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Abstract

Consider a regression or classification model with response variable Y that

depends on the predictors x = (x1, ..., xp)
T through the sufficient predictor SP =

α + xTβ. Let n be the number of cases. For a high dimensional model, n/p is

small.
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1 INTRODUCTION

High dimensional statistics are used when n < 5p where n is the sample size and p is
the number of variables. Such a model is overfitting: the model does not have enough
data to estimate p parameters accurately. Then n tends to not be large enough for the
classical statistical method to be useful. An alternative (but less general) definition of
high dimensional statistics is that p is large. Sometimes p > Kn with K ≥ 10 is called
ultrahigh dimensional statistics.

In high dimensions, it is very difficult to estimate a p × 1 vector θ. This result is a
form of “the curse of dimensionality.” If a

√
n consistent estimator of θ is available, then

the squared norm

‖θ̂ − θ‖2 =

p∑

i=1

(θ̂i − θi)
2 ∝ p/n. (1)

When p is fixed, p/n → 0 as n → ∞ and θ̂ is a consistent estimator of θ. In high
dimensions, often the estimator has not been shown to be consistent, except under very
strong regularity conditions.

Some important statistical methods include regression, multivariate statistics, and
classification. These methods are important for statistical learning ≈ machine learning,
an important part of artificial intelligence. Let predictor variables for regression or mul-
tivariate statistics be x = (x1, ..., xp)

T . Let Y be a response variable for regression or
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classification. Important regression models include generalized linear models, nonlinear
regression, nonparametric regression, and survival regression models. There are n cases
(Yi, x

T
i )T , and for some important models, Y depends on x through the sufficient pre-

dictor SP = α + xTβ. Some important classification models include binary regression,
linear discriminant analysis, and quadratic discriminant analysis.

A binary regression model is Y = Y |SP ∼ binomial(1, ρ(SP)) where ρ(SP ) = P (Y =
1|SP ). There are many binary regression models, including binary logistic regression,
binary probit regression, and support vector machines (SVMs) (with Zi = 2Yi − 1).

Let the multiple linear regression (MLR) model

Yi = α + xi,1β1 + · · · + xi,pβp + ei = α + xT
i β + ei (2)

for i = 1, ..., n. In matrix form, this model is Y = Xδ +e, where Y is an n× 1 vector of
dependent variables, X is an n×(p+1) matrix of predictors, δ = (α, βT )T is a (p+1)×1
vector of unknown coefficients, and e is an n× 1 vector of unknown errors. Assume that
the ei are independent and identically distributed (iid) with expected value E(ei) = 0
and variance V (ei) = σ2. A multiple linear regression model with heterogeneity has the
zero mean ei independent with V (ei) = σ2

i .
For estimation with ordinary least squares, let the covariance matrix of x be Cov(x) =

Σx = E[(x − E(x))(x − E(x))T ] and the p × 1 vector η = Cov(x, Y ) = ΣxY =
E[(x − E(x)(Y − E(Y ))] = (Cov(x1, Y ), ..., Cov(xp, Y ))T . Let the sample covariance
matrix be

Σ̂x =
1

n − 1

n∑

i=1

(xi − x)(xi − x)T .

Let

η̂ = η̂n = Σ̂xY = SxY =
1

n − 1

n∑

i=1

(xi − x)(Yi − Y )

and

η̃ = η̃n = Σ̃xY =
1

n

n∑

i=1

(xi − x)(Yi − Y ).

Then the OLS estimators for model (2) are φ̂OLS = (XT X)−1XTY , α̂OLS = Y −β̂
T

OLSx,
and

β̂OLS = Σ̃
−1

x Σ̃xY = Σ̂
−1

x Σ̂xY = Σ̂
−1

x η̂.

For a multiple linear regression model with iid cases, β̂OLS is a consistent estimator of
βOLS = Σ−1

x ΣxY under mild regularity conditions, while α̂OLS is a consistent estimator
of E(Y ) − βT

OLSE(x).
Let the population correlation ρij = ρxi,xj

= Cor(xi, xj) and the sample correla-
tion rij = rxi,xj

= cor(xi, xj). Let the population correlation matrices Cor(x) = ρx =
(ρij) and Cor(x, Y ) = ρxY = (ρx1,Y , ..., ρxp,Y )T . Let the sample covariance matrices be

Rx = (rij) and rxY = (rx1,Y , ..., rxp,Y )T . Then Σ̂x and R are dispersion estimators, and

(x, Σ̂x) is an estimator of multivariate location and dispersion.
Suppose the positive semidefinite dispersion matrix Σ has eigenvalue eigenvector pairs

(λ1, d1), ..., (λp, dp) where λ1 ≥ λ2 ≥ · · · ≥ λp. Let the eigenvalue eigenvector pairs of Σ̂
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be (λ̂1, d̂1), ..., (λ̂p, d̂p) where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p. These vectors are important quantities
for principal component analysis (PCA).

Principal components regression (PCR), partial least squares (PLS), and several other
dimension reduction models use p linear combinations γT

1 x, ..., γT
p x. Estimating the γ i

and performing the ordinary least squares (OLS) regression of Y on (γ̂T
1 x, γ̂T

2 x, ..., γ̂T
k x)

and a constant gives the k-component estimator, e.g. the k-component PLS estimator
or the k-component PCR estimator, for k = 1, ..., J where J ≤ p and the p-component
estimator is the OLS estimator β̂OLS. Let γi(PCR) = di and γ i = γi(PLS). The
model selection estimator chooses one of the k-component estimators, e.g. using cross
validation, and will be denoted by β̂MSPLS or β̂MSPCR.

The k-component partial least squares estimator can be found by regressing Y on

a constant and on Wi = γ̂T
i x for i = 1, ..., k where γ̂ i = Σ̂

i−1

x Σ̂xY for i = 1, ..., k.
See Helland (1990). Let X = [1 X1]. Chun and Keleş (2010) noted that one way to
formulate PLS is to solve an optimization problem by forming bj = γ̂j iteratively where

bk = arg max
b

{[Cor(Y , X1b)]2V (X1b)} (3)

subject to bT b = 1 and bT Σxbj = 0 for j = 1, ..., k − 1. Here V stands for the variance.
So PLS is a model free way to get predictors γ̂T

i x that are fairly highly correlated with
the response, and the absolute correlations tend to decrease quickly. Brown (1993, pp.
71-72) shows that an equivalent way to compute the k-component PLS estimator is to
maximize γ̂T Σ̂xY under some constraints. If the predictors are standardized to have unit
sample variance, then this method becomes a correlation vector optimization problem.

The marginal maximum likelihood estimator (MMLE) is due to Fan and Lv (2008)
and Fan and Song (2010). This estimator computes the marginal regression, such as the
binary logistic regression, of Y on xi resulting in the estimator (α̂i,M , β̂i,M) for i = 1, ..., p.

Then β̂MMLE = (β̂1,M , ..., β̂p,M)T .

2 What Are Some Dimension Reduction Estimators

Estimating?

Several dimension reduction methods use p linear combinations γ̂T
1 x, ..., γ̂T

p x. PCA and
PLS are interesting since these two methods can be used with high dimensional data. Let

Wi = γ̂T
i x for i = 1, ..., p. For PLS, let γ̂i = Σ̂

j−1

x Σ̂xY with Σ̂
0

x = Σ0
x = Ip. For PCA,

let d̂i be orthogonal eigenvectors of Σ̂x where the di are orthogonal eigenvectors of Σx.
Then γ̂i = d̂i. In low dimensions, envelope methods have some optimality properties,
and can be used with more than one response variable. See, for example, Cook and
Forzani (2024).

In low dimensions with one response variable, canonical correlation analysis (CCA)
also has some optimality properties. For CCA, if (Yi, x

T
i )T are iid with V (Y ) = ΣY , then

M = max
γ 6=0

Cor(γT x, Y ) = max
γ 6=0

γTΣxY√
ΣY

√
γTΣxγ

.
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This optimization problem is equivalent to maximizing

ΣY M2 = max
γ 6=0

γTΣxY ΣT
xY γ

γTΣxγ

which has a maximum at γ = Σ−1
x ΣxY = βOLS. Hence γ̂1 = β̂OLS for CCA of Y and

x1, ..., xp. See Mardia, Kent, and Bibby (1979, pp. 168, 282). Hence PLS is a lot like CCA
for (Yi, x

T
i )T but with more constraints, and PLS can be computed in high dimensions.

From the dimension reduction literature, if Y depends on x only through α +βTx, then
under the assumption of “linearly related predictors,” β̂OLS estimates βOLS = cβ for
some constant c which is often nonzero. See, for example, Cook and Weisberg (1999, p.
432). Note that in high dimensions, γ̂1 = β̂OLS can be replaced by γ̂1 = β̂, where β̂ is a
high dimensional multiple linear regression estimator, such as lasso.

Instead of using the response variable Y and the predictors X1, ..., Xp, the regression
model or classification model can use Y and the predictors W1, ..., Wk. Then the
k-component estimator (α̂k, β̂k) is obtained by fitting the working model

WSP = αk + θ1W1 + · · · + θkWk = αk + θT
k w

where θk = (θ1, ..., θk)
T and w = (W1, ..., Wk)

T . For the k-component estimator, assume
the k × p matrix

Âk,n = Âk =




γ̂T
1
...

γ̂T
k


 P→ Ak =




γT
1
...

γT
k


 .

Then Âkx = w = (W1, ..., Wk)
T , and ESP (w) = α̂k+θ̂

T

k w = α̂k+θ̂
T

k Âkx = α̂k+β̂
T

k x =

ESP (x) with β̂k = Â
T

k θ̂k. Assume θ̂k
P→ θk.

For example, fit a GLM, logistic regression, a support vector machine, multiple linear
regression, et cetera. The θi depend on the method used to fit the working model. (Also,
using θki instead of θi is more accurate, but suppressing the subscript k is convenient.)
Parts e), f), and g) of Theorem 1 and part b) of Theorem 2 are new.

Theorem 1. Consider the above notation.

a) ESP = α̂k + β̂
T

k x = α̂k + (
∑k

j=1 θ̂jγ̂
T
j )x.

b) SP = αk + βT
k x = αk + (

∑k
j=1

θjγ
T
j )x.

c) β̂k =
∑k

j=1
θ̂jγ̂j = Â

T

k θ̂k.

d) βk =
∑k

j=1 θjγj = AT
k θk.

e) β̂kPLS = (
∑k

j=1 θ̂jΣ̂
j−1

x )Σ̂xY

f) Under iid cases, βkPLS = (
∑k

j=1
θjΣ

j−1
x )ΣxY .

g) If Σ̂x
P→ V x and Σ̂xY

P→ V xY , then β̂kPLS
P→ βkPLS = (

∑k
j=1

θjV
j−1
x )V xY .

Proof. Fit WSP to get the ESP = α̂k + θ̂1W1 + · · · + θ̂kWk = α̂k + θ̂1γ
T
1 x + · · · +

θ̂kγ
T
k x = α̂k + β̂

T

k x. Equating terms gives the result.
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When the cases are not iid, β̂ = Σ̂
−1

x Σ̂xY may be estimating β = βOLS 6= Σ−1
x ΣxY .

When the errors ei are iid, a common assumption for OLS MLR theory is

n(XTX)−1 = V̂ =

(
V̂ 11 V̂ 12

V̂ 21 V̂ 22 = nΣ̂
−1

x /(n − 1)

)
P→ V =

(
V 11 V 12

V 21 V 22

)
.

Thus Σ̂
−1

x
P→ V 22, Σ̂x

P→ V −1
22 , and Σ̂xY

P→ V −1
22 β since β̂ = Σ̂

−1

x Σ̂xY
P→ β.

Remark 1. The following result is useful for several multiple linear regression es-
timators. Let wi = Anxi for i = 1, ..., n where An is a full rank k × p matrix with
1 ≤ k ≤ p.

a) Let Σ∗ be Σ̂ or Σ̃. Then Σ∗
w = AnΣ

∗
xAT

n and Σ∗
wY = AnΣ

∗
xY .

b) If An is a constant matrix, then Σw = AnΣxAT
n and ΣwY = AnΣxY .

The following result is known. Using the notation above Theorem 1, let Âkx = w.
For multiple linear regression with OLS, let Y = α + xT β + e. Let the working model

be Y = αk + θT
k w + ε. Then the OLS estimator θ̂k = Σ̂

−1

wΣ̂wY . By Remark 1, the
k-component estimator

β̂k = Â
T

k θ̂k = Â
T

k (ÂkΣ̂xÂ
T

k )−1ÂkΣ̂x,Y .

Suppose k = p and Â
−1

p exists. Then β̂p = β̂OLS = Σ̂
−1

x Σ̂x,Y since β̂p =

Â
T

p (ÂpΣ̂xÂ
T

p )−1ÂpΣ̂x,Y = Â
T

p (Â
T

p )−1Σ̂
−1

x (Âp)
−1ÂpΣ̂x,Y = Σ̂

−1

x Σ̂x,Y .

The following theorem shows that if the p components Wi are plugged into a model
that uses maximum likelihood estimation, such as a GLM, the p-component estima-
tor β̂p = β̂x, the MLE. Similar theory holds for other maximization or minimization
problems, such as quasi-likelihood and partial likelihood. The profile likelihood func-
tion Lp(βx|x) = L(βx, η̂|x) where L is the likelihood function of all of the parameters

(βx, η) and η̂ is the MLE of η. As above, use θ̂ = θ̂w to denote the MLE with w

instead of β̂w.
Theorem 2. Suppose the profile likelihood function Lp(βx|x) =

∏n
i=1

f(xi|βx) =∏n
i=1

g(xT
i βx) depends on x and βx only through xTβx. a) If the maximum likelihood

estimator is computed using w = Âpx instead of x, then β̂x = Â
T

p θ̂ = β̂p provided that

Âp is nonsingular. b) Thus β̂x = β̂pPLS = (
∑p

j=1 θ̂jΣ̂
j−1

x )Σ̂xY if the PLS components
are used.

Proof. a)

Lp(θ|w) =
n∏

i=1

g(wT
i θ) =

n∏

i=1

g(xT
i Â

T
θ) =

n∏

i=1

g(xT
i β∗).

Since the second to last term is maximized by Â
T
θ̂ = β̂p and the last term is maximized

by β∗ = β̂x, it follows that β̂x = Â
T
θ̂ = β̂p, and θ̂ = (Â

T
)−1β̂x. Nonsingularity was

used so that β∗ varies through R
p as βx varies through R

p.
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b) Plug in β̂x = β̂p = β̂pPLS from Theorem 1 e). �

A useful high dimensional technique is to use PCA for dimension reduction. Let
U1, ..., Up be the PCA linear combinations (Ui = γ̂T

i x) ordered with respect to the largest
eigenvalues. Then use U1, ..., Uk in the regression or classification model where k is chosen
in some manner. This method can be used for models with m response variables Y1, ..., Ym.
See, for example, Artigue and Smith (2019), Cook (2007, 2018), and Zhang and Chen
(2020).

Consider a low or high dimensional regression or classification method with a univari-
ate response variable Y . Let W1, ..., Wp be the linear combinations ordered with respect
to the highest squared correlations r2

1 ≥ r2
2 ≥ · · · ≥ r2

p where the sample correlation
ri,Y = cor(xi, Y ). As noted by Olive (2025), from a model selection viewpoint, using
W1, ..., Wk should work much better than using U1, ..., Uk. Also, the PLS components
Wi should be used instead of the PCA Wi, since the PLS components are chosen to be
fairly highly correlated with Y . Cook and Forzani (2021) used the PLS components as
predictors for nonlinear regression.

3 The OPLS Estimator

The OPLS estimator is the PLS estimator from Section 2 with k = 1. Then the ESP
= α̂1 + θ̂Σ̂

T

xY x = α̂OPLS + β̂
T

OPLSx where β̂OPLS = θ̂Σ̂xY . Let η̂OPLS = Σ̂xY . Testing
H0 : AβOPLS = 0 versus H1 : AβOPLS 6= 0 is equivalent to testing H0 : Aη = 0 versus
H1 : Aη 6= 0 where A is a k × p constant matrix and η = ΣxY .

For multiple linear regression, Cook, Helland, and Su (2013) and Basa et al. (2024)
showed that β̂OPLS = θ̂Σ̂xY estimates θΣxY = βOPLS where

θ =
ΣT

xY ΣxY

ΣT
xY ΣxΣxY

and θ̂ =
Σ̂

T

xYΣ̂xY

Σ̂
T

xYΣ̂xΣ̂xY

(4)

for ΣxY 6= 0. If ΣxY = 0, then βOPLS = 0.
Next, some large sample theory is reviewed for η̂OPLS = Σ̂xY and OPLS for the mul-

tiple linear regression model, including some high dimensional tests for low dimensional
quantities such as H0 : βi = 0 or H0 : βi − βj = 0. These tests depended on iid cases,
but not on linearity or the constant variance assumption. Hence the tests are useful for
multiple linear regression with heterogeneity.

The following Olive and Zhang (2025) theorem gives the large sample theory for η̂ =

Ĉov(x, Y ). Olive et al. (2025) gave alternative proofs. This theory needs η = ηOPLS =
Σx,Y to exist for η̂ = Σ̂x,Y to be a consistent estimator of η. Let xi = (xi1, . . . , xip)

T

and let wi and zi be defined below where

Cov(wi) = Σw = E[(xi − µx)(xi − µx)T (Yi − µY )2)] − ΣxY ΣT
xY .

Then the low order moments are needed for Σ̂z to be a consistent estimator of Σw.
Theorem 3. Assume the cases (xT

i , Yi)
T are iid. Assume E(xk

ij Y m
i ) exist for j =

1, . . . , p and k, m = 0, 1, 2. Let µx = E(x) and µY = E(Y ). Let wi = (xi−µx)(Yi−µY )
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with sample mean wn. Let η = Σx,Y . Then (a)

√
n(wn − η)

D→ Np(0,Σw),
√

n(η̂n − η)
D→ Np(0,Σw), (5)

and
√

n(η̃n − η)
D→ Np(0,Σw).

(b) Let vi = (xi − xn)(Yi − Y n). Then Σ̂w = Σ̂v + OP (n−1/2). Hence Σ̃w = Σ̃v +
OP (n−1/2).
(c) Let A be a k × p full rank constant matrix with k ≤ p, assume H0 : AβOPLS = 0 is

true, and assume θ̂
P→ θ 6= 0. Then

√
nA(β̂OPLS − βOPLS)

D→ Nk(0, θ2AΣwAT ). (6)

For the following theorem, consider a subset of k distinct elements from Σ̃ or from
Σ̂. Stack the elements into a vector, and let each vector have the same ordering. For
example, the largest subset of distinct elements corresponds to

vech(Σ̃) = (σ̃11, . . . , σ̃1p, σ̃22, . . . , σ̃2p, . . . , σ̃p−1,p−1, σ̃p−1,p, σ̃pp)
T = [σ̃jk].

For random variables x1, . . . , xp, use notation such as xj = the sample mean of the xj,
µj = E(xj), and σjk = Cov(xj, xk). Let

n vech(Σ̃) = [n σ̃jk] =
n∑

i=1

[(xij − xj)(xik − xk)].

For general vectors of elements, the ordering of the vectors will all be the same and be
denoted by vectors such as ĉ = [σ̂jk], c̃ = [σ̃jk], c = [σjk], vi = [(xij − xj)(xik − xk)], and
wi = [(xij−µj)(xik−µk)]. Let wn =

∑n
i=1

wi/n be the sample mean of the wi. Assuming
that Cov(wi) = Σw exists, then E(wi) = E(wn) = c.

The following Olive et al. (2025) theorem provides large sample theory for ĉ and c̃.
We use Cov(wi) = Σd to avoid confusion with the Σw used in Theorem 3. Note that
xi are dummy variables and could be replaced by ui = (Yi1, . . . , Yim, xi1, . . . , xip)

T to get
information about m response variables Y1, . . . , Ym.

Theorem 4. Assume the cases xi are iid and that Cov(wi) = Σd exists. Using the
above notation with c a k × 1 vector,

(i)
√

n(c̃ − c)
D→ Nk(0,Σd).

(ii)
√

n(ĉ − c)
D→ Nk(0,Σd).

(iii) Σ̂d = Σ̂v + OP (n−1/2) and Σ̃d = Σ̃v + OP (n−1/2).

4 Large Sample Theory and Testing

Suppose the classification or regression model has a response variable Y that depends on
the predictors x through SP = α + βT x. In low dimensions, important tests include a)
H0 : βi = 0 (the Wald tests for MLR), b) H0 : β = 0 (the Anova F test for MLR), and
c) H0 : (βi1, . . . , βik)

T = 0 (the partial F test for MLR).
This section will derive some high dimensional analogs of the above tests.
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4.1 Testing H0 : β = 0

An Omnibus or Universal Test

This subsection follows Abid, Quaye, and Olive (2025) closely. Consider classification
and regression models where the response variable Y only depends on the p × 1 vector
of predictors x = (x1, ..., xp)

T through the sufficient predictor SP = α + xTβ. Let the
covariance vector Cov(x, Y ) = ΣxY . Assume the cases (xT

i , Yi)
T are iid random vectors

for i = 1, ..., n. Then for many such regression models, β = 0 if and only if ΣxY = 0

where 0 = (0, ..., 0)T is the p × 1 vector of zeroes.
The test of H0 : ΣxY = 0 versus H1 : ΣxY 6= 0 is equivalent to the high dimensional

one sample test H0 : µ = 0 versus HA : µ 6= 0 applied to w1, ..., wn where wi =
(xi −µx)(Yi − µY ) and the expected values E(x) = µx and E(Y ) = µY . Since µx and
µY are unknown, the test of H0 : β = 0 versus H1 : β 6= 0 is implemented by applying
the one sample test to vi = (xi − x)(Yi − Y ) for i = 1, ..., n.

Zhao et al. (2024) have an interesting result for the multiple linear regression model
(2). Assume that the cases (xT

i , Yi)
T are iid with E(Y ) = µY , E(x) = µx and nonsingular

Cov(x) = Σx. Let β = βOLS . Then testing H0 : β = β0 versus H1 : β 6= β0 is
equivalent to testing H0 : µ = 0 versus H1 : µ 6= 0 with µ = E(wi) = Σx(β − β0)
where wi = (xi − µx)(Yi − µY − (xi − µx)T β0), and a one sample test can be applied
to vi = (xi − x)(Yi − Y − (xi − x)Tβ0).

Abid, Quaye, and Olive (2025) used the above test for β0 = 0. The resulting test
can be used for many regression models, not just multiple linear regression. Suppose
βD = D−1ΣxY where D is a p × p nonsingular matrix. Then βD = 0 if and only if
ΣxY = 0. Then D−1 = θI for OPLS, D−1 = Σ−1

x for OLS, and D−1 = [diag(Σx)]−1

for the MMLE for multiple linear regression (MLR). By Theorem 1e), βkPLS = 0 if
ΣxY = 0. Thus if the cases (xT

i , Yi)
T are iid, then using β0 = 0 gives tests for H0 : β = 0,

H0 : βMMLE = 0 (for MLR), H0 : ΣxY = 0, H0 : βOPLS = 0, and H0 : βkPLS = 0.
For multiple linear regression with heterogeneity, β̂OLS is still a consistent estimator
of β = βOLS = Σ−1

x ΣxY . Hence the test can be used when the constant variance
assumption is violated.

Assume the cases (xT
i , Yi)

T are iid. For a generalized linear model and several other
regression models that depend on the predictors x only through SP = α + xT β, if
β = 0, then the Yi are iid and do not depend on x, and thus satisfy a multiple linear
regression model with βOLS = 0. Typically, if β 6= 0, then ΣxY 6= 0. Also see Theorem
2 b). An exception is when there is a lot of symmetry which rarely occurs with real
data. For example, suppose Y = m(SP ) + e where the iid errors ei ∼ N(0, σ2

1) are
independent of the predictors, SP ∼ N(0, σ2

2), and the function m is symmetric about
0, e.g. m(SP ) = (SP )2. Then βOLS = 0 and ΣxY = 0 even if β 6= 0.

If β0 = 0, then wi = (xi−µx)(Yi−µY ), and E(wi) = E(ui) = E[xi(Yi−µY )] = ΣxY .
Then apply a high dimensional one sample test on the vi = (xi −x)(Yi − Y ). Note that
the sample mean v = Σ̃xY .

Suppose x1, ..., xn are iid random vectors with E(x) = µ and covariance matrix
Cov(x) = Σ. Then the test H0 : µ = 0 versus H1 : µ 6= 0 is equivalent to the test
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H0 : µTµ = 0 versus H1 : µT µ 6= 0. Let S = Σ̂. A U-statistic for estimating µTµ is

Tn = Tn(x) =
1

n(n − 1)

∑

i6=j

xT
i xj =

nxT x − tr(S)

n
(7)

where tr() is the trace function. See, for example, Abid, Quaye, and Olive (2025).
Let the variance V (W ) = V (Wij) = V (xT

i xj) = σ2
W for i 6= j. Let m = floor(n/2) =

bn/2c be the integer part of n/2. So floor(100/2) = floor(101/2) = 50. Let the iid random
variables Wi = xT

2i−1x2i for i = 1, ..., m. Hence W1, W2, ..., Wm = xT
1 x2, x

T
3 x4, ..., x

T
2m−1x2m.

Note that E(Wi) = µTµ and V (Wi) = σ2
W . Let S2

W be the sample variance of the Wi:

S2
W =

1

m − 1

m∑

i=1

(Wi − W )2. (8)

Zhao et al. (2024, p. 2024) showed that σ2
W = tr(Σ2) + 2µTΣµ.

The following Abid, Quaye, and Olive (2025) theorem derived the variance V (Tn)
under simpler regularity conditions than those in the literature. The second formula in
Theorem 5a) was obtained by Chen and Qin (2010).

Theorem 5. Assume x1, ..., xn are iid, E(xi) = µ, and the variance V (xT
i xj) = σ2

W

for i 6= j. Let Wij = xT
i xj for i 6= j. Let θ = Cov(Wij, Wid) = µTΣµ where j 6= d, i < j,

and i < d. Then

a) V (Tn) =
2σ2

W

n(n − 1)
+

4(n − 2)θ

n(n − 1)
=

2

n(n − 1)
tr(Σ2) +

4µTΣµ

n
.

b) If H0 : µ = 0 is true, then θ = 0 and

V0 = V (Tn) =
2σ2

W

n(n − 1)
=

2tr(Σ2)

n(n − 1)
=

2σ2
W − 4θ

n(n − 1)
.

Let V̂ (Tn) and V̂0(Tn) be consistent estimators of V (Tn) and V0(Tn), respectively.
Then Srivastava and Du (2008), Bai and Saranadasa (1996), Chen and Qin (2010), Li
(2023), and others proved that under mild regularity conditions when H0 is true,

Tn/

√
V̂ (Tn) = Tn/

√
V̂0(Tn)

D→ N(0, 1).

Under regularity conditions when H0 is true, Li (2023) proved that Tn/

√
V̂0(Tn)

D→ tk as

p → ∞ for fixed n ≥ 3 where k = 0.5n(n − 1) − 1.
A consistent estimator of V0(Tn) needs a consistent estimator of σ2

W = 0.5n(n − 1)
V0(Tn). Let s2

n = V̂0(Tn). Then one estimator is 0.5n(n − 1)s2
n = S2

W from Equation (8).
An estimator nearly the same as the one used by Li (2023) is

0.5n(n − 1)s2
n = σ̂2

W =
1

n(n − 1)

∑∑

i6=j

(xT
i xj − Tn)

2 =
1

n(n − 1)

∑∑

i6=j

(Wij − Tn)
2.

A New Competing Test
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If the parametric distribution D is known, then the iid cases assumption can be
changed to independent cases. Assume Yi|xT

i β ∼ D(τ (α + xT
i β), θ). If β = 0, then the

iid Yi ∼ D(τ (α), θ). Hence testing H0 : β = 0 vs. H1 : β 6= 0 is equivalent to testing
whether the Yi are a random sample from the D(τ (α), θ) distribution. Such a test can
be done with the Kolmogorov-Smirnov test, the chi-square test, the Anderson-Darling
test, the Cramér-von Mises test, et cetera. For specific distributions, there are often
tests. For example, the Lilliefors test can be used to test if the Yi are iid from a N(µ, σ2)
distribution where µ and σ2 are unknown. See, for example, Kellison and London (2011,
pp. 455-465), Conover (1971, pp. 295-308), Zheng, Lai, and Gould (2023), and Zheng et
al. (2025).

This test has great level and extreme dimension reduction since the test does not
depend on the predictors x. The power can be sometimes be very poor if the cases are
iid. a) If the (Yi, x

T
i )T are iid from a multivariate normal distribution, then the Yi are iid

N(µY , σ2
Y ) regardless of whether β = 0 or β 6= 0 for the multiple linear regression model

Y |(α +xT β) ∼ N(α +xTβ, σ2). b) If the (Yi, x
T
i )T are iid from some distribution where

the Yi ∈ {0, 1} are binary, then the Yi are iid bin(n = 1, ρY ) regardless of whether β = 0

or β 6= 0 for the binary regression model Y |(α + xT β) ∼ bin(n = 1, ρ(α + xTβ)).
The test does not depend on x, and can thus be done after variable selection. Also,

all of the predictors can have outliers and missing values.
A Test for Binary Regression or Classification

Olive (2017, pp. 396-397) gave the result for a binary response variable Y ∈ {0, 1}.
Theorem 6. Let πj = P (Y = j) for j = 0, 1. Let µj = E(x|Y = j) for j = 0, 1.

Then a) Σ̃xY = π̂1π̂0(µ̂1 − µ̂0), and b) Σx,Y = π1π0(µ1 −µ0).
Proof. Let Ni be the number of Ys that are equal to i for i = 0, 1 with n = N1 +N2.

Then

µ̂i =
1

Ni

∑

j:Yj=i

xj

for i = 0, 1 while π̂i = Ni/n and π̂1 = 1 − π̂0. Hence µ̂i = xi is the sample mean of the
xk corresponding to Yk = j for j = 0, 1. Then

Σ̃xY =
1

n

n∑

i=1

xiYi − x Y .

Thus Σ̃xY =
1

n


 ∑

j:Yj=1

xj(1) +
∑

j:Yj=0

xj(0)


 − x π̂1 =

1

n
(N1µ̂1) −

1

n
(N1µ̂1 + N0µ̂0)π̂1 = π̂1µ̂1 − π̂2

1µ̂1 − π̂1π̂0µ̂0 =

π̂1(1 − π̂1)µ̂1 − π̂1π̂0µ̂0 = π̂1π̂0(µ̂1 − µ̂0).

Thus Σx,Y = π1π0(µ1 − µ0). �

This result means η = Σx,Y = π1π0(µ1 − µ0) and φ = µ1 − µ0 are quantities
of interest for binary regression. Note that x = (w1, ..., wk, w1w2, ..., w1wk, ..., wk−1wk)

T

could be used to include pairwise interactions of the wi.
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Theorem 2b) suggests that typically the binary regression β̂ = ĈΣ̂xY . If the cases
(Yi, x

T
i )T are iid, then H0 : β = 0 can be tested with the omnibus test for H0 : ΣxY . If the

cases within each group are iid, if the two groups are independent, and if N1/(N1+N2) →
π1, then Σx,Y = π1π0(µ1 − µ0) by Theorem 6b). Thus H0 : β = 0 can be tested with a
high dimensional two sample test for H0 : µ1 = µ0.

4.2 Testing H0 : βi = 0

4.3 Testing H0 : βI = (βi1, ..., βik)
T = 0

High Dimensional Tests

Some tests when n/p is not large are simple. Testing H0 : AβBR = 0 versus H1 :
AβBR 6= 0 is equivalent to testing H0 : Aη = 0 versus H1 : Aη 6= 0 where A is a k × p
constant matrix. Let Cov(η̂) = Σw be the asymptotic covariance matrix of η̂. In high
dimensions where n < 5p, we can’t get a good nonsingular estimator of Cov(η̂), but we
can get good nonsingular estimators of Cov((η̂i1, ..., η̂ik)

T ) with u = (xi1, ..., xik)
T where

n ≥ Jk with J ≥ 10. (Values of J much larger than 10 may be needed if some of the k
predictors are skewed or if a πi in near 0 or 1.) Simply use the sample covariance matrix
with u replacing x. Hence we can test hypotheses like H0 : βi − βj = 0. In particular,
testing H0 : βi = 0 is equivalent to testing H0 : ηi = 0.

Data splitting uses model selection (variable selection is a special case) to reduce
the high dimensional problem to a low dimensional problem. The above procedure also
reduces the high dimensional problem to a low dimensional problem.

5 CONCLUSIONS

Binary regression is closely related to two sample tests. Note that η̂ = µ̂1 − µ̂2 can
use other multivariate location estimators than sample means. For example, sample
coordinatewise medians, sample coordinatewise trimmed means, and the Olive (2017b)
TRMV N estimator have large sample theory given by Rupasinghe Arachchige Don and
Olive (2019) and Rupasinghe Arachchige Don and Pelawa Watagoda (2018).

Some papers on binary regression include Cai, Guo, and Ma (2023), Candès and Sur
(2020), Mukherjee, Pillai, and Lin (2015), Sur and Candès (2019), Sur, Chen, and Candès
(2019), and Tang and Ye (2020). Empirically, often βLR ≈ d βOLS. Haggstrom (1983)
suggests that d is not far from 1/MSE for logistic regression.

These binary regression estimators also give new ways to compare multivariate loca-
tion estimators from two groups. The tests using k predictors can be performed. High
dimensional tests for means from two groups can also be used. The tests that make very
strong assumptions, such as multivariate normality or equal covariance matrices for the
two groups, should be avoided. See Feng and Sun (2015), Gregory et al. (2015), Hu and
Bai (2015), Rajapaksha and Olive (2024), and Xue and Yao (2020).

Software

The R software was used in the simulations. See R Core Team (2024). Programs
will be added to the Olive (2025) collections of R functions slpack.txt, available from
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(http://parker.ad.siu.edu/Olive/slpack.txt).
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