D 'Sgy where D is a p x p nonsingular matrix. Then B, = 0 if and only if
Sxy = 0. Then D' = 01 for OPLS, D' = X7 for OLS, and D™ = [diag(Zg)] ™!
for the MMLE for multiple linear regression (MLR). By Theorem le), B,p;¢ = O if
Yzy = 0. Thus if the cases (7, Y;)T are iid, then using 3, = 0 gives tests for Hy : 3 = 0,
H(] : /BMMLE =0 (fOI‘ MLR), H(] : Ewy = 0, H(] ‘A/BOPLS = 0, and H(] : /BkPLS = 0.
For multiple linear regression with heterogeneity, B,;¢ is still a consistent estimator
of B = Bors = Xz Zxy. Hence the test can be used when the constant variance
assumption is violated.

Assume the cases (z7,Y;)T are iid. For a generalized linear model and several other
regression models that depend on the predictors = only through SP = o + '3, if
B = 0, then the Y; are iid and do not depend on @, and thus satisfy a multiple linear
regression model with B,,¢ = 0. Typically, if 8 # 0, then ¥y # 0. Also see Theorem
2 b). An exception is when there is a lot of symmetry which rarely occurs with real
data. For example, suppose Y = m(SP) + e where the iid errors e; ~ N(0,0%) are
independent of the predictors, SP ~ N(0,03), and the function m is symmetric about
0, e.g. m(SP) = (SP)% Then B,,5 =0 and Xgy =0 even if 3 # 0.

If By = 0, then w; = (zi—pg ) (Yi—py), and E(w;) = E(u;) = E[z;(Yi—py)] = Sy
Then apply a high dimensional one sample test on the v; = (x; — Z)(Y; — Y). Note that
the sample mean v = Sry.

Suppose @i, ..., x, are iid random vectors with E(x) = p and covariance matrix
Cov(x) = 3. Then the test Hy : p = 0 versus Hy : p # 0 is equivalent to the test



Hoy: p"p =0 versus Hy : p“pu # 0. Let 8 = 3. A U-statistic for estimating p” g is

nxEl T — tr(S)

n

T, =To(x) = ﬁ wawj = (7)

i#]

where tr() is the trace function. See, for example, Abid, Quaye, and Olive (2025).

Let the variance V(W) = V(W;;) = V(xl'z;) = o, for i # j. Let m = floor(n/2) =
|n/2] be the integer part of n/2. So floor(100/2) = floor(101/2) = 50. Let the iid random
variables W; = xL._ @o; fori =1,...,m. Hence Wy, Wy, ... W,,, = ®Txy, x4, ..., 2L | Top.
Note that E(W;) = p"p and V(W;) = o,. Let SZ, be the sample variance of the W;:

m

S2, = —— Z(Wi — W) (8)

Zhao et al. (2024, p. 2024) showed that o3, = tr(X?) + 2u’Spu.

The following Abid, Quaye, and Olive (2025) theorem derived the variance V(T},)
under simpler regularity conditions than those in the literature. The second formula in
Theorem 5a) was obtained by Chen and Qin (2010).

Theorem 5. Assume y, ..., x, are iid, F(x;) = p, and the variance V(z!z;) = o3,
for i # j. Let W;; = &'z, for i # j. Let 0 = Cov(W;j, W;4) = p?Ep where j # d, i < j,
and ¢ < d. Then

203 4(n —2)6 2 4ptSp
V(T,)=—" = tr(%? :
@) V(Tn) n(n—1)+n(n—1) n(n —1) r(E) + n
b) If Hy : pp = 0 is true, then # = 0 and
208,  2r(¥%) 203, —46

W=V = ey T n—1) a1

Let V(T,) and Vi(T,) be consistent estimators of V(T},) and Vi(T},), respectively.
Then Srivastava and Du (2008), Bai and Saranadasa (1996), Chen and Qin (2010), Li
(2023), and others proved that under mild regularity conditions when Hj is true,

T/ V(Ty) = To/\/ Vo(T,) 2 N(0,1).

Under regularity conditions when Hy is true, Li (2023) proved that T}, /1/Vo(T}) Z 4, as

p — oo for fixed n > 3 where k = 0.5n(n — 1) — 1.

A consistent estimator of V4(7},) needs a consistent estimator of o3, = 0.5n(n — 1)
Vo(T},). Let s2 = Vo(Ty,). Then one estimator is 0.5n(n — 1)s2 = S2, from Equation (8).
An estimator nearly the same as the one used by Li (2023) is

0.5n(n —1)s2 = 63, = ﬁ YD (afw - T,)° = ﬁ DY (Wi - T
i#£j i#]

A New Competing Test



If the parametric distribution D is known, then the iid cases assumption can be
changed to independent cases. Assume Y;|z! B ~ D(7(a +x13),0). If 3 = 0, then the
iid Y; ~ D(7(«),0). Hence testing Hy : 8 = 0 vs. Hy : B # 0 is equivalent to testing
whether the Y; are a random sample from the D(7(«), 8) distribution. Such a test can
be done with the Kolmogorov-Smirnov test, the chi-square test, the Anderson-Darling
test, the Cramér-von Mises test, et cetera. For specific distributions, there are often
tests. For example, the Lilliefors test can be used to test if the Y; are iid from a N(u,o?)
distribution where i and o2 are unknown. See, for example, Kellison and London (2011,
pp. 455-465), Conover (1971, pp. 295-308), Zheng, Lai, and Gould (2023), and Zheng et
al. (2025).

This test has great level and extreme dimension reduction since the test does not
depend on the predictors &. The power can be sometimes be very poor if the cases are
iid. a) If the (Y;, 27)T are iid from a multivariate normal distribution, then the Y; are iid
N(uy, o) regardless of whether 3 = 0 or 3 # 0 for the multiple linear regression model
Y|[(a+x'B) ~ N(a+=x'B3,02). b) If the (Y;, 2])T are iid from some distribution where
the Y; € {0, 1} are binary, then the Y; are iid bin(n = 1, py) regardless of whether 8 =0
or 3 # 0 for the binary regression model Y|(a + 2?7 B) ~ bin(n = 1, p(a + 7 B3)).

The test does not depend on @, and can thus be done after variable selection. Also,
all of the predictors can have outliers and missing values.

A Test for Binary Regression or Classification

Olive (2017, pp. 396-397) gave the result for a binary response variable Y € {0, 1}.

Theorem 6. Let m; = P(Y = j) for j = 0,1. Let p; = E(x|Y = j) for j =0, 1.
Then a) Ewy = ﬁlﬁo(ﬂl — ﬁbo), and b) Ewy = 7T17T0([,l,1 — [,LO).

Proof. Let N; be the number of Ys that are equal to i for 1 = 0,1 with n = Ny + Ns.

Then .
o 2
JYj=i

for i = 0,1 while 7; = N;/n and 7 = 1 — 7. Hence 1, = ; is the sample mean of the
xy, corresponding to Y, = j for j = 0,1. Then

H
=
o
»n
M@
8
<
I
|
8B
=
+
Ry
=
|
8
3>
I

1 1 R o o o o
- —E(N1N1+N0H0)W1=7T1N1—Wfﬁh—?ﬁﬂoﬂ/o:
T1(1 = 7)oy — Taftoftg = M1fo(fy — fr)-
Thus Xgy = mmo(py — o). O
This result means n = gy = mmo(p; — Ky) and ¢ = p; — py are quantities
of interest for binary regression. Note that & = (wy, ..., Wk, wiwa, ..., W Wy, ...,wk_lwk)T

could be used to include pairwise interactions of the w;.

(Nify)
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Theorem 2b) suggests that typically the binary regression B = CSgy. If the cases
(Y;, 25)T are iid, then Hy : B3 = 0 can be tested with the omnibus test for Hy : Sgy. If the
cases within each group are iid, if the two groups are independent, and if Ny /(N;+ No) —
71, then Xy = mmo(p; — o) by Theorem 6b). Thus Hy : 8 = 0 can be tested with a
high dimensional two sample test for Hy : p; = .

4.2 Testing Hy: 5; =0

4.3 Testing Hy: B, = (Bi1, ..., )T =0

High Dimensional Tests

Some tests when n/p is not large are simple. Testing Hy : ABzr = 0 versus H :
ABgpr # 0 is equivalent to testing Hy : An = 0 versus H; : An # 0 where Aisak x p
constant matrix. Let Cov(n) = Xqp be the asymptotic covariance matrix of 7. In high
dimensions where n < 5p, we can’t get a good nonsingular estimator of Cov(n), but we
can get good nonsingular estimators of Cov((91, ..., f)?) with w = (241, ..., 2;)? where
n > Jk with J > 10. (Values of J much larger than 10 may be needed if some of the k
predictors are skewed or if a 7; in near 0 or 1.) Simply use the sample covariance matrix
with u replacing . Hence we can test hypotheses like Hy : 3; — 3; = 0. In particular,
testing Hy : 5; = 0 is equivalent to testing Hy : n; = 0.

Data splitting uses model selection (variable selection is a special case) to reduce
the high dimensional problem to a low dimensional problem. The above procedure also
reduces the high dimensional problem to a low dimensional problem.

5 CONCLUSIONS

Binary regression is closely related to two sample tests. Note that n = fi; — 1, can
use other multivariate location estimators than sample means. For example, sample
coordinatewise medians, sample coordinatewise trimmed means, and the Olive (2017b)
Tryvn estimator have large sample theory given by Rupasinghe Arachchige Don and
Olive (2019) and Rupasinghe Arachchige Don and Pelawa Watagoda (2018).

Some papers on binary regression include Cai, Guo, and Ma (2023), Candes and Sur
(2020), Mukherjee, Pillai, and Lin (2015), Sur and Candes (2019), Sur, Chen, and Candes
(2019), and Tang and Ye (2020). Empirically, often 8,5 ~ d By.s. Haggstrom (1983)
suggests that d is not far from 1/MSE for logistic regression.

These binary regression estimators also give new ways to compare multivariate loca-
tion estimators from two groups. The tests using k predictors can be performed. High
dimensional tests for means from two groups can also be used. The tests that make very
strong assumptions, such as multivariate normality or equal covariance matrices for the
two groups, should be avoided. See Feng and Sun (2015), Gregory et al. (2015), Hu and
Bai (2015), Rajapaksha and Olive (2024), and Xue and Yao (2020).

Software

The R software was used in the simulations. See R Core Team (2024). Programs
will be added to the Olive (2025) collections of R functions slpack.tzt, available from
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(http://parker.ad.siu.edu/Olive/slpack.txt).
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